xref: /linux/fs/dcache.c (revision 83869019c74cc2d01c96a3be2463a4eebe362224)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89 
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98 
99 static unsigned int d_hash_shift __read_mostly;
100 
101 static struct hlist_bl_head *dentry_hashtable __read_mostly;
102 
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 	return dentry_hashtable + (hash >> d_hash_shift);
106 }
107 
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110 
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 					unsigned int hash)
113 {
114 	hash += (unsigned long) parent / L1_CACHE_BYTES;
115 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117 
118 
119 /* Statistics gathering. */
120 struct dentry_stat_t dentry_stat = {
121 	.age_limit = 45,
122 };
123 
124 static DEFINE_PER_CPU(long, nr_dentry);
125 static DEFINE_PER_CPU(long, nr_dentry_unused);
126 static DEFINE_PER_CPU(long, nr_dentry_negative);
127 
128 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
129 
130 /*
131  * Here we resort to our own counters instead of using generic per-cpu counters
132  * for consistency with what the vfs inode code does. We are expected to harvest
133  * better code and performance by having our own specialized counters.
134  *
135  * Please note that the loop is done over all possible CPUs, not over all online
136  * CPUs. The reason for this is that we don't want to play games with CPUs going
137  * on and off. If one of them goes off, we will just keep their counters.
138  *
139  * glommer: See cffbc8a for details, and if you ever intend to change this,
140  * please update all vfs counters to match.
141  */
142 static long get_nr_dentry(void)
143 {
144 	int i;
145 	long sum = 0;
146 	for_each_possible_cpu(i)
147 		sum += per_cpu(nr_dentry, i);
148 	return sum < 0 ? 0 : sum;
149 }
150 
151 static long get_nr_dentry_unused(void)
152 {
153 	int i;
154 	long sum = 0;
155 	for_each_possible_cpu(i)
156 		sum += per_cpu(nr_dentry_unused, i);
157 	return sum < 0 ? 0 : sum;
158 }
159 
160 static long get_nr_dentry_negative(void)
161 {
162 	int i;
163 	long sum = 0;
164 
165 	for_each_possible_cpu(i)
166 		sum += per_cpu(nr_dentry_negative, i);
167 	return sum < 0 ? 0 : sum;
168 }
169 
170 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
171 		   size_t *lenp, loff_t *ppos)
172 {
173 	dentry_stat.nr_dentry = get_nr_dentry();
174 	dentry_stat.nr_unused = get_nr_dentry_unused();
175 	dentry_stat.nr_negative = get_nr_dentry_negative();
176 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
177 }
178 #endif
179 
180 /*
181  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
182  * The strings are both count bytes long, and count is non-zero.
183  */
184 #ifdef CONFIG_DCACHE_WORD_ACCESS
185 
186 #include <asm/word-at-a-time.h>
187 /*
188  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
189  * aligned allocation for this particular component. We don't
190  * strictly need the load_unaligned_zeropad() safety, but it
191  * doesn't hurt either.
192  *
193  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
194  * need the careful unaligned handling.
195  */
196 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
197 {
198 	unsigned long a,b,mask;
199 
200 	for (;;) {
201 		a = read_word_at_a_time(cs);
202 		b = load_unaligned_zeropad(ct);
203 		if (tcount < sizeof(unsigned long))
204 			break;
205 		if (unlikely(a != b))
206 			return 1;
207 		cs += sizeof(unsigned long);
208 		ct += sizeof(unsigned long);
209 		tcount -= sizeof(unsigned long);
210 		if (!tcount)
211 			return 0;
212 	}
213 	mask = bytemask_from_count(tcount);
214 	return unlikely(!!((a ^ b) & mask));
215 }
216 
217 #else
218 
219 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
220 {
221 	do {
222 		if (*cs != *ct)
223 			return 1;
224 		cs++;
225 		ct++;
226 		tcount--;
227 	} while (tcount);
228 	return 0;
229 }
230 
231 #endif
232 
233 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
234 {
235 	/*
236 	 * Be careful about RCU walk racing with rename:
237 	 * use 'READ_ONCE' to fetch the name pointer.
238 	 *
239 	 * NOTE! Even if a rename will mean that the length
240 	 * was not loaded atomically, we don't care. The
241 	 * RCU walk will check the sequence count eventually,
242 	 * and catch it. And we won't overrun the buffer,
243 	 * because we're reading the name pointer atomically,
244 	 * and a dentry name is guaranteed to be properly
245 	 * terminated with a NUL byte.
246 	 *
247 	 * End result: even if 'len' is wrong, we'll exit
248 	 * early because the data cannot match (there can
249 	 * be no NUL in the ct/tcount data)
250 	 */
251 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
252 
253 	return dentry_string_cmp(cs, ct, tcount);
254 }
255 
256 struct external_name {
257 	union {
258 		atomic_t count;
259 		struct rcu_head head;
260 	} u;
261 	unsigned char name[];
262 };
263 
264 static inline struct external_name *external_name(struct dentry *dentry)
265 {
266 	return container_of(dentry->d_name.name, struct external_name, name[0]);
267 }
268 
269 static void __d_free(struct rcu_head *head)
270 {
271 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
272 
273 	kmem_cache_free(dentry_cache, dentry);
274 }
275 
276 static void __d_free_external(struct rcu_head *head)
277 {
278 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
279 	kfree(external_name(dentry));
280 	kmem_cache_free(dentry_cache, dentry);
281 }
282 
283 static inline int dname_external(const struct dentry *dentry)
284 {
285 	return dentry->d_name.name != dentry->d_iname;
286 }
287 
288 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
289 {
290 	spin_lock(&dentry->d_lock);
291 	name->name = dentry->d_name;
292 	if (unlikely(dname_external(dentry))) {
293 		atomic_inc(&external_name(dentry)->u.count);
294 	} else {
295 		memcpy(name->inline_name, dentry->d_iname,
296 		       dentry->d_name.len + 1);
297 		name->name.name = name->inline_name;
298 	}
299 	spin_unlock(&dentry->d_lock);
300 }
301 EXPORT_SYMBOL(take_dentry_name_snapshot);
302 
303 void release_dentry_name_snapshot(struct name_snapshot *name)
304 {
305 	if (unlikely(name->name.name != name->inline_name)) {
306 		struct external_name *p;
307 		p = container_of(name->name.name, struct external_name, name[0]);
308 		if (unlikely(atomic_dec_and_test(&p->u.count)))
309 			kfree_rcu(p, u.head);
310 	}
311 }
312 EXPORT_SYMBOL(release_dentry_name_snapshot);
313 
314 static inline void __d_set_inode_and_type(struct dentry *dentry,
315 					  struct inode *inode,
316 					  unsigned type_flags)
317 {
318 	unsigned flags;
319 
320 	dentry->d_inode = inode;
321 	flags = READ_ONCE(dentry->d_flags);
322 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
323 	flags |= type_flags;
324 	smp_store_release(&dentry->d_flags, flags);
325 }
326 
327 static inline void __d_clear_type_and_inode(struct dentry *dentry)
328 {
329 	unsigned flags = READ_ONCE(dentry->d_flags);
330 
331 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
332 	WRITE_ONCE(dentry->d_flags, flags);
333 	dentry->d_inode = NULL;
334 	if (dentry->d_flags & DCACHE_LRU_LIST)
335 		this_cpu_inc(nr_dentry_negative);
336 }
337 
338 static void dentry_free(struct dentry *dentry)
339 {
340 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
341 	if (unlikely(dname_external(dentry))) {
342 		struct external_name *p = external_name(dentry);
343 		if (likely(atomic_dec_and_test(&p->u.count))) {
344 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
345 			return;
346 		}
347 	}
348 	/* if dentry was never visible to RCU, immediate free is OK */
349 	if (dentry->d_flags & DCACHE_NORCU)
350 		__d_free(&dentry->d_u.d_rcu);
351 	else
352 		call_rcu(&dentry->d_u.d_rcu, __d_free);
353 }
354 
355 /*
356  * Release the dentry's inode, using the filesystem
357  * d_iput() operation if defined.
358  */
359 static void dentry_unlink_inode(struct dentry * dentry)
360 	__releases(dentry->d_lock)
361 	__releases(dentry->d_inode->i_lock)
362 {
363 	struct inode *inode = dentry->d_inode;
364 
365 	raw_write_seqcount_begin(&dentry->d_seq);
366 	__d_clear_type_and_inode(dentry);
367 	hlist_del_init(&dentry->d_u.d_alias);
368 	raw_write_seqcount_end(&dentry->d_seq);
369 	spin_unlock(&dentry->d_lock);
370 	spin_unlock(&inode->i_lock);
371 	if (!inode->i_nlink)
372 		fsnotify_inoderemove(inode);
373 	if (dentry->d_op && dentry->d_op->d_iput)
374 		dentry->d_op->d_iput(dentry, inode);
375 	else
376 		iput(inode);
377 }
378 
379 /*
380  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
381  * is in use - which includes both the "real" per-superblock
382  * LRU list _and_ the DCACHE_SHRINK_LIST use.
383  *
384  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
385  * on the shrink list (ie not on the superblock LRU list).
386  *
387  * The per-cpu "nr_dentry_unused" counters are updated with
388  * the DCACHE_LRU_LIST bit.
389  *
390  * The per-cpu "nr_dentry_negative" counters are only updated
391  * when deleted from or added to the per-superblock LRU list, not
392  * from/to the shrink list. That is to avoid an unneeded dec/inc
393  * pair when moving from LRU to shrink list in select_collect().
394  *
395  * These helper functions make sure we always follow the
396  * rules. d_lock must be held by the caller.
397  */
398 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
399 static void d_lru_add(struct dentry *dentry)
400 {
401 	D_FLAG_VERIFY(dentry, 0);
402 	dentry->d_flags |= DCACHE_LRU_LIST;
403 	this_cpu_inc(nr_dentry_unused);
404 	if (d_is_negative(dentry))
405 		this_cpu_inc(nr_dentry_negative);
406 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408 
409 static void d_lru_del(struct dentry *dentry)
410 {
411 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412 	dentry->d_flags &= ~DCACHE_LRU_LIST;
413 	this_cpu_dec(nr_dentry_unused);
414 	if (d_is_negative(dentry))
415 		this_cpu_dec(nr_dentry_negative);
416 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
417 }
418 
419 static void d_shrink_del(struct dentry *dentry)
420 {
421 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	list_del_init(&dentry->d_lru);
423 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
424 	this_cpu_dec(nr_dentry_unused);
425 }
426 
427 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
428 {
429 	D_FLAG_VERIFY(dentry, 0);
430 	list_add(&dentry->d_lru, list);
431 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
432 	this_cpu_inc(nr_dentry_unused);
433 }
434 
435 /*
436  * These can only be called under the global LRU lock, ie during the
437  * callback for freeing the LRU list. "isolate" removes it from the
438  * LRU lists entirely, while shrink_move moves it to the indicated
439  * private list.
