1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 const struct qstr dotdot_name = QSTR_INIT("..", 2); 88 EXPORT_SYMBOL(dotdot_name); 89 90 /* 91 * This is the single most critical data structure when it comes 92 * to the dcache: the hashtable for lookups. Somebody should try 93 * to make this good - I've just made it work. 94 * 95 * This hash-function tries to avoid losing too many bits of hash 96 * information, yet avoid using a prime hash-size or similar. 97 */ 98 99 static unsigned int d_hash_shift __read_mostly; 100 101 static struct hlist_bl_head *dentry_hashtable __read_mostly; 102 103 static inline struct hlist_bl_head *d_hash(unsigned int hash) 104 { 105 return dentry_hashtable + (hash >> d_hash_shift); 106 } 107 108 #define IN_LOOKUP_SHIFT 10 109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 110 111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 112 unsigned int hash) 113 { 114 hash += (unsigned long) parent / L1_CACHE_BYTES; 115 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 116 } 117 118 119 /* Statistics gathering. */ 120 struct dentry_stat_t dentry_stat = { 121 .age_limit = 45, 122 }; 123 124 static DEFINE_PER_CPU(long, nr_dentry); 125 static DEFINE_PER_CPU(long, nr_dentry_unused); 126 static DEFINE_PER_CPU(long, nr_dentry_negative); 127 128 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 129 130 /* 131 * Here we resort to our own counters instead of using generic per-cpu counters 132 * for consistency with what the vfs inode code does. We are expected to harvest 133 * better code and performance by having our own specialized counters. 134 * 135 * Please note that the loop is done over all possible CPUs, not over all online 136 * CPUs. The reason for this is that we don't want to play games with CPUs going 137 * on and off. If one of them goes off, we will just keep their counters. 138 * 139 * glommer: See cffbc8a for details, and if you ever intend to change this, 140 * please update all vfs counters to match. 141 */ 142 static long get_nr_dentry(void) 143 { 144 int i; 145 long sum = 0; 146 for_each_possible_cpu(i) 147 sum += per_cpu(nr_dentry, i); 148 return sum < 0 ? 0 : sum; 149 } 150 151 static long get_nr_dentry_unused(void) 152 { 153 int i; 154 long sum = 0; 155 for_each_possible_cpu(i) 156 sum += per_cpu(nr_dentry_unused, i); 157 return sum < 0 ? 0 : sum; 158 } 159 160 static long get_nr_dentry_negative(void) 161 { 162 int i; 163 long sum = 0; 164 165 for_each_possible_cpu(i) 166 sum += per_cpu(nr_dentry_negative, i); 167 return sum < 0 ? 0 : sum; 168 } 169 170 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 171 size_t *lenp, loff_t *ppos) 172 { 173 dentry_stat.nr_dentry = get_nr_dentry(); 174 dentry_stat.nr_unused = get_nr_dentry_unused(); 175 dentry_stat.nr_negative = get_nr_dentry_negative(); 176 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 177 } 178 #endif 179 180 /* 181 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 182 * The strings are both count bytes long, and count is non-zero. 183 */ 184 #ifdef CONFIG_DCACHE_WORD_ACCESS 185 186 #include <asm/word-at-a-time.h> 187 /* 188 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 189 * aligned allocation for this particular component. We don't 190 * strictly need the load_unaligned_zeropad() safety, but it 191 * doesn't hurt either. 192 * 193 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 194 * need the careful unaligned handling. 195 */ 196 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 197 { 198 unsigned long a,b,mask; 199 200 for (;;) { 201 a = read_word_at_a_time(cs); 202 b = load_unaligned_zeropad(ct); 203 if (tcount < sizeof(unsigned long)) 204 break; 205 if (unlikely(a != b)) 206 return 1; 207 cs += sizeof(unsigned long); 208 ct += sizeof(unsigned long); 209 tcount -= sizeof(unsigned long); 210 if (!tcount) 211 return 0; 212 } 213 mask = bytemask_from_count(tcount); 214 return unlikely(!!((a ^ b) & mask)); 215 } 216 217 #else 218 219 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 220 { 221 do { 222 if (*cs != *ct) 223 return 1; 224 cs++; 225 ct++; 226 tcount--; 227 } while (tcount); 228 return 0; 229 } 230 231 #endif 232 233 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 234 { 235 /* 236 * Be careful about RCU walk racing with rename: 237 * use 'READ_ONCE' to fetch the name pointer. 238 * 239 * NOTE! Even if a rename will mean that the length 240 * was not loaded atomically, we don't care. The 241 * RCU walk will check the sequence count eventually, 242 * and catch it. And we won't overrun the buffer, 243 * because we're reading the name pointer atomically, 244 * and a dentry name is guaranteed to be properly 245 * terminated with a NUL byte. 246 * 247 * End result: even if 'len' is wrong, we'll exit 248 * early because the data cannot match (there can 249 * be no NUL in the ct/tcount data) 250 */ 251 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 252 253 return dentry_string_cmp(cs, ct, tcount); 254 } 255 256 struct external_name { 257 union { 258 atomic_t count; 259 struct rcu_head head; 260 } u; 261 unsigned char name[]; 262 }; 263 264 static inline struct external_name *external_name(struct dentry *dentry) 265 { 266 return container_of(dentry->d_name.name, struct external_name, name[0]); 267 } 268 269 static void __d_free(struct rcu_head *head) 270 { 271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 272 273 kmem_cache_free(dentry_cache, dentry); 274 } 275 276 static void __d_free_external(struct rcu_head *head) 277 { 278 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 279 kfree(external_name(dentry)); 280 kmem_cache_free(dentry_cache, dentry); 281 } 282 283 static inline int dname_external(const struct dentry *dentry) 284 { 285 return dentry->d_name.name != dentry->d_iname; 286 } 287 288 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 289 { 290 spin_lock(&dentry->d_lock); 291 name->name = dentry->d_name; 292 if (unlikely(dname_external(dentry))) { 293 atomic_inc(&external_name(dentry)->u.count); 294 } else { 295 memcpy(name->inline_name, dentry->d_iname, 296 dentry->d_name.len + 1); 297 name->name.name = name->inline_name; 298 } 299 spin_unlock(&dentry->d_lock); 300 } 301 EXPORT_SYMBOL(take_dentry_name_snapshot); 302 303 void release_dentry_name_snapshot(struct name_snapshot *name) 304 { 305 if (unlikely(name->name.name != name->inline_name)) { 306 struct external_name *p; 307 p = container_of(name->name.name, struct external_name, name[0]); 308 if (unlikely(atomic_dec_and_test(&p->u.count))) 309 kfree_rcu(p, u.head); 310 } 311 } 312 EXPORT_SYMBOL(release_dentry_name_snapshot); 313 314 static inline void __d_set_inode_and_type(struct dentry *dentry, 315 struct inode *inode, 316 unsigned type_flags) 317 { 318 unsigned flags; 319 320 dentry->d_inode = inode; 321 flags = READ_ONCE(dentry->d_flags); 322 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 323 flags |= type_flags; 324 smp_store_release(&dentry->d_flags, flags); 325 } 326 327 static inline void __d_clear_type_and_inode(struct dentry *dentry) 328 { 329 unsigned flags = READ_ONCE(dentry->d_flags); 330 331 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 332 WRITE_ONCE(dentry->d_flags, flags); 333 dentry->d_inode = NULL; 334 if (dentry->d_flags & DCACHE_LRU_LIST) 335 this_cpu_inc(nr_dentry_negative); 336 } 337 338 static void dentry_free(struct dentry *dentry) 339 { 340 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 341 if (unlikely(dname_external(dentry))) { 342 struct external_name *p = external_name(dentry); 343 if (likely(atomic_dec_and_test(&p->u.count))) { 344 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 345 return; 346 } 347 } 348 /* if dentry was never visible to RCU, immediate free is OK */ 349 if (dentry->d_flags & DCACHE_NORCU) 350 __d_free(&dentry->d_u.d_rcu); 351 else 352 call_rcu(&dentry->d_u.d_rcu, __d_free); 353 } 354 355 /* 356 * Release the dentry's inode, using the filesystem 357 * d_iput() operation if defined. 358 */ 359 static void dentry_unlink_inode(struct dentry * dentry) 360 __releases(dentry->d_lock) 361 __releases(dentry->d_inode->i_lock) 362 { 363 struct inode *inode = dentry->d_inode; 364 365 raw_write_seqcount_begin(&dentry->d_seq); 366 __d_clear_type_and_inode(dentry); 367 hlist_del_init(&dentry->d_u.d_alias); 368 raw_write_seqcount_end(&dentry->d_seq); 369 spin_unlock(&dentry->d_lock); 370 spin_unlock(&inode->i_lock); 371 if (!inode->i_nlink) 372 fsnotify_inoderemove(inode); 373 if (dentry->d_op && dentry->d_op->d_iput) 374 dentry->d_op->d_iput(dentry, inode); 375 else 376 iput(inode); 377 } 378 379 /* 380 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 381 * is in use - which includes both the "real" per-superblock 382 * LRU list _and_ the DCACHE_SHRINK_LIST use. 383 * 384 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 385 * on the shrink list (ie not on the superblock LRU list). 386 * 387 * The per-cpu "nr_dentry_unused" counters are updated with 388 * the DCACHE_LRU_LIST bit. 389 * 390 * The per-cpu "nr_dentry_negative" counters are only updated 391 * when deleted from or added to the per-superblock LRU list, not 392 * from/to the shrink list. That is to avoid an unneeded dec/inc 393 * pair when moving from LRU to shrink list in select_collect(). 394 * 395 * These helper functions make sure we always follow the 396 * rules. d_lock must be held by the caller. 397 */ 398 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 399 static void d_lru_add(struct dentry *dentry) 400 { 401 D_FLAG_VERIFY(dentry, 0); 402 dentry->d_flags |= DCACHE_LRU_LIST; 403 this_cpu_inc(nr_dentry_unused); 404 if (d_is_negative(dentry)) 405 this_cpu_inc(nr_dentry_negative); 406 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 407 } 408 409 static void d_lru_del(struct dentry *dentry) 410 { 411 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 412 dentry->d_flags &= ~DCACHE_LRU_LIST; 413 this_cpu_dec(nr_dentry_unused); 414 if (d_is_negative(dentry)) 415 this_cpu_dec(nr_dentry_negative); 416 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 417 } 418 419 static void d_shrink_del(struct dentry *dentry) 420 { 421 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 list_del_init(&dentry->d_lru); 423 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 424 this_cpu_dec(nr_dentry_unused); 425 } 426 427 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 428 { 429 D_FLAG_VERIFY(dentry, 0); 430 list_add(&dentry->d_lru, list); 431 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 432 this_cpu_inc(nr_dentry_unused); 433 } 434 435 /* 436 * These can only be called under the global LRU lock, ie during the 437 * callback for freeing the LRU list. "isolate" removes it from the 438 * LRU lists entirely, while shrink_move moves it to the indicated 439 * private list. 440 */ 441 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 442 { 443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 444 dentry->d_flags &= ~DCACHE_LRU_LIST; 445 this_cpu_dec(nr_dentry_unused); 446 if (d_is_negative(dentry)) 447 this_cpu_dec(nr_dentry_negative); 448 list_lru_isolate(lru, &dentry->d_lru); 449 } 450 451 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 452 struct list_head *list) 453 { 454 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 455 dentry->d_flags |= DCACHE_SHRINK_LIST; 456 if (d_is_negative(dentry)) 457 this_cpu_dec(nr_dentry_negative); 458 list_lru_isolate_move(lru, &dentry->d_lru, list); 459 } 460 461 static void ___d_drop(struct dentry *dentry) 462 { 463 struct hlist_bl_head *b; 464 /* 465 * Hashed dentries are normally on the dentry hashtable, 466 * with the exception of those newly allocated by 467 * d_obtain_root, which are always IS_ROOT: 468 */ 469 if (unlikely(IS_ROOT(dentry))) 470 b = &dentry->d_sb->s_roots; 471 else 472 b = d_hash(dentry->d_name.hash); 473 474 hlist_bl_lock(b); 475 __hlist_bl_del(&dentry->d_hash); 476 hlist_bl_unlock(b); 477 } 478 479 void __d_drop(struct dentry *dentry) 480 { 481 if (!d_unhashed(dentry)) { 482 ___d_drop(dentry); 483 dentry->d_hash.pprev = NULL; 484 write_seqcount_invalidate(&dentry->d_seq); 485 } 486 } 487 EXPORT_SYMBOL(__d_drop); 488 489 /** 490 * d_drop - drop a dentry 491 * @dentry: dentry to drop 492 * 493 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 494 * be found through a VFS lookup any more. Note that this is different from 495 * deleting the dentry - d_delete will try to mark the dentry negative if 496 * possible, giving a successful _negative_ lookup, while d_drop will 497 * just make the cache lookup fail. 498 * 499 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 500 * reason (NFS timeouts or autofs deletes). 