xref: /linux/fs/dcache.c (revision 9ce7677cfd7cd871adb457c80bea3b581b839641)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
36 
37 /* #define DCACHE_DEBUG 1 */
38 
39 int sysctl_vfs_cache_pressure = 100;
40 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
41 
42  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
43 static seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
44 
45 EXPORT_SYMBOL(dcache_lock);
46 
47 static kmem_cache_t *dentry_cache;
48 
49 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
50 
51 /*
52  * This is the single most critical data structure when it comes
53  * to the dcache: the hashtable for lookups. Somebody should try
54  * to make this good - I've just made it work.
55  *
56  * This hash-function tries to avoid losing too many bits of hash
57  * information, yet avoid using a prime hash-size or similar.
58  */
59 #define D_HASHBITS     d_hash_shift
60 #define D_HASHMASK     d_hash_mask
61 
62 static unsigned int d_hash_mask;
63 static unsigned int d_hash_shift;
64 static struct hlist_head *dentry_hashtable;
65 static LIST_HEAD(dentry_unused);
66 
67 /* Statistics gathering. */
68 struct dentry_stat_t dentry_stat = {
69 	.age_limit = 45,
70 };
71 
72 static void d_callback(struct rcu_head *head)
73 {
74 	struct dentry * dentry = container_of(head, struct dentry, d_rcu);
75 
76 	if (dname_external(dentry))
77 		kfree(dentry->d_name.name);
78 	kmem_cache_free(dentry_cache, dentry);
79 }
80 
81 /*
82  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
83  * inside dcache_lock.
84  */
85 static void d_free(struct dentry *dentry)
86 {
87 	if (dentry->d_op && dentry->d_op->d_release)
88 		dentry->d_op->d_release(dentry);
89  	call_rcu(&dentry->d_rcu, d_callback);
90 }
91 
92 /*
93  * Release the dentry's inode, using the filesystem
94  * d_iput() operation if defined.
95  * Called with dcache_lock and per dentry lock held, drops both.
96  */
97 static inline void dentry_iput(struct dentry * dentry)
98 {
99 	struct inode *inode = dentry->d_inode;
100 	if (inode) {
101 		dentry->d_inode = NULL;
102 		list_del_init(&dentry->d_alias);
103 		spin_unlock(&dentry->d_lock);
104 		spin_unlock(&dcache_lock);
105 		if (!inode->i_nlink)
106 			fsnotify_inoderemove(inode);
107 		if (dentry->d_op && dentry->d_op->d_iput)
108 			dentry->d_op->d_iput(dentry, inode);
109 		else
110 			iput(inode);
111 	} else {
112 		spin_unlock(&dentry->d_lock);
113 		spin_unlock(&dcache_lock);
114 	}
115 }
116 
117 /*
118  * This is dput
119  *
120  * This is complicated by the fact that we do not want to put
121  * dentries that are no longer on any hash chain on the unused
122  * list: we'd much rather just get rid of them immediately.
123  *
124  * However, that implies that we have to traverse the dentry
125  * tree upwards to the parents which might _also_ now be
126  * scheduled for deletion (it may have been only waiting for
127  * its last child to go away).
128  *
129  * This tail recursion is done by hand as we don't want to depend
130  * on the compiler to always get this right (gcc generally doesn't).
131  * Real recursion would eat up our stack space.
132  */
133 
134 /*
135  * dput - release a dentry
136  * @dentry: dentry to release
137  *
138  * Release a dentry. This will drop the usage count and if appropriate
139  * call the dentry unlink method as well as removing it from the queues and
140  * releasing its resources. If the parent dentries were scheduled for release
141  * they too may now get deleted.
142  *
143  * no dcache lock, please.
144  */
145 
146 void dput(struct dentry *dentry)
147 {
148 	if (!dentry)
149 		return;
150 
151 repeat:
152 	if (atomic_read(&dentry->d_count) == 1)
153 		might_sleep();
154 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
155 		return;
156 
157 	spin_lock(&dentry->d_lock);
158 	if (atomic_read(&dentry->d_count)) {
159 		spin_unlock(&dentry->d_lock);
160 		spin_unlock(&dcache_lock);
161 		return;
162 	}
163 
164 	/*
165 	 * AV: ->d_delete() is _NOT_ allowed to block now.
166 	 */
167 	if (dentry->d_op && dentry->d_op->d_delete) {
168 		if (dentry->d_op->d_delete(dentry))
169 			goto unhash_it;
170 	}
171 	/* Unreachable? Get rid of it */
172  	if (d_unhashed(dentry))
173 		goto kill_it;
174   	if (list_empty(&dentry->d_lru)) {
175   		dentry->d_flags |= DCACHE_REFERENCED;
176   		list_add(&dentry->d_lru, &dentry_unused);
177   		dentry_stat.nr_unused++;
178   	}
179  	spin_unlock(&dentry->d_lock);
180 	spin_unlock(&dcache_lock);
181 	return;
182 
183 unhash_it:
184 	__d_drop(dentry);
185 
186 kill_it: {
187 		struct dentry *parent;
188 
189 		/* If dentry was on d_lru list
190 		 * delete it from there
191 		 */
192   		if (!list_empty(&dentry->d_lru)) {
193   			list_del(&dentry->d_lru);
194   			dentry_stat.nr_unused--;
195   		}
196   		list_del(&dentry->d_child);
197 		dentry_stat.nr_dentry--;	/* For d_free, below */
198 		/*drops the locks, at that point nobody can reach this dentry */
199 		dentry_iput(dentry);
200 		parent = dentry->d_parent;
201 		d_free(dentry);
202 		if (dentry == parent)
203 			return;
204 		dentry = parent;
205 		goto repeat;
206 	}
207 }
208 
209 /**
210  * d_invalidate - invalidate a dentry
211  * @dentry: dentry to invalidate
212  *
213  * Try to invalidate the dentry if it turns out to be
214  * possible. If there are other dentries that can be
215  * reached through this one we can't delete it and we
216  * return -EBUSY. On success we return 0.
217  *
218  * no dcache lock.
219  */
220 
221 int d_invalidate(struct dentry * dentry)
222 {
223 	/*
224 	 * If it's already been dropped, return OK.
225 	 */
226 	spin_lock(&dcache_lock);
227 	if (d_unhashed(dentry)) {
228 		spin_unlock(&dcache_lock);
229 		return 0;
230 	}
231 	/*
232 	 * Check whether to do a partial shrink_dcache
233 	 * to get rid of unused child entries.
234 	 */
235 	if (!list_empty(&dentry->d_subdirs)) {
236 		spin_unlock(&dcache_lock);
237 		shrink_dcache_parent(dentry);
238 		spin_lock(&dcache_lock);
239 	}
240 
241 	/*
242 	 * Somebody else still using it?
243 	 *
244 	 * If it's a directory, we can't drop it
245 	 * for fear of somebody re-populating it
246 	 * with children (even though dropping it
247 	 * would make it unreachable from the root,
248 	 * we might still populate it if it was a
249 	 * working directory or similar).
