xref: /linux/fs/dcache.c (revision a33f32244d8550da8b4a26e277ce07d5c6d158b5)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static void __d_free(struct dentry *dentry)
71 {
72 	WARN_ON(!list_empty(&dentry->d_alias));
73 	if (dname_external(dentry))
74 		kfree(dentry->d_name.name);
75 	kmem_cache_free(dentry_cache, dentry);
76 }
77 
78 static void d_callback(struct rcu_head *head)
79 {
80 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 	__d_free(dentry);
82 }
83 
84 /*
85  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
86  * inside dcache_lock.
87  */
88 static void d_free(struct dentry *dentry)
89 {
90 	if (dentry->d_op && dentry->d_op->d_release)
91 		dentry->d_op->d_release(dentry);
92 	/* if dentry was never inserted into hash, immediate free is OK */
93 	if (hlist_unhashed(&dentry->d_hash))
94 		__d_free(dentry);
95 	else
96 		call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98 
99 /*
100  * Release the dentry's inode, using the filesystem
101  * d_iput() operation if defined.
102  */
103 static void dentry_iput(struct dentry * dentry)
104 	__releases(dentry->d_lock)
105 	__releases(dcache_lock)
106 {
107 	struct inode *inode = dentry->d_inode;
108 	if (inode) {
109 		dentry->d_inode = NULL;
110 		list_del_init(&dentry->d_alias);
111 		spin_unlock(&dentry->d_lock);
112 		spin_unlock(&dcache_lock);
113 		if (!inode->i_nlink)
114 			fsnotify_inoderemove(inode);
115 		if (dentry->d_op && dentry->d_op->d_iput)
116 			dentry->d_op->d_iput(dentry, inode);
117 		else
118 			iput(inode);
119 	} else {
120 		spin_unlock(&dentry->d_lock);
121 		spin_unlock(&dcache_lock);
122 	}
123 }
124 
125 /*
126  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127  */
128 static void dentry_lru_add(struct dentry *dentry)
129 {
130 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 	dentry->d_sb->s_nr_dentry_unused++;
132 	dentry_stat.nr_unused++;
133 }
134 
135 static void dentry_lru_add_tail(struct dentry *dentry)
136 {
137 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 	dentry->d_sb->s_nr_dentry_unused++;
139 	dentry_stat.nr_unused++;
140 }
141 
142 static void dentry_lru_del(struct dentry *dentry)
143 {
144 	if (!list_empty(&dentry->d_lru)) {
145 		list_del(&dentry->d_lru);
146 		dentry->d_sb->s_nr_dentry_unused--;
147 		dentry_stat.nr_unused--;
148 	}
149 }
150 
151 static void dentry_lru_del_init(struct dentry *dentry)
152 {
153 	if (likely(!list_empty(&dentry->d_lru))) {
154 		list_del_init(&dentry->d_lru);
155 		dentry->d_sb->s_nr_dentry_unused--;
156 		dentry_stat.nr_unused--;
157 	}
158 }
159 
160 /**
161  * d_kill - kill dentry and return parent
162  * @dentry: dentry to kill
163  *
164  * The dentry must already be unhashed and removed from the LRU.
165  *
166  * If this is the root of the dentry tree, return NULL.
167  */
168 static struct dentry *d_kill(struct dentry *dentry)
169 	__releases(dentry->d_lock)
170 	__releases(dcache_lock)
171 {
172 	struct dentry *parent;
173 
174 	list_del(&dentry->d_u.d_child);
175 	dentry_stat.nr_dentry--;	/* For d_free, below */
176 	/*drops the locks, at that point nobody can reach this dentry */
177 	dentry_iput(dentry);
178 	if (IS_ROOT(dentry))
179 		parent = NULL;
180 	else
181 		parent = dentry->d_parent;
182 	d_free(dentry);
183 	return parent;
184 }
185 
186 /*
187  * This is dput
188  *
189  * This is complicated by the fact that we do not want to put
190  * dentries that are no longer on any hash chain on the unused
191  * list: we'd much rather just get rid of them immediately.
192  *
193  * However, that implies that we have to traverse the dentry
194  * tree upwards to the parents which might _also_ now be
195  * scheduled for deletion (it may have been only waiting for
196  * its last child to go away).
197  *
198  * This tail recursion is done by hand as we don't want to depend
199  * on the compiler to always get this right (gcc generally doesn't).
200  * Real recursion would eat up our stack space.
201  */
202 
203 /*
204  * dput - release a dentry
205  * @dentry: dentry to release
206  *
207  * Release a dentry. This will drop the usage count and if appropriate
208  * call the dentry unlink method as well as removing it from the queues and
209  * releasing its resources. If the parent dentries were scheduled for release
210  * they too may now get deleted.
211  *
212  * no dcache lock, please.
213  */
214 
215 void dput(struct dentry *dentry)
216 {
217 	if (!dentry)
218 		return;
219 
220 repeat:
221 	if (atomic_read(&dentry->d_count) == 1)
222 		might_sleep();
223 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 		return;
225 
226 	spin_lock(&dentry->d_lock);
227 	if (atomic_read(&dentry->d_count)) {
228 		spin_unlock(&dentry->d_lock);
229 		spin_unlock(&dcache_lock);
230 		return;
231 	}
232 
233 	/*
234 	 * AV: ->d_delete() is _NOT_ allowed to block now.
235 	 */
236 	if (dentry->d_op && dentry->d_op->d_delete) {
237 		if (dentry->d_op->d_delete(dentry))
238 			goto unhash_it;
239 	}
240 	/* Unreachable? Get rid of it */
241  	if (d_unhashed(dentry))
242 		goto kill_it;
243   	if (list_empty(&dentry->d_lru)) {
244   		dentry->d_flags |= DCACHE_REFERENCED;
245 		dentry_lru_add(dentry);
246   	}
247  	spin_unlock(&dentry->d_lock);
248 	spin_unlock(&dcache_lock);
249 	return;
250 
251 unhash_it:
252 	__d_drop(dentry);
253 kill_it:
254 	/* if dentry was on the d_lru list delete it from there */
255 	dentry_lru_del(dentry);
256 	dentry = d_kill(dentry);
257 	if (dentry)
258 		goto repeat;
259 }
260 EXPORT_SYMBOL(dput);
261 
262 /**
263  * d_invalidate - invalidate a dentry
264  * @dentry: dentry to invalidate
265  *
266  * Try to invalidate the dentry if it turns out to be
267  * possible. If there are other dentries that can be
268  * reached through this one we can't delete it and we
269  * return -EBUSY. On success we return 0.
270  *
271  * no dcache lock.
272  */
273 
274 int d_invalidate(struct dentry * dentry)
275 {
276 	/*
277 	 * If it's already been dropped, return OK.
278 	 */
279 	spin_lock(&dcache_lock);
280 	if (d_unhashed(dentry)) {
281 		spin_unlock(&dcache_lock);
282 		return 0;
283 	}
284 	/*
285 	 * Check whether to do a partial shrink_dcache
286 	 * to get rid of unused child entries.
287 	 */
288 	if (!list_empty(&dentry->d_subdirs)) {
289 		spin_unlock(&dcache_lock);
290 		shrink_dcache_parent(dentry);
291 		spin_lock(&dcache_lock);
292 	}
293 
294 	/*
295 	 * Somebody else still using it?
296 	 *
297 	 * If it's a directory, we can't drop it
298 	 * for fear of somebody re-populating it
299 	 * with children (even though dropping it
300 	 * would make it unreachable from the root,
301 	 * we might still populate it if it was a
302 	 * working directory or similar).
303 	 */
304 	spin_lock(&dentry->d_lock);
305 	if (atomic_read(&dentry->d_count) > 1) {
306 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
307 			spin_unlock(&dentry->d_lock);
308 			spin_unlock(&dcache_lock);
309 			return -EBUSY;
310 		}
311 	}
312 
313 	__d_drop(dentry);
314 	spin_unlock(&dentry->d_lock);
315 	spin_unlock(&dcache_lock);
316 	return 0;
317 }
318 EXPORT_SYMBOL(d_invalidate);
319 
320 /* This should be called _only_ with dcache_lock held */
321 
322 static inline struct dentry * __dget_locked(struct dentry *dentry)
323 {
324 	atomic_inc(&dentry->d_count);
325 	dentry_lru_del_init(dentry);
326 	return dentry;
327 }
328 
329 struct dentry * dget_locked(struct dentry *dentry)
330 {
331 	return __dget_locked(dentry);
332 }
333 EXPORT_SYMBOL(dget_locked);
334 
335 /**
336  * d_find_alias - grab a hashed alias of inode
337  * @inode: inode in question
338  * @want_discon:  flag, used by d_splice_alias, to request
339  *          that only a DISCONNECTED alias be returned.
340  *
341  * If inode has a hashed alias, or is a directory and has any alias,
342  * acquire the reference to alias and return it. Otherwise return NULL.
343  * Notice that if inode is a directory there can be only one alias and
344  * it can be unhashed only if it has no children, or if it is the root
345  * of a filesystem.
