xref: /linux/fs/dcache.c (revision b3b77c8caef1750ebeea1054e39e358550ea9f55)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static void __d_free(struct dentry *dentry)
71 {
72 	WARN_ON(!list_empty(&dentry->d_alias));
73 	if (dname_external(dentry))
74 		kfree(dentry->d_name.name);
75 	kmem_cache_free(dentry_cache, dentry);
76 }
77 
78 static void d_callback(struct rcu_head *head)
79 {
80 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 	__d_free(dentry);
82 }
83 
84 /*
85  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
86  * inside dcache_lock.
87  */
88 static void d_free(struct dentry *dentry)
89 {
90 	if (dentry->d_op && dentry->d_op->d_release)
91 		dentry->d_op->d_release(dentry);
92 	/* if dentry was never inserted into hash, immediate free is OK */
93 	if (hlist_unhashed(&dentry->d_hash))
94 		__d_free(dentry);
95 	else
96 		call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98 
99 /*
100  * Release the dentry's inode, using the filesystem
101  * d_iput() operation if defined.
102  */
103 static void dentry_iput(struct dentry * dentry)
104 	__releases(dentry->d_lock)
105 	__releases(dcache_lock)
106 {
107 	struct inode *inode = dentry->d_inode;
108 	if (inode) {
109 		dentry->d_inode = NULL;
110 		list_del_init(&dentry->d_alias);
111 		spin_unlock(&dentry->d_lock);
112 		spin_unlock(&dcache_lock);
113 		if (!inode->i_nlink)
114 			fsnotify_inoderemove(inode);
115 		if (dentry->d_op && dentry->d_op->d_iput)
116 			dentry->d_op->d_iput(dentry, inode);
117 		else
118 			iput(inode);
119 	} else {
120 		spin_unlock(&dentry->d_lock);
121 		spin_unlock(&dcache_lock);
122 	}
123 }
124 
125 /*
126  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127  */
128 static void dentry_lru_add(struct dentry *dentry)
129 {
130 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 	dentry->d_sb->s_nr_dentry_unused++;
132 	dentry_stat.nr_unused++;
133 }
134 
135 static void dentry_lru_add_tail(struct dentry *dentry)
136 {
137 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 	dentry->d_sb->s_nr_dentry_unused++;
139 	dentry_stat.nr_unused++;
140 }
141 
142 static void dentry_lru_del(struct dentry *dentry)
143 {
144 	if (!list_empty(&dentry->d_lru)) {
145 		list_del(&dentry->d_lru);
146 		dentry->d_sb->s_nr_dentry_unused--;
147 		dentry_stat.nr_unused--;
148 	}
149 }
150 
151 static void dentry_lru_del_init(struct dentry *dentry)
152 {
153 	if (likely(!list_empty(&dentry->d_lru))) {
154 		list_del_init(&dentry->d_lru);
155 		dentry->d_sb->s_nr_dentry_unused--;
156 		dentry_stat.nr_unused--;
157 	}
158 }
159 
160 /**
161  * d_kill - kill dentry and return parent
162  * @dentry: dentry to kill
163  *
164  * The dentry must already be unhashed and removed from the LRU.
165  *
166  * If this is the root of the dentry tree, return NULL.
167  */
168 static struct dentry *d_kill(struct dentry *dentry)
169 	__releases(dentry->d_lock)
170 	__releases(dcache_lock)
171 {
172 	struct dentry *parent;
173 
174 	list_del(&dentry->d_u.d_child);
175 	dentry_stat.nr_dentry--;	/* For d_free, below */
176 	/*drops the locks, at that point nobody can reach this dentry */
177 	dentry_iput(dentry);
178 	if (IS_ROOT(dentry))
179 		parent = NULL;
180 	else
181 		parent = dentry->d_parent;
182 	d_free(dentry);
183 	return parent;
184 }
185 
186 /*
187  * This is dput
188  *
189  * This is complicated by the fact that we do not want to put
190  * dentries that are no longer on any hash chain on the unused
191  * list: we'd much rather just get rid of them immediately.
192  *
193  * However, that implies that we have to traverse the dentry
194  * tree upwards to the parents which might _also_ now be
195  * scheduled for deletion (it may have been only waiting for
196  * its last child to go away).
197  *
198  * This tail recursion is done by hand as we don't want to depend
199  * on the compiler to always get this right (gcc generally doesn't).
200  * Real recursion would eat up our stack space.
201  */
202 
203 /*
204  * dput - release a dentry
205  * @dentry: dentry to release
206  *
207  * Release a dentry. This will drop the usage count and if appropriate
208  * call the dentry unlink method as well as removing it from the queues and
209  * releasing its resources. If the parent dentries were scheduled for release
210  * they too may now get deleted.
211  *
212  * no dcache lock, please.
213  */
214 
215 void dput(struct dentry *dentry)
216 {
217 	if (!dentry)
218 		return;
219 
220 repeat:
221 	if (atomic_read(&dentry->d_count) == 1)
222 		might_sleep();
223 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 		return;
225 
226 	spin_lock(&dentry->d_lock);
227 	if (atomic_read(&dentry->d_count)) {
228 		spin_unlock(&dentry->d_lock);
229 		spin_unlock(&dcache_lock);
230 		return;
231 	}
232 
233 	/*
234 	 * AV: ->d_delete() is _NOT_ allowed to block now.
235 	 */
236 	if (dentry->d_op && dentry->d_op->d_delete) {
237 		if (dentry->d_op->d_delete(dentry))
238 			goto unhash_it;
239 	}
240 	/* Unreachable? Get rid of it */
241  	if (d_unhashed(dentry))
242 		goto kill_it;
243   	if (list_empty(&dentry->d_lru)) {
244   		dentry->d_flags |= DCACHE_REFERENCED;
245 		dentry_lru_add(dentry);
246   	}
247  	spin_unlock(&dentry->d_lock);
248 	spin_unlock(&dcache_lock);
249 	return;
250 
251 unhash_it:
252 	__d_drop(dentry);
253 kill_it:
254 	/* if dentry was on the d_lru list delete it from there */
255 	dentry_lru_del(dentry);
256 	dentry = d_kill(dentry);
257 	if (dentry)
258 		goto repeat;
259 }
260 EXPORT_SYMBOL(dput);
261 
262 /**
263  * d_invalidate - invalidate a dentry
264  * @dentry: dentry to invalidate
265  *
266  * Try to invalidate the dentry if it turns out to be
267  * possible. If there are other dentries that can be
268  * reached through this one we can't delete it and we
269  * return -EBUSY. On success we return 0.
270  *
271  * no dcache lock.
272  */
273 
274 int d_invalidate(struct dentry * dentry)
275 {
276 	/*
277 	 * If it's already been dropped, return OK.
278 	 */
279 	spin_lock(&dcache_lock);
280 	if (d_unhashed(dentry)) {
281 		spin_unlock(&dcache_lock);
282 		return 0;
283 	}
284 	/*
285 	 * Check whether to do a partial shrink_dcache
286 	 * to get rid of unused child entries.
287 	 */
288 	if (!list_empty(&dentry->d_subdirs)) {
289 		spin_unlock(&dcache_lock);
290 		shrink_dcache_parent(dentry);
291 		spin_lock(&dcache_lock);
292 	}
293 
294 	/*
295 	 * Somebody else still using it?
296 	 *
297 	 * If it's a directory, we can't drop it
298 	 * for fear of somebody re-populating it
299 	 * with children (even though dropping it
300 	 * would make it unreachable from the root,
301 	 * we might still populate it if it was a
302 	 * working directory or similar).
303 	 */
304 	spin_lock(&dentry->d_lock);
305 	if (atomic_read(&dentry->d_count) > 1) {
306 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
307 			spin_unlock(&dentry->d_lock);
308 			spin_unlock(&dcache_lock);
309 			return -EBUSY;
310 		}
311 	}
312 
313 	__d_drop(dentry);
314 	spin_unlock(&dentry->d_lock);
315 	spin_unlock(&dcache_lock);
316 	return 0;
317 }
318 EXPORT_SYMBOL(d_invalidate);
319 
320 /* This should be called _only_ with dcache_lock held */
321 
322 static inline struct dentry * __dget_locked(struct dentry *dentry)
323 {
324 	atomic_inc(&dentry->d_count);
325 	dentry_lru_del_init(dentry);
326 	return dentry;
327 }
328 
329 struct dentry * dget_locked(struct dentry *dentry)
330 {
331 	return __dget_locked(dentry);
332 }
333 EXPORT_SYMBOL(dget_locked);
334 
335 /**
336  * d_find_alias - grab a hashed alias of inode
337  * @inode: inode in question
338  * @want_discon:  flag, used by d_splice_alias, to request
339  *          that only a DISCONNECTED alias be returned.
340  *
341  * If inode has a hashed alias, or is a directory and has any alias,
342  * acquire the reference to alias and return it. Otherwise return NULL.
343  * Notice that if inode is a directory there can be only one alias and
344  * it can be unhashed only if it has no children, or if it is the root
345  * of a filesystem.