250 	 */
251 	spin_lock(&dentry->d_lock);
252 	if (atomic_read(&dentry->d_count) > 1) {
253 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
254 			spin_unlock(&dentry->d_lock);
255 			spin_unlock(&dcache_lock);
256 			return -EBUSY;
257 		}
258 	}
259 
260 	__d_drop(dentry);
261 	spin_unlock(&dentry->d_lock);
262 	spin_unlock(&dcache_lock);
263 	return 0;
264 }
265 
266 /* This should be called _only_ with dcache_lock held */
267 
268 static inline struct dentry * __dget_locked(struct dentry *dentry)
269 {
270 	atomic_inc(&dentry->d_count);
271 	if (!list_empty(&dentry->d_lru)) {
272 		dentry_stat.nr_unused--;
273 		list_del_init(&dentry->d_lru);
274 	}
275 	return dentry;
276 }
277 
278 struct dentry * dget_locked(struct dentry *dentry)
279 {
280 	return __dget_locked(dentry);
281 }
282 
283 /**
284  * d_find_alias - grab a hashed alias of inode
285  * @inode: inode in question
286  * @want_discon:  flag, used by d_splice_alias, to request
287  *          that only a DISCONNECTED alias be returned.
288  *
289  * If inode has a hashed alias, or is a directory and has any alias,
290  * acquire the reference to alias and return it. Otherwise return NULL.
291  * Notice that if inode is a directory there can be only one alias and
292  * it can be unhashed only if it has no children, or if it is the root
293  * of a filesystem.
294  *
295  * If the inode has a DCACHE_DISCONNECTED alias, then prefer
296  * any other hashed alias over that one unless @want_discon is set,
297  * in which case only return a DCACHE_DISCONNECTED alias.
298  */
299 
300 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
301 {
302 	struct list_head *head, *next, *tmp;
303 	struct dentry *alias, *discon_alias=NULL;
304 
305 	head = &inode->i_dentry;
306 	next = inode->i_dentry.next;
307 	while (next != head) {
308 		tmp = next;
309 		next = tmp->next;
310 		prefetch(next);
311 		alias = list_entry(tmp, struct dentry, d_alias);
312  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
313 			if (alias->d_flags & DCACHE_DISCONNECTED)
314 				discon_alias = alias;
315 			else if (!want_discon) {
316 				__dget_locked(alias);
317 				return alias;
318 			}
319 		}
320 	}
321 	if (discon_alias)
322 		__dget_locked(discon_alias);
323 	return discon_alias;
324 }
325 
326 struct dentry * d_find_alias(struct inode *inode)
327 {
328 	struct dentry *de;
329 	spin_lock(&dcache_lock);
330 	de = __d_find_alias(inode, 0);
331 	spin_unlock(&dcache_lock);
332 	return de;
333 }
334 
335 /*
336  *	Try to kill dentries associated with this inode.
337  * WARNING: you must own a reference to inode.
338  */
339 void d_prune_aliases(struct inode *inode)
340 {
341 	struct dentry *dentry;
342 restart:
343 	spin_lock(&dcache_lock);
344 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
345 		spin_lock(&dentry->d_lock);
346 		if (!atomic_read(&dentry->d_count)) {
347 			__dget_locked(dentry);
348 			__d_drop(dentry);
349 			spin_unlock(&dentry->d_lock);
350 			spin_unlock(&dcache_lock);
351 			dput(dentry);
352 			goto restart;
353 		}
354 		spin_unlock(&dentry->d_lock);
355 	}
356 	spin_unlock(&dcache_lock);
357 }
358 
359 /*
360  * Throw away a dentry - free the inode, dput the parent.
361  * This requires that the LRU list has already been
362  * removed.
363  * Called with dcache_lock, drops it and then regains.
364  */
365 static inline void prune_one_dentry(struct dentry * dentry)
366 {
367 	struct dentry * parent;
368 
369 	__d_drop(dentry);
370 	list_del(&dentry->d_child);
371 	dentry_stat.nr_dentry--;	/* For d_free, below */
372 	dentry_iput(dentry);
373 	parent = dentry->d_parent;
374 	d_free(dentry);
375 	if (parent != dentry)
376 		dput(parent);
377 	spin_lock(&dcache_lock);
378 }
379 
380 /**
381  * prune_dcache - shrink the dcache
382  * @count: number of entries to try and free
383  *
384  * Shrink the dcache. This is done when we need
385  * more memory, or simply when we need to unmount
386  * something (at which point we need to unuse
387  * all dentries).
388  *
389  * This function may fail to free any resources if
390  * all the dentries are in use.
391  */
392 
393 static void prune_dcache(int count)
394 {
395 	spin_lock(&dcache_lock);
396 	for (; count ; count--) {
397 		struct dentry *dentry;
398 		struct list_head *tmp;
399 
400 		cond_resched_lock(&dcache_lock);
401 
402 		tmp = dentry_unused.prev;
403 		if (tmp == &dentry_unused)
404 			break;
405 		list_del_init(tmp);
406 		prefetch(dentry_unused.prev);
407  		dentry_stat.nr_unused--;
408 		dentry = list_entry(tmp, struct dentry, d_lru);
409 
410  		spin_lock(&dentry->d_lock);
411 		/*
412 		 * We found an inuse dentry which was not removed from
413 		 * dentry_unused because of laziness during lookup.  Do not free
414 		 * it - just keep it off the dentry_unused list.
415 		 */
416  		if (atomic_read(&dentry->d_count)) {
417  			spin_unlock(&dentry->d_lock);
418 			continue;
419 		}
420 		/* If the dentry was recently referenced, don't free it. */
421 		if (dentry->d_flags & DCACHE_REFERENCED) {
422 			dentry->d_flags &= ~DCACHE_REFERENCED;
423  			list_add(&dentry->d_lru, &dentry_unused);
424  			dentry_stat.nr_unused++;
425  			spin_unlock(&dentry->d_lock);
426 			continue;
427 		}
428 		prune_one_dentry(dentry);
429 	}
430 	spin_unlock(&dcache_lock);
431 }
432 
433 /*
434  * Shrink the dcache for the specified super block.
435  * This allows us to unmount a device without disturbing
436  * the dcache for the other devices.
437  *
438  * This implementation makes just two traversals of the
439  * unused list.  On the first pass we move the selected
440  * dentries to the most recent end, and on the second
441  * pass we free them.  The second pass must restart after
442  * each dput(), but since the target dentries are all at
443  * the end, it's really just a single traversal.
444  */
445 
446 /**
447  * shrink_dcache_sb - shrink dcache for a superblock
448  * @sb: superblock
449  *
450  * Shrink the dcache for the specified super block. This
451  * is used to free the dcache before unmounting a file
452  * system
453  */
454 
455 void shrink_dcache_sb(struct super_block * sb)
456 {
457 	struct list_head *tmp, *next;
458 	struct dentry *dentry;
459 
460 	/*
461 	 * Pass one ... move the dentries for the specified
462 	 * superblock to the most recent end of the unused list.
