xref: /linux/fs/dcache.c (revision af873fcecef567abf8a3468b06dd4e4aab46da6d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	WRITE_ONCE(dentry->d_flags, flags);
323 }
324 
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 /**
460  * d_drop - drop a dentry
461  * @dentry: dentry to drop
462  *
463  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
464  * be found through a VFS lookup any more. Note that this is different from
465  * deleting the dentry - d_delete will try to mark the dentry negative if
466  * possible, giving a successful _negative_ lookup, while d_drop will
467  * just make the cache lookup fail.
468  *
469  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
470  * reason (NFS timeouts or autofs deletes).
471  *
472  * __d_drop requires dentry->d_lock
473  * ___d_drop doesn't mark dentry as "unhashed"
474  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
475  */
476 static void ___d_drop(struct dentry *dentry)
477 {
478 	struct hlist_bl_head *b;
479 	/*
480 	 * Hashed dentries are normally on the dentry hashtable,
481 	 * with the exception of those newly allocated by
482 	 * d_obtain_root, which are always IS_ROOT:
483 	 */
484 	if (unlikely(IS_ROOT(dentry)))
485 		b = &dentry->d_sb->s_roots;
486 	else
487 		b = d_hash(dentry->d_name.hash);
488 
489 	hlist_bl_lock(b);
490 	__hlist_bl_del(&dentry->d_hash);
491 	hlist_bl_unlock(b);
492 }
493 
494 void __d_drop(struct dentry *dentry)
495 {
496 	if (!d_unhashed(dentry)) {
497 		___d_drop(dentry);
498 		dentry->d_hash.pprev = NULL;
499 		write_seqcount_invalidate(&dentry->d_seq);
500 	}
501 }
502 EXPORT_SYMBOL(__d_drop);
503 
504 void d_drop(struct dentry *dentry)
505 {
506 	spin_lock(&dentry->d_lock);
507 	__d_drop(dentry);
508 	spin_unlock(&dentry->d_lock);
509 }
510 EXPORT_SYMBOL(d_drop);
511 
512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
513 {
514 	struct dentry *next;
515 	/*
516 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
517 	 * attached to the dentry tree
518 	 */
519 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
520 	if (unlikely(list_empty(&dentry->d_child)))
521 		return;
522 	__list_del_entry(&dentry->d_child);
523 	/*
524 	 * Cursors can move around the list of children.  While we'd been
525 	 * a normal list member, it didn't matter - ->d_child.next would've
526 	 * been updated.  However, from now on it won't be and for the
527 	 * things like d_walk() it might end up with a nasty surprise.
528 	 * Normally d_walk() doesn't care about cursors moving around -
529 	 * ->d_lock on parent prevents that and since a cursor has no children
530 	 * of its own, we get through it without ever unlocking the parent.
531 	 * There is one exception, though - if we ascend from a child that
532 	 * gets killed as soon as we unlock it, the next sibling is found
533 	 * using the value left in its ->d_child.next.  And if _that_
534 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
535 	 * before d_walk() regains parent->d_lock, we'll end up skipping
536 	 * everything the cursor had been moved past.
537 	 *
538 	 * Solution: make sure that the pointer left behind in ->d_child.next
539 	 * points to something that won't be moving around.  I.e. skip the
540 	 * cursors.
541 	 */
542 	while (dentry->d_child.next != &parent->d_subdirs) {
543 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
544 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
545 			break;
546 		dentry->d_child.next = next->d_child.next;
547 	}
548 }
549 
550 static void __dentry_kill(struct dentry *dentry)
551 {
552 	struct dentry *parent = NULL;
553 	bool can_free = true;
554 	if (!IS_ROOT(dentry))
555 		parent = dentry->d_parent;
556 
557 	/*
558 	 * The dentry is now unrecoverably dead to the world.
559 	 */
560 	lockref_mark_dead(&dentry->d_lockref);
561 
562 	/*
563 	 * inform the fs via d_prune that this dentry is about to be
564 	 * unhashed and destroyed.
565 	 */
566 	if (dentry->d_flags & DCACHE_OP_PRUNE)
567 		dentry->d_op->d_prune(dentry);
568 
569 	if (dentry->d_flags & DCACHE_LRU_LIST) {
570 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
571 			d_lru_del(dentry);
572 	}
573 	/* if it was on the hash then remove it */
574 	__d_drop(dentry);
575 	dentry_unlist(dentry, parent);
576 	if (parent)
577 		spin_unlock(&parent->d_lock);
578 	if (dentry->d_inode)
579 		dentry_unlink_inode(dentry);
580 	else
581 		spin_unlock(&dentry->d_lock);
582 	this_cpu_dec(nr_dentry);
583 	if (dentry->d_op && dentry->d_op->d_release)
584 		dentry->d_op->d_release(dentry);
585 
586 	spin_lock(&dentry->d_lock);
587 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
588 		dentry->d_flags |= DCACHE_MAY_FREE;
589 		can_free = false;
590 	}
591 	spin_unlock(&dentry->d_lock);
592 	if (likely(can_free))
593 		dentry_free(dentry);
594 	cond_resched();
595 }
596 
597 static struct dentry *__lock_parent(struct dentry *dentry)
598 {
599 	struct dentry *parent;
600 	rcu_read_lock();
601 	spin_unlock(&dentry->d_lock);
602 again:
603 	parent = READ_ONCE(dentry->d_parent);
604 	spin_lock(&parent->d_lock);
605 	/*
606 	 * We can't blindly lock dentry until we are sure
607 	 * that we won't violate the locking order.
608 	 * Any changes of dentry->d_parent must have
609 	 * been done with parent->d_lock held, so
610 	 * spin_lock() above is enough of a barrier
611 	 * for checking if it's still our child.
612 	 */
613 	if (unlikely(parent != dentry->d_parent)) {
614 		spin_unlock(&parent->d_lock);
615 		goto again;
616 	}
617 	rcu_read_unlock();
618 	if (parent != dentry)
619 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
620 	else
621 		parent = NULL;
622 	return parent;
623 }
624 
625 static inline struct dentry *lock_parent(struct dentry *dentry)
626 {
627 	struct dentry *parent = dentry->d_parent;
628 	if (IS_ROOT(dentry))
629 		return NULL;
630 	if (likely(spin_trylock(&parent->d_lock)))
631 		return parent;
632 	return __lock_parent(dentry);
633 }
634 
635 static inline bool retain_dentry(struct dentry *dentry)
636 {
637 	WARN_ON(d_in_lookup(dentry));
638 
639 	/* Unreachable? Get rid of it */
640 	if (unlikely(d_unhashed(dentry)))
641 		return false;
642 
643 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
644 		return false;
645 
646 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
647 		if (dentry->d_op->d_delete(dentry))
648 			return false;
649 	}
650 	/* retain; LRU fodder */
651 	dentry->d_lockref.count--;
652 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
653 		d_lru_add(dentry);
654 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
655 		dentry->d_flags |= DCACHE_REFERENCED;
656 	return true;
657 }
658 
659 /*
660  * Finish off a dentry we've decided to kill.
661  * dentry->d_lock must be held, returns with it unlocked.
662  * Returns dentry requiring refcount drop, or NULL if we're done.
663  */
664 static struct dentry *dentry_kill(struct dentry *dentry)
665 	__releases(dentry->d_lock)
666 {
667 	struct inode *inode = dentry->d_inode;
668 	struct dentry *parent = NULL;
669 
670 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
671 		goto slow_positive;
672 
673 	if (!IS_ROOT(dentry)) {
674 		parent = dentry->d_parent;
675 		if (unlikely(!spin_trylock(&parent->d_lock))) {
676 			parent = __lock_parent(dentry);
677 			if (likely(inode || !dentry->d_inode))
678 				goto got_locks;
679 			/* negative that became positive */
680 			if (parent)
681 				spin_unlock(&parent->d_lock);
682 			inode = dentry->d_inode;
683 			goto slow_positive;
684 		}
685 	}
686 	__dentry_kill(dentry);
687 	return parent;
688 
689 slow_positive:
690 	spin_unlock(&dentry->d_lock);
691 	spin_lock(&inode->i_lock);
692 	spin_lock(&dentry->d_lock);
693 	parent = lock_parent(dentry);
694 got_locks:
695 	if (unlikely(dentry->d_lockref.count != 1)) {
696 		dentry->d_lockref.count--;
697 	} else if (likely(!retain_dentry(dentry))) {
698 		__dentry_kill(dentry);
699 		return parent;
700 	}
701 	/* we are keeping it, after all */
702 	if (inode)
703 		spin_unlock(&inode->i_lock);
704 	if (parent)
705 		spin_unlock(&parent->d_lock);
706 	spin_unlock(&dentry->d_lock);
707 	return NULL;
708 }
709 
710 /*
711  * Try to do a lockless dput(), and return whether that was successful.
712  *
713  * If unsuccessful, we return false, having already taken the dentry lock.
714  *
715  * The caller needs to hold the RCU read lock, so that the dentry is
716  * guaranteed to stay around even if the refcount goes down to zero!
717  */
718 static inline bool fast_dput(struct dentry *dentry)
719 {
720 	int ret;
721 	unsigned int d_flags;
722 
723 	/*
724 	 * If we have a d_op->d_delete() operation, we sould not
725 	 * let the dentry count go to zero, so use "put_or_lock".
726 	 */
727 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
728 		return lockref_put_or_lock(&dentry->d_lockref);
729 
730 	/*
731 	 * .. otherwise, we can try to just decrement the
732 	 * lockref optimistically.
733 	 */
734 	ret = lockref_put_return(&dentry->d_lockref);
735 
736 	/*
737 	 * If the lockref_put_return() failed due to the lock being held
738 	 * by somebody else, the fast path has failed. We will need to
739 	 * get the lock, and then check the count again.
740 	 */
741 	if (unlikely(ret < 0)) {
742 		spin_lock(&dentry->d_lock);
743 		if (dentry->d_lockref.count > 1) {
744 			dentry->d_lockref.count--;
745 			spin_unlock(&dentry->d_lock);
746 			return true;
747 		}
748 		return false;
749 	}
750 
751 	/*
752 	 * If we weren't the last ref, we're done.
753 	 */
754 	if (ret)
755 		return true;
756 
757 	/*
758 	 * Careful, careful. The reference count went down
759 	 * to zero, but we don't hold the dentry lock, so
760 	 * somebody else could get it again, and do another
761 	 * dput(), and we need to not race with that.
762 	 *
763 	 * However, there is a very special and common case
764 	 * where we don't care, because there is nothing to
765 	 * do: the dentry is still hashed, it does not have
766 	 * a 'delete' op, and it's referenced and already on
767 	 * the LRU list.
768 	 *
769 	 * NOTE! Since we aren't locked, these values are
770 	 * not "stable". However, it is sufficient that at
771 	 * some point after we dropped the reference the
772 	 * dentry was hashed and the flags had the proper
773 	 * value. Other dentry users may have re-gotten
774 	 * a reference to the dentry and change that, but
775 	 * our work is done - we can leave the dentry
776 	 * around with a zero refcount.