346  *
347  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
348  * any other hashed alias over that one unless @want_discon is set,
349  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
350  */
351 
352 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
353 {
354 	struct list_head *head, *next, *tmp;
355 	struct dentry *alias, *discon_alias=NULL;
356 
357 	head = &inode->i_dentry;
358 	next = inode->i_dentry.next;
359 	while (next != head) {
360 		tmp = next;
361 		next = tmp->next;
362 		prefetch(next);
363 		alias = list_entry(tmp, struct dentry, d_alias);
364  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
365 			if (IS_ROOT(alias) &&
366 			    (alias->d_flags & DCACHE_DISCONNECTED))
367 				discon_alias = alias;
368 			else if (!want_discon) {
369 				__dget_locked(alias);
370 				return alias;
371 			}
372 		}
373 	}
374 	if (discon_alias)
375 		__dget_locked(discon_alias);
376 	return discon_alias;
377 }
378 
379 struct dentry * d_find_alias(struct inode *inode)
380 {
381 	struct dentry *de = NULL;
382 
383 	if (!list_empty(&inode->i_dentry)) {
384 		spin_lock(&dcache_lock);
385 		de = __d_find_alias(inode, 0);
386 		spin_unlock(&dcache_lock);
387 	}
388 	return de;
389 }
390 EXPORT_SYMBOL(d_find_alias);
391 
392 /*
393  *	Try to kill dentries associated with this inode.
394  * WARNING: you must own a reference to inode.
395  */
396 void d_prune_aliases(struct inode *inode)
397 {
398 	struct dentry *dentry;
399 restart:
400 	spin_lock(&dcache_lock);
401 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
402 		spin_lock(&dentry->d_lock);
403 		if (!atomic_read(&dentry->d_count)) {
404 			__dget_locked(dentry);
405 			__d_drop(dentry);
406 			spin_unlock(&dentry->d_lock);
407 			spin_unlock(&dcache_lock);
408 			dput(dentry);
409 			goto restart;
410 		}
411 		spin_unlock(&dentry->d_lock);
412 	}
413 	spin_unlock(&dcache_lock);
414 }
415 EXPORT_SYMBOL(d_prune_aliases);
416 
417 /*
418  * Throw away a dentry - free the inode, dput the parent.  This requires that
419  * the LRU list has already been removed.
420  *
421  * Try to prune ancestors as well.  This is necessary to prevent
422  * quadratic behavior of shrink_dcache_parent(), but is also expected
423  * to be beneficial in reducing dentry cache fragmentation.
424  */
425 static void prune_one_dentry(struct dentry * dentry)
426 	__releases(dentry->d_lock)
427 	__releases(dcache_lock)
428 	__acquires(dcache_lock)
429 {
430 	__d_drop(dentry);
431 	dentry = d_kill(dentry);
432 
433 	/*
434 	 * Prune ancestors.  Locking is simpler than in dput(),
435 	 * because dcache_lock needs to be taken anyway.
436 	 */
437 	spin_lock(&dcache_lock);
438 	while (dentry) {
439 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
440 			return;
441 
442 		if (dentry->d_op && dentry->d_op->d_delete)
443 			dentry->d_op->d_delete(dentry);
444 		dentry_lru_del_init(dentry);
445 		__d_drop(dentry);
446 		dentry = d_kill(dentry);
447 		spin_lock(&dcache_lock);
448 	}
449 }
450 
451 /*
452  * Shrink the dentry LRU on a given superblock.
453  * @sb   : superblock to shrink dentry LRU.
454  * @count: If count is NULL, we prune all dentries on superblock.
455  * @flags: If flags is non-zero, we need to do special processing based on
456  * which flags are set. This means we don't need to maintain multiple
457  * similar copies of this loop.
458  */
459 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
460 {
461 	LIST_HEAD(referenced);
462 	LIST_HEAD(tmp);
463 	struct dentry *dentry;
464 	int cnt = 0;
465 
466 	BUG_ON(!sb);
467 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
468 	spin_lock(&dcache_lock);
469 	if (count != NULL)
470 		/* called from prune_dcache() and shrink_dcache_parent() */
471 		cnt = *count;
472 restart:
473 	if (count == NULL)
474 		list_splice_init(&sb->s_dentry_lru, &tmp);
475 	else {
476 		while (!list_empty(&sb->s_dentry_lru)) {
477 			dentry = list_entry(sb->s_dentry_lru.prev,
478 					struct dentry, d_lru);
479 			BUG_ON(dentry->d_sb != sb);
480 
481 			spin_lock(&dentry->d_lock);
482 			/*
483 			 * If we are honouring the DCACHE_REFERENCED flag and
484 			 * the dentry has this flag set, don't free it. Clear
485 			 * the flag and put it back on the LRU.
486 			 */
487 			if ((flags & DCACHE_REFERENCED)
488 				&& (dentry->d_flags & DCACHE_REFERENCED)) {
489 				dentry->d_flags &= ~DCACHE_REFERENCED;
490 				list_move(&dentry->d_lru, &referenced);
491 				spin_unlock(&dentry->d_lock);
492 			} else {
493 				list_move_tail(&dentry->d_lru, &tmp);
494 				spin_unlock(&dentry->d_lock);
495 				cnt--;
496 				if (!cnt)
497 					break;
498 			}
499 			cond_resched_lock(&dcache_lock);
500 		}
501 	}
502 	while (!list_empty(&tmp)) {
503 		dentry = list_entry(tmp.prev, struct dentry, d_lru);
504 		dentry_lru_del_init(dentry);
505 		spin_lock(&dentry->d_lock);
506 		/*
507 		 * We found an inuse dentry which was not removed from
508 		 * the LRU because of laziness during lookup.  Do not free
509 		 * it - just keep it off the LRU list.
510 		 */
511 		if (atomic_read(&dentry->d_count)) {
512 			spin_unlock(&dentry->d_lock);
513 			continue;
514 		}
515 		prune_one_dentry(dentry);
516 		/* dentry->d_lock was dropped in prune_one_dentry() */
517 		cond_resched_lock(&dcache_lock);
518 	}
519 	if (count == NULL && !list_empty(&sb->s_dentry_lru))
520 		goto restart;
521 	if (count != NULL)
522 		*count = cnt;
523 	if (!list_empty(&referenced))
524 		list_splice(&referenced, &sb->s_dentry_lru);
525 	spin_unlock(&dcache_lock);
526 }
527 
528 /**
529  * prune_dcache - shrink the dcache
530  * @count: number of entries to try to free
531  *
532  * Shrink the dcache. This is done when we need more memory, or simply when we
533  * need to unmount something (at which point we need to unuse all dentries).
534  *
535  * This function may fail to free any resources if all the dentries are in use.
536  */
537 static void prune_dcache(int count)
538 {
539 	struct super_block *sb, *n;
540 	int w_count;
541 	int unused = dentry_stat.nr_unused;
542 	int prune_ratio;
543 	int pruned;
544 
545 	if (unused == 0 || count == 0)
546 		return;
547 	spin_lock(&dcache_lock);
548 	if (count >= unused)
549 		prune_ratio = 1;
550 	else
551 		prune_ratio = unused / count;
552 	spin_lock(&sb_lock);
553 	list_for_each_entry_safe(sb, n, &super_blocks, s_list) {
554 		if (list_empty(&sb->s_instances))
555 			continue;
556 		if (sb->s_nr_dentry_unused == 0)
557 			continue;
558 		sb->s_count++;
559 		/* Now, we reclaim unused dentrins with fairness.
560 		 * We reclaim them same percentage from each superblock.
561 		 * We calculate number of dentries to scan on this sb
562 		 * as follows, but the implementation is arranged to avoid
563 		 * overflows:
564 		 * number of dentries to scan on this sb =
565 		 * count * (number of dentries on this sb /
566 		 * number of dentries in the machine)
567 		 */
568 		spin_unlock(&sb_lock);
569 		if (prune_ratio != 1)
570 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
571 		else
572 			w_count = sb->s_nr_dentry_unused;
573 		pruned = w_count;
574 		/*
575 		 * We need to be sure this filesystem isn't being unmounted,
576 		 * otherwise we could race with generic_shutdown_super(), and
577 		 * end up holding a reference to an inode while the filesystem
578 		 * is unmounted.  So we try to get s_umount, and make sure
579 		 * s_root isn't NULL.