346  *
347  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
348  * any other hashed alias over that one unless @want_discon is set,
349  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
350  */
351 
352 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
353 {
354 	struct list_head *head, *next, *tmp;
355 	struct dentry *alias, *discon_alias=NULL;
356 
357 	head = &inode->i_dentry;
358 	next = inode->i_dentry.next;
359 	while (next != head) {
360 		tmp = next;
361 		next = tmp->next;
362 		prefetch(next);
363 		alias = list_entry(tmp, struct dentry, d_alias);
364  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
365 			if (IS_ROOT(alias) &&
366 			    (alias->d_flags & DCACHE_DISCONNECTED))
367 				discon_alias = alias;
368 			else if (!want_discon) {
369 				__dget_locked(alias);
370 				return alias;
371 			}
372 		}
373 	}
374 	if (discon_alias)
375 		__dget_locked(discon_alias);
376 	return discon_alias;
377 }
378 
379 struct dentry * d_find_alias(struct inode *inode)
380 {
381 	struct dentry *de = NULL;
382 
383 	if (!list_empty(&inode->i_dentry)) {
384 		spin_lock(&dcache_lock);
385 		de = __d_find_alias(inode, 0);
386 		spin_unlock(&dcache_lock);
387 	}
388 	return de;
389 }
390 EXPORT_SYMBOL(d_find_alias);
391 
392 /*
393  *	Try to kill dentries associated with this inode.
394  * WARNING: you must own a reference to inode.
395  */
396 void d_prune_aliases(struct inode *inode)
397 {
398 	struct dentry *dentry;
399 restart:
400 	spin_lock(&dcache_lock);
401 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
402 		spin_lock(&dentry->d_lock);
403 		if (!atomic_read(&dentry->d_count)) {
404 			__dget_locked(dentry);
405 			__d_drop(dentry);
406 			spin_unlock(&dentry->d_lock);
407 			spin_unlock(&dcache_lock);
408 			dput(dentry);
409 			goto restart;
410 		}
411 		spin_unlock(&dentry->d_lock);
412 	}
413 	spin_unlock(&dcache_lock);
414 }
415 EXPORT_SYMBOL(d_prune_aliases);
416 
417 /*
418  * Throw away a dentry - free the inode, dput the parent.  This requires that
419  * the LRU list has already been removed.
420  *
421  * Try to prune ancestors as well.  This is necessary to prevent
422  * quadratic behavior of shrink_dcache_parent(), but is also expected
423  * to be beneficial in reducing dentry cache fragmentation.
424  */
425 static void prune_one_dentry(struct dentry * dentry)
426 	__releases(dentry->d_lock)
427 	__releases(dcache_lock)
428 	__acquires(dcache_lock)
429 {
430 	__d_drop(dentry);
431 	dentry = d_kill(dentry);
432 
433 	/*
434 	 * Prune ancestors.  Locking is simpler than in dput(),
435 	 * because dcache_lock needs to be taken anyway.
436 	 */
437 	spin_lock(&dcache_lock);
438 	while (dentry) {
439 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
440 			return;
441 
442 		if (dentry->d_op && dentry->d_op->d_delete)
443 			dentry->d_op->d_delete(dentry);
444 		dentry_lru_del_init(dentry);
445 		__d_drop(dentry);
446 		dentry = d_kill(dentry);
447 		spin_lock(&dcache_lock);
448 	}
449 }
450 
451 /*
452  * Shrink the dentry LRU on a given superblock.
453  * @sb   : superblock to shrink dentry LRU.
454  * @count: If count is NULL, we prune all dentries on superblock.
455  * @flags: If flags is non-zero, we need to do special processing based on
456  * which flags are set. This means we don't need to maintain multiple
457  * similar copies of this loop.
458  */
459 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
460 {
461 	LIST_HEAD(referenced);
462 	LIST_HEAD(tmp);
463 	struct dentry *dentry;
464 	int cnt = 0;
465 
466 	BUG_ON(!sb);
467 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
468 	spin_lock(&dcache_lock);
469 	if (count != NULL)
470 		/* called from prune_dcache() and shrink_dcache_parent() */
471 		cnt = *count;
472 restart:
473 	if (count == NULL)
474 		list_splice_init(&sb->s_dentry_lru, &tmp);
475 	else {
476 		while (!list_empty(&sb->s_dentry_lru)) {
477 			dentry = list_entry(sb->s_dentry_lru.prev,
478 					struct dentry, d_lru);
479 			BUG_ON(dentry->d_sb != sb);
480 
481 			spin_lock(&dentry->d_lock);
482 			/*
483 			 * If we are honouring the DCACHE_REFERENCED flag and
484 			 * the dentry has this flag set, don't free it. Clear
485 			 * the flag and put it back on the LRU.
486 			 */
487 			if ((flags & DCACHE_REFERENCED)
488 				&& (dentry->d_flags & DCACHE_REFERENCED)) {
489 				dentry->d_flags &= ~DCACHE_REFERENCED;
490 				list_move(&dentry->d_lru, &referenced);
491 				spin_unlock(&dentry->d_lock);
492 			} else {
493 				list_move_tail(&dentry->d_lru, &tmp);
494 				spin_unlock(&dentry->d_lock);
495 				cnt--;
496 				if (!cnt)
497 					break;
498 			}
499 			cond_resched_lock(&dcache_lock);
500 		}
501 	}
502 	while (!list_empty(&tmp)) {
503 		dentry = list_entry(tmp.prev, struct dentry, d_lru);
504 		dentry_lru_del_init(dentry);
505 		spin_lock(&dentry->d_lock);
506 		/*
507 		 * We found an inuse dentry which was not removed from
508 		 * the LRU because of laziness during lookup.  Do not free
509 		 * it - just keep it off the LRU list.
510 		 */
511 		if (atomic_read(&dentry->d_count)) {
512 			spin_unlock(&dentry->d_lock);
513 			continue;
514 		}
515 		prune_one_dentry(dentry);
516 		/* dentry->d_lock was dropped in prune_one_dentry() */
517 		cond_resched_lock(&dcache_lock);
518 	}
519 	if (count == NULL && !list_empty(&sb->s_dentry_lru))
520 		goto restart;
521 	if (count != NULL)
522 		*count = cnt;
523 	if (!list_empty(&referenced))
524 		list_splice(&referenced, &sb->s_dentry_lru);
525 	spin_unlock(&dcache_lock);
526 }
527 
528 /**
529  * prune_dcache - shrink the dcache
530  * @count: number of entries to try to free
531  *
532  * Shrink the dcache. This is done when we need more memory, or simply when we
533  * need to unmount something (at which point we need to unuse all dentries).
534  *
535  * This function may fail to free any resources if all the dentries are in use.
536  */
537 static void prune_dcache(int count)
538 {
539 	struct super_block *sb;
540 	int w_count;
541 	int unused = dentry_stat.nr_unused;
542 	int prune_ratio;
543 	int pruned;
544 
545 	if (unused == 0 || count == 0)
546 		return;
547 	spin_lock(&dcache_lock);
548 restart:
549 	if (count >= unused)
550 		prune_ratio = 1;
551 	else
552 		prune_ratio = unused / count;
553 	spin_lock(&sb_lock);
554 	list_for_each_entry(sb, &super_blocks, s_list) {
555 		if (sb->s_nr_dentry_unused == 0)
556 			continue;
557 		sb->s_count++;
558 		/* Now, we reclaim unused dentrins with fairness.
559 		 * We reclaim them same percentage from each superblock.
560 		 * We calculate number of dentries to scan on this sb
561 		 * as follows, but the implementation is arranged to avoid
562 		 * overflows:
563 		 * number of dentries to scan on this sb =
564 		 * count * (number of dentries on this sb /
565 		 * number of dentries in the machine)
566 		 */
567 		spin_unlock(&sb_lock);
568 		if (prune_ratio != 1)
569 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
570 		else
571 			w_count = sb->s_nr_dentry_unused;
572 		pruned = w_count;
573 		/*
574 		 * We need to be sure this filesystem isn't being unmounted,
575 		 * otherwise we could race with generic_shutdown_super(), and
576 		 * end up holding a reference to an inode while the filesystem
577 		 * is unmounted.  So we try to get s_umount, and make sure
578 		 * s_root isn't NULL.
579 		 */
580 		if (down_read_trylock(&sb->s_umount)) {
581 			if ((sb->s_root != NULL) &&
582 			    (!list_empty(&sb->s_dentry_lru))) {
583 				spin_unlock(&dcache_lock);
584 				__shrink_dcache_sb(sb, &w_count,
585 						DCACHE_REFERENCED);
586 				pruned -= w_count;
587 				spin_lock(&dcache_lock);
588 			}
589 			up_read(&sb->s_umount);
590 		}
591 		spin_lock(&sb_lock);
592 		count -= pruned;
593 		/*
594 		 * restart only when sb is no longer on the list and
595 		 * we have more work to do.