777 	 */
778 	smp_rmb();
779 	d_flags = READ_ONCE(dentry->d_flags);
780 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
781 
782 	/* Nothing to do? Dropping the reference was all we needed? */
783 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
784 		return true;
785 
786 	/*
787 	 * Not the fast normal case? Get the lock. We've already decremented
788 	 * the refcount, but we'll need to re-check the situation after
789 	 * getting the lock.
790 	 */
791 	spin_lock(&dentry->d_lock);
792 
793 	/*
794 	 * Did somebody else grab a reference to it in the meantime, and
795 	 * we're no longer the last user after all? Alternatively, somebody
796 	 * else could have killed it and marked it dead. Either way, we
797 	 * don't need to do anything else.
798 	 */
799 	if (dentry->d_lockref.count) {
800 		spin_unlock(&dentry->d_lock);
801 		return true;
802 	}
803 
804 	/*
805 	 * Re-get the reference we optimistically dropped. We hold the
806 	 * lock, and we just tested that it was zero, so we can just
807 	 * set it to 1.
808 	 */
809 	dentry->d_lockref.count = 1;
810 	return false;
811 }
812 
813 
814 /*
815  * This is dput
816  *
817  * This is complicated by the fact that we do not want to put
818  * dentries that are no longer on any hash chain on the unused
819  * list: we'd much rather just get rid of them immediately.
820  *
821  * However, that implies that we have to traverse the dentry
822  * tree upwards to the parents which might _also_ now be
823  * scheduled for deletion (it may have been only waiting for
824  * its last child to go away).
825  *
826  * This tail recursion is done by hand as we don't want to depend
827  * on the compiler to always get this right (gcc generally doesn't).
828  * Real recursion would eat up our stack space.
829  */
830 
831 /*
832  * dput - release a dentry
833  * @dentry: dentry to release
834  *
835  * Release a dentry. This will drop the usage count and if appropriate
836  * call the dentry unlink method as well as removing it from the queues and
837  * releasing its resources. If the parent dentries were scheduled for release
838  * they too may now get deleted.
839  */
840 void dput(struct dentry *dentry)
841 {
842 	while (dentry) {
843 		might_sleep();
844 
845 		rcu_read_lock();
846 		if (likely(fast_dput(dentry))) {
847 			rcu_read_unlock();
848 			return;
849 		}
850 
851 		/* Slow case: now with the dentry lock held */
852 		rcu_read_unlock();
853 
854 		if (likely(retain_dentry(dentry))) {
855 			spin_unlock(&dentry->d_lock);
856 			return;
857 		}
858 
859 		dentry = dentry_kill(dentry);
860 	}
861 }
862 EXPORT_SYMBOL(dput);
863 
864 
865 /* This must be called with d_lock held */
866 static inline void __dget_dlock(struct dentry *dentry)
867 {
868 	dentry->d_lockref.count++;
869 }
870 
871 static inline void __dget(struct dentry *dentry)
872 {
873 	lockref_get(&dentry->d_lockref);
874 }
875 
876 struct dentry *dget_parent(struct dentry *dentry)
877 {
878 	int gotref;
879 	struct dentry *ret;
880 
881 	/*
882 	 * Do optimistic parent lookup without any
883 	 * locking.
884 	 */
885 	rcu_read_lock();
886 	ret = READ_ONCE(dentry->d_parent);
887 	gotref = lockref_get_not_zero(&ret->d_lockref);
888 	rcu_read_unlock();
889 	if (likely(gotref)) {
890 		if (likely(ret == READ_ONCE(dentry->d_parent)))
891 			return ret;
892 		dput(ret);
893 	}
894 
895 repeat:
896 	/*
897 	 * Don't need rcu_dereference because we re-check it was correct under
898 	 * the lock.
899 	 */
900 	rcu_read_lock();
901 	ret = dentry->d_parent;
902 	spin_lock(&ret->d_lock);
903 	if (unlikely(ret != dentry->d_parent)) {
904 		spin_unlock(&ret->d_lock);
905 		rcu_read_unlock();
906 		goto repeat;
907 	}
908 	rcu_read_unlock();
909 	BUG_ON(!ret->d_lockref.count);
910 	ret->d_lockref.count++;
911 	spin_unlock(&ret->d_lock);
912 	return ret;
913 }
914 EXPORT_SYMBOL(dget_parent);
915 
916 static struct dentry * __d_find_any_alias(struct inode *inode)
917 {
918 	struct dentry *alias;
919 
920 	if (hlist_empty(&inode->i_dentry))
921 		return NULL;
922 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
923 	__dget(alias);
924 	return alias;
925 }
926 
927 /**
928  * d_find_any_alias - find any alias for a given inode
929  * @inode: inode to find an alias for
930  *
931  * If any aliases exist for the given inode, take and return a
932  * reference for one of them.  If no aliases exist, return %NULL.
933  */
934 struct dentry *d_find_any_alias(struct inode *inode)
935 {
936 	struct dentry *de;
937 
938 	spin_lock(&inode->i_lock);
939 	de = __d_find_any_alias(inode);
940 	spin_unlock(&inode->i_lock);
941 	return de;
942 }
943 EXPORT_SYMBOL(d_find_any_alias);
944 
945 /**
946  * d_find_alias - grab a hashed alias of inode
947  * @inode: inode in question
948  *
949  * If inode has a hashed alias, or is a directory and has any alias,
950  * acquire the reference to alias and return it. Otherwise return NULL.
951  * Notice that if inode is a directory there can be only one alias and
952  * it can be unhashed only if it has no children, or if it is the root
953  * of a filesystem, or if the directory was renamed and d_revalidate
954  * was the first vfs operation to notice.
955  *
956  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
957  * any other hashed alias over that one.
958  */
959 static struct dentry *__d_find_alias(struct inode *inode)
960 {
961 	struct dentry *alias;
962 
963 	if (S_ISDIR(inode->i_mode))
964 		return __d_find_any_alias(inode);
965 
966 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
967 		spin_lock(&alias->d_lock);
968  		if (!d_unhashed(alias)) {
969 			__dget_dlock(alias);
970 			spin_unlock(&alias->d_lock);
971 			return alias;
972 		}
973 		spin_unlock(&alias->d_lock);
974 	}
975 	return NULL;
976 }
977 
978 struct dentry *d_find_alias(struct inode *inode)
979 {
980 	struct dentry *de = NULL;
981 
982 	if (!hlist_empty(&inode->i_dentry)) {
983 		spin_lock(&inode->i_lock);
984 		de = __d_find_alias(inode);
985 		spin_unlock(&inode->i_lock);
986 	}
987 	return de;
988 }
989 EXPORT_SYMBOL(d_find_alias);
990 
991 /*
992  *	Try to kill dentries associated with this inode.
993  * WARNING: you must own a reference to inode.
994  */
995 void d_prune_aliases(struct inode *inode)
996 {
997 	struct dentry *dentry;
998 restart:
999 	spin_lock(&inode->i_lock);
1000 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1001 		spin_lock(&dentry->d_lock);
1002 		if (!dentry->d_lockref.count) {
1003 			struct dentry *parent = lock_parent(dentry);
1004 			if (likely(!dentry->d_lockref.count)) {
1005 				__dentry_kill(dentry);
1006 				dput(parent);
1007 				goto restart;
1008 			}
1009 			if (parent)
1010 				spin_unlock(&parent->d_lock);
1011 		}
1012 		spin_unlock(&dentry->d_lock);
1013 	}
1014 	spin_unlock(&inode->i_lock);
1015 }
1016 EXPORT_SYMBOL(d_prune_aliases);
1017 
1018 /*
1019  * Lock a dentry from shrink list.
1020  * Called under rcu_read_lock() and dentry->d_lock; the former
1021  * guarantees that nothing we access will be freed under us.
1022  * Note that dentry is *not* protected from concurrent dentry_kill(),
1023  * d_delete(), etc.
1024  *
1025  * Return false if dentry has been disrupted or grabbed, leaving
1026  * the caller to kick it off-list.  Otherwise, return true and have
1027  * that dentry's inode and parent both locked.
1028  */
1029 static bool shrink_lock_dentry(struct dentry *dentry)
1030 {
1031 	struct inode *inode;
1032 	struct dentry *parent;
1033 
1034 	if (dentry->d_lockref.count)
1035 		return false;
1036 
1037 	inode = dentry->d_inode;
1038 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1039 		spin_unlock(&dentry->d_lock);
1040 		spin_lock(&inode->i_lock);
1041 		spin_lock(&dentry->d_lock);
1042 		if (unlikely(dentry->d_lockref.count))
1043 			goto out;
1044 		/* changed inode means that somebody had grabbed it */
1045 		if (unlikely(inode != dentry->d_inode))
1046 			goto out;
1047 	}
1048 
1049 	parent = dentry->d_parent;
1050 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1051 		return true;
1052 
1053 	spin_unlock(&dentry->d_lock);
1054 	spin_lock(&parent->d_lock);
1055 	if (unlikely(parent != dentry->d_parent)) {
1056 		spin_unlock(&parent->d_lock);
1057 		spin_lock(&dentry->d_lock);
1058 		goto out;
1059 	}
1060 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1061 	if (likely(!dentry->d_lockref.count))
1062 		return true;
1063 	spin_unlock(&parent->d_lock);
1064 out:
1065 	if (inode)
1066 		spin_unlock(&inode->i_lock);
1067 	return false;
1068 }
1069 
1070 static void shrink_dentry_list(struct list_head *list)
1071 {
1072 	while (!list_empty(list)) {
1073 		struct dentry *dentry, *parent;
1074 
1075 		dentry = list_entry(list->prev, struct dentry, d_lru);
1076 		spin_lock(&dentry->d_lock);
1077 		rcu_read_lock();
1078 		if (!shrink_lock_dentry(dentry)) {
1079 			bool can_free = false;
1080 			rcu_read_unlock();
1081 			d_shrink_del(dentry);
1082 			if (dentry->d_lockref.count < 0)
1083 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1084 			spin_unlock(&dentry->d_lock);
1085 			if (can_free)
1086 				dentry_free(dentry);
1087 			continue;
1088 		}
1089 		rcu_read_unlock();
1090 		d_shrink_del(dentry);
1091 		parent = dentry->d_parent;
1092 		__dentry_kill(dentry);
1093 		if (parent == dentry)
1094 			continue;
1095 		/*
1096 		 * We need to prune ancestors too. This is necessary to prevent
1097 		 * quadratic behavior of shrink_dcache_parent(), but is also
1098 		 * expected to be beneficial in reducing dentry cache
1099 		 * fragmentation.
1100 		 */
1101 		dentry = parent;
1102 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1103 			dentry = dentry_kill(dentry);
1104 	}
1105 }
1106 
1107 static enum lru_status dentry_lru_isolate(struct list_head *item,
1108 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1109 {
1110 	struct list_head *freeable = arg;
1111 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1112 
1113 
1114 	/*
1115 	 * we are inverting the lru lock/dentry->d_lock here,
1116 	 * so use a trylock. If we fail to get the lock, just skip
1117 	 * it
1118 	 */
1119 	if (!spin_trylock(&dentry->d_lock))
1120 		return LRU_SKIP;
1121 
1122 	/*
1123 	 * Referenced dentries are still in use. If they have active
1124 	 * counts, just remove them from the LRU. Otherwise give them
1125 	 * another pass through the LRU.