501 * 502 * __d_drop requires dentry->d_lock 503 * 504 * ___d_drop doesn't mark dentry as "unhashed" 505 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 506 */ 507 void d_drop(struct dentry *dentry) 508 { 509 spin_lock(&dentry->d_lock); 510 __d_drop(dentry); 511 spin_unlock(&dentry->d_lock); 512 } 513 EXPORT_SYMBOL(d_drop); 514 515 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 516 { 517 struct dentry *next; 518 /* 519 * Inform d_walk() and shrink_dentry_list() that we are no longer 520 * attached to the dentry tree 521 */ 522 dentry->d_flags |= DCACHE_DENTRY_KILLED; 523 if (unlikely(list_empty(&dentry->d_child))) 524 return; 525 __list_del_entry(&dentry->d_child); 526 /* 527 * Cursors can move around the list of children. While we'd been 528 * a normal list member, it didn't matter - ->d_child.next would've 529 * been updated. However, from now on it won't be and for the 530 * things like d_walk() it might end up with a nasty surprise. 531 * Normally d_walk() doesn't care about cursors moving around - 532 * ->d_lock on parent prevents that and since a cursor has no children 533 * of its own, we get through it without ever unlocking the parent. 534 * There is one exception, though - if we ascend from a child that 535 * gets killed as soon as we unlock it, the next sibling is found 536 * using the value left in its ->d_child.next. And if _that_ 537 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 538 * before d_walk() regains parent->d_lock, we'll end up skipping 539 * everything the cursor had been moved past. 540 * 541 * Solution: make sure that the pointer left behind in ->d_child.next 542 * points to something that won't be moving around. I.e. skip the 543 * cursors. 544 */ 545 while (dentry->d_child.next != &parent->d_subdirs) { 546 next = list_entry(dentry->d_child.next, struct dentry, d_child); 547 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 548 break; 549 dentry->d_child.next = next->d_child.next; 550 } 551 } 552 553 static void __dentry_kill(struct dentry *dentry) 554 { 555 struct dentry *parent = NULL; 556 bool can_free = true; 557 if (!IS_ROOT(dentry)) 558 parent = dentry->d_parent; 559 560 /* 561 * The dentry is now unrecoverably dead to the world. 562 */ 563 lockref_mark_dead(&dentry->d_lockref); 564 565 /* 566 * inform the fs via d_prune that this dentry is about to be 567 * unhashed and destroyed. 568 */ 569 if (dentry->d_flags & DCACHE_OP_PRUNE) 570 dentry->d_op->d_prune(dentry); 571 572 if (dentry->d_flags & DCACHE_LRU_LIST) { 573 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 574 d_lru_del(dentry); 575 } 576 /* if it was on the hash then remove it */ 577 __d_drop(dentry); 578 dentry_unlist(dentry, parent); 579 if (parent) 580 spin_unlock(&parent->d_lock); 581 if (dentry->d_inode) 582 dentry_unlink_inode(dentry); 583 else 584 spin_unlock(&dentry->d_lock); 585 this_cpu_dec(nr_dentry); 586 if (dentry->d_op && dentry->d_op->d_release) 587 dentry->d_op->d_release(dentry); 588 589 spin_lock(&dentry->d_lock); 590 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 591 dentry->d_flags |= DCACHE_MAY_FREE; 592 can_free = false; 593 } 594 spin_unlock(&dentry->d_lock); 595 if (likely(can_free)) 596 dentry_free(dentry); 597 cond_resched(); 598 } 599 600 static struct dentry *__lock_parent(struct dentry *dentry) 601 { 602 struct dentry *parent; 603 rcu_read_lock(); 604 spin_unlock(&dentry->d_lock); 605 again: 606 parent = READ_ONCE(dentry->d_parent); 607 spin_lock(&parent->d_lock); 608 /* 609 * We can't blindly lock dentry until we are sure 610 * that we won't violate the locking order. 611 * Any changes of dentry->d_parent must have 612 * been done with parent->d_lock held, so 613 * spin_lock() above is enough of a barrier 614 * for checking if it's still our child. 615 */ 616 if (unlikely(parent != dentry->d_parent)) { 617 spin_unlock(&parent->d_lock); 618 goto again; 619 } 620 rcu_read_unlock(); 621 if (parent != dentry) 622 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 623 else 624 parent = NULL; 625 return parent; 626 } 627 628 static inline struct dentry *lock_parent(struct dentry *dentry) 629 { 630 struct dentry *parent = dentry->d_parent; 631 if (IS_ROOT(dentry)) 632 return NULL; 633 if (likely(spin_trylock(&parent->d_lock))) 634 return parent; 635 return __lock_parent(dentry); 636 } 637 638 static inline bool retain_dentry(struct dentry *dentry) 639 { 640 WARN_ON(d_in_lookup(dentry)); 641 642 /* Unreachable? Get rid of it */ 643 if (unlikely(d_unhashed(dentry))) 644 return false; 645 646 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 647 return false; 648 649 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 650 if (dentry->d_op->d_delete(dentry)) 651 return false; 652 } 653 654 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 655 return false; 656 657 /* retain; LRU fodder */ 658 dentry->d_lockref.count--; 659 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 660 d_lru_add(dentry); 661 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 662 dentry->d_flags |= DCACHE_REFERENCED; 663 return true; 664 } 665 666 void d_mark_dontcache(struct inode *inode) 667 { 668 struct dentry *de; 669 670 spin_lock(&inode->i_lock); 671 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 672 spin_lock(&de->d_lock); 673 de->d_flags |= DCACHE_DONTCACHE; 674 spin_unlock(&de->d_lock); 675 } 676 inode->i_state |= I_DONTCACHE; 677 spin_unlock(&inode->i_lock); 678 } 679 EXPORT_SYMBOL(d_mark_dontcache); 680 681 /* 682 * Finish off a dentry we've decided to kill. 683 * dentry->d_lock must be held, returns with it unlocked. 684 * Returns dentry requiring refcount drop, or NULL if we're done. 685 */ 686 static struct dentry *dentry_kill(struct dentry *dentry) 687 __releases(dentry->d_lock) 688 { 689 struct inode *inode = dentry->d_inode; 690 struct dentry *parent = NULL; 691 692 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 693 goto slow_positive; 694 695 if (!IS_ROOT(dentry)) { 696 parent = dentry->d_parent; 697 if (unlikely(!spin_trylock(&parent->d_lock))) { 698 parent = __lock_parent(dentry); 699 if (likely(inode || !dentry->d_inode)) 700 goto got_locks; 701 /* negative that became positive */ 702 if (parent) 703 spin_unlock(&parent->d_lock); 704 inode = dentry->d_inode; 705 goto slow_positive; 706 } 707 } 708 __dentry_kill(dentry); 709 return parent; 710 711 slow_positive: 712 spin_unlock(&dentry->d_lock); 713 spin_lock(&inode->i_lock); 714 spin_lock(&dentry->d_lock); 715 parent = lock_parent(dentry); 716 got_locks: 717 if (unlikely(dentry->d_lockref.count != 1)) { 718 dentry->d_lockref.count--; 719 } else if (likely(!retain_dentry(dentry))) { 720 __dentry_kill(dentry); 721 return parent; 722 } 723 /* we are keeping it, after all */ 724 if (inode) 725 spin_unlock(&inode->i_lock); 726 if (parent) 727 spin_unlock(&parent->d_lock); 728 spin_unlock(&dentry->d_lock); 729 return NULL; 730 } 731 732 /* 733 * Try to do a lockless dput(), and return whether that was successful. 734 * 735 * If unsuccessful, we return false, having already taken the dentry lock. 736 * 737 * The caller needs to hold the RCU read lock, so that the dentry is 738 * guaranteed to stay around even if the refcount goes down to zero! 739 */ 740 static inline bool fast_dput(struct dentry *dentry) 741 { 742 int ret; 743 unsigned int d_flags; 744 745 /* 746 * If we have a d_op->d_delete() operation, we sould not 747 * let the dentry count go to zero, so use "put_or_lock". 748 */ 749 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 750 return lockref_put_or_lock(&dentry->d_lockref); 751 752 /* 753 * .. otherwise, we can try to just decrement the 754 * lockref optimistically. 755 */ 756 ret = lockref_put_return(&dentry->d_lockref); 757 758 /* 759 * If the lockref_put_return() failed due to the lock being held 760 * by somebody else, the fast path has failed. We will need to 761 * get the lock, and then check the count again. 762 */ 763 if (unlikely(ret < 0)) { 764 spin_lock(&dentry->d_lock); 765 if (dentry->d_lockref.count > 1) { 766 dentry->d_lockref.count--; 767 spin_unlock(&dentry->d_lock); 768 return true; 769 } 770 return false; 771 } 772 773 /* 774 * If we weren't the last ref, we're done. 775 */ 776 if (ret) 777 return true; 778 779 /* 780 * Careful, careful. The reference count went down 781 * to zero, but we don't hold the dentry lock, so 782 * somebody else could get it again, and do another 783 * dput(), and we need to not race with that. 784 * 785 * However, there is a very special and common case 786 * where we don't care, because there is nothing to 787 * do: the dentry is still hashed, it does not have 788 * a 'delete' op, and it's referenced and already on 789 * the LRU list. 790 * 791 * NOTE! Since we aren't locked, these values are 792 * not "stable". However, it is sufficient that at 793 * some point after we dropped the reference the 794 * dentry was hashed and the flags had the proper 795 * value. Other dentry users may have re-gotten 796 * a reference to the dentry and change that, but 797 * our work is done - we can leave the dentry 798 * around with a zero refcount. 799 * 800 * Nevertheless, there are two cases that we should kill 801 * the dentry anyway. 802 * 1. free disconnected dentries as soon as their refcount 803 * reached zero. 804 * 2. free dentries if they should not be cached. 805 */ 806 smp_rmb(); 807 d_flags = READ_ONCE(dentry->d_flags); 808 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | 809 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; 810 811 /* Nothing to do? Dropping the reference was all we needed? */ 812 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 813 return true; 814 815 /* 816 * Not the fast normal case? Get the lock. We've already decremented 817 * the refcount, but we'll need to re-check the situation after 818 * getting the lock. 819 */ 820 spin_lock(&dentry->d_lock); 821 822 /* 823 * Did somebody else grab a reference to it in the meantime, and 824 * we're no longer the last user after all? Alternatively, somebody 825 * else could have killed it and marked it dead. Either way, we 826 * don't need to do anything else. 827 */ 828 if (dentry->d_lockref.count) { 829 spin_unlock(&dentry->d_lock); 830 return true; 831 } 832 833 /* 834 * Re-get the reference we optimistically dropped. We hold the 835 * lock, and we just tested that it was zero, so we can just 836 * set it to 1. 837 */ 838 dentry->d_lockref.count = 1; 839 return false; 840 } 841 842 843 /* 844 * This is dput 845 * 846 * This is complicated by the fact that we do not want to put 847 * dentries that are no longer on any hash chain on the unused 848 * list: we'd much rather just get rid of them immediately. 849 * 850 * However, that implies that we have to traverse the dentry 851 * tree upwards to the parents which might _also_ now be 852 * scheduled for deletion (it may have been only waiting for 853 * its last child to go away). 