1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <linux/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 const struct qstr empty_name = QSTR_INIT("", 0); 94 EXPORT_SYMBOL(empty_name); 95 const struct qstr slash_name = QSTR_INIT("/", 1); 96 EXPORT_SYMBOL(slash_name); 97 98 /* 99 * This is the single most critical data structure when it comes 100 * to the dcache: the hashtable for lookups. Somebody should try 101 * to make this good - I've just made it work. 102 * 103 * This hash-function tries to avoid losing too many bits of hash 104 * information, yet avoid using a prime hash-size or similar. 105 */ 106 107 static unsigned int d_hash_mask __read_mostly; 108 static unsigned int d_hash_shift __read_mostly; 109 110 static struct hlist_bl_head *dentry_hashtable __read_mostly; 111 112 static inline struct hlist_bl_head *d_hash(unsigned int hash) 113 { 114 return dentry_hashtable + (hash >> (32 - d_hash_shift)); 115 } 116 117 #define IN_LOOKUP_SHIFT 10 118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 119 120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 121 unsigned int hash) 122 { 123 hash += (unsigned long) parent / L1_CACHE_BYTES; 124 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 125 } 126 127 128 /* Statistics gathering. */ 129 struct dentry_stat_t dentry_stat = { 130 .age_limit = 45, 131 }; 132 133 static DEFINE_PER_CPU(long, nr_dentry); 134 static DEFINE_PER_CPU(long, nr_dentry_unused); 135 136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 137 138 /* 139 * Here we resort to our own counters instead of using generic per-cpu counters 140 * for consistency with what the vfs inode code does. We are expected to harvest 141 * better code and performance by having our own specialized counters. 142 * 143 * Please note that the loop is done over all possible CPUs, not over all online 144 * CPUs. The reason for this is that we don't want to play games with CPUs going 145 * on and off. If one of them goes off, we will just keep their counters. 146 * 147 * glommer: See cffbc8a for details, and if you ever intend to change this, 148 * please update all vfs counters to match. 149 */ 150 static long get_nr_dentry(void) 151 { 152 int i; 153 long sum = 0; 154 for_each_possible_cpu(i) 155 sum += per_cpu(nr_dentry, i); 156 return sum < 0 ? 0 : sum; 157 } 158 159 static long get_nr_dentry_unused(void) 160 { 161 int i; 162 long sum = 0; 163 for_each_possible_cpu(i) 164 sum += per_cpu(nr_dentry_unused, i); 165 return sum < 0 ? 0 : sum; 166 } 167 168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 169 size_t *lenp, loff_t *ppos) 170 { 171 dentry_stat.nr_dentry = get_nr_dentry(); 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 173 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 174 } 175 #endif 176 177 /* 178 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 179 * The strings are both count bytes long, and count is non-zero. 180 */ 181 #ifdef CONFIG_DCACHE_WORD_ACCESS 182 183 #include <asm/word-at-a-time.h> 184 /* 185 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 186 * aligned allocation for this particular component. We don't 187 * strictly need the load_unaligned_zeropad() safety, but it 188 * doesn't hurt either. 189 * 190 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 191 * need the careful unaligned handling. 192 */ 193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 194 { 195 unsigned long a,b,mask; 196 197 for (;;) { 198 a = *(unsigned long *)cs; 199 b = load_unaligned_zeropad(ct); 200 if (tcount < sizeof(unsigned long)) 201 break; 202 if (unlikely(a != b)) 203 return 1; 204 cs += sizeof(unsigned long); 205 ct += sizeof(unsigned long); 206 tcount -= sizeof(unsigned long); 207 if (!tcount) 208 return 0; 209 } 210 mask = bytemask_from_count(tcount); 211 return unlikely(!!((a ^ b) & mask)); 212 } 213 214 #else 215 216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 217 { 218 do { 219 if (*cs != *ct) 220 return 1; 221 cs++; 222 ct++; 223 tcount--; 224 } while (tcount); 225 return 0; 226 } 227 228 #endif 229 230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 231 { 232 /* 233 * Be careful about RCU walk racing with rename: 234 * use 'lockless_dereference' to fetch the name pointer. 235 * 236 * NOTE! Even if a rename will mean that the length 237 * was not loaded atomically, we don't care. The 238 * RCU walk will check the sequence count eventually, 239 * and catch it. And we won't overrun the buffer, 240 * because we're reading the name pointer atomically, 241 * and a dentry name is guaranteed to be properly 242 * terminated with a NUL byte. 243 * 244 * End result: even if 'len' is wrong, we'll exit 245 * early because the data cannot match (there can 246 * be no NUL in the ct/tcount data) 247 */ 248 const unsigned char *cs = lockless_dereference(dentry->d_name.name); 249 250 return dentry_string_cmp(cs, ct, tcount); 251 } 252 253 struct external_name { 254 union { 255 atomic_t count; 256 struct rcu_head head; 257 } u; 258 unsigned char name[]; 259 }; 260 261 static inline struct external_name *external_name(struct dentry *dentry) 262 { 263 return container_of(dentry->d_name.name, struct external_name, name[0]); 264 } 265 266 static void __d_free(struct rcu_head *head) 267 { 268 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 269 270 kmem_cache_free(dentry_cache, dentry); 271 } 272 273 static void __d_free_external(struct rcu_head *head) 274 { 275 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 276 kfree(external_name(dentry)); 277 kmem_cache_free(dentry_cache, dentry); 278 } 279 280 static inline int dname_external(const struct dentry *dentry) 281 { 282 return dentry->d_name.name != dentry->d_iname; 283 } 284 285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 286 { 287 spin_lock(&dentry->d_lock); 288 if (unlikely(dname_external(dentry))) { 289 struct external_name *p = external_name(dentry); 290 atomic_inc(&p->u.count); 291 spin_unlock(&dentry->d_lock); 292 name->name = p->name; 293 } else { 294 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 295 spin_unlock(&dentry->d_lock); 296 name->name = name->inline_name; 297 } 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 WRITE_ONCE(dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 } 333 334 static void dentry_free(struct dentry *dentry) 335 { 336 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 337 if (unlikely(dname_external(dentry))) { 338 struct external_name *p = external_name(dentry); 339 if (likely(atomic_dec_and_test(&p->u.count))) { 340 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 341 return; 342 } 343 } 344 /* if dentry was never visible to RCU, immediate free is OK */ 345 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 346 __d_free(&dentry->d_u.d_rcu); 347 else 348 call_rcu(&dentry->d_u.d_rcu, __d_free); 349 } 350 351 /* 352 * Release the dentry's inode, using the filesystem 353 * d_iput() operation if defined. 354 */ 355 static void dentry_unlink_inode(struct dentry * dentry) 356 __releases(dentry->d_lock) 357 __releases(dentry->d_inode->i_lock) 358 { 359 struct inode *inode = dentry->d_inode; 360 bool hashed = !d_unhashed(dentry); 361 362 if (hashed) 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 if (hashed) 367 raw_write_seqcount_end(&dentry->d_seq); 368 spin_unlock(&dentry->d_lock); 369 spin_unlock(&inode->i_lock); 370 if (!inode->i_nlink) 371 fsnotify_inoderemove(inode); 372 if (dentry->d_op && dentry->d_op->d_iput) 373 dentry->d_op->d_iput(dentry, inode); 374 else 375 iput(inode); 376 } 377 378 /* 379 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 380 * is in use - which includes both the "real" per-superblock 381 * LRU list _and_ the DCACHE_SHRINK_LIST use. 382 * 383 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 384 * on the shrink list (ie not on the superblock LRU list). 385 * 386 * The per-cpu "nr_dentry_unused" counters are updated with 387 * the DCACHE_LRU_LIST bit. 388 * 389 * These helper functions make sure we always follow the 390 * rules. d_lock must be held by the caller. 391 */ 392 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 393 static void d_lru_add(struct dentry *dentry) 394 { 395 D_FLAG_VERIFY(dentry, 0); 396 dentry->d_flags |= DCACHE_LRU_LIST; 397 this_cpu_inc(nr_dentry_unused); 398 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 399 } 400 401 static void d_lru_del(struct dentry *dentry) 402 { 403 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 404 dentry->d_flags &= ~DCACHE_LRU_LIST; 405 this_cpu_dec(nr_dentry_unused); 406 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 407 } 408 409 static void d_shrink_del(struct dentry *dentry) 410 { 411 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 412 list_del_init(&dentry->d_lru); 413 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 414 this_cpu_dec(nr_dentry_unused); 415 } 416 417 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 418 { 419 D_FLAG_VERIFY(dentry, 0); 420 list_add(&dentry->d_lru, list); 421 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 422 this_cpu_inc(nr_dentry_unused); 423 } 424 425 /* 426 * These can only be called under the global LRU lock, ie during the 427 * callback for freeing the LRU list. "isolate" removes it from the 428 * LRU lists entirely, while shrink_move moves it to the indicated 429 * private list. 430 */ 431 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 432 { 433 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 434 dentry->d_flags &= ~DCACHE_LRU_LIST; 435 this_cpu_dec(nr_dentry_unused); 436 list_lru_isolate(lru, &dentry->d_lru); 437 } 438 439 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 440 struct list_head *list) 441 { 442 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 443 dentry->d_flags |= DCACHE_SHRINK_LIST; 444 list_lru_isolate_move(lru, &dentry->d_lru, list); 445 } 446 447 /* 448 * dentry_lru_(add|del)_list) must be called with d_lock held. 449 */ 450 static void dentry_lru_add(struct dentry *dentry) 451 { 452 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 453 d_lru_add(dentry); 454 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 455 dentry->d_flags |= DCACHE_REFERENCED; 456 } 457 458 /** 459 * d_drop - drop a dentry 460 * @dentry: dentry to drop 461 * 462 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 463 * be found through a VFS lookup any more. Note that this is different from 464 * deleting the dentry - d_delete will try to mark the dentry negative if 465 * possible, giving a successful _negative_ lookup, while d_drop will 466 * just make the cache lookup fail. 467 * 468 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 469 * reason (NFS timeouts or autofs deletes). 470 * 471 * __d_drop requires dentry->d_lock. 472 */ 473 void __d_drop(struct dentry *dentry) 474 { 475 if (!d_unhashed(dentry)) { 476 struct hlist_bl_head *b; 477 /* 478 * Hashed dentries are normally on the dentry hashtable, 479 * with the exception of those newly allocated by 480 * d_obtain_alias, which are always IS_ROOT: 481 */ 482 if (unlikely(IS_ROOT(dentry))) 483 b = &dentry->d_sb->s_anon; 484 else 485 b = d_hash(dentry->d_name.hash); 486 487 hlist_bl_lock(b); 488 __hlist_bl_del(&dentry->d_hash); 489 dentry->d_hash.pprev = NULL; 490 hlist_bl_unlock(b); 491 /* After this call, in-progress rcu-walk path lookup will fail. */ 492 write_seqcount_invalidate(&dentry->d_seq); 493 } 494 } 495 EXPORT_SYMBOL(__d_drop); 496 497 void d_drop(struct dentry *dentry) 498 { 499 spin_lock(&dentry->d_lock); 500 __d_drop(dentry); 501 spin_unlock(&dentry->d_lock); 502 } 503 EXPORT_SYMBOL(d_drop); 504 505 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 506 { 507 struct dentry *next; 508 /* 509 * Inform d_walk() and shrink_dentry_list() that we are no longer 510 * attached to the dentry tree 511 */ 512 dentry->d_flags |= DCACHE_DENTRY_KILLED; 513 if (unlikely(list_empty(&dentry->d_child))) 514 return; 515 __list_del_entry(&dentry->d_child); 516 /* 517 * Cursors can move around the list of children. While we'd been 518 * a normal list member, it didn't matter - ->d_child.next would've 519 * been updated. However, from now on it won't be and for the 520 * things like d_walk() it might end up with a nasty surprise. 521 * Normally d_walk() doesn't care about cursors moving around - 522 * ->d_lock on parent prevents that and since a cursor has no children 523 * of its own, we get through it without ever unlocking the parent. 524 * There is one exception, though - if we ascend from a child that 525 * gets killed as soon as we unlock it, the next sibling is found 526 * using the value left in its ->d_child.next. And if _that_ 527 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 528 * before d_walk() regains parent->d_lock, we'll end up skipping 529 * everything the cursor had been moved past. 530 * 531 * Solution: make sure that the pointer left behind in ->d_child.next 532 * points to something that won't be moving around. I.e. skip the 533 * cursors. 