1126 	 */
1127 	if (dentry->d_lockref.count) {
1128 		d_lru_isolate(lru, dentry);
1129 		spin_unlock(&dentry->d_lock);
1130 		return LRU_REMOVED;
1131 	}
1132 
1133 	if (dentry->d_flags & DCACHE_REFERENCED) {
1134 		dentry->d_flags &= ~DCACHE_REFERENCED;
1135 		spin_unlock(&dentry->d_lock);
1136 
1137 		/*
1138 		 * The list move itself will be made by the common LRU code. At
1139 		 * this point, we've dropped the dentry->d_lock but keep the
1140 		 * lru lock. This is safe to do, since every list movement is
1141 		 * protected by the lru lock even if both locks are held.
1142 		 *
1143 		 * This is guaranteed by the fact that all LRU management
1144 		 * functions are intermediated by the LRU API calls like
1145 		 * list_lru_add and list_lru_del. List movement in this file
1146 		 * only ever occur through this functions or through callbacks
1147 		 * like this one, that are called from the LRU API.
1148 		 *
1149 		 * The only exceptions to this are functions like
1150 		 * shrink_dentry_list, and code that first checks for the
1151 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1152 		 * operating only with stack provided lists after they are
1153 		 * properly isolated from the main list.  It is thus, always a
1154 		 * local access.
1155 		 */
1156 		return LRU_ROTATE;
1157 	}
1158 
1159 	d_lru_shrink_move(lru, dentry, freeable);
1160 	spin_unlock(&dentry->d_lock);
1161 
1162 	return LRU_REMOVED;
1163 }
1164 
1165 /**
1166  * prune_dcache_sb - shrink the dcache
1167  * @sb: superblock
1168  * @sc: shrink control, passed to list_lru_shrink_walk()
1169  *
1170  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1171  * is done when we need more memory and called from the superblock shrinker
1172  * function.
1173  *
1174  * This function may fail to free any resources if all the dentries are in
1175  * use.
1176  */
1177 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1178 {
1179 	LIST_HEAD(dispose);
1180 	long freed;
1181 
1182 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1183 				     dentry_lru_isolate, &dispose);
1184 	shrink_dentry_list(&dispose);
1185 	return freed;
1186 }
1187 
1188 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1189 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1190 {
1191 	struct list_head *freeable = arg;
1192 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1193 
1194 	/*
1195 	 * we are inverting the lru lock/dentry->d_lock here,
1196 	 * so use a trylock. If we fail to get the lock, just skip
1197 	 * it
1198 	 */
1199 	if (!spin_trylock(&dentry->d_lock))
1200 		return LRU_SKIP;
1201 
1202 	d_lru_shrink_move(lru, dentry, freeable);
1203 	spin_unlock(&dentry->d_lock);
1204 
1205 	return LRU_REMOVED;
1206 }
1207 
1208 
1209 /**
1210  * shrink_dcache_sb - shrink dcache for a superblock
1211  * @sb: superblock
1212  *
1213  * Shrink the dcache for the specified super block. This is used to free
1214  * the dcache before unmounting a file system.
1215  */
1216 void shrink_dcache_sb(struct super_block *sb)
1217 {
1218 	do {
1219 		LIST_HEAD(dispose);
1220 
1221 		list_lru_walk(&sb->s_dentry_lru,
1222 			dentry_lru_isolate_shrink, &dispose, 1024);
1223 		shrink_dentry_list(&dispose);
1224 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1225 }
1226 EXPORT_SYMBOL(shrink_dcache_sb);
1227 
1228 /**
1229  * enum d_walk_ret - action to talke during tree walk
1230  * @D_WALK_CONTINUE:	contrinue walk
1231  * @D_WALK_QUIT:	quit walk
1232  * @D_WALK_NORETRY:	quit when retry is needed
1233  * @D_WALK_SKIP:	skip this dentry and its children
1234  */
1235 enum d_walk_ret {
1236 	D_WALK_CONTINUE,
1237 	D_WALK_QUIT,
1238 	D_WALK_NORETRY,
1239 	D_WALK_SKIP,
1240 };
1241 
1242 /**
1243  * d_walk - walk the dentry tree
1244  * @parent:	start of walk
1245  * @data:	data passed to @enter() and @finish()
1246  * @enter:	callback when first entering the dentry
1247  *
1248  * The @enter() callbacks are called with d_lock held.
1249  */
1250 static void d_walk(struct dentry *parent, void *data,
1251 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1252 {
1253 	struct dentry *this_parent;
1254 	struct list_head *next;
1255 	unsigned seq = 0;
1256 	enum d_walk_ret ret;
1257 	bool retry = true;
1258 
1259 again:
1260 	read_seqbegin_or_lock(&rename_lock, &seq);
1261 	this_parent = parent;
1262 	spin_lock(&this_parent->d_lock);
1263 
1264 	ret = enter(data, this_parent);
1265 	switch (ret) {
1266 	case D_WALK_CONTINUE:
1267 		break;
1268 	case D_WALK_QUIT:
1269 	case D_WALK_SKIP:
1270 		goto out_unlock;
1271 	case D_WALK_NORETRY:
1272 		retry = false;
1273 		break;
1274 	}
1275 repeat:
1276 	next = this_parent->d_subdirs.next;
1277 resume:
1278 	while (next != &this_parent->d_subdirs) {
1279 		struct list_head *tmp = next;
1280 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1281 		next = tmp->next;
1282 
1283 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1284 			continue;
1285 
1286 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1287 
1288 		ret = enter(data, dentry);
1289 		switch (ret) {
1290 		case D_WALK_CONTINUE:
1291 			break;
1292 		case D_WALK_QUIT:
1293 			spin_unlock(&dentry->d_lock);
1294 			goto out_unlock;
1295 		case D_WALK_NORETRY:
1296 			retry = false;
1297 			break;
1298 		case D_WALK_SKIP:
1299 			spin_unlock(&dentry->d_lock);
1300 			continue;
1301 		}
1302 
1303 		if (!list_empty(&dentry->d_subdirs)) {
1304 			spin_unlock(&this_parent->d_lock);
1305 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1306 			this_parent = dentry;
1307 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1308 			goto repeat;
1309 		}
1310 		spin_unlock(&dentry->d_lock);
1311 	}
1312 	/*
1313 	 * All done at this level ... ascend and resume the search.
1314 	 */
1315 	rcu_read_lock();
1316 ascend:
1317 	if (this_parent != parent) {
1318 		struct dentry *child = this_parent;
1319 		this_parent = child->d_parent;
1320 
1321 		spin_unlock(&child->d_lock);
1322 		spin_lock(&this_parent->d_lock);
1323 
1324 		/* might go back up the wrong parent if we have had a rename. */
1325 		if (need_seqretry(&rename_lock, seq))
1326 			goto rename_retry;
1327 		/* go into the first sibling still alive */
1328 		do {
1329 			next = child->d_child.next;
1330 			if (next == &this_parent->d_subdirs)
1331 				goto ascend;
1332 			child = list_entry(next, struct dentry, d_child);
1333 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1334 		rcu_read_unlock();
1335 		goto resume;
1336 	}
1337 	if (need_seqretry(&rename_lock, seq))
1338 		goto rename_retry;
1339 	rcu_read_unlock();
1340 
1341 out_unlock:
1342 	spin_unlock(&this_parent->d_lock);
1343 	done_seqretry(&rename_lock, seq);
1344 	return;
1345 
1346 rename_retry:
1347 	spin_unlock(&this_parent->d_lock);
1348 	rcu_read_unlock();
1349 	BUG_ON(seq & 1);
1350 	if (!retry)
1351 		return;
1352 	seq = 1;
1353 	goto again;
1354 }
1355 
1356 struct check_mount {
1357 	struct vfsmount *mnt;
1358 	unsigned int mounted;
1359 };
1360 
1361 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1362 {
1363 	struct check_mount *info = data;
1364 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1365 
1366 	if (likely(!d_mountpoint(dentry)))
1367 		return D_WALK_CONTINUE;
1368 	if (__path_is_mountpoint(&path)) {
1369 		info->mounted = 1;
1370 		return D_WALK_QUIT;
1371 	}
1372 	return D_WALK_CONTINUE;
1373 }
1374 
1375 /**
1376  * path_has_submounts - check for mounts over a dentry in the
1377  *                      current namespace.
1378  * @parent: path to check.
1379  *
1380  * Return true if the parent or its subdirectories contain
1381  * a mount point in the current namespace.
1382  */
1383 int path_has_submounts(const struct path *parent)
1384 {
1385 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1386 
1387 	read_seqlock_excl(&mount_lock);
1388 	d_walk(parent->dentry, &data, path_check_mount);
1389 	read_sequnlock_excl(&mount_lock);
1390 
1391 	return data.mounted;
1392 }
1393 EXPORT_SYMBOL(path_has_submounts);
1394 
1395 /*
1396  * Called by mount code to set a mountpoint and check if the mountpoint is
1397  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1398  * subtree can become unreachable).
1399  *
1400  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1401  * this reason take rename_lock and d_lock on dentry and ancestors.
1402  */
1403 int d_set_mounted(struct dentry *dentry)
1404 {
1405 	struct dentry *p;
1406 	int ret = -ENOENT;
1407 	write_seqlock(&rename_lock);
1408 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1409 		/* Need exclusion wrt. d_invalidate() */
1410 		spin_lock(&p->d_lock);
1411 		if (unlikely(d_unhashed(p))) {
1412 			spin_unlock(&p->d_lock);
1413 			goto out;
1414 		}
1415 		spin_unlock(&p->d_lock);
1416 	}
1417 	spin_lock(&dentry->d_lock);
1418 	if (!d_unlinked(dentry)) {
1419 		ret = -EBUSY;
1420 		if (!d_mountpoint(dentry)) {
1421 			dentry->d_flags |= DCACHE_MOUNTED;
1422 			ret = 0;
1423 		}
1424 	}
1425  	spin_unlock(&dentry->d_lock);
1426 out:
1427 	write_sequnlock(&rename_lock);
1428 	return ret;
1429 }
1430 
1431 /*
1432  * Search the dentry child list of the specified parent,
1433  * and move any unused dentries to the end of the unused
1434  * list for prune_dcache(). We descend to the next level
1435  * whenever the d_subdirs list is non-empty and continue
1436  * searching.
1437  *
1438  * It returns zero iff there are no unused children,
1439  * otherwise  it returns the number of children moved to
1440  * the end of the unused list. This may not be the total
1441  * number of unused children, because select_parent can
1442  * drop the lock and return early due to latency
1443  * constraints.
1444  */
1445 
1446 struct select_data {
1447 	struct dentry *start;
1448 	struct list_head dispose;
1449 	int found;
1450 };
1451 
1452 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1453 {
1454 	struct select_data *data = _data;
1455 	enum d_walk_ret ret = D_WALK_CONTINUE;
1456 
1457 	if (data->start == dentry)
1458 		goto out;
1459 
1460 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1461 		data->found++;
1462 	} else {
1463 		if (dentry->d_flags & DCACHE_LRU_LIST)
1464 			d_lru_del(dentry);
1465 		if (!dentry->d_lockref.count) {
1466 			d_shrink_add(dentry, &data->dispose);
1467 			data->found++;
1468 		}
1469 	}
1470 	/*
1471 	 * We can return to the caller if we have found some (this
1472 	 * ensures forward progress). We'll be coming back to find
1473 	 * the rest.