580 		 */
581 		if (down_read_trylock(&sb->s_umount)) {
582 			if ((sb->s_root != NULL) &&
583 			    (!list_empty(&sb->s_dentry_lru))) {
584 				spin_unlock(&dcache_lock);
585 				__shrink_dcache_sb(sb, &w_count,
586 						DCACHE_REFERENCED);
587 				pruned -= w_count;
588 				spin_lock(&dcache_lock);
589 			}
590 			up_read(&sb->s_umount);
591 		}
592 		spin_lock(&sb_lock);
593 		count -= pruned;
594 		__put_super(sb);
595 		/* more work left to do? */
596 		if (count <= 0)
597 			break;
598 	}
599 	spin_unlock(&sb_lock);
600 	spin_unlock(&dcache_lock);
601 }
602 
603 /**
604  * shrink_dcache_sb - shrink dcache for a superblock
605  * @sb: superblock
606  *
607  * Shrink the dcache for the specified super block. This
608  * is used to free the dcache before unmounting a file
609  * system
610  */
611 void shrink_dcache_sb(struct super_block * sb)
612 {
613 	__shrink_dcache_sb(sb, NULL, 0);
614 }
615 EXPORT_SYMBOL(shrink_dcache_sb);
616 
617 /*
618  * destroy a single subtree of dentries for unmount
619  * - see the comments on shrink_dcache_for_umount() for a description of the
620  *   locking
621  */
622 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
623 {
624 	struct dentry *parent;
625 	unsigned detached = 0;
626 
627 	BUG_ON(!IS_ROOT(dentry));
628 
629 	/* detach this root from the system */
630 	spin_lock(&dcache_lock);
631 	dentry_lru_del_init(dentry);
632 	__d_drop(dentry);
633 	spin_unlock(&dcache_lock);
634 
635 	for (;;) {
636 		/* descend to the first leaf in the current subtree */
637 		while (!list_empty(&dentry->d_subdirs)) {
638 			struct dentry *loop;
639 
640 			/* this is a branch with children - detach all of them
641 			 * from the system in one go */
642 			spin_lock(&dcache_lock);
643 			list_for_each_entry(loop, &dentry->d_subdirs,
644 					    d_u.d_child) {
645 				dentry_lru_del_init(loop);
646 				__d_drop(loop);
647 				cond_resched_lock(&dcache_lock);
648 			}
649 			spin_unlock(&dcache_lock);
650 
651 			/* move to the first child */
652 			dentry = list_entry(dentry->d_subdirs.next,
653 					    struct dentry, d_u.d_child);
654 		}
655 
656 		/* consume the dentries from this leaf up through its parents
657 		 * until we find one with children or run out altogether */
658 		do {
659 			struct inode *inode;
660 
661 			if (atomic_read(&dentry->d_count) != 0) {
662 				printk(KERN_ERR
663 				       "BUG: Dentry %p{i=%lx,n=%s}"
664 				       " still in use (%d)"
665 				       " [unmount of %s %s]\n",
666 				       dentry,
667 				       dentry->d_inode ?
668 				       dentry->d_inode->i_ino : 0UL,
669 				       dentry->d_name.name,
670 				       atomic_read(&dentry->d_count),
671 				       dentry->d_sb->s_type->name,
672 				       dentry->d_sb->s_id);
673 				BUG();
674 			}
675 
676 			if (IS_ROOT(dentry))
677 				parent = NULL;
678 			else {
679 				parent = dentry->d_parent;
680 				atomic_dec(&parent->d_count);
681 			}
682 
683 			list_del(&dentry->d_u.d_child);
684 			detached++;
685 
686 			inode = dentry->d_inode;
687 			if (inode) {
688 				dentry->d_inode = NULL;
689 				list_del_init(&dentry->d_alias);
690 				if (dentry->d_op && dentry->d_op->d_iput)
691 					dentry->d_op->d_iput(dentry, inode);
692 				else
693 					iput(inode);
694 			}
695 
696 			d_free(dentry);
697 
698 			/* finished when we fall off the top of the tree,
699 			 * otherwise we ascend to the parent and move to the
700 			 * next sibling if there is one */
701 			if (!parent)
702 				goto out;
703 
704 			dentry = parent;
705 
706 		} while (list_empty(&dentry->d_subdirs));
707 
708 		dentry = list_entry(dentry->d_subdirs.next,
709 				    struct dentry, d_u.d_child);
710 	}
711 out:
712 	/* several dentries were freed, need to correct nr_dentry */
713 	spin_lock(&dcache_lock);
714 	dentry_stat.nr_dentry -= detached;
715 	spin_unlock(&dcache_lock);
716 }
717 
718 /*
719  * destroy the dentries attached to a superblock on unmounting
720  * - we don't need to use dentry->d_lock, and only need dcache_lock when
721  *   removing the dentry from the system lists and hashes because:
722  *   - the superblock is detached from all mountings and open files, so the
723  *     dentry trees will not be rearranged by the VFS
724  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
725  *     any dentries belonging to this superblock that it comes across
726  *   - the filesystem itself is no longer permitted to rearrange the dentries
727  *     in this superblock
728  */
729 void shrink_dcache_for_umount(struct super_block *sb)
730 {
731 	struct dentry *dentry;
732 
733 	if (down_read_trylock(&sb->s_umount))
734 		BUG();
735 
736 	dentry = sb->s_root;
737 	sb->s_root = NULL;
738 	atomic_dec(&dentry->d_count);
739 	shrink_dcache_for_umount_subtree(dentry);
740 
741 	while (!hlist_empty(&sb->s_anon)) {
742 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
743 		shrink_dcache_for_umount_subtree(dentry);
744 	}
745 }
746 
747 /*
748  * Search for at least 1 mount point in the dentry's subdirs.
749  * We descend to the next level whenever the d_subdirs
750  * list is non-empty and continue searching.
751  */
752 
753 /**
754  * have_submounts - check for mounts over a dentry
755  * @parent: dentry to check.
756  *
757  * Return true if the parent or its subdirectories contain
758  * a mount point
759  */
760 
761 int have_submounts(struct dentry *parent)
762 {
763 	struct dentry *this_parent = parent;
764 	struct list_head *next;
765 
766 	spin_lock(&dcache_lock);
767 	if (d_mountpoint(parent))
768 		goto positive;
769 repeat:
770 	next = this_parent->d_subdirs.next;
771 resume:
772 	while (next != &this_parent->d_subdirs) {
773 		struct list_head *tmp = next;
774 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
775 		next = tmp->next;
776 		/* Have we found a mount point ? */
777 		if (d_mountpoint(dentry))
778 			goto positive;
779 		if (!list_empty(&dentry->d_subdirs)) {
780 			this_parent = dentry;
781 			goto repeat;
782 		}
783 	}
784 	/*
785 	 * All done at this level ... ascend and resume the search.
786 	 */
787 	if (this_parent != parent) {
788 		next = this_parent->d_u.d_child.next;
789 		this_parent = this_parent->d_parent;
790 		goto resume;
791 	}
792 	spin_unlock(&dcache_lock);
793 	return 0; /* No mount points found in tree */
794 positive:
795 	spin_unlock(&dcache_lock);
796 	return 1;
797 }
798 EXPORT_SYMBOL(have_submounts);
799 
800 /*
801  * Search the dentry child list for the specified parent,
802  * and move any unused dentries to the end of the unused
803  * list for prune_dcache(). We descend to the next level
804  * whenever the d_subdirs list is non-empty and continue
805  * searching.
806  *
807  * It returns zero iff there are no unused children,
808  * otherwise  it returns the number of children moved to
809  * the end of the unused list. This may not be the total
810  * number of unused children, because select_parent can
811  * drop the lock and return early due to latency
812  * constraints.
813  */
814 static int select_parent(struct dentry * parent)
815 {
816 	struct dentry *this_parent = parent;
817 	struct list_head *next;
818 	int found = 0;
819 
820 	spin_lock(&dcache_lock);
821 repeat:
822 	next = this_parent->d_subdirs.next;
823 resume:
824 	while (next != &this_parent->d_subdirs) {
825 		struct list_head *tmp = next;
826 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
827 		next = tmp->next;
828 
829 		dentry_lru_del_init(dentry);
830 		/*
831 		 * move only zero ref count dentries to the end
832 		 * of the unused list for prune_dcache
833 		 */
834 		if (!atomic_read(&dentry->d_count)) {
835 			dentry_lru_add_tail(dentry);
836 			found++;
837 		}
838 
839 		/*
840 		 * We can return to the caller if we have found some (this
841 		 * ensures forward progress). We'll be coming back to find
842 		 * the rest.
843 		 */
844 		if (found && need_resched())
845 			goto out;
846 
847 		/*
848 		 * Descend a level if the d_subdirs list is non-empty.
849 		 */
850 		if (!list_empty(&dentry->d_subdirs)) {
851 			this_parent = dentry;
852 			goto repeat;
853 		}
854 	}
855 	/*
856 	 * All done at this level ... ascend and resume the search.
857 	 */
858 	if (this_parent != parent) {
859 		next = this_parent->d_u.d_child.next;
860 		this_parent = this_parent->d_parent;
861 		goto resume;
862 	}
863 out:
864 	spin_unlock(&dcache_lock);
865 	return found;
866 }
867 
868 /**
869  * shrink_dcache_parent - prune dcache
870  * @parent: parent of entries to prune
871  *
872  * Prune the dcache to remove unused children of the parent dentry.
873  */
874 
875 void shrink_dcache_parent(struct dentry * parent)
876 {
877 	struct super_block *sb = parent->d_sb;
878 	int found;
879 
880 	while ((found = select_parent(parent)) != 0)
881 		__shrink_dcache_sb(sb, &found, 0);
882 }
883 EXPORT_SYMBOL(shrink_dcache_parent);
884 
885 /*
886  * Scan `nr' dentries and return the number which remain.
887  *
888  * We need to avoid reentering the filesystem if the caller is performing a
889  * GFP_NOFS allocation attempt.  One example deadlock is:
890  *
891  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
892  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
893  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
894  *
895  * In this case we return -1 to tell the caller that we baled.
896  */
897 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
898 {
899 	if (nr) {
900 		if (!(gfp_mask & __GFP_FS))
901 			return -1;
902 		prune_dcache(nr);
903 	}
904 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
905 }
906 
907 static struct shrinker dcache_shrinker = {
908 	.shrink = shrink_dcache_memory,
909 	.seeks = DEFAULT_SEEKS,
910 };
911 
912 /**
913  * d_alloc	-	allocate a dcache entry
914  * @parent: parent of entry to allocate
915  * @name: qstr of the name
916  *
917  * Allocates a dentry. It returns %NULL if there is insufficient memory
918  * available. On a success the dentry is returned. The name passed in is
919  * copied and the copy passed in may be reused after this call.