534 */ 535 while (dentry->d_child.next != &parent->d_subdirs) { 536 next = list_entry(dentry->d_child.next, struct dentry, d_child); 537 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 538 break; 539 dentry->d_child.next = next->d_child.next; 540 } 541 } 542 543 static void __dentry_kill(struct dentry *dentry) 544 { 545 struct dentry *parent = NULL; 546 bool can_free = true; 547 if (!IS_ROOT(dentry)) 548 parent = dentry->d_parent; 549 550 /* 551 * The dentry is now unrecoverably dead to the world. 552 */ 553 lockref_mark_dead(&dentry->d_lockref); 554 555 /* 556 * inform the fs via d_prune that this dentry is about to be 557 * unhashed and destroyed. 558 */ 559 if (dentry->d_flags & DCACHE_OP_PRUNE) 560 dentry->d_op->d_prune(dentry); 561 562 if (dentry->d_flags & DCACHE_LRU_LIST) { 563 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 564 d_lru_del(dentry); 565 } 566 /* if it was on the hash then remove it */ 567 __d_drop(dentry); 568 dentry_unlist(dentry, parent); 569 if (parent) 570 spin_unlock(&parent->d_lock); 571 if (dentry->d_inode) 572 dentry_unlink_inode(dentry); 573 else 574 spin_unlock(&dentry->d_lock); 575 this_cpu_dec(nr_dentry); 576 if (dentry->d_op && dentry->d_op->d_release) 577 dentry->d_op->d_release(dentry); 578 579 spin_lock(&dentry->d_lock); 580 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 581 dentry->d_flags |= DCACHE_MAY_FREE; 582 can_free = false; 583 } 584 spin_unlock(&dentry->d_lock); 585 if (likely(can_free)) 586 dentry_free(dentry); 587 } 588 589 /* 590 * Finish off a dentry we've decided to kill. 591 * dentry->d_lock must be held, returns with it unlocked. 592 * If ref is non-zero, then decrement the refcount too. 593 * Returns dentry requiring refcount drop, or NULL if we're done. 594 */ 595 static struct dentry *dentry_kill(struct dentry *dentry) 596 __releases(dentry->d_lock) 597 { 598 struct inode *inode = dentry->d_inode; 599 struct dentry *parent = NULL; 600 601 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 602 goto failed; 603 604 if (!IS_ROOT(dentry)) { 605 parent = dentry->d_parent; 606 if (unlikely(!spin_trylock(&parent->d_lock))) { 607 if (inode) 608 spin_unlock(&inode->i_lock); 609 goto failed; 610 } 611 } 612 613 __dentry_kill(dentry); 614 return parent; 615 616 failed: 617 spin_unlock(&dentry->d_lock); 618 return dentry; /* try again with same dentry */ 619 } 620 621 static inline struct dentry *lock_parent(struct dentry *dentry) 622 { 623 struct dentry *parent = dentry->d_parent; 624 if (IS_ROOT(dentry)) 625 return NULL; 626 if (unlikely(dentry->d_lockref.count < 0)) 627 return NULL; 628 if (likely(spin_trylock(&parent->d_lock))) 629 return parent; 630 rcu_read_lock(); 631 spin_unlock(&dentry->d_lock); 632 again: 633 parent = ACCESS_ONCE(dentry->d_parent); 634 spin_lock(&parent->d_lock); 635 /* 636 * We can't blindly lock dentry until we are sure 637 * that we won't violate the locking order. 638 * Any changes of dentry->d_parent must have 639 * been done with parent->d_lock held, so 640 * spin_lock() above is enough of a barrier 641 * for checking if it's still our child. 642 */ 643 if (unlikely(parent != dentry->d_parent)) { 644 spin_unlock(&parent->d_lock); 645 goto again; 646 } 647 rcu_read_unlock(); 648 if (parent != dentry) 649 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 650 else 651 parent = NULL; 652 return parent; 653 } 654 655 /* 656 * Try to do a lockless dput(), and return whether that was successful. 657 * 658 * If unsuccessful, we return false, having already taken the dentry lock. 659 * 660 * The caller needs to hold the RCU read lock, so that the dentry is 661 * guaranteed to stay around even if the refcount goes down to zero! 662 */ 663 static inline bool fast_dput(struct dentry *dentry) 664 { 665 int ret; 666 unsigned int d_flags; 667 668 /* 669 * If we have a d_op->d_delete() operation, we sould not 670 * let the dentry count go to zero, so use "put_or_lock". 671 */ 672 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 673 return lockref_put_or_lock(&dentry->d_lockref); 674 675 /* 676 * .. otherwise, we can try to just decrement the 677 * lockref optimistically. 678 */ 679 ret = lockref_put_return(&dentry->d_lockref); 680 681 /* 682 * If the lockref_put_return() failed due to the lock being held 683 * by somebody else, the fast path has failed. We will need to 684 * get the lock, and then check the count again. 685 */ 686 if (unlikely(ret < 0)) { 687 spin_lock(&dentry->d_lock); 688 if (dentry->d_lockref.count > 1) { 689 dentry->d_lockref.count--; 690 spin_unlock(&dentry->d_lock); 691 return 1; 692 } 693 return 0; 694 } 695 696 /* 697 * If we weren't the last ref, we're done. 698 */ 699 if (ret) 700 return 1; 701 702 /* 703 * Careful, careful. The reference count went down 704 * to zero, but we don't hold the dentry lock, so 705 * somebody else could get it again, and do another 706 * dput(), and we need to not race with that. 707 * 708 * However, there is a very special and common case 709 * where we don't care, because there is nothing to 710 * do: the dentry is still hashed, it does not have 711 * a 'delete' op, and it's referenced and already on 712 * the LRU list. 713 * 714 * NOTE! Since we aren't locked, these values are 715 * not "stable". However, it is sufficient that at 716 * some point after we dropped the reference the 717 * dentry was hashed and the flags had the proper 718 * value. Other dentry users may have re-gotten 719 * a reference to the dentry and change that, but 720 * our work is done - we can leave the dentry 721 * around with a zero refcount. 722 */ 723 smp_rmb(); 724 d_flags = ACCESS_ONCE(dentry->d_flags); 725 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 726 727 /* Nothing to do? Dropping the reference was all we needed? */ 728 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 729 return 1; 730 731 /* 732 * Not the fast normal case? Get the lock. We've already decremented 733 * the refcount, but we'll need to re-check the situation after 734 * getting the lock. 735 */ 736 spin_lock(&dentry->d_lock); 737 738 /* 739 * Did somebody else grab a reference to it in the meantime, and 740 * we're no longer the last user after all? Alternatively, somebody 741 * else could have killed it and marked it dead. Either way, we 742 * don't need to do anything else. 743 */ 744 if (dentry->d_lockref.count) { 745 spin_unlock(&dentry->d_lock); 746 return 1; 747 } 748 749 /* 750 * Re-get the reference we optimistically dropped. We hold the 751 * lock, and we just tested that it was zero, so we can just 752 * set it to 1. 753 */ 754 dentry->d_lockref.count = 1; 755 return 0; 756 } 757 758 759 /* 760 * This is dput 761 * 762 * This is complicated by the fact that we do not want to put 763 * dentries that are no longer on any hash chain on the unused 764 * list: we'd much rather just get rid of them immediately. 765 * 766 * However, that implies that we have to traverse the dentry 767 * tree upwards to the parents which might _also_ now be 768 * scheduled for deletion (it may have been only waiting for 769 * its last child to go away). 770 * 771 * This tail recursion is done by hand as we don't want to depend 772 * on the compiler to always get this right (gcc generally doesn't). 773 * Real recursion would eat up our stack space. 774 */ 775 776 /* 777 * dput - release a dentry 778 * @dentry: dentry to release 779 * 780 * Release a dentry. This will drop the usage count and if appropriate 781 * call the dentry unlink method as well as removing it from the queues and 782 * releasing its resources. If the parent dentries were scheduled for release 783 * they too may now get deleted. 784 */ 785 void dput(struct dentry *dentry) 786 { 787 if (unlikely(!dentry)) 788 return; 789 790 repeat: 791 might_sleep(); 792 793 rcu_read_lock(); 794 if (likely(fast_dput(dentry))) { 795 rcu_read_unlock(); 796 return; 797 } 798 799 /* Slow case: now with the dentry lock held */ 800 rcu_read_unlock(); 801 802 WARN_ON(d_in_lookup(dentry)); 803 804 /* Unreachable? Get rid of it */ 805 if (unlikely(d_unhashed(dentry))) 806 goto kill_it; 807 808 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 809 goto kill_it; 810 811 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 812 if (dentry->d_op->d_delete(dentry)) 813 goto kill_it; 814 } 815 816 dentry_lru_add(dentry); 817 818 dentry->d_lockref.count--; 819 spin_unlock(&dentry->d_lock); 820 return; 821 822 kill_it: 823 dentry = dentry_kill(dentry); 824 if (dentry) { 825 cond_resched(); 826 goto repeat; 827 } 828 } 829 EXPORT_SYMBOL(dput); 830 831 832 /* This must be called with d_lock held */ 833 static inline void __dget_dlock(struct dentry *dentry) 834 { 835 dentry->d_lockref.count++; 836 } 837 838 static inline void __dget(struct dentry *dentry) 839 { 840 lockref_get(&dentry->d_lockref); 841 } 842 843 struct dentry *dget_parent(struct dentry *dentry) 844 { 845 int gotref; 846 struct dentry *ret; 847 848 /* 849 * Do optimistic parent lookup without any 850 * locking. 851 */ 852 rcu_read_lock(); 853 ret = ACCESS_ONCE(dentry->d_parent); 854 gotref = lockref_get_not_zero(&ret->d_lockref); 855 rcu_read_unlock(); 856 if (likely(gotref)) { 857 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 858 return ret; 859 dput(ret); 860 } 861 862 repeat: 863 /* 864 * Don't need rcu_dereference because we re-check it was correct under 865 * the lock. 866 */ 867 rcu_read_lock(); 868 ret = dentry->d_parent; 869 spin_lock(&ret->d_lock); 870 if (unlikely(ret != dentry->d_parent)) { 871 spin_unlock(&ret->d_lock); 872 rcu_read_unlock(); 873 goto repeat; 874 } 875 rcu_read_unlock(); 876 BUG_ON(!ret->d_lockref.count); 877 ret->d_lockref.count++; 878 spin_unlock(&ret->d_lock); 879 return ret; 880 } 881 EXPORT_SYMBOL(dget_parent); 882 883 /** 884 * d_find_alias - grab a hashed alias of inode 885 * @inode: inode in question 886 * 887 * If inode has a hashed alias, or is a directory and has any alias, 888 * acquire the reference to alias and return it. Otherwise return NULL. 889 * Notice that if inode is a directory there can be only one alias and 890 * it can be unhashed only if it has no children, or if it is the root 891 * of a filesystem, or if the directory was renamed and d_revalidate 892 * was the first vfs operation to notice. 893 * 894 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 895 * any other hashed alias over that one. 896 */ 897 static struct dentry *__d_find_alias(struct inode *inode) 898 { 899 struct dentry *alias, *discon_alias; 900 901 again: 902 discon_alias = NULL; 903 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 904 spin_lock(&alias->d_lock); 905 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 906 if (IS_ROOT(alias) && 907 (alias->d_flags & DCACHE_DISCONNECTED)) { 908 discon_alias = alias; 909 } else { 910 __dget_dlock(alias); 911 spin_unlock(&alias->d_lock); 912 return alias; 913 } 914 } 915 spin_unlock(&alias->d_lock); 916 } 917 if (discon_alias) { 918 alias = discon_alias; 919 spin_lock(&alias->d_lock); 920 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 921 __dget_dlock(alias); 922 spin_unlock(&alias->d_lock); 923 return alias; 924 } 925 spin_unlock(&alias->d_lock); 926 goto again; 927 } 928 return NULL; 929 } 930 931 struct dentry *d_find_alias(struct inode *inode) 932 { 933 struct dentry *de = NULL; 934 935 if (!hlist_empty(&inode->i_dentry)) { 936 spin_lock(&inode->i_lock); 937 de = __d_find_alias(inode); 938 spin_unlock(&inode->i_lock); 939 } 940 return de; 941 } 942 EXPORT_SYMBOL(d_find_alias); 943 944 /* 945 * Try to kill dentries associated with this inode. 946 * WARNING: you must own a reference to inode. 947 */ 948 void d_prune_aliases(struct inode *inode) 949 { 950 struct dentry *dentry; 951 restart: 952 spin_lock(&inode->i_lock); 953 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 954 spin_lock(&dentry->d_lock); 955 if (!dentry->d_lockref.count) { 956 struct dentry *parent = lock_parent(dentry); 957 if (likely(!dentry->d_lockref.count)) { 958 __dentry_kill(dentry); 959 dput(parent); 960 goto restart; 961 } 962 if (parent) 963 spin_unlock(&parent->d_lock); 964 } 965 spin_unlock(&dentry->d_lock); 966 } 967 spin_unlock(&inode->i_lock); 968 } 969 EXPORT_SYMBOL(d_prune_aliases); 970 971 static void shrink_dentry_list(struct list_head *list) 972 { 973 struct dentry *dentry, *parent; 974 975 while (!list_empty(list)) { 976 struct inode *inode; 977 dentry = list_entry(list->prev, struct dentry, d_lru); 978 spin_lock(&dentry->d_lock); 979 parent = lock_parent(dentry); 980 981 /* 982 * The dispose list is isolated and dentries are not accounted 983 * to the LRU here, so we can simply remove it from the list 984 * here regardless of whether it is referenced or not. 985 */ 986 d_shrink_del(dentry); 987 988 /* 989 * We found an inuse dentry which was not removed from 990 * the LRU because of laziness during lookup. Do not free it. 991 */ 992 if (dentry->d_lockref.count > 0) { 993 spin_unlock(&dentry->d_lock); 994 if (parent) 995 spin_unlock(&parent->d_lock); 996 continue; 997 } 998 999 1000 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 1001 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 1002 spin_unlock(&dentry->d_lock); 1003 if (parent) 1004 spin_unlock(&parent->d_lock); 1005 if (can_free) 1006 dentry_free(dentry); 1007 continue; 1008 } 1009 1010 inode = dentry->d_inode; 1011 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1012 d_shrink_add(dentry, list); 1013 spin_unlock(&dentry->d_lock); 1014 if (parent) 1015 spin_unlock(&parent->d_lock); 1016 continue; 1017 } 1018 1019 __dentry_kill(dentry); 1020 1021 /* 1022 * We need to prune ancestors too. This is necessary to prevent 1023 * quadratic behavior of shrink_dcache_parent(), but is also 1024 * expected to be beneficial in reducing dentry cache 1025 * fragmentation. 