1474 	 */
1475 	if (!list_empty(&data->dispose))
1476 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1477 out:
1478 	return ret;
1479 }
1480 
1481 /**
1482  * shrink_dcache_parent - prune dcache
1483  * @parent: parent of entries to prune
1484  *
1485  * Prune the dcache to remove unused children of the parent dentry.
1486  */
1487 void shrink_dcache_parent(struct dentry *parent)
1488 {
1489 	for (;;) {
1490 		struct select_data data;
1491 
1492 		INIT_LIST_HEAD(&data.dispose);
1493 		data.start = parent;
1494 		data.found = 0;
1495 
1496 		d_walk(parent, &data, select_collect);
1497 
1498 		if (!list_empty(&data.dispose)) {
1499 			shrink_dentry_list(&data.dispose);
1500 			continue;
1501 		}
1502 
1503 		cond_resched();
1504 		if (!data.found)
1505 			break;
1506 	}
1507 }
1508 EXPORT_SYMBOL(shrink_dcache_parent);
1509 
1510 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1511 {
1512 	/* it has busy descendents; complain about those instead */
1513 	if (!list_empty(&dentry->d_subdirs))
1514 		return D_WALK_CONTINUE;
1515 
1516 	/* root with refcount 1 is fine */
1517 	if (dentry == _data && dentry->d_lockref.count == 1)
1518 		return D_WALK_CONTINUE;
1519 
1520 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1521 			" still in use (%d) [unmount of %s %s]\n",
1522 		       dentry,
1523 		       dentry->d_inode ?
1524 		       dentry->d_inode->i_ino : 0UL,
1525 		       dentry,
1526 		       dentry->d_lockref.count,
1527 		       dentry->d_sb->s_type->name,
1528 		       dentry->d_sb->s_id);
1529 	WARN_ON(1);
1530 	return D_WALK_CONTINUE;
1531 }
1532 
1533 static void do_one_tree(struct dentry *dentry)
1534 {
1535 	shrink_dcache_parent(dentry);
1536 	d_walk(dentry, dentry, umount_check);
1537 	d_drop(dentry);
1538 	dput(dentry);
1539 }
1540 
1541 /*
1542  * destroy the dentries attached to a superblock on unmounting
1543  */
1544 void shrink_dcache_for_umount(struct super_block *sb)
1545 {
1546 	struct dentry *dentry;
1547 
1548 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1549 
1550 	dentry = sb->s_root;
1551 	sb->s_root = NULL;
1552 	do_one_tree(dentry);
1553 
1554 	while (!hlist_bl_empty(&sb->s_roots)) {
1555 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1556 		do_one_tree(dentry);
1557 	}
1558 }
1559 
1560 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1561 {
1562 	struct dentry **victim = _data;
1563 	if (d_mountpoint(dentry)) {
1564 		__dget_dlock(dentry);
1565 		*victim = dentry;
1566 		return D_WALK_QUIT;
1567 	}
1568 	return D_WALK_CONTINUE;
1569 }
1570 
1571 /**
1572  * d_invalidate - detach submounts, prune dcache, and drop
1573  * @dentry: dentry to invalidate (aka detach, prune and drop)
1574  */
1575 void d_invalidate(struct dentry *dentry)
1576 {
1577 	bool had_submounts = false;
1578 	spin_lock(&dentry->d_lock);
1579 	if (d_unhashed(dentry)) {
1580 		spin_unlock(&dentry->d_lock);
1581 		return;
1582 	}
1583 	__d_drop(dentry);
1584 	spin_unlock(&dentry->d_lock);
1585 
1586 	/* Negative dentries can be dropped without further checks */
1587 	if (!dentry->d_inode)
1588 		return;
1589 
1590 	shrink_dcache_parent(dentry);
1591 	for (;;) {
1592 		struct dentry *victim = NULL;
1593 		d_walk(dentry, &victim, find_submount);
1594 		if (!victim) {
1595 			if (had_submounts)
1596 				shrink_dcache_parent(dentry);
1597 			return;
1598 		}
1599 		had_submounts = true;
1600 		detach_mounts(victim);
1601 		dput(victim);
1602 	}
1603 }
1604 EXPORT_SYMBOL(d_invalidate);
1605 
1606 /**
1607  * __d_alloc	-	allocate a dcache entry
1608  * @sb: filesystem it will belong to
1609  * @name: qstr of the name
1610  *
1611  * Allocates a dentry. It returns %NULL if there is insufficient memory
1612  * available. On a success the dentry is returned. The name passed in is
1613  * copied and the copy passed in may be reused after this call.
1614  */
1615 
1616 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1617 {
1618 	struct dentry *dentry;
1619 	char *dname;
1620 	int err;
1621 
1622 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1623 	if (!dentry)
1624 		return NULL;
1625 
1626 	/*
1627 	 * We guarantee that the inline name is always NUL-terminated.
1628 	 * This way the memcpy() done by the name switching in rename
1629 	 * will still always have a NUL at the end, even if we might
1630 	 * be overwriting an internal NUL character
1631 	 */
1632 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1633 	if (unlikely(!name)) {
1634 		name = &slash_name;
1635 		dname = dentry->d_iname;
1636 	} else if (name->len > DNAME_INLINE_LEN-1) {
1637 		size_t size = offsetof(struct external_name, name[1]);
1638 		struct external_name *p = kmalloc(size + name->len,
1639 						  GFP_KERNEL_ACCOUNT |
1640 						  __GFP_RECLAIMABLE);
1641 		if (!p) {
1642 			kmem_cache_free(dentry_cache, dentry);
1643 			return NULL;
1644 		}
1645 		atomic_set(&p->u.count, 1);
1646 		dname = p->name;
1647 	} else  {
1648 		dname = dentry->d_iname;
1649 	}
1650 
1651 	dentry->d_name.len = name->len;
1652 	dentry->d_name.hash = name->hash;
1653 	memcpy(dname, name->name, name->len);
1654 	dname[name->len] = 0;
1655 
1656 	/* Make sure we always see the terminating NUL character */
1657 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1658 
1659 	dentry->d_lockref.count = 1;
1660 	dentry->d_flags = 0;
1661 	spin_lock_init(&dentry->d_lock);
1662 	seqcount_init(&dentry->d_seq);
1663 	dentry->d_inode = NULL;
1664 	dentry->d_parent = dentry;
1665 	dentry->d_sb = sb;
1666 	dentry->d_op = NULL;
1667 	dentry->d_fsdata = NULL;
1668 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1669 	INIT_LIST_HEAD(&dentry->d_lru);
1670 	INIT_LIST_HEAD(&dentry->d_subdirs);
1671 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1672 	INIT_LIST_HEAD(&dentry->d_child);
1673 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1674 
1675 	if (dentry->d_op && dentry->d_op->d_init) {
1676 		err = dentry->d_op->d_init(dentry);
1677 		if (err) {
1678 			if (dname_external(dentry))
1679 				kfree(external_name(dentry));
1680 			kmem_cache_free(dentry_cache, dentry);
1681 			return NULL;
1682 		}
1683 	}
1684 
1685 	this_cpu_inc(nr_dentry);
1686 
1687 	return dentry;
1688 }
1689 
1690 /**
1691  * d_alloc	-	allocate a dcache entry
1692  * @parent: parent of entry to allocate
1693  * @name: qstr of the name
1694  *
1695  * Allocates a dentry. It returns %NULL if there is insufficient memory
1696  * available. On a success the dentry is returned. The name passed in is
1697  * copied and the copy passed in may be reused after this call.
1698  */
1699 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1700 {
1701 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1702 	if (!dentry)
1703 		return NULL;
1704 	spin_lock(&parent->d_lock);
1705 	/*
1706 	 * don't need child lock because it is not subject
1707 	 * to concurrency here
1708 	 */
1709 	__dget_dlock(parent);
1710 	dentry->d_parent = parent;
1711 	list_add(&dentry->d_child, &parent->d_subdirs);
1712 	spin_unlock(&parent->d_lock);
1713 
1714 	return dentry;
1715 }
1716 EXPORT_SYMBOL(d_alloc);
1717 
1718 struct dentry *d_alloc_anon(struct super_block *sb)
1719 {
1720 	return __d_alloc(sb, NULL);
1721 }
1722 EXPORT_SYMBOL(d_alloc_anon);
1723 
1724 struct dentry *d_alloc_cursor(struct dentry * parent)
1725 {
1726 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1727 	if (dentry) {
1728 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1729 		dentry->d_parent = dget(parent);
1730 	}
1731 	return dentry;
1732 }
1733 
1734 /**
1735  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1736  * @sb: the superblock
1737  * @name: qstr of the name
1738  *
1739  * For a filesystem that just pins its dentries in memory and never
1740  * performs lookups at all, return an unhashed IS_ROOT dentry.
1741  * This is used for pipes, sockets et.al. - the stuff that should
1742  * never be anyone's children or parents.  Unlike all other
1743  * dentries, these will not have RCU delay between dropping the
1744  * last reference and freeing them.
1745  *
1746  * The only user is alloc_file_pseudo() and that's what should
1747  * be considered a public interface.  Don't use directly.
1748  */
1749 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1750 {
1751 	struct dentry *dentry = __d_alloc(sb, name);
1752 	if (likely(dentry))
1753 		dentry->d_flags |= DCACHE_NORCU;
1754 	return dentry;
1755 }
1756 
1757 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1758 {
1759 	struct qstr q;
1760 
1761 	q.name = name;
1762 	q.hash_len = hashlen_string(parent, name);
1763 	return d_alloc(parent, &q);
1764 }
1765 EXPORT_SYMBOL(d_alloc_name);
1766 
1767 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1768 {
1769 	WARN_ON_ONCE(dentry->d_op);
1770 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1771 				DCACHE_OP_COMPARE	|
1772 				DCACHE_OP_REVALIDATE	|
1773 				DCACHE_OP_WEAK_REVALIDATE	|
1774 				DCACHE_OP_DELETE	|
1775 				DCACHE_OP_REAL));
1776 	dentry->d_op = op;
1777 	if (!op)
1778 		return;
1779 	if (op->d_hash)
1780 		dentry->d_flags |= DCACHE_OP_HASH;
1781 	if (op->d_compare)
1782 		dentry->d_flags |= DCACHE_OP_COMPARE;
1783 	if (op->d_revalidate)
1784 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1785 	if (op->d_weak_revalidate)
1786 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1787 	if (op->d_delete)
1788 		dentry->d_flags |= DCACHE_OP_DELETE;
1789 	if (op->d_prune)
1790 		dentry->d_flags |= DCACHE_OP_PRUNE;
1791 	if (op->d_real)
1792 		dentry->d_flags |= DCACHE_OP_REAL;
1793 
1794 }
1795 EXPORT_SYMBOL(d_set_d_op);
1796 
1797 
1798 /*
1799  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1800  * @dentry - The dentry to mark
1801  *
1802  * Mark a dentry as falling through to the lower layer (as set with
1803  * d_pin_lower()).  This flag may be recorded on the medium.