463 	 */
464 	spin_lock(&dcache_lock);
465 	list_for_each_safe(tmp, next, &dentry_unused) {
466 		dentry = list_entry(tmp, struct dentry, d_lru);
467 		if (dentry->d_sb != sb)
468 			continue;
469 		list_del(tmp);
470 		list_add(tmp, &dentry_unused);
471 	}
472 
473 	/*
474 	 * Pass two ... free the dentries for this superblock.
475 	 */
476 repeat:
477 	list_for_each_safe(tmp, next, &dentry_unused) {
478 		dentry = list_entry(tmp, struct dentry, d_lru);
479 		if (dentry->d_sb != sb)
480 			continue;
481 		dentry_stat.nr_unused--;
482 		list_del_init(tmp);
483 		spin_lock(&dentry->d_lock);
484 		if (atomic_read(&dentry->d_count)) {
485 			spin_unlock(&dentry->d_lock);
486 			continue;
487 		}
488 		prune_one_dentry(dentry);
489 		goto repeat;
490 	}
491 	spin_unlock(&dcache_lock);
492 }
493 
494 /*
495  * Search for at least 1 mount point in the dentry's subdirs.
496  * We descend to the next level whenever the d_subdirs
497  * list is non-empty and continue searching.
498  */
499 
500 /**
501  * have_submounts - check for mounts over a dentry
502  * @parent: dentry to check.
503  *
504  * Return true if the parent or its subdirectories contain
505  * a mount point
506  */
507 
508 int have_submounts(struct dentry *parent)
509 {
510 	struct dentry *this_parent = parent;
511 	struct list_head *next;
512 
513 	spin_lock(&dcache_lock);
514 	if (d_mountpoint(parent))
515 		goto positive;
516 repeat:
517 	next = this_parent->d_subdirs.next;
518 resume:
519 	while (next != &this_parent->d_subdirs) {
520 		struct list_head *tmp = next;
521 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
522 		next = tmp->next;
523 		/* Have we found a mount point ? */
524 		if (d_mountpoint(dentry))
525 			goto positive;
526 		if (!list_empty(&dentry->d_subdirs)) {
527 			this_parent = dentry;
528 			goto repeat;
529 		}
530 	}
531 	/*
532 	 * All done at this level ... ascend and resume the search.
533 	 */
534 	if (this_parent != parent) {
535 		next = this_parent->d_child.next;
536 		this_parent = this_parent->d_parent;
537 		goto resume;
538 	}
539 	spin_unlock(&dcache_lock);
540 	return 0; /* No mount points found in tree */
541 positive:
542 	spin_unlock(&dcache_lock);
543 	return 1;
544 }
545 
546 /*
547  * Search the dentry child list for the specified parent,
548  * and move any unused dentries to the end of the unused
549  * list for prune_dcache(). We descend to the next level
550  * whenever the d_subdirs list is non-empty and continue
551  * searching.
552  *
553  * It returns zero iff there are no unused children,
554  * otherwise  it returns the number of children moved to
555  * the end of the unused list. This may not be the total
556  * number of unused children, because select_parent can
557  * drop the lock and return early due to latency
558  * constraints.
559  */
560 static int select_parent(struct dentry * parent)
561 {
562 	struct dentry *this_parent = parent;
563 	struct list_head *next;
564 	int found = 0;
565 
566 	spin_lock(&dcache_lock);
567 repeat:
568 	next = this_parent->d_subdirs.next;
569 resume:
570 	while (next != &this_parent->d_subdirs) {
571 		struct list_head *tmp = next;
572 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
573 		next = tmp->next;
574 
575 		if (!list_empty(&dentry->d_lru)) {
576 			dentry_stat.nr_unused--;
577 			list_del_init(&dentry->d_lru);
578 		}
579 		/*
580 		 * move only zero ref count dentries to the end
581 		 * of the unused list for prune_dcache
582 		 */
583 		if (!atomic_read(&dentry->d_count)) {
584 			list_add(&dentry->d_lru, dentry_unused.prev);
585 			dentry_stat.nr_unused++;
586 			found++;
587 		}
588 
589 		/*
590 		 * We can return to the caller if we have found some (this
591 		 * ensures forward progress). We'll be coming back to find
592 		 * the rest.
593 		 */
594 		if (found && need_resched())
595 			goto out;
596 
597 		/*
598 		 * Descend a level if the d_subdirs list is non-empty.
599 		 */
600 		if (!list_empty(&dentry->d_subdirs)) {
601 			this_parent = dentry;
602 #ifdef DCACHE_DEBUG
603 printk(KERN_DEBUG "select_parent: descending to %s/%s, found=%d\n",
604 dentry->d_parent->d_name.name, dentry->d_name.name, found);
605 #endif
606 			goto repeat;
607 		}
608 	}
609 	/*
610 	 * All done at this level ... ascend and resume the search.
611 	 */
612 	if (this_parent != parent) {
613 		next = this_parent->d_child.next;
614 		this_parent = this_parent->d_parent;
615 #ifdef DCACHE_DEBUG
616 printk(KERN_DEBUG "select_parent: ascending to %s/%s, found=%d\n",
617 this_parent->d_parent->d_name.name, this_parent->d_name.name, found);
618 #endif
619 		goto resume;
620 	}
621 out:
622 	spin_unlock(&dcache_lock);
623 	return found;
624 }
625 
626 /**
627  * shrink_dcache_parent - prune dcache
628  * @parent: parent of entries to prune
629  *
630  * Prune the dcache to remove unused children of the parent dentry.
631  */
632 
633 void shrink_dcache_parent(struct dentry * parent)
634 {
635 	int found;
636 
637 	while ((found = select_parent(parent)) != 0)
638 		prune_dcache(found);
639 }
640 
641 /**
642  * shrink_dcache_anon - further prune the cache
643  * @head: head of d_hash list of dentries to prune
644  *
645  * Prune the dentries that are anonymous
646  *
647  * parsing d_hash list does not hlist_for_each_entry_rcu() as it
648  * done under dcache_lock.
649  *
650  */
651 void shrink_dcache_anon(struct hlist_head *head)
652 {
653 	struct hlist_node *lp;
654 	int found;
655 	do {
656 		found = 0;
657 		spin_lock(&dcache_lock);
658 		hlist_for_each(lp, head) {
659 			struct dentry *this = hlist_entry(lp, struct dentry, d_hash);
660 			if (!list_empty(&this->d_lru)) {
661 				dentry_stat.nr_unused--;
662 				list_del_init(&this->d_lru);
663 			}
664 
665 			/*
666 			 * move only zero ref count dentries to the end
667 			 * of the unused list for prune_dcache
668 			 */
669 			if (!atomic_read(&this->d_count)) {
670 				list_add_tail(&this->d_lru, &dentry_unused);
671 				dentry_stat.nr_unused++;
672 				found++;
673 			}
674 		}
675 		spin_unlock(&dcache_lock);
676 		prune_dcache(found);
677 	} while(found);
678 }
679 
680 /*
681  * Scan `nr' dentries and return the number which remain.
682  *
683  * We need to avoid reentering the filesystem if the caller is performing a
684  * GFP_NOFS allocation attempt.  One example deadlock is:
685  *
686  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
687  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
688  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
689  *
690  * In this case we return -1 to tell the caller that we baled.