1026 */ 1027 dentry = parent; 1028 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 1029 parent = lock_parent(dentry); 1030 if (dentry->d_lockref.count != 1) { 1031 dentry->d_lockref.count--; 1032 spin_unlock(&dentry->d_lock); 1033 if (parent) 1034 spin_unlock(&parent->d_lock); 1035 break; 1036 } 1037 inode = dentry->d_inode; /* can't be NULL */ 1038 if (unlikely(!spin_trylock(&inode->i_lock))) { 1039 spin_unlock(&dentry->d_lock); 1040 if (parent) 1041 spin_unlock(&parent->d_lock); 1042 cpu_relax(); 1043 continue; 1044 } 1045 __dentry_kill(dentry); 1046 dentry = parent; 1047 } 1048 } 1049 } 1050 1051 static enum lru_status dentry_lru_isolate(struct list_head *item, 1052 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1053 { 1054 struct list_head *freeable = arg; 1055 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1056 1057 1058 /* 1059 * we are inverting the lru lock/dentry->d_lock here, 1060 * so use a trylock. If we fail to get the lock, just skip 1061 * it 1062 */ 1063 if (!spin_trylock(&dentry->d_lock)) 1064 return LRU_SKIP; 1065 1066 /* 1067 * Referenced dentries are still in use. If they have active 1068 * counts, just remove them from the LRU. Otherwise give them 1069 * another pass through the LRU. 1070 */ 1071 if (dentry->d_lockref.count) { 1072 d_lru_isolate(lru, dentry); 1073 spin_unlock(&dentry->d_lock); 1074 return LRU_REMOVED; 1075 } 1076 1077 if (dentry->d_flags & DCACHE_REFERENCED) { 1078 dentry->d_flags &= ~DCACHE_REFERENCED; 1079 spin_unlock(&dentry->d_lock); 1080 1081 /* 1082 * The list move itself will be made by the common LRU code. At 1083 * this point, we've dropped the dentry->d_lock but keep the 1084 * lru lock. This is safe to do, since every list movement is 1085 * protected by the lru lock even if both locks are held. 1086 * 1087 * This is guaranteed by the fact that all LRU management 1088 * functions are intermediated by the LRU API calls like 1089 * list_lru_add and list_lru_del. List movement in this file 1090 * only ever occur through this functions or through callbacks 1091 * like this one, that are called from the LRU API. 1092 * 1093 * The only exceptions to this are functions like 1094 * shrink_dentry_list, and code that first checks for the 1095 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1096 * operating only with stack provided lists after they are 1097 * properly isolated from the main list. It is thus, always a 1098 * local access. 1099 */ 1100 return LRU_ROTATE; 1101 } 1102 1103 d_lru_shrink_move(lru, dentry, freeable); 1104 spin_unlock(&dentry->d_lock); 1105 1106 return LRU_REMOVED; 1107 } 1108 1109 /** 1110 * prune_dcache_sb - shrink the dcache 1111 * @sb: superblock 1112 * @sc: shrink control, passed to list_lru_shrink_walk() 1113 * 1114 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1115 * is done when we need more memory and called from the superblock shrinker 1116 * function. 1117 * 1118 * This function may fail to free any resources if all the dentries are in 1119 * use. 1120 */ 1121 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1122 { 1123 LIST_HEAD(dispose); 1124 long freed; 1125 1126 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1127 dentry_lru_isolate, &dispose); 1128 shrink_dentry_list(&dispose); 1129 return freed; 1130 } 1131 1132 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1133 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1134 { 1135 struct list_head *freeable = arg; 1136 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1137 1138 /* 1139 * we are inverting the lru lock/dentry->d_lock here, 1140 * so use a trylock. If we fail to get the lock, just skip 1141 * it 1142 */ 1143 if (!spin_trylock(&dentry->d_lock)) 1144 return LRU_SKIP; 1145 1146 d_lru_shrink_move(lru, dentry, freeable); 1147 spin_unlock(&dentry->d_lock); 1148 1149 return LRU_REMOVED; 1150 } 1151 1152 1153 /** 1154 * shrink_dcache_sb - shrink dcache for a superblock 1155 * @sb: superblock 1156 * 1157 * Shrink the dcache for the specified super block. This is used to free 1158 * the dcache before unmounting a file system. 1159 */ 1160 void shrink_dcache_sb(struct super_block *sb) 1161 { 1162 long freed; 1163 1164 do { 1165 LIST_HEAD(dispose); 1166 1167 freed = list_lru_walk(&sb->s_dentry_lru, 1168 dentry_lru_isolate_shrink, &dispose, 1024); 1169 1170 this_cpu_sub(nr_dentry_unused, freed); 1171 shrink_dentry_list(&dispose); 1172 cond_resched(); 1173 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1174 } 1175 EXPORT_SYMBOL(shrink_dcache_sb); 1176 1177 /** 1178 * enum d_walk_ret - action to talke during tree walk 1179 * @D_WALK_CONTINUE: contrinue walk 1180 * @D_WALK_QUIT: quit walk 1181 * @D_WALK_NORETRY: quit when retry is needed 1182 * @D_WALK_SKIP: skip this dentry and its children 1183 */ 1184 enum d_walk_ret { 1185 D_WALK_CONTINUE, 1186 D_WALK_QUIT, 1187 D_WALK_NORETRY, 1188 D_WALK_SKIP, 1189 }; 1190 1191 /** 1192 * d_walk - walk the dentry tree 1193 * @parent: start of walk 1194 * @data: data passed to @enter() and @finish() 1195 * @enter: callback when first entering the dentry 1196 * @finish: callback when successfully finished the walk 1197 * 1198 * The @enter() and @finish() callbacks are called with d_lock held. 1199 */ 1200 static void d_walk(struct dentry *parent, void *data, 1201 enum d_walk_ret (*enter)(void *, struct dentry *), 1202 void (*finish)(void *)) 1203 { 1204 struct dentry *this_parent; 1205 struct list_head *next; 1206 unsigned seq = 0; 1207 enum d_walk_ret ret; 1208 bool retry = true; 1209 1210 again: 1211 read_seqbegin_or_lock(&rename_lock, &seq); 1212 this_parent = parent; 1213 spin_lock(&this_parent->d_lock); 1214 1215 ret = enter(data, this_parent); 1216 switch (ret) { 1217 case D_WALK_CONTINUE: 1218 break; 1219 case D_WALK_QUIT: 1220 case D_WALK_SKIP: 1221 goto out_unlock; 1222 case D_WALK_NORETRY: 1223 retry = false; 1224 break; 1225 } 1226 repeat: 1227 next = this_parent->d_subdirs.next; 1228 resume: 1229 while (next != &this_parent->d_subdirs) { 1230 struct list_head *tmp = next; 1231 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1232 next = tmp->next; 1233 1234 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1235 continue; 1236 1237 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1238 1239 ret = enter(data, dentry); 1240 switch (ret) { 1241 case D_WALK_CONTINUE: 1242 break; 1243 case D_WALK_QUIT: 1244 spin_unlock(&dentry->d_lock); 1245 goto out_unlock; 1246 case D_WALK_NORETRY: 1247 retry = false; 1248 break; 1249 case D_WALK_SKIP: 1250 spin_unlock(&dentry->d_lock); 1251 continue; 1252 } 1253 1254 if (!list_empty(&dentry->d_subdirs)) { 1255 spin_unlock(&this_parent->d_lock); 1256 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1257 this_parent = dentry; 1258 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1259 goto repeat; 1260 } 1261 spin_unlock(&dentry->d_lock); 1262 } 1263 /* 1264 * All done at this level ... ascend and resume the search. 1265 */ 1266 rcu_read_lock(); 1267 ascend: 1268 if (this_parent != parent) { 1269 struct dentry *child = this_parent; 1270 this_parent = child->d_parent; 1271 1272 spin_unlock(&child->d_lock); 1273 spin_lock(&this_parent->d_lock); 1274 1275 /* might go back up the wrong parent if we have had a rename. */ 1276 if (need_seqretry(&rename_lock, seq)) 1277 goto rename_retry; 1278 /* go into the first sibling still alive */ 1279 do { 1280 next = child->d_child.next; 1281 if (next == &this_parent->d_subdirs) 1282 goto ascend; 1283 child = list_entry(next, struct dentry, d_child); 1284 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1285 rcu_read_unlock(); 1286 goto resume; 1287 } 1288 if (need_seqretry(&rename_lock, seq)) 1289 goto rename_retry; 1290 rcu_read_unlock(); 1291 if (finish) 1292 finish(data); 1293 1294 out_unlock: 1295 spin_unlock(&this_parent->d_lock); 1296 done_seqretry(&rename_lock, seq); 1297 return; 1298 1299 rename_retry: 1300 spin_unlock(&this_parent->d_lock); 1301 rcu_read_unlock(); 1302 BUG_ON(seq & 1); 1303 if (!retry) 1304 return; 1305 seq = 1; 1306 goto again; 1307 } 1308 1309 struct check_mount { 1310 struct vfsmount *mnt; 1311 unsigned int mounted; 1312 }; 1313 1314 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1315 { 1316 struct check_mount *info = data; 1317 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1318 1319 if (likely(!d_mountpoint(dentry))) 1320 return D_WALK_CONTINUE; 1321 if (__path_is_mountpoint(&path)) { 1322 info->mounted = 1; 1323 return D_WALK_QUIT; 1324 } 1325 return D_WALK_CONTINUE; 1326 } 1327 1328 /** 1329 * path_has_submounts - check for mounts over a dentry in the 1330 * current namespace. 1331 * @parent: path to check. 1332 * 1333 * Return true if the parent or its subdirectories contain 1334 * a mount point in the current namespace. 1335 */ 1336 int path_has_submounts(const struct path *parent) 1337 { 1338 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1339 1340 read_seqlock_excl(&mount_lock); 1341 d_walk(parent->dentry, &data, path_check_mount, NULL); 1342 read_sequnlock_excl(&mount_lock); 1343 1344 return data.mounted; 1345 } 1346 EXPORT_SYMBOL(path_has_submounts); 1347 1348 /* 1349 * Called by mount code to set a mountpoint and check if the mountpoint is 1350 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1351 * subtree can become unreachable). 1352 * 1353 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1354 * this reason take rename_lock and d_lock on dentry and ancestors. 1355 */ 1356 int d_set_mounted(struct dentry *dentry) 1357 { 1358 struct dentry *p; 1359 int ret = -ENOENT; 1360 write_seqlock(&rename_lock); 1361 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1362 /* Need exclusion wrt. d_invalidate() */ 1363 spin_lock(&p->d_lock); 1364 if (unlikely(d_unhashed(p))) { 1365 spin_unlock(&p->d_lock); 1366 goto out; 1367 } 1368 spin_unlock(&p->d_lock); 1369 } 1370 spin_lock(&dentry->d_lock); 1371 if (!d_unlinked(dentry)) { 1372 ret = -EBUSY; 1373 if (!d_mountpoint(dentry)) { 1374 dentry->d_flags |= DCACHE_MOUNTED; 1375 ret = 0; 1376 } 1377 } 1378 spin_unlock(&dentry->d_lock); 1379 out: 1380 write_sequnlock(&rename_lock); 1381 return ret; 1382 } 1383 1384 /* 1385 * Search the dentry child list of the specified parent, 1386 * and move any unused dentries to the end of the unused 1387 * list for prune_dcache(). We descend to the next level 1388 * whenever the d_subdirs list is non-empty and continue 1389 * searching. 1390 * 1391 * It returns zero iff there are no unused children, 1392 * otherwise it returns the number of children moved to 1393 * the end of the unused list. This may not be the total 1394 * number of unused children, because select_parent can 1395 * drop the lock and return early due to latency 1396 * constraints. 1397 */ 1398 1399 struct select_data { 1400 struct dentry *start; 1401 struct list_head dispose; 1402 int found; 1403 }; 1404 1405 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1406 { 1407 struct select_data *data = _data; 1408 enum d_walk_ret ret = D_WALK_CONTINUE; 1409 1410 if (data->start == dentry) 1411 goto out; 1412 1413 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1414 data->found++; 1415 } else { 1416 if (dentry->d_flags & DCACHE_LRU_LIST) 1417 d_lru_del(dentry); 1418 if (!dentry->d_lockref.count) { 1419 d_shrink_add(dentry, &data->dispose); 1420 data->found++; 1421 } 1422 } 1423 /* 1424 * We can return to the caller if we have found some (this 1425 * ensures forward progress). We'll be coming back to find 1426 * the rest. 1427 */ 1428 if (!list_empty(&data->dispose)) 1429 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1430 out: 1431 return ret; 1432 } 1433 1434 /** 1435 * shrink_dcache_parent - prune dcache 1436 * @parent: parent of entries to prune 1437 * 1438 * Prune the dcache to remove unused children of the parent dentry. 