920  */
921 
922 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
923 {
924 	struct dentry *dentry;
925 	char *dname;
926 
927 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
928 	if (!dentry)
929 		return NULL;
930 
931 	if (name->len > DNAME_INLINE_LEN-1) {
932 		dname = kmalloc(name->len + 1, GFP_KERNEL);
933 		if (!dname) {
934 			kmem_cache_free(dentry_cache, dentry);
935 			return NULL;
936 		}
937 	} else  {
938 		dname = dentry->d_iname;
939 	}
940 	dentry->d_name.name = dname;
941 
942 	dentry->d_name.len = name->len;
943 	dentry->d_name.hash = name->hash;
944 	memcpy(dname, name->name, name->len);
945 	dname[name->len] = 0;
946 
947 	atomic_set(&dentry->d_count, 1);
948 	dentry->d_flags = DCACHE_UNHASHED;
949 	spin_lock_init(&dentry->d_lock);
950 	dentry->d_inode = NULL;
951 	dentry->d_parent = NULL;
952 	dentry->d_sb = NULL;
953 	dentry->d_op = NULL;
954 	dentry->d_fsdata = NULL;
955 	dentry->d_mounted = 0;
956 	INIT_HLIST_NODE(&dentry->d_hash);
957 	INIT_LIST_HEAD(&dentry->d_lru);
958 	INIT_LIST_HEAD(&dentry->d_subdirs);
959 	INIT_LIST_HEAD(&dentry->d_alias);
960 
961 	if (parent) {
962 		dentry->d_parent = dget(parent);
963 		dentry->d_sb = parent->d_sb;
964 	} else {
965 		INIT_LIST_HEAD(&dentry->d_u.d_child);
966 	}
967 
968 	spin_lock(&dcache_lock);
969 	if (parent)
970 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
971 	dentry_stat.nr_dentry++;
972 	spin_unlock(&dcache_lock);
973 
974 	return dentry;
975 }
976 EXPORT_SYMBOL(d_alloc);
977 
978 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
979 {
980 	struct qstr q;
981 
982 	q.name = name;
983 	q.len = strlen(name);
984 	q.hash = full_name_hash(q.name, q.len);
985 	return d_alloc(parent, &q);
986 }
987 EXPORT_SYMBOL(d_alloc_name);
988 
989 /* the caller must hold dcache_lock */
990 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
991 {
992 	if (inode)
993 		list_add(&dentry->d_alias, &inode->i_dentry);
994 	dentry->d_inode = inode;
995 	fsnotify_d_instantiate(dentry, inode);
996 }
997 
998 /**
999  * d_instantiate - fill in inode information for a dentry
1000  * @entry: dentry to complete
1001  * @inode: inode to attach to this dentry
1002  *
1003  * Fill in inode information in the entry.
1004  *
1005  * This turns negative dentries into productive full members
1006  * of society.
1007  *
1008  * NOTE! This assumes that the inode count has been incremented
1009  * (or otherwise set) by the caller to indicate that it is now
1010  * in use by the dcache.
1011  */
1012 
1013 void d_instantiate(struct dentry *entry, struct inode * inode)
1014 {
1015 	BUG_ON(!list_empty(&entry->d_alias));
1016 	spin_lock(&dcache_lock);
1017 	__d_instantiate(entry, inode);
1018 	spin_unlock(&dcache_lock);
1019 	security_d_instantiate(entry, inode);
1020 }
1021 EXPORT_SYMBOL(d_instantiate);
1022 
1023 /**
1024  * d_instantiate_unique - instantiate a non-aliased dentry
1025  * @entry: dentry to instantiate
1026  * @inode: inode to attach to this dentry
1027  *
1028  * Fill in inode information in the entry. On success, it returns NULL.
1029  * If an unhashed alias of "entry" already exists, then we return the
1030  * aliased dentry instead and drop one reference to inode.
1031  *
1032  * Note that in order to avoid conflicts with rename() etc, the caller
1033  * had better be holding the parent directory semaphore.
1034  *
1035  * This also assumes that the inode count has been incremented
1036  * (or otherwise set) by the caller to indicate that it is now
1037  * in use by the dcache.
1038  */
1039 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1040 					     struct inode *inode)
1041 {
1042 	struct dentry *alias;
1043 	int len = entry->d_name.len;
1044 	const char *name = entry->d_name.name;
1045 	unsigned int hash = entry->d_name.hash;
1046 
1047 	if (!inode) {
1048 		__d_instantiate(entry, NULL);
1049 		return NULL;
1050 	}
1051 
1052 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1053 		struct qstr *qstr = &alias->d_name;
1054 
1055 		if (qstr->hash != hash)
1056 			continue;
1057 		if (alias->d_parent != entry->d_parent)
1058 			continue;
1059 		if (qstr->len != len)
1060 			continue;
1061 		if (memcmp(qstr->name, name, len))
1062 			continue;
1063 		dget_locked(alias);
1064 		return alias;
1065 	}
1066 
1067 	__d_instantiate(entry, inode);
1068 	return NULL;
1069 }
1070 
1071 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1072 {
1073 	struct dentry *result;
1074 
1075 	BUG_ON(!list_empty(&entry->d_alias));
1076 
1077 	spin_lock(&dcache_lock);
1078 	result = __d_instantiate_unique(entry, inode);
1079 	spin_unlock(&dcache_lock);
1080 
1081 	if (!result) {
1082 		security_d_instantiate(entry, inode);
1083 		return NULL;
1084 	}
1085 
1086 	BUG_ON(!d_unhashed(result));
1087 	iput(inode);
1088 	return result;
1089 }
1090 
1091 EXPORT_SYMBOL(d_instantiate_unique);
1092 
1093 /**
1094  * d_alloc_root - allocate root dentry
1095  * @root_inode: inode to allocate the root for
1096  *
1097  * Allocate a root ("/") dentry for the inode given. The inode is
1098  * instantiated and returned. %NULL is returned if there is insufficient
1099  * memory or the inode passed is %NULL.
1100  */
1101 
1102 struct dentry * d_alloc_root(struct inode * root_inode)
1103 {
1104 	struct dentry *res = NULL;
1105 
1106 	if (root_inode) {
1107 		static const struct qstr name = { .name = "/", .len = 1 };
1108 
1109 		res = d_alloc(NULL, &name);
1110 		if (res) {
1111 			res->d_sb = root_inode->i_sb;
1112 			res->d_parent = res;
1113 			d_instantiate(res, root_inode);
1114 		}
1115 	}
1116 	return res;
1117 }
1118 EXPORT_SYMBOL(d_alloc_root);
1119 
1120 static inline struct hlist_head *d_hash(struct dentry *parent,
1121 					unsigned long hash)
1122 {
1123 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1124 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1125 	return dentry_hashtable + (hash & D_HASHMASK);
1126 }
1127 
1128 /**
1129  * d_obtain_alias - find or allocate a dentry for a given inode
1130  * @inode: inode to allocate the dentry for
1131  *
1132  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1133  * similar open by handle operations.  The returned dentry may be anonymous,
1134  * or may have a full name (if the inode was already in the cache).
1135  *
1136  * When called on a directory inode, we must ensure that the inode only ever
1137  * has one dentry.  If a dentry is found, that is returned instead of
1138  * allocating a new one.
1139  *
1140  * On successful return, the reference to the inode has been transferred
1141  * to the dentry.  In case of an error the reference on the inode is released.
1142  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1143  * be passed in and will be the error will be propagate to the return value,
1144  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1145  */
1146 struct dentry *d_obtain_alias(struct inode *inode)
1147 {
1148 	static const struct qstr anonstring = { .name = "" };
1149 	struct dentry *tmp;
1150 	struct dentry *res;
1151 
1152 	if (!inode)
1153 		return ERR_PTR(-ESTALE);
1154 	if (IS_ERR(inode))
1155 		return ERR_CAST(inode);
1156 
1157 	res = d_find_alias(inode);
1158 	if (res)
1159 		goto out_iput;
1160 
1161 	tmp = d_alloc(NULL, &anonstring);
1162 	if (!tmp) {
1163 		res = ERR_PTR(-ENOMEM);
1164 		goto out_iput;
1165 	}
1166 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1167 
1168 	spin_lock(&dcache_lock);
1169 	res = __d_find_alias(inode, 0);
1170 	if (res) {
1171 		spin_unlock(&dcache_lock);
1172 		dput(tmp);
1173 		goto out_iput;
1174 	}
1175 
1176 	/* attach a disconnected dentry */
1177 	spin_lock(&tmp->d_lock);
1178 	tmp->d_sb = inode->i_sb;
1179 	tmp->d_inode = inode;
1180 	tmp->d_flags |= DCACHE_DISCONNECTED;
1181 	tmp->d_flags &= ~DCACHE_UNHASHED;
1182 	list_add(&tmp->d_alias, &inode->i_dentry);
1183 	hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1184 	spin_unlock(&tmp->d_lock);
1185 
1186 	spin_unlock(&dcache_lock);
1187 	return tmp;
1188 
1189  out_iput:
1190 	iput(inode);
1191 	return res;
1192 }
1193 EXPORT_SYMBOL(d_obtain_alias);
1194 
1195 /**
1196  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1197  * @inode:  the inode which may have a disconnected dentry
1198  * @dentry: a negative dentry which we want to point to the inode.