440  */
441 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
442 {
443 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
444 	dentry->d_flags &= ~DCACHE_LRU_LIST;
445 	this_cpu_dec(nr_dentry_unused);
446 	if (d_is_negative(dentry))
447 		this_cpu_dec(nr_dentry_negative);
448 	list_lru_isolate(lru, &dentry->d_lru);
449 }
450 
451 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
452 			      struct list_head *list)
453 {
454 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
455 	dentry->d_flags |= DCACHE_SHRINK_LIST;
456 	if (d_is_negative(dentry))
457 		this_cpu_dec(nr_dentry_negative);
458 	list_lru_isolate_move(lru, &dentry->d_lru, list);
459 }
460 
461 static void ___d_drop(struct dentry *dentry)
462 {
463 	struct hlist_bl_head *b;
464 	/*
465 	 * Hashed dentries are normally on the dentry hashtable,
466 	 * with the exception of those newly allocated by
467 	 * d_obtain_root, which are always IS_ROOT:
468 	 */
469 	if (unlikely(IS_ROOT(dentry)))
470 		b = &dentry->d_sb->s_roots;
471 	else
472 		b = d_hash(dentry->d_name.hash);
473 
474 	hlist_bl_lock(b);
475 	__hlist_bl_del(&dentry->d_hash);
476 	hlist_bl_unlock(b);
477 }
478 
479 void __d_drop(struct dentry *dentry)
480 {
481 	if (!d_unhashed(dentry)) {
482 		___d_drop(dentry);
483 		dentry->d_hash.pprev = NULL;
484 		write_seqcount_invalidate(&dentry->d_seq);
485 	}
486 }
487 EXPORT_SYMBOL(__d_drop);
488 
489 /**
490  * d_drop - drop a dentry
491  * @dentry: dentry to drop
492  *
493  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
494  * be found through a VFS lookup any more. Note that this is different from
495  * deleting the dentry - d_delete will try to mark the dentry negative if
496  * possible, giving a successful _negative_ lookup, while d_drop will
497  * just make the cache lookup fail.
498  *
499  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
500  * reason (NFS timeouts or autofs deletes).
501  *
502  * __d_drop requires dentry->d_lock
503  *
504  * ___d_drop doesn't mark dentry as "unhashed"
505  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
506  */
507 void d_drop(struct dentry *dentry)
508 {
509 	spin_lock(&dentry->d_lock);
510 	__d_drop(dentry);
511 	spin_unlock(&dentry->d_lock);
512 }
513 EXPORT_SYMBOL(d_drop);
514 
515 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
516 {
517 	struct dentry *next;
518 	/*
519 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
520 	 * attached to the dentry tree
521 	 */
522 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
523 	if (unlikely(list_empty(&dentry->d_child)))
524 		return;
525 	__list_del_entry(&dentry->d_child);
526 	/*
527 	 * Cursors can move around the list of children.  While we'd been
528 	 * a normal list member, it didn't matter - ->d_child.next would've
529 	 * been updated.  However, from now on it won't be and for the
530 	 * things like d_walk() it might end up with a nasty surprise.
531 	 * Normally d_walk() doesn't care about cursors moving around -
532 	 * ->d_lock on parent prevents that and since a cursor has no children
533 	 * of its own, we get through it without ever unlocking the parent.
534 	 * There is one exception, though - if we ascend from a child that
535 	 * gets killed as soon as we unlock it, the next sibling is found
536 	 * using the value left in its ->d_child.next.  And if _that_
537 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
538 	 * before d_walk() regains parent->d_lock, we'll end up skipping
539 	 * everything the cursor had been moved past.
540 	 *
541 	 * Solution: make sure that the pointer left behind in ->d_child.next
542 	 * points to something that won't be moving around.  I.e. skip the
543 	 * cursors.
544 	 */
545 	while (dentry->d_child.next != &parent->d_subdirs) {
546 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
547 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
548 			break;
549 		dentry->d_child.next = next->d_child.next;
550 	}
551 }
552 
553 static void __dentry_kill(struct dentry *dentry)
554 {
555 	struct dentry *parent = NULL;
556 	bool can_free = true;
557 	if (!IS_ROOT(dentry))
558 		parent = dentry->d_parent;
559 
560 	/*
561 	 * The dentry is now unrecoverably dead to the world.
562 	 */
563 	lockref_mark_dead(&dentry->d_lockref);
564 
565 	/*
566 	 * inform the fs via d_prune that this dentry is about to be
567 	 * unhashed and destroyed.
568 	 */
569 	if (dentry->d_flags & DCACHE_OP_PRUNE)
570 		dentry->d_op->d_prune(dentry);
571 
572 	if (dentry->d_flags & DCACHE_LRU_LIST) {
573 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
574 			d_lru_del(dentry);
575 	}
576 	/* if it was on the hash then remove it */
577 	__d_drop(dentry);
578 	dentry_unlist(dentry, parent);
579 	if (parent)
580 		spin_unlock(&parent->d_lock);
581 	if (dentry->d_inode)
582 		dentry_unlink_inode(dentry);
583 	else
584 		spin_unlock(&dentry->d_lock);
585 	this_cpu_dec(nr_dentry);
586 	if (dentry->d_op && dentry->d_op->d_release)
587 		dentry->d_op->d_release(dentry);
588 
589 	spin_lock(&dentry->d_lock);
590 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
591 		dentry->d_flags |= DCACHE_MAY_FREE;
592 		can_free = false;
593 	}
594 	spin_unlock(&dentry->d_lock);
595 	if (likely(can_free))
596 		dentry_free(dentry);
597 	cond_resched();
598 }
599 
600 static struct dentry *__lock_parent(struct dentry *dentry)
601 {
602 	struct dentry *parent;
603 	rcu_read_lock();
604 	spin_unlock(&dentry->d_lock);
605 again:
606 	parent = READ_ONCE(dentry->d_parent);
607 	spin_lock(&parent->d_lock);
608 	/*
609 	 * We can't blindly lock dentry until we are sure
610 	 * that we won't violate the locking order.
611 	 * Any changes of dentry->d_parent must have
612 	 * been done with parent->d_lock held, so
613 	 * spin_lock() above is enough of a barrier
614 	 * for checking if it's still our child.
615 	 */
616 	if (unlikely(parent != dentry->d_parent)) {
617 		spin_unlock(&parent->d_lock);
618 		goto again;
619 	}
620 	rcu_read_unlock();
621 	if (parent != dentry)
622 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
623 	else
624 		parent = NULL;
625 	return parent;
626 }
627 
628 static inline struct dentry *lock_parent(struct dentry *dentry)
629 {
630 	struct dentry *parent = dentry->d_parent;
631 	if (IS_ROOT(dentry))
632 		return NULL;
633 	if (likely(spin_trylock(&parent->d_lock)))
634 		return parent;
635 	return __lock_parent(dentry);
636 }
637 
638 static inline bool retain_dentry(struct dentry *dentry)
639 {
640 	WARN_ON(d_in_lookup(dentry));
641 
642 	/* Unreachable? Get rid of it */
643 	if (unlikely(d_unhashed(dentry)))
644 		return false;
645 
646 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
647 		return false;
648 
649 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
650 		if (dentry->d_op->d_delete(dentry))
651 			return false;
652 	}
653 
654 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
655 		return false;
656 
657 	/* retain; LRU fodder */
658 	dentry->d_lockref.count--;
659 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
660 		d_lru_add(dentry);
661 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
662 		dentry->d_flags |= DCACHE_REFERENCED;
663 	return true;
664 }
665 
666 void d_mark_dontcache(struct inode *inode)
667 {
668 	struct dentry *de;
669 
670 	spin_lock(&inode->i_lock);
671 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
672 		spin_lock(&de->d_lock);
673 		de->d_flags |= DCACHE_DONTCACHE;
674 		spin_unlock(&de->d_lock);
675 	}
676 	inode->i_state |= I_DONTCACHE;
677 	spin_unlock(&inode->i_lock);
678 }
679 EXPORT_SYMBOL(d_mark_dontcache);
680 
681 /*
682  * Finish off a dentry we've decided to kill.
683  * dentry->d_lock must be held, returns with it unlocked.
684  * Returns dentry requiring refcount drop, or NULL if we're done.
685  */
686 static struct dentry *dentry_kill(struct dentry *dentry)
687 	__releases(dentry->d_lock)
688 {
689 	struct inode *inode = dentry->d_inode;
690 	struct dentry *parent = NULL;
691 
692 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
693 		goto slow_positive;
694 
695 	if (!IS_ROOT(dentry)) {
696 		parent = dentry->d_parent;
697 		if (unlikely(!spin_trylock(&parent->d_lock))) {
698 			parent = __lock_parent(dentry);
699 			if (likely(inode || !dentry->d_inode))
700 				goto got_locks;
701 			/* negative that became positive */
702 			if (parent)
703 				spin_unlock(&parent->d_lock);
704 			inode = dentry->d_inode;
705 			goto slow_positive;
706 		}
707 	}
708 	__dentry_kill(dentry);
709 	return parent;
710 
711 slow_positive:
712 	spin_unlock(&dentry->d_lock);
713 	spin_lock(&inode->i_lock);
714 	spin_lock(&dentry->d_lock);
715 	parent = lock_parent(dentry);
716 got_locks:
717 	if (unlikely(dentry->d_lockref.count != 1)) {
718 		dentry->d_lockref.count--;
719 	} else if (likely(!retain_dentry(dentry))) {
720 		__dentry_kill(dentry);
721 		return parent;
722 	}
723 	/* we are keeping it, after all */
724 	if (inode)
725 		spin_unlock(&inode->i_lock);
726 	if (parent)
727 		spin_unlock(&parent->d_lock);
728 	spin_unlock(&dentry->d_lock);
729 	return NULL;
730 }
731 
732 /*
733  * Try to do a lockless dput(), and return whether that was successful.
734  *
735  * If unsuccessful, we return false, having already taken the dentry lock.
736  *
737  * The caller needs to hold the RCU read lock, so that the dentry is
738  * guaranteed to stay around even if the refcount goes down to zero!
739  */
740 static inline bool fast_dput(struct dentry *dentry)
741 {
742 	int ret;
743 	unsigned int d_flags;
744 
745 	/*
746 	 * If we have a d_op->d_delete() operation, we sould not
747 	 * let the dentry count go to zero, so use "put_or_lock".
748 	 */
749 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
750 		return lockref_put_or_lock(&dentry->d_lockref);
751 
752 	/*
753 	 * .. otherwise, we can try to just decrement the
754 	 * lockref optimistically.
755 	 */
756 	ret = lockref_put_return(&dentry->d_lockref);
757 
758 	/*
759 	 * If the lockref_put_return() failed due to the lock being held
760 	 * by somebody else, the fast path has failed. We will need to
761 	 * get the lock, and then check the count again.
762 	 */
763 	if (unlikely(ret < 0)) {
764 		spin_lock(&dentry->d_lock);
765 		if (dentry->d_lockref.count > 1) {
766 			dentry->d_lockref.count--;
767 			spin_unlock(&dentry->d_lock);
768 			return true;
769 		}
770 		return false;
771 	}
772 
773 	/*
774 	 * If we weren't the last ref, we're done.
775 	 */
776 	if (ret)
777 		return true;
778 
779 	/*
780 	 * Careful, careful. The reference count went down
781 	 * to zero, but we don't hold the dentry lock, so
782 	 * somebody else could get it again, and do another
783 	 * dput(), and we need to not race with that.
784 	 *
785 	 * However, there is a very special and common case
786 	 * where we don't care, because there is nothing to
787 	 * do: the dentry is still hashed, it does not have
788 	 * a 'delete' op, and it's referenced and already on
789 	 * the LRU list.
790 	 *
791 	 * NOTE! Since we aren't locked, these values are
792 	 * not "stable". However, it is sufficient that at
793 	 * some point after we dropped the reference the
794 	 * dentry was hashed and the flags had the proper
795 	 * value. Other dentry users may have re-gotten
796 	 * a reference to the dentry and change that, but
797 	 * our work is done - we can leave the dentry
798 	 * around with a zero refcount.