1439 */ 1440 void shrink_dcache_parent(struct dentry *parent) 1441 { 1442 for (;;) { 1443 struct select_data data; 1444 1445 INIT_LIST_HEAD(&data.dispose); 1446 data.start = parent; 1447 data.found = 0; 1448 1449 d_walk(parent, &data, select_collect, NULL); 1450 if (!data.found) 1451 break; 1452 1453 shrink_dentry_list(&data.dispose); 1454 cond_resched(); 1455 } 1456 } 1457 EXPORT_SYMBOL(shrink_dcache_parent); 1458 1459 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1460 { 1461 /* it has busy descendents; complain about those instead */ 1462 if (!list_empty(&dentry->d_subdirs)) 1463 return D_WALK_CONTINUE; 1464 1465 /* root with refcount 1 is fine */ 1466 if (dentry == _data && dentry->d_lockref.count == 1) 1467 return D_WALK_CONTINUE; 1468 1469 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1470 " still in use (%d) [unmount of %s %s]\n", 1471 dentry, 1472 dentry->d_inode ? 1473 dentry->d_inode->i_ino : 0UL, 1474 dentry, 1475 dentry->d_lockref.count, 1476 dentry->d_sb->s_type->name, 1477 dentry->d_sb->s_id); 1478 WARN_ON(1); 1479 return D_WALK_CONTINUE; 1480 } 1481 1482 static void do_one_tree(struct dentry *dentry) 1483 { 1484 shrink_dcache_parent(dentry); 1485 d_walk(dentry, dentry, umount_check, NULL); 1486 d_drop(dentry); 1487 dput(dentry); 1488 } 1489 1490 /* 1491 * destroy the dentries attached to a superblock on unmounting 1492 */ 1493 void shrink_dcache_for_umount(struct super_block *sb) 1494 { 1495 struct dentry *dentry; 1496 1497 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1498 1499 dentry = sb->s_root; 1500 sb->s_root = NULL; 1501 do_one_tree(dentry); 1502 1503 while (!hlist_bl_empty(&sb->s_anon)) { 1504 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1505 do_one_tree(dentry); 1506 } 1507 } 1508 1509 struct detach_data { 1510 struct select_data select; 1511 struct dentry *mountpoint; 1512 }; 1513 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1514 { 1515 struct detach_data *data = _data; 1516 1517 if (d_mountpoint(dentry)) { 1518 __dget_dlock(dentry); 1519 data->mountpoint = dentry; 1520 return D_WALK_QUIT; 1521 } 1522 1523 return select_collect(&data->select, dentry); 1524 } 1525 1526 static void check_and_drop(void *_data) 1527 { 1528 struct detach_data *data = _data; 1529 1530 if (!data->mountpoint && list_empty(&data->select.dispose)) 1531 __d_drop(data->select.start); 1532 } 1533 1534 /** 1535 * d_invalidate - detach submounts, prune dcache, and drop 1536 * @dentry: dentry to invalidate (aka detach, prune and drop) 1537 * 1538 * no dcache lock. 1539 * 1540 * The final d_drop is done as an atomic operation relative to 1541 * rename_lock ensuring there are no races with d_set_mounted. This 1542 * ensures there are no unhashed dentries on the path to a mountpoint. 1543 */ 1544 void d_invalidate(struct dentry *dentry) 1545 { 1546 /* 1547 * If it's already been dropped, return OK. 1548 */ 1549 spin_lock(&dentry->d_lock); 1550 if (d_unhashed(dentry)) { 1551 spin_unlock(&dentry->d_lock); 1552 return; 1553 } 1554 spin_unlock(&dentry->d_lock); 1555 1556 /* Negative dentries can be dropped without further checks */ 1557 if (!dentry->d_inode) { 1558 d_drop(dentry); 1559 return; 1560 } 1561 1562 for (;;) { 1563 struct detach_data data; 1564 1565 data.mountpoint = NULL; 1566 INIT_LIST_HEAD(&data.select.dispose); 1567 data.select.start = dentry; 1568 data.select.found = 0; 1569 1570 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1571 1572 if (!list_empty(&data.select.dispose)) 1573 shrink_dentry_list(&data.select.dispose); 1574 else if (!data.mountpoint) 1575 return; 1576 1577 if (data.mountpoint) { 1578 detach_mounts(data.mountpoint); 1579 dput(data.mountpoint); 1580 } 1581 cond_resched(); 1582 } 1583 } 1584 EXPORT_SYMBOL(d_invalidate); 1585 1586 /** 1587 * __d_alloc - allocate a dcache entry 1588 * @sb: filesystem it will belong to 1589 * @name: qstr of the name 1590 * 1591 * Allocates a dentry. It returns %NULL if there is insufficient memory 1592 * available. On a success the dentry is returned. The name passed in is 1593 * copied and the copy passed in may be reused after this call. 1594 */ 1595 1596 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1597 { 1598 struct dentry *dentry; 1599 char *dname; 1600 int err; 1601 1602 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1603 if (!dentry) 1604 return NULL; 1605 1606 /* 1607 * We guarantee that the inline name is always NUL-terminated. 1608 * This way the memcpy() done by the name switching in rename 1609 * will still always have a NUL at the end, even if we might 1610 * be overwriting an internal NUL character 1611 */ 1612 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1613 if (unlikely(!name)) { 1614 name = &slash_name; 1615 dname = dentry->d_iname; 1616 } else if (name->len > DNAME_INLINE_LEN-1) { 1617 size_t size = offsetof(struct external_name, name[1]); 1618 struct external_name *p = kmalloc(size + name->len, 1619 GFP_KERNEL_ACCOUNT); 1620 if (!p) { 1621 kmem_cache_free(dentry_cache, dentry); 1622 return NULL; 1623 } 1624 atomic_set(&p->u.count, 1); 1625 dname = p->name; 1626 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1627 kasan_unpoison_shadow(dname, 1628 round_up(name->len + 1, sizeof(unsigned long))); 1629 } else { 1630 dname = dentry->d_iname; 1631 } 1632 1633 dentry->d_name.len = name->len; 1634 dentry->d_name.hash = name->hash; 1635 memcpy(dname, name->name, name->len); 1636 dname[name->len] = 0; 1637 1638 /* Make sure we always see the terminating NUL character */ 1639 smp_wmb(); 1640 dentry->d_name.name = dname; 1641 1642 dentry->d_lockref.count = 1; 1643 dentry->d_flags = 0; 1644 spin_lock_init(&dentry->d_lock); 1645 seqcount_init(&dentry->d_seq); 1646 dentry->d_inode = NULL; 1647 dentry->d_parent = dentry; 1648 dentry->d_sb = sb; 1649 dentry->d_op = NULL; 1650 dentry->d_fsdata = NULL; 1651 INIT_HLIST_BL_NODE(&dentry->d_hash); 1652 INIT_LIST_HEAD(&dentry->d_lru); 1653 INIT_LIST_HEAD(&dentry->d_subdirs); 1654 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1655 INIT_LIST_HEAD(&dentry->d_child); 1656 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1657 1658 if (dentry->d_op && dentry->d_op->d_init) { 1659 err = dentry->d_op->d_init(dentry); 1660 if (err) { 1661 if (dname_external(dentry)) 1662 kfree(external_name(dentry)); 1663 kmem_cache_free(dentry_cache, dentry); 1664 return NULL; 1665 } 1666 } 1667 1668 this_cpu_inc(nr_dentry); 1669 1670 return dentry; 1671 } 1672 1673 /** 1674 * d_alloc - allocate a dcache entry 1675 * @parent: parent of entry to allocate 1676 * @name: qstr of the name 1677 * 1678 * Allocates a dentry. It returns %NULL if there is insufficient memory 1679 * available. On a success the dentry is returned. The name passed in is 1680 * copied and the copy passed in may be reused after this call. 1681 */ 1682 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1683 { 1684 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1685 if (!dentry) 1686 return NULL; 1687 dentry->d_flags |= DCACHE_RCUACCESS; 1688 spin_lock(&parent->d_lock); 1689 /* 1690 * don't need child lock because it is not subject 1691 * to concurrency here 1692 */ 1693 __dget_dlock(parent); 1694 dentry->d_parent = parent; 1695 list_add(&dentry->d_child, &parent->d_subdirs); 1696 spin_unlock(&parent->d_lock); 1697 1698 return dentry; 1699 } 1700 EXPORT_SYMBOL(d_alloc); 1701 1702 struct dentry *d_alloc_cursor(struct dentry * parent) 1703 { 1704 struct dentry *dentry = __d_alloc(parent->d_sb, NULL); 1705 if (dentry) { 1706 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1707 dentry->d_parent = dget(parent); 1708 } 1709 return dentry; 1710 } 1711 1712 /** 1713 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1714 * @sb: the superblock 1715 * @name: qstr of the name 1716 * 1717 * For a filesystem that just pins its dentries in memory and never 1718 * performs lookups at all, return an unhashed IS_ROOT dentry. 1719 */ 1720 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1721 { 1722 return __d_alloc(sb, name); 1723 } 1724 EXPORT_SYMBOL(d_alloc_pseudo); 1725 1726 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1727 { 1728 struct qstr q; 1729 1730 q.name = name; 1731 q.hash_len = hashlen_string(parent, name); 1732 return d_alloc(parent, &q); 1733 } 1734 EXPORT_SYMBOL(d_alloc_name); 1735 1736 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1737 { 1738 WARN_ON_ONCE(dentry->d_op); 1739 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1740 DCACHE_OP_COMPARE | 1741 DCACHE_OP_REVALIDATE | 1742 DCACHE_OP_WEAK_REVALIDATE | 1743 DCACHE_OP_DELETE | 1744 DCACHE_OP_REAL)); 1745 dentry->d_op = op; 1746 if (!op) 1747 return; 1748 if (op->d_hash) 1749 dentry->d_flags |= DCACHE_OP_HASH; 1750 if (op->d_compare) 1751 dentry->d_flags |= DCACHE_OP_COMPARE; 1752 if (op->d_revalidate) 1753 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1754 if (op->d_weak_revalidate) 1755 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1756 if (op->d_delete) 1757 dentry->d_flags |= DCACHE_OP_DELETE; 1758 if (op->d_prune) 1759 dentry->d_flags |= DCACHE_OP_PRUNE; 1760 if (op->d_real) 1761 dentry->d_flags |= DCACHE_OP_REAL; 1762 1763 } 1764 EXPORT_SYMBOL(d_set_d_op); 1765 1766 1767 /* 1768 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1769 * @dentry - The dentry to mark 1770 * 1771 * Mark a dentry as falling through to the lower layer (as set with 1772 * d_pin_lower()). This flag may be recorded on the medium. 1773 */ 1774 void d_set_fallthru(struct dentry *dentry) 1775 { 1776 spin_lock(&dentry->d_lock); 1777 dentry->d_flags |= DCACHE_FALLTHRU; 1778 spin_unlock(&dentry->d_lock); 1779 } 1780 EXPORT_SYMBOL(d_set_fallthru); 1781 1782 static unsigned d_flags_for_inode(struct inode *inode) 1783 { 1784 unsigned add_flags = DCACHE_REGULAR_TYPE; 1785 1786 if (!inode) 1787 return DCACHE_MISS_TYPE; 1788 1789 if (S_ISDIR(inode->i_mode)) { 1790 add_flags = DCACHE_DIRECTORY_TYPE; 1791 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1792 if (unlikely(!inode->i_op->lookup)) 1793 add_flags = DCACHE_AUTODIR_TYPE; 1794 else 1795 inode->i_opflags |= IOP_LOOKUP; 1796 } 1797 goto type_determined; 1798 } 1799 1800 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1801 if (unlikely(inode->i_op->get_link)) { 1802 add_flags = DCACHE_SYMLINK_TYPE; 1803 goto type_determined; 1804 } 1805 inode->i_opflags |= IOP_NOFOLLOW; 1806 } 1807 1808 if (unlikely(!S_ISREG(inode->i_mode))) 1809 add_flags = DCACHE_SPECIAL_TYPE; 1810 1811 type_determined: 1812 if (unlikely(IS_AUTOMOUNT(inode))) 1813 add_flags |= DCACHE_NEED_AUTOMOUNT; 1814 return add_flags; 1815 } 1816 1817 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1818 { 1819 unsigned add_flags = d_flags_for_inode(inode); 1820 WARN_ON(d_in_lookup(dentry)); 1821 1822 spin_lock(&dentry->d_lock); 1823 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1824 raw_write_seqcount_begin(&dentry->d_seq); 1825 __d_set_inode_and_type(dentry, inode, add_flags); 1826 raw_write_seqcount_end(&dentry->d_seq); 1827 fsnotify_update_flags(dentry); 1828 spin_unlock(&dentry->d_lock); 1829 } 1830 1831 /** 1832 * d_instantiate - fill in inode information for a dentry 1833 * @entry: dentry to complete 1834 * @inode: inode to attach to this dentry 1835 * 1836 * Fill in inode information in the entry. 1837 * 1838 * This turns negative dentries into productive full members 1839 * of society. 1840 * 1841 * NOTE! This assumes that the inode count has been incremented 1842 * (or otherwise set) by the caller to indicate that it is now 1843 * in use by the dcache. 1844 */ 1845 1846 void d_instantiate(struct dentry *entry, struct inode * inode) 1847 { 1848 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1849 if (inode) { 1850 security_d_instantiate(entry, inode); 1851 spin_lock(&inode->i_lock); 1852 __d_instantiate(entry, inode); 1853 spin_unlock(&inode->i_lock); 1854 } 1855 } 1856 EXPORT_SYMBOL(d_instantiate); 1857 1858 /** 1859 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1860 * @entry: dentry to complete 1861 * @inode: inode to attach to this dentry 1862 * 1863 * Fill in inode information in the entry. If a directory alias is found, then 1864 * return an error (and drop inode). Together with d_materialise_unique() this 1865 * guarantees that a directory inode may never have more than one alias. 