691  */
692 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
693 {
694 	if (nr) {
695 		if (!(gfp_mask & __GFP_FS))
696 			return -1;
697 		prune_dcache(nr);
698 	}
699 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
700 }
701 
702 /**
703  * d_alloc	-	allocate a dcache entry
704  * @parent: parent of entry to allocate
705  * @name: qstr of the name
706  *
707  * Allocates a dentry. It returns %NULL if there is insufficient memory
708  * available. On a success the dentry is returned. The name passed in is
709  * copied and the copy passed in may be reused after this call.
710  */
711 
712 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
713 {
714 	struct dentry *dentry;
715 	char *dname;
716 
717 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
718 	if (!dentry)
719 		return NULL;
720 
721 	if (name->len > DNAME_INLINE_LEN-1) {
722 		dname = kmalloc(name->len + 1, GFP_KERNEL);
723 		if (!dname) {
724 			kmem_cache_free(dentry_cache, dentry);
725 			return NULL;
726 		}
727 	} else  {
728 		dname = dentry->d_iname;
729 	}
730 	dentry->d_name.name = dname;
731 
732 	dentry->d_name.len = name->len;
733 	dentry->d_name.hash = name->hash;
734 	memcpy(dname, name->name, name->len);
735 	dname[name->len] = 0;
736 
737 	atomic_set(&dentry->d_count, 1);
738 	dentry->d_flags = DCACHE_UNHASHED;
739 	spin_lock_init(&dentry->d_lock);
740 	dentry->d_inode = NULL;
741 	dentry->d_parent = NULL;
742 	dentry->d_sb = NULL;
743 	dentry->d_op = NULL;
744 	dentry->d_fsdata = NULL;
745 	dentry->d_mounted = 0;
746 	dentry->d_cookie = NULL;
747 	INIT_HLIST_NODE(&dentry->d_hash);
748 	INIT_LIST_HEAD(&dentry->d_lru);
749 	INIT_LIST_HEAD(&dentry->d_subdirs);
750 	INIT_LIST_HEAD(&dentry->d_alias);
751 
752 	if (parent) {
753 		dentry->d_parent = dget(parent);
754 		dentry->d_sb = parent->d_sb;
755 	} else {
756 		INIT_LIST_HEAD(&dentry->d_child);
757 	}
758 
759 	spin_lock(&dcache_lock);
760 	if (parent)
761 		list_add(&dentry->d_child, &parent->d_subdirs);
762 	dentry_stat.nr_dentry++;
763 	spin_unlock(&dcache_lock);
764 
765 	return dentry;
766 }
767 
768 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
769 {
770 	struct qstr q;
771 
772 	q.name = name;
773 	q.len = strlen(name);
774 	q.hash = full_name_hash(q.name, q.len);
775 	return d_alloc(parent, &q);
776 }
777 
778 /**
779  * d_instantiate - fill in inode information for a dentry
780  * @entry: dentry to complete
781  * @inode: inode to attach to this dentry
782  *
783  * Fill in inode information in the entry.
784  *
785  * This turns negative dentries into productive full members
786  * of society.
787  *
788  * NOTE! This assumes that the inode count has been incremented
789  * (or otherwise set) by the caller to indicate that it is now
790  * in use by the dcache.
791  */
792 
793 void d_instantiate(struct dentry *entry, struct inode * inode)
794 {
795 	if (!list_empty(&entry->d_alias)) BUG();
796 	spin_lock(&dcache_lock);
797 	if (inode)
798 		list_add(&entry->d_alias, &inode->i_dentry);
799 	entry->d_inode = inode;
800 	spin_unlock(&dcache_lock);
801 	security_d_instantiate(entry, inode);
802 }
803 
804 /**
805  * d_instantiate_unique - instantiate a non-aliased dentry
806  * @entry: dentry to instantiate
807  * @inode: inode to attach to this dentry
808  *
809  * Fill in inode information in the entry. On success, it returns NULL.
810  * If an unhashed alias of "entry" already exists, then we return the
811  * aliased dentry instead.
812  *
813  * Note that in order to avoid conflicts with rename() etc, the caller
814  * had better be holding the parent directory semaphore.
815  */
816 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
817 {
818 	struct dentry *alias;
819 	int len = entry->d_name.len;
820 	const char *name = entry->d_name.name;
821 	unsigned int hash = entry->d_name.hash;
822 
823 	BUG_ON(!list_empty(&entry->d_alias));
824 	spin_lock(&dcache_lock);
825 	if (!inode)
826 		goto do_negative;
827 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
828 		struct qstr *qstr = &alias->d_name;
829 
830 		if (qstr->hash != hash)
831 			continue;
832 		if (alias->d_parent != entry->d_parent)
833 			continue;
834 		if (qstr->len != len)
835 			continue;
836 		if (memcmp(qstr->name, name, len))
837 			continue;
838 		dget_locked(alias);
839 		spin_unlock(&dcache_lock);
840 		BUG_ON(!d_unhashed(alias));
841 		return alias;
842 	}
843 	list_add(&entry->d_alias, &inode->i_dentry);
844 do_negative:
845 	entry->d_inode = inode;
846 	spin_unlock(&dcache_lock);
847 	security_d_instantiate(entry, inode);
848 	return NULL;
849 }
850 EXPORT_SYMBOL(d_instantiate_unique);
851 
852 /**
853  * d_alloc_root - allocate root dentry
854  * @root_inode: inode to allocate the root for
855  *
856  * Allocate a root ("/") dentry for the inode given. The inode is
857  * instantiated and returned. %NULL is returned if there is insufficient
858  * memory or the inode passed is %NULL.
859  */
860 
861 struct dentry * d_alloc_root(struct inode * root_inode)
862 {
863 	struct dentry *res = NULL;
864 
865 	if (root_inode) {
866 		static const struct qstr name = { .name = "/", .len = 1 };
867 
868 		res = d_alloc(NULL, &name);
869 		if (res) {
870 			res->d_sb = root_inode->i_sb;
871 			res->d_parent = res;
872 			d_instantiate(res, root_inode);
873 		}
874 	}
875 	return res;
876 }
877 
878 static inline struct hlist_head *d_hash(struct dentry *parent,
879 					unsigned long hash)
880 {
881 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
882 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
883 	return dentry_hashtable + (hash & D_HASHMASK);
884 }
885 
886 /**
887  * d_alloc_anon - allocate an anonymous dentry
888  * @inode: inode to allocate the dentry for
889  *
890  * This is similar to d_alloc_root.  It is used by filesystems when
891  * creating a dentry for a given inode, often in the process of
892  * mapping a filehandle to a dentry.  The returned dentry may be
893  * anonymous, or may have a full name (if the inode was already
894  * in the cache).  The file system may need to make further
895  * efforts to connect this dentry into the dcache properly.
896  *
897  * When called on a directory inode, we must ensure that
898  * the inode only ever has one dentry.  If a dentry is
899  * found, that is returned instead of allocating a new one.
900  *
901  * On successful return, the reference to the inode has been transferred
902  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
903  * the reference on the inode has not been released.