799 	 *
800 	 * Nevertheless, there are two cases that we should kill
801 	 * the dentry anyway.
802 	 * 1. free disconnected dentries as soon as their refcount
803 	 *    reached zero.
804 	 * 2. free dentries if they should not be cached.
805 	 */
806 	smp_rmb();
807 	d_flags = READ_ONCE(dentry->d_flags);
808 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
809 			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
810 
811 	/* Nothing to do? Dropping the reference was all we needed? */
812 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
813 		return true;
814 
815 	/*
816 	 * Not the fast normal case? Get the lock. We've already decremented
817 	 * the refcount, but we'll need to re-check the situation after
818 	 * getting the lock.
819 	 */
820 	spin_lock(&dentry->d_lock);
821 
822 	/*
823 	 * Did somebody else grab a reference to it in the meantime, and
824 	 * we're no longer the last user after all? Alternatively, somebody
825 	 * else could have killed it and marked it dead. Either way, we
826 	 * don't need to do anything else.
827 	 */
828 	if (dentry->d_lockref.count) {
829 		spin_unlock(&dentry->d_lock);
830 		return true;
831 	}
832 
833 	/*
834 	 * Re-get the reference we optimistically dropped. We hold the
835 	 * lock, and we just tested that it was zero, so we can just
836 	 * set it to 1.
837 	 */
838 	dentry->d_lockref.count = 1;
839 	return false;
840 }
841 
842 
843 /*
844  * This is dput
845  *
846  * This is complicated by the fact that we do not want to put
847  * dentries that are no longer on any hash chain on the unused
848  * list: we'd much rather just get rid of them immediately.
849  *
850  * However, that implies that we have to traverse the dentry
851  * tree upwards to the parents which might _also_ now be
852  * scheduled for deletion (it may have been only waiting for
853  * its last child to go away).
854  *
855  * This tail recursion is done by hand as we don't want to depend
856  * on the compiler to always get this right (gcc generally doesn't).
857  * Real recursion would eat up our stack space.
858  */
859 
860 /*
861  * dput - release a dentry
862  * @dentry: dentry to release
863  *
864  * Release a dentry. This will drop the usage count and if appropriate
865  * call the dentry unlink method as well as removing it from the queues and
866  * releasing its resources. If the parent dentries were scheduled for release
867  * they too may now get deleted.
868  */
869 void dput(struct dentry *dentry)
870 {
871 	while (dentry) {
872 		might_sleep();
873 
874 		rcu_read_lock();
875 		if (likely(fast_dput(dentry))) {
876 			rcu_read_unlock();
877 			return;
878 		}
879 
880 		/* Slow case: now with the dentry lock held */
881 		rcu_read_unlock();
882 
883 		if (likely(retain_dentry(dentry))) {
884 			spin_unlock(&dentry->d_lock);
885 			return;
886 		}
887 
888 		dentry = dentry_kill(dentry);
889 	}
890 }
891 EXPORT_SYMBOL(dput);
892 
893 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
894 __must_hold(&dentry->d_lock)
895 {
896 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
897 		/* let the owner of the list it's on deal with it */
898 		--dentry->d_lockref.count;
899 	} else {
900 		if (dentry->d_flags & DCACHE_LRU_LIST)
901 			d_lru_del(dentry);
902 		if (!--dentry->d_lockref.count)
903 			d_shrink_add(dentry, list);
904 	}
905 }
906 
907 void dput_to_list(struct dentry *dentry, struct list_head *list)
908 {
909 	rcu_read_lock();
910 	if (likely(fast_dput(dentry))) {
911 		rcu_read_unlock();
912 		return;
913 	}
914 	rcu_read_unlock();
915 	if (!retain_dentry(dentry))
916 		__dput_to_list(dentry, list);
917 	spin_unlock(&dentry->d_lock);
918 }
919 
920 /* This must be called with d_lock held */
921 static inline void __dget_dlock(struct dentry *dentry)
922 {
923 	dentry->d_lockref.count++;
924 }
925 
926 static inline void __dget(struct dentry *dentry)
927 {
928 	lockref_get(&dentry->d_lockref);
929 }
930 
931 struct dentry *dget_parent(struct dentry *dentry)
932 {
933 	int gotref;
934 	struct dentry *ret;
935 	unsigned seq;
936 
937 	/*
938 	 * Do optimistic parent lookup without any
939 	 * locking.
940 	 */
941 	rcu_read_lock();
942 	seq = raw_seqcount_begin(&dentry->d_seq);
943 	ret = READ_ONCE(dentry->d_parent);
944 	gotref = lockref_get_not_zero(&ret->d_lockref);
945 	rcu_read_unlock();
946 	if (likely(gotref)) {
947 		if (!read_seqcount_retry(&dentry->d_seq, seq))
948 			return ret;
949 		dput(ret);
950 	}
951 
952 repeat:
953 	/*
954 	 * Don't need rcu_dereference because we re-check it was correct under
955 	 * the lock.
956 	 */
957 	rcu_read_lock();
958 	ret = dentry->d_parent;
959 	spin_lock(&ret->d_lock);
960 	if (unlikely(ret != dentry->d_parent)) {
961 		spin_unlock(&ret->d_lock);
962 		rcu_read_unlock();
963 		goto repeat;
964 	}
965 	rcu_read_unlock();
966 	BUG_ON(!ret->d_lockref.count);
967 	ret->d_lockref.count++;
968 	spin_unlock(&ret->d_lock);
969 	return ret;
970 }
971 EXPORT_SYMBOL(dget_parent);
972 
973 static struct dentry * __d_find_any_alias(struct inode *inode)
974 {
975 	struct dentry *alias;
976 
977 	if (hlist_empty(&inode->i_dentry))
978 		return NULL;
979 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
980 	__dget(alias);
981 	return alias;
982 }
983 
984 /**
985  * d_find_any_alias - find any alias for a given inode
986  * @inode: inode to find an alias for
987  *
988  * If any aliases exist for the given inode, take and return a
989  * reference for one of them.  If no aliases exist, return %NULL.
990  */
991 struct dentry *d_find_any_alias(struct inode *inode)
992 {
993 	struct dentry *de;
994 
995 	spin_lock(&inode->i_lock);
996 	de = __d_find_any_alias(inode);
997 	spin_unlock(&inode->i_lock);
998 	return de;
999 }
1000 EXPORT_SYMBOL(d_find_any_alias);
1001 
1002 static struct dentry *__d_find_alias(struct inode *inode)
1003 {
1004 	struct dentry *alias;
1005 
1006 	if (S_ISDIR(inode->i_mode))
1007 		return __d_find_any_alias(inode);
1008 
1009 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1010 		spin_lock(&alias->d_lock);
1011  		if (!d_unhashed(alias)) {
1012 			__dget_dlock(alias);
1013 			spin_unlock(&alias->d_lock);
1014 			return alias;
1015 		}
1016 		spin_unlock(&alias->d_lock);
1017 	}
1018 	return NULL;
1019 }
1020 
1021 /**
1022  * d_find_alias - grab a hashed alias of inode
1023  * @inode: inode in question
1024  *
1025  * If inode has a hashed alias, or is a directory and has any alias,
1026  * acquire the reference to alias and return it. Otherwise return NULL.
1027  * Notice that if inode is a directory there can be only one alias and
1028  * it can be unhashed only if it has no children, or if it is the root
1029  * of a filesystem, or if the directory was renamed and d_revalidate
1030  * was the first vfs operation to notice.
1031  *
1032  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1033  * any other hashed alias over that one.
1034  */
1035 struct dentry *d_find_alias(struct inode *inode)
1036 {
1037 	struct dentry *de = NULL;
1038 
1039 	if (!hlist_empty(&inode->i_dentry)) {
1040 		spin_lock(&inode->i_lock);
1041 		de = __d_find_alias(inode);
1042 		spin_unlock(&inode->i_lock);
1043 	}
1044 	return de;
1045 }
1046 EXPORT_SYMBOL(d_find_alias);
1047 
1048 /*
1049  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1050  *  that inode won't get freed until rcu_read_unlock().
1051  */
1052 struct dentry *d_find_alias_rcu(struct inode *inode)
1053 {
1054 	struct hlist_head *l = &inode->i_dentry;
1055 	struct dentry *de = NULL;
1056 
1057 	spin_lock(&inode->i_lock);
1058 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1059 	// used without having I_FREEING set, which means no aliases left
1060 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1061 		if (S_ISDIR(inode->i_mode)) {
1062 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1063 		} else {
1064 			hlist_for_each_entry(de, l, d_u.d_alias)
1065 				if (!d_unhashed(de))
1066 					break;
1067 		}
1068 	}
1069 	spin_unlock(&inode->i_lock);
1070 	return de;
1071 }
1072 
1073 /*
1074  *	Try to kill dentries associated with this inode.
1075  * WARNING: you must own a reference to inode.
1076  */
1077 void d_prune_aliases(struct inode *inode)
1078 {
1079 	struct dentry *dentry;
1080 restart:
1081 	spin_lock(&inode->i_lock);
1082 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1083 		spin_lock(&dentry->d_lock);
1084 		if (!dentry->d_lockref.count) {
1085 			struct dentry *parent = lock_parent(dentry);
1086 			if (likely(!dentry->d_lockref.count)) {
1087 				__dentry_kill(dentry);
1088 				dput(parent);
1089 				goto restart;
1090 			}
1091 			if (parent)
1092 				spin_unlock(&parent->d_lock);
1093 		}
1094 		spin_unlock(&dentry->d_lock);
1095 	}
1096 	spin_unlock(&inode->i_lock);
1097 }
1098 EXPORT_SYMBOL(d_prune_aliases);
1099 
1100 /*
1101  * Lock a dentry from shrink list.
1102  * Called under rcu_read_lock() and dentry->d_lock; the former
1103  * guarantees that nothing we access will be freed under us.
1104  * Note that dentry is *not* protected from concurrent dentry_kill(),
1105  * d_delete(), etc.
1106  *
1107  * Return false if dentry has been disrupted or grabbed, leaving
1108  * the caller to kick it off-list.  Otherwise, return true and have
1109  * that dentry's inode and parent both locked.