1804  */
1805 void d_set_fallthru(struct dentry *dentry)
1806 {
1807 	spin_lock(&dentry->d_lock);
1808 	dentry->d_flags |= DCACHE_FALLTHRU;
1809 	spin_unlock(&dentry->d_lock);
1810 }
1811 EXPORT_SYMBOL(d_set_fallthru);
1812 
1813 static unsigned d_flags_for_inode(struct inode *inode)
1814 {
1815 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1816 
1817 	if (!inode)
1818 		return DCACHE_MISS_TYPE;
1819 
1820 	if (S_ISDIR(inode->i_mode)) {
1821 		add_flags = DCACHE_DIRECTORY_TYPE;
1822 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1823 			if (unlikely(!inode->i_op->lookup))
1824 				add_flags = DCACHE_AUTODIR_TYPE;
1825 			else
1826 				inode->i_opflags |= IOP_LOOKUP;
1827 		}
1828 		goto type_determined;
1829 	}
1830 
1831 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1832 		if (unlikely(inode->i_op->get_link)) {
1833 			add_flags = DCACHE_SYMLINK_TYPE;
1834 			goto type_determined;
1835 		}
1836 		inode->i_opflags |= IOP_NOFOLLOW;
1837 	}
1838 
1839 	if (unlikely(!S_ISREG(inode->i_mode)))
1840 		add_flags = DCACHE_SPECIAL_TYPE;
1841 
1842 type_determined:
1843 	if (unlikely(IS_AUTOMOUNT(inode)))
1844 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1845 	return add_flags;
1846 }
1847 
1848 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1849 {
1850 	unsigned add_flags = d_flags_for_inode(inode);
1851 	WARN_ON(d_in_lookup(dentry));
1852 
1853 	spin_lock(&dentry->d_lock);
1854 	/*
1855 	 * Decrement negative dentry count if it was in the LRU list.
1856 	 */
1857 	if (dentry->d_flags & DCACHE_LRU_LIST)
1858 		this_cpu_dec(nr_dentry_negative);
1859 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1860 	raw_write_seqcount_begin(&dentry->d_seq);
1861 	__d_set_inode_and_type(dentry, inode, add_flags);
1862 	raw_write_seqcount_end(&dentry->d_seq);
1863 	fsnotify_update_flags(dentry);
1864 	spin_unlock(&dentry->d_lock);
1865 }
1866 
1867 /**
1868  * d_instantiate - fill in inode information for a dentry
1869  * @entry: dentry to complete
1870  * @inode: inode to attach to this dentry
1871  *
1872  * Fill in inode information in the entry.
1873  *
1874  * This turns negative dentries into productive full members
1875  * of society.
1876  *
1877  * NOTE! This assumes that the inode count has been incremented
1878  * (or otherwise set) by the caller to indicate that it is now
1879  * in use by the dcache.
1880  */
1881 
1882 void d_instantiate(struct dentry *entry, struct inode * inode)
1883 {
1884 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1885 	if (inode) {
1886 		security_d_instantiate(entry, inode);
1887 		spin_lock(&inode->i_lock);
1888 		__d_instantiate(entry, inode);
1889 		spin_unlock(&inode->i_lock);
1890 	}
1891 }
1892 EXPORT_SYMBOL(d_instantiate);
1893 
1894 /*
1895  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1896  * with lockdep-related part of unlock_new_inode() done before
1897  * anything else.  Use that instead of open-coding d_instantiate()/
1898  * unlock_new_inode() combinations.
1899  */
1900 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1901 {
1902 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1903 	BUG_ON(!inode);
1904 	lockdep_annotate_inode_mutex_key(inode);
1905 	security_d_instantiate(entry, inode);
1906 	spin_lock(&inode->i_lock);
1907 	__d_instantiate(entry, inode);
1908 	WARN_ON(!(inode->i_state & I_NEW));
1909 	inode->i_state &= ~I_NEW & ~I_CREATING;
1910 	smp_mb();
1911 	wake_up_bit(&inode->i_state, __I_NEW);
1912 	spin_unlock(&inode->i_lock);
1913 }
1914 EXPORT_SYMBOL(d_instantiate_new);
1915 
1916 struct dentry *d_make_root(struct inode *root_inode)
1917 {
1918 	struct dentry *res = NULL;
1919 
1920 	if (root_inode) {
1921 		res = d_alloc_anon(root_inode->i_sb);
1922 		if (res)
1923 			d_instantiate(res, root_inode);
1924 		else
1925 			iput(root_inode);
1926 	}
1927 	return res;
1928 }
1929 EXPORT_SYMBOL(d_make_root);
1930 
1931 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1932 					   struct inode *inode,
1933 					   bool disconnected)
1934 {
1935 	struct dentry *res;
1936 	unsigned add_flags;
1937 
1938 	security_d_instantiate(dentry, inode);
1939 	spin_lock(&inode->i_lock);
1940 	res = __d_find_any_alias(inode);
1941 	if (res) {
1942 		spin_unlock(&inode->i_lock);
1943 		dput(dentry);
1944 		goto out_iput;
1945 	}
1946 
1947 	/* attach a disconnected dentry */
1948 	add_flags = d_flags_for_inode(inode);
1949 
1950 	if (disconnected)
1951 		add_flags |= DCACHE_DISCONNECTED;
1952 
1953 	spin_lock(&dentry->d_lock);
1954 	__d_set_inode_and_type(dentry, inode, add_flags);
1955 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1956 	if (!disconnected) {
1957 		hlist_bl_lock(&dentry->d_sb->s_roots);
1958 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1959 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1960 	}
1961 	spin_unlock(&dentry->d_lock);
1962 	spin_unlock(&inode->i_lock);
1963 
1964 	return dentry;
1965 
1966  out_iput:
1967 	iput(inode);
1968 	return res;
1969 }
1970 
1971 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1972 {
1973 	return __d_instantiate_anon(dentry, inode, true);
1974 }
1975 EXPORT_SYMBOL(d_instantiate_anon);
1976 
1977 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1978 {
1979 	struct dentry *tmp;
1980 	struct dentry *res;
1981 
1982 	if (!inode)
1983 		return ERR_PTR(-ESTALE);
1984 	if (IS_ERR(inode))
1985 		return ERR_CAST(inode);
1986 
1987 	res = d_find_any_alias(inode);
1988 	if (res)
1989 		goto out_iput;
1990 
1991 	tmp = d_alloc_anon(inode->i_sb);
1992 	if (!tmp) {
1993 		res = ERR_PTR(-ENOMEM);
1994 		goto out_iput;
1995 	}
1996 
1997 	return __d_instantiate_anon(tmp, inode, disconnected);
1998 
1999 out_iput:
2000 	iput(inode);
2001 	return res;
2002 }
2003 
2004 /**
2005  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2006  * @inode: inode to allocate the dentry for
2007  *
2008  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2009  * similar open by handle operations.  The returned dentry may be anonymous,
2010  * or may have a full name (if the inode was already in the cache).
2011  *
2012  * When called on a directory inode, we must ensure that the inode only ever
2013  * has one dentry.  If a dentry is found, that is returned instead of
2014  * allocating a new one.
2015  *
2016  * On successful return, the reference to the inode has been transferred
2017  * to the dentry.  In case of an error the reference on the inode is released.
2018  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2019  * be passed in and the error will be propagated to the return value,
2020  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2021  */
2022 struct dentry *d_obtain_alias(struct inode *inode)
2023 {
2024 	return __d_obtain_alias(inode, true);
2025 }
2026 EXPORT_SYMBOL(d_obtain_alias);
2027 
2028 /**
2029  * d_obtain_root - find or allocate a dentry for a given inode
2030  * @inode: inode to allocate the dentry for
2031  *
2032  * Obtain an IS_ROOT dentry for the root of a filesystem.
2033  *
2034  * We must ensure that directory inodes only ever have one dentry.  If a
2035  * dentry is found, that is returned instead of allocating a new one.
2036  *
2037  * On successful return, the reference to the inode has been transferred
2038  * to the dentry.  In case of an error the reference on the inode is
2039  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2040  * error will be propagate to the return value, with a %NULL @inode
2041  * replaced by ERR_PTR(-ESTALE).
2042  */
2043 struct dentry *d_obtain_root(struct inode *inode)
2044 {
2045 	return __d_obtain_alias(inode, false);
2046 }
2047 EXPORT_SYMBOL(d_obtain_root);
2048 
2049 /**
2050  * d_add_ci - lookup or allocate new dentry with case-exact name
2051  * @inode:  the inode case-insensitive lookup has found
2052  * @dentry: the negative dentry that was passed to the parent's lookup func
2053  * @name:   the case-exact name to be associated with the returned dentry
2054  *
2055  * This is to avoid filling the dcache with case-insensitive names to the
2056  * same inode, only the actual correct case is stored in the dcache for
2057  * case-insensitive filesystems.
2058  *
2059  * For a case-insensitive lookup match and if the the case-exact dentry
2060  * already exists in in the dcache, use it and return it.
2061  *
2062  * If no entry exists with the exact case name, allocate new dentry with
2063  * the exact case, and return the spliced entry.
2064  */
2065 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2066 			struct qstr *name)
2067 {
2068 	struct dentry *found, *res;
2069 
2070 	/*
2071 	 * First check if a dentry matching the name already exists,
2072 	 * if not go ahead and create it now.
2073 	 */
2074 	found = d_hash_and_lookup(dentry->d_parent, name);
2075 	if (found) {
2076 		iput(inode);
2077 		return found;
2078 	}
2079 	if (d_in_lookup(dentry)) {
2080 		found = d_alloc_parallel(dentry->d_parent, name,
2081 					dentry->d_wait);
2082 		if (IS_ERR(found) || !d_in_lookup(found)) {
2083 			iput(inode);
2084 			return found;
2085 		}
2086 	} else {
2087 		found = d_alloc(dentry->d_parent, name);
2088 		if (!found) {
2089 			iput(inode);
2090 			return ERR_PTR(-ENOMEM);
2091 		}
2092 	}
2093 	res = d_splice_alias(inode, found);
2094 	if (res) {
2095 		dput(found);
2096 		return res;
2097 	}
2098 	return found;
2099 }
2100 EXPORT_SYMBOL(d_add_ci);
2101 
2102 
2103 static inline bool d_same_name(const struct dentry *dentry,
2104 				const struct dentry *parent,
2105 				const struct qstr *name)
2106 {
2107 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2108 		if (dentry->d_name.len != name->len)
2109 			return false;
2110 		return dentry_cmp(dentry, name->name, name->len) == 0;
2111 	}
2112 	return parent->d_op->d_compare(dentry,
2113 				       dentry->d_name.len, dentry->d_name.name,
2114 				       name) == 0;
2115 }
2116 
2117 /**
2118  * __d_lookup_rcu - search for a dentry (racy, store-free)
2119  * @parent: parent dentry
2120  * @name: qstr of name we wish to find
2121  * @seqp: returns d_seq value at the point where the dentry was found
2122  * Returns: dentry, or NULL
2123  *
2124  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2125  * resolution (store-free path walking) design described in
2126  * Documentation/filesystems/path-lookup.txt.
2127  *
2128  * This is not to be used outside core vfs.
2129  *
2130  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2131  * held, and rcu_read_lock held. The returned dentry must not be stored into
2132  * without taking d_lock and checking d_seq sequence count against @seq
2133  * returned here.
2134  *
2135  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2136  * function.