1199  *
1200  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1201  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1202  * and return it, else simply d_add the inode to the dentry and return NULL.
1203  *
1204  * This is needed in the lookup routine of any filesystem that is exportable
1205  * (via knfsd) so that we can build dcache paths to directories effectively.
1206  *
1207  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1208  * is returned.  This matches the expected return value of ->lookup.
1209  *
1210  */
1211 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1212 {
1213 	struct dentry *new = NULL;
1214 
1215 	if (inode && S_ISDIR(inode->i_mode)) {
1216 		spin_lock(&dcache_lock);
1217 		new = __d_find_alias(inode, 1);
1218 		if (new) {
1219 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1220 			spin_unlock(&dcache_lock);
1221 			security_d_instantiate(new, inode);
1222 			d_move(new, dentry);
1223 			iput(inode);
1224 		} else {
1225 			/* already taking dcache_lock, so d_add() by hand */
1226 			__d_instantiate(dentry, inode);
1227 			spin_unlock(&dcache_lock);
1228 			security_d_instantiate(dentry, inode);
1229 			d_rehash(dentry);
1230 		}
1231 	} else
1232 		d_add(dentry, inode);
1233 	return new;
1234 }
1235 EXPORT_SYMBOL(d_splice_alias);
1236 
1237 /**
1238  * d_add_ci - lookup or allocate new dentry with case-exact name
1239  * @inode:  the inode case-insensitive lookup has found
1240  * @dentry: the negative dentry that was passed to the parent's lookup func
1241  * @name:   the case-exact name to be associated with the returned dentry
1242  *
1243  * This is to avoid filling the dcache with case-insensitive names to the
1244  * same inode, only the actual correct case is stored in the dcache for
1245  * case-insensitive filesystems.
1246  *
1247  * For a case-insensitive lookup match and if the the case-exact dentry
1248  * already exists in in the dcache, use it and return it.
1249  *
1250  * If no entry exists with the exact case name, allocate new dentry with
1251  * the exact case, and return the spliced entry.
1252  */
1253 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1254 			struct qstr *name)
1255 {
1256 	int error;
1257 	struct dentry *found;
1258 	struct dentry *new;
1259 
1260 	/*
1261 	 * First check if a dentry matching the name already exists,
1262 	 * if not go ahead and create it now.
1263 	 */
1264 	found = d_hash_and_lookup(dentry->d_parent, name);
1265 	if (!found) {
1266 		new = d_alloc(dentry->d_parent, name);
1267 		if (!new) {
1268 			error = -ENOMEM;
1269 			goto err_out;
1270 		}
1271 
1272 		found = d_splice_alias(inode, new);
1273 		if (found) {
1274 			dput(new);
1275 			return found;
1276 		}
1277 		return new;
1278 	}
1279 
1280 	/*
1281 	 * If a matching dentry exists, and it's not negative use it.
1282 	 *
1283 	 * Decrement the reference count to balance the iget() done
1284 	 * earlier on.
1285 	 */
1286 	if (found->d_inode) {
1287 		if (unlikely(found->d_inode != inode)) {
1288 			/* This can't happen because bad inodes are unhashed. */
1289 			BUG_ON(!is_bad_inode(inode));
1290 			BUG_ON(!is_bad_inode(found->d_inode));
1291 		}
1292 		iput(inode);
1293 		return found;
1294 	}
1295 
1296 	/*
1297 	 * Negative dentry: instantiate it unless the inode is a directory and
1298 	 * already has a dentry.
1299 	 */
1300 	spin_lock(&dcache_lock);
1301 	if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1302 		__d_instantiate(found, inode);
1303 		spin_unlock(&dcache_lock);
1304 		security_d_instantiate(found, inode);
1305 		return found;
1306 	}
1307 
1308 	/*
1309 	 * In case a directory already has a (disconnected) entry grab a
1310 	 * reference to it, move it in place and use it.
1311 	 */
1312 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1313 	dget_locked(new);
1314 	spin_unlock(&dcache_lock);
1315 	security_d_instantiate(found, inode);
1316 	d_move(new, found);
1317 	iput(inode);
1318 	dput(found);
1319 	return new;
1320 
1321 err_out:
1322 	iput(inode);
1323 	return ERR_PTR(error);
1324 }
1325 EXPORT_SYMBOL(d_add_ci);
1326 
1327 /**
1328  * d_lookup - search for a dentry
1329  * @parent: parent dentry
1330  * @name: qstr of name we wish to find
1331  *
1332  * Searches the children of the parent dentry for the name in question. If
1333  * the dentry is found its reference count is incremented and the dentry
1334  * is returned. The caller must use dput to free the entry when it has
1335  * finished using it. %NULL is returned on failure.
1336  *
1337  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1338  * Memory barriers are used while updating and doing lockless traversal.
1339  * To avoid races with d_move while rename is happening, d_lock is used.
1340  *
1341  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1342  * and name pointer in one structure pointed by d_qstr.
1343  *
1344  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1345  * lookup is going on.
1346  *
1347  * The dentry unused LRU is not updated even if lookup finds the required dentry
1348  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1349  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1350  * acquisition.
1351  *
1352  * d_lookup() is protected against the concurrent renames in some unrelated
1353  * directory using the seqlockt_t rename_lock.
1354  */
1355 
1356 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1357 {
1358 	struct dentry * dentry = NULL;
1359 	unsigned long seq;
1360 
1361         do {
1362                 seq = read_seqbegin(&rename_lock);
1363                 dentry = __d_lookup(parent, name);
1364                 if (dentry)
1365 			break;
1366 	} while (read_seqretry(&rename_lock, seq));
1367 	return dentry;
1368 }
1369 EXPORT_SYMBOL(d_lookup);
1370 
1371 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1372 {
1373 	unsigned int len = name->len;
1374 	unsigned int hash = name->hash;
1375 	const unsigned char *str = name->name;
1376 	struct hlist_head *head = d_hash(parent,hash);
1377 	struct dentry *found = NULL;
1378 	struct hlist_node *node;
1379 	struct dentry *dentry;
1380 
1381 	rcu_read_lock();
1382 
1383 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1384 		struct qstr *qstr;
1385 
1386 		if (dentry->d_name.hash != hash)
1387 			continue;
1388 		if (dentry->d_parent != parent)
1389 			continue;
1390 
1391 		spin_lock(&dentry->d_lock);
1392 
1393 		/*
1394 		 * Recheck the dentry after taking the lock - d_move may have
1395 		 * changed things.  Don't bother checking the hash because we're
1396 		 * about to compare the whole name anyway.
1397 		 */
1398 		if (dentry->d_parent != parent)
1399 			goto next;
1400 
1401 		/* non-existing due to RCU? */
1402 		if (d_unhashed(dentry))
1403 			goto next;
1404 
1405 		/*
1406 		 * It is safe to compare names since d_move() cannot
1407 		 * change the qstr (protected by d_lock).
1408 		 */
1409 		qstr = &dentry->d_name;
1410 		if (parent->d_op && parent->d_op->d_compare) {
1411 			if (parent->d_op->d_compare(parent, qstr, name))
1412 				goto next;
1413 		} else {
1414 			if (qstr->len != len)
1415 				goto next;
1416 			if (memcmp(qstr->name, str, len))
1417 				goto next;
1418 		}
1419 
1420 		atomic_inc(&dentry->d_count);
1421 		found = dentry;
1422 		spin_unlock(&dentry->d_lock);
1423 		break;
1424 next:
1425 		spin_unlock(&dentry->d_lock);
1426  	}
1427  	rcu_read_unlock();
1428 
1429  	return found;
1430 }
1431 
1432 /**
1433  * d_hash_and_lookup - hash the qstr then search for a dentry
1434  * @dir: Directory to search in
1435  * @name: qstr of name we wish to find
1436  *
1437  * On hash failure or on lookup failure NULL is returned.
1438  */
1439 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1440 {
1441 	struct dentry *dentry = NULL;
1442 
1443 	/*
1444 	 * Check for a fs-specific hash function. Note that we must
1445 	 * calculate the standard hash first, as the d_op->d_hash()
1446 	 * routine may choose to leave the hash value unchanged.
1447 	 */
1448 	name->hash = full_name_hash(name->name, name->len);
1449 	if (dir->d_op && dir->d_op->d_hash) {
1450 		if (dir->d_op->d_hash(dir, name) < 0)
1451 			goto out;
1452 	}
1453 	dentry = d_lookup(dir, name);
1454 out:
1455 	return dentry;
1456 }
1457 
1458 /**
1459  * d_validate - verify dentry provided from insecure source
1460  * @dentry: The dentry alleged to be valid child of @dparent
1461  * @dparent: The parent dentry (known to be valid)
1462  *
1463  * An insecure source has sent us a dentry, here we verify it and dget() it.
1464  * This is used by ncpfs in its readdir implementation.
1465  * Zero is returned in the dentry is invalid.