1110  */
1111 static bool shrink_lock_dentry(struct dentry *dentry)
1112 {
1113 	struct inode *inode;
1114 	struct dentry *parent;
1115 
1116 	if (dentry->d_lockref.count)
1117 		return false;
1118 
1119 	inode = dentry->d_inode;
1120 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1121 		spin_unlock(&dentry->d_lock);
1122 		spin_lock(&inode->i_lock);
1123 		spin_lock(&dentry->d_lock);
1124 		if (unlikely(dentry->d_lockref.count))
1125 			goto out;
1126 		/* changed inode means that somebody had grabbed it */
1127 		if (unlikely(inode != dentry->d_inode))
1128 			goto out;
1129 	}
1130 
1131 	parent = dentry->d_parent;
1132 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1133 		return true;
1134 
1135 	spin_unlock(&dentry->d_lock);
1136 	spin_lock(&parent->d_lock);
1137 	if (unlikely(parent != dentry->d_parent)) {
1138 		spin_unlock(&parent->d_lock);
1139 		spin_lock(&dentry->d_lock);
1140 		goto out;
1141 	}
1142 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1143 	if (likely(!dentry->d_lockref.count))
1144 		return true;
1145 	spin_unlock(&parent->d_lock);
1146 out:
1147 	if (inode)
1148 		spin_unlock(&inode->i_lock);
1149 	return false;
1150 }
1151 
1152 void shrink_dentry_list(struct list_head *list)
1153 {
1154 	while (!list_empty(list)) {
1155 		struct dentry *dentry, *parent;
1156 
1157 		dentry = list_entry(list->prev, struct dentry, d_lru);
1158 		spin_lock(&dentry->d_lock);
1159 		rcu_read_lock();
1160 		if (!shrink_lock_dentry(dentry)) {
1161 			bool can_free = false;
1162 			rcu_read_unlock();
1163 			d_shrink_del(dentry);
1164 			if (dentry->d_lockref.count < 0)
1165 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1166 			spin_unlock(&dentry->d_lock);
1167 			if (can_free)
1168 				dentry_free(dentry);
1169 			continue;
1170 		}
1171 		rcu_read_unlock();
1172 		d_shrink_del(dentry);
1173 		parent = dentry->d_parent;
1174 		if (parent != dentry)
1175 			__dput_to_list(parent, list);
1176 		__dentry_kill(dentry);
1177 	}
1178 }
1179 
1180 static enum lru_status dentry_lru_isolate(struct list_head *item,
1181 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1182 {
1183 	struct list_head *freeable = arg;
1184 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1185 
1186 
1187 	/*
1188 	 * we are inverting the lru lock/dentry->d_lock here,
1189 	 * so use a trylock. If we fail to get the lock, just skip
1190 	 * it
1191 	 */
1192 	if (!spin_trylock(&dentry->d_lock))
1193 		return LRU_SKIP;
1194 
1195 	/*
1196 	 * Referenced dentries are still in use. If they have active
1197 	 * counts, just remove them from the LRU. Otherwise give them
1198 	 * another pass through the LRU.
1199 	 */
1200 	if (dentry->d_lockref.count) {
1201 		d_lru_isolate(lru, dentry);
1202 		spin_unlock(&dentry->d_lock);
1203 		return LRU_REMOVED;
1204 	}
1205 
1206 	if (dentry->d_flags & DCACHE_REFERENCED) {
1207 		dentry->d_flags &= ~DCACHE_REFERENCED;
1208 		spin_unlock(&dentry->d_lock);
1209 
1210 		/*
1211 		 * The list move itself will be made by the common LRU code. At
1212 		 * this point, we've dropped the dentry->d_lock but keep the
1213 		 * lru lock. This is safe to do, since every list movement is
1214 		 * protected by the lru lock even if both locks are held.
1215 		 *
1216 		 * This is guaranteed by the fact that all LRU management
1217 		 * functions are intermediated by the LRU API calls like
1218 		 * list_lru_add and list_lru_del. List movement in this file
1219 		 * only ever occur through this functions or through callbacks
1220 		 * like this one, that are called from the LRU API.
1221 		 *
1222 		 * The only exceptions to this are functions like
1223 		 * shrink_dentry_list, and code that first checks for the
1224 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1225 		 * operating only with stack provided lists after they are
1226 		 * properly isolated from the main list.  It is thus, always a
1227 		 * local access.
1228 		 */
1229 		return LRU_ROTATE;
1230 	}
1231 
1232 	d_lru_shrink_move(lru, dentry, freeable);
1233 	spin_unlock(&dentry->d_lock);
1234 
1235 	return LRU_REMOVED;
1236 }
1237 
1238 /**
1239  * prune_dcache_sb - shrink the dcache
1240  * @sb: superblock
1241  * @sc: shrink control, passed to list_lru_shrink_walk()
1242  *
1243  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1244  * is done when we need more memory and called from the superblock shrinker
1245  * function.
1246  *
1247  * This function may fail to free any resources if all the dentries are in
1248  * use.
1249  */
1250 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1251 {
1252 	LIST_HEAD(dispose);
1253 	long freed;
1254 
1255 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1256 				     dentry_lru_isolate, &dispose);
1257 	shrink_dentry_list(&dispose);
1258 	return freed;
1259 }
1260 
1261 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1262 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1263 {
1264 	struct list_head *freeable = arg;
1265 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1266 
1267 	/*
1268 	 * we are inverting the lru lock/dentry->d_lock here,
1269 	 * so use a trylock. If we fail to get the lock, just skip
1270 	 * it
1271 	 */
1272 	if (!spin_trylock(&dentry->d_lock))
1273 		return LRU_SKIP;
1274 
1275 	d_lru_shrink_move(lru, dentry, freeable);
1276 	spin_unlock(&dentry->d_lock);
1277 
1278 	return LRU_REMOVED;
1279 }
1280 
1281 
1282 /**
1283  * shrink_dcache_sb - shrink dcache for a superblock
1284  * @sb: superblock
1285  *
1286  * Shrink the dcache for the specified super block. This is used to free
1287  * the dcache before unmounting a file system.
1288  */
1289 void shrink_dcache_sb(struct super_block *sb)
1290 {
1291 	do {
1292 		LIST_HEAD(dispose);
1293 
1294 		list_lru_walk(&sb->s_dentry_lru,
1295 			dentry_lru_isolate_shrink, &dispose, 1024);
1296 		shrink_dentry_list(&dispose);
1297 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1298 }
1299 EXPORT_SYMBOL(shrink_dcache_sb);
1300 
1301 /**
1302  * enum d_walk_ret - action to talke during tree walk
1303  * @D_WALK_CONTINUE:	contrinue walk
1304  * @D_WALK_QUIT:	quit walk
1305  * @D_WALK_NORETRY:	quit when retry is needed
1306  * @D_WALK_SKIP:	skip this dentry and its children
1307  */
1308 enum d_walk_ret {
1309 	D_WALK_CONTINUE,
1310 	D_WALK_QUIT,
1311 	D_WALK_NORETRY,
1312 	D_WALK_SKIP,
1313 };
1314 
1315 /**
1316  * d_walk - walk the dentry tree
1317  * @parent:	start of walk
1318  * @data:	data passed to @enter() and @finish()
1319  * @enter:	callback when first entering the dentry
1320  *
1321  * The @enter() callbacks are called with d_lock held.
1322  */
1323 static void d_walk(struct dentry *parent, void *data,
1324 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1325 {
1326 	struct dentry *this_parent;
1327 	struct list_head *next;
1328 	unsigned seq = 0;
1329 	enum d_walk_ret ret;
1330 	bool retry = true;
1331 
1332 again:
1333 	read_seqbegin_or_lock(&rename_lock, &seq);
1334 	this_parent = parent;
1335 	spin_lock(&this_parent->d_lock);
1336 
1337 	ret = enter(data, this_parent);
1338 	switch (ret) {
1339 	case D_WALK_CONTINUE:
1340 		break;
1341 	case D_WALK_QUIT:
1342 	case D_WALK_SKIP:
1343 		goto out_unlock;
1344 	case D_WALK_NORETRY:
1345 		retry = false;
1346 		break;
1347 	}
1348 repeat:
1349 	next = this_parent->d_subdirs.next;
1350 resume:
1351 	while (next != &this_parent->d_subdirs) {
1352 		struct list_head *tmp = next;
1353 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1354 		next = tmp->next;
1355 
1356 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1357 			continue;
1358 
1359 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1360 
1361 		ret = enter(data, dentry);
1362 		switch (ret) {
1363 		case D_WALK_CONTINUE:
1364 			break;
1365 		case D_WALK_QUIT:
1366 			spin_unlock(&dentry->d_lock);
1367 			goto out_unlock;
1368 		case D_WALK_NORETRY:
1369 			retry = false;
1370 			break;
1371 		case D_WALK_SKIP:
1372 			spin_unlock(&dentry->d_lock);
1373 			continue;
1374 		}
1375 
1376 		if (!list_empty(&dentry->d_subdirs)) {
1377 			spin_unlock(&this_parent->d_lock);
1378 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1379 			this_parent = dentry;
1380 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1381 			goto repeat;
1382 		}
1383 		spin_unlock(&dentry->d_lock);
1384 	}
1385 	/*
1386 	 * All done at this level ... ascend and resume the search.
1387 	 */
1388 	rcu_read_lock();
1389 ascend:
1390 	if (this_parent != parent) {
1391 		struct dentry *child = this_parent;
1392 		this_parent = child->d_parent;
1393 
1394 		spin_unlock(&child->d_lock);
1395 		spin_lock(&this_parent->d_lock);
1396 
1397 		/* might go back up the wrong parent if we have had a rename. */
1398 		if (need_seqretry(&rename_lock, seq))
1399 			goto rename_retry;
1400 		/* go into the first sibling still alive */
1401 		do {
1402 			next = child->d_child.next;
1403 			if (next == &this_parent->d_subdirs)
1404 				goto ascend;
1405 			child = list_entry(next, struct dentry, d_child);
1406 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1407 		rcu_read_unlock();
1408 		goto resume;
1409 	}
1410 	if (need_seqretry(&rename_lock, seq))
1411 		goto rename_retry;
1412 	rcu_read_unlock();
1413 
1414 out_unlock:
1415 	spin_unlock(&this_parent->d_lock);
1416 	done_seqretry(&rename_lock, seq);
1417 	return;
1418 
1419 rename_retry:
1420 	spin_unlock(&this_parent->d_lock);
1421 	rcu_read_unlock();
1422 	BUG_ON(seq & 1);
1423 	if (!retry)
1424 		return;
1425 	seq = 1;
1426 	goto again;
1427 }
1428 
1429 struct check_mount {
1430 	struct vfsmount *mnt;
1431 	unsigned int mounted;
1432 };
1433 
1434 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1435 {
1436 	struct check_mount *info = data;
1437 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1438 
1439 	if (likely(!d_mountpoint(dentry)))
1440 		return D_WALK_CONTINUE;
1441 	if (__path_is_mountpoint(&path)) {
1442 		info->mounted = 1;
1443 		return D_WALK_QUIT;
1444 	}
1445 	return D_WALK_CONTINUE;
1446 }
1447 
1448 /**
1449  * path_has_submounts - check for mounts over a dentry in the
1450  *                      current namespace.
1451  * @parent: path to check.
1452  *
1453  * Return true if the parent or its subdirectories contain
1454  * a mount point in the current namespace.
1455  */
1456 int path_has_submounts(const struct path *parent)
1457 {
1458 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1459 
1460 	read_seqlock_excl(&mount_lock);
1461 	d_walk(parent->dentry, &data, path_check_mount);
1462 	read_sequnlock_excl(&mount_lock);
1463 
1464 	return data.mounted;
1465 }
1466 EXPORT_SYMBOL(path_has_submounts);
1467 
1468 /*
1469  * Called by mount code to set a mountpoint and check if the mountpoint is
1470  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1471  * subtree can become unreachable).
1472  *
1473  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1474  * this reason take rename_lock and d_lock on dentry and ancestors.
1475  */
1476 int d_set_mounted(struct dentry *dentry)
1477 {
1478 	struct dentry *p;
1479 	int ret = -ENOENT;
1480 	write_seqlock(&rename_lock);
1481 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1482 		/* Need exclusion wrt. d_invalidate() */
1483 		spin_lock(&p->d_lock);
1484 		if (unlikely(d_unhashed(p))) {
1485 			spin_unlock(&p->d_lock);
1486 			goto out;
1487 		}
1488 		spin_unlock(&p->d_lock);
1489 	}
1490 	spin_lock(&dentry->d_lock);
1491 	if (!d_unlinked(dentry)) {
1492 		ret = -EBUSY;
1493 		if (!d_mountpoint(dentry)) {
1494 			dentry->d_flags |= DCACHE_MOUNTED;
1495 			ret = 0;
1496 		}
1497 	}
1498  	spin_unlock(&dentry->d_lock);
1499 out:
1500 	write_sequnlock(&rename_lock);
1501 	return ret;
1502 }
1503 
1504 /*
1505  * Search the dentry child list of the specified parent,
1506  * and move any unused dentries to the end of the unused
1507  * list for prune_dcache(). We descend to the next level
1508  * whenever the d_subdirs list is non-empty and continue
1509  * searching.