2137  *
2138  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2139  * the returned dentry, so long as its parent's seqlock is checked after the
2140  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2141  * is formed, giving integrity down the path walk.
2142  *
2143  * NOTE! The caller *has* to check the resulting dentry against the sequence
2144  * number we've returned before using any of the resulting dentry state!
2145  */
2146 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2147 				const struct qstr *name,
2148 				unsigned *seqp)
2149 {
2150 	u64 hashlen = name->hash_len;
2151 	const unsigned char *str = name->name;
2152 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2153 	struct hlist_bl_node *node;
2154 	struct dentry *dentry;
2155 
2156 	/*
2157 	 * Note: There is significant duplication with __d_lookup_rcu which is
2158 	 * required to prevent single threaded performance regressions
2159 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2160 	 * Keep the two functions in sync.
2161 	 */
2162 
2163 	/*
2164 	 * The hash list is protected using RCU.
2165 	 *
2166 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2167 	 * races with d_move().
2168 	 *
2169 	 * It is possible that concurrent renames can mess up our list
2170 	 * walk here and result in missing our dentry, resulting in the
2171 	 * false-negative result. d_lookup() protects against concurrent
2172 	 * renames using rename_lock seqlock.
2173 	 *
2174 	 * See Documentation/filesystems/path-lookup.txt for more details.
2175 	 */
2176 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2177 		unsigned seq;
2178 
2179 seqretry:
2180 		/*
2181 		 * The dentry sequence count protects us from concurrent
2182 		 * renames, and thus protects parent and name fields.
2183 		 *
2184 		 * The caller must perform a seqcount check in order
2185 		 * to do anything useful with the returned dentry.
2186 		 *
2187 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2188 		 * we don't wait for the sequence count to stabilize if it
2189 		 * is in the middle of a sequence change. If we do the slow
2190 		 * dentry compare, we will do seqretries until it is stable,
2191 		 * and if we end up with a successful lookup, we actually
2192 		 * want to exit RCU lookup anyway.
2193 		 *
2194 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2195 		 * we are still guaranteed NUL-termination of ->d_name.name.
2196 		 */
2197 		seq = raw_seqcount_begin(&dentry->d_seq);
2198 		if (dentry->d_parent != parent)
2199 			continue;
2200 		if (d_unhashed(dentry))
2201 			continue;
2202 
2203 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2204 			int tlen;
2205 			const char *tname;
2206 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2207 				continue;
2208 			tlen = dentry->d_name.len;
2209 			tname = dentry->d_name.name;
2210 			/* we want a consistent (name,len) pair */
2211 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2212 				cpu_relax();
2213 				goto seqretry;
2214 			}
2215 			if (parent->d_op->d_compare(dentry,
2216 						    tlen, tname, name) != 0)
2217 				continue;
2218 		} else {
2219 			if (dentry->d_name.hash_len != hashlen)
2220 				continue;
2221 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2222 				continue;
2223 		}
2224 		*seqp = seq;
2225 		return dentry;
2226 	}
2227 	return NULL;
2228 }
2229 
2230 /**
2231  * d_lookup - search for a dentry
2232  * @parent: parent dentry
2233  * @name: qstr of name we wish to find
2234  * Returns: dentry, or NULL
2235  *
2236  * d_lookup searches the children of the parent dentry for the name in
2237  * question. If the dentry is found its reference count is incremented and the
2238  * dentry is returned. The caller must use dput to free the entry when it has
2239  * finished using it. %NULL is returned if the dentry does not exist.
2240  */
2241 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2242 {
2243 	struct dentry *dentry;
2244 	unsigned seq;
2245 
2246 	do {
2247 		seq = read_seqbegin(&rename_lock);
2248 		dentry = __d_lookup(parent, name);
2249 		if (dentry)
2250 			break;
2251 	} while (read_seqretry(&rename_lock, seq));
2252 	return dentry;
2253 }
2254 EXPORT_SYMBOL(d_lookup);
2255 
2256 /**
2257  * __d_lookup - search for a dentry (racy)
2258  * @parent: parent dentry
2259  * @name: qstr of name we wish to find
2260  * Returns: dentry, or NULL
2261  *
2262  * __d_lookup is like d_lookup, however it may (rarely) return a
2263  * false-negative result due to unrelated rename activity.
2264  *
2265  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2266  * however it must be used carefully, eg. with a following d_lookup in
2267  * the case of failure.
2268  *
2269  * __d_lookup callers must be commented.
2270  */
2271 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2272 {
2273 	unsigned int hash = name->hash;
2274 	struct hlist_bl_head *b = d_hash(hash);
2275 	struct hlist_bl_node *node;
2276 	struct dentry *found = NULL;
2277 	struct dentry *dentry;
2278 
2279 	/*
2280 	 * Note: There is significant duplication with __d_lookup_rcu which is
2281 	 * required to prevent single threaded performance regressions
2282 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2283 	 * Keep the two functions in sync.
2284 	 */
2285 
2286 	/*
2287 	 * The hash list is protected using RCU.
2288 	 *
2289 	 * Take d_lock when comparing a candidate dentry, to avoid races
2290 	 * with d_move().
2291 	 *
2292 	 * It is possible that concurrent renames can mess up our list
2293 	 * walk here and result in missing our dentry, resulting in the
2294 	 * false-negative result. d_lookup() protects against concurrent
2295 	 * renames using rename_lock seqlock.
2296 	 *
2297 	 * See Documentation/filesystems/path-lookup.txt for more details.
2298 	 */
2299 	rcu_read_lock();
2300 
2301 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2302 
2303 		if (dentry->d_name.hash != hash)
2304 			continue;
2305 
2306 		spin_lock(&dentry->d_lock);
2307 		if (dentry->d_parent != parent)
2308 			goto next;
2309 		if (d_unhashed(dentry))
2310 			goto next;
2311 
2312 		if (!d_same_name(dentry, parent, name))
2313 			goto next;
2314 
2315 		dentry->d_lockref.count++;
2316 		found = dentry;
2317 		spin_unlock(&dentry->d_lock);
2318 		break;
2319 next:
2320 		spin_unlock(&dentry->d_lock);
2321  	}
2322  	rcu_read_unlock();
2323 
2324  	return found;
2325 }
2326 
2327 /**
2328  * d_hash_and_lookup - hash the qstr then search for a dentry
2329  * @dir: Directory to search in
2330  * @name: qstr of name we wish to find
2331  *
2332  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2333  */
2334 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2335 {
2336 	/*
2337 	 * Check for a fs-specific hash function. Note that we must
2338 	 * calculate the standard hash first, as the d_op->d_hash()
2339 	 * routine may choose to leave the hash value unchanged.
2340 	 */
2341 	name->hash = full_name_hash(dir, name->name, name->len);
2342 	if (dir->d_flags & DCACHE_OP_HASH) {
2343 		int err = dir->d_op->d_hash(dir, name);
2344 		if (unlikely(err < 0))
2345 			return ERR_PTR(err);
2346 	}
2347 	return d_lookup(dir, name);
2348 }
2349 EXPORT_SYMBOL(d_hash_and_lookup);
2350 
2351 /*
2352  * When a file is deleted, we have two options:
2353  * - turn this dentry into a negative dentry
2354  * - unhash this dentry and free it.
2355  *
2356  * Usually, we want to just turn this into
2357  * a negative dentry, but if anybody else is
2358  * currently using the dentry or the inode
2359  * we can't do that and we fall back on removing
2360  * it from the hash queues and waiting for
2361  * it to be deleted later when it has no users
2362  */
2363 
2364 /**
2365  * d_delete - delete a dentry
2366  * @dentry: The dentry to delete
2367  *
2368  * Turn the dentry into a negative dentry if possible, otherwise
2369  * remove it from the hash queues so it can be deleted later
2370  */
2371 
2372 void d_delete(struct dentry * dentry)
2373 {
2374 	struct inode *inode = dentry->d_inode;
2375 	int isdir = d_is_dir(dentry);
2376 
2377 	spin_lock(&inode->i_lock);
2378 	spin_lock(&dentry->d_lock);
2379 	/*
2380 	 * Are we the only user?
2381 	 */
2382 	if (dentry->d_lockref.count == 1) {
2383 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2384 		dentry_unlink_inode(dentry);
2385 	} else {
2386 		__d_drop(dentry);
2387 		spin_unlock(&dentry->d_lock);
2388 		spin_unlock(&inode->i_lock);
2389 	}
2390 	fsnotify_nameremove(dentry, isdir);
2391 }
2392 EXPORT_SYMBOL(d_delete);
2393 
2394 static void __d_rehash(struct dentry *entry)
2395 {
2396 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2397 
2398 	hlist_bl_lock(b);
2399 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2400 	hlist_bl_unlock(b);
2401 }
2402 
2403 /**
2404  * d_rehash	- add an entry back to the hash
2405  * @entry: dentry to add to the hash
2406  *
2407  * Adds a dentry to the hash according to its name.
2408  */
2409 
2410 void d_rehash(struct dentry * entry)
2411 {
2412 	spin_lock(&entry->d_lock);
2413 	__d_rehash(entry);
2414 	spin_unlock(&entry->d_lock);
2415 }
2416 EXPORT_SYMBOL(d_rehash);
2417 
2418 static inline unsigned start_dir_add(struct inode *dir)
2419 {
2420 
2421 	for (;;) {
2422 		unsigned n = dir->i_dir_seq;
2423 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2424 			return n;
2425 		cpu_relax();
2426 	}
2427 }
2428 
2429 static inline void end_dir_add(struct inode *dir, unsigned n)
2430 {
2431 	smp_store_release(&dir->i_dir_seq, n + 2);
2432 }
2433 
2434 static void d_wait_lookup(struct dentry *dentry)
2435 {
2436 	if (d_in_lookup(dentry)) {
2437 		DECLARE_WAITQUEUE(wait, current);
2438 		add_wait_queue(dentry->d_wait, &wait);
2439 		do {
2440 			set_current_state(TASK_UNINTERRUPTIBLE);
2441 			spin_unlock(&dentry->d_lock);
2442 			schedule();
2443 			spin_lock(&dentry->d_lock);
2444 		} while (d_in_lookup(dentry));
2445 	}
2446 }
2447 
2448 struct dentry *d_alloc_parallel(struct dentry *parent,
2449 				const struct qstr *name,
2450 				wait_queue_head_t *wq)
2451 {
2452 	unsigned int hash = name->hash;
2453 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2454 	struct hlist_bl_node *node;
2455 	struct dentry *new = d_alloc(parent, name);
2456 	struct dentry *dentry;
2457 	unsigned seq, r_seq, d_seq;
2458 
2459 	if (unlikely(!new))
2460 		return ERR_PTR(-ENOMEM);
2461 
2462 retry:
2463 	rcu_read_lock();
2464 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2465 	r_seq = read_seqbegin(&rename_lock);
2466 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2467 	if (unlikely(dentry)) {
2468 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2469 			rcu_read_unlock();
2470 			goto retry;
2471 		}
2472 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2473 			rcu_read_unlock();
2474 			dput(dentry);
2475 			goto retry;
2476 		}
2477 		rcu_read_unlock();
2478 		dput(new);
2479 		return dentry;
2480 	}
2481 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2482 		rcu_read_unlock();
2483 		goto retry;
2484 	}
2485 
2486 	if (unlikely(seq & 1)) {
2487 		rcu_read_unlock();
2488 		goto retry;
2489 	}
2490 
2491 	hlist_bl_lock(b);
2492 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2493 		hlist_bl_unlock(b);
2494 		rcu_read_unlock();
2495 		goto retry;
2496 	}
2497 	/*
2498 	 * No changes for the parent since the beginning of d_lookup().