596 		 */
597 		if (__put_super_and_need_restart(sb) && count > 0) {
598 			spin_unlock(&sb_lock);
599 			goto restart;
600 		}
601 	}
602 	spin_unlock(&sb_lock);
603 	spin_unlock(&dcache_lock);
604 }
605 
606 /**
607  * shrink_dcache_sb - shrink dcache for a superblock
608  * @sb: superblock
609  *
610  * Shrink the dcache for the specified super block. This
611  * is used to free the dcache before unmounting a file
612  * system
613  */
614 void shrink_dcache_sb(struct super_block * sb)
615 {
616 	__shrink_dcache_sb(sb, NULL, 0);
617 }
618 EXPORT_SYMBOL(shrink_dcache_sb);
619 
620 /*
621  * destroy a single subtree of dentries for unmount
622  * - see the comments on shrink_dcache_for_umount() for a description of the
623  *   locking
624  */
625 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
626 {
627 	struct dentry *parent;
628 	unsigned detached = 0;
629 
630 	BUG_ON(!IS_ROOT(dentry));
631 
632 	/* detach this root from the system */
633 	spin_lock(&dcache_lock);
634 	dentry_lru_del_init(dentry);
635 	__d_drop(dentry);
636 	spin_unlock(&dcache_lock);
637 
638 	for (;;) {
639 		/* descend to the first leaf in the current subtree */
640 		while (!list_empty(&dentry->d_subdirs)) {
641 			struct dentry *loop;
642 
643 			/* this is a branch with children - detach all of them
644 			 * from the system in one go */
645 			spin_lock(&dcache_lock);
646 			list_for_each_entry(loop, &dentry->d_subdirs,
647 					    d_u.d_child) {
648 				dentry_lru_del_init(loop);
649 				__d_drop(loop);
650 				cond_resched_lock(&dcache_lock);
651 			}
652 			spin_unlock(&dcache_lock);
653 
654 			/* move to the first child */
655 			dentry = list_entry(dentry->d_subdirs.next,
656 					    struct dentry, d_u.d_child);
657 		}
658 
659 		/* consume the dentries from this leaf up through its parents
660 		 * until we find one with children or run out altogether */
661 		do {
662 			struct inode *inode;
663 
664 			if (atomic_read(&dentry->d_count) != 0) {
665 				printk(KERN_ERR
666 				       "BUG: Dentry %p{i=%lx,n=%s}"
667 				       " still in use (%d)"
668 				       " [unmount of %s %s]\n",
669 				       dentry,
670 				       dentry->d_inode ?
671 				       dentry->d_inode->i_ino : 0UL,
672 				       dentry->d_name.name,
673 				       atomic_read(&dentry->d_count),
674 				       dentry->d_sb->s_type->name,
675 				       dentry->d_sb->s_id);
676 				BUG();
677 			}
678 
679 			if (IS_ROOT(dentry))
680 				parent = NULL;
681 			else {
682 				parent = dentry->d_parent;
683 				atomic_dec(&parent->d_count);
684 			}
685 
686 			list_del(&dentry->d_u.d_child);
687 			detached++;
688 
689 			inode = dentry->d_inode;
690 			if (inode) {
691 				dentry->d_inode = NULL;
692 				list_del_init(&dentry->d_alias);
693 				if (dentry->d_op && dentry->d_op->d_iput)
694 					dentry->d_op->d_iput(dentry, inode);
695 				else
696 					iput(inode);
697 			}
698 
699 			d_free(dentry);
700 
701 			/* finished when we fall off the top of the tree,
702 			 * otherwise we ascend to the parent and move to the
703 			 * next sibling if there is one */
704 			if (!parent)
705 				goto out;
706 
707 			dentry = parent;
708 
709 		} while (list_empty(&dentry->d_subdirs));
710 
711 		dentry = list_entry(dentry->d_subdirs.next,
712 				    struct dentry, d_u.d_child);
713 	}
714 out:
715 	/* several dentries were freed, need to correct nr_dentry */
716 	spin_lock(&dcache_lock);
717 	dentry_stat.nr_dentry -= detached;
718 	spin_unlock(&dcache_lock);
719 }
720 
721 /*
722  * destroy the dentries attached to a superblock on unmounting
723  * - we don't need to use dentry->d_lock, and only need dcache_lock when
724  *   removing the dentry from the system lists and hashes because:
725  *   - the superblock is detached from all mountings and open files, so the
726  *     dentry trees will not be rearranged by the VFS
727  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
728  *     any dentries belonging to this superblock that it comes across
729  *   - the filesystem itself is no longer permitted to rearrange the dentries
730  *     in this superblock
731  */
732 void shrink_dcache_for_umount(struct super_block *sb)
733 {
734 	struct dentry *dentry;
735 
736 	if (down_read_trylock(&sb->s_umount))
737 		BUG();
738 
739 	dentry = sb->s_root;
740 	sb->s_root = NULL;
741 	atomic_dec(&dentry->d_count);
742 	shrink_dcache_for_umount_subtree(dentry);
743 
744 	while (!hlist_empty(&sb->s_anon)) {
745 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
746 		shrink_dcache_for_umount_subtree(dentry);
747 	}
748 }
749 
750 /*
751  * Search for at least 1 mount point in the dentry's subdirs.
752  * We descend to the next level whenever the d_subdirs
753  * list is non-empty and continue searching.
754  */
755 
756 /**
757  * have_submounts - check for mounts over a dentry
758  * @parent: dentry to check.
759  *
760  * Return true if the parent or its subdirectories contain
761  * a mount point
762  */
763 
764 int have_submounts(struct dentry *parent)
765 {
766 	struct dentry *this_parent = parent;
767 	struct list_head *next;
768 
769 	spin_lock(&dcache_lock);
770 	if (d_mountpoint(parent))
771 		goto positive;
772 repeat:
773 	next = this_parent->d_subdirs.next;
774 resume:
775 	while (next != &this_parent->d_subdirs) {
776 		struct list_head *tmp = next;
777 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
778 		next = tmp->next;
779 		/* Have we found a mount point ? */
780 		if (d_mountpoint(dentry))
781 			goto positive;
782 		if (!list_empty(&dentry->d_subdirs)) {
783 			this_parent = dentry;
784 			goto repeat;
785 		}
786 	}
787 	/*
788 	 * All done at this level ... ascend and resume the search.
789 	 */
790 	if (this_parent != parent) {
791 		next = this_parent->d_u.d_child.next;
792 		this_parent = this_parent->d_parent;
793 		goto resume;
794 	}
795 	spin_unlock(&dcache_lock);
796 	return 0; /* No mount points found in tree */
797 positive:
798 	spin_unlock(&dcache_lock);
799 	return 1;
800 }
801 EXPORT_SYMBOL(have_submounts);
802 
803 /*
804  * Search the dentry child list for the specified parent,
805  * and move any unused dentries to the end of the unused
806  * list for prune_dcache(). We descend to the next level
807  * whenever the d_subdirs list is non-empty and continue
808  * searching.
809  *
810  * It returns zero iff there are no unused children,
811  * otherwise  it returns the number of children moved to
812  * the end of the unused list. This may not be the total
813  * number of unused children, because select_parent can
814  * drop the lock and return early due to latency
815  * constraints.
816  */
817 static int select_parent(struct dentry * parent)
818 {
819 	struct dentry *this_parent = parent;
820 	struct list_head *next;
821 	int found = 0;
822 
823 	spin_lock(&dcache_lock);
824 repeat:
825 	next = this_parent->d_subdirs.next;
826 resume:
827 	while (next != &this_parent->d_subdirs) {
828 		struct list_head *tmp = next;
829 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
830 		next = tmp->next;
831 
832 		dentry_lru_del_init(dentry);
833 		/*
834 		 * move only zero ref count dentries to the end
835 		 * of the unused list for prune_dcache
836 		 */
837 		if (!atomic_read(&dentry->d_count)) {
838 			dentry_lru_add_tail(dentry);
839 			found++;
840 		}
841 
842 		/*
843 		 * We can return to the caller if we have found some (this
844 		 * ensures forward progress). We'll be coming back to find
845 		 * the rest.
846 		 */
847 		if (found && need_resched())
848 			goto out;
849 
850 		/*
851 		 * Descend a level if the d_subdirs list is non-empty.
852 		 */
853 		if (!list_empty(&dentry->d_subdirs)) {
854 			this_parent = dentry;
855 			goto repeat;
856 		}
857 	}
858 	/*
859 	 * All done at this level ... ascend and resume the search.
860 	 */
861 	if (this_parent != parent) {
862 		next = this_parent->d_u.d_child.next;
863 		this_parent = this_parent->d_parent;
864 		goto resume;
865 	}
866 out:
867 	spin_unlock(&dcache_lock);
868 	return found;
869 }
870 
871 /**
872  * shrink_dcache_parent - prune dcache
873  * @parent: parent of entries to prune
874  *
875  * Prune the dcache to remove unused children of the parent dentry.
876  */
877 
878 void shrink_dcache_parent(struct dentry * parent)
879 {
880 	struct super_block *sb = parent->d_sb;
881 	int found;
882 
883 	while ((found = select_parent(parent)) != 0)
884 		__shrink_dcache_sb(sb, &found, 0);
885 }
886 EXPORT_SYMBOL(shrink_dcache_parent);
887 
888 /*
889  * Scan `nr' dentries and return the number which remain.
890  *
891  * We need to avoid reentering the filesystem if the caller is performing a
892  * GFP_NOFS allocation attempt.  One example deadlock is:
893  *
894  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
895  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
896  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
897  *
898  * In this case we return -1 to tell the caller that we baled.
899  */
900 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
901 {
902 	if (nr) {
903 		if (!(gfp_mask & __GFP_FS))
904 			return -1;
905 		prune_dcache(nr);
906 	}
907 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
908 }
909 
910 static struct shrinker dcache_shrinker = {
911 	.shrink = shrink_dcache_memory,
912 	.seeks = DEFAULT_SEEKS,
913 };
914 
915 /**
916  * d_alloc	-	allocate a dcache entry
917  * @parent: parent of entry to allocate
918  * @name: qstr of the name
919  *
920  * Allocates a dentry. It returns %NULL if there is insufficient memory
921  * available. On a success the dentry is returned. The name passed in is
922  * copied and the copy passed in may be reused after this call.