1510  *
1511  * It returns zero iff there are no unused children,
1512  * otherwise  it returns the number of children moved to
1513  * the end of the unused list. This may not be the total
1514  * number of unused children, because select_parent can
1515  * drop the lock and return early due to latency
1516  * constraints.
1517  */
1518 
1519 struct select_data {
1520 	struct dentry *start;
1521 	union {
1522 		long found;
1523 		struct dentry *victim;
1524 	};
1525 	struct list_head dispose;
1526 };
1527 
1528 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1529 {
1530 	struct select_data *data = _data;
1531 	enum d_walk_ret ret = D_WALK_CONTINUE;
1532 
1533 	if (data->start == dentry)
1534 		goto out;
1535 
1536 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1537 		data->found++;
1538 	} else {
1539 		if (dentry->d_flags & DCACHE_LRU_LIST)
1540 			d_lru_del(dentry);
1541 		if (!dentry->d_lockref.count) {
1542 			d_shrink_add(dentry, &data->dispose);
1543 			data->found++;
1544 		}
1545 	}
1546 	/*
1547 	 * We can return to the caller if we have found some (this
1548 	 * ensures forward progress). We'll be coming back to find
1549 	 * the rest.
1550 	 */
1551 	if (!list_empty(&data->dispose))
1552 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1553 out:
1554 	return ret;
1555 }
1556 
1557 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1558 {
1559 	struct select_data *data = _data;
1560 	enum d_walk_ret ret = D_WALK_CONTINUE;
1561 
1562 	if (data->start == dentry)
1563 		goto out;
1564 
1565 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1566 		if (!dentry->d_lockref.count) {
1567 			rcu_read_lock();
1568 			data->victim = dentry;
1569 			return D_WALK_QUIT;
1570 		}
1571 	} else {
1572 		if (dentry->d_flags & DCACHE_LRU_LIST)
1573 			d_lru_del(dentry);
1574 		if (!dentry->d_lockref.count)
1575 			d_shrink_add(dentry, &data->dispose);
1576 	}
1577 	/*
1578 	 * We can return to the caller if we have found some (this
1579 	 * ensures forward progress). We'll be coming back to find
1580 	 * the rest.
1581 	 */
1582 	if (!list_empty(&data->dispose))
1583 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1584 out:
1585 	return ret;
1586 }
1587 
1588 /**
1589  * shrink_dcache_parent - prune dcache
1590  * @parent: parent of entries to prune
1591  *
1592  * Prune the dcache to remove unused children of the parent dentry.
1593  */
1594 void shrink_dcache_parent(struct dentry *parent)
1595 {
1596 	for (;;) {
1597 		struct select_data data = {.start = parent};
1598 
1599 		INIT_LIST_HEAD(&data.dispose);
1600 		d_walk(parent, &data, select_collect);
1601 
1602 		if (!list_empty(&data.dispose)) {
1603 			shrink_dentry_list(&data.dispose);
1604 			continue;
1605 		}
1606 
1607 		cond_resched();
1608 		if (!data.found)
1609 			break;
1610 		data.victim = NULL;
1611 		d_walk(parent, &data, select_collect2);
1612 		if (data.victim) {
1613 			struct dentry *parent;
1614 			spin_lock(&data.victim->d_lock);
1615 			if (!shrink_lock_dentry(data.victim)) {
1616 				spin_unlock(&data.victim->d_lock);
1617 				rcu_read_unlock();
1618 			} else {
1619 				rcu_read_unlock();
1620 				parent = data.victim->d_parent;
1621 				if (parent != data.victim)
1622 					__dput_to_list(parent, &data.dispose);
1623 				__dentry_kill(data.victim);
1624 			}
1625 		}
1626 		if (!list_empty(&data.dispose))
1627 			shrink_dentry_list(&data.dispose);
1628 	}
1629 }
1630 EXPORT_SYMBOL(shrink_dcache_parent);
1631 
1632 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1633 {
1634 	/* it has busy descendents; complain about those instead */
1635 	if (!list_empty(&dentry->d_subdirs))
1636 		return D_WALK_CONTINUE;
1637 
1638 	/* root with refcount 1 is fine */
1639 	if (dentry == _data && dentry->d_lockref.count == 1)
1640 		return D_WALK_CONTINUE;
1641 
1642 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1643 			" still in use (%d) [unmount of %s %s]\n",
1644 		       dentry,
1645 		       dentry->d_inode ?
1646 		       dentry->d_inode->i_ino : 0UL,
1647 		       dentry,
1648 		       dentry->d_lockref.count,
1649 		       dentry->d_sb->s_type->name,
1650 		       dentry->d_sb->s_id);
1651 	WARN_ON(1);
1652 	return D_WALK_CONTINUE;
1653 }
1654 
1655 static void do_one_tree(struct dentry *dentry)
1656 {
1657 	shrink_dcache_parent(dentry);
1658 	d_walk(dentry, dentry, umount_check);
1659 	d_drop(dentry);
1660 	dput(dentry);
1661 }
1662 
1663 /*
1664  * destroy the dentries attached to a superblock on unmounting
1665  */
1666 void shrink_dcache_for_umount(struct super_block *sb)
1667 {
1668 	struct dentry *dentry;
1669 
1670 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1671 
1672 	dentry = sb->s_root;
1673 	sb->s_root = NULL;
1674 	do_one_tree(dentry);
1675 
1676 	while (!hlist_bl_empty(&sb->s_roots)) {
1677 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1678 		do_one_tree(dentry);
1679 	}
1680 }
1681 
1682 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1683 {
1684 	struct dentry **victim = _data;
1685 	if (d_mountpoint(dentry)) {
1686 		__dget_dlock(dentry);
1687 		*victim = dentry;
1688 		return D_WALK_QUIT;
1689 	}
1690 	return D_WALK_CONTINUE;
1691 }
1692 
1693 /**
1694  * d_invalidate - detach submounts, prune dcache, and drop
1695  * @dentry: dentry to invalidate (aka detach, prune and drop)
1696  */
1697 void d_invalidate(struct dentry *dentry)
1698 {
1699 	bool had_submounts = false;
1700 	spin_lock(&dentry->d_lock);
1701 	if (d_unhashed(dentry)) {
1702 		spin_unlock(&dentry->d_lock);
1703 		return;
1704 	}
1705 	__d_drop(dentry);
1706 	spin_unlock(&dentry->d_lock);
1707 
1708 	/* Negative dentries can be dropped without further checks */
1709 	if (!dentry->d_inode)
1710 		return;
1711 
1712 	shrink_dcache_parent(dentry);
1713 	for (;;) {
1714 		struct dentry *victim = NULL;
1715 		d_walk(dentry, &victim, find_submount);
1716 		if (!victim) {
1717 			if (had_submounts)
1718 				shrink_dcache_parent(dentry);
1719 			return;
1720 		}
1721 		had_submounts = true;
1722 		detach_mounts(victim);
1723 		dput(victim);
1724 	}
1725 }
1726 EXPORT_SYMBOL(d_invalidate);
1727 
1728 /**
1729  * __d_alloc	-	allocate a dcache entry
1730  * @sb: filesystem it will belong to
1731  * @name: qstr of the name
1732  *
1733  * Allocates a dentry. It returns %NULL if there is insufficient memory
1734  * available. On a success the dentry is returned. The name passed in is
1735  * copied and the copy passed in may be reused after this call.
1736  */
1737 
1738 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1739 {
1740 	struct dentry *dentry;
1741 	char *dname;
1742 	int err;
1743 
1744 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1745 	if (!dentry)
1746 		return NULL;
1747 
1748 	/*
1749 	 * We guarantee that the inline name is always NUL-terminated.
1750 	 * This way the memcpy() done by the name switching in rename
1751 	 * will still always have a NUL at the end, even if we might
1752 	 * be overwriting an internal NUL character
1753 	 */
1754 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1755 	if (unlikely(!name)) {
1756 		name = &slash_name;
1757 		dname = dentry->d_iname;
1758 	} else if (name->len > DNAME_INLINE_LEN-1) {
1759 		size_t size = offsetof(struct external_name, name[1]);
1760 		struct external_name *p = kmalloc(size + name->len,
1761 						  GFP_KERNEL_ACCOUNT |
1762 						  __GFP_RECLAIMABLE);
1763 		if (!p) {
1764 			kmem_cache_free(dentry_cache, dentry);
1765 			return NULL;
1766 		}
1767 		atomic_set(&p->u.count, 1);
1768 		dname = p->name;
1769 	} else  {
1770 		dname = dentry->d_iname;
1771 	}
1772 
1773 	dentry->d_name.len = name->len;
1774 	dentry->d_name.hash = name->hash;
1775 	memcpy(dname, name->name, name->len);
1776 	dname[name->len] = 0;
1777 
1778 	/* Make sure we always see the terminating NUL character */
1779 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1780 
1781 	dentry->d_lockref.count = 1;
1782 	dentry->d_flags = 0;
1783 	spin_lock_init(&dentry->d_lock);
1784 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1785 	dentry->d_inode = NULL;
1786 	dentry->d_parent = dentry;
1787 	dentry->d_sb = sb;
1788 	dentry->d_op = NULL;
1789 	dentry->d_fsdata = NULL;
1790 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1791 	INIT_LIST_HEAD(&dentry->d_lru);
1792 	INIT_LIST_HEAD(&dentry->d_subdirs);
1793 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1794 	INIT_LIST_HEAD(&dentry->d_child);
1795 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1796 
1797 	if (dentry->d_op && dentry->d_op->d_init) {
1798 		err = dentry->d_op->d_init(dentry);
1799 		if (err) {
1800 			if (dname_external(dentry))
1801 				kfree(external_name(dentry));
1802 			kmem_cache_free(dentry_cache, dentry);
1803 			return NULL;
1804 		}
1805 	}
1806 
1807 	this_cpu_inc(nr_dentry);
1808 
1809 	return dentry;
1810 }
1811 
1812 /**
1813  * d_alloc	-	allocate a dcache entry
1814  * @parent: parent of entry to allocate
1815  * @name: qstr of the name
1816  *
1817  * Allocates a dentry. It returns %NULL if there is insufficient memory
1818  * available. On a success the dentry is returned. The name passed in is
1819  * copied and the copy passed in may be reused after this call.
1820  */
1821 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1822 {
1823 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1824 	if (!dentry)
1825 		return NULL;
1826 	spin_lock(&parent->d_lock);
1827 	/*
1828 	 * don't need child lock because it is not subject
1829 	 * to concurrency here
1830 	 */
1831 	__dget_dlock(parent);
1832 	dentry->d_parent = parent;
1833 	list_add(&dentry->d_child, &parent->d_subdirs);
1834 	spin_unlock(&parent->d_lock);
1835 
1836 	return dentry;
1837 }
1838 EXPORT_SYMBOL(d_alloc);
1839 
1840 struct dentry *d_alloc_anon(struct super_block *sb)
1841 {
1842 	return __d_alloc(sb, NULL);
1843 }
1844 EXPORT_SYMBOL(d_alloc_anon);
1845 
1846 struct dentry *d_alloc_cursor(struct dentry * parent)
1847 {
1848 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1849 	if (dentry) {
1850 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1851 		dentry->d_parent = dget(parent);
1852 	}
1853 	return dentry;
1854 }
1855 
1856 /**
1857  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1858  * @sb: the superblock
1859  * @name: qstr of the name
1860  *
1861  * For a filesystem that just pins its dentries in memory and never
1862  * performs lookups at all, return an unhashed IS_ROOT dentry.