904  */
905 
906 struct dentry * d_alloc_anon(struct inode *inode)
907 {
908 	static const struct qstr anonstring = { .name = "" };
909 	struct dentry *tmp;
910 	struct dentry *res;
911 
912 	if ((res = d_find_alias(inode))) {
913 		iput(inode);
914 		return res;
915 	}
916 
917 	tmp = d_alloc(NULL, &anonstring);
918 	if (!tmp)
919 		return NULL;
920 
921 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
922 
923 	spin_lock(&dcache_lock);
924 	res = __d_find_alias(inode, 0);
925 	if (!res) {
926 		/* attach a disconnected dentry */
927 		res = tmp;
928 		tmp = NULL;
929 		spin_lock(&res->d_lock);
930 		res->d_sb = inode->i_sb;
931 		res->d_parent = res;
932 		res->d_inode = inode;
933 		res->d_flags |= DCACHE_DISCONNECTED;
934 		res->d_flags &= ~DCACHE_UNHASHED;
935 		list_add(&res->d_alias, &inode->i_dentry);
936 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
937 		spin_unlock(&res->d_lock);
938 
939 		inode = NULL; /* don't drop reference */
940 	}
941 	spin_unlock(&dcache_lock);
942 
943 	if (inode)
944 		iput(inode);
945 	if (tmp)
946 		dput(tmp);
947 	return res;
948 }
949 
950 
951 /**
952  * d_splice_alias - splice a disconnected dentry into the tree if one exists
953  * @inode:  the inode which may have a disconnected dentry
954  * @dentry: a negative dentry which we want to point to the inode.
955  *
956  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
957  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
958  * and return it, else simply d_add the inode to the dentry and return NULL.
959  *
960  * This is needed in the lookup routine of any filesystem that is exportable
961  * (via knfsd) so that we can build dcache paths to directories effectively.
962  *
963  * If a dentry was found and moved, then it is returned.  Otherwise NULL
964  * is returned.  This matches the expected return value of ->lookup.
965  *
966  */
967 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
968 {
969 	struct dentry *new = NULL;
970 
971 	if (inode) {
972 		spin_lock(&dcache_lock);
973 		new = __d_find_alias(inode, 1);
974 		if (new) {
975 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
976 			spin_unlock(&dcache_lock);
977 			security_d_instantiate(new, inode);
978 			d_rehash(dentry);
979 			d_move(new, dentry);
980 			iput(inode);
981 		} else {
982 			/* d_instantiate takes dcache_lock, so we do it by hand */
983 			list_add(&dentry->d_alias, &inode->i_dentry);
984 			dentry->d_inode = inode;
985 			spin_unlock(&dcache_lock);
986 			security_d_instantiate(dentry, inode);
987 			d_rehash(dentry);
988 		}
989 	} else
990 		d_add(dentry, inode);
991 	return new;
992 }
993 
994 
995 /**
996  * d_lookup - search for a dentry
997  * @parent: parent dentry
998  * @name: qstr of name we wish to find
999  *
1000  * Searches the children of the parent dentry for the name in question. If
1001  * the dentry is found its reference count is incremented and the dentry
1002  * is returned. The caller must use d_put to free the entry when it has
1003  * finished using it. %NULL is returned on failure.
1004  *
1005  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1006  * Memory barriers are used while updating and doing lockless traversal.
1007  * To avoid races with d_move while rename is happening, d_lock is used.
1008  *
1009  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1010  * and name pointer in one structure pointed by d_qstr.
1011  *
1012  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1013  * lookup is going on.
1014  *
1015  * dentry_unused list is not updated even if lookup finds the required dentry
1016  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1017  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1018  * acquisition.
1019  *
1020  * d_lookup() is protected against the concurrent renames in some unrelated
1021  * directory using the seqlockt_t rename_lock.
1022  */
1023 
1024 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1025 {
1026 	struct dentry * dentry = NULL;
1027 	unsigned long seq;
1028 
1029         do {
1030                 seq = read_seqbegin(&rename_lock);
1031                 dentry = __d_lookup(parent, name);
1032                 if (dentry)
1033 			break;
1034 	} while (read_seqretry(&rename_lock, seq));
1035 	return dentry;
1036 }
1037 
1038 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1039 {
1040 	unsigned int len = name->len;
1041 	unsigned int hash = name->hash;
1042 	const unsigned char *str = name->name;
1043 	struct hlist_head *head = d_hash(parent,hash);
1044 	struct dentry *found = NULL;
1045 	struct hlist_node *node;
1046 	struct dentry *dentry;
1047 
1048 	rcu_read_lock();
1049 
1050 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1051 		struct qstr *qstr;
1052 
1053 		if (dentry->d_name.hash != hash)
1054 			continue;
1055 		if (dentry->d_parent != parent)
1056 			continue;
1057 
1058 		spin_lock(&dentry->d_lock);
1059 
1060 		/*
1061 		 * Recheck the dentry after taking the lock - d_move may have
1062 		 * changed things.  Don't bother checking the hash because we're
1063 		 * about to compare the whole name anyway.
1064 		 */
1065 		if (dentry->d_parent != parent)
1066 			goto next;
1067 
1068 		/*
1069 		 * It is safe to compare names since d_move() cannot
1070 		 * change the qstr (protected by d_lock).
1071 		 */
1072 		qstr = &dentry->d_name;
1073 		if (parent->d_op && parent->d_op->d_compare) {
1074 			if (parent->d_op->d_compare(parent, qstr, name))
1075 				goto next;
1076 		} else {
1077 			if (qstr->len != len)
1078 				goto next;
1079 			if (memcmp(qstr->name, str, len))
1080 				goto next;
1081 		}
1082 
1083 		if (!d_unhashed(dentry)) {
1084 			atomic_inc(&dentry->d_count);
1085 			found = dentry;
1086 		}
1087 		spin_unlock(&dentry->d_lock);
1088 		break;
1089 next:
1090 		spin_unlock(&dentry->d_lock);
1091  	}
1092  	rcu_read_unlock();
1093 
1094  	return found;
1095 }
1096 
1097 /**
1098  * d_validate - verify dentry provided from insecure source
1099  * @dentry: The dentry alleged to be valid child of @dparent
1100  * @dparent: The parent dentry (known to be valid)
1101  * @hash: Hash of the dentry
1102  * @len: Length of the name
1103  *
1104  * An insecure source has sent us a dentry, here we verify it and dget() it.
1105  * This is used by ncpfs in its readdir implementation.
1106  * Zero is returned in the dentry is invalid.
1107  */
1108 
1109 int d_validate(struct dentry *dentry, struct dentry *dparent)
1110 {
1111 	struct hlist_head *base;
1112 	struct hlist_node *lhp;
1113 
1114 	/* Check whether the ptr might be valid at all.. */
1115 	if (!kmem_ptr_validate(dentry_cache, dentry))
1116 		goto out;
1117 
1118 	if (dentry->d_parent != dparent)
1119 		goto out;
1120 
1121 	spin_lock(&dcache_lock);
1122 	base = d_hash(dparent, dentry->d_name.hash);
1123 	hlist_for_each(lhp,base) {
1124 		/* hlist_for_each_entry_rcu() not required for d_hash list
1125 		 * as it is parsed under dcache_lock
1126 		 */
1127 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1128 			__dget_locked(dentry);
1129 			spin_unlock(&dcache_lock);
1130 			return 1;
1131 		}
1132 	}
1133 	spin_unlock(&dcache_lock);
1134 out:
1135 	return 0;
1136 }
1137 
1138 /*
1139  * When a file is deleted, we have two options:
1140  * - turn this dentry into a negative dentry
1141  * - unhash this dentry and free it.