2499 	 * Since all removals from the chain happen with hlist_bl_lock(),
2500 	 * any potential in-lookup matches are going to stay here until
2501 	 * we unlock the chain.  All fields are stable in everything
2502 	 * we encounter.
2503 	 */
2504 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2505 		if (dentry->d_name.hash != hash)
2506 			continue;
2507 		if (dentry->d_parent != parent)
2508 			continue;
2509 		if (!d_same_name(dentry, parent, name))
2510 			continue;
2511 		hlist_bl_unlock(b);
2512 		/* now we can try to grab a reference */
2513 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2514 			rcu_read_unlock();
2515 			goto retry;
2516 		}
2517 
2518 		rcu_read_unlock();
2519 		/*
2520 		 * somebody is likely to be still doing lookup for it;
2521 		 * wait for them to finish
2522 		 */
2523 		spin_lock(&dentry->d_lock);
2524 		d_wait_lookup(dentry);
2525 		/*
2526 		 * it's not in-lookup anymore; in principle we should repeat
2527 		 * everything from dcache lookup, but it's likely to be what
2528 		 * d_lookup() would've found anyway.  If it is, just return it;
2529 		 * otherwise we really have to repeat the whole thing.
2530 		 */
2531 		if (unlikely(dentry->d_name.hash != hash))
2532 			goto mismatch;
2533 		if (unlikely(dentry->d_parent != parent))
2534 			goto mismatch;
2535 		if (unlikely(d_unhashed(dentry)))
2536 			goto mismatch;
2537 		if (unlikely(!d_same_name(dentry, parent, name)))
2538 			goto mismatch;
2539 		/* OK, it *is* a hashed match; return it */
2540 		spin_unlock(&dentry->d_lock);
2541 		dput(new);
2542 		return dentry;
2543 	}
2544 	rcu_read_unlock();
2545 	/* we can't take ->d_lock here; it's OK, though. */
2546 	new->d_flags |= DCACHE_PAR_LOOKUP;
2547 	new->d_wait = wq;
2548 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2549 	hlist_bl_unlock(b);
2550 	return new;
2551 mismatch:
2552 	spin_unlock(&dentry->d_lock);
2553 	dput(dentry);
2554 	goto retry;
2555 }
2556 EXPORT_SYMBOL(d_alloc_parallel);
2557 
2558 void __d_lookup_done(struct dentry *dentry)
2559 {
2560 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2561 						 dentry->d_name.hash);
2562 	hlist_bl_lock(b);
2563 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2564 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2565 	wake_up_all(dentry->d_wait);
2566 	dentry->d_wait = NULL;
2567 	hlist_bl_unlock(b);
2568 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2569 	INIT_LIST_HEAD(&dentry->d_lru);
2570 }
2571 EXPORT_SYMBOL(__d_lookup_done);
2572 
2573 /* inode->i_lock held if inode is non-NULL */
2574 
2575 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2576 {
2577 	struct inode *dir = NULL;
2578 	unsigned n;
2579 	spin_lock(&dentry->d_lock);
2580 	if (unlikely(d_in_lookup(dentry))) {
2581 		dir = dentry->d_parent->d_inode;
2582 		n = start_dir_add(dir);
2583 		__d_lookup_done(dentry);
2584 	}
2585 	if (inode) {
2586 		unsigned add_flags = d_flags_for_inode(inode);
2587 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2588 		raw_write_seqcount_begin(&dentry->d_seq);
2589 		__d_set_inode_and_type(dentry, inode, add_flags);
2590 		raw_write_seqcount_end(&dentry->d_seq);
2591 		fsnotify_update_flags(dentry);
2592 	}
2593 	__d_rehash(dentry);
2594 	if (dir)
2595 		end_dir_add(dir, n);
2596 	spin_unlock(&dentry->d_lock);
2597 	if (inode)
2598 		spin_unlock(&inode->i_lock);
2599 }
2600 
2601 /**
2602  * d_add - add dentry to hash queues
2603  * @entry: dentry to add
2604  * @inode: The inode to attach to this dentry
2605  *
2606  * This adds the entry to the hash queues and initializes @inode.
2607  * The entry was actually filled in earlier during d_alloc().
2608  */
2609 
2610 void d_add(struct dentry *entry, struct inode *inode)
2611 {
2612 	if (inode) {
2613 		security_d_instantiate(entry, inode);
2614 		spin_lock(&inode->i_lock);
2615 	}
2616 	__d_add(entry, inode);
2617 }
2618 EXPORT_SYMBOL(d_add);
2619 
2620 /**
2621  * d_exact_alias - find and hash an exact unhashed alias
2622  * @entry: dentry to add
2623  * @inode: The inode to go with this dentry
2624  *
2625  * If an unhashed dentry with the same name/parent and desired
2626  * inode already exists, hash and return it.  Otherwise, return
2627  * NULL.
2628  *
2629  * Parent directory should be locked.
2630  */
2631 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2632 {
2633 	struct dentry *alias;
2634 	unsigned int hash = entry->d_name.hash;
2635 
2636 	spin_lock(&inode->i_lock);
2637 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2638 		/*
2639 		 * Don't need alias->d_lock here, because aliases with
2640 		 * d_parent == entry->d_parent are not subject to name or
2641 		 * parent changes, because the parent inode i_mutex is held.
2642 		 */
2643 		if (alias->d_name.hash != hash)
2644 			continue;
2645 		if (alias->d_parent != entry->d_parent)
2646 			continue;
2647 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2648 			continue;
2649 		spin_lock(&alias->d_lock);
2650 		if (!d_unhashed(alias)) {
2651 			spin_unlock(&alias->d_lock);
2652 			alias = NULL;
2653 		} else {
2654 			__dget_dlock(alias);
2655 			__d_rehash(alias);
2656 			spin_unlock(&alias->d_lock);
2657 		}
2658 		spin_unlock(&inode->i_lock);
2659 		return alias;
2660 	}
2661 	spin_unlock(&inode->i_lock);
2662 	return NULL;
2663 }
2664 EXPORT_SYMBOL(d_exact_alias);
2665 
2666 static void swap_names(struct dentry *dentry, struct dentry *target)
2667 {
2668 	if (unlikely(dname_external(target))) {
2669 		if (unlikely(dname_external(dentry))) {
2670 			/*
2671 			 * Both external: swap the pointers
2672 			 */
2673 			swap(target->d_name.name, dentry->d_name.name);
2674 		} else {
2675 			/*
2676 			 * dentry:internal, target:external.  Steal target's
2677 			 * storage and make target internal.
2678 			 */
2679 			memcpy(target->d_iname, dentry->d_name.name,
2680 					dentry->d_name.len + 1);
2681 			dentry->d_name.name = target->d_name.name;
2682 			target->d_name.name = target->d_iname;
2683 		}
2684 	} else {
2685 		if (unlikely(dname_external(dentry))) {
2686 			/*
2687 			 * dentry:external, target:internal.  Give dentry's
2688 			 * storage to target and make dentry internal
2689 			 */
2690 			memcpy(dentry->d_iname, target->d_name.name,
2691 					target->d_name.len + 1);
2692 			target->d_name.name = dentry->d_name.name;
2693 			dentry->d_name.name = dentry->d_iname;
2694 		} else {
2695 			/*
2696 			 * Both are internal.
2697 			 */
2698 			unsigned int i;
2699 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2700 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2701 				swap(((long *) &dentry->d_iname)[i],
2702 				     ((long *) &target->d_iname)[i]);
2703 			}
2704 		}
2705 	}
2706 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2707 }
2708 
2709 static void copy_name(struct dentry *dentry, struct dentry *target)
2710 {
2711 	struct external_name *old_name = NULL;
2712 	if (unlikely(dname_external(dentry)))
2713 		old_name = external_name(dentry);
2714 	if (unlikely(dname_external(target))) {
2715 		atomic_inc(&external_name(target)->u.count);
2716 		dentry->d_name = target->d_name;
2717 	} else {
2718 		memcpy(dentry->d_iname, target->d_name.name,
2719 				target->d_name.len + 1);
2720 		dentry->d_name.name = dentry->d_iname;
2721 		dentry->d_name.hash_len = target->d_name.hash_len;
2722 	}
2723 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2724 		kfree_rcu(old_name, u.head);
2725 }
2726 
2727 /*
2728  * __d_move - move a dentry
2729  * @dentry: entry to move
2730  * @target: new dentry
2731  * @exchange: exchange the two dentries
2732  *
2733  * Update the dcache to reflect the move of a file name. Negative
2734  * dcache entries should not be moved in this way. Caller must hold
2735  * rename_lock, the i_mutex of the source and target directories,
2736  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2737  */
2738 static void __d_move(struct dentry *dentry, struct dentry *target,
2739 		     bool exchange)
2740 {
2741 	struct dentry *old_parent, *p;
2742 	struct inode *dir = NULL;
2743 	unsigned n;
2744 
2745 	WARN_ON(!dentry->d_inode);
2746 	if (WARN_ON(dentry == target))
2747 		return;
2748 
2749 	BUG_ON(d_ancestor(target, dentry));
2750 	old_parent = dentry->d_parent;
2751 	p = d_ancestor(old_parent, target);
2752 	if (IS_ROOT(dentry)) {
2753 		BUG_ON(p);
2754 		spin_lock(&target->d_parent->d_lock);
2755 	} else if (!p) {
2756 		/* target is not a descendent of dentry->d_parent */
2757 		spin_lock(&target->d_parent->d_lock);
2758 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2759 	} else {
2760 		BUG_ON(p == dentry);
2761 		spin_lock(&old_parent->d_lock);
2762 		if (p != target)
2763 			spin_lock_nested(&target->d_parent->d_lock,
2764 					DENTRY_D_LOCK_NESTED);
2765 	}
2766 	spin_lock_nested(&dentry->d_lock, 2);
2767 	spin_lock_nested(&target->d_lock, 3);
2768 
2769 	if (unlikely(d_in_lookup(target))) {
2770 		dir = target->d_parent->d_inode;
2771 		n = start_dir_add(dir);
2772 		__d_lookup_done(target);
2773 	}
2774 
2775 	write_seqcount_begin(&dentry->d_seq);
2776 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2777 
2778 	/* unhash both */
2779 	if (!d_unhashed(dentry))
2780 		___d_drop(dentry);
2781 	if (!d_unhashed(target))
2782 		___d_drop(target);
2783 
2784 	/* ... and switch them in the tree */
2785 	dentry->d_parent = target->d_parent;
2786 	if (!exchange) {
2787 		copy_name(dentry, target);
2788 		target->d_hash.pprev = NULL;
2789 		dentry->d_parent->d_lockref.count++;
2790 		if (dentry != old_parent) /* wasn't IS_ROOT */
2791 			WARN_ON(!--old_parent->d_lockref.count);
2792 	} else {
2793 		target->d_parent = old_parent;
2794 		swap_names(dentry, target);
2795 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2796 		__d_rehash(target);
2797 		fsnotify_update_flags(target);
2798 	}
2799 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2800 	__d_rehash(dentry);
2801 	fsnotify_update_flags(dentry);
2802 	fscrypt_handle_d_move(dentry);
2803 
2804 	write_seqcount_end(&target->d_seq);
2805 	write_seqcount_end(&dentry->d_seq);
2806 
2807 	if (dir)
2808 		end_dir_add(dir, n);
2809 
2810 	if (dentry->d_parent != old_parent)
2811 		spin_unlock(&dentry->d_parent->d_lock);
2812 	if (dentry != old_parent)
2813 		spin_unlock(&old_parent->d_lock);
2814 	spin_unlock(&target->d_lock);
2815 	spin_unlock(&dentry->d_lock);
2816 }
2817 
2818 /*
2819  * d_move - move a dentry
2820  * @dentry: entry to move
2821  * @target: new dentry
2822  *
2823  * Update the dcache to reflect the move of a file name. Negative
2824  * dcache entries should not be moved in this way. See the locking
2825  * requirements for __d_move.