923  */
924 
925 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
926 {
927 	struct dentry *dentry;
928 	char *dname;
929 
930 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
931 	if (!dentry)
932 		return NULL;
933 
934 	if (name->len > DNAME_INLINE_LEN-1) {
935 		dname = kmalloc(name->len + 1, GFP_KERNEL);
936 		if (!dname) {
937 			kmem_cache_free(dentry_cache, dentry);
938 			return NULL;
939 		}
940 	} else  {
941 		dname = dentry->d_iname;
942 	}
943 	dentry->d_name.name = dname;
944 
945 	dentry->d_name.len = name->len;
946 	dentry->d_name.hash = name->hash;
947 	memcpy(dname, name->name, name->len);
948 	dname[name->len] = 0;
949 
950 	atomic_set(&dentry->d_count, 1);
951 	dentry->d_flags = DCACHE_UNHASHED;
952 	spin_lock_init(&dentry->d_lock);
953 	dentry->d_inode = NULL;
954 	dentry->d_parent = NULL;
955 	dentry->d_sb = NULL;
956 	dentry->d_op = NULL;
957 	dentry->d_fsdata = NULL;
958 	dentry->d_mounted = 0;
959 	INIT_HLIST_NODE(&dentry->d_hash);
960 	INIT_LIST_HEAD(&dentry->d_lru);
961 	INIT_LIST_HEAD(&dentry->d_subdirs);
962 	INIT_LIST_HEAD(&dentry->d_alias);
963 
964 	if (parent) {
965 		dentry->d_parent = dget(parent);
966 		dentry->d_sb = parent->d_sb;
967 	} else {
968 		INIT_LIST_HEAD(&dentry->d_u.d_child);
969 	}
970 
971 	spin_lock(&dcache_lock);
972 	if (parent)
973 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
974 	dentry_stat.nr_dentry++;
975 	spin_unlock(&dcache_lock);
976 
977 	return dentry;
978 }
979 EXPORT_SYMBOL(d_alloc);
980 
981 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
982 {
983 	struct qstr q;
984 
985 	q.name = name;
986 	q.len = strlen(name);
987 	q.hash = full_name_hash(q.name, q.len);
988 	return d_alloc(parent, &q);
989 }
990 EXPORT_SYMBOL(d_alloc_name);
991 
992 /* the caller must hold dcache_lock */
993 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
994 {
995 	if (inode)
996 		list_add(&dentry->d_alias, &inode->i_dentry);
997 	dentry->d_inode = inode;
998 	fsnotify_d_instantiate(dentry, inode);
999 }
1000 
1001 /**
1002  * d_instantiate - fill in inode information for a dentry
1003  * @entry: dentry to complete
1004  * @inode: inode to attach to this dentry
1005  *
1006  * Fill in inode information in the entry.
1007  *
1008  * This turns negative dentries into productive full members
1009  * of society.
1010  *
1011  * NOTE! This assumes that the inode count has been incremented
1012  * (or otherwise set) by the caller to indicate that it is now
1013  * in use by the dcache.
1014  */
1015 
1016 void d_instantiate(struct dentry *entry, struct inode * inode)
1017 {
1018 	BUG_ON(!list_empty(&entry->d_alias));
1019 	spin_lock(&dcache_lock);
1020 	__d_instantiate(entry, inode);
1021 	spin_unlock(&dcache_lock);
1022 	security_d_instantiate(entry, inode);
1023 }
1024 EXPORT_SYMBOL(d_instantiate);
1025 
1026 /**
1027  * d_instantiate_unique - instantiate a non-aliased dentry
1028  * @entry: dentry to instantiate
1029  * @inode: inode to attach to this dentry
1030  *
1031  * Fill in inode information in the entry. On success, it returns NULL.
1032  * If an unhashed alias of "entry" already exists, then we return the
1033  * aliased dentry instead and drop one reference to inode.
1034  *
1035  * Note that in order to avoid conflicts with rename() etc, the caller
1036  * had better be holding the parent directory semaphore.
1037  *
1038  * This also assumes that the inode count has been incremented
1039  * (or otherwise set) by the caller to indicate that it is now
1040  * in use by the dcache.
1041  */
1042 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1043 					     struct inode *inode)
1044 {
1045 	struct dentry *alias;
1046 	int len = entry->d_name.len;
1047 	const char *name = entry->d_name.name;
1048 	unsigned int hash = entry->d_name.hash;
1049 
1050 	if (!inode) {
1051 		__d_instantiate(entry, NULL);
1052 		return NULL;
1053 	}
1054 
1055 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1056 		struct qstr *qstr = &alias->d_name;
1057 
1058 		if (qstr->hash != hash)
1059 			continue;
1060 		if (alias->d_parent != entry->d_parent)
1061 			continue;
1062 		if (qstr->len != len)
1063 			continue;
1064 		if (memcmp(qstr->name, name, len))
1065 			continue;
1066 		dget_locked(alias);
1067 		return alias;
1068 	}
1069 
1070 	__d_instantiate(entry, inode);
1071 	return NULL;
1072 }
1073 
1074 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1075 {
1076 	struct dentry *result;
1077 
1078 	BUG_ON(!list_empty(&entry->d_alias));
1079 
1080 	spin_lock(&dcache_lock);
1081 	result = __d_instantiate_unique(entry, inode);
1082 	spin_unlock(&dcache_lock);
1083 
1084 	if (!result) {
1085 		security_d_instantiate(entry, inode);
1086 		return NULL;
1087 	}
1088 
1089 	BUG_ON(!d_unhashed(result));
1090 	iput(inode);
1091 	return result;
1092 }
1093 
1094 EXPORT_SYMBOL(d_instantiate_unique);
1095 
1096 /**
1097  * d_alloc_root - allocate root dentry
1098  * @root_inode: inode to allocate the root for
1099  *
1100  * Allocate a root ("/") dentry for the inode given. The inode is
1101  * instantiated and returned. %NULL is returned if there is insufficient
1102  * memory or the inode passed is %NULL.
1103  */
1104 
1105 struct dentry * d_alloc_root(struct inode * root_inode)
1106 {
1107 	struct dentry *res = NULL;
1108 
1109 	if (root_inode) {
1110 		static const struct qstr name = { .name = "/", .len = 1 };
1111 
1112 		res = d_alloc(NULL, &name);
1113 		if (res) {
1114 			res->d_sb = root_inode->i_sb;
1115 			res->d_parent = res;
1116 			d_instantiate(res, root_inode);
1117 		}
1118 	}
1119 	return res;
1120 }
1121 EXPORT_SYMBOL(d_alloc_root);
1122 
1123 static inline struct hlist_head *d_hash(struct dentry *parent,
1124 					unsigned long hash)
1125 {
1126 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1127 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1128 	return dentry_hashtable + (hash & D_HASHMASK);
1129 }
1130 
1131 /**
1132  * d_obtain_alias - find or allocate a dentry for a given inode
1133  * @inode: inode to allocate the dentry for
1134  *
1135  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1136  * similar open by handle operations.  The returned dentry may be anonymous,
1137  * or may have a full name (if the inode was already in the cache).
1138  *
1139  * When called on a directory inode, we must ensure that the inode only ever
1140  * has one dentry.  If a dentry is found, that is returned instead of
1141  * allocating a new one.
1142  *
1143  * On successful return, the reference to the inode has been transferred
1144  * to the dentry.  In case of an error the reference on the inode is released.
1145  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1146  * be passed in and will be the error will be propagate to the return value,
1147  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1148  */
1149 struct dentry *d_obtain_alias(struct inode *inode)
1150 {
1151 	static const struct qstr anonstring = { .name = "" };
1152 	struct dentry *tmp;
1153 	struct dentry *res;
1154 
1155 	if (!inode)
1156 		return ERR_PTR(-ESTALE);
1157 	if (IS_ERR(inode))
1158 		return ERR_CAST(inode);
1159 
1160 	res = d_find_alias(inode);
1161 	if (res)
1162 		goto out_iput;
1163 
1164 	tmp = d_alloc(NULL, &anonstring);
1165 	if (!tmp) {
1166 		res = ERR_PTR(-ENOMEM);
1167 		goto out_iput;
1168 	}
1169 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1170 
1171 	spin_lock(&dcache_lock);
1172 	res = __d_find_alias(inode, 0);
1173 	if (res) {
1174 		spin_unlock(&dcache_lock);
1175 		dput(tmp);
1176 		goto out_iput;
1177 	}
1178 
1179 	/* attach a disconnected dentry */
1180 	spin_lock(&tmp->d_lock);
1181 	tmp->d_sb = inode->i_sb;
1182 	tmp->d_inode = inode;
1183 	tmp->d_flags |= DCACHE_DISCONNECTED;
1184 	tmp->d_flags &= ~DCACHE_UNHASHED;
1185 	list_add(&tmp->d_alias, &inode->i_dentry);
1186 	hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1187 	spin_unlock(&tmp->d_lock);
1188 
1189 	spin_unlock(&dcache_lock);
1190 	return tmp;
1191 
1192  out_iput:
1193 	iput(inode);
1194 	return res;
1195 }
1196 EXPORT_SYMBOL(d_obtain_alias);
1197 
1198 /**
1199  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1200  * @inode:  the inode which may have a disconnected dentry
1201  * @dentry: a negative dentry which we want to point to the inode.