1142  *
1143  * Usually, we want to just turn this into
1144  * a negative dentry, but if anybody else is
1145  * currently using the dentry or the inode
1146  * we can't do that and we fall back on removing
1147  * it from the hash queues and waiting for
1148  * it to be deleted later when it has no users
1149  */
1150 
1151 /**
1152  * d_delete - delete a dentry
1153  * @dentry: The dentry to delete
1154  *
1155  * Turn the dentry into a negative dentry if possible, otherwise
1156  * remove it from the hash queues so it can be deleted later
1157  */
1158 
1159 void d_delete(struct dentry * dentry)
1160 {
1161 	int isdir = 0;
1162 	/*
1163 	 * Are we the only user?
1164 	 */
1165 	spin_lock(&dcache_lock);
1166 	spin_lock(&dentry->d_lock);
1167 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1168 	if (atomic_read(&dentry->d_count) == 1) {
1169 		dentry_iput(dentry);
1170 		fsnotify_nameremove(dentry, isdir);
1171 		return;
1172 	}
1173 
1174 	if (!d_unhashed(dentry))
1175 		__d_drop(dentry);
1176 
1177 	spin_unlock(&dentry->d_lock);
1178 	spin_unlock(&dcache_lock);
1179 
1180 	fsnotify_nameremove(dentry, isdir);
1181 }
1182 
1183 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1184 {
1185 
1186  	entry->d_flags &= ~DCACHE_UNHASHED;
1187  	hlist_add_head_rcu(&entry->d_hash, list);
1188 }
1189 
1190 /**
1191  * d_rehash	- add an entry back to the hash
1192  * @entry: dentry to add to the hash
1193  *
1194  * Adds a dentry to the hash according to its name.
1195  */
1196 
1197 void d_rehash(struct dentry * entry)
1198 {
1199 	struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash);
1200 
1201 	spin_lock(&dcache_lock);
1202 	spin_lock(&entry->d_lock);
1203 	__d_rehash(entry, list);
1204 	spin_unlock(&entry->d_lock);
1205 	spin_unlock(&dcache_lock);
1206 }
1207 
1208 #define do_switch(x,y) do { \
1209 	__typeof__ (x) __tmp = x; \
1210 	x = y; y = __tmp; } while (0)
1211 
1212 /*
1213  * When switching names, the actual string doesn't strictly have to
1214  * be preserved in the target - because we're dropping the target
1215  * anyway. As such, we can just do a simple memcpy() to copy over
1216  * the new name before we switch.
1217  *
1218  * Note that we have to be a lot more careful about getting the hash
1219  * switched - we have to switch the hash value properly even if it
1220  * then no longer matches the actual (corrupted) string of the target.
1221  * The hash value has to match the hash queue that the dentry is on..
1222  */
1223 static void switch_names(struct dentry *dentry, struct dentry *target)
1224 {
1225 	if (dname_external(target)) {
1226 		if (dname_external(dentry)) {
1227 			/*
1228 			 * Both external: swap the pointers
1229 			 */
1230 			do_switch(target->d_name.name, dentry->d_name.name);
1231 		} else {
1232 			/*
1233 			 * dentry:internal, target:external.  Steal target's
1234 			 * storage and make target internal.
1235 			 */
1236 			dentry->d_name.name = target->d_name.name;
1237 			target->d_name.name = target->d_iname;
1238 		}
1239 	} else {
1240 		if (dname_external(dentry)) {
1241 			/*
1242 			 * dentry:external, target:internal.  Give dentry's
1243 			 * storage to target and make dentry internal
1244 			 */
1245 			memcpy(dentry->d_iname, target->d_name.name,
1246 					target->d_name.len + 1);
1247 			target->d_name.name = dentry->d_name.name;
1248 			dentry->d_name.name = dentry->d_iname;
1249 		} else {
1250 			/*
1251 			 * Both are internal.  Just copy target to dentry
1252 			 */
1253 			memcpy(dentry->d_iname, target->d_name.name,
1254 					target->d_name.len + 1);
1255 		}
1256 	}
1257 }
1258 
1259 /*
1260  * We cannibalize "target" when moving dentry on top of it,
1261  * because it's going to be thrown away anyway. We could be more
1262  * polite about it, though.
1263  *
1264  * This forceful removal will result in ugly /proc output if
1265  * somebody holds a file open that got deleted due to a rename.
1266  * We could be nicer about the deleted file, and let it show
1267  * up under the name it got deleted rather than the name that
1268  * deleted it.
1269  */
1270 
1271 /**
1272  * d_move - move a dentry
1273  * @dentry: entry to move
1274  * @target: new dentry
1275  *
1276  * Update the dcache to reflect the move of a file name. Negative
1277  * dcache entries should not be moved in this way.
1278  */
1279 
1280 void d_move(struct dentry * dentry, struct dentry * target)
1281 {
1282 	struct hlist_head *list;
1283 
1284 	if (!dentry->d_inode)
1285 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1286 
1287 	spin_lock(&dcache_lock);
1288 	write_seqlock(&rename_lock);
1289 	/*
1290 	 * XXXX: do we really need to take target->d_lock?
1291 	 */
1292 	if (target < dentry) {
1293 		spin_lock(&target->d_lock);
1294 		spin_lock(&dentry->d_lock);
1295 	} else {
1296 		spin_lock(&dentry->d_lock);
1297 		spin_lock(&target->d_lock);
1298 	}
1299 
1300 	/* Move the dentry to the target hash queue, if on different bucket */
1301 	if (dentry->d_flags & DCACHE_UNHASHED)
1302 		goto already_unhashed;
1303 
1304 	hlist_del_rcu(&dentry->d_hash);
1305 
1306 already_unhashed:
1307 	list = d_hash(target->d_parent, target->d_name.hash);
1308 	__d_rehash(dentry, list);
1309 
1310 	/* Unhash the target: dput() will then get rid of it */
1311 	__d_drop(target);
1312 
1313 	list_del(&dentry->d_child);
1314 	list_del(&target->d_child);
1315 
1316 	/* Switch the names.. */
1317 	switch_names(dentry, target);
1318 	do_switch(dentry->d_name.len, target->d_name.len);
1319 	do_switch(dentry->d_name.hash, target->d_name.hash);
1320 
1321 	/* ... and switch the parents */
1322 	if (IS_ROOT(dentry)) {
1323 		dentry->d_parent = target->d_parent;
1324 		target->d_parent = target;
1325 		INIT_LIST_HEAD(&target->d_child);
1326 	} else {
1327 		do_switch(dentry->d_parent, target->d_parent);
1328 
1329 		/* And add them back to the (new) parent lists */
1330 		list_add(&target->d_child, &target->d_parent->d_subdirs);
1331 	}
1332 
1333 	list_add(&dentry->d_child, &dentry->d_parent->d_subdirs);
1334 	spin_unlock(&target->d_lock);
1335 	spin_unlock(&dentry->d_lock);
1336 	write_sequnlock(&rename_lock);
1337 	spin_unlock(&dcache_lock);
1338 }
1339 
1340 /**
1341  * d_path - return the path of a dentry
1342  * @dentry: dentry to report
1343  * @vfsmnt: vfsmnt to which the dentry belongs
1344  * @root: root dentry
1345  * @rootmnt: vfsmnt to which the root dentry belongs
1346  * @buffer: buffer to return value in
1347  * @buflen: buffer length
1348  *
1349  * Convert a dentry into an ASCII path name. If the entry has been deleted
1350  * the string " (deleted)" is appended. Note that this is ambiguous.