854 * 855 * This tail recursion is done by hand as we don't want to depend 856 * on the compiler to always get this right (gcc generally doesn't). 857 * Real recursion would eat up our stack space. 858 */ 859 860 /* 861 * dput - release a dentry 862 * @dentry: dentry to release 863 * 864 * Release a dentry. This will drop the usage count and if appropriate 865 * call the dentry unlink method as well as removing it from the queues and 866 * releasing its resources. If the parent dentries were scheduled for release 867 * they too may now get deleted. 868 */ 869 void dput(struct dentry *dentry) 870 { 871 while (dentry) { 872 might_sleep(); 873 874 rcu_read_lock(); 875 if (likely(fast_dput(dentry))) { 876 rcu_read_unlock(); 877 return; 878 } 879 880 /* Slow case: now with the dentry lock held */ 881 rcu_read_unlock(); 882 883 if (likely(retain_dentry(dentry))) { 884 spin_unlock(&dentry->d_lock); 885 return; 886 } 887 888 dentry = dentry_kill(dentry); 889 } 890 } 891 EXPORT_SYMBOL(dput); 892 893 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 894 __must_hold(&dentry->d_lock) 895 { 896 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 897 /* let the owner of the list it's on deal with it */ 898 --dentry->d_lockref.count; 899 } else { 900 if (dentry->d_flags & DCACHE_LRU_LIST) 901 d_lru_del(dentry); 902 if (!--dentry->d_lockref.count) 903 d_shrink_add(dentry, list); 904 } 905 } 906 907 void dput_to_list(struct dentry *dentry, struct list_head *list) 908 { 909 rcu_read_lock(); 910 if (likely(fast_dput(dentry))) { 911 rcu_read_unlock(); 912 return; 913 } 914 rcu_read_unlock(); 915 if (!retain_dentry(dentry)) 916 __dput_to_list(dentry, list); 917 spin_unlock(&dentry->d_lock); 918 } 919 920 /* This must be called with d_lock held */ 921 static inline void __dget_dlock(struct dentry *dentry) 922 { 923 dentry->d_lockref.count++; 924 } 925 926 static inline void __dget(struct dentry *dentry) 927 { 928 lockref_get(&dentry->d_lockref); 929 } 930 931 struct dentry *dget_parent(struct dentry *dentry) 932 { 933 int gotref; 934 struct dentry *ret; 935 unsigned seq; 936 937 /* 938 * Do optimistic parent lookup without any 939 * locking. 940 */ 941 rcu_read_lock(); 942 seq = raw_seqcount_begin(&dentry->d_seq); 943 ret = READ_ONCE(dentry->d_parent); 944 gotref = lockref_get_not_zero(&ret->d_lockref); 945 rcu_read_unlock(); 946 if (likely(gotref)) { 947 if (!read_seqcount_retry(&dentry->d_seq, seq)) 948 return ret; 949 dput(ret); 950 } 951 952 repeat: 953 /* 954 * Don't need rcu_dereference because we re-check it was correct under 955 * the lock. 956 */ 957 rcu_read_lock(); 958 ret = dentry->d_parent; 959 spin_lock(&ret->d_lock); 960 if (unlikely(ret != dentry->d_parent)) { 961 spin_unlock(&ret->d_lock); 962 rcu_read_unlock(); 963 goto repeat; 964 } 965 rcu_read_unlock(); 966 BUG_ON(!ret->d_lockref.count); 967 ret->d_lockref.count++; 968 spin_unlock(&ret->d_lock); 969 return ret; 970 } 971 EXPORT_SYMBOL(dget_parent); 972 973 static struct dentry * __d_find_any_alias(struct inode *inode) 974 { 975 struct dentry *alias; 976 977 if (hlist_empty(&inode->i_dentry)) 978 return NULL; 979 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 980 __dget(alias); 981 return alias; 982 } 983 984 /** 985 * d_find_any_alias - find any alias for a given inode 986 * @inode: inode to find an alias for 987 * 988 * If any aliases exist for the given inode, take and return a 989 * reference for one of them. If no aliases exist, return %NULL. 990 */ 991 struct dentry *d_find_any_alias(struct inode *inode) 992 { 993 struct dentry *de; 994 995 spin_lock(&inode->i_lock); 996 de = __d_find_any_alias(inode); 997 spin_unlock(&inode->i_lock); 998 return de; 999 } 1000 EXPORT_SYMBOL(d_find_any_alias); 1001 1002 static struct dentry *__d_find_alias(struct inode *inode) 1003 { 1004 struct dentry *alias; 1005 1006 if (S_ISDIR(inode->i_mode)) 1007 return __d_find_any_alias(inode); 1008 1009 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1010 spin_lock(&alias->d_lock); 1011 if (!d_unhashed(alias)) { 1012 __dget_dlock(alias); 1013 spin_unlock(&alias->d_lock); 1014 return alias; 1015 } 1016 spin_unlock(&alias->d_lock); 1017 } 1018 return NULL; 1019 } 1020 1021 /** 1022 * d_find_alias - grab a hashed alias of inode 1023 * @inode: inode in question 1024 * 1025 * If inode has a hashed alias, or is a directory and has any alias, 1026 * acquire the reference to alias and return it. Otherwise return NULL. 1027 * Notice that if inode is a directory there can be only one alias and 1028 * it can be unhashed only if it has no children, or if it is the root 1029 * of a filesystem, or if the directory was renamed and d_revalidate 1030 * was the first vfs operation to notice. 1031 * 1032 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1033 * any other hashed alias over that one. 1034 */ 1035 struct dentry *d_find_alias(struct inode *inode) 1036 { 1037 struct dentry *de = NULL; 1038 1039 if (!hlist_empty(&inode->i_dentry)) { 1040 spin_lock(&inode->i_lock); 1041 de = __d_find_alias(inode); 1042 spin_unlock(&inode->i_lock); 1043 } 1044 return de; 1045 } 1046 EXPORT_SYMBOL(d_find_alias); 1047 1048 /* 1049 * Caller MUST be holding rcu_read_lock() and be guaranteed 1050 * that inode won't get freed until rcu_read_unlock(). 1051 */ 1052 struct dentry *d_find_alias_rcu(struct inode *inode) 1053 { 1054 struct hlist_head *l = &inode->i_dentry; 1055 struct dentry *de = NULL; 1056 1057 spin_lock(&inode->i_lock); 1058 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1059 // used without having I_FREEING set, which means no aliases left 1060 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1061 if (S_ISDIR(inode->i_mode)) { 1062 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1063 } else { 1064 hlist_for_each_entry(de, l, d_u.d_alias) 1065 if (!d_unhashed(de)) 1066 break; 1067 } 1068 } 1069 spin_unlock(&inode->i_lock); 1070 return de; 1071 } 1072 1073 /* 1074 * Try to kill dentries associated with this inode. 1075 * WARNING: you must own a reference to inode. 1076 */ 1077 void d_prune_aliases(struct inode *inode) 1078 { 1079 struct dentry *dentry; 1080 restart: 1081 spin_lock(&inode->i_lock); 1082 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1083 spin_lock(&dentry->d_lock); 1084 if (!dentry->d_lockref.count) { 1085 struct dentry *parent = lock_parent(dentry); 1086 if (likely(!dentry->d_lockref.count)) { 1087 __dentry_kill(dentry); 1088 dput(parent); 1089 goto restart; 1090 } 1091 if (parent) 1092 spin_unlock(&parent->d_lock); 1093 } 1094 spin_unlock(&dentry->d_lock); 1095 } 1096 spin_unlock(&inode->i_lock); 1097 } 1098 EXPORT_SYMBOL(d_prune_aliases); 1099 1100 /* 1101 * Lock a dentry from shrink list. 1102 * Called under rcu_read_lock() and dentry->d_lock; the former 1103 * guarantees that nothing we access will be freed under us. 1104 * Note that dentry is *not* protected from concurrent dentry_kill(), 1105 * d_delete(), etc. 1106 * 1107 * Return false if dentry has been disrupted or grabbed, leaving 1108 * the caller to kick it off-list. Otherwise, return true and have 1109 * that dentry's inode and parent both locked. 1110 */ 1111 static bool shrink_lock_dentry(struct dentry *dentry) 1112 { 1113 struct inode *inode; 1114 struct dentry *parent; 1115 1116 if (dentry->d_lockref.count) 1117 return false; 1118 1119 inode = dentry->d_inode; 1120 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1121 spin_unlock(&dentry->d_lock); 1122 spin_lock(&inode->i_lock); 1123 spin_lock(&dentry->d_lock); 1124 if (unlikely(dentry->d_lockref.count)) 1125 goto out; 1126 /* changed inode means that somebody had grabbed it */ 1127 if (unlikely(inode != dentry->d_inode)) 1128 goto out; 1129 } 1130 1131 parent = dentry->d_parent; 1132 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1133 return true; 1134 1135 spin_unlock(&dentry->d_lock); 1136 spin_lock(&parent->d_lock); 1137 if (unlikely(parent != dentry->d_parent)) { 1138 spin_unlock(&parent->d_lock); 1139 spin_lock(&dentry->d_lock); 1140 goto out; 1141 } 1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1143 if (likely(!dentry->d_lockref.count)) 1144 return true; 1145 spin_unlock(&parent->d_lock); 1146 out: 1147 if (inode) 1148 spin_unlock(&inode->i_lock); 1149 return false; 1150 } 1151 1152 void shrink_dentry_list(struct list_head *list) 1153 { 1154 while (!list_empty(list)) { 1155 struct dentry *dentry, *parent; 1156 1157 dentry = list_entry(list->prev, struct dentry, d_lru); 1158 spin_lock(&dentry->d_lock); 1159 rcu_read_lock(); 1160 if (!shrink_lock_dentry(dentry)) { 1161 bool can_free = false; 1162 rcu_read_unlock(); 1163 d_shrink_del(dentry); 1164 if (dentry->d_lockref.count < 0) 1165 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1166 spin_unlock(&dentry->d_lock); 1167 if (can_free) 1168 dentry_free(dentry); 1169 continue; 1170 } 1171 rcu_read_unlock(); 1172 d_shrink_del(dentry); 1173 parent = dentry->d_parent; 1174 if (parent != dentry) 1175 __dput_to_list(parent, list); 1176 __dentry_kill(dentry); 1177 } 1178 } 1179 1180 static enum lru_status dentry_lru_isolate(struct list_head *item, 1181 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1182 { 1183 struct list_head *freeable = arg; 1184 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1185 1186 1187 /* 1188 * we are inverting the lru lock/dentry->d_lock here, 1189 * so use a trylock. If we fail to get the lock, just skip 1190 * it 1191 */ 1192 if (!spin_trylock(&dentry->d_lock)) 1193 return LRU_SKIP; 1194 1195 /* 1196 * Referenced dentries are still in use. If they have active 1197 * counts, just remove them from the LRU. Otherwise give them 1198 * another pass through the LRU. 1199 */ 1200 if (dentry->d_lockref.count) { 1201 d_lru_isolate(lru, dentry); 1202 spin_unlock(&dentry->d_lock); 1203 return LRU_REMOVED; 1204 } 1205 1206 if (dentry->d_flags & DCACHE_REFERENCED) { 1207 dentry->d_flags &= ~DCACHE_REFERENCED; 1208 spin_unlock(&dentry->d_lock); 1209 1210 /* 1211 * The list move itself will be made by the common LRU code. At 1212 * this point, we've dropped the dentry->d_lock but keep the 1213 * lru lock. This is safe to do, since every list movement is 1214 * protected by the lru lock even if both locks are held. 1215 * 1216 * This is guaranteed by the fact that all LRU management 1217 * functions are intermediated by the LRU API calls like 1218 * list_lru_add and list_lru_del. List movement in this file 1219 * only ever occur through this functions or through callbacks 1220 * like this one, that are called from the LRU API. 1221 * 1222 * The only exceptions to this are functions like 1223 * shrink_dentry_list, and code that first checks for the 1224 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1225 * operating only with stack provided lists after they are 1226 * properly isolated from the main list. It is thus, always a 1227 * local access. 1228 */ 1229 return LRU_ROTATE; 1230 } 1231 1232 d_lru_shrink_move(lru, dentry, freeable); 1233 spin_unlock(&dentry->d_lock); 1234 1235 return LRU_REMOVED; 1236 } 1237 1238 /** 1239 * prune_dcache_sb - shrink the dcache 1240 * @sb: superblock 1241 * @sc: shrink control, passed to list_lru_shrink_walk() 1242 * 1243 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1244 * is done when we need more memory and called from the superblock shrinker 1245 * function. 