1863  * This is used for pipes, sockets et.al. - the stuff that should
1864  * never be anyone's children or parents.  Unlike all other
1865  * dentries, these will not have RCU delay between dropping the
1866  * last reference and freeing them.
1867  *
1868  * The only user is alloc_file_pseudo() and that's what should
1869  * be considered a public interface.  Don't use directly.
1870  */
1871 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1872 {
1873 	struct dentry *dentry = __d_alloc(sb, name);
1874 	if (likely(dentry))
1875 		dentry->d_flags |= DCACHE_NORCU;
1876 	return dentry;
1877 }
1878 
1879 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1880 {
1881 	struct qstr q;
1882 
1883 	q.name = name;
1884 	q.hash_len = hashlen_string(parent, name);
1885 	return d_alloc(parent, &q);
1886 }
1887 EXPORT_SYMBOL(d_alloc_name);
1888 
1889 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1890 {
1891 	WARN_ON_ONCE(dentry->d_op);
1892 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1893 				DCACHE_OP_COMPARE	|
1894 				DCACHE_OP_REVALIDATE	|
1895 				DCACHE_OP_WEAK_REVALIDATE	|
1896 				DCACHE_OP_DELETE	|
1897 				DCACHE_OP_REAL));
1898 	dentry->d_op = op;
1899 	if (!op)
1900 		return;
1901 	if (op->d_hash)
1902 		dentry->d_flags |= DCACHE_OP_HASH;
1903 	if (op->d_compare)
1904 		dentry->d_flags |= DCACHE_OP_COMPARE;
1905 	if (op->d_revalidate)
1906 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1907 	if (op->d_weak_revalidate)
1908 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1909 	if (op->d_delete)
1910 		dentry->d_flags |= DCACHE_OP_DELETE;
1911 	if (op->d_prune)
1912 		dentry->d_flags |= DCACHE_OP_PRUNE;
1913 	if (op->d_real)
1914 		dentry->d_flags |= DCACHE_OP_REAL;
1915 
1916 }
1917 EXPORT_SYMBOL(d_set_d_op);
1918 
1919 
1920 /*
1921  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1922  * @dentry - The dentry to mark
1923  *
1924  * Mark a dentry as falling through to the lower layer (as set with
1925  * d_pin_lower()).  This flag may be recorded on the medium.
1926  */
1927 void d_set_fallthru(struct dentry *dentry)
1928 {
1929 	spin_lock(&dentry->d_lock);
1930 	dentry->d_flags |= DCACHE_FALLTHRU;
1931 	spin_unlock(&dentry->d_lock);
1932 }
1933 EXPORT_SYMBOL(d_set_fallthru);
1934 
1935 static unsigned d_flags_for_inode(struct inode *inode)
1936 {
1937 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1938 
1939 	if (!inode)
1940 		return DCACHE_MISS_TYPE;
1941 
1942 	if (S_ISDIR(inode->i_mode)) {
1943 		add_flags = DCACHE_DIRECTORY_TYPE;
1944 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1945 			if (unlikely(!inode->i_op->lookup))
1946 				add_flags = DCACHE_AUTODIR_TYPE;
1947 			else
1948 				inode->i_opflags |= IOP_LOOKUP;
1949 		}
1950 		goto type_determined;
1951 	}
1952 
1953 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1954 		if (unlikely(inode->i_op->get_link)) {
1955 			add_flags = DCACHE_SYMLINK_TYPE;
1956 			goto type_determined;
1957 		}
1958 		inode->i_opflags |= IOP_NOFOLLOW;
1959 	}
1960 
1961 	if (unlikely(!S_ISREG(inode->i_mode)))
1962 		add_flags = DCACHE_SPECIAL_TYPE;
1963 
1964 type_determined:
1965 	if (unlikely(IS_AUTOMOUNT(inode)))
1966 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1967 	return add_flags;
1968 }
1969 
1970 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1971 {
1972 	unsigned add_flags = d_flags_for_inode(inode);
1973 	WARN_ON(d_in_lookup(dentry));
1974 
1975 	spin_lock(&dentry->d_lock);
1976 	/*
1977 	 * Decrement negative dentry count if it was in the LRU list.
1978 	 */
1979 	if (dentry->d_flags & DCACHE_LRU_LIST)
1980 		this_cpu_dec(nr_dentry_negative);
1981 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1982 	raw_write_seqcount_begin(&dentry->d_seq);
1983 	__d_set_inode_and_type(dentry, inode, add_flags);
1984 	raw_write_seqcount_end(&dentry->d_seq);
1985 	fsnotify_update_flags(dentry);
1986 	spin_unlock(&dentry->d_lock);
1987 }
1988 
1989 /**
1990  * d_instantiate - fill in inode information for a dentry
1991  * @entry: dentry to complete
1992  * @inode: inode to attach to this dentry
1993  *
1994  * Fill in inode information in the entry.
1995  *
1996  * This turns negative dentries into productive full members
1997  * of society.
1998  *
1999  * NOTE! This assumes that the inode count has been incremented
2000  * (or otherwise set) by the caller to indicate that it is now
2001  * in use by the dcache.
2002  */
2003 
2004 void d_instantiate(struct dentry *entry, struct inode * inode)
2005 {
2006 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2007 	if (inode) {
2008 		security_d_instantiate(entry, inode);
2009 		spin_lock(&inode->i_lock);
2010 		__d_instantiate(entry, inode);
2011 		spin_unlock(&inode->i_lock);
2012 	}
2013 }
2014 EXPORT_SYMBOL(d_instantiate);
2015 
2016 /*
2017  * This should be equivalent to d_instantiate() + unlock_new_inode(),
2018  * with lockdep-related part of unlock_new_inode() done before
2019  * anything else.  Use that instead of open-coding d_instantiate()/
2020  * unlock_new_inode() combinations.
2021  */
2022 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2023 {
2024 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2025 	BUG_ON(!inode);
2026 	lockdep_annotate_inode_mutex_key(inode);
2027 	security_d_instantiate(entry, inode);
2028 	spin_lock(&inode->i_lock);
2029 	__d_instantiate(entry, inode);
2030 	WARN_ON(!(inode->i_state & I_NEW));
2031 	inode->i_state &= ~I_NEW & ~I_CREATING;
2032 	smp_mb();
2033 	wake_up_bit(&inode->i_state, __I_NEW);
2034 	spin_unlock(&inode->i_lock);
2035 }
2036 EXPORT_SYMBOL(d_instantiate_new);
2037 
2038 struct dentry *d_make_root(struct inode *root_inode)
2039 {
2040 	struct dentry *res = NULL;
2041 
2042 	if (root_inode) {
2043 		res = d_alloc_anon(root_inode->i_sb);
2044 		if (res)
2045 			d_instantiate(res, root_inode);
2046 		else
2047 			iput(root_inode);
2048 	}
2049 	return res;
2050 }
2051 EXPORT_SYMBOL(d_make_root);
2052 
2053 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2054 					   struct inode *inode,
2055 					   bool disconnected)
2056 {
2057 	struct dentry *res;
2058 	unsigned add_flags;
2059 
2060 	security_d_instantiate(dentry, inode);
2061 	spin_lock(&inode->i_lock);
2062 	res = __d_find_any_alias(inode);
2063 	if (res) {
2064 		spin_unlock(&inode->i_lock);
2065 		dput(dentry);
2066 		goto out_iput;
2067 	}
2068 
2069 	/* attach a disconnected dentry */
2070 	add_flags = d_flags_for_inode(inode);
2071 
2072 	if (disconnected)
2073 		add_flags |= DCACHE_DISCONNECTED;
2074 
2075 	spin_lock(&dentry->d_lock);
2076 	__d_set_inode_and_type(dentry, inode, add_flags);
2077 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2078 	if (!disconnected) {
2079 		hlist_bl_lock(&dentry->d_sb->s_roots);
2080 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2081 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2082 	}
2083 	spin_unlock(&dentry->d_lock);
2084 	spin_unlock(&inode->i_lock);
2085 
2086 	return dentry;
2087 
2088  out_iput:
2089 	iput(inode);
2090 	return res;
2091 }
2092 
2093 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2094 {
2095 	return __d_instantiate_anon(dentry, inode, true);
2096 }
2097 EXPORT_SYMBOL(d_instantiate_anon);
2098 
2099 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2100 {
2101 	struct dentry *tmp;
2102 	struct dentry *res;
2103 
2104 	if (!inode)
2105 		return ERR_PTR(-ESTALE);
2106 	if (IS_ERR(inode))
2107 		return ERR_CAST(inode);
2108 
2109 	res = d_find_any_alias(inode);
2110 	if (res)
2111 		goto out_iput;
2112 
2113 	tmp = d_alloc_anon(inode->i_sb);
2114 	if (!tmp) {
2115 		res = ERR_PTR(-ENOMEM);
2116 		goto out_iput;
2117 	}
2118 
2119 	return __d_instantiate_anon(tmp, inode, disconnected);
2120 
2121 out_iput:
2122 	iput(inode);
2123 	return res;
2124 }
2125 
2126 /**
2127  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2128  * @inode: inode to allocate the dentry for
2129  *
2130  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2131  * similar open by handle operations.  The returned dentry may be anonymous,
2132  * or may have a full name (if the inode was already in the cache).
2133  *
2134  * When called on a directory inode, we must ensure that the inode only ever
2135  * has one dentry.  If a dentry is found, that is returned instead of
2136  * allocating a new one.
2137  *
2138  * On successful return, the reference to the inode has been transferred
2139  * to the dentry.  In case of an error the reference on the inode is released.
2140  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2141  * be passed in and the error will be propagated to the return value,
2142  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2143  */
2144 struct dentry *d_obtain_alias(struct inode *inode)
2145 {
2146 	return __d_obtain_alias(inode, true);
2147 }
2148 EXPORT_SYMBOL(d_obtain_alias);
2149 
2150 /**
2151  * d_obtain_root - find or allocate a dentry for a given inode
2152  * @inode: inode to allocate the dentry for
2153  *
2154  * Obtain an IS_ROOT dentry for the root of a filesystem.
2155  *
2156  * We must ensure that directory inodes only ever have one dentry.  If a
2157  * dentry is found, that is returned instead of allocating a new one.
2158  *
2159  * On successful return, the reference to the inode has been transferred
2160  * to the dentry.  In case of an error the reference on the inode is
2161  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2162  * error will be propagate to the return value, with a %NULL @inode
2163  * replaced by ERR_PTR(-ESTALE).
2164  */
2165 struct dentry *d_obtain_root(struct inode *inode)
2166 {
2167 	return __d_obtain_alias(inode, false);
2168 }
2169 EXPORT_SYMBOL(d_obtain_root);
2170 
2171 /**
2172  * d_add_ci - lookup or allocate new dentry with case-exact name
2173  * @inode:  the inode case-insensitive lookup has found
2174  * @dentry: the negative dentry that was passed to the parent's lookup func
2175  * @name:   the case-exact name to be associated with the returned dentry
2176  *
2177  * This is to avoid filling the dcache with case-insensitive names to the
2178  * same inode, only the actual correct case is stored in the dcache for
2179  * case-insensitive filesystems.
2180  *
2181  * For a case-insensitive lookup match and if the case-exact dentry
2182  * already exists in the dcache, use it and return it.