1466  */
1467 
1468 int d_validate(struct dentry *dentry, struct dentry *dparent)
1469 {
1470 	struct hlist_head *base;
1471 	struct hlist_node *lhp;
1472 
1473 	/* Check whether the ptr might be valid at all.. */
1474 	if (!kmem_ptr_validate(dentry_cache, dentry))
1475 		goto out;
1476 
1477 	if (dentry->d_parent != dparent)
1478 		goto out;
1479 
1480 	spin_lock(&dcache_lock);
1481 	base = d_hash(dparent, dentry->d_name.hash);
1482 	hlist_for_each(lhp,base) {
1483 		/* hlist_for_each_entry_rcu() not required for d_hash list
1484 		 * as it is parsed under dcache_lock
1485 		 */
1486 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1487 			__dget_locked(dentry);
1488 			spin_unlock(&dcache_lock);
1489 			return 1;
1490 		}
1491 	}
1492 	spin_unlock(&dcache_lock);
1493 out:
1494 	return 0;
1495 }
1496 EXPORT_SYMBOL(d_validate);
1497 
1498 /*
1499  * When a file is deleted, we have two options:
1500  * - turn this dentry into a negative dentry
1501  * - unhash this dentry and free it.
1502  *
1503  * Usually, we want to just turn this into
1504  * a negative dentry, but if anybody else is
1505  * currently using the dentry or the inode
1506  * we can't do that and we fall back on removing
1507  * it from the hash queues and waiting for
1508  * it to be deleted later when it has no users
1509  */
1510 
1511 /**
1512  * d_delete - delete a dentry
1513  * @dentry: The dentry to delete
1514  *
1515  * Turn the dentry into a negative dentry if possible, otherwise
1516  * remove it from the hash queues so it can be deleted later
1517  */
1518 
1519 void d_delete(struct dentry * dentry)
1520 {
1521 	int isdir = 0;
1522 	/*
1523 	 * Are we the only user?
1524 	 */
1525 	spin_lock(&dcache_lock);
1526 	spin_lock(&dentry->d_lock);
1527 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1528 	if (atomic_read(&dentry->d_count) == 1) {
1529 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1530 		dentry_iput(dentry);
1531 		fsnotify_nameremove(dentry, isdir);
1532 		return;
1533 	}
1534 
1535 	if (!d_unhashed(dentry))
1536 		__d_drop(dentry);
1537 
1538 	spin_unlock(&dentry->d_lock);
1539 	spin_unlock(&dcache_lock);
1540 
1541 	fsnotify_nameremove(dentry, isdir);
1542 }
1543 EXPORT_SYMBOL(d_delete);
1544 
1545 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1546 {
1547 
1548  	entry->d_flags &= ~DCACHE_UNHASHED;
1549  	hlist_add_head_rcu(&entry->d_hash, list);
1550 }
1551 
1552 static void _d_rehash(struct dentry * entry)
1553 {
1554 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1555 }
1556 
1557 /**
1558  * d_rehash	- add an entry back to the hash
1559  * @entry: dentry to add to the hash
1560  *
1561  * Adds a dentry to the hash according to its name.
1562  */
1563 
1564 void d_rehash(struct dentry * entry)
1565 {
1566 	spin_lock(&dcache_lock);
1567 	spin_lock(&entry->d_lock);
1568 	_d_rehash(entry);
1569 	spin_unlock(&entry->d_lock);
1570 	spin_unlock(&dcache_lock);
1571 }
1572 EXPORT_SYMBOL(d_rehash);
1573 
1574 /*
1575  * When switching names, the actual string doesn't strictly have to
1576  * be preserved in the target - because we're dropping the target
1577  * anyway. As such, we can just do a simple memcpy() to copy over
1578  * the new name before we switch.
1579  *
1580  * Note that we have to be a lot more careful about getting the hash
1581  * switched - we have to switch the hash value properly even if it
1582  * then no longer matches the actual (corrupted) string of the target.
1583  * The hash value has to match the hash queue that the dentry is on..
1584  */
1585 static void switch_names(struct dentry *dentry, struct dentry *target)
1586 {
1587 	if (dname_external(target)) {
1588 		if (dname_external(dentry)) {
1589 			/*
1590 			 * Both external: swap the pointers
1591 			 */
1592 			swap(target->d_name.name, dentry->d_name.name);
1593 		} else {
1594 			/*
1595 			 * dentry:internal, target:external.  Steal target's
1596 			 * storage and make target internal.
1597 			 */
1598 			memcpy(target->d_iname, dentry->d_name.name,
1599 					dentry->d_name.len + 1);
1600 			dentry->d_name.name = target->d_name.name;
1601 			target->d_name.name = target->d_iname;
1602 		}
1603 	} else {
1604 		if (dname_external(dentry)) {
1605 			/*
1606 			 * dentry:external, target:internal.  Give dentry's
1607 			 * storage to target and make dentry internal
1608 			 */
1609 			memcpy(dentry->d_iname, target->d_name.name,
1610 					target->d_name.len + 1);
1611 			target->d_name.name = dentry->d_name.name;
1612 			dentry->d_name.name = dentry->d_iname;
1613 		} else {
1614 			/*
1615 			 * Both are internal.  Just copy target to dentry
1616 			 */
1617 			memcpy(dentry->d_iname, target->d_name.name,
1618 					target->d_name.len + 1);
1619 			dentry->d_name.len = target->d_name.len;
1620 			return;
1621 		}
1622 	}
1623 	swap(dentry->d_name.len, target->d_name.len);
1624 }
1625 
1626 /*
1627  * We cannibalize "target" when moving dentry on top of it,
1628  * because it's going to be thrown away anyway. We could be more
1629  * polite about it, though.
1630  *
1631  * This forceful removal will result in ugly /proc output if
1632  * somebody holds a file open that got deleted due to a rename.
1633  * We could be nicer about the deleted file, and let it show
1634  * up under the name it had before it was deleted rather than
1635  * under the original name of the file that was moved on top of it.
1636  */
1637 
1638 /*
1639  * d_move_locked - move a dentry
1640  * @dentry: entry to move
1641  * @target: new dentry
1642  *
1643  * Update the dcache to reflect the move of a file name. Negative
1644  * dcache entries should not be moved in this way.
1645  */
1646 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1647 {
1648 	struct hlist_head *list;
1649 
1650 	if (!dentry->d_inode)
1651 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1652 
1653 	write_seqlock(&rename_lock);
1654 	/*
1655 	 * XXXX: do we really need to take target->d_lock?
1656 	 */
1657 	if (target < dentry) {
1658 		spin_lock(&target->d_lock);
1659 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1660 	} else {
1661 		spin_lock(&dentry->d_lock);
1662 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1663 	}
1664 
1665 	/* Move the dentry to the target hash queue, if on different bucket */
1666 	if (d_unhashed(dentry))
1667 		goto already_unhashed;
1668 
1669 	hlist_del_rcu(&dentry->d_hash);
1670 
1671 already_unhashed:
1672 	list = d_hash(target->d_parent, target->d_name.hash);
1673 	__d_rehash(dentry, list);
1674 
1675 	/* Unhash the target: dput() will then get rid of it */
1676 	__d_drop(target);
1677 
1678 	list_del(&dentry->d_u.d_child);
1679 	list_del(&target->d_u.d_child);
1680 
1681 	/* Switch the names.. */
1682 	switch_names(dentry, target);
1683 	swap(dentry->d_name.hash, target->d_name.hash);
1684 
1685 	/* ... and switch the parents */
1686 	if (IS_ROOT(dentry)) {
1687 		dentry->d_parent = target->d_parent;
1688 		target->d_parent = target;
1689 		INIT_LIST_HEAD(&target->d_u.d_child);
1690 	} else {
1691 		swap(dentry->d_parent, target->d_parent);
1692 
1693 		/* And add them back to the (new) parent lists */
1694 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1695 	}
1696 
1697 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1698 	spin_unlock(&target->d_lock);
1699 	fsnotify_d_move(dentry);
1700 	spin_unlock(&dentry->d_lock);
1701 	write_sequnlock(&rename_lock);
1702 }
1703 
1704 /**
1705  * d_move - move a dentry
1706  * @dentry: entry to move
1707  * @target: new dentry
1708  *
1709  * Update the dcache to reflect the move of a file name. Negative
1710  * dcache entries should not be moved in this way.
1711  */
1712 
1713 void d_move(struct dentry * dentry, struct dentry * target)
1714 {
1715 	spin_lock(&dcache_lock);
1716 	d_move_locked(dentry, target);
1717 	spin_unlock(&dcache_lock);
1718 }
1719 EXPORT_SYMBOL(d_move);
1720 
1721 /**
1722  * d_ancestor - search for an ancestor
1723  * @p1: ancestor dentry
1724  * @p2: child dentry
1725  *
1726  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1727  * an ancestor of p2, else NULL.
1728  */
1729 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1730 {
1731 	struct dentry *p;
1732 
1733 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1734 		if (p->d_parent == p1)
1735 			return p;
1736 	}
1737 	return NULL;
1738 }
1739 
1740 /*
1741  * This helper attempts to cope with remotely renamed directories
1742  *
1743  * It assumes that the caller is already holding
1744  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1745  *
1746  * Note: If ever the locking in lock_rename() changes, then please
1747  * remember to update this too...
1748  */
1749 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1750 	__releases(dcache_lock)
1751 {
1752 	struct mutex *m1 = NULL, *m2 = NULL;
1753 	struct dentry *ret;
1754 
1755 	/* If alias and dentry share a parent, then no extra locks required */
1756 	if (alias->d_parent == dentry->d_parent)
1757 		goto out_unalias;
1758 
1759 	/* Check for loops */
1760 	ret = ERR_PTR(-ELOOP);
1761 	if (d_ancestor(alias, dentry))
1762 		goto out_err;
1763 
1764 	/* See lock_rename() */
1765 	ret = ERR_PTR(-EBUSY);
1766 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1767 		goto out_err;
1768 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1769 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1770 		goto out_err;
1771 	m2 = &alias->d_parent->d_inode->i_mutex;
1772 out_unalias:
1773 	d_move_locked(alias, dentry);
1774 	ret = alias;
1775 out_err:
1776 	spin_unlock(&dcache_lock);
1777 	if (m2)
1778 		mutex_unlock(m2);
1779 	if (m1)
1780 		mutex_unlock(m1);
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1786  * named dentry in place of the dentry to be replaced.