2826  */
2827 void d_move(struct dentry *dentry, struct dentry *target)
2828 {
2829 	write_seqlock(&rename_lock);
2830 	__d_move(dentry, target, false);
2831 	write_sequnlock(&rename_lock);
2832 }
2833 EXPORT_SYMBOL(d_move);
2834 
2835 /*
2836  * d_exchange - exchange two dentries
2837  * @dentry1: first dentry
2838  * @dentry2: second dentry
2839  */
2840 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2841 {
2842 	write_seqlock(&rename_lock);
2843 
2844 	WARN_ON(!dentry1->d_inode);
2845 	WARN_ON(!dentry2->d_inode);
2846 	WARN_ON(IS_ROOT(dentry1));
2847 	WARN_ON(IS_ROOT(dentry2));
2848 
2849 	__d_move(dentry1, dentry2, true);
2850 
2851 	write_sequnlock(&rename_lock);
2852 }
2853 
2854 /**
2855  * d_ancestor - search for an ancestor
2856  * @p1: ancestor dentry
2857  * @p2: child dentry
2858  *
2859  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2860  * an ancestor of p2, else NULL.
2861  */
2862 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2863 {
2864 	struct dentry *p;
2865 
2866 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2867 		if (p->d_parent == p1)
2868 			return p;
2869 	}
2870 	return NULL;
2871 }
2872 
2873 /*
2874  * This helper attempts to cope with remotely renamed directories
2875  *
2876  * It assumes that the caller is already holding
2877  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2878  *
2879  * Note: If ever the locking in lock_rename() changes, then please
2880  * remember to update this too...
2881  */
2882 static int __d_unalias(struct inode *inode,
2883 		struct dentry *dentry, struct dentry *alias)
2884 {
2885 	struct mutex *m1 = NULL;
2886 	struct rw_semaphore *m2 = NULL;
2887 	int ret = -ESTALE;
2888 
2889 	/* If alias and dentry share a parent, then no extra locks required */
2890 	if (alias->d_parent == dentry->d_parent)
2891 		goto out_unalias;
2892 
2893 	/* See lock_rename() */
2894 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2895 		goto out_err;
2896 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2897 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2898 		goto out_err;
2899 	m2 = &alias->d_parent->d_inode->i_rwsem;
2900 out_unalias:
2901 	__d_move(alias, dentry, false);
2902 	ret = 0;
2903 out_err:
2904 	if (m2)
2905 		up_read(m2);
2906 	if (m1)
2907 		mutex_unlock(m1);
2908 	return ret;
2909 }
2910 
2911 /**
2912  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2913  * @inode:  the inode which may have a disconnected dentry
2914  * @dentry: a negative dentry which we want to point to the inode.
2915  *
2916  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2917  * place of the given dentry and return it, else simply d_add the inode
2918  * to the dentry and return NULL.
2919  *
2920  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2921  * we should error out: directories can't have multiple aliases.
2922  *
2923  * This is needed in the lookup routine of any filesystem that is exportable
2924  * (via knfsd) so that we can build dcache paths to directories effectively.
2925  *
2926  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2927  * is returned.  This matches the expected return value of ->lookup.
2928  *
2929  * Cluster filesystems may call this function with a negative, hashed dentry.
2930  * In that case, we know that the inode will be a regular file, and also this
2931  * will only occur during atomic_open. So we need to check for the dentry
2932  * being already hashed only in the final case.
2933  */
2934 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2935 {
2936 	if (IS_ERR(inode))
2937 		return ERR_CAST(inode);
2938 
2939 	BUG_ON(!d_unhashed(dentry));
2940 
2941 	if (!inode)
2942 		goto out;
2943 
2944 	security_d_instantiate(dentry, inode);
2945 	spin_lock(&inode->i_lock);
2946 	if (S_ISDIR(inode->i_mode)) {
2947 		struct dentry *new = __d_find_any_alias(inode);
2948 		if (unlikely(new)) {
2949 			/* The reference to new ensures it remains an alias */
2950 			spin_unlock(&inode->i_lock);
2951 			write_seqlock(&rename_lock);
2952 			if (unlikely(d_ancestor(new, dentry))) {
2953 				write_sequnlock(&rename_lock);
2954 				dput(new);
2955 				new = ERR_PTR(-ELOOP);
2956 				pr_warn_ratelimited(
2957 					"VFS: Lookup of '%s' in %s %s"
2958 					" would have caused loop\n",
2959 					dentry->d_name.name,
2960 					inode->i_sb->s_type->name,
2961 					inode->i_sb->s_id);
2962 			} else if (!IS_ROOT(new)) {
2963 				struct dentry *old_parent = dget(new->d_parent);
2964 				int err = __d_unalias(inode, dentry, new);
2965 				write_sequnlock(&rename_lock);
2966 				if (err) {
2967 					dput(new);
2968 					new = ERR_PTR(err);
2969 				}
2970 				dput(old_parent);
2971 			} else {
2972 				__d_move(new, dentry, false);
2973 				write_sequnlock(&rename_lock);
2974 			}
2975 			iput(inode);
2976 			return new;
2977 		}
2978 	}
2979 out:
2980 	__d_add(dentry, inode);
2981 	return NULL;
2982 }
2983 EXPORT_SYMBOL(d_splice_alias);
2984 
2985 /*
2986  * Test whether new_dentry is a subdirectory of old_dentry.
2987  *
2988  * Trivially implemented using the dcache structure
2989  */
2990 
2991 /**
2992  * is_subdir - is new dentry a subdirectory of old_dentry
2993  * @new_dentry: new dentry
2994  * @old_dentry: old dentry
2995  *
2996  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
2997  * Returns false otherwise.
2998  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2999  */
3000 
3001 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3002 {
3003 	bool result;
3004 	unsigned seq;
3005 
3006 	if (new_dentry == old_dentry)
3007 		return true;
3008 
3009 	do {
3010 		/* for restarting inner loop in case of seq retry */
3011 		seq = read_seqbegin(&rename_lock);
3012 		/*
3013 		 * Need rcu_readlock to protect against the d_parent trashing
3014 		 * due to d_move
3015 		 */
3016 		rcu_read_lock();
3017 		if (d_ancestor(old_dentry, new_dentry))
3018 			result = true;
3019 		else
3020 			result = false;
3021 		rcu_read_unlock();
3022 	} while (read_seqretry(&rename_lock, seq));
3023 
3024 	return result;
3025 }
3026 EXPORT_SYMBOL(is_subdir);
3027 
3028 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3029 {
3030 	struct dentry *root = data;
3031 	if (dentry != root) {
3032 		if (d_unhashed(dentry) || !dentry->d_inode)
3033 			return D_WALK_SKIP;
3034 
3035 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3036 			dentry->d_flags |= DCACHE_GENOCIDE;
3037 			dentry->d_lockref.count--;
3038 		}
3039 	}
3040 	return D_WALK_CONTINUE;
3041 }
3042 
3043 void d_genocide(struct dentry *parent)
3044 {
3045 	d_walk(parent, parent, d_genocide_kill);
3046 }
3047 
3048 EXPORT_SYMBOL(d_genocide);
3049 
3050 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3051 {
3052 	inode_dec_link_count(inode);
3053 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3054 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3055 		!d_unlinked(dentry));
3056 	spin_lock(&dentry->d_parent->d_lock);
3057 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3058 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3059 				(unsigned long long)inode->i_ino);
3060 	spin_unlock(&dentry->d_lock);
3061 	spin_unlock(&dentry->d_parent->d_lock);
3062 	d_instantiate(dentry, inode);
3063 }
3064 EXPORT_SYMBOL(d_tmpfile);
3065 
3066 static __initdata unsigned long dhash_entries;
3067 static int __init set_dhash_entries(char *str)
3068 {
3069 	if (!str)
3070 		return 0;
3071 	dhash_entries = simple_strtoul(str, &str, 0);
3072 	return 1;
3073 }
3074 __setup("dhash_entries=", set_dhash_entries);
3075 
3076 static void __init dcache_init_early(void)
3077 {
3078 	/* If hashes are distributed across NUMA nodes, defer
3079 	 * hash allocation until vmalloc space is available.
3080 	 */
3081 	if (hashdist)
3082 		return;
3083 
3084 	dentry_hashtable =
3085 		alloc_large_system_hash("Dentry cache",
3086 					sizeof(struct hlist_bl_head),
3087 					dhash_entries,
3088 					13,
3089 					HASH_EARLY | HASH_ZERO,
3090 					&d_hash_shift,
3091 					NULL,
3092 					0,
3093 					0);
3094 	d_hash_shift = 32 - d_hash_shift;
3095 }
3096 
3097 static void __init dcache_init(void)
3098 {
3099 	/*
3100 	 * A constructor could be added for stable state like the lists,
3101 	 * but it is probably not worth it because of the cache nature
3102 	 * of the dcache.
3103 	 */
3104 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3105 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3106 		d_iname);
3107 
3108 	/* Hash may have been set up in dcache_init_early */
3109 	if (!hashdist)
3110 		return;
3111 
3112 	dentry_hashtable =
3113 		alloc_large_system_hash("Dentry cache",
3114 					sizeof(struct hlist_bl_head),
3115 					dhash_entries,
3116 					13,
3117 					HASH_ZERO,
3118 					&d_hash_shift,
3119 					NULL,
3120 					0,
3121 					0);
3122 	d_hash_shift = 32 - d_hash_shift;
3123 }
3124 
3125 /* SLAB cache for __getname() consumers */
3126 struct kmem_cache *names_cachep __read_mostly;
3127 EXPORT_SYMBOL(names_cachep);
3128 
3129 void __init vfs_caches_init_early(void)
3130 {
3131 	int i;
3132 
3133 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3134 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3135 
3136 	dcache_init_early();
3137 	inode_init_early();
3138 }
3139 
3140 void __init vfs_caches_init(void)
3141 {
3142 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3143 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3144 
3145 	dcache_init();
3146 	inode_init();
3147 	files_init();
3148 	files_maxfiles_init();
3149 	mnt_init();
3150 	bdev_cache_init();
3151 	chrdev_init();
3152 }
3153