1246 * 1247 * This function may fail to free any resources if all the dentries are in 1248 * use. 1249 */ 1250 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1251 { 1252 LIST_HEAD(dispose); 1253 long freed; 1254 1255 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1256 dentry_lru_isolate, &dispose); 1257 shrink_dentry_list(&dispose); 1258 return freed; 1259 } 1260 1261 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1262 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1263 { 1264 struct list_head *freeable = arg; 1265 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1266 1267 /* 1268 * we are inverting the lru lock/dentry->d_lock here, 1269 * so use a trylock. If we fail to get the lock, just skip 1270 * it 1271 */ 1272 if (!spin_trylock(&dentry->d_lock)) 1273 return LRU_SKIP; 1274 1275 d_lru_shrink_move(lru, dentry, freeable); 1276 spin_unlock(&dentry->d_lock); 1277 1278 return LRU_REMOVED; 1279 } 1280 1281 1282 /** 1283 * shrink_dcache_sb - shrink dcache for a superblock 1284 * @sb: superblock 1285 * 1286 * Shrink the dcache for the specified super block. This is used to free 1287 * the dcache before unmounting a file system. 1288 */ 1289 void shrink_dcache_sb(struct super_block *sb) 1290 { 1291 do { 1292 LIST_HEAD(dispose); 1293 1294 list_lru_walk(&sb->s_dentry_lru, 1295 dentry_lru_isolate_shrink, &dispose, 1024); 1296 shrink_dentry_list(&dispose); 1297 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1298 } 1299 EXPORT_SYMBOL(shrink_dcache_sb); 1300 1301 /** 1302 * enum d_walk_ret - action to talke during tree walk 1303 * @D_WALK_CONTINUE: contrinue walk 1304 * @D_WALK_QUIT: quit walk 1305 * @D_WALK_NORETRY: quit when retry is needed 1306 * @D_WALK_SKIP: skip this dentry and its children 1307 */ 1308 enum d_walk_ret { 1309 D_WALK_CONTINUE, 1310 D_WALK_QUIT, 1311 D_WALK_NORETRY, 1312 D_WALK_SKIP, 1313 }; 1314 1315 /** 1316 * d_walk - walk the dentry tree 1317 * @parent: start of walk 1318 * @data: data passed to @enter() and @finish() 1319 * @enter: callback when first entering the dentry 1320 * 1321 * The @enter() callbacks are called with d_lock held. 1322 */ 1323 static void d_walk(struct dentry *parent, void *data, 1324 enum d_walk_ret (*enter)(void *, struct dentry *)) 1325 { 1326 struct dentry *this_parent; 1327 struct list_head *next; 1328 unsigned seq = 0; 1329 enum d_walk_ret ret; 1330 bool retry = true; 1331 1332 again: 1333 read_seqbegin_or_lock(&rename_lock, &seq); 1334 this_parent = parent; 1335 spin_lock(&this_parent->d_lock); 1336 1337 ret = enter(data, this_parent); 1338 switch (ret) { 1339 case D_WALK_CONTINUE: 1340 break; 1341 case D_WALK_QUIT: 1342 case D_WALK_SKIP: 1343 goto out_unlock; 1344 case D_WALK_NORETRY: 1345 retry = false; 1346 break; 1347 } 1348 repeat: 1349 next = this_parent->d_subdirs.next; 1350 resume: 1351 while (next != &this_parent->d_subdirs) { 1352 struct list_head *tmp = next; 1353 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1354 next = tmp->next; 1355 1356 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1357 continue; 1358 1359 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1360 1361 ret = enter(data, dentry); 1362 switch (ret) { 1363 case D_WALK_CONTINUE: 1364 break; 1365 case D_WALK_QUIT: 1366 spin_unlock(&dentry->d_lock); 1367 goto out_unlock; 1368 case D_WALK_NORETRY: 1369 retry = false; 1370 break; 1371 case D_WALK_SKIP: 1372 spin_unlock(&dentry->d_lock); 1373 continue; 1374 } 1375 1376 if (!list_empty(&dentry->d_subdirs)) { 1377 spin_unlock(&this_parent->d_lock); 1378 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1379 this_parent = dentry; 1380 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1381 goto repeat; 1382 } 1383 spin_unlock(&dentry->d_lock); 1384 } 1385 /* 1386 * All done at this level ... ascend and resume the search. 1387 */ 1388 rcu_read_lock(); 1389 ascend: 1390 if (this_parent != parent) { 1391 struct dentry *child = this_parent; 1392 this_parent = child->d_parent; 1393 1394 spin_unlock(&child->d_lock); 1395 spin_lock(&this_parent->d_lock); 1396 1397 /* might go back up the wrong parent if we have had a rename. */ 1398 if (need_seqretry(&rename_lock, seq)) 1399 goto rename_retry; 1400 /* go into the first sibling still alive */ 1401 do { 1402 next = child->d_child.next; 1403 if (next == &this_parent->d_subdirs) 1404 goto ascend; 1405 child = list_entry(next, struct dentry, d_child); 1406 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1407 rcu_read_unlock(); 1408 goto resume; 1409 } 1410 if (need_seqretry(&rename_lock, seq)) 1411 goto rename_retry; 1412 rcu_read_unlock(); 1413 1414 out_unlock: 1415 spin_unlock(&this_parent->d_lock); 1416 done_seqretry(&rename_lock, seq); 1417 return; 1418 1419 rename_retry: 1420 spin_unlock(&this_parent->d_lock); 1421 rcu_read_unlock(); 1422 BUG_ON(seq & 1); 1423 if (!retry) 1424 return; 1425 seq = 1; 1426 goto again; 1427 } 1428 1429 struct check_mount { 1430 struct vfsmount *mnt; 1431 unsigned int mounted; 1432 }; 1433 1434 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1435 { 1436 struct check_mount *info = data; 1437 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1438 1439 if (likely(!d_mountpoint(dentry))) 1440 return D_WALK_CONTINUE; 1441 if (__path_is_mountpoint(&path)) { 1442 info->mounted = 1; 1443 return D_WALK_QUIT; 1444 } 1445 return D_WALK_CONTINUE; 1446 } 1447 1448 /** 1449 * path_has_submounts - check for mounts over a dentry in the 1450 * current namespace. 1451 * @parent: path to check. 1452 * 1453 * Return true if the parent or its subdirectories contain 1454 * a mount point in the current namespace. 1455 */ 1456 int path_has_submounts(const struct path *parent) 1457 { 1458 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1459 1460 read_seqlock_excl(&mount_lock); 1461 d_walk(parent->dentry, &data, path_check_mount); 1462 read_sequnlock_excl(&mount_lock); 1463 1464 return data.mounted; 1465 } 1466 EXPORT_SYMBOL(path_has_submounts); 1467 1468 /* 1469 * Called by mount code to set a mountpoint and check if the mountpoint is 1470 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1471 * subtree can become unreachable). 1472 * 1473 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1474 * this reason take rename_lock and d_lock on dentry and ancestors. 1475 */ 1476 int d_set_mounted(struct dentry *dentry) 1477 { 1478 struct dentry *p; 1479 int ret = -ENOENT; 1480 write_seqlock(&rename_lock); 1481 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1482 /* Need exclusion wrt. d_invalidate() */ 1483 spin_lock(&p->d_lock); 1484 if (unlikely(d_unhashed(p))) { 1485 spin_unlock(&p->d_lock); 1486 goto out; 1487 } 1488 spin_unlock(&p->d_lock); 1489 } 1490 spin_lock(&dentry->d_lock); 1491 if (!d_unlinked(dentry)) { 1492 ret = -EBUSY; 1493 if (!d_mountpoint(dentry)) { 1494 dentry->d_flags |= DCACHE_MOUNTED; 1495 ret = 0; 1496 } 1497 } 1498 spin_unlock(&dentry->d_lock); 1499 out: 1500 write_sequnlock(&rename_lock); 1501 return ret; 1502 } 1503 1504 /* 1505 * Search the dentry child list of the specified parent, 1506 * and move any unused dentries to the end of the unused 1507 * list for prune_dcache(). We descend to the next level 1508 * whenever the d_subdirs list is non-empty and continue 1509 * searching. 1510 * 1511 * It returns zero iff there are no unused children, 1512 * otherwise it returns the number of children moved to 1513 * the end of the unused list. This may not be the total 1514 * number of unused children, because select_parent can 1515 * drop the lock and return early due to latency 1516 * constraints. 1517 */ 1518 1519 struct select_data { 1520 struct dentry *start; 1521 union { 1522 long found; 1523 struct dentry *victim; 1524 }; 1525 struct list_head dispose; 1526 }; 1527 1528 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1529 { 1530 struct select_data *data = _data; 1531 enum d_walk_ret ret = D_WALK_CONTINUE; 1532 1533 if (data->start == dentry) 1534 goto out; 1535 1536 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1537 data->found++; 1538 } else { 1539 if (dentry->d_flags & DCACHE_LRU_LIST) 1540 d_lru_del(dentry); 1541 if (!dentry->d_lockref.count) { 1542 d_shrink_add(dentry, &data->dispose); 1543 data->found++; 1544 } 1545 } 1546 /* 1547 * We can return to the caller if we have found some (this 1548 * ensures forward progress). We'll be coming back to find 1549 * the rest. 1550 */ 1551 if (!list_empty(&data->dispose)) 1552 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1553 out: 1554 return ret; 1555 } 1556 1557 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1558 { 1559 struct select_data *data = _data; 1560 enum d_walk_ret ret = D_WALK_CONTINUE; 1561 1562 if (data->start == dentry) 1563 goto out; 1564 1565 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1566 if (!dentry->d_lockref.count) { 1567 rcu_read_lock(); 1568 data->victim = dentry; 1569 return D_WALK_QUIT; 1570 } 1571 } else { 1572 if (dentry->d_flags & DCACHE_LRU_LIST) 1573 d_lru_del(dentry); 1574 if (!dentry->d_lockref.count) 1575 d_shrink_add(dentry, &data->dispose); 1576 } 1577 /* 1578 * We can return to the caller if we have found some (this 1579 * ensures forward progress). We'll be coming back to find 1580 * the rest. 1581 */ 1582 if (!list_empty(&data->dispose)) 1583 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1584 out: 1585 return ret; 1586 } 1587 1588 /** 1589 * shrink_dcache_parent - prune dcache 1590 * @parent: parent of entries to prune 1591 * 1592 * Prune the dcache to remove unused children of the parent dentry. 1593 */ 1594 void shrink_dcache_parent(struct dentry *parent) 1595 { 1596 for (;;) { 1597 struct select_data data = {.start = parent}; 1598 1599 INIT_LIST_HEAD(&data.dispose); 1600 d_walk(parent, &data, select_collect); 1601 1602 if (!list_empty(&data.dispose)) { 1603 shrink_dentry_list(&data.dispose); 1604 continue; 1605 } 1606 1607 cond_resched(); 1608 if (!data.found) 1609 break; 1610 data.victim = NULL; 1611 d_walk(parent, &data, select_collect2); 1612 if (data.victim) { 1613 struct dentry *parent; 1614 spin_lock(&data.victim->d_lock); 1615 if (!shrink_lock_dentry(data.victim)) { 1616 spin_unlock(&data.victim->d_lock); 1617 rcu_read_unlock(); 1618 } else { 1619 rcu_read_unlock(); 1620 parent = data.victim->d_parent; 1621 if (parent != data.victim) 1622 __dput_to_list(parent, &data.dispose); 1623 __dentry_kill(data.victim); 1624 } 1625 } 1626 if (!list_empty(&data.dispose)) 1627 shrink_dentry_list(&data.dispose); 1628 } 1629 } 1630 EXPORT_SYMBOL(shrink_dcache_parent); 1631 1632 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1633 { 1634 /* it has busy descendents; complain about those instead */ 1635 if (!list_empty(&dentry->d_subdirs)) 1636 return D_WALK_CONTINUE; 1637 1638 /* root with refcount 1 is fine */ 1639 if (dentry == _data && dentry->d_lockref.count == 1) 1640 return D_WALK_CONTINUE; 1641 1642 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1643 " still in use (%d) [unmount of %s %s]\n", 1644 dentry, 1645 dentry->d_inode ? 