2183  *
2184  * If no entry exists with the exact case name, allocate new dentry with
2185  * the exact case, and return the spliced entry.
2186  */
2187 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2188 			struct qstr *name)
2189 {
2190 	struct dentry *found, *res;
2191 
2192 	/*
2193 	 * First check if a dentry matching the name already exists,
2194 	 * if not go ahead and create it now.
2195 	 */
2196 	found = d_hash_and_lookup(dentry->d_parent, name);
2197 	if (found) {
2198 		iput(inode);
2199 		return found;
2200 	}
2201 	if (d_in_lookup(dentry)) {
2202 		found = d_alloc_parallel(dentry->d_parent, name,
2203 					dentry->d_wait);
2204 		if (IS_ERR(found) || !d_in_lookup(found)) {
2205 			iput(inode);
2206 			return found;
2207 		}
2208 	} else {
2209 		found = d_alloc(dentry->d_parent, name);
2210 		if (!found) {
2211 			iput(inode);
2212 			return ERR_PTR(-ENOMEM);
2213 		}
2214 	}
2215 	res = d_splice_alias(inode, found);
2216 	if (res) {
2217 		dput(found);
2218 		return res;
2219 	}
2220 	return found;
2221 }
2222 EXPORT_SYMBOL(d_add_ci);
2223 
2224 
2225 static inline bool d_same_name(const struct dentry *dentry,
2226 				const struct dentry *parent,
2227 				const struct qstr *name)
2228 {
2229 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2230 		if (dentry->d_name.len != name->len)
2231 			return false;
2232 		return dentry_cmp(dentry, name->name, name->len) == 0;
2233 	}
2234 	return parent->d_op->d_compare(dentry,
2235 				       dentry->d_name.len, dentry->d_name.name,
2236 				       name) == 0;
2237 }
2238 
2239 /**
2240  * __d_lookup_rcu - search for a dentry (racy, store-free)
2241  * @parent: parent dentry
2242  * @name: qstr of name we wish to find
2243  * @seqp: returns d_seq value at the point where the dentry was found
2244  * Returns: dentry, or NULL
2245  *
2246  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2247  * resolution (store-free path walking) design described in
2248  * Documentation/filesystems/path-lookup.txt.
2249  *
2250  * This is not to be used outside core vfs.
2251  *
2252  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2253  * held, and rcu_read_lock held. The returned dentry must not be stored into
2254  * without taking d_lock and checking d_seq sequence count against @seq
2255  * returned here.
2256  *
2257  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2258  * function.
2259  *
2260  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2261  * the returned dentry, so long as its parent's seqlock is checked after the
2262  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2263  * is formed, giving integrity down the path walk.
2264  *
2265  * NOTE! The caller *has* to check the resulting dentry against the sequence
2266  * number we've returned before using any of the resulting dentry state!
2267  */
2268 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2269 				const struct qstr *name,
2270 				unsigned *seqp)
2271 {
2272 	u64 hashlen = name->hash_len;
2273 	const unsigned char *str = name->name;
2274 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2275 	struct hlist_bl_node *node;
2276 	struct dentry *dentry;
2277 
2278 	/*
2279 	 * Note: There is significant duplication with __d_lookup_rcu which is
2280 	 * required to prevent single threaded performance regressions
2281 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2282 	 * Keep the two functions in sync.
2283 	 */
2284 
2285 	/*
2286 	 * The hash list is protected using RCU.
2287 	 *
2288 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2289 	 * races with d_move().
2290 	 *
2291 	 * It is possible that concurrent renames can mess up our list
2292 	 * walk here and result in missing our dentry, resulting in the
2293 	 * false-negative result. d_lookup() protects against concurrent
2294 	 * renames using rename_lock seqlock.
2295 	 *
2296 	 * See Documentation/filesystems/path-lookup.txt for more details.
2297 	 */
2298 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2299 		unsigned seq;
2300 
2301 seqretry:
2302 		/*
2303 		 * The dentry sequence count protects us from concurrent
2304 		 * renames, and thus protects parent and name fields.
2305 		 *
2306 		 * The caller must perform a seqcount check in order
2307 		 * to do anything useful with the returned dentry.
2308 		 *
2309 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2310 		 * we don't wait for the sequence count to stabilize if it
2311 		 * is in the middle of a sequence change. If we do the slow
2312 		 * dentry compare, we will do seqretries until it is stable,
2313 		 * and if we end up with a successful lookup, we actually
2314 		 * want to exit RCU lookup anyway.
2315 		 *
2316 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2317 		 * we are still guaranteed NUL-termination of ->d_name.name.
2318 		 */
2319 		seq = raw_seqcount_begin(&dentry->d_seq);
2320 		if (dentry->d_parent != parent)
2321 			continue;
2322 		if (d_unhashed(dentry))
2323 			continue;
2324 
2325 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2326 			int tlen;
2327 			const char *tname;
2328 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2329 				continue;
2330 			tlen = dentry->d_name.len;
2331 			tname = dentry->d_name.name;
2332 			/* we want a consistent (name,len) pair */
2333 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2334 				cpu_relax();
2335 				goto seqretry;
2336 			}
2337 			if (parent->d_op->d_compare(dentry,
2338 						    tlen, tname, name) != 0)
2339 				continue;
2340 		} else {
2341 			if (dentry->d_name.hash_len != hashlen)
2342 				continue;
2343 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2344 				continue;
2345 		}
2346 		*seqp = seq;
2347 		return dentry;
2348 	}
2349 	return NULL;
2350 }
2351 
2352 /**
2353  * d_lookup - search for a dentry
2354  * @parent: parent dentry
2355  * @name: qstr of name we wish to find
2356  * Returns: dentry, or NULL
2357  *
2358  * d_lookup searches the children of the parent dentry for the name in
2359  * question. If the dentry is found its reference count is incremented and the
2360  * dentry is returned. The caller must use dput to free the entry when it has
2361  * finished using it. %NULL is returned if the dentry does not exist.
2362  */
2363 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2364 {
2365 	struct dentry *dentry;
2366 	unsigned seq;
2367 
2368 	do {
2369 		seq = read_seqbegin(&rename_lock);
2370 		dentry = __d_lookup(parent, name);
2371 		if (dentry)
2372 			break;
2373 	} while (read_seqretry(&rename_lock, seq));
2374 	return dentry;
2375 }
2376 EXPORT_SYMBOL(d_lookup);
2377 
2378 /**
2379  * __d_lookup - search for a dentry (racy)
2380  * @parent: parent dentry
2381  * @name: qstr of name we wish to find
2382  * Returns: dentry, or NULL
2383  *
2384  * __d_lookup is like d_lookup, however it may (rarely) return a
2385  * false-negative result due to unrelated rename activity.
2386  *
2387  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2388  * however it must be used carefully, eg. with a following d_lookup in
2389  * the case of failure.
2390  *
2391  * __d_lookup callers must be commented.
2392  */
2393 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2394 {
2395 	unsigned int hash = name->hash;
2396 	struct hlist_bl_head *b = d_hash(hash);
2397 	struct hlist_bl_node *node;
2398 	struct dentry *found = NULL;
2399 	struct dentry *dentry;
2400 
2401 	/*
2402 	 * Note: There is significant duplication with __d_lookup_rcu which is
2403 	 * required to prevent single threaded performance regressions
2404 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2405 	 * Keep the two functions in sync.
2406 	 */
2407 
2408 	/*
2409 	 * The hash list is protected using RCU.
2410 	 *
2411 	 * Take d_lock when comparing a candidate dentry, to avoid races
2412 	 * with d_move().
2413 	 *
2414 	 * It is possible that concurrent renames can mess up our list
2415 	 * walk here and result in missing our dentry, resulting in the
2416 	 * false-negative result. d_lookup() protects against concurrent
2417 	 * renames using rename_lock seqlock.
2418 	 *
2419 	 * See Documentation/filesystems/path-lookup.txt for more details.
2420 	 */
2421 	rcu_read_lock();
2422 
2423 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2424 
2425 		if (dentry->d_name.hash != hash)
2426 			continue;
2427 
2428 		spin_lock(&dentry->d_lock);
2429 		if (dentry->d_parent != parent)
2430 			goto next;
2431 		if (d_unhashed(dentry))
2432 			goto next;
2433 
2434 		if (!d_same_name(dentry, parent, name))
2435 			goto next;
2436 
2437 		dentry->d_lockref.count++;
2438 		found = dentry;
2439 		spin_unlock(&dentry->d_lock);
2440 		break;
2441 next:
2442 		spin_unlock(&dentry->d_lock);
2443  	}
2444  	rcu_read_unlock();
2445 
2446  	return found;
2447 }
2448 
2449 /**
2450  * d_hash_and_lookup - hash the qstr then search for a dentry
2451  * @dir: Directory to search in
2452  * @name: qstr of name we wish to find
2453  *
2454  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2455  */
2456 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2457 {
2458 	/*
2459 	 * Check for a fs-specific hash function. Note that we must
2460 	 * calculate the standard hash first, as the d_op->d_hash()
2461 	 * routine may choose to leave the hash value unchanged.
2462 	 */
2463 	name->hash = full_name_hash(dir, name->name, name->len);
2464 	if (dir->d_flags & DCACHE_OP_HASH) {
2465 		int err = dir->d_op->d_hash(dir, name);
2466 		if (unlikely(err < 0))
2467 			return ERR_PTR(err);
2468 	}
2469 	return d_lookup(dir, name);
2470 }
2471 EXPORT_SYMBOL(d_hash_and_lookup);
2472 
2473 /*
2474  * When a file is deleted, we have two options:
2475  * - turn this dentry into a negative dentry
2476  * - unhash this dentry and free it.
2477  *
2478  * Usually, we want to just turn this into
2479  * a negative dentry, but if anybody else is
2480  * currently using the dentry or the inode
2481  * we can't do that and we fall back on removing
2482  * it from the hash queues and waiting for
2483  * it to be deleted later when it has no users
2484  */
2485 
2486 /**
2487  * d_delete - delete a dentry
2488  * @dentry: The dentry to delete
2489  *
2490  * Turn the dentry into a negative dentry if possible, otherwise
2491  * remove it from the hash queues so it can be deleted later
2492  */
2493 
2494 void d_delete(struct dentry * dentry)
2495 {
2496 	struct inode *inode = dentry->d_inode;
2497 
2498 	spin_lock(&inode->i_lock);
2499 	spin_lock(&dentry->d_lock);
2500 	/*
2501 	 * Are we the only user?
2502 	 */
2503 	if (dentry->d_lockref.count == 1) {
2504 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2505 		dentry_unlink_inode(dentry);
2506 	} else {
2507 		__d_drop(dentry);
2508 		spin_unlock(&dentry->d_lock);
2509 		spin_unlock(&inode->i_lock);
2510 	}
2511 }
2512 EXPORT_SYMBOL(d_delete);
2513 
2514 static void __d_rehash(struct dentry *entry)
2515 {
2516 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2517 
2518 	hlist_bl_lock(b);
2519 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2520 	hlist_bl_unlock(b);
2521 }
2522 
2523 /**
2524  * d_rehash	- add an entry back to the hash
2525  * @entry: dentry to add to the hash
2526  *
2527  * Adds a dentry to the hash according to its name.