1866 */ 1867 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1868 { 1869 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1870 1871 security_d_instantiate(entry, inode); 1872 spin_lock(&inode->i_lock); 1873 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1874 spin_unlock(&inode->i_lock); 1875 iput(inode); 1876 return -EBUSY; 1877 } 1878 __d_instantiate(entry, inode); 1879 spin_unlock(&inode->i_lock); 1880 1881 return 0; 1882 } 1883 EXPORT_SYMBOL(d_instantiate_no_diralias); 1884 1885 struct dentry *d_make_root(struct inode *root_inode) 1886 { 1887 struct dentry *res = NULL; 1888 1889 if (root_inode) { 1890 res = __d_alloc(root_inode->i_sb, NULL); 1891 if (res) 1892 d_instantiate(res, root_inode); 1893 else 1894 iput(root_inode); 1895 } 1896 return res; 1897 } 1898 EXPORT_SYMBOL(d_make_root); 1899 1900 static struct dentry * __d_find_any_alias(struct inode *inode) 1901 { 1902 struct dentry *alias; 1903 1904 if (hlist_empty(&inode->i_dentry)) 1905 return NULL; 1906 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1907 __dget(alias); 1908 return alias; 1909 } 1910 1911 /** 1912 * d_find_any_alias - find any alias for a given inode 1913 * @inode: inode to find an alias for 1914 * 1915 * If any aliases exist for the given inode, take and return a 1916 * reference for one of them. If no aliases exist, return %NULL. 1917 */ 1918 struct dentry *d_find_any_alias(struct inode *inode) 1919 { 1920 struct dentry *de; 1921 1922 spin_lock(&inode->i_lock); 1923 de = __d_find_any_alias(inode); 1924 spin_unlock(&inode->i_lock); 1925 return de; 1926 } 1927 EXPORT_SYMBOL(d_find_any_alias); 1928 1929 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1930 { 1931 struct dentry *tmp; 1932 struct dentry *res; 1933 unsigned add_flags; 1934 1935 if (!inode) 1936 return ERR_PTR(-ESTALE); 1937 if (IS_ERR(inode)) 1938 return ERR_CAST(inode); 1939 1940 res = d_find_any_alias(inode); 1941 if (res) 1942 goto out_iput; 1943 1944 tmp = __d_alloc(inode->i_sb, NULL); 1945 if (!tmp) { 1946 res = ERR_PTR(-ENOMEM); 1947 goto out_iput; 1948 } 1949 1950 security_d_instantiate(tmp, inode); 1951 spin_lock(&inode->i_lock); 1952 res = __d_find_any_alias(inode); 1953 if (res) { 1954 spin_unlock(&inode->i_lock); 1955 dput(tmp); 1956 goto out_iput; 1957 } 1958 1959 /* attach a disconnected dentry */ 1960 add_flags = d_flags_for_inode(inode); 1961 1962 if (disconnected) 1963 add_flags |= DCACHE_DISCONNECTED; 1964 1965 spin_lock(&tmp->d_lock); 1966 __d_set_inode_and_type(tmp, inode, add_flags); 1967 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1968 hlist_bl_lock(&tmp->d_sb->s_anon); 1969 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1970 hlist_bl_unlock(&tmp->d_sb->s_anon); 1971 spin_unlock(&tmp->d_lock); 1972 spin_unlock(&inode->i_lock); 1973 1974 return tmp; 1975 1976 out_iput: 1977 iput(inode); 1978 return res; 1979 } 1980 1981 /** 1982 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1983 * @inode: inode to allocate the dentry for 1984 * 1985 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1986 * similar open by handle operations. The returned dentry may be anonymous, 1987 * or may have a full name (if the inode was already in the cache). 1988 * 1989 * When called on a directory inode, we must ensure that the inode only ever 1990 * has one dentry. If a dentry is found, that is returned instead of 1991 * allocating a new one. 1992 * 1993 * On successful return, the reference to the inode has been transferred 1994 * to the dentry. In case of an error the reference on the inode is released. 1995 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1996 * be passed in and the error will be propagated to the return value, 1997 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1998 */ 1999 struct dentry *d_obtain_alias(struct inode *inode) 2000 { 2001 return __d_obtain_alias(inode, 1); 2002 } 2003 EXPORT_SYMBOL(d_obtain_alias); 2004 2005 /** 2006 * d_obtain_root - find or allocate a dentry for a given inode 2007 * @inode: inode to allocate the dentry for 2008 * 2009 * Obtain an IS_ROOT dentry for the root of a filesystem. 2010 * 2011 * We must ensure that directory inodes only ever have one dentry. If a 2012 * dentry is found, that is returned instead of allocating a new one. 2013 * 2014 * On successful return, the reference to the inode has been transferred 2015 * to the dentry. In case of an error the reference on the inode is 2016 * released. A %NULL or IS_ERR inode may be passed in and will be the 2017 * error will be propagate to the return value, with a %NULL @inode 2018 * replaced by ERR_PTR(-ESTALE). 2019 */ 2020 struct dentry *d_obtain_root(struct inode *inode) 2021 { 2022 return __d_obtain_alias(inode, 0); 2023 } 2024 EXPORT_SYMBOL(d_obtain_root); 2025 2026 /** 2027 * d_add_ci - lookup or allocate new dentry with case-exact name 2028 * @inode: the inode case-insensitive lookup has found 2029 * @dentry: the negative dentry that was passed to the parent's lookup func 2030 * @name: the case-exact name to be associated with the returned dentry 2031 * 2032 * This is to avoid filling the dcache with case-insensitive names to the 2033 * same inode, only the actual correct case is stored in the dcache for 2034 * case-insensitive filesystems. 2035 * 2036 * For a case-insensitive lookup match and if the the case-exact dentry 2037 * already exists in in the dcache, use it and return it. 2038 * 2039 * If no entry exists with the exact case name, allocate new dentry with 2040 * the exact case, and return the spliced entry. 2041 */ 2042 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2043 struct qstr *name) 2044 { 2045 struct dentry *found, *res; 2046 2047 /* 2048 * First check if a dentry matching the name already exists, 2049 * if not go ahead and create it now. 2050 */ 2051 found = d_hash_and_lookup(dentry->d_parent, name); 2052 if (found) { 2053 iput(inode); 2054 return found; 2055 } 2056 if (d_in_lookup(dentry)) { 2057 found = d_alloc_parallel(dentry->d_parent, name, 2058 dentry->d_wait); 2059 if (IS_ERR(found) || !d_in_lookup(found)) { 2060 iput(inode); 2061 return found; 2062 } 2063 } else { 2064 found = d_alloc(dentry->d_parent, name); 2065 if (!found) { 2066 iput(inode); 2067 return ERR_PTR(-ENOMEM); 2068 } 2069 } 2070 res = d_splice_alias(inode, found); 2071 if (res) { 2072 dput(found); 2073 return res; 2074 } 2075 return found; 2076 } 2077 EXPORT_SYMBOL(d_add_ci); 2078 2079 2080 static inline bool d_same_name(const struct dentry *dentry, 2081 const struct dentry *parent, 2082 const struct qstr *name) 2083 { 2084 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2085 if (dentry->d_name.len != name->len) 2086 return false; 2087 return dentry_cmp(dentry, name->name, name->len) == 0; 2088 } 2089 return parent->d_op->d_compare(dentry, 2090 dentry->d_name.len, dentry->d_name.name, 2091 name) == 0; 2092 } 2093 2094 /** 2095 * __d_lookup_rcu - search for a dentry (racy, store-free) 2096 * @parent: parent dentry 2097 * @name: qstr of name we wish to find 2098 * @seqp: returns d_seq value at the point where the dentry was found 2099 * Returns: dentry, or NULL 2100 * 2101 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2102 * resolution (store-free path walking) design described in 2103 * Documentation/filesystems/path-lookup.txt. 2104 * 2105 * This is not to be used outside core vfs. 2106 * 2107 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2108 * held, and rcu_read_lock held. The returned dentry must not be stored into 2109 * without taking d_lock and checking d_seq sequence count against @seq 2110 * returned here. 2111 * 2112 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2113 * function. 2114 * 2115 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2116 * the returned dentry, so long as its parent's seqlock is checked after the 2117 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2118 * is formed, giving integrity down the path walk. 2119 * 2120 * NOTE! The caller *has* to check the resulting dentry against the sequence 2121 * number we've returned before using any of the resulting dentry state! 2122 */ 2123 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2124 const struct qstr *name, 2125 unsigned *seqp) 2126 { 2127 u64 hashlen = name->hash_len; 2128 const unsigned char *str = name->name; 2129 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2130 struct hlist_bl_node *node; 2131 struct dentry *dentry; 2132 2133 /* 2134 * Note: There is significant duplication with __d_lookup_rcu which is 2135 * required to prevent single threaded performance regressions 2136 * especially on architectures where smp_rmb (in seqcounts) are costly. 2137 * Keep the two functions in sync. 2138 */ 2139 2140 /* 2141 * The hash list is protected using RCU. 2142 * 2143 * Carefully use d_seq when comparing a candidate dentry, to avoid 2144 * races with d_move(). 2145 * 2146 * It is possible that concurrent renames can mess up our list 2147 * walk here and result in missing our dentry, resulting in the 2148 * false-negative result. d_lookup() protects against concurrent 2149 * renames using rename_lock seqlock. 2150 * 2151 * See Documentation/filesystems/path-lookup.txt for more details. 2152 */ 2153 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2154 unsigned seq; 2155 2156 seqretry: 2157 /* 2158 * The dentry sequence count protects us from concurrent 2159 * renames, and thus protects parent and name fields. 2160 * 2161 * The caller must perform a seqcount check in order 2162 * to do anything useful with the returned dentry. 2163 * 2164 * NOTE! We do a "raw" seqcount_begin here. That means that 2165 * we don't wait for the sequence count to stabilize if it 2166 * is in the middle of a sequence change. If we do the slow 2167 * dentry compare, we will do seqretries until it is stable, 2168 * and if we end up with a successful lookup, we actually 2169 * want to exit RCU lookup anyway. 2170 * 2171 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2172 * we are still guaranteed NUL-termination of ->d_name.name. 2173 */ 2174 seq = raw_seqcount_begin(&dentry->d_seq); 2175 if (dentry->d_parent != parent) 2176 continue; 2177 if (d_unhashed(dentry)) 2178 continue; 2179 2180 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2181 int tlen; 2182 const char *tname; 2183 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2184 continue; 2185 tlen = dentry->d_name.len; 2186 tname = dentry->d_name.name; 2187 /* we want a consistent (name,len) pair */ 2188 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2189 cpu_relax(); 2190 goto seqretry; 2191 } 2192 if (parent->d_op->d_compare(dentry, 2193 tlen, tname, name) != 0) 2194 continue; 2195 } else { 2196 if (dentry->d_name.hash_len != hashlen) 2197 continue; 2198 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2199 continue; 2200 } 2201 *seqp = seq; 2202 return dentry; 2203 } 2204 return NULL; 2205 } 2206 2207 /** 2208 * d_lookup - search for a dentry 2209 * @parent: parent dentry 2210 * @name: qstr of name we wish to find 2211 * Returns: dentry, or NULL 2212 * 2213 * d_lookup searches the children of the parent dentry for the name in 2214 * question. If the dentry is found its reference count is incremented and the 2215 * dentry is returned. The caller must use dput to free the entry when it has 2216 * finished using it. %NULL is returned if the dentry does not exist. 2217 */ 2218 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2219 { 2220 struct dentry *dentry; 2221 unsigned seq; 2222 2223 do { 2224 seq = read_seqbegin(&rename_lock); 2225 dentry = __d_lookup(parent, name); 2226 if (dentry) 2227 break; 2228 } while (read_seqretry(&rename_lock, seq)); 2229 return dentry; 2230 } 2231 EXPORT_SYMBOL(d_lookup); 2232 2233 /** 2234 * __d_lookup - search for a dentry (racy) 2235 * @parent: parent dentry 2236 * @name: qstr of name we wish to find 2237 * Returns: dentry, or NULL 2238 * 2239 * __d_lookup is like d_lookup, however it may (rarely) return a 2240 * false-negative result due to unrelated rename activity. 2241 * 2242 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2243 * however it must be used carefully, eg. with a following d_lookup in 2244 * the case of failure. 2245 * 2246 * __d_lookup callers must be commented. 2247 */ 2248 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2249 { 2250 unsigned int hash = name->hash; 2251 struct hlist_bl_head *b = d_hash(hash); 2252 struct hlist_bl_node *node; 2253 struct dentry *found = NULL; 2254 struct dentry *dentry; 2255 2256 /* 2257 * Note: There is significant duplication with __d_lookup_rcu which is 2258 * required to prevent single threaded performance regressions 2259 * especially on architectures where smp_rmb (in seqcounts) are costly. 2260 * Keep the two functions in sync. 2261 */ 2262 2263 /* 2264 * The hash list is protected using RCU. 2265 * 2266 * Take d_lock when comparing a candidate dentry, to avoid races 2267 * with d_move(). 2268 * 2269 * It is possible that concurrent renames can mess up our list 2270 * walk here and result in missing our dentry, resulting in the 2271 * false-negative result. d_lookup() protects against concurrent 2272 * renames using rename_lock seqlock. 2273 * 2274 * See Documentation/filesystems/path-lookup.txt for more details. 2275 */ 2276 rcu_read_lock(); 2277 2278 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2279 2280 if (dentry->d_name.hash != hash) 2281 continue; 2282 2283 spin_lock(&dentry->d_lock); 2284 if (dentry->d_parent != parent) 2285 goto next; 2286 if (d_unhashed(dentry)) 2287 goto next; 2288 2289 if (!d_same_name(dentry, parent, name)) 2290 goto next; 2291 2292 dentry->d_lockref.count++; 2293 found = dentry; 2294 spin_unlock(&dentry->d_lock); 2295 break; 2296 next: 2297 spin_unlock(&dentry->d_lock); 2298 } 2299 rcu_read_unlock(); 2300 2301 return found; 2302 } 2303 2304 /** 2305 * d_hash_and_lookup - hash the qstr then search for a dentry 2306 * @dir: Directory to search in 2307 * @name: qstr of name we wish to find 2308 * 2309 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2310 */ 2311 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2312 { 2313 /* 2314 * Check for a fs-specific hash function. Note that we must 2315 * calculate the standard hash first, as the d_op->d_hash() 2316 * routine may choose to leave the hash value unchanged. 