1646 dentry->d_inode->i_ino : 0UL, 1647 dentry, 1648 dentry->d_lockref.count, 1649 dentry->d_sb->s_type->name, 1650 dentry->d_sb->s_id); 1651 WARN_ON(1); 1652 return D_WALK_CONTINUE; 1653 } 1654 1655 static void do_one_tree(struct dentry *dentry) 1656 { 1657 shrink_dcache_parent(dentry); 1658 d_walk(dentry, dentry, umount_check); 1659 d_drop(dentry); 1660 dput(dentry); 1661 } 1662 1663 /* 1664 * destroy the dentries attached to a superblock on unmounting 1665 */ 1666 void shrink_dcache_for_umount(struct super_block *sb) 1667 { 1668 struct dentry *dentry; 1669 1670 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1671 1672 dentry = sb->s_root; 1673 sb->s_root = NULL; 1674 do_one_tree(dentry); 1675 1676 while (!hlist_bl_empty(&sb->s_roots)) { 1677 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1678 do_one_tree(dentry); 1679 } 1680 } 1681 1682 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1683 { 1684 struct dentry **victim = _data; 1685 if (d_mountpoint(dentry)) { 1686 __dget_dlock(dentry); 1687 *victim = dentry; 1688 return D_WALK_QUIT; 1689 } 1690 return D_WALK_CONTINUE; 1691 } 1692 1693 /** 1694 * d_invalidate - detach submounts, prune dcache, and drop 1695 * @dentry: dentry to invalidate (aka detach, prune and drop) 1696 */ 1697 void d_invalidate(struct dentry *dentry) 1698 { 1699 bool had_submounts = false; 1700 spin_lock(&dentry->d_lock); 1701 if (d_unhashed(dentry)) { 1702 spin_unlock(&dentry->d_lock); 1703 return; 1704 } 1705 __d_drop(dentry); 1706 spin_unlock(&dentry->d_lock); 1707 1708 /* Negative dentries can be dropped without further checks */ 1709 if (!dentry->d_inode) 1710 return; 1711 1712 shrink_dcache_parent(dentry); 1713 for (;;) { 1714 struct dentry *victim = NULL; 1715 d_walk(dentry, &victim, find_submount); 1716 if (!victim) { 1717 if (had_submounts) 1718 shrink_dcache_parent(dentry); 1719 return; 1720 } 1721 had_submounts = true; 1722 detach_mounts(victim); 1723 dput(victim); 1724 } 1725 } 1726 EXPORT_SYMBOL(d_invalidate); 1727 1728 /** 1729 * __d_alloc - allocate a dcache entry 1730 * @sb: filesystem it will belong to 1731 * @name: qstr of the name 1732 * 1733 * Allocates a dentry. It returns %NULL if there is insufficient memory 1734 * available. On a success the dentry is returned. The name passed in is 1735 * copied and the copy passed in may be reused after this call. 1736 */ 1737 1738 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1739 { 1740 struct dentry *dentry; 1741 char *dname; 1742 int err; 1743 1744 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1745 if (!dentry) 1746 return NULL; 1747 1748 /* 1749 * We guarantee that the inline name is always NUL-terminated. 1750 * This way the memcpy() done by the name switching in rename 1751 * will still always have a NUL at the end, even if we might 1752 * be overwriting an internal NUL character 1753 */ 1754 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1755 if (unlikely(!name)) { 1756 name = &slash_name; 1757 dname = dentry->d_iname; 1758 } else if (name->len > DNAME_INLINE_LEN-1) { 1759 size_t size = offsetof(struct external_name, name[1]); 1760 struct external_name *p = kmalloc(size + name->len, 1761 GFP_KERNEL_ACCOUNT | 1762 __GFP_RECLAIMABLE); 1763 if (!p) { 1764 kmem_cache_free(dentry_cache, dentry); 1765 return NULL; 1766 } 1767 atomic_set(&p->u.count, 1); 1768 dname = p->name; 1769 } else { 1770 dname = dentry->d_iname; 1771 } 1772 1773 dentry->d_name.len = name->len; 1774 dentry->d_name.hash = name->hash; 1775 memcpy(dname, name->name, name->len); 1776 dname[name->len] = 0; 1777 1778 /* Make sure we always see the terminating NUL character */ 1779 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1780 1781 dentry->d_lockref.count = 1; 1782 dentry->d_flags = 0; 1783 spin_lock_init(&dentry->d_lock); 1784 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1785 dentry->d_inode = NULL; 1786 dentry->d_parent = dentry; 1787 dentry->d_sb = sb; 1788 dentry->d_op = NULL; 1789 dentry->d_fsdata = NULL; 1790 INIT_HLIST_BL_NODE(&dentry->d_hash); 1791 INIT_LIST_HEAD(&dentry->d_lru); 1792 INIT_LIST_HEAD(&dentry->d_subdirs); 1793 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1794 INIT_LIST_HEAD(&dentry->d_child); 1795 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1796 1797 if (dentry->d_op && dentry->d_op->d_init) { 1798 err = dentry->d_op->d_init(dentry); 1799 if (err) { 1800 if (dname_external(dentry)) 1801 kfree(external_name(dentry)); 1802 kmem_cache_free(dentry_cache, dentry); 1803 return NULL; 1804 } 1805 } 1806 1807 this_cpu_inc(nr_dentry); 1808 1809 return dentry; 1810 } 1811 1812 /** 1813 * d_alloc - allocate a dcache entry 1814 * @parent: parent of entry to allocate 1815 * @name: qstr of the name 1816 * 1817 * Allocates a dentry. It returns %NULL if there is insufficient memory 1818 * available. On a success the dentry is returned. The name passed in is 1819 * copied and the copy passed in may be reused after this call. 1820 */ 1821 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1822 { 1823 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1824 if (!dentry) 1825 return NULL; 1826 spin_lock(&parent->d_lock); 1827 /* 1828 * don't need child lock because it is not subject 1829 * to concurrency here 1830 */ 1831 __dget_dlock(parent); 1832 dentry->d_parent = parent; 1833 list_add(&dentry->d_child, &parent->d_subdirs); 1834 spin_unlock(&parent->d_lock); 1835 1836 return dentry; 1837 } 1838 EXPORT_SYMBOL(d_alloc); 1839 1840 struct dentry *d_alloc_anon(struct super_block *sb) 1841 { 1842 return __d_alloc(sb, NULL); 1843 } 1844 EXPORT_SYMBOL(d_alloc_anon); 1845 1846 struct dentry *d_alloc_cursor(struct dentry * parent) 1847 { 1848 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1849 if (dentry) { 1850 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1851 dentry->d_parent = dget(parent); 1852 } 1853 return dentry; 1854 } 1855 1856 /** 1857 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1858 * @sb: the superblock 1859 * @name: qstr of the name 1860 * 1861 * For a filesystem that just pins its dentries in memory and never 1862 * performs lookups at all, return an unhashed IS_ROOT dentry. 1863 * This is used for pipes, sockets et.al. - the stuff that should 1864 * never be anyone's children or parents. Unlike all other 1865 * dentries, these will not have RCU delay between dropping the 1866 * last reference and freeing them. 1867 * 1868 * The only user is alloc_file_pseudo() and that's what should 1869 * be considered a public interface. Don't use directly. 1870 */ 1871 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1872 { 1873 struct dentry *dentry = __d_alloc(sb, name); 1874 if (likely(dentry)) 1875 dentry->d_flags |= DCACHE_NORCU; 1876 return dentry; 1877 } 1878 1879 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1880 { 1881 struct qstr q; 1882 1883 q.name = name; 1884 q.hash_len = hashlen_string(parent, name); 1885 return d_alloc(parent, &q); 1886 } 1887 EXPORT_SYMBOL(d_alloc_name); 1888 1889 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1890 { 1891 WARN_ON_ONCE(dentry->d_op); 1892 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1893 DCACHE_OP_COMPARE | 1894 DCACHE_OP_REVALIDATE | 1895 DCACHE_OP_WEAK_REVALIDATE | 1896 DCACHE_OP_DELETE | 1897 DCACHE_OP_REAL)); 1898 dentry->d_op = op; 1899 if (!op) 1900 return; 1901 if (op->d_hash) 1902 dentry->d_flags |= DCACHE_OP_HASH; 1903 if (op->d_compare) 1904 dentry->d_flags |= DCACHE_OP_COMPARE; 1905 if (op->d_revalidate) 1906 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1907 if (op->d_weak_revalidate) 1908 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1909 if (op->d_delete) 1910 dentry->d_flags |= DCACHE_OP_DELETE; 1911 if (op->d_prune) 1912 dentry->d_flags |= DCACHE_OP_PRUNE; 1913 if (op->d_real) 1914 dentry->d_flags |= DCACHE_OP_REAL; 1915 1916 } 1917 EXPORT_SYMBOL(d_set_d_op); 1918 1919 1920 /* 1921 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1922 * @dentry - The dentry to mark 1923 * 1924 * Mark a dentry as falling through to the lower layer (as set with 1925 * d_pin_lower()). This flag may be recorded on the medium. 1926 */ 1927 void d_set_fallthru(struct dentry *dentry) 1928 { 1929 spin_lock(&dentry->d_lock); 1930 dentry->d_flags |= DCACHE_FALLTHRU; 1931 spin_unlock(&dentry->d_lock); 1932 } 1933 EXPORT_SYMBOL(d_set_fallthru); 1934 1935 static unsigned d_flags_for_inode(struct inode *inode) 1936 { 1937 unsigned add_flags = DCACHE_REGULAR_TYPE; 1938 1939 if (!inode) 1940 return DCACHE_MISS_TYPE; 1941 1942 if (S_ISDIR(inode->i_mode)) { 1943 add_flags = DCACHE_DIRECTORY_TYPE; 1944 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1945 if (unlikely(!inode->i_op->lookup)) 1946 add_flags = DCACHE_AUTODIR_TYPE; 1947 else 1948 inode->i_opflags |= IOP_LOOKUP; 1949 } 1950 goto type_determined; 1951 } 1952 1953 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1954 if (unlikely(inode->i_op->get_link)) { 1955 add_flags = DCACHE_SYMLINK_TYPE; 1956 goto type_determined; 1957 } 1958 inode->i_opflags |= IOP_NOFOLLOW; 1959 } 1960 1961 if (unlikely(!S_ISREG(inode->i_mode))) 1962 add_flags = DCACHE_SPECIAL_TYPE; 1963 1964 type_determined: 1965 if (unlikely(IS_AUTOMOUNT(inode))) 1966 add_flags |= DCACHE_NEED_AUTOMOUNT; 1967 return add_flags; 1968 } 1969 1970 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1971 { 1972 unsigned add_flags = d_flags_for_inode(inode); 1973 WARN_ON(d_in_lookup(dentry)); 1974 1975 spin_lock(&dentry->d_lock); 1976 /* 1977 * Decrement negative dentry count if it was in the LRU list. 1978 */ 1979 if (dentry->d_flags & DCACHE_LRU_LIST) 1980 this_cpu_dec(nr_dentry_negative); 1981 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1982 raw_write_seqcount_begin(&dentry->d_seq); 1983 __d_set_inode_and_type(dentry, inode, add_flags); 1984 raw_write_seqcount_end(&dentry->d_seq); 1985 fsnotify_update_flags(dentry); 1986 spin_unlock(&dentry->d_lock); 1987 } 1988 1989 /** 1990 * d_instantiate - fill in inode information for a dentry 1991 * @entry: dentry to complete 1992 * @inode: inode to attach to this dentry 1993 * 1994 * Fill in inode information in the entry. 1995 * 1996 * This turns negative dentries into productive full members 1997 * of society. 1998 * 1999 * NOTE! This assumes that the inode count has been incremented 2000 * (or otherwise set) by the caller to indicate that it is now 2001 * in use by the dcache. 2002 */ 2003 2004 void d_instantiate(struct dentry *entry, struct inode * inode) 2005 { 2006 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2007 if (inode) { 2008 security_d_instantiate(entry, inode); 2009 spin_lock(&inode->i_lock); 2010 __d_instantiate(entry, inode); 2011 spin_unlock(&inode->i_lock); 2012 } 2013 } 2014 EXPORT_SYMBOL(d_instantiate); 2015 2016 /* 2017 * This should be equivalent to d_instantiate() + unlock_new_inode(), 2018 * with lockdep-related part of unlock_new_inode() done before 2019 * anything else. Use that instead of open-coding d_instantiate()/ 2020 * unlock_new_inode() combinations. 2021 */ 2022 void d_instantiate_new(struct dentry *entry, struct inode *inode) 2023 { 2024 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 2025 BUG_ON(!inode); 2026 lockdep_annotate_inode_mutex_key(inode); 2027 security_d_instantiate(entry, inode); 2028 spin_lock(&inode->i_lock); 2029 __d_instantiate(entry, inode); 2030 WARN_ON(!(inode->i_state & I_NEW)); 2031 inode->i_state &= ~I_NEW & ~I_CREATING; 2032 smp_mb(); 2033 wake_up_bit(&inode->i_state, __I_NEW); 2034 spin_unlock(&inode->i_lock); 2035 } 2036 EXPORT_SYMBOL(d_instantiate_new); 2037 2038 struct dentry *d_make_root(struct inode *root_inode) 2039 { 2040 struct dentry *res = NULL; 2041 2042 if (root_inode) { 2043 res = d_alloc_anon(root_inode->i_sb); 2044 if (res) 2045 d_instantiate(res, root_inode); 2046 else 2047 iput(root_inode); 2048 } 2049 return res; 2050 } 2051 EXPORT_SYMBOL(d_make_root); 2052 2053 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2054 struct inode *inode, 2055 bool disconnected) 2056 { 2057 struct dentry *res; 2058 unsigned add_flags; 2059 2060 security_d_instantiate(dentry, inode); 2061 spin_lock(&inode->i_lock); 2062 res = __d_find_any_alias(inode); 2063 if (res) { 2064 spin_unlock(&inode->i_lock); 2065 dput(dentry); 2066 goto out_iput; 2067 } 2068 2069 /* attach a disconnected dentry */ 2070 add_flags = d_flags_for_inode(inode); 2071 2072 if (disconnected) 2073 add_flags |= DCACHE_DISCONNECTED; 2074 2075 spin_lock(&dentry->d_lock); 2076 __d_set_inode_and_type(dentry, inode, add_flags); 2077 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2078 if (!disconnected) { 2079 hlist_bl_lock(&dentry->d_sb->s_roots); 2080 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2081 hlist_bl_unlock(&dentry->d_sb->s_roots); 2082 } 2083 spin_unlock(&dentry->d_lock); 2084 spin_unlock(&inode->i_lock); 2085 2086 return dentry; 2087 2088 out_iput: 2089 iput(inode); 2090 return res; 2091 } 2092 2093 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2094 { 2095 return __d_instantiate_anon(dentry, inode, true); 2096 } 2097 EXPORT_SYMBOL(d_instantiate_anon); 2098 2099 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2100 { 2101 struct dentry *tmp; 2102 struct dentry *res; 2103 2104 if (!inode) 2105 return ERR_PTR(-ESTALE); 2106 if (IS_ERR(inode)) 2107 return ERR_CAST(inode); 2108 2109 res = d_find_any_alias(inode); 2110 if (res) 2111 goto out_iput; 2112 2113 tmp = d_alloc_anon(inode->i_sb); 2114 if (!tmp) { 2115 res = ERR_PTR(-ENOMEM); 2116 goto out_iput; 2117 } 2118 2119 return __d_instantiate_anon(tmp, inode, disconnected); 2120 2121 out_iput: 2122 iput(inode); 2123 return res; 2124 } 2125 2126 /** 2127 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2128 * @inode: inode to allocate the dentry for 2129 * 2130 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2131 * similar open by handle operations. The returned dentry may be anonymous, 2132 * or may have a full name (if the inode was already in the cache). 