1351  *
1352  * Returns the buffer or an error code if the path was too long.
1353  *
1354  * "buflen" should be positive. Caller holds the dcache_lock.
1355  */
1356 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1357 			struct dentry *root, struct vfsmount *rootmnt,
1358 			char *buffer, int buflen)
1359 {
1360 	char * end = buffer+buflen;
1361 	char * retval;
1362 	int namelen;
1363 
1364 	*--end = '\0';
1365 	buflen--;
1366 	if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1367 		buflen -= 10;
1368 		end -= 10;
1369 		if (buflen < 0)
1370 			goto Elong;
1371 		memcpy(end, " (deleted)", 10);
1372 	}
1373 
1374 	if (buflen < 1)
1375 		goto Elong;
1376 	/* Get '/' right */
1377 	retval = end-1;
1378 	*retval = '/';
1379 
1380 	for (;;) {
1381 		struct dentry * parent;
1382 
1383 		if (dentry == root && vfsmnt == rootmnt)
1384 			break;
1385 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1386 			/* Global root? */
1387 			spin_lock(&vfsmount_lock);
1388 			if (vfsmnt->mnt_parent == vfsmnt) {
1389 				spin_unlock(&vfsmount_lock);
1390 				goto global_root;
1391 			}
1392 			dentry = vfsmnt->mnt_mountpoint;
1393 			vfsmnt = vfsmnt->mnt_parent;
1394 			spin_unlock(&vfsmount_lock);
1395 			continue;
1396 		}
1397 		parent = dentry->d_parent;
1398 		prefetch(parent);
1399 		namelen = dentry->d_name.len;
1400 		buflen -= namelen + 1;
1401 		if (buflen < 0)
1402 			goto Elong;
1403 		end -= namelen;
1404 		memcpy(end, dentry->d_name.name, namelen);
1405 		*--end = '/';
1406 		retval = end;
1407 		dentry = parent;
1408 	}
1409 
1410 	return retval;
1411 
1412 global_root:
1413 	namelen = dentry->d_name.len;
1414 	buflen -= namelen;
1415 	if (buflen < 0)
1416 		goto Elong;
1417 	retval -= namelen-1;	/* hit the slash */
1418 	memcpy(retval, dentry->d_name.name, namelen);
1419 	return retval;
1420 Elong:
1421 	return ERR_PTR(-ENAMETOOLONG);
1422 }
1423 
1424 /* write full pathname into buffer and return start of pathname */
1425 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1426 				char *buf, int buflen)
1427 {
1428 	char *res;
1429 	struct vfsmount *rootmnt;
1430 	struct dentry *root;
1431 
1432 	read_lock(&current->fs->lock);
1433 	rootmnt = mntget(current->fs->rootmnt);
1434 	root = dget(current->fs->root);
1435 	read_unlock(&current->fs->lock);
1436 	spin_lock(&dcache_lock);
1437 	res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1438 	spin_unlock(&dcache_lock);
1439 	dput(root);
1440 	mntput(rootmnt);
1441 	return res;
1442 }
1443 
1444 /*
1445  * NOTE! The user-level library version returns a
1446  * character pointer. The kernel system call just
1447  * returns the length of the buffer filled (which
1448  * includes the ending '\0' character), or a negative
1449  * error value. So libc would do something like
1450  *
1451  *	char *getcwd(char * buf, size_t size)
1452  *	{
1453  *		int retval;
1454  *
1455  *		retval = sys_getcwd(buf, size);
1456  *		if (retval >= 0)
1457  *			return buf;
1458  *		errno = -retval;
1459  *		return NULL;
1460  *	}
1461  */
1462 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1463 {
1464 	int error;
1465 	struct vfsmount *pwdmnt, *rootmnt;
1466 	struct dentry *pwd, *root;
1467 	char *page = (char *) __get_free_page(GFP_USER);
1468 
1469 	if (!page)
1470 		return -ENOMEM;
1471 
1472 	read_lock(&current->fs->lock);
1473 	pwdmnt = mntget(current->fs->pwdmnt);
1474 	pwd = dget(current->fs->pwd);
1475 	rootmnt = mntget(current->fs->rootmnt);
1476 	root = dget(current->fs->root);
1477 	read_unlock(&current->fs->lock);
1478 
1479 	error = -ENOENT;
1480 	/* Has the current directory has been unlinked? */
1481 	spin_lock(&dcache_lock);
1482 	if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1483 		unsigned long len;
1484 		char * cwd;
1485 
1486 		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1487 		spin_unlock(&dcache_lock);
1488 
1489 		error = PTR_ERR(cwd);
1490 		if (IS_ERR(cwd))
1491 			goto out;
1492 
1493 		error = -ERANGE;
1494 		len = PAGE_SIZE + page - cwd;
1495 		if (len <= size) {
1496 			error = len;
1497 			if (copy_to_user(buf, cwd, len))
1498 				error = -EFAULT;
1499 		}
1500 	} else
1501 		spin_unlock(&dcache_lock);
1502 
1503 out:
1504 	dput(pwd);
1505 	mntput(pwdmnt);
1506 	dput(root);
1507 	mntput(rootmnt);
1508 	free_page((unsigned long) page);
1509 	return error;
1510 }
1511 
1512 /*
1513  * Test whether new_dentry is a subdirectory of old_dentry.
1514  *
1515  * Trivially implemented using the dcache structure
1516  */
1517 
1518 /**
1519  * is_subdir - is new dentry a subdirectory of old_dentry
1520  * @new_dentry: new dentry
1521  * @old_dentry: old dentry
1522  *
1523  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1524  * Returns 0 otherwise.