1202  *
1203  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1204  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1205  * and return it, else simply d_add the inode to the dentry and return NULL.
1206  *
1207  * This is needed in the lookup routine of any filesystem that is exportable
1208  * (via knfsd) so that we can build dcache paths to directories effectively.
1209  *
1210  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1211  * is returned.  This matches the expected return value of ->lookup.
1212  *
1213  */
1214 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1215 {
1216 	struct dentry *new = NULL;
1217 
1218 	if (inode && S_ISDIR(inode->i_mode)) {
1219 		spin_lock(&dcache_lock);
1220 		new = __d_find_alias(inode, 1);
1221 		if (new) {
1222 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1223 			spin_unlock(&dcache_lock);
1224 			security_d_instantiate(new, inode);
1225 			d_move(new, dentry);
1226 			iput(inode);
1227 		} else {
1228 			/* already taking dcache_lock, so d_add() by hand */
1229 			__d_instantiate(dentry, inode);
1230 			spin_unlock(&dcache_lock);
1231 			security_d_instantiate(dentry, inode);
1232 			d_rehash(dentry);
1233 		}
1234 	} else
1235 		d_add(dentry, inode);
1236 	return new;
1237 }
1238 EXPORT_SYMBOL(d_splice_alias);
1239 
1240 /**
1241  * d_add_ci - lookup or allocate new dentry with case-exact name
1242  * @inode:  the inode case-insensitive lookup has found
1243  * @dentry: the negative dentry that was passed to the parent's lookup func
1244  * @name:   the case-exact name to be associated with the returned dentry
1245  *
1246  * This is to avoid filling the dcache with case-insensitive names to the
1247  * same inode, only the actual correct case is stored in the dcache for
1248  * case-insensitive filesystems.
1249  *
1250  * For a case-insensitive lookup match and if the the case-exact dentry
1251  * already exists in in the dcache, use it and return it.
1252  *
1253  * If no entry exists with the exact case name, allocate new dentry with
1254  * the exact case, and return the spliced entry.
1255  */
1256 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1257 			struct qstr *name)
1258 {
1259 	int error;
1260 	struct dentry *found;
1261 	struct dentry *new;
1262 
1263 	/*
1264 	 * First check if a dentry matching the name already exists,
1265 	 * if not go ahead and create it now.
1266 	 */
1267 	found = d_hash_and_lookup(dentry->d_parent, name);
1268 	if (!found) {
1269 		new = d_alloc(dentry->d_parent, name);
1270 		if (!new) {
1271 			error = -ENOMEM;
1272 			goto err_out;
1273 		}
1274 
1275 		found = d_splice_alias(inode, new);
1276 		if (found) {
1277 			dput(new);
1278 			return found;
1279 		}
1280 		return new;
1281 	}
1282 
1283 	/*
1284 	 * If a matching dentry exists, and it's not negative use it.
1285 	 *
1286 	 * Decrement the reference count to balance the iget() done
1287 	 * earlier on.
1288 	 */
1289 	if (found->d_inode) {
1290 		if (unlikely(found->d_inode != inode)) {
1291 			/* This can't happen because bad inodes are unhashed. */
1292 			BUG_ON(!is_bad_inode(inode));
1293 			BUG_ON(!is_bad_inode(found->d_inode));
1294 		}
1295 		iput(inode);
1296 		return found;
1297 	}
1298 
1299 	/*
1300 	 * Negative dentry: instantiate it unless the inode is a directory and
1301 	 * already has a dentry.
1302 	 */
1303 	spin_lock(&dcache_lock);
1304 	if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1305 		__d_instantiate(found, inode);
1306 		spin_unlock(&dcache_lock);
1307 		security_d_instantiate(found, inode);
1308 		return found;
1309 	}
1310 
1311 	/*
1312 	 * In case a directory already has a (disconnected) entry grab a
1313 	 * reference to it, move it in place and use it.
1314 	 */
1315 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1316 	dget_locked(new);
1317 	spin_unlock(&dcache_lock);
1318 	security_d_instantiate(found, inode);
1319 	d_move(new, found);
1320 	iput(inode);
1321 	dput(found);
1322 	return new;
1323 
1324 err_out:
1325 	iput(inode);
1326 	return ERR_PTR(error);
1327 }
1328 EXPORT_SYMBOL(d_add_ci);
1329 
1330 /**
1331  * d_lookup - search for a dentry
1332  * @parent: parent dentry
1333  * @name: qstr of name we wish to find
1334  *
1335  * Searches the children of the parent dentry for the name in question. If
1336  * the dentry is found its reference count is incremented and the dentry
1337  * is returned. The caller must use dput to free the entry when it has
1338  * finished using it. %NULL is returned on failure.
1339  *
1340  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1341  * Memory barriers are used while updating and doing lockless traversal.
1342  * To avoid races with d_move while rename is happening, d_lock is used.
1343  *
1344  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1345  * and name pointer in one structure pointed by d_qstr.
1346  *
1347  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1348  * lookup is going on.
1349  *
1350  * The dentry unused LRU is not updated even if lookup finds the required dentry
1351  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1352  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1353  * acquisition.
1354  *
1355  * d_lookup() is protected against the concurrent renames in some unrelated
1356  * directory using the seqlockt_t rename_lock.
1357  */
1358 
1359 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1360 {
1361 	struct dentry * dentry = NULL;
1362 	unsigned long seq;
1363 
1364         do {
1365                 seq = read_seqbegin(&rename_lock);
1366                 dentry = __d_lookup(parent, name);
1367                 if (dentry)
1368 			break;
1369 	} while (read_seqretry(&rename_lock, seq));
1370 	return dentry;
1371 }
1372 EXPORT_SYMBOL(d_lookup);
1373 
1374 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1375 {
1376 	unsigned int len = name->len;
1377 	unsigned int hash = name->hash;
1378 	const unsigned char *str = name->name;
1379 	struct hlist_head *head = d_hash(parent,hash);
1380 	struct dentry *found = NULL;
1381 	struct hlist_node *node;
1382 	struct dentry *dentry;
1383 
1384 	rcu_read_lock();
1385 
1386 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1387 		struct qstr *qstr;
1388 
1389 		if (dentry->d_name.hash != hash)
1390 			continue;
1391 		if (dentry->d_parent != parent)
1392 			continue;
1393 
1394 		spin_lock(&dentry->d_lock);
1395 
1396 		/*
1397 		 * Recheck the dentry after taking the lock - d_move may have
1398 		 * changed things.  Don't bother checking the hash because we're
1399 		 * about to compare the whole name anyway.
1400 		 */
1401 		if (dentry->d_parent != parent)
1402 			goto next;
1403 
1404 		/* non-existing due to RCU? */
1405 		if (d_unhashed(dentry))
1406 			goto next;
1407 
1408 		/*
1409 		 * It is safe to compare names since d_move() cannot
1410 		 * change the qstr (protected by d_lock).
1411 		 */
1412 		qstr = &dentry->d_name;
1413 		if (parent->d_op && parent->d_op->d_compare) {
1414 			if (parent->d_op->d_compare(parent, qstr, name))
1415 				goto next;
1416 		} else {
1417 			if (qstr->len != len)
1418 				goto next;
1419 			if (memcmp(qstr->name, str, len))
1420 				goto next;
1421 		}
1422 
1423 		atomic_inc(&dentry->d_count);
1424 		found = dentry;
1425 		spin_unlock(&dentry->d_lock);
1426 		break;
1427 next:
1428 		spin_unlock(&dentry->d_lock);
1429  	}
1430  	rcu_read_unlock();
1431 
1432  	return found;
1433 }
1434 
1435 /**
1436  * d_hash_and_lookup - hash the qstr then search for a dentry
1437  * @dir: Directory to search in
1438  * @name: qstr of name we wish to find
1439  *
1440  * On hash failure or on lookup failure NULL is returned.
1441  */
1442 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1443 {
1444 	struct dentry *dentry = NULL;
1445 
1446 	/*
1447 	 * Check for a fs-specific hash function. Note that we must
1448 	 * calculate the standard hash first, as the d_op->d_hash()
1449 	 * routine may choose to leave the hash value unchanged.
1450 	 */
1451 	name->hash = full_name_hash(name->name, name->len);
1452 	if (dir->d_op && dir->d_op->d_hash) {
1453 		if (dir->d_op->d_hash(dir, name) < 0)
1454 			goto out;
1455 	}
1456 	dentry = d_lookup(dir, name);
1457 out:
1458 	return dentry;
1459 }
1460 
1461 /**
1462  * d_validate - verify dentry provided from insecure source
1463  * @dentry: The dentry alleged to be valid child of @dparent
1464  * @dparent: The parent dentry (known to be valid)
1465  *
1466  * An insecure source has sent us a dentry, here we verify it and dget() it.
1467  * This is used by ncpfs in its readdir implementation.
1468  * Zero is returned in the dentry is invalid.