2317 */ 2318 name->hash = full_name_hash(dir, name->name, name->len); 2319 if (dir->d_flags & DCACHE_OP_HASH) { 2320 int err = dir->d_op->d_hash(dir, name); 2321 if (unlikely(err < 0)) 2322 return ERR_PTR(err); 2323 } 2324 return d_lookup(dir, name); 2325 } 2326 EXPORT_SYMBOL(d_hash_and_lookup); 2327 2328 /* 2329 * When a file is deleted, we have two options: 2330 * - turn this dentry into a negative dentry 2331 * - unhash this dentry and free it. 2332 * 2333 * Usually, we want to just turn this into 2334 * a negative dentry, but if anybody else is 2335 * currently using the dentry or the inode 2336 * we can't do that and we fall back on removing 2337 * it from the hash queues and waiting for 2338 * it to be deleted later when it has no users 2339 */ 2340 2341 /** 2342 * d_delete - delete a dentry 2343 * @dentry: The dentry to delete 2344 * 2345 * Turn the dentry into a negative dentry if possible, otherwise 2346 * remove it from the hash queues so it can be deleted later 2347 */ 2348 2349 void d_delete(struct dentry * dentry) 2350 { 2351 struct inode *inode; 2352 int isdir = 0; 2353 /* 2354 * Are we the only user? 2355 */ 2356 again: 2357 spin_lock(&dentry->d_lock); 2358 inode = dentry->d_inode; 2359 isdir = S_ISDIR(inode->i_mode); 2360 if (dentry->d_lockref.count == 1) { 2361 if (!spin_trylock(&inode->i_lock)) { 2362 spin_unlock(&dentry->d_lock); 2363 cpu_relax(); 2364 goto again; 2365 } 2366 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2367 dentry_unlink_inode(dentry); 2368 fsnotify_nameremove(dentry, isdir); 2369 return; 2370 } 2371 2372 if (!d_unhashed(dentry)) 2373 __d_drop(dentry); 2374 2375 spin_unlock(&dentry->d_lock); 2376 2377 fsnotify_nameremove(dentry, isdir); 2378 } 2379 EXPORT_SYMBOL(d_delete); 2380 2381 static void __d_rehash(struct dentry *entry) 2382 { 2383 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2384 BUG_ON(!d_unhashed(entry)); 2385 hlist_bl_lock(b); 2386 hlist_bl_add_head_rcu(&entry->d_hash, b); 2387 hlist_bl_unlock(b); 2388 } 2389 2390 /** 2391 * d_rehash - add an entry back to the hash 2392 * @entry: dentry to add to the hash 2393 * 2394 * Adds a dentry to the hash according to its name. 2395 */ 2396 2397 void d_rehash(struct dentry * entry) 2398 { 2399 spin_lock(&entry->d_lock); 2400 __d_rehash(entry); 2401 spin_unlock(&entry->d_lock); 2402 } 2403 EXPORT_SYMBOL(d_rehash); 2404 2405 static inline unsigned start_dir_add(struct inode *dir) 2406 { 2407 2408 for (;;) { 2409 unsigned n = dir->i_dir_seq; 2410 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2411 return n; 2412 cpu_relax(); 2413 } 2414 } 2415 2416 static inline void end_dir_add(struct inode *dir, unsigned n) 2417 { 2418 smp_store_release(&dir->i_dir_seq, n + 2); 2419 } 2420 2421 static void d_wait_lookup(struct dentry *dentry) 2422 { 2423 if (d_in_lookup(dentry)) { 2424 DECLARE_WAITQUEUE(wait, current); 2425 add_wait_queue(dentry->d_wait, &wait); 2426 do { 2427 set_current_state(TASK_UNINTERRUPTIBLE); 2428 spin_unlock(&dentry->d_lock); 2429 schedule(); 2430 spin_lock(&dentry->d_lock); 2431 } while (d_in_lookup(dentry)); 2432 } 2433 } 2434 2435 struct dentry *d_alloc_parallel(struct dentry *parent, 2436 const struct qstr *name, 2437 wait_queue_head_t *wq) 2438 { 2439 unsigned int hash = name->hash; 2440 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2441 struct hlist_bl_node *node; 2442 struct dentry *new = d_alloc(parent, name); 2443 struct dentry *dentry; 2444 unsigned seq, r_seq, d_seq; 2445 2446 if (unlikely(!new)) 2447 return ERR_PTR(-ENOMEM); 2448 2449 retry: 2450 rcu_read_lock(); 2451 seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1; 2452 r_seq = read_seqbegin(&rename_lock); 2453 dentry = __d_lookup_rcu(parent, name, &d_seq); 2454 if (unlikely(dentry)) { 2455 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2456 rcu_read_unlock(); 2457 goto retry; 2458 } 2459 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2460 rcu_read_unlock(); 2461 dput(dentry); 2462 goto retry; 2463 } 2464 rcu_read_unlock(); 2465 dput(new); 2466 return dentry; 2467 } 2468 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2469 rcu_read_unlock(); 2470 goto retry; 2471 } 2472 hlist_bl_lock(b); 2473 if (unlikely(parent->d_inode->i_dir_seq != seq)) { 2474 hlist_bl_unlock(b); 2475 rcu_read_unlock(); 2476 goto retry; 2477 } 2478 /* 2479 * No changes for the parent since the beginning of d_lookup(). 2480 * Since all removals from the chain happen with hlist_bl_lock(), 2481 * any potential in-lookup matches are going to stay here until 2482 * we unlock the chain. All fields are stable in everything 2483 * we encounter. 2484 */ 2485 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2486 if (dentry->d_name.hash != hash) 2487 continue; 2488 if (dentry->d_parent != parent) 2489 continue; 2490 if (!d_same_name(dentry, parent, name)) 2491 continue; 2492 hlist_bl_unlock(b); 2493 /* now we can try to grab a reference */ 2494 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2495 rcu_read_unlock(); 2496 goto retry; 2497 } 2498 2499 rcu_read_unlock(); 2500 /* 2501 * somebody is likely to be still doing lookup for it; 2502 * wait for them to finish 2503 */ 2504 spin_lock(&dentry->d_lock); 2505 d_wait_lookup(dentry); 2506 /* 2507 * it's not in-lookup anymore; in principle we should repeat 2508 * everything from dcache lookup, but it's likely to be what 2509 * d_lookup() would've found anyway. If it is, just return it; 2510 * otherwise we really have to repeat the whole thing. 2511 */ 2512 if (unlikely(dentry->d_name.hash != hash)) 2513 goto mismatch; 2514 if (unlikely(dentry->d_parent != parent)) 2515 goto mismatch; 2516 if (unlikely(d_unhashed(dentry))) 2517 goto mismatch; 2518 if (unlikely(!d_same_name(dentry, parent, name))) 2519 goto mismatch; 2520 /* OK, it *is* a hashed match; return it */ 2521 spin_unlock(&dentry->d_lock); 2522 dput(new); 2523 return dentry; 2524 } 2525 rcu_read_unlock(); 2526 /* we can't take ->d_lock here; it's OK, though. */ 2527 new->d_flags |= DCACHE_PAR_LOOKUP; 2528 new->d_wait = wq; 2529 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2530 hlist_bl_unlock(b); 2531 return new; 2532 mismatch: 2533 spin_unlock(&dentry->d_lock); 2534 dput(dentry); 2535 goto retry; 2536 } 2537 EXPORT_SYMBOL(d_alloc_parallel); 2538 2539 void __d_lookup_done(struct dentry *dentry) 2540 { 2541 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2542 dentry->d_name.hash); 2543 hlist_bl_lock(b); 2544 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2545 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2546 wake_up_all(dentry->d_wait); 2547 dentry->d_wait = NULL; 2548 hlist_bl_unlock(b); 2549 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2550 INIT_LIST_HEAD(&dentry->d_lru); 2551 } 2552 EXPORT_SYMBOL(__d_lookup_done); 2553 2554 /* inode->i_lock held if inode is non-NULL */ 2555 2556 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2557 { 2558 struct inode *dir = NULL; 2559 unsigned n; 2560 spin_lock(&dentry->d_lock); 2561 if (unlikely(d_in_lookup(dentry))) { 2562 dir = dentry->d_parent->d_inode; 2563 n = start_dir_add(dir); 2564 __d_lookup_done(dentry); 2565 } 2566 if (inode) { 2567 unsigned add_flags = d_flags_for_inode(inode); 2568 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2569 raw_write_seqcount_begin(&dentry->d_seq); 2570 __d_set_inode_and_type(dentry, inode, add_flags); 2571 raw_write_seqcount_end(&dentry->d_seq); 2572 fsnotify_update_flags(dentry); 2573 } 2574 __d_rehash(dentry); 2575 if (dir) 2576 end_dir_add(dir, n); 2577 spin_unlock(&dentry->d_lock); 2578 if (inode) 2579 spin_unlock(&inode->i_lock); 2580 } 2581 2582 /** 2583 * d_add - add dentry to hash queues 2584 * @entry: dentry to add 2585 * @inode: The inode to attach to this dentry 2586 * 2587 * This adds the entry to the hash queues and initializes @inode. 2588 * The entry was actually filled in earlier during d_alloc(). 2589 */ 2590 2591 void d_add(struct dentry *entry, struct inode *inode) 2592 { 2593 if (inode) { 2594 security_d_instantiate(entry, inode); 2595 spin_lock(&inode->i_lock); 2596 } 2597 __d_add(entry, inode); 2598 } 2599 EXPORT_SYMBOL(d_add); 2600 2601 /** 2602 * d_exact_alias - find and hash an exact unhashed alias 2603 * @entry: dentry to add 2604 * @inode: The inode to go with this dentry 2605 * 2606 * If an unhashed dentry with the same name/parent and desired 2607 * inode already exists, hash and return it. Otherwise, return 2608 * NULL. 2609 * 2610 * Parent directory should be locked. 2611 */ 2612 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2613 { 2614 struct dentry *alias; 2615 unsigned int hash = entry->d_name.hash; 2616 2617 spin_lock(&inode->i_lock); 2618 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2619 /* 2620 * Don't need alias->d_lock here, because aliases with 2621 * d_parent == entry->d_parent are not subject to name or 2622 * parent changes, because the parent inode i_mutex is held. 2623 */ 2624 if (alias->d_name.hash != hash) 2625 continue; 2626 if (alias->d_parent != entry->d_parent) 2627 continue; 2628 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2629 continue; 2630 spin_lock(&alias->d_lock); 2631 if (!d_unhashed(alias)) { 2632 spin_unlock(&alias->d_lock); 2633 alias = NULL; 2634 } else { 2635 __dget_dlock(alias); 2636 __d_rehash(alias); 2637 spin_unlock(&alias->d_lock); 2638 } 2639 spin_unlock(&inode->i_lock); 2640 return alias; 2641 } 2642 spin_unlock(&inode->i_lock); 2643 return NULL; 2644 } 2645 EXPORT_SYMBOL(d_exact_alias); 2646 2647 /** 2648 * dentry_update_name_case - update case insensitive dentry with a new name 2649 * @dentry: dentry to be updated 2650 * @name: new name 2651 * 2652 * Update a case insensitive dentry with new case of name. 2653 * 2654 * dentry must have been returned by d_lookup with name @name. Old and new 2655 * name lengths must match (ie. no d_compare which allows mismatched name 2656 * lengths). 2657 * 2658 * Parent inode i_mutex must be held over d_lookup and into this call (to 2659 * keep renames and concurrent inserts, and readdir(2) away). 2660 */ 2661 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2662 { 2663 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2664 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2665 2666 spin_lock(&dentry->d_lock); 2667 write_seqcount_begin(&dentry->d_seq); 2668 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2669 write_seqcount_end(&dentry->d_seq); 2670 spin_unlock(&dentry->d_lock); 2671 } 2672 EXPORT_SYMBOL(dentry_update_name_case); 2673 2674 static void swap_names(struct dentry *dentry, struct dentry *target) 2675 { 2676 if (unlikely(dname_external(target))) { 2677 if (unlikely(dname_external(dentry))) { 2678 /* 2679 * Both external: swap the pointers 2680 */ 2681 swap(target->d_name.name, dentry->d_name.name); 2682 } else { 2683 /* 2684 * dentry:internal, target:external. Steal target's 2685 * storage and make target internal. 2686 */ 2687 memcpy(target->d_iname, dentry->d_name.name, 2688 dentry->d_name.len + 1); 2689 dentry->d_name.name = target->d_name.name; 2690 target->d_name.name = target->d_iname; 2691 } 2692 } else { 2693 if (unlikely(dname_external(dentry))) { 2694 /* 2695 * dentry:external, target:internal. Give dentry's 2696 * storage to target and make dentry internal 2697 */ 2698 memcpy(dentry->d_iname, target->d_name.name, 2699 target->d_name.len + 1); 2700 target->d_name.name = dentry->d_name.name; 2701 dentry->d_name.name = dentry->d_iname; 2702 } else { 2703 /* 2704 * Both are internal. 