2133 * 2134 * When called on a directory inode, we must ensure that the inode only ever 2135 * has one dentry. If a dentry is found, that is returned instead of 2136 * allocating a new one. 2137 * 2138 * On successful return, the reference to the inode has been transferred 2139 * to the dentry. In case of an error the reference on the inode is released. 2140 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2141 * be passed in and the error will be propagated to the return value, 2142 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2143 */ 2144 struct dentry *d_obtain_alias(struct inode *inode) 2145 { 2146 return __d_obtain_alias(inode, true); 2147 } 2148 EXPORT_SYMBOL(d_obtain_alias); 2149 2150 /** 2151 * d_obtain_root - find or allocate a dentry for a given inode 2152 * @inode: inode to allocate the dentry for 2153 * 2154 * Obtain an IS_ROOT dentry for the root of a filesystem. 2155 * 2156 * We must ensure that directory inodes only ever have one dentry. If a 2157 * dentry is found, that is returned instead of allocating a new one. 2158 * 2159 * On successful return, the reference to the inode has been transferred 2160 * to the dentry. In case of an error the reference on the inode is 2161 * released. A %NULL or IS_ERR inode may be passed in and will be the 2162 * error will be propagate to the return value, with a %NULL @inode 2163 * replaced by ERR_PTR(-ESTALE). 2164 */ 2165 struct dentry *d_obtain_root(struct inode *inode) 2166 { 2167 return __d_obtain_alias(inode, false); 2168 } 2169 EXPORT_SYMBOL(d_obtain_root); 2170 2171 /** 2172 * d_add_ci - lookup or allocate new dentry with case-exact name 2173 * @inode: the inode case-insensitive lookup has found 2174 * @dentry: the negative dentry that was passed to the parent's lookup func 2175 * @name: the case-exact name to be associated with the returned dentry 2176 * 2177 * This is to avoid filling the dcache with case-insensitive names to the 2178 * same inode, only the actual correct case is stored in the dcache for 2179 * case-insensitive filesystems. 2180 * 2181 * For a case-insensitive lookup match and if the case-exact dentry 2182 * already exists in the dcache, use it and return it. 2183 * 2184 * If no entry exists with the exact case name, allocate new dentry with 2185 * the exact case, and return the spliced entry. 2186 */ 2187 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2188 struct qstr *name) 2189 { 2190 struct dentry *found, *res; 2191 2192 /* 2193 * First check if a dentry matching the name already exists, 2194 * if not go ahead and create it now. 2195 */ 2196 found = d_hash_and_lookup(dentry->d_parent, name); 2197 if (found) { 2198 iput(inode); 2199 return found; 2200 } 2201 if (d_in_lookup(dentry)) { 2202 found = d_alloc_parallel(dentry->d_parent, name, 2203 dentry->d_wait); 2204 if (IS_ERR(found) || !d_in_lookup(found)) { 2205 iput(inode); 2206 return found; 2207 } 2208 } else { 2209 found = d_alloc(dentry->d_parent, name); 2210 if (!found) { 2211 iput(inode); 2212 return ERR_PTR(-ENOMEM); 2213 } 2214 } 2215 res = d_splice_alias(inode, found); 2216 if (res) { 2217 dput(found); 2218 return res; 2219 } 2220 return found; 2221 } 2222 EXPORT_SYMBOL(d_add_ci); 2223 2224 2225 static inline bool d_same_name(const struct dentry *dentry, 2226 const struct dentry *parent, 2227 const struct qstr *name) 2228 { 2229 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2230 if (dentry->d_name.len != name->len) 2231 return false; 2232 return dentry_cmp(dentry, name->name, name->len) == 0; 2233 } 2234 return parent->d_op->d_compare(dentry, 2235 dentry->d_name.len, dentry->d_name.name, 2236 name) == 0; 2237 } 2238 2239 /** 2240 * __d_lookup_rcu - search for a dentry (racy, store-free) 2241 * @parent: parent dentry 2242 * @name: qstr of name we wish to find 2243 * @seqp: returns d_seq value at the point where the dentry was found 2244 * Returns: dentry, or NULL 2245 * 2246 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2247 * resolution (store-free path walking) design described in 2248 * Documentation/filesystems/path-lookup.txt. 2249 * 2250 * This is not to be used outside core vfs. 2251 * 2252 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2253 * held, and rcu_read_lock held. The returned dentry must not be stored into 2254 * without taking d_lock and checking d_seq sequence count against @seq 2255 * returned here. 2256 * 2257 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2258 * function. 2259 * 2260 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2261 * the returned dentry, so long as its parent's seqlock is checked after the 2262 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2263 * is formed, giving integrity down the path walk. 2264 * 2265 * NOTE! The caller *has* to check the resulting dentry against the sequence 2266 * number we've returned before using any of the resulting dentry state! 2267 */ 2268 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2269 const struct qstr *name, 2270 unsigned *seqp) 2271 { 2272 u64 hashlen = name->hash_len; 2273 const unsigned char *str = name->name; 2274 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2275 struct hlist_bl_node *node; 2276 struct dentry *dentry; 2277 2278 /* 2279 * Note: There is significant duplication with __d_lookup_rcu which is 2280 * required to prevent single threaded performance regressions 2281 * especially on architectures where smp_rmb (in seqcounts) are costly. 2282 * Keep the two functions in sync. 2283 */ 2284 2285 /* 2286 * The hash list is protected using RCU. 2287 * 2288 * Carefully use d_seq when comparing a candidate dentry, to avoid 2289 * races with d_move(). 2290 * 2291 * It is possible that concurrent renames can mess up our list 2292 * walk here and result in missing our dentry, resulting in the 2293 * false-negative result. d_lookup() protects against concurrent 2294 * renames using rename_lock seqlock. 2295 * 2296 * See Documentation/filesystems/path-lookup.txt for more details. 2297 */ 2298 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2299 unsigned seq; 2300 2301 seqretry: 2302 /* 2303 * The dentry sequence count protects us from concurrent 2304 * renames, and thus protects parent and name fields. 2305 * 2306 * The caller must perform a seqcount check in order 2307 * to do anything useful with the returned dentry. 2308 * 2309 * NOTE! We do a "raw" seqcount_begin here. That means that 2310 * we don't wait for the sequence count to stabilize if it 2311 * is in the middle of a sequence change. If we do the slow 2312 * dentry compare, we will do seqretries until it is stable, 2313 * and if we end up with a successful lookup, we actually 2314 * want to exit RCU lookup anyway. 2315 * 2316 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2317 * we are still guaranteed NUL-termination of ->d_name.name. 2318 */ 2319 seq = raw_seqcount_begin(&dentry->d_seq); 2320 if (dentry->d_parent != parent) 2321 continue; 2322 if (d_unhashed(dentry)) 2323 continue; 2324 2325 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2326 int tlen; 2327 const char *tname; 2328 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2329 continue; 2330 tlen = dentry->d_name.len; 2331 tname = dentry->d_name.name; 2332 /* we want a consistent (name,len) pair */ 2333 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2334 cpu_relax(); 2335 goto seqretry; 2336 } 2337 if (parent->d_op->d_compare(dentry, 2338 tlen, tname, name) != 0) 2339 continue; 2340 } else { 2341 if (dentry->d_name.hash_len != hashlen) 2342 continue; 2343 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2344 continue; 2345 } 2346 *seqp = seq; 2347 return dentry; 2348 } 2349 return NULL; 2350 } 2351 2352 /** 2353 * d_lookup - search for a dentry 2354 * @parent: parent dentry 2355 * @name: qstr of name we wish to find 2356 * Returns: dentry, or NULL 2357 * 2358 * d_lookup searches the children of the parent dentry for the name in 2359 * question. If the dentry is found its reference count is incremented and the 2360 * dentry is returned. The caller must use dput to free the entry when it has 2361 * finished using it. %NULL is returned if the dentry does not exist. 2362 */ 2363 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2364 { 2365 struct dentry *dentry; 2366 unsigned seq; 2367 2368 do { 2369 seq = read_seqbegin(&rename_lock); 2370 dentry = __d_lookup(parent, name); 2371 if (dentry) 2372 break; 2373 } while (read_seqretry(&rename_lock, seq)); 2374 return dentry; 2375 } 2376 EXPORT_SYMBOL(d_lookup); 2377 2378 /** 2379 * __d_lookup - search for a dentry (racy) 2380 * @parent: parent dentry 2381 * @name: qstr of name we wish to find 2382 * Returns: dentry, or NULL 2383 * 2384 * __d_lookup is like d_lookup, however it may (rarely) return a 2385 * false-negative result due to unrelated rename activity. 2386 * 2387 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2388 * however it must be used carefully, eg. with a following d_lookup in 2389 * the case of failure. 2390 * 2391 * __d_lookup callers must be commented. 2392 */ 2393 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2394 { 2395 unsigned int hash = name->hash; 2396 struct hlist_bl_head *b = d_hash(hash); 2397 struct hlist_bl_node *node; 2398 struct dentry *found = NULL; 2399 struct dentry *dentry; 2400 2401 /* 2402 * Note: There is significant duplication with __d_lookup_rcu which is 2403 * required to prevent single threaded performance regressions 2404 * especially on architectures where smp_rmb (in seqcounts) are costly. 2405 * Keep the two functions in sync. 2406 */ 2407 2408 /* 2409 * The hash list is protected using RCU. 2410 * 2411 * Take d_lock when comparing a candidate dentry, to avoid races 2412 * with d_move(). 2413 * 2414 * It is possible that concurrent renames can mess up our list 2415 * walk here and result in missing our dentry, resulting in the 2416 * false-negative result. d_lookup() protects against concurrent 2417 * renames using rename_lock seqlock. 2418 * 2419 * See Documentation/filesystems/path-lookup.txt for more details. 2420 */ 2421 rcu_read_lock(); 2422 2423 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2424 2425 if (dentry->d_name.hash != hash) 2426 continue; 2427 2428 spin_lock(&dentry->d_lock); 2429 if (dentry->d_parent != parent) 2430 goto next; 2431 if (d_unhashed(dentry)) 2432 goto next; 2433 2434 if (!d_same_name(dentry, parent, name)) 2435 goto next; 2436 2437 dentry->d_lockref.count++; 2438 found = dentry; 2439 spin_unlock(&dentry->d_lock); 2440 break; 2441 next: 2442 spin_unlock(&dentry->d_lock); 2443 } 2444 rcu_read_unlock(); 2445 2446 return found; 2447 } 2448 2449 /** 2450 * d_hash_and_lookup - hash the qstr then search for a dentry 2451 * @dir: Directory to search in 2452 * @name: qstr of name we wish to find 2453 * 2454 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2455 */ 2456 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2457 { 2458 /* 2459 * Check for a fs-specific hash function. Note that we must 2460 * calculate the standard hash first, as the d_op->d_hash() 2461 * routine may choose to leave the hash value unchanged. 