1469  */
1470 
1471 int d_validate(struct dentry *dentry, struct dentry *dparent)
1472 {
1473 	struct hlist_head *base;
1474 	struct hlist_node *lhp;
1475 
1476 	/* Check whether the ptr might be valid at all.. */
1477 	if (!kmem_ptr_validate(dentry_cache, dentry))
1478 		goto out;
1479 
1480 	if (dentry->d_parent != dparent)
1481 		goto out;
1482 
1483 	spin_lock(&dcache_lock);
1484 	base = d_hash(dparent, dentry->d_name.hash);
1485 	hlist_for_each(lhp,base) {
1486 		/* hlist_for_each_entry_rcu() not required for d_hash list
1487 		 * as it is parsed under dcache_lock
1488 		 */
1489 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1490 			__dget_locked(dentry);
1491 			spin_unlock(&dcache_lock);
1492 			return 1;
1493 		}
1494 	}
1495 	spin_unlock(&dcache_lock);
1496 out:
1497 	return 0;
1498 }
1499 EXPORT_SYMBOL(d_validate);
1500 
1501 /*
1502  * When a file is deleted, we have two options:
1503  * - turn this dentry into a negative dentry
1504  * - unhash this dentry and free it.
1505  *
1506  * Usually, we want to just turn this into
1507  * a negative dentry, but if anybody else is
1508  * currently using the dentry or the inode
1509  * we can't do that and we fall back on removing
1510  * it from the hash queues and waiting for
1511  * it to be deleted later when it has no users
1512  */
1513 
1514 /**
1515  * d_delete - delete a dentry
1516  * @dentry: The dentry to delete
1517  *
1518  * Turn the dentry into a negative dentry if possible, otherwise
1519  * remove it from the hash queues so it can be deleted later
1520  */
1521 
1522 void d_delete(struct dentry * dentry)
1523 {
1524 	int isdir = 0;
1525 	/*
1526 	 * Are we the only user?
1527 	 */
1528 	spin_lock(&dcache_lock);
1529 	spin_lock(&dentry->d_lock);
1530 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1531 	if (atomic_read(&dentry->d_count) == 1) {
1532 		dentry_iput(dentry);
1533 		fsnotify_nameremove(dentry, isdir);
1534 		return;
1535 	}
1536 
1537 	if (!d_unhashed(dentry))
1538 		__d_drop(dentry);
1539 
1540 	spin_unlock(&dentry->d_lock);
1541 	spin_unlock(&dcache_lock);
1542 
1543 	fsnotify_nameremove(dentry, isdir);
1544 }
1545 EXPORT_SYMBOL(d_delete);
1546 
1547 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1548 {
1549 
1550  	entry->d_flags &= ~DCACHE_UNHASHED;
1551  	hlist_add_head_rcu(&entry->d_hash, list);
1552 }
1553 
1554 static void _d_rehash(struct dentry * entry)
1555 {
1556 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1557 }
1558 
1559 /**
1560  * d_rehash	- add an entry back to the hash
1561  * @entry: dentry to add to the hash
1562  *
1563  * Adds a dentry to the hash according to its name.
1564  */
1565 
1566 void d_rehash(struct dentry * entry)
1567 {
1568 	spin_lock(&dcache_lock);
1569 	spin_lock(&entry->d_lock);
1570 	_d_rehash(entry);
1571 	spin_unlock(&entry->d_lock);
1572 	spin_unlock(&dcache_lock);
1573 }
1574 EXPORT_SYMBOL(d_rehash);
1575 
1576 /*
1577  * When switching names, the actual string doesn't strictly have to
1578  * be preserved in the target - because we're dropping the target
1579  * anyway. As such, we can just do a simple memcpy() to copy over
1580  * the new name before we switch.
1581  *
1582  * Note that we have to be a lot more careful about getting the hash
1583  * switched - we have to switch the hash value properly even if it
1584  * then no longer matches the actual (corrupted) string of the target.
1585  * The hash value has to match the hash queue that the dentry is on..
1586  */
1587 static void switch_names(struct dentry *dentry, struct dentry *target)
1588 {
1589 	if (dname_external(target)) {
1590 		if (dname_external(dentry)) {
1591 			/*
1592 			 * Both external: swap the pointers
1593 			 */
1594 			swap(target->d_name.name, dentry->d_name.name);
1595 		} else {
1596 			/*
1597 			 * dentry:internal, target:external.  Steal target's
1598 			 * storage and make target internal.
1599 			 */
1600 			memcpy(target->d_iname, dentry->d_name.name,
1601 					dentry->d_name.len + 1);
1602 			dentry->d_name.name = target->d_name.name;
1603 			target->d_name.name = target->d_iname;
1604 		}
1605 	} else {
1606 		if (dname_external(dentry)) {
1607 			/*
1608 			 * dentry:external, target:internal.  Give dentry's
1609 			 * storage to target and make dentry internal
1610 			 */
1611 			memcpy(dentry->d_iname, target->d_name.name,
1612 					target->d_name.len + 1);
1613 			target->d_name.name = dentry->d_name.name;
1614 			dentry->d_name.name = dentry->d_iname;
1615 		} else {
1616 			/*
1617 			 * Both are internal.  Just copy target to dentry
1618 			 */
1619 			memcpy(dentry->d_iname, target->d_name.name,
1620 					target->d_name.len + 1);
1621 			dentry->d_name.len = target->d_name.len;
1622 			return;
1623 		}
1624 	}
1625 	swap(dentry->d_name.len, target->d_name.len);
1626 }
1627 
1628 /*
1629  * We cannibalize "target" when moving dentry on top of it,
1630  * because it's going to be thrown away anyway. We could be more
1631  * polite about it, though.
1632  *
1633  * This forceful removal will result in ugly /proc output if
1634  * somebody holds a file open that got deleted due to a rename.
1635  * We could be nicer about the deleted file, and let it show
1636  * up under the name it had before it was deleted rather than
1637  * under the original name of the file that was moved on top of it.
1638  */
1639 
1640 /*
1641  * d_move_locked - move a dentry
1642  * @dentry: entry to move
1643  * @target: new dentry
1644  *
1645  * Update the dcache to reflect the move of a file name. Negative
1646  * dcache entries should not be moved in this way.
1647  */
1648 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1649 {
1650 	struct hlist_head *list;
1651 
1652 	if (!dentry->d_inode)
1653 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1654 
1655 	write_seqlock(&rename_lock);
1656 	/*
1657 	 * XXXX: do we really need to take target->d_lock?
1658 	 */
1659 	if (target < dentry) {
1660 		spin_lock(&target->d_lock);
1661 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1662 	} else {
1663 		spin_lock(&dentry->d_lock);
1664 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1665 	}
1666 
1667 	/* Move the dentry to the target hash queue, if on different bucket */
1668 	if (d_unhashed(dentry))
1669 		goto already_unhashed;
1670 
1671 	hlist_del_rcu(&dentry->d_hash);
1672 
1673 already_unhashed:
1674 	list = d_hash(target->d_parent, target->d_name.hash);
1675 	__d_rehash(dentry, list);
1676 
1677 	/* Unhash the target: dput() will then get rid of it */
1678 	__d_drop(target);
1679 
1680 	list_del(&dentry->d_u.d_child);
1681 	list_del(&target->d_u.d_child);
1682 
1683 	/* Switch the names.. */
1684 	switch_names(dentry, target);
1685 	swap(dentry->d_name.hash, target->d_name.hash);
1686 
1687 	/* ... and switch the parents */
1688 	if (IS_ROOT(dentry)) {
1689 		dentry->d_parent = target->d_parent;
1690 		target->d_parent = target;
1691 		INIT_LIST_HEAD(&target->d_u.d_child);
1692 	} else {
1693 		swap(dentry->d_parent, target->d_parent);
1694 
1695 		/* And add them back to the (new) parent lists */
1696 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1697 	}
1698 
1699 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1700 	spin_unlock(&target->d_lock);
1701 	fsnotify_d_move(dentry);
1702 	spin_unlock(&dentry->d_lock);
1703 	write_sequnlock(&rename_lock);
1704 }
1705 
1706 /**
1707  * d_move - move a dentry
1708  * @dentry: entry to move
1709  * @target: new dentry
1710  *
1711  * Update the dcache to reflect the move of a file name. Negative
1712  * dcache entries should not be moved in this way.
1713  */
1714 
1715 void d_move(struct dentry * dentry, struct dentry * target)
1716 {
1717 	spin_lock(&dcache_lock);
1718 	d_move_locked(dentry, target);
1719 	spin_unlock(&dcache_lock);
1720 }
1721 EXPORT_SYMBOL(d_move);
1722 
1723 /**
1724  * d_ancestor - search for an ancestor
1725  * @p1: ancestor dentry
1726  * @p2: child dentry
1727  *
1728  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1729  * an ancestor of p2, else NULL.
1730  */
1731 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1732 {
1733 	struct dentry *p;
1734 
1735 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1736 		if (p->d_parent == p1)
1737 			return p;
1738 	}
1739 	return NULL;
1740 }
1741 
1742 /*
1743  * This helper attempts to cope with remotely renamed directories
1744  *
1745  * It assumes that the caller is already holding
1746  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1747  *
1748  * Note: If ever the locking in lock_rename() changes, then please
1749  * remember to update this too...
1750  */
1751 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1752 	__releases(dcache_lock)
1753 {
1754 	struct mutex *m1 = NULL, *m2 = NULL;
1755 	struct dentry *ret;
1756 
1757 	/* If alias and dentry share a parent, then no extra locks required */
1758 	if (alias->d_parent == dentry->d_parent)
1759 		goto out_unalias;
1760 
1761 	/* Check for loops */
1762 	ret = ERR_PTR(-ELOOP);
1763 	if (d_ancestor(alias, dentry))
1764 		goto out_err;
1765 
1766 	/* See lock_rename() */
1767 	ret = ERR_PTR(-EBUSY);
1768 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1769 		goto out_err;
1770 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1771 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1772 		goto out_err;
1773 	m2 = &alias->d_parent->d_inode->i_mutex;
1774 out_unalias:
1775 	d_move_locked(alias, dentry);
1776 	ret = alias;
1777 out_err:
1778 	spin_unlock(&dcache_lock);
1779 	if (m2)
1780 		mutex_unlock(m2);
1781 	if (m1)
1782 		mutex_unlock(m1);
1783 	return ret;
1784 }
1785 
1786 /*
1787  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1788  * named dentry in place of the dentry to be replaced.