1787  */
1788 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1789 {
1790 	struct dentry *dparent, *aparent;
1791 
1792 	switch_names(dentry, anon);
1793 	swap(dentry->d_name.hash, anon->d_name.hash);
1794 
1795 	dparent = dentry->d_parent;
1796 	aparent = anon->d_parent;
1797 
1798 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1799 	list_del(&dentry->d_u.d_child);
1800 	if (!IS_ROOT(dentry))
1801 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1802 	else
1803 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1804 
1805 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1806 	list_del(&anon->d_u.d_child);
1807 	if (!IS_ROOT(anon))
1808 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1809 	else
1810 		INIT_LIST_HEAD(&anon->d_u.d_child);
1811 
1812 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1813 }
1814 
1815 /**
1816  * d_materialise_unique - introduce an inode into the tree
1817  * @dentry: candidate dentry
1818  * @inode: inode to bind to the dentry, to which aliases may be attached
1819  *
1820  * Introduces an dentry into the tree, substituting an extant disconnected
1821  * root directory alias in its place if there is one
1822  */
1823 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1824 {
1825 	struct dentry *actual;
1826 
1827 	BUG_ON(!d_unhashed(dentry));
1828 
1829 	spin_lock(&dcache_lock);
1830 
1831 	if (!inode) {
1832 		actual = dentry;
1833 		__d_instantiate(dentry, NULL);
1834 		goto found_lock;
1835 	}
1836 
1837 	if (S_ISDIR(inode->i_mode)) {
1838 		struct dentry *alias;
1839 
1840 		/* Does an aliased dentry already exist? */
1841 		alias = __d_find_alias(inode, 0);
1842 		if (alias) {
1843 			actual = alias;
1844 			/* Is this an anonymous mountpoint that we could splice
1845 			 * into our tree? */
1846 			if (IS_ROOT(alias)) {
1847 				spin_lock(&alias->d_lock);
1848 				__d_materialise_dentry(dentry, alias);
1849 				__d_drop(alias);
1850 				goto found;
1851 			}
1852 			/* Nope, but we must(!) avoid directory aliasing */
1853 			actual = __d_unalias(dentry, alias);
1854 			if (IS_ERR(actual))
1855 				dput(alias);
1856 			goto out_nolock;
1857 		}
1858 	}
1859 
1860 	/* Add a unique reference */
1861 	actual = __d_instantiate_unique(dentry, inode);
1862 	if (!actual)
1863 		actual = dentry;
1864 	else if (unlikely(!d_unhashed(actual)))
1865 		goto shouldnt_be_hashed;
1866 
1867 found_lock:
1868 	spin_lock(&actual->d_lock);
1869 found:
1870 	_d_rehash(actual);
1871 	spin_unlock(&actual->d_lock);
1872 	spin_unlock(&dcache_lock);
1873 out_nolock:
1874 	if (actual == dentry) {
1875 		security_d_instantiate(dentry, inode);
1876 		return NULL;
1877 	}
1878 
1879 	iput(inode);
1880 	return actual;
1881 
1882 shouldnt_be_hashed:
1883 	spin_unlock(&dcache_lock);
1884 	BUG();
1885 }
1886 EXPORT_SYMBOL_GPL(d_materialise_unique);
1887 
1888 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1889 {
1890 	*buflen -= namelen;
1891 	if (*buflen < 0)
1892 		return -ENAMETOOLONG;
1893 	*buffer -= namelen;
1894 	memcpy(*buffer, str, namelen);
1895 	return 0;
1896 }
1897 
1898 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1899 {
1900 	return prepend(buffer, buflen, name->name, name->len);
1901 }
1902 
1903 /**
1904  * __d_path - return the path of a dentry
1905  * @path: the dentry/vfsmount to report
1906  * @root: root vfsmnt/dentry (may be modified by this function)
1907  * @buffer: buffer to return value in
1908  * @buflen: buffer length
1909  *
1910  * Convert a dentry into an ASCII path name. If the entry has been deleted
1911  * the string " (deleted)" is appended. Note that this is ambiguous.
1912  *
1913  * Returns a pointer into the buffer or an error code if the
1914  * path was too long.
1915  *
1916  * "buflen" should be positive. Caller holds the dcache_lock.
1917  *
1918  * If path is not reachable from the supplied root, then the value of
1919  * root is changed (without modifying refcounts).
1920  */
1921 char *__d_path(const struct path *path, struct path *root,
1922 	       char *buffer, int buflen)
1923 {
1924 	struct dentry *dentry = path->dentry;
1925 	struct vfsmount *vfsmnt = path->mnt;
1926 	char *end = buffer + buflen;
1927 	char *retval;
1928 
1929 	spin_lock(&vfsmount_lock);
1930 	prepend(&end, &buflen, "\0", 1);
1931 	if (d_unlinked(dentry) &&
1932 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1933 			goto Elong;
1934 
1935 	if (buflen < 1)
1936 		goto Elong;
1937 	/* Get '/' right */
1938 	retval = end-1;
1939 	*retval = '/';
1940 
1941 	for (;;) {
1942 		struct dentry * parent;
1943 
1944 		if (dentry == root->dentry && vfsmnt == root->mnt)
1945 			break;
1946 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1947 			/* Global root? */
1948 			if (vfsmnt->mnt_parent == vfsmnt) {
1949 				goto global_root;
1950 			}
1951 			dentry = vfsmnt->mnt_mountpoint;
1952 			vfsmnt = vfsmnt->mnt_parent;
1953 			continue;
1954 		}
1955 		parent = dentry->d_parent;
1956 		prefetch(parent);
1957 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1958 		    (prepend(&end, &buflen, "/", 1) != 0))
1959 			goto Elong;
1960 		retval = end;
1961 		dentry = parent;
1962 	}
1963 
1964 out:
1965 	spin_unlock(&vfsmount_lock);
1966 	return retval;
1967 
1968 global_root:
1969 	retval += 1;	/* hit the slash */
1970 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1971 		goto Elong;
1972 	root->mnt = vfsmnt;
1973 	root->dentry = dentry;
1974 	goto out;
1975 
1976 Elong:
1977 	retval = ERR_PTR(-ENAMETOOLONG);
1978 	goto out;
1979 }
1980 
1981 /**
1982  * d_path - return the path of a dentry
1983  * @path: path to report
1984  * @buf: buffer to return value in
1985  * @buflen: buffer length
1986  *
1987  * Convert a dentry into an ASCII path name. If the entry has been deleted
1988  * the string " (deleted)" is appended. Note that this is ambiguous.
1989  *
1990  * Returns a pointer into the buffer or an error code if the path was
1991  * too long. Note: Callers should use the returned pointer, not the passed
1992  * in buffer, to use the name! The implementation often starts at an offset
1993  * into the buffer, and may leave 0 bytes at the start.
1994  *
1995  * "buflen" should be positive.
1996  */
1997 char *d_path(const struct path *path, char *buf, int buflen)
1998 {
1999 	char *res;
2000 	struct path root;
2001 	struct path tmp;
2002 
2003 	/*
2004 	 * We have various synthetic filesystems that never get mounted.  On
2005 	 * these filesystems dentries are never used for lookup purposes, and
2006 	 * thus don't need to be hashed.  They also don't need a name until a
2007 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2008 	 * below allows us to generate a name for these objects on demand:
2009 	 */
2010 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2011 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2012 
2013 	read_lock(&current->fs->lock);
2014 	root = current->fs->root;
2015 	path_get(&root);
2016 	read_unlock(&current->fs->lock);
2017 	spin_lock(&dcache_lock);
2018 	tmp = root;
2019 	res = __d_path(path, &tmp, buf, buflen);
2020 	spin_unlock(&dcache_lock);
2021 	path_put(&root);
2022 	return res;
2023 }
2024 EXPORT_SYMBOL(d_path);
2025 
2026 /*
2027  * Helper function for dentry_operations.d_dname() members
2028  */
2029 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2030 			const char *fmt, ...)
2031 {
2032 	va_list args;
2033 	char temp[64];
2034 	int sz;
2035 
2036 	va_start(args, fmt);
2037 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2038 	va_end(args);
2039 
2040 	if (sz > sizeof(temp) || sz > buflen)
2041 		return ERR_PTR(-ENAMETOOLONG);
2042 
2043 	buffer += buflen - sz;
2044 	return memcpy(buffer, temp, sz);
2045 }
2046 
2047 /*
2048  * Write full pathname from the root of the filesystem into the buffer.