2705 */ 2706 unsigned int i; 2707 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2708 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2709 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2710 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2711 swap(((long *) &dentry->d_iname)[i], 2712 ((long *) &target->d_iname)[i]); 2713 } 2714 } 2715 } 2716 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2717 } 2718 2719 static void copy_name(struct dentry *dentry, struct dentry *target) 2720 { 2721 struct external_name *old_name = NULL; 2722 if (unlikely(dname_external(dentry))) 2723 old_name = external_name(dentry); 2724 if (unlikely(dname_external(target))) { 2725 atomic_inc(&external_name(target)->u.count); 2726 dentry->d_name = target->d_name; 2727 } else { 2728 memcpy(dentry->d_iname, target->d_name.name, 2729 target->d_name.len + 1); 2730 dentry->d_name.name = dentry->d_iname; 2731 dentry->d_name.hash_len = target->d_name.hash_len; 2732 } 2733 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2734 kfree_rcu(old_name, u.head); 2735 } 2736 2737 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2738 { 2739 /* 2740 * XXXX: do we really need to take target->d_lock? 2741 */ 2742 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2743 spin_lock(&target->d_parent->d_lock); 2744 else { 2745 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2746 spin_lock(&dentry->d_parent->d_lock); 2747 spin_lock_nested(&target->d_parent->d_lock, 2748 DENTRY_D_LOCK_NESTED); 2749 } else { 2750 spin_lock(&target->d_parent->d_lock); 2751 spin_lock_nested(&dentry->d_parent->d_lock, 2752 DENTRY_D_LOCK_NESTED); 2753 } 2754 } 2755 if (target < dentry) { 2756 spin_lock_nested(&target->d_lock, 2); 2757 spin_lock_nested(&dentry->d_lock, 3); 2758 } else { 2759 spin_lock_nested(&dentry->d_lock, 2); 2760 spin_lock_nested(&target->d_lock, 3); 2761 } 2762 } 2763 2764 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2765 { 2766 if (target->d_parent != dentry->d_parent) 2767 spin_unlock(&dentry->d_parent->d_lock); 2768 if (target->d_parent != target) 2769 spin_unlock(&target->d_parent->d_lock); 2770 spin_unlock(&target->d_lock); 2771 spin_unlock(&dentry->d_lock); 2772 } 2773 2774 /* 2775 * When switching names, the actual string doesn't strictly have to 2776 * be preserved in the target - because we're dropping the target 2777 * anyway. As such, we can just do a simple memcpy() to copy over 2778 * the new name before we switch, unless we are going to rehash 2779 * it. Note that if we *do* unhash the target, we are not allowed 2780 * to rehash it without giving it a new name/hash key - whether 2781 * we swap or overwrite the names here, resulting name won't match 2782 * the reality in filesystem; it's only there for d_path() purposes. 2783 * Note that all of this is happening under rename_lock, so the 2784 * any hash lookup seeing it in the middle of manipulations will 2785 * be discarded anyway. So we do not care what happens to the hash 2786 * key in that case. 2787 */ 2788 /* 2789 * __d_move - move a dentry 2790 * @dentry: entry to move 2791 * @target: new dentry 2792 * @exchange: exchange the two dentries 2793 * 2794 * Update the dcache to reflect the move of a file name. Negative 2795 * dcache entries should not be moved in this way. Caller must hold 2796 * rename_lock, the i_mutex of the source and target directories, 2797 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2798 */ 2799 static void __d_move(struct dentry *dentry, struct dentry *target, 2800 bool exchange) 2801 { 2802 struct inode *dir = NULL; 2803 unsigned n; 2804 if (!dentry->d_inode) 2805 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2806 2807 BUG_ON(d_ancestor(dentry, target)); 2808 BUG_ON(d_ancestor(target, dentry)); 2809 2810 dentry_lock_for_move(dentry, target); 2811 if (unlikely(d_in_lookup(target))) { 2812 dir = target->d_parent->d_inode; 2813 n = start_dir_add(dir); 2814 __d_lookup_done(target); 2815 } 2816 2817 write_seqcount_begin(&dentry->d_seq); 2818 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2819 2820 /* unhash both */ 2821 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2822 __d_drop(dentry); 2823 __d_drop(target); 2824 2825 /* Switch the names.. */ 2826 if (exchange) 2827 swap_names(dentry, target); 2828 else 2829 copy_name(dentry, target); 2830 2831 /* rehash in new place(s) */ 2832 __d_rehash(dentry); 2833 if (exchange) 2834 __d_rehash(target); 2835 2836 /* ... and switch them in the tree */ 2837 if (IS_ROOT(dentry)) { 2838 /* splicing a tree */ 2839 dentry->d_flags |= DCACHE_RCUACCESS; 2840 dentry->d_parent = target->d_parent; 2841 target->d_parent = target; 2842 list_del_init(&target->d_child); 2843 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2844 } else { 2845 /* swapping two dentries */ 2846 swap(dentry->d_parent, target->d_parent); 2847 list_move(&target->d_child, &target->d_parent->d_subdirs); 2848 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2849 if (exchange) 2850 fsnotify_update_flags(target); 2851 fsnotify_update_flags(dentry); 2852 } 2853 2854 write_seqcount_end(&target->d_seq); 2855 write_seqcount_end(&dentry->d_seq); 2856 2857 if (dir) 2858 end_dir_add(dir, n); 2859 dentry_unlock_for_move(dentry, target); 2860 } 2861 2862 /* 2863 * d_move - move a dentry 2864 * @dentry: entry to move 2865 * @target: new dentry 2866 * 2867 * Update the dcache to reflect the move of a file name. Negative 2868 * dcache entries should not be moved in this way. See the locking 2869 * requirements for __d_move. 2870 */ 2871 void d_move(struct dentry *dentry, struct dentry *target) 2872 { 2873 write_seqlock(&rename_lock); 2874 __d_move(dentry, target, false); 2875 write_sequnlock(&rename_lock); 2876 } 2877 EXPORT_SYMBOL(d_move); 2878 2879 /* 2880 * d_exchange - exchange two dentries 2881 * @dentry1: first dentry 2882 * @dentry2: second dentry 2883 */ 2884 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2885 { 2886 write_seqlock(&rename_lock); 2887 2888 WARN_ON(!dentry1->d_inode); 2889 WARN_ON(!dentry2->d_inode); 2890 WARN_ON(IS_ROOT(dentry1)); 2891 WARN_ON(IS_ROOT(dentry2)); 2892 2893 __d_move(dentry1, dentry2, true); 2894 2895 write_sequnlock(&rename_lock); 2896 } 2897 2898 /** 2899 * d_ancestor - search for an ancestor 2900 * @p1: ancestor dentry 2901 * @p2: child dentry 2902 * 2903 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2904 * an ancestor of p2, else NULL. 2905 */ 2906 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2907 { 2908 struct dentry *p; 2909 2910 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2911 if (p->d_parent == p1) 2912 return p; 2913 } 2914 return NULL; 2915 } 2916 2917 /* 2918 * This helper attempts to cope with remotely renamed directories 2919 * 2920 * It assumes that the caller is already holding 2921 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2922 * 2923 * Note: If ever the locking in lock_rename() changes, then please 2924 * remember to update this too... 2925 */ 2926 static int __d_unalias(struct inode *inode, 2927 struct dentry *dentry, struct dentry *alias) 2928 { 2929 struct mutex *m1 = NULL; 2930 struct rw_semaphore *m2 = NULL; 2931 int ret = -ESTALE; 2932 2933 /* If alias and dentry share a parent, then no extra locks required */ 2934 if (alias->d_parent == dentry->d_parent) 2935 goto out_unalias; 2936 2937 /* See lock_rename() */ 2938 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2939 goto out_err; 2940 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2941 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2942 goto out_err; 2943 m2 = &alias->d_parent->d_inode->i_rwsem; 2944 out_unalias: 2945 __d_move(alias, dentry, false); 2946 ret = 0; 2947 out_err: 2948 if (m2) 2949 up_read(m2); 2950 if (m1) 2951 mutex_unlock(m1); 2952 return ret; 2953 } 2954 2955 /** 2956 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2957 * @inode: the inode which may have a disconnected dentry 2958 * @dentry: a negative dentry which we want to point to the inode. 2959 * 2960 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2961 * place of the given dentry and return it, else simply d_add the inode 2962 * to the dentry and return NULL. 2963 * 2964 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2965 * we should error out: directories can't have multiple aliases. 2966 * 2967 * This is needed in the lookup routine of any filesystem that is exportable 2968 * (via knfsd) so that we can build dcache paths to directories effectively. 2969 * 2970 * If a dentry was found and moved, then it is returned. Otherwise NULL 2971 * is returned. This matches the expected return value of ->lookup. 2972 * 2973 * Cluster filesystems may call this function with a negative, hashed dentry. 2974 * In that case, we know that the inode will be a regular file, and also this 2975 * will only occur during atomic_open. So we need to check for the dentry 2976 * being already hashed only in the final case. 2977 */ 2978 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2979 { 2980 if (IS_ERR(inode)) 2981 return ERR_CAST(inode); 2982 2983 BUG_ON(!d_unhashed(dentry)); 2984 2985 if (!inode) 2986 goto out; 2987 2988 security_d_instantiate(dentry, inode); 2989 spin_lock(&inode->i_lock); 2990 if (S_ISDIR(inode->i_mode)) { 2991 struct dentry *new = __d_find_any_alias(inode); 2992 if (unlikely(new)) { 2993 /* The reference to new ensures it remains an alias */ 2994 spin_unlock(&inode->i_lock); 2995 write_seqlock(&rename_lock); 2996 if (unlikely(d_ancestor(new, dentry))) { 2997 write_sequnlock(&rename_lock); 2998 dput(new); 2999 new = ERR_PTR(-ELOOP); 3000 pr_warn_ratelimited( 3001 "VFS: Lookup of '%s' in %s %s" 3002 " would have caused loop\n", 3003 dentry->d_name.name, 3004 inode->i_sb->s_type->name, 3005 inode->i_sb->s_id); 3006 } else if (!IS_ROOT(new)) { 3007 int err = __d_unalias(inode, dentry, new); 3008 write_sequnlock(&rename_lock); 3009 if (err) { 3010 dput(new); 3011 new = ERR_PTR(err); 3012 } 3013 } else { 3014 __d_move(new, dentry, false); 3015 write_sequnlock(&rename_lock); 3016 } 3017 iput(inode); 3018 return new; 3019 } 3020 } 3021 out: 3022 __d_add(dentry, inode); 3023 return NULL; 3024 } 3025 EXPORT_SYMBOL(d_splice_alias); 3026 3027 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 3028 { 3029 *buflen -= namelen; 3030 if (*buflen < 0) 3031 return -ENAMETOOLONG; 3032 *buffer -= namelen; 3033 memcpy(*buffer, str, namelen); 3034 return 0; 3035 } 3036 3037 /** 3038 * prepend_name - prepend a pathname in front of current buffer pointer 3039 * @buffer: buffer pointer 3040 * @buflen: allocated length of the buffer 3041 * @name: name string and length qstr structure 3042 * 3043 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 3044 * make sure that either the old or the new name pointer and length are 3045 * fetched. However, there may be mismatch between length and pointer. 3046 * The length cannot be trusted, we need to copy it byte-by-byte until 3047 * the length is reached or a null byte is found. It also prepends "/" at 3048 * the beginning of the name. The sequence number check at the caller will 3049 * retry it again when a d_move() does happen. So any garbage in the buffer 3050 * due to mismatched pointer and length will be discarded. 3051 * 3052 * Data dependency barrier is needed to make sure that we see that terminating 3053 * NUL. Alpha strikes again, film at 11... 3054 */ 3055 static int prepend_name(char **buffer, int *buflen, const struct qstr *name) 3056 { 3057 const char *dname = ACCESS_ONCE(name->name); 3058 u32 dlen = ACCESS_ONCE(name->len); 3059 char *p; 3060 3061 smp_read_barrier_depends(); 3062 3063 *buflen -= dlen + 1; 3064 if (*buflen < 0) 3065 return -ENAMETOOLONG; 3066 p = *buffer -= dlen + 1; 3067 *p++ = '/'; 3068 while (dlen--) { 3069 char c = *dname++; 3070 if (!c) 3071 break; 3072 *p++ = c; 3073 } 3074 return 0; 3075 } 3076 3077 /** 3078 * prepend_path - Prepend path string to a buffer 3079 * @path: the dentry/vfsmount to report 3080 * @root: root vfsmnt/dentry 3081 * @buffer: pointer to the end of the buffer 3082 * @buflen: pointer to buffer length 3083 * 3084 * The function will first try to write out the pathname without taking any 3085 * lock other than the RCU read lock to make sure that dentries won't go away. 3086 * It only checks the sequence number of the global rename_lock as any change 3087 * in the dentry's d_seq will be preceded by changes in the rename_lock 3088 * sequence number. If the sequence number had been changed, it will restart 3089 * the whole pathname back-tracing sequence again by taking the rename_lock. 3090 * In this case, there is no need to take the RCU read lock as the recursive 3091 * parent pointer references will keep the dentry chain alive as long as no 3092 * rename operation is performed. 3093 */ 3094 static int prepend_path(const struct path *path, 3095 const struct path *root, 3096 char **buffer, int *buflen) 3097 { 3098 struct dentry *dentry; 3099 struct vfsmount *vfsmnt; 3100 struct mount *mnt; 3101 int error = 0; 3102 unsigned seq, m_seq = 0; 3103 char *bptr; 3104 int blen; 3105 3106 rcu_read_lock(); 3107 restart_mnt: 3108 read_seqbegin_or_lock(&mount_lock, &m_seq); 3109 seq = 0; 3110 rcu_read_lock(); 3111 restart: 3112 bptr = *buffer; 3113 blen = *buflen; 3114 error = 0; 3115 dentry = path->dentry; 3116 vfsmnt = path->mnt; 3117 mnt = real_mount(vfsmnt); 3118 read_seqbegin_or_lock(&rename_lock, &seq); 3119 while (dentry != root->dentry || vfsmnt != root->mnt) { 3120 struct dentry * parent; 3121 3122 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3123 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 3124 /* Escaped? */ 3125 if (dentry != vfsmnt->mnt_root) { 3126 bptr = *buffer; 3127 blen = *buflen; 3128 error = 3; 3129 break; 3130 } 3131 /* Global root? */ 3132 if (mnt != parent) { 3133 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 3134 mnt = parent; 3135 vfsmnt = &mnt->mnt; 3136 continue; 3137 } 3138 if (!error) 3139 error = is_mounted(vfsmnt) ? 1 : 2; 3140 break; 3141 } 3142 parent = dentry->d_parent; 3143 prefetch(parent); 3144 error = prepend_name(&bptr, &blen, &dentry->d_name); 3145 if (error) 3146 break; 3147 3148 dentry = parent; 3149 } 3150 if (!(seq & 1)) 3151 rcu_read_unlock(); 3152 if (need_seqretry(&rename_lock, seq)) { 3153 seq = 1; 3154 goto restart; 3155 } 3156 done_seqretry(&rename_lock, seq); 3157 3158 if (!