1789  */
1790 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1791 {
1792 	struct dentry *dparent, *aparent;
1793 
1794 	switch_names(dentry, anon);
1795 	swap(dentry->d_name.hash, anon->d_name.hash);
1796 
1797 	dparent = dentry->d_parent;
1798 	aparent = anon->d_parent;
1799 
1800 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1801 	list_del(&dentry->d_u.d_child);
1802 	if (!IS_ROOT(dentry))
1803 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1804 	else
1805 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1806 
1807 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1808 	list_del(&anon->d_u.d_child);
1809 	if (!IS_ROOT(anon))
1810 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1811 	else
1812 		INIT_LIST_HEAD(&anon->d_u.d_child);
1813 
1814 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1815 }
1816 
1817 /**
1818  * d_materialise_unique - introduce an inode into the tree
1819  * @dentry: candidate dentry
1820  * @inode: inode to bind to the dentry, to which aliases may be attached
1821  *
1822  * Introduces an dentry into the tree, substituting an extant disconnected
1823  * root directory alias in its place if there is one
1824  */
1825 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1826 {
1827 	struct dentry *actual;
1828 
1829 	BUG_ON(!d_unhashed(dentry));
1830 
1831 	spin_lock(&dcache_lock);
1832 
1833 	if (!inode) {
1834 		actual = dentry;
1835 		__d_instantiate(dentry, NULL);
1836 		goto found_lock;
1837 	}
1838 
1839 	if (S_ISDIR(inode->i_mode)) {
1840 		struct dentry *alias;
1841 
1842 		/* Does an aliased dentry already exist? */
1843 		alias = __d_find_alias(inode, 0);
1844 		if (alias) {
1845 			actual = alias;
1846 			/* Is this an anonymous mountpoint that we could splice
1847 			 * into our tree? */
1848 			if (IS_ROOT(alias)) {
1849 				spin_lock(&alias->d_lock);
1850 				__d_materialise_dentry(dentry, alias);
1851 				__d_drop(alias);
1852 				goto found;
1853 			}
1854 			/* Nope, but we must(!) avoid directory aliasing */
1855 			actual = __d_unalias(dentry, alias);
1856 			if (IS_ERR(actual))
1857 				dput(alias);
1858 			goto out_nolock;
1859 		}
1860 	}
1861 
1862 	/* Add a unique reference */
1863 	actual = __d_instantiate_unique(dentry, inode);
1864 	if (!actual)
1865 		actual = dentry;
1866 	else if (unlikely(!d_unhashed(actual)))
1867 		goto shouldnt_be_hashed;
1868 
1869 found_lock:
1870 	spin_lock(&actual->d_lock);
1871 found:
1872 	_d_rehash(actual);
1873 	spin_unlock(&actual->d_lock);
1874 	spin_unlock(&dcache_lock);
1875 out_nolock:
1876 	if (actual == dentry) {
1877 		security_d_instantiate(dentry, inode);
1878 		return NULL;
1879 	}
1880 
1881 	iput(inode);
1882 	return actual;
1883 
1884 shouldnt_be_hashed:
1885 	spin_unlock(&dcache_lock);
1886 	BUG();
1887 }
1888 EXPORT_SYMBOL_GPL(d_materialise_unique);
1889 
1890 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1891 {
1892 	*buflen -= namelen;
1893 	if (*buflen < 0)
1894 		return -ENAMETOOLONG;
1895 	*buffer -= namelen;
1896 	memcpy(*buffer, str, namelen);
1897 	return 0;
1898 }
1899 
1900 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1901 {
1902 	return prepend(buffer, buflen, name->name, name->len);
1903 }
1904 
1905 /**
1906  * __d_path - return the path of a dentry
1907  * @path: the dentry/vfsmount to report
1908  * @root: root vfsmnt/dentry (may be modified by this function)
1909  * @buffer: buffer to return value in
1910  * @buflen: buffer length
1911  *
1912  * Convert a dentry into an ASCII path name. If the entry has been deleted
1913  * the string " (deleted)" is appended. Note that this is ambiguous.
1914  *
1915  * Returns a pointer into the buffer or an error code if the
1916  * path was too long.
1917  *
1918  * "buflen" should be positive. Caller holds the dcache_lock.
1919  *
1920  * If path is not reachable from the supplied root, then the value of
1921  * root is changed (without modifying refcounts).
1922  */
1923 char *__d_path(const struct path *path, struct path *root,
1924 	       char *buffer, int buflen)
1925 {
1926 	struct dentry *dentry = path->dentry;
1927 	struct vfsmount *vfsmnt = path->mnt;
1928 	char *end = buffer + buflen;
1929 	char *retval;
1930 
1931 	spin_lock(&vfsmount_lock);
1932 	prepend(&end, &buflen, "\0", 1);
1933 	if (d_unlinked(dentry) &&
1934 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1935 			goto Elong;
1936 
1937 	if (buflen < 1)
1938 		goto Elong;
1939 	/* Get '/' right */
1940 	retval = end-1;
1941 	*retval = '/';
1942 
1943 	for (;;) {
1944 		struct dentry * parent;
1945 
1946 		if (dentry == root->dentry && vfsmnt == root->mnt)
1947 			break;
1948 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1949 			/* Global root? */
1950 			if (vfsmnt->mnt_parent == vfsmnt) {
1951 				goto global_root;
1952 			}
1953 			dentry = vfsmnt->mnt_mountpoint;
1954 			vfsmnt = vfsmnt->mnt_parent;
1955 			continue;
1956 		}
1957 		parent = dentry->d_parent;
1958 		prefetch(parent);
1959 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1960 		    (prepend(&end, &buflen, "/", 1) != 0))
1961 			goto Elong;
1962 		retval = end;
1963 		dentry = parent;
1964 	}
1965 
1966 out:
1967 	spin_unlock(&vfsmount_lock);
1968 	return retval;
1969 
1970 global_root:
1971 	retval += 1;	/* hit the slash */
1972 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1973 		goto Elong;
1974 	root->mnt = vfsmnt;
1975 	root->dentry = dentry;
1976 	goto out;
1977 
1978 Elong:
1979 	retval = ERR_PTR(-ENAMETOOLONG);
1980 	goto out;
1981 }
1982 
1983 /**
1984  * d_path - return the path of a dentry
1985  * @path: path to report
1986  * @buf: buffer to return value in
1987  * @buflen: buffer length
1988  *
1989  * Convert a dentry into an ASCII path name. If the entry has been deleted
1990  * the string " (deleted)" is appended. Note that this is ambiguous.
1991  *
1992  * Returns a pointer into the buffer or an error code if the path was
1993  * too long. Note: Callers should use the returned pointer, not the passed
1994  * in buffer, to use the name! The implementation often starts at an offset
1995  * into the buffer, and may leave 0 bytes at the start.
1996  *
1997  * "buflen" should be positive.
1998  */
1999 char *d_path(const struct path *path, char *buf, int buflen)
2000 {
2001 	char *res;
2002 	struct path root;
2003 	struct path tmp;
2004 
2005 	/*
2006 	 * We have various synthetic filesystems that never get mounted.  On
2007 	 * these filesystems dentries are never used for lookup purposes, and
2008 	 * thus don't need to be hashed.  They also don't need a name until a
2009 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2010 	 * below allows us to generate a name for these objects on demand:
2011 	 */
2012 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2013 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2014 
2015 	read_lock(&current->fs->lock);
2016 	root = current->fs->root;
2017 	path_get(&root);
2018 	read_unlock(&current->fs->lock);
2019 	spin_lock(&dcache_lock);
2020 	tmp = root;
2021 	res = __d_path(path, &tmp, buf, buflen);
2022 	spin_unlock(&dcache_lock);
2023 	path_put(&root);
2024 	return res;
2025 }
2026 EXPORT_SYMBOL(d_path);
2027 
2028 /*
2029  * Helper function for dentry_operations.d_dname() members
2030  */
2031 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2032 			const char *fmt, ...)
2033 {
2034 	va_list args;
2035 	char temp[64];
2036 	int sz;
2037 
2038 	va_start(args, fmt);
2039 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2040 	va_end(args);
2041 
2042 	if (sz > sizeof(temp) || sz > buflen)
2043 		return ERR_PTR(-ENAMETOOLONG);
2044 
2045 	buffer += buflen - sz;
2046 	return memcpy(buffer, temp, sz);
2047 }
2048 
2049 /*
2050  * Write full pathname from the root of the filesystem into the buffer.