2462 */ 2463 name->hash = full_name_hash(dir, name->name, name->len); 2464 if (dir->d_flags & DCACHE_OP_HASH) { 2465 int err = dir->d_op->d_hash(dir, name); 2466 if (unlikely(err < 0)) 2467 return ERR_PTR(err); 2468 } 2469 return d_lookup(dir, name); 2470 } 2471 EXPORT_SYMBOL(d_hash_and_lookup); 2472 2473 /* 2474 * When a file is deleted, we have two options: 2475 * - turn this dentry into a negative dentry 2476 * - unhash this dentry and free it. 2477 * 2478 * Usually, we want to just turn this into 2479 * a negative dentry, but if anybody else is 2480 * currently using the dentry or the inode 2481 * we can't do that and we fall back on removing 2482 * it from the hash queues and waiting for 2483 * it to be deleted later when it has no users 2484 */ 2485 2486 /** 2487 * d_delete - delete a dentry 2488 * @dentry: The dentry to delete 2489 * 2490 * Turn the dentry into a negative dentry if possible, otherwise 2491 * remove it from the hash queues so it can be deleted later 2492 */ 2493 2494 void d_delete(struct dentry * dentry) 2495 { 2496 struct inode *inode = dentry->d_inode; 2497 2498 spin_lock(&inode->i_lock); 2499 spin_lock(&dentry->d_lock); 2500 /* 2501 * Are we the only user? 2502 */ 2503 if (dentry->d_lockref.count == 1) { 2504 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2505 dentry_unlink_inode(dentry); 2506 } else { 2507 __d_drop(dentry); 2508 spin_unlock(&dentry->d_lock); 2509 spin_unlock(&inode->i_lock); 2510 } 2511 } 2512 EXPORT_SYMBOL(d_delete); 2513 2514 static void __d_rehash(struct dentry *entry) 2515 { 2516 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2517 2518 hlist_bl_lock(b); 2519 hlist_bl_add_head_rcu(&entry->d_hash, b); 2520 hlist_bl_unlock(b); 2521 } 2522 2523 /** 2524 * d_rehash - add an entry back to the hash 2525 * @entry: dentry to add to the hash 2526 * 2527 * Adds a dentry to the hash according to its name. 2528 */ 2529 2530 void d_rehash(struct dentry * entry) 2531 { 2532 spin_lock(&entry->d_lock); 2533 __d_rehash(entry); 2534 spin_unlock(&entry->d_lock); 2535 } 2536 EXPORT_SYMBOL(d_rehash); 2537 2538 static inline unsigned start_dir_add(struct inode *dir) 2539 { 2540 2541 for (;;) { 2542 unsigned n = dir->i_dir_seq; 2543 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2544 return n; 2545 cpu_relax(); 2546 } 2547 } 2548 2549 static inline void end_dir_add(struct inode *dir, unsigned n) 2550 { 2551 smp_store_release(&dir->i_dir_seq, n + 2); 2552 } 2553 2554 static void d_wait_lookup(struct dentry *dentry) 2555 { 2556 if (d_in_lookup(dentry)) { 2557 DECLARE_WAITQUEUE(wait, current); 2558 add_wait_queue(dentry->d_wait, &wait); 2559 do { 2560 set_current_state(TASK_UNINTERRUPTIBLE); 2561 spin_unlock(&dentry->d_lock); 2562 schedule(); 2563 spin_lock(&dentry->d_lock); 2564 } while (d_in_lookup(dentry)); 2565 } 2566 } 2567 2568 struct dentry *d_alloc_parallel(struct dentry *parent, 2569 const struct qstr *name, 2570 wait_queue_head_t *wq) 2571 { 2572 unsigned int hash = name->hash; 2573 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2574 struct hlist_bl_node *node; 2575 struct dentry *new = d_alloc(parent, name); 2576 struct dentry *dentry; 2577 unsigned seq, r_seq, d_seq; 2578 2579 if (unlikely(!new)) 2580 return ERR_PTR(-ENOMEM); 2581 2582 retry: 2583 rcu_read_lock(); 2584 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2585 r_seq = read_seqbegin(&rename_lock); 2586 dentry = __d_lookup_rcu(parent, name, &d_seq); 2587 if (unlikely(dentry)) { 2588 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2589 rcu_read_unlock(); 2590 goto retry; 2591 } 2592 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2593 rcu_read_unlock(); 2594 dput(dentry); 2595 goto retry; 2596 } 2597 rcu_read_unlock(); 2598 dput(new); 2599 return dentry; 2600 } 2601 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2602 rcu_read_unlock(); 2603 goto retry; 2604 } 2605 2606 if (unlikely(seq & 1)) { 2607 rcu_read_unlock(); 2608 goto retry; 2609 } 2610 2611 hlist_bl_lock(b); 2612 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2613 hlist_bl_unlock(b); 2614 rcu_read_unlock(); 2615 goto retry; 2616 } 2617 /* 2618 * No changes for the parent since the beginning of d_lookup(). 2619 * Since all removals from the chain happen with hlist_bl_lock(), 2620 * any potential in-lookup matches are going to stay here until 2621 * we unlock the chain. All fields are stable in everything 2622 * we encounter. 2623 */ 2624 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2625 if (dentry->d_name.hash != hash) 2626 continue; 2627 if (dentry->d_parent != parent) 2628 continue; 2629 if (!d_same_name(dentry, parent, name)) 2630 continue; 2631 hlist_bl_unlock(b); 2632 /* now we can try to grab a reference */ 2633 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2634 rcu_read_unlock(); 2635 goto retry; 2636 } 2637 2638 rcu_read_unlock(); 2639 /* 2640 * somebody is likely to be still doing lookup for it; 2641 * wait for them to finish 2642 */ 2643 spin_lock(&dentry->d_lock); 2644 d_wait_lookup(dentry); 2645 /* 2646 * it's not in-lookup anymore; in principle we should repeat 2647 * everything from dcache lookup, but it's likely to be what 2648 * d_lookup() would've found anyway. If it is, just return it; 2649 * otherwise we really have to repeat the whole thing. 2650 */ 2651 if (unlikely(dentry->d_name.hash != hash)) 2652 goto mismatch; 2653 if (unlikely(dentry->d_parent != parent)) 2654 goto mismatch; 2655 if (unlikely(d_unhashed(dentry))) 2656 goto mismatch; 2657 if (unlikely(!d_same_name(dentry, parent, name))) 2658 goto mismatch; 2659 /* OK, it *is* a hashed match; return it */ 2660 spin_unlock(&dentry->d_lock); 2661 dput(new); 2662 return dentry; 2663 } 2664 rcu_read_unlock(); 2665 /* we can't take ->d_lock here; it's OK, though. */ 2666 new->d_flags |= DCACHE_PAR_LOOKUP; 2667 new->d_wait = wq; 2668 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2669 hlist_bl_unlock(b); 2670 return new; 2671 mismatch: 2672 spin_unlock(&dentry->d_lock); 2673 dput(dentry); 2674 goto retry; 2675 } 2676 EXPORT_SYMBOL(d_alloc_parallel); 2677 2678 void __d_lookup_done(struct dentry *dentry) 2679 { 2680 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2681 dentry->d_name.hash); 2682 hlist_bl_lock(b); 2683 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2684 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2685 wake_up_all(dentry->d_wait); 2686 dentry->d_wait = NULL; 2687 hlist_bl_unlock(b); 2688 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2689 INIT_LIST_HEAD(&dentry->d_lru); 2690 } 2691 EXPORT_SYMBOL(__d_lookup_done); 2692 2693 /* inode->i_lock held if inode is non-NULL */ 2694 2695 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2696 { 2697 struct inode *dir = NULL; 2698 unsigned n; 2699 spin_lock(&dentry->d_lock); 2700 if (unlikely(d_in_lookup(dentry))) { 2701 dir = dentry->d_parent->d_inode; 2702 n = start_dir_add(dir); 2703 __d_lookup_done(dentry); 2704 } 2705 if (inode) { 2706 unsigned add_flags = d_flags_for_inode(inode); 2707 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2708 raw_write_seqcount_begin(&dentry->d_seq); 2709 __d_set_inode_and_type(dentry, inode, add_flags); 2710 raw_write_seqcount_end(&dentry->d_seq); 2711 fsnotify_update_flags(dentry); 2712 } 2713 __d_rehash(dentry); 2714 if (dir) 2715 end_dir_add(dir, n); 2716 spin_unlock(&dentry->d_lock); 2717 if (inode) 2718 spin_unlock(&inode->i_lock); 2719 } 2720 2721 /** 2722 * d_add - add dentry to hash queues 2723 * @entry: dentry to add 2724 * @inode: The inode to attach to this dentry 2725 * 2726 * This adds the entry to the hash queues and initializes @inode. 2727 * The entry was actually filled in earlier during d_alloc(). 2728 */ 2729 2730 void d_add(struct dentry *entry, struct inode *inode) 2731 { 2732 if (inode) { 2733 security_d_instantiate(entry, inode); 2734 spin_lock(&inode->i_lock); 2735 } 2736 __d_add(entry, inode); 2737 } 2738 EXPORT_SYMBOL(d_add); 2739 2740 /** 2741 * d_exact_alias - find and hash an exact unhashed alias 2742 * @entry: dentry to add 2743 * @inode: The inode to go with this dentry 2744 * 2745 * If an unhashed dentry with the same name/parent and desired 2746 * inode already exists, hash and return it. Otherwise, return 2747 * NULL. 2748 * 2749 * Parent directory should be locked. 2750 */ 2751 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2752 { 2753 struct dentry *alias; 2754 unsigned int hash = entry->d_name.hash; 2755 2756 spin_lock(&inode->i_lock); 2757 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2758 /* 2759 * Don't need alias->d_lock here, because aliases with 2760 * d_parent == entry->d_parent are not subject to name or 2761 * parent changes, because the parent inode i_mutex is held. 2762 */ 2763 if (alias->d_name.hash != hash) 2764 continue; 2765 if (alias->d_parent != entry->d_parent) 2766 continue; 2767 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2768 continue; 2769 spin_lock(&alias->d_lock); 2770 if (!d_unhashed(alias)) { 2771 spin_unlock(&alias->d_lock); 2772 alias = NULL; 2773 } else { 2774 __dget_dlock(alias); 2775 __d_rehash(alias); 2776 spin_unlock(&alias->d_lock); 2777 } 2778 spin_unlock(&inode->i_lock); 2779 return alias; 2780 } 2781 spin_unlock(&inode->i_lock); 2782 return NULL; 2783 } 2784 EXPORT_SYMBOL(d_exact_alias); 2785 2786 static void swap_names(struct dentry *dentry, struct dentry *target) 2787 { 2788 if (unlikely(dname_external(target))) { 2789 if (unlikely(dname_external(dentry))) { 2790 /* 2791 * Both external: swap the pointers 2792 */ 2793 swap(target->d_name.name, dentry->d_name.name); 2794 } else { 2795 /* 2796 * dentry:internal, target:external. Steal target's 2797 * storage and make target internal. 2798 */ 2799 memcpy(target->d_iname, dentry->d_name.name, 2800 dentry->d_name.len + 1); 2801 dentry->d_name.name = target->d_name.name; 2802 target->d_name.name = target->d_iname; 2803 } 2804 } else { 2805 if (unlikely(dname_external(dentry))) { 2806 /* 2807 * dentry:external, target:internal. Give dentry's 2808 * storage to target and make dentry internal 2809 */ 2810 memcpy(dentry->d_iname, target->d_name.name, 2811 target->d_name.len + 1); 2812 target->d_name.name = dentry->d_name.name; 2813 dentry->d_name.name = dentry->d_iname; 2814 } else { 2815 /* 2816 * Both are internal. 