2049  */
2050 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2051 {
2052 	char *end = buf + buflen;
2053 	char *retval;
2054 
2055 	spin_lock(&dcache_lock);
2056 	prepend(&end, &buflen, "\0", 1);
2057 	if (d_unlinked(dentry) &&
2058 		(prepend(&end, &buflen, "//deleted", 9) != 0))
2059 			goto Elong;
2060 	if (buflen < 1)
2061 		goto Elong;
2062 	/* Get '/' right */
2063 	retval = end-1;
2064 	*retval = '/';
2065 
2066 	while (!IS_ROOT(dentry)) {
2067 		struct dentry *parent = dentry->d_parent;
2068 
2069 		prefetch(parent);
2070 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2071 		    (prepend(&end, &buflen, "/", 1) != 0))
2072 			goto Elong;
2073 
2074 		retval = end;
2075 		dentry = parent;
2076 	}
2077 	spin_unlock(&dcache_lock);
2078 	return retval;
2079 Elong:
2080 	spin_unlock(&dcache_lock);
2081 	return ERR_PTR(-ENAMETOOLONG);
2082 }
2083 
2084 /*
2085  * NOTE! The user-level library version returns a
2086  * character pointer. The kernel system call just
2087  * returns the length of the buffer filled (which
2088  * includes the ending '\0' character), or a negative
2089  * error value. So libc would do something like
2090  *
2091  *	char *getcwd(char * buf, size_t size)
2092  *	{
2093  *		int retval;
2094  *
2095  *		retval = sys_getcwd(buf, size);
2096  *		if (retval >= 0)
2097  *			return buf;
2098  *		errno = -retval;
2099  *		return NULL;
2100  *	}
2101  */
2102 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2103 {
2104 	int error;
2105 	struct path pwd, root;
2106 	char *page = (char *) __get_free_page(GFP_USER);
2107 
2108 	if (!page)
2109 		return -ENOMEM;
2110 
2111 	read_lock(&current->fs->lock);
2112 	pwd = current->fs->pwd;
2113 	path_get(&pwd);
2114 	root = current->fs->root;
2115 	path_get(&root);
2116 	read_unlock(&current->fs->lock);
2117 
2118 	error = -ENOENT;
2119 	spin_lock(&dcache_lock);
2120 	if (!d_unlinked(pwd.dentry)) {
2121 		unsigned long len;
2122 		struct path tmp = root;
2123 		char * cwd;
2124 
2125 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2126 		spin_unlock(&dcache_lock);
2127 
2128 		error = PTR_ERR(cwd);
2129 		if (IS_ERR(cwd))
2130 			goto out;
2131 
2132 		error = -ERANGE;
2133 		len = PAGE_SIZE + page - cwd;
2134 		if (len <= size) {
2135 			error = len;
2136 			if (copy_to_user(buf, cwd, len))
2137 				error = -EFAULT;
2138 		}
2139 	} else
2140 		spin_unlock(&dcache_lock);
2141 
2142 out:
2143 	path_put(&pwd);
2144 	path_put(&root);
2145 	free_page((unsigned long) page);
2146 	return error;
2147 }
2148 
2149 /*
2150  * Test whether new_dentry is a subdirectory of old_dentry.
2151  *
2152  * Trivially implemented using the dcache structure
2153  */
2154 
2155 /**
2156  * is_subdir - is new dentry a subdirectory of old_dentry
2157  * @new_dentry: new dentry
2158  * @old_dentry: old dentry
2159  *
2160  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2161  * Returns 0 otherwise.
2162  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2163  */
2164 
2165 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2166 {
2167 	int result;
2168 	unsigned long seq;
2169 
2170 	if (new_dentry == old_dentry)
2171 		return 1;
2172 
2173 	/*
2174 	 * Need rcu_readlock to protect against the d_parent trashing
2175 	 * due to d_move
2176 	 */
2177 	rcu_read_lock();
2178 	do {
2179 		/* for restarting inner loop in case of seq retry */
2180 		seq = read_seqbegin(&rename_lock);
2181 		if (d_ancestor(old_dentry, new_dentry))
2182 			result = 1;
2183 		else
2184 			result = 0;
2185 	} while (read_seqretry(&rename_lock, seq));
2186 	rcu_read_unlock();
2187 
2188 	return result;
2189 }
2190 
2191 int path_is_under(struct path *path1, struct path *path2)
2192 {
2193 	struct vfsmount *mnt = path1->mnt;
2194 	struct dentry *dentry = path1->dentry;
2195 	int res;
2196 	spin_lock(&vfsmount_lock);
2197 	if (mnt != path2->mnt) {
2198 		for (;;) {
2199 			if (mnt->mnt_parent == mnt) {
2200 				spin_unlock(&vfsmount_lock);
2201 				return 0;
2202 			}
2203 			if (mnt->mnt_parent == path2->mnt)
2204 				break;
2205 			mnt = mnt->mnt_parent;
2206 		}
2207 		dentry = mnt->mnt_mountpoint;
2208 	}
2209 	res = is_subdir(dentry, path2->dentry);
2210 	spin_unlock(&vfsmount_lock);
2211 	return res;
2212 }
2213 EXPORT_SYMBOL(path_is_under);
2214 
2215 void d_genocide(struct dentry *root)
2216 {
2217 	struct dentry *this_parent = root;
2218 	struct list_head *next;
2219 
2220 	spin_lock(&dcache_lock);
2221 repeat:
2222 	next = this_parent->d_subdirs.next;
2223 resume:
2224 	while (next != &this_parent->d_subdirs) {
2225 		struct list_head *tmp = next;
2226 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2227 		next = tmp->next;
2228 		if (d_unhashed(dentry)||!dentry->d_inode)
2229 			continue;
2230 		if (!list_empty(&dentry->d_subdirs)) {
2231 			this_parent = dentry;
2232 			goto repeat;
2233 		}
2234 		atomic_dec(&dentry->d_count);
2235 	}
2236 	if (this_parent != root) {
2237 		next = this_parent->d_u.d_child.next;
2238 		atomic_dec(&this_parent->d_count);
2239 		this_parent = this_parent->d_parent;
2240 		goto resume;
2241 	}
2242 	spin_unlock(&dcache_lock);
2243 }
2244 
2245 /**
2246  * find_inode_number - check for dentry with name
2247  * @dir: directory to check
2248  * @name: Name to find.
2249  *
2250  * Check whether a dentry already exists for the given name,
2251  * and return the inode number if it has an inode. Otherwise
2252  * 0 is returned.
2253  *
2254  * This routine is used to post-process directory listings for
2255  * filesystems using synthetic inode numbers, and is necessary
2256  * to keep getcwd() working.
2257  */
2258 
2259 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2260 {
2261 	struct dentry * dentry;
2262 	ino_t ino = 0;
2263 
2264 	dentry = d_hash_and_lookup(dir, name);
2265 	if (dentry) {
2266 		if (dentry->d_inode)
2267 			ino = dentry->d_inode->i_ino;
2268 		dput(dentry);
2269 	}
2270 	return ino;
2271 }
2272 EXPORT_SYMBOL(find_inode_number);
2273 
2274 static __initdata unsigned long dhash_entries;
2275 static int __init set_dhash_entries(char *str)
2276 {
2277 	if (!str)
2278 		return 0;
2279 	dhash_entries = simple_strtoul(str, &str, 0);
2280 	return 1;
2281 }
2282 __setup("dhash_entries=", set_dhash_entries);
2283 
2284 static void __init dcache_init_early(void)
2285 {
2286 	int loop;
2287 
2288 	/* If hashes are distributed across NUMA nodes, defer
2289 	 * hash allocation until vmalloc space is available.
2290 	 */
2291 	if (hashdist)
2292 		return;
2293 
2294 	dentry_hashtable =
2295 		alloc_large_system_hash("Dentry cache",
2296 					sizeof(struct hlist_head),
2297 					dhash_entries,
2298 					13,
2299 					HASH_EARLY,
2300 					&d_hash_shift,
2301 					&d_hash_mask,
2302 					0);
2303 
2304 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2305 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2306 }
2307 
2308 static void __init dcache_init(void)
2309 {
2310 	int loop;
2311 
2312 	/*
2313 	 * A constructor could be added for stable state like the lists,
2314 	 * but it is probably not worth it because of the cache nature
2315 	 * of the dcache.
2316 	 */
2317 	dentry_cache = KMEM_CACHE(dentry,
2318 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2319 
2320 	register_shrinker(&dcache_shrinker);
2321 
2322 	/* Hash may have been set up in dcache_init_early */
2323 	if (!hashdist)
2324 		return;
2325 
2326 	dentry_hashtable =
2327 		alloc_large_system_hash("Dentry cache",
2328 					sizeof(struct hlist_head),
2329 					dhash_entries,
2330 					13,
2331 					0,
2332 					&d_hash_shift,
2333 					&d_hash_mask,
2334 					0);
2335 
2336 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2337 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2338 }
2339 
2340 /* SLAB cache for __getname() consumers */
2341 struct kmem_cache *names_cachep __read_mostly;
2342 EXPORT_SYMBOL(names_cachep);
2343 
2344 EXPORT_SYMBOL(d_genocide);
2345 
2346 void __init vfs_caches_init_early(void)
2347 {
2348 	dcache_init_early();
2349 	inode_init_early();
2350 }
2351 
2352 void __init vfs_caches_init(unsigned long mempages)
2353 {
2354 	unsigned long reserve;
2355 
2356 	/* Base hash sizes on available memory, with a reserve equal to
2357            150% of current kernel size */
2358 
2359 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2360 	mempages -= reserve;
2361 
2362 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2363 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2364 
2365 	dcache_init();
2366 	inode_init();
2367 	files_init(mempages);
2368 	mnt_init();
2369 	bdev_cache_init();
2370 	chrdev_init();
2371 }
2372