2051  */
2052 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2053 {
2054 	char *end = buf + buflen;
2055 	char *retval;
2056 
2057 	spin_lock(&dcache_lock);
2058 	prepend(&end, &buflen, "\0", 1);
2059 	if (d_unlinked(dentry) &&
2060 		(prepend(&end, &buflen, "//deleted", 9) != 0))
2061 			goto Elong;
2062 	if (buflen < 1)
2063 		goto Elong;
2064 	/* Get '/' right */
2065 	retval = end-1;
2066 	*retval = '/';
2067 
2068 	while (!IS_ROOT(dentry)) {
2069 		struct dentry *parent = dentry->d_parent;
2070 
2071 		prefetch(parent);
2072 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2073 		    (prepend(&end, &buflen, "/", 1) != 0))
2074 			goto Elong;
2075 
2076 		retval = end;
2077 		dentry = parent;
2078 	}
2079 	spin_unlock(&dcache_lock);
2080 	return retval;
2081 Elong:
2082 	spin_unlock(&dcache_lock);
2083 	return ERR_PTR(-ENAMETOOLONG);
2084 }
2085 
2086 /*
2087  * NOTE! The user-level library version returns a
2088  * character pointer. The kernel system call just
2089  * returns the length of the buffer filled (which
2090  * includes the ending '\0' character), or a negative
2091  * error value. So libc would do something like
2092  *
2093  *	char *getcwd(char * buf, size_t size)
2094  *	{
2095  *		int retval;
2096  *
2097  *		retval = sys_getcwd(buf, size);
2098  *		if (retval >= 0)
2099  *			return buf;
2100  *		errno = -retval;
2101  *		return NULL;
2102  *	}
2103  */
2104 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2105 {
2106 	int error;
2107 	struct path pwd, root;
2108 	char *page = (char *) __get_free_page(GFP_USER);
2109 
2110 	if (!page)
2111 		return -ENOMEM;
2112 
2113 	read_lock(&current->fs->lock);
2114 	pwd = current->fs->pwd;
2115 	path_get(&pwd);
2116 	root = current->fs->root;
2117 	path_get(&root);
2118 	read_unlock(&current->fs->lock);
2119 
2120 	error = -ENOENT;
2121 	spin_lock(&dcache_lock);
2122 	if (!d_unlinked(pwd.dentry)) {
2123 		unsigned long len;
2124 		struct path tmp = root;
2125 		char * cwd;
2126 
2127 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2128 		spin_unlock(&dcache_lock);
2129 
2130 		error = PTR_ERR(cwd);
2131 		if (IS_ERR(cwd))
2132 			goto out;
2133 
2134 		error = -ERANGE;
2135 		len = PAGE_SIZE + page - cwd;
2136 		if (len <= size) {
2137 			error = len;
2138 			if (copy_to_user(buf, cwd, len))
2139 				error = -EFAULT;
2140 		}
2141 	} else
2142 		spin_unlock(&dcache_lock);
2143 
2144 out:
2145 	path_put(&pwd);
2146 	path_put(&root);
2147 	free_page((unsigned long) page);
2148 	return error;
2149 }
2150 
2151 /*
2152  * Test whether new_dentry is a subdirectory of old_dentry.
2153  *
2154  * Trivially implemented using the dcache structure
2155  */
2156 
2157 /**
2158  * is_subdir - is new dentry a subdirectory of old_dentry
2159  * @new_dentry: new dentry
2160  * @old_dentry: old dentry
2161  *
2162  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2163  * Returns 0 otherwise.
2164  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2165  */
2166 
2167 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2168 {
2169 	int result;
2170 	unsigned long seq;
2171 
2172 	if (new_dentry == old_dentry)
2173 		return 1;
2174 
2175 	/*
2176 	 * Need rcu_readlock to protect against the d_parent trashing
2177 	 * due to d_move
2178 	 */
2179 	rcu_read_lock();
2180 	do {
2181 		/* for restarting inner loop in case of seq retry */
2182 		seq = read_seqbegin(&rename_lock);
2183 		if (d_ancestor(old_dentry, new_dentry))
2184 			result = 1;
2185 		else
2186 			result = 0;
2187 	} while (read_seqretry(&rename_lock, seq));
2188 	rcu_read_unlock();
2189 
2190 	return result;
2191 }
2192 
2193 int path_is_under(struct path *path1, struct path *path2)
2194 {
2195 	struct vfsmount *mnt = path1->mnt;
2196 	struct dentry *dentry = path1->dentry;
2197 	int res;
2198 	spin_lock(&vfsmount_lock);
2199 	if (mnt != path2->mnt) {
2200 		for (;;) {
2201 			if (mnt->mnt_parent == mnt) {
2202 				spin_unlock(&vfsmount_lock);
2203 				return 0;
2204 			}
2205 			if (mnt->mnt_parent == path2->mnt)
2206 				break;
2207 			mnt = mnt->mnt_parent;
2208 		}
2209 		dentry = mnt->mnt_mountpoint;
2210 	}
2211 	res = is_subdir(dentry, path2->dentry);
2212 	spin_unlock(&vfsmount_lock);
2213 	return res;
2214 }
2215 EXPORT_SYMBOL(path_is_under);
2216 
2217 void d_genocide(struct dentry *root)
2218 {
2219 	struct dentry *this_parent = root;
2220 	struct list_head *next;
2221 
2222 	spin_lock(&dcache_lock);
2223 repeat:
2224 	next = this_parent->d_subdirs.next;
2225 resume:
2226 	while (next != &this_parent->d_subdirs) {
2227 		struct list_head *tmp = next;
2228 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2229 		next = tmp->next;
2230 		if (d_unhashed(dentry)||!dentry->d_inode)
2231 			continue;
2232 		if (!list_empty(&dentry->d_subdirs)) {
2233 			this_parent = dentry;
2234 			goto repeat;
2235 		}
2236 		atomic_dec(&dentry->d_count);
2237 	}
2238 	if (this_parent != root) {
2239 		next = this_parent->d_u.d_child.next;
2240 		atomic_dec(&this_parent->d_count);
2241 		this_parent = this_parent->d_parent;
2242 		goto resume;
2243 	}
2244 	spin_unlock(&dcache_lock);
2245 }
2246 
2247 /**
2248  * find_inode_number - check for dentry with name
2249  * @dir: directory to check
2250  * @name: Name to find.
2251  *
2252  * Check whether a dentry already exists for the given name,
2253  * and return the inode number if it has an inode. Otherwise
2254  * 0 is returned.
2255  *
2256  * This routine is used to post-process directory listings for
2257  * filesystems using synthetic inode numbers, and is necessary
2258  * to keep getcwd() working.
2259  */
2260 
2261 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2262 {
2263 	struct dentry * dentry;
2264 	ino_t ino = 0;
2265 
2266 	dentry = d_hash_and_lookup(dir, name);
2267 	if (dentry) {
2268 		if (dentry->d_inode)
2269 			ino = dentry->d_inode->i_ino;
2270 		dput(dentry);
2271 	}
2272 	return ino;
2273 }
2274 EXPORT_SYMBOL(find_inode_number);
2275 
2276 static __initdata unsigned long dhash_entries;
2277 static int __init set_dhash_entries(char *str)
2278 {
2279 	if (!str)
2280 		return 0;
2281 	dhash_entries = simple_strtoul(str, &str, 0);
2282 	return 1;
2283 }
2284 __setup("dhash_entries=", set_dhash_entries);
2285 
2286 static void __init dcache_init_early(void)
2287 {
2288 	int loop;
2289 
2290 	/* If hashes are distributed across NUMA nodes, defer
2291 	 * hash allocation until vmalloc space is available.
2292 	 */
2293 	if (hashdist)
2294 		return;
2295 
2296 	dentry_hashtable =
2297 		alloc_large_system_hash("Dentry cache",
2298 					sizeof(struct hlist_head),
2299 					dhash_entries,
2300 					13,
2301 					HASH_EARLY,
2302 					&d_hash_shift,
2303 					&d_hash_mask,
2304 					0);
2305 
2306 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2307 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2308 }
2309 
2310 static void __init dcache_init(void)
2311 {
2312 	int loop;
2313 
2314 	/*
2315 	 * A constructor could be added for stable state like the lists,
2316 	 * but it is probably not worth it because of the cache nature
2317 	 * of the dcache.
2318 	 */
2319 	dentry_cache = KMEM_CACHE(dentry,
2320 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2321 
2322 	register_shrinker(&dcache_shrinker);
2323 
2324 	/* Hash may have been set up in dcache_init_early */
2325 	if (!hashdist)
2326 		return;
2327 
2328 	dentry_hashtable =
2329 		alloc_large_system_hash("Dentry cache",
2330 					sizeof(struct hlist_head),
2331 					dhash_entries,
2332 					13,
2333 					0,
2334 					&d_hash_shift,
2335 					&d_hash_mask,
2336 					0);
2337 
2338 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2339 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2340 }
2341 
2342 /* SLAB cache for __getname() consumers */
2343 struct kmem_cache *names_cachep __read_mostly;
2344 EXPORT_SYMBOL(names_cachep);
2345 
2346 EXPORT_SYMBOL(d_genocide);
2347 
2348 void __init vfs_caches_init_early(void)
2349 {
2350 	dcache_init_early();
2351 	inode_init_early();
2352 }
2353 
2354 void __init vfs_caches_init(unsigned long mempages)
2355 {
2356 	unsigned long reserve;
2357 
2358 	/* Base hash sizes on available memory, with a reserve equal to
2359            150% of current kernel size */
2360 
2361 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2362 	mempages -= reserve;
2363 
2364 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2365 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2366 
2367 	dcache_init();
2368 	inode_init();
2369 	files_init(mempages);
2370 	mnt_init();
2371 	bdev_cache_init();
2372 	chrdev_init();
2373 }
2374