2817 */ 2818 unsigned int i; 2819 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2820 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2821 swap(((long *) &dentry->d_iname)[i], 2822 ((long *) &target->d_iname)[i]); 2823 } 2824 } 2825 } 2826 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2827 } 2828 2829 static void copy_name(struct dentry *dentry, struct dentry *target) 2830 { 2831 struct external_name *old_name = NULL; 2832 if (unlikely(dname_external(dentry))) 2833 old_name = external_name(dentry); 2834 if (unlikely(dname_external(target))) { 2835 atomic_inc(&external_name(target)->u.count); 2836 dentry->d_name = target->d_name; 2837 } else { 2838 memcpy(dentry->d_iname, target->d_name.name, 2839 target->d_name.len + 1); 2840 dentry->d_name.name = dentry->d_iname; 2841 dentry->d_name.hash_len = target->d_name.hash_len; 2842 } 2843 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2844 kfree_rcu(old_name, u.head); 2845 } 2846 2847 /* 2848 * __d_move - move a dentry 2849 * @dentry: entry to move 2850 * @target: new dentry 2851 * @exchange: exchange the two dentries 2852 * 2853 * Update the dcache to reflect the move of a file name. Negative 2854 * dcache entries should not be moved in this way. Caller must hold 2855 * rename_lock, the i_mutex of the source and target directories, 2856 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2857 */ 2858 static void __d_move(struct dentry *dentry, struct dentry *target, 2859 bool exchange) 2860 { 2861 struct dentry *old_parent, *p; 2862 struct inode *dir = NULL; 2863 unsigned n; 2864 2865 WARN_ON(!dentry->d_inode); 2866 if (WARN_ON(dentry == target)) 2867 return; 2868 2869 BUG_ON(d_ancestor(target, dentry)); 2870 old_parent = dentry->d_parent; 2871 p = d_ancestor(old_parent, target); 2872 if (IS_ROOT(dentry)) { 2873 BUG_ON(p); 2874 spin_lock(&target->d_parent->d_lock); 2875 } else if (!p) { 2876 /* target is not a descendent of dentry->d_parent */ 2877 spin_lock(&target->d_parent->d_lock); 2878 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2879 } else { 2880 BUG_ON(p == dentry); 2881 spin_lock(&old_parent->d_lock); 2882 if (p != target) 2883 spin_lock_nested(&target->d_parent->d_lock, 2884 DENTRY_D_LOCK_NESTED); 2885 } 2886 spin_lock_nested(&dentry->d_lock, 2); 2887 spin_lock_nested(&target->d_lock, 3); 2888 2889 if (unlikely(d_in_lookup(target))) { 2890 dir = target->d_parent->d_inode; 2891 n = start_dir_add(dir); 2892 __d_lookup_done(target); 2893 } 2894 2895 write_seqcount_begin(&dentry->d_seq); 2896 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2897 2898 /* unhash both */ 2899 if (!d_unhashed(dentry)) 2900 ___d_drop(dentry); 2901 if (!d_unhashed(target)) 2902 ___d_drop(target); 2903 2904 /* ... and switch them in the tree */ 2905 dentry->d_parent = target->d_parent; 2906 if (!exchange) { 2907 copy_name(dentry, target); 2908 target->d_hash.pprev = NULL; 2909 dentry->d_parent->d_lockref.count++; 2910 if (dentry != old_parent) /* wasn't IS_ROOT */ 2911 WARN_ON(!--old_parent->d_lockref.count); 2912 } else { 2913 target->d_parent = old_parent; 2914 swap_names(dentry, target); 2915 list_move(&target->d_child, &target->d_parent->d_subdirs); 2916 __d_rehash(target); 2917 fsnotify_update_flags(target); 2918 } 2919 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2920 __d_rehash(dentry); 2921 fsnotify_update_flags(dentry); 2922 fscrypt_handle_d_move(dentry); 2923 2924 write_seqcount_end(&target->d_seq); 2925 write_seqcount_end(&dentry->d_seq); 2926 2927 if (dir) 2928 end_dir_add(dir, n); 2929 2930 if (dentry->d_parent != old_parent) 2931 spin_unlock(&dentry->d_parent->d_lock); 2932 if (dentry != old_parent) 2933 spin_unlock(&old_parent->d_lock); 2934 spin_unlock(&target->d_lock); 2935 spin_unlock(&dentry->d_lock); 2936 } 2937 2938 /* 2939 * d_move - move a dentry 2940 * @dentry: entry to move 2941 * @target: new dentry 2942 * 2943 * Update the dcache to reflect the move of a file name. Negative 2944 * dcache entries should not be moved in this way. See the locking 2945 * requirements for __d_move. 2946 */ 2947 void d_move(struct dentry *dentry, struct dentry *target) 2948 { 2949 write_seqlock(&rename_lock); 2950 __d_move(dentry, target, false); 2951 write_sequnlock(&rename_lock); 2952 } 2953 EXPORT_SYMBOL(d_move); 2954 2955 /* 2956 * d_exchange - exchange two dentries 2957 * @dentry1: first dentry 2958 * @dentry2: second dentry 2959 */ 2960 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2961 { 2962 write_seqlock(&rename_lock); 2963 2964 WARN_ON(!dentry1->d_inode); 2965 WARN_ON(!dentry2->d_inode); 2966 WARN_ON(IS_ROOT(dentry1)); 2967 WARN_ON(IS_ROOT(dentry2)); 2968 2969 __d_move(dentry1, dentry2, true); 2970 2971 write_sequnlock(&rename_lock); 2972 } 2973 2974 /** 2975 * d_ancestor - search for an ancestor 2976 * @p1: ancestor dentry 2977 * @p2: child dentry 2978 * 2979 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2980 * an ancestor of p2, else NULL. 2981 */ 2982 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2983 { 2984 struct dentry *p; 2985 2986 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2987 if (p->d_parent == p1) 2988 return p; 2989 } 2990 return NULL; 2991 } 2992 2993 /* 2994 * This helper attempts to cope with remotely renamed directories 2995 * 2996 * It assumes that the caller is already holding 2997 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2998 * 2999 * Note: If ever the locking in lock_rename() changes, then please 3000 * remember to update this too... 3001 */ 3002 static int __d_unalias(struct inode *inode, 3003 struct dentry *dentry, struct dentry *alias) 3004 { 3005 struct mutex *m1 = NULL; 3006 struct rw_semaphore *m2 = NULL; 3007 int ret = -ESTALE; 3008 3009 /* If alias and dentry share a parent, then no extra locks required */ 3010 if (alias->d_parent == dentry->d_parent) 3011 goto out_unalias; 3012 3013 /* See lock_rename() */ 3014 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 3015 goto out_err; 3016 m1 = &dentry->d_sb->s_vfs_rename_mutex; 3017 if (!inode_trylock_shared(alias->d_parent->d_inode)) 3018 goto out_err; 3019 m2 = &alias->d_parent->d_inode->i_rwsem; 3020 out_unalias: 3021 __d_move(alias, dentry, false); 3022 ret = 0; 3023 out_err: 3024 if (m2) 3025 up_read(m2); 3026 if (m1) 3027 mutex_unlock(m1); 3028 return ret; 3029 } 3030 3031 /** 3032 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3033 * @inode: the inode which may have a disconnected dentry 3034 * @dentry: a negative dentry which we want to point to the inode. 3035 * 3036 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3037 * place of the given dentry and return it, else simply d_add the inode 3038 * to the dentry and return NULL. 3039 * 3040 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3041 * we should error out: directories can't have multiple aliases. 3042 * 3043 * This is needed in the lookup routine of any filesystem that is exportable 3044 * (via knfsd) so that we can build dcache paths to directories effectively. 3045 * 3046 * If a dentry was found and moved, then it is returned. Otherwise NULL 3047 * is returned. This matches the expected return value of ->lookup. 3048 * 3049 * Cluster filesystems may call this function with a negative, hashed dentry. 3050 * In that case, we know that the inode will be a regular file, and also this 3051 * will only occur during atomic_open. So we need to check for the dentry 3052 * being already hashed only in the final case. 3053 */ 3054 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3055 { 3056 if (IS_ERR(inode)) 3057 return ERR_CAST(inode); 3058 3059 BUG_ON(!d_unhashed(dentry)); 3060 3061 if (!inode) 3062 goto out; 3063 3064 security_d_instantiate(dentry, inode); 3065 spin_lock(&inode->i_lock); 3066 if (S_ISDIR(inode->i_mode)) { 3067 struct dentry *new = __d_find_any_alias(inode); 3068 if (unlikely(new)) { 3069 /* The reference to new ensures it remains an alias */ 3070 spin_unlock(&inode->i_lock); 3071 write_seqlock(&rename_lock); 3072 if (unlikely(d_ancestor(new, dentry))) { 3073 write_sequnlock(&rename_lock); 3074 dput(new); 3075 new = ERR_PTR(-ELOOP); 3076 pr_warn_ratelimited( 3077 "VFS: Lookup of '%s' in %s %s" 3078 " would have caused loop\n", 3079 dentry->d_name.name, 3080 inode->i_sb->s_type->name, 3081 inode->i_sb->s_id); 3082 } else if (!IS_ROOT(new)) { 3083 struct dentry *old_parent = dget(new->d_parent); 3084 int err = __d_unalias(inode, dentry, new); 3085 write_sequnlock(&rename_lock); 3086 if (err) { 3087 dput(new); 3088 new = ERR_PTR(err); 3089 } 3090 dput(old_parent); 3091 } else { 3092 __d_move(new, dentry, false); 3093 write_sequnlock(&rename_lock); 3094 } 3095 iput(inode); 3096 return new; 3097 } 3098 } 3099 out: 3100 __d_add(dentry, inode); 3101 return NULL; 3102 } 3103 EXPORT_SYMBOL(d_splice_alias); 3104 3105 /* 3106 * Test whether new_dentry is a subdirectory of old_dentry. 3107 * 3108 * Trivially implemented using the dcache structure 3109 */ 3110 3111 /** 3112 * is_subdir - is new dentry a subdirectory of old_dentry 3113 * @new_dentry: new dentry 3114 * @old_dentry: old dentry 3115 * 3116 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3117 * Returns false otherwise. 3118 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3119 */ 3120 3121 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3122 { 3123 bool result; 3124 unsigned seq; 3125 3126 if (new_dentry == old_dentry) 3127 return true; 3128 3129 do { 3130 /* for restarting inner loop in case of seq retry */ 3131 seq = read_seqbegin(&rename_lock); 3132 /* 3133 * Need rcu_readlock to protect against the d_parent trashing 3134 * due to d_move 3135 */ 3136 rcu_read_lock(); 3137 if (d_ancestor(old_dentry, new_dentry)) 3138 result = true; 3139 else 3140 result = false; 3141 rcu_read_unlock(); 3142 } while (read_seqretry(&rename_lock, seq)); 3143 3144 return result; 3145 } 3146 EXPORT_SYMBOL(is_subdir); 3147 3148 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3149 { 3150 struct dentry *root = data; 3151 if (dentry != root) { 3152 if (d_unhashed(dentry) || !dentry->d_inode) 3153 return D_WALK_SKIP; 3154 3155 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3156 dentry->d_flags |= DCACHE_GENOCIDE; 3157 dentry->d_lockref.count--; 3158 } 3159 } 3160 return D_WALK_CONTINUE; 3161 } 3162 3163 void d_genocide(struct dentry *parent) 3164 { 3165 d_walk(parent, parent, d_genocide_kill); 3166 } 3167 3168 EXPORT_SYMBOL(d_genocide); 3169 3170 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3171 { 3172 inode_dec_link_count(inode); 3173 BUG_ON(dentry->d_name.name != dentry->d_iname || 3174 !hlist_unhashed(&dentry->d_u.d_alias) || 3175 !d_unlinked(dentry)); 3176 spin_lock(&dentry->d_parent->d_lock); 3177 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3178 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3179 (unsigned long long)inode->i_ino); 3180 spin_unlock(&dentry->d_lock); 3181 spin_unlock(&dentry->d_parent->d_lock); 3182 d_instantiate(dentry, inode); 3183 } 3184 EXPORT_SYMBOL(d_tmpfile); 3185 3186 static __initdata unsigned long dhash_entries; 3187 static int __init set_dhash_entries(char *str) 3188 { 3189 if (!str) 3190 return 0; 3191 dhash_entries = simple_strtoul(str, &str, 0); 3192 return 1; 3193 } 3194 __setup("dhash_entries=", set_dhash_entries); 3195 3196 static void __init dcache_init_early(void) 3197 { 3198 /* If hashes are distributed across NUMA nodes, defer 3199 * hash allocation until vmalloc space is available. 3200 */ 3201 if (hashdist) 3202 return; 3203 3204 dentry_hashtable = 3205 alloc_large_system_hash("Dentry cache", 3206 sizeof(struct hlist_bl_head), 3207 dhash_entries, 3208 13, 3209 HASH_EARLY | HASH_ZERO, 3210 &d_hash_shift, 3211 NULL, 3212 0, 3213 0); 3214 d_hash_shift = 32 - d_hash_shift; 3215 } 3216 3217 static void __init dcache_init(void) 3218 { 3219 /* 3220 * A constructor could be added for stable state like the lists, 3221 * but it is probably not worth it because of the cache nature 3222 * of the dcache. 3223 */ 3224 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3225 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3226 d_iname); 3227 3228 /* Hash may have been set up in dcache_init_early */ 3229 if (!hashdist) 3230 return; 3231 3232 dentry_hashtable = 3233 alloc_large_system_hash("Dentry cache", 3234 sizeof(struct hlist_bl_head), 3235 dhash_entries, 3236 13, 3237 HASH_ZERO, 3238 &d_hash_shift, 3239 NULL, 3240 0, 3241 0); 3242 d_hash_shift = 32 - d_hash_shift; 3243 } 3244 3245 /* SLAB cache for __getname() consumers */ 3246 struct kmem_cache *names_cachep __read_mostly; 3247 EXPORT_SYMBOL(names_cachep); 3248 3249 void __init vfs_caches_init_early(void) 3250 { 3251 int i; 3252 3253 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3254 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3255 3256 dcache_init_early(); 3257 inode_init_early(); 3258 } 3259 3260 void __init vfs_caches_init(void) 3261 { 3262 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3263 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3264 3265 dcache_init(); 3266 inode_init(); 3267 files_init(); 3268 files_maxfiles_init(); 3269 mnt_init(); 3270 bdev_cache_init(); 3271 chrdev_init(); 3272 } 3273