1525  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1526  */
1527 
1528 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1529 {
1530 	int result;
1531 	struct dentry * saved = new_dentry;
1532 	unsigned long seq;
1533 
1534 	/* need rcu_readlock to protect against the d_parent trashing due to
1535 	 * d_move
1536 	 */
1537 	rcu_read_lock();
1538         do {
1539 		/* for restarting inner loop in case of seq retry */
1540 		new_dentry = saved;
1541 		result = 0;
1542 		seq = read_seqbegin(&rename_lock);
1543 		for (;;) {
1544 			if (new_dentry != old_dentry) {
1545 				struct dentry * parent = new_dentry->d_parent;
1546 				if (parent == new_dentry)
1547 					break;
1548 				new_dentry = parent;
1549 				continue;
1550 			}
1551 			result = 1;
1552 			break;
1553 		}
1554 	} while (read_seqretry(&rename_lock, seq));
1555 	rcu_read_unlock();
1556 
1557 	return result;
1558 }
1559 
1560 void d_genocide(struct dentry *root)
1561 {
1562 	struct dentry *this_parent = root;
1563 	struct list_head *next;
1564 
1565 	spin_lock(&dcache_lock);
1566 repeat:
1567 	next = this_parent->d_subdirs.next;
1568 resume:
1569 	while (next != &this_parent->d_subdirs) {
1570 		struct list_head *tmp = next;
1571 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1572 		next = tmp->next;
1573 		if (d_unhashed(dentry)||!dentry->d_inode)
1574 			continue;
1575 		if (!list_empty(&dentry->d_subdirs)) {
1576 			this_parent = dentry;
1577 			goto repeat;
1578 		}
1579 		atomic_dec(&dentry->d_count);
1580 	}
1581 	if (this_parent != root) {
1582 		next = this_parent->d_child.next;
1583 		atomic_dec(&this_parent->d_count);
1584 		this_parent = this_parent->d_parent;
1585 		goto resume;
1586 	}
1587 	spin_unlock(&dcache_lock);
1588 }
1589 
1590 /**
1591  * find_inode_number - check for dentry with name
1592  * @dir: directory to check
1593  * @name: Name to find.
1594  *
1595  * Check whether a dentry already exists for the given name,
1596  * and return the inode number if it has an inode. Otherwise
1597  * 0 is returned.
1598  *
1599  * This routine is used to post-process directory listings for
1600  * filesystems using synthetic inode numbers, and is necessary
1601  * to keep getcwd() working.
1602  */
1603 
1604 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1605 {
1606 	struct dentry * dentry;
1607 	ino_t ino = 0;
1608 
1609 	/*
1610 	 * Check for a fs-specific hash function. Note that we must
1611 	 * calculate the standard hash first, as the d_op->d_hash()
1612 	 * routine may choose to leave the hash value unchanged.
1613 	 */
1614 	name->hash = full_name_hash(name->name, name->len);
1615 	if (dir->d_op && dir->d_op->d_hash)
1616 	{
1617 		if (dir->d_op->d_hash(dir, name) != 0)
1618 			goto out;
1619 	}
1620 
1621 	dentry = d_lookup(dir, name);
1622 	if (dentry)
1623 	{
1624 		if (dentry->d_inode)
1625 			ino = dentry->d_inode->i_ino;
1626 		dput(dentry);
1627 	}
1628 out:
1629 	return ino;
1630 }
1631 
1632 static __initdata unsigned long dhash_entries;
1633 static int __init set_dhash_entries(char *str)
1634 {
1635 	if (!str)
1636 		return 0;
1637 	dhash_entries = simple_strtoul(str, &str, 0);
1638 	return 1;
1639 }
1640 __setup("dhash_entries=", set_dhash_entries);
1641 
1642 static void __init dcache_init_early(void)
1643 {
1644 	int loop;
1645 
1646 	/* If hashes are distributed across NUMA nodes, defer
1647 	 * hash allocation until vmalloc space is available.
1648 	 */
1649 	if (hashdist)
1650 		return;
1651 
1652 	dentry_hashtable =
1653 		alloc_large_system_hash("Dentry cache",
1654 					sizeof(struct hlist_head),
1655 					dhash_entries,
1656 					13,
1657 					HASH_EARLY,
1658 					&d_hash_shift,
1659 					&d_hash_mask,
1660 					0);
1661 
1662 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1663 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1664 }
1665 
1666 static void __init dcache_init(unsigned long mempages)
1667 {
1668 	int loop;
1669 
1670 	/*
1671 	 * A constructor could be added for stable state like the lists,
1672 	 * but it is probably not worth it because of the cache nature
1673 	 * of the dcache.
1674 	 */
1675 	dentry_cache = kmem_cache_create("dentry_cache",
1676 					 sizeof(struct dentry),
1677 					 0,
1678 					 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC,
1679 					 NULL, NULL);
1680 
1681 	set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1682 
1683 	/* Hash may have been set up in dcache_init_early */
1684 	if (!hashdist)
1685 		return;
1686 
1687 	dentry_hashtable =
1688 		alloc_large_system_hash("Dentry cache",
1689 					sizeof(struct hlist_head),
1690 					dhash_entries,
1691 					13,
1692 					0,
1693 					&d_hash_shift,
1694 					&d_hash_mask,
1695 					0);
1696 
1697 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1698 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1699 }
1700 
1701 /* SLAB cache for __getname() consumers */
1702 kmem_cache_t *names_cachep;
1703 
1704 /* SLAB cache for file structures */
1705 kmem_cache_t *filp_cachep;
1706 
1707 EXPORT_SYMBOL(d_genocide);
1708 
1709 extern void bdev_cache_init(void);
1710 extern void chrdev_init(void);
1711 
1712 void __init vfs_caches_init_early(void)
1713 {
1714 	dcache_init_early();
1715 	inode_init_early();
1716 }
1717 
1718 void __init vfs_caches_init(unsigned long mempages)
1719 {
1720 	unsigned long reserve;
1721 
1722 	/* Base hash sizes on available memory, with a reserve equal to
1723            150% of current kernel size */
1724 
1725 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1726 	mempages -= reserve;
1727 
1728 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1729 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1730 
1731 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
1732 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, filp_ctor, filp_dtor);
1733 
1734 	dcache_init(mempages);
1735 	inode_init(mempages);
1736 	files_init(mempages);
1737 	mnt_init(mempages);
1738 	bdev_cache_init();
1739 	chrdev_init();
1740 }
1741 
1742 EXPORT_SYMBOL(d_alloc);
1743 EXPORT_SYMBOL(d_alloc_anon);
1744 EXPORT_SYMBOL(d_alloc_root);
1745 EXPORT_SYMBOL(d_delete);
1746 EXPORT_SYMBOL(d_find_alias);
1747 EXPORT_SYMBOL(d_instantiate);
1748 EXPORT_SYMBOL(d_invalidate);
1749 EXPORT_SYMBOL(d_lookup);
1750 EXPORT_SYMBOL(d_move);
1751 EXPORT_SYMBOL(d_path);
1752 EXPORT_SYMBOL(d_prune_aliases);
1753 EXPORT_SYMBOL(d_rehash);
1754 EXPORT_SYMBOL(d_splice_alias);
1755 EXPORT_SYMBOL(d_validate);
1756 EXPORT_SYMBOL(dget_locked);
1757 EXPORT_SYMBOL(dput);
1758 EXPORT_SYMBOL(find_inode_number);
1759 EXPORT_SYMBOL(have_submounts);
1760 EXPORT_SYMBOL(names_cachep);
1761 EXPORT_SYMBOL(shrink_dcache_parent);
1762 EXPORT_SYMBOL(shrink_dcache_sb);
1763