(m_seq & 1)) 3159 rcu_read_unlock(); 3160 if (need_seqretry(&mount_lock, m_seq)) { 3161 m_seq = 1; 3162 goto restart_mnt; 3163 } 3164 done_seqretry(&mount_lock, m_seq); 3165 3166 if (error >= 0 && bptr == *buffer) { 3167 if (--blen < 0) 3168 error = -ENAMETOOLONG; 3169 else 3170 *--bptr = '/'; 3171 } 3172 *buffer = bptr; 3173 *buflen = blen; 3174 return error; 3175 } 3176 3177 /** 3178 * __d_path - return the path of a dentry 3179 * @path: the dentry/vfsmount to report 3180 * @root: root vfsmnt/dentry 3181 * @buf: buffer to return value in 3182 * @buflen: buffer length 3183 * 3184 * Convert a dentry into an ASCII path name. 3185 * 3186 * Returns a pointer into the buffer or an error code if the 3187 * path was too long. 3188 * 3189 * "buflen" should be positive. 3190 * 3191 * If the path is not reachable from the supplied root, return %NULL. 3192 */ 3193 char *__d_path(const struct path *path, 3194 const struct path *root, 3195 char *buf, int buflen) 3196 { 3197 char *res = buf + buflen; 3198 int error; 3199 3200 prepend(&res, &buflen, "\0", 1); 3201 error = prepend_path(path, root, &res, &buflen); 3202 3203 if (error < 0) 3204 return ERR_PTR(error); 3205 if (error > 0) 3206 return NULL; 3207 return res; 3208 } 3209 3210 char *d_absolute_path(const struct path *path, 3211 char *buf, int buflen) 3212 { 3213 struct path root = {}; 3214 char *res = buf + buflen; 3215 int error; 3216 3217 prepend(&res, &buflen, "\0", 1); 3218 error = prepend_path(path, &root, &res, &buflen); 3219 3220 if (error > 1) 3221 error = -EINVAL; 3222 if (error < 0) 3223 return ERR_PTR(error); 3224 return res; 3225 } 3226 3227 /* 3228 * same as __d_path but appends "(deleted)" for unlinked files. 3229 */ 3230 static int path_with_deleted(const struct path *path, 3231 const struct path *root, 3232 char **buf, int *buflen) 3233 { 3234 prepend(buf, buflen, "\0", 1); 3235 if (d_unlinked(path->dentry)) { 3236 int error = prepend(buf, buflen, " (deleted)", 10); 3237 if (error) 3238 return error; 3239 } 3240 3241 return prepend_path(path, root, buf, buflen); 3242 } 3243 3244 static int prepend_unreachable(char **buffer, int *buflen) 3245 { 3246 return prepend(buffer, buflen, "(unreachable)", 13); 3247 } 3248 3249 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3250 { 3251 unsigned seq; 3252 3253 do { 3254 seq = read_seqcount_begin(&fs->seq); 3255 *root = fs->root; 3256 } while (read_seqcount_retry(&fs->seq, seq)); 3257 } 3258 3259 /** 3260 * d_path - return the path of a dentry 3261 * @path: path to report 3262 * @buf: buffer to return value in 3263 * @buflen: buffer length 3264 * 3265 * Convert a dentry into an ASCII path name. If the entry has been deleted 3266 * the string " (deleted)" is appended. Note that this is ambiguous. 3267 * 3268 * Returns a pointer into the buffer or an error code if the path was 3269 * too long. Note: Callers should use the returned pointer, not the passed 3270 * in buffer, to use the name! The implementation often starts at an offset 3271 * into the buffer, and may leave 0 bytes at the start. 3272 * 3273 * "buflen" should be positive. 3274 */ 3275 char *d_path(const struct path *path, char *buf, int buflen) 3276 { 3277 char *res = buf + buflen; 3278 struct path root; 3279 int error; 3280 3281 /* 3282 * We have various synthetic filesystems that never get mounted. On 3283 * these filesystems dentries are never used for lookup purposes, and 3284 * thus don't need to be hashed. They also don't need a name until a 3285 * user wants to identify the object in /proc/pid/fd/. The little hack 3286 * below allows us to generate a name for these objects on demand: 3287 * 3288 * Some pseudo inodes are mountable. When they are mounted 3289 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3290 * and instead have d_path return the mounted path. 3291 */ 3292 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3293 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3294 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3295 3296 rcu_read_lock(); 3297 get_fs_root_rcu(current->fs, &root); 3298 error = path_with_deleted(path, &root, &res, &buflen); 3299 rcu_read_unlock(); 3300 3301 if (error < 0) 3302 res = ERR_PTR(error); 3303 return res; 3304 } 3305 EXPORT_SYMBOL(d_path); 3306 3307 /* 3308 * Helper function for dentry_operations.d_dname() members 3309 */ 3310 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3311 const char *fmt, ...) 3312 { 3313 va_list args; 3314 char temp[64]; 3315 int sz; 3316 3317 va_start(args, fmt); 3318 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3319 va_end(args); 3320 3321 if (sz > sizeof(temp) || sz > buflen) 3322 return ERR_PTR(-ENAMETOOLONG); 3323 3324 buffer += buflen - sz; 3325 return memcpy(buffer, temp, sz); 3326 } 3327 3328 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3329 { 3330 char *end = buffer + buflen; 3331 /* these dentries are never renamed, so d_lock is not needed */ 3332 if (prepend(&end, &buflen, " (deleted)", 11) || 3333 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3334 prepend(&end, &buflen, "/", 1)) 3335 end = ERR_PTR(-ENAMETOOLONG); 3336 return end; 3337 } 3338 EXPORT_SYMBOL(simple_dname); 3339 3340 /* 3341 * Write full pathname from the root of the filesystem into the buffer. 3342 */ 3343 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3344 { 3345 struct dentry *dentry; 3346 char *end, *retval; 3347 int len, seq = 0; 3348 int error = 0; 3349 3350 if (buflen < 2) 3351 goto Elong; 3352 3353 rcu_read_lock(); 3354 restart: 3355 dentry = d; 3356 end = buf + buflen; 3357 len = buflen; 3358 prepend(&end, &len, "\0", 1); 3359 /* Get '/' right */ 3360 retval = end-1; 3361 *retval = '/'; 3362 read_seqbegin_or_lock(&rename_lock, &seq); 3363 while (!IS_ROOT(dentry)) { 3364 struct dentry *parent = dentry->d_parent; 3365 3366 prefetch(parent); 3367 error = prepend_name(&end, &len, &dentry->d_name); 3368 if (error) 3369 break; 3370 3371 retval = end; 3372 dentry = parent; 3373 } 3374 if (!(seq & 1)) 3375 rcu_read_unlock(); 3376 if (need_seqretry(&rename_lock, seq)) { 3377 seq = 1; 3378 goto restart; 3379 } 3380 done_seqretry(&rename_lock, seq); 3381 if (error) 3382 goto Elong; 3383 return retval; 3384 Elong: 3385 return ERR_PTR(-ENAMETOOLONG); 3386 } 3387 3388 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3389 { 3390 return __dentry_path(dentry, buf, buflen); 3391 } 3392 EXPORT_SYMBOL(dentry_path_raw); 3393 3394 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3395 { 3396 char *p = NULL; 3397 char *retval; 3398 3399 if (d_unlinked(dentry)) { 3400 p = buf + buflen; 3401 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3402 goto Elong; 3403 buflen++; 3404 } 3405 retval = __dentry_path(dentry, buf, buflen); 3406 if (!IS_ERR(retval) && p) 3407 *p = '/'; /* restore '/' overriden with '\0' */ 3408 return retval; 3409 Elong: 3410 return ERR_PTR(-ENAMETOOLONG); 3411 } 3412 3413 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3414 struct path *pwd) 3415 { 3416 unsigned seq; 3417 3418 do { 3419 seq = read_seqcount_begin(&fs->seq); 3420 *root = fs->root; 3421 *pwd = fs->pwd; 3422 } while (read_seqcount_retry(&fs->seq, seq)); 3423 } 3424 3425 /* 3426 * NOTE! The user-level library version returns a 3427 * character pointer. The kernel system call just 3428 * returns the length of the buffer filled (which 3429 * includes the ending '\0' character), or a negative 3430 * error value. So libc would do something like 3431 * 3432 * char *getcwd(char * buf, size_t size) 3433 * { 3434 * int retval; 3435 * 3436 * retval = sys_getcwd(buf, size); 3437 * if (retval >= 0) 3438 * return buf; 3439 * errno = -retval; 3440 * return NULL; 3441 * } 3442 */ 3443 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3444 { 3445 int error; 3446 struct path pwd, root; 3447 char *page = __getname(); 3448 3449 if (!page) 3450 return -ENOMEM; 3451 3452 rcu_read_lock(); 3453 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3454 3455 error = -ENOENT; 3456 if (!d_unlinked(pwd.dentry)) { 3457 unsigned long len; 3458 char *cwd = page + PATH_MAX; 3459 int buflen = PATH_MAX; 3460 3461 prepend(&cwd, &buflen, "\0", 1); 3462 error = prepend_path(&pwd, &root, &cwd, &buflen); 3463 rcu_read_unlock(); 3464 3465 if (error < 0) 3466 goto out; 3467 3468 /* Unreachable from current root */ 3469 if (error > 0) { 3470 error = prepend_unreachable(&cwd, &buflen); 3471 if (error) 3472 goto out; 3473 } 3474 3475 error = -ERANGE; 3476 len = PATH_MAX + page - cwd; 3477 if (len <= size) { 3478 error = len; 3479 if (copy_to_user(buf, cwd, len)) 3480 error = -EFAULT; 3481 } 3482 } else { 3483 rcu_read_unlock(); 3484 } 3485 3486 out: 3487 __putname(page); 3488 return error; 3489 } 3490 3491 /* 3492 * Test whether new_dentry is a subdirectory of old_dentry. 3493 * 3494 * Trivially implemented using the dcache structure 3495 */ 3496 3497 /** 3498 * is_subdir - is new dentry a subdirectory of old_dentry 3499 * @new_dentry: new dentry 3500 * @old_dentry: old dentry 3501 * 3502 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3503 * Returns false otherwise. 3504 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3505 */ 3506 3507 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3508 { 3509 bool result; 3510 unsigned seq; 3511 3512 if (new_dentry == old_dentry) 3513 return true; 3514 3515 do { 3516 /* for restarting inner loop in case of seq retry */ 3517 seq = read_seqbegin(&rename_lock); 3518 /* 3519 * Need rcu_readlock to protect against the d_parent trashing 3520 * due to d_move 3521 */ 3522 rcu_read_lock(); 3523 if (d_ancestor(old_dentry, new_dentry)) 3524 result = true; 3525 else 3526 result = false; 3527 rcu_read_unlock(); 3528 } while (read_seqretry(&rename_lock, seq)); 3529 3530 return result; 3531 } 3532 3533 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3534 { 3535 struct dentry *root = data; 3536 if (dentry != root) { 3537 if (d_unhashed(dentry) || !dentry->d_inode) 3538 return D_WALK_SKIP; 3539 3540 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3541 dentry->d_flags |= DCACHE_GENOCIDE; 3542 dentry->d_lockref.count--; 3543 } 3544 } 3545 return D_WALK_CONTINUE; 3546 } 3547 3548 void d_genocide(struct dentry *parent) 3549 { 3550 d_walk(parent, parent, d_genocide_kill, NULL); 3551 } 3552 3553 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3554 { 3555 inode_dec_link_count(inode); 3556 BUG_ON(dentry->d_name.name != dentry->d_iname || 3557 !hlist_unhashed(&dentry->d_u.d_alias) || 3558 !d_unlinked(dentry)); 3559 spin_lock(&dentry->d_parent->d_lock); 3560 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3561 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3562 (unsigned long long)inode->i_ino); 3563 spin_unlock(&dentry->d_lock); 3564 spin_unlock(&dentry->d_parent->d_lock); 3565 d_instantiate(dentry, inode); 3566 } 3567 EXPORT_SYMBOL(d_tmpfile); 3568 3569 static __initdata unsigned long dhash_entries; 3570 static int __init set_dhash_entries(char *str) 3571 { 3572 if (!str) 3573 return 0; 3574 dhash_entries = simple_strtoul(str, &str, 0); 3575 return 1; 3576 } 3577 __setup("dhash_entries=", set_dhash_entries); 3578 3579 static void __init dcache_init_early(void) 3580 { 3581 /* If hashes are distributed across NUMA nodes, defer 3582 * hash allocation until vmalloc space is available. 3583 */ 3584 if (hashdist) 3585 return; 3586 3587 dentry_hashtable = 3588 alloc_large_system_hash("Dentry cache", 3589 sizeof(struct hlist_bl_head), 3590 dhash_entries, 3591 13, 3592 HASH_EARLY | HASH_ZERO, 3593 &d_hash_shift, 3594 &d_hash_mask, 3595 0, 3596 0); 3597 } 3598 3599 static void __init dcache_init(void) 3600 { 3601 /* 3602 * A constructor could be added for stable state like the lists, 3603 * but it is probably not worth it because of the cache nature 3604 * of the dcache. 3605 */ 3606 dentry_cache = KMEM_CACHE(dentry, 3607 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3608 3609 /* Hash may have been set up in dcache_init_early */ 3610 if (!hashdist) 3611 return; 3612 3613 dentry_hashtable = 3614 alloc_large_system_hash("Dentry cache", 3615 sizeof(struct hlist_bl_head), 3616 dhash_entries, 3617 13, 3618 HASH_ZERO, 3619 &d_hash_shift, 3620 &d_hash_mask, 3621 0, 3622 0); 3623 } 3624 3625 /* SLAB cache for __getname() consumers */ 3626 struct kmem_cache *names_cachep __read_mostly; 3627 EXPORT_SYMBOL(names_cachep); 3628 3629 EXPORT_SYMBOL(d_genocide); 3630 3631 void __init vfs_caches_init_early(void) 3632 { 3633 int i; 3634 3635 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3636 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3637 3638 dcache_init_early(); 3639 inode_init_early(); 3640 } 3641 3642 void __init vfs_caches_init(void) 3643 { 3644 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3645 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3646 3647 dcache_init(); 3648 inode_init(); 3649 files_init(); 3650 files_maxfiles_init(); 3651 mnt_init(); 3652 bdev_cache_init(); 3653 chrdev_init(); 3654 } 3655