2528  */
2529 
2530 void d_rehash(struct dentry * entry)
2531 {
2532 	spin_lock(&entry->d_lock);
2533 	__d_rehash(entry);
2534 	spin_unlock(&entry->d_lock);
2535 }
2536 EXPORT_SYMBOL(d_rehash);
2537 
2538 static inline unsigned start_dir_add(struct inode *dir)
2539 {
2540 
2541 	for (;;) {
2542 		unsigned n = dir->i_dir_seq;
2543 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2544 			return n;
2545 		cpu_relax();
2546 	}
2547 }
2548 
2549 static inline void end_dir_add(struct inode *dir, unsigned n)
2550 {
2551 	smp_store_release(&dir->i_dir_seq, n + 2);
2552 }
2553 
2554 static void d_wait_lookup(struct dentry *dentry)
2555 {
2556 	if (d_in_lookup(dentry)) {
2557 		DECLARE_WAITQUEUE(wait, current);
2558 		add_wait_queue(dentry->d_wait, &wait);
2559 		do {
2560 			set_current_state(TASK_UNINTERRUPTIBLE);
2561 			spin_unlock(&dentry->d_lock);
2562 			schedule();
2563 			spin_lock(&dentry->d_lock);
2564 		} while (d_in_lookup(dentry));
2565 	}
2566 }
2567 
2568 struct dentry *d_alloc_parallel(struct dentry *parent,
2569 				const struct qstr *name,
2570 				wait_queue_head_t *wq)
2571 {
2572 	unsigned int hash = name->hash;
2573 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2574 	struct hlist_bl_node *node;
2575 	struct dentry *new = d_alloc(parent, name);
2576 	struct dentry *dentry;
2577 	unsigned seq, r_seq, d_seq;
2578 
2579 	if (unlikely(!new))
2580 		return ERR_PTR(-ENOMEM);
2581 
2582 retry:
2583 	rcu_read_lock();
2584 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2585 	r_seq = read_seqbegin(&rename_lock);
2586 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2587 	if (unlikely(dentry)) {
2588 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2589 			rcu_read_unlock();
2590 			goto retry;
2591 		}
2592 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2593 			rcu_read_unlock();
2594 			dput(dentry);
2595 			goto retry;
2596 		}
2597 		rcu_read_unlock();
2598 		dput(new);
2599 		return dentry;
2600 	}
2601 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2602 		rcu_read_unlock();
2603 		goto retry;
2604 	}
2605 
2606 	if (unlikely(seq & 1)) {
2607 		rcu_read_unlock();
2608 		goto retry;
2609 	}
2610 
2611 	hlist_bl_lock(b);
2612 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2613 		hlist_bl_unlock(b);
2614 		rcu_read_unlock();
2615 		goto retry;
2616 	}
2617 	/*
2618 	 * No changes for the parent since the beginning of d_lookup().
2619 	 * Since all removals from the chain happen with hlist_bl_lock(),
2620 	 * any potential in-lookup matches are going to stay here until
2621 	 * we unlock the chain.  All fields are stable in everything
2622 	 * we encounter.
2623 	 */
2624 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2625 		if (dentry->d_name.hash != hash)
2626 			continue;
2627 		if (dentry->d_parent != parent)
2628 			continue;
2629 		if (!d_same_name(dentry, parent, name))
2630 			continue;
2631 		hlist_bl_unlock(b);
2632 		/* now we can try to grab a reference */
2633 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2634 			rcu_read_unlock();
2635 			goto retry;
2636 		}
2637 
2638 		rcu_read_unlock();
2639 		/*
2640 		 * somebody is likely to be still doing lookup for it;
2641 		 * wait for them to finish
2642 		 */
2643 		spin_lock(&dentry->d_lock);
2644 		d_wait_lookup(dentry);
2645 		/*
2646 		 * it's not in-lookup anymore; in principle we should repeat
2647 		 * everything from dcache lookup, but it's likely to be what
2648 		 * d_lookup() would've found anyway.  If it is, just return it;
2649 		 * otherwise we really have to repeat the whole thing.
2650 		 */
2651 		if (unlikely(dentry->d_name.hash != hash))
2652 			goto mismatch;
2653 		if (unlikely(dentry->d_parent != parent))
2654 			goto mismatch;
2655 		if (unlikely(d_unhashed(dentry)))
2656 			goto mismatch;
2657 		if (unlikely(!d_same_name(dentry, parent, name)))
2658 			goto mismatch;
2659 		/* OK, it *is* a hashed match; return it */
2660 		spin_unlock(&dentry->d_lock);
2661 		dput(new);
2662 		return dentry;
2663 	}
2664 	rcu_read_unlock();
2665 	/* we can't take ->d_lock here; it's OK, though. */
2666 	new->d_flags |= DCACHE_PAR_LOOKUP;
2667 	new->d_wait = wq;
2668 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2669 	hlist_bl_unlock(b);
2670 	return new;
2671 mismatch:
2672 	spin_unlock(&dentry->d_lock);
2673 	dput(dentry);
2674 	goto retry;
2675 }
2676 EXPORT_SYMBOL(d_alloc_parallel);
2677 
2678 void __d_lookup_done(struct dentry *dentry)
2679 {
2680 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2681 						 dentry->d_name.hash);
2682 	hlist_bl_lock(b);
2683 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2684 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2685 	wake_up_all(dentry->d_wait);
2686 	dentry->d_wait = NULL;
2687 	hlist_bl_unlock(b);
2688 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2689 	INIT_LIST_HEAD(&dentry->d_lru);
2690 }
2691 EXPORT_SYMBOL(__d_lookup_done);
2692 
2693 /* inode->i_lock held if inode is non-NULL */
2694 
2695 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2696 {
2697 	struct inode *dir = NULL;
2698 	unsigned n;
2699 	spin_lock(&dentry->d_lock);
2700 	if (unlikely(d_in_lookup(dentry))) {
2701 		dir = dentry->d_parent->d_inode;
2702 		n = start_dir_add(dir);
2703 		__d_lookup_done(dentry);
2704 	}
2705 	if (inode) {
2706 		unsigned add_flags = d_flags_for_inode(inode);
2707 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2708 		raw_write_seqcount_begin(&dentry->d_seq);
2709 		__d_set_inode_and_type(dentry, inode, add_flags);
2710 		raw_write_seqcount_end(&dentry->d_seq);
2711 		fsnotify_update_flags(dentry);
2712 	}
2713 	__d_rehash(dentry);
2714 	if (dir)
2715 		end_dir_add(dir, n);
2716 	spin_unlock(&dentry->d_lock);
2717 	if (inode)
2718 		spin_unlock(&inode->i_lock);
2719 }
2720 
2721 /**
2722  * d_add - add dentry to hash queues
2723  * @entry: dentry to add
2724  * @inode: The inode to attach to this dentry
2725  *
2726  * This adds the entry to the hash queues and initializes @inode.
2727  * The entry was actually filled in earlier during d_alloc().
2728  */
2729 
2730 void d_add(struct dentry *entry, struct inode *inode)
2731 {
2732 	if (inode) {
2733 		security_d_instantiate(entry, inode);
2734 		spin_lock(&inode->i_lock);
2735 	}
2736 	__d_add(entry, inode);
2737 }
2738 EXPORT_SYMBOL(d_add);
2739 
2740 /**
2741  * d_exact_alias - find and hash an exact unhashed alias
2742  * @entry: dentry to add
2743  * @inode: The inode to go with this dentry
2744  *
2745  * If an unhashed dentry with the same name/parent and desired
2746  * inode already exists, hash and return it.  Otherwise, return
2747  * NULL.
2748  *
2749  * Parent directory should be locked.
2750  */
2751 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2752 {
2753 	struct dentry *alias;
2754 	unsigned int hash = entry->d_name.hash;
2755 
2756 	spin_lock(&inode->i_lock);
2757 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2758 		/*
2759 		 * Don't need alias->d_lock here, because aliases with
2760 		 * d_parent == entry->d_parent are not subject to name or
2761 		 * parent changes, because the parent inode i_mutex is held.
2762 		 */
2763 		if (alias->d_name.hash != hash)
2764 			continue;
2765 		if (alias->d_parent != entry->d_parent)
2766 			continue;
2767 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2768 			continue;
2769 		spin_lock(&alias->d_lock);
2770 		if (!d_unhashed(alias)) {
2771 			spin_unlock(&alias->d_lock);
2772 			alias = NULL;
2773 		} else {
2774 			__dget_dlock(alias);
2775 			__d_rehash(alias);
2776 			spin_unlock(&alias->d_lock);
2777 		}
2778 		spin_unlock(&inode->i_lock);
2779 		return alias;
2780 	}
2781 	spin_unlock(&inode->i_lock);
2782 	return NULL;
2783 }
2784 EXPORT_SYMBOL(d_exact_alias);
2785 
2786 static void swap_names(struct dentry *dentry, struct dentry *target)
2787 {
2788 	if (unlikely(dname_external(target))) {
2789 		if (unlikely(dname_external(dentry))) {
2790 			/*
2791 			 * Both external: swap the pointers
2792 			 */
2793 			swap(target->d_name.name, dentry->d_name.name);
2794 		} else {
2795 			/*
2796 			 * dentry:internal, target:external.  Steal target's
2797 			 * storage and make target internal.
2798 			 */
2799 			memcpy(target->d_iname, dentry->d_name.name,
2800 					dentry->d_name.len + 1);
2801 			dentry->d_name.name = target->d_name.name;
2802 			target->d_name.name = target->d_iname;
2803 		}
2804 	} else {
2805 		if (unlikely(dname_external(dentry))) {
2806 			/*
2807 			 * dentry:external, target:internal.  Give dentry's
2808 			 * storage to target and make dentry internal
2809 			 */
2810 			memcpy(dentry->d_iname, target->d_name.name,
2811 					target->d_name.len + 1);
2812 			target->d_name.name = dentry->d_name.name;
2813 			dentry->d_name.name = dentry->d_iname;
2814 		} else {
2815 			/*
2816 			 * Both are internal.
2817 			 */
2818 			unsigned int i;
2819 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2820 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2821 				swap(((long *) &dentry->d_iname)[i],
2822 				     ((long *) &target->d_iname)[i]);
2823 			}
2824 		}
2825 	}
2826 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2827 }
2828 
2829 static void copy_name(struct dentry *dentry, struct dentry *target)
2830 {
2831 	struct external_name *old_name = NULL;
2832 	if (unlikely(dname_external(dentry)))
2833 		old_name = external_name(dentry);
2834 	if (unlikely(dname_external(target))) {
2835 		atomic_inc(&external_name(target)->u.count);
2836 		dentry->d_name = target->d_name;
2837 	} else {
2838 		memcpy(dentry->d_iname, target->d_name.name,
2839 				target->d_name.len + 1);
2840 		dentry->d_name.name = dentry->d_iname;
2841 		dentry->d_name.hash_len = target->d_name.hash_len;
2842 	}
2843 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2844 		kfree_rcu(old_name, u.head);
2845 }
2846 
2847 /*
2848  * __d_move - move a dentry
2849  * @dentry: entry to move
2850  * @target: new dentry
2851  * @exchange: exchange the two dentries
2852  *
2853  * Update the dcache to reflect the move of a file name. Negative
2854  * dcache entries should not be moved in this way. Caller must hold
2855  * rename_lock, the i_mutex of the source and target directories,
2856  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2857  */
2858 static void __d_move(struct dentry *dentry, struct dentry *target,
2859 		     bool exchange)
2860 {
2861 	struct dentry *old_parent, *p;
2862 	struct inode *dir = NULL;
2863 	unsigned n;
2864 
2865 	WARN_ON(!dentry->d_inode);
2866 	if (WARN_ON(dentry == target))
2867 		return;
2868 
2869 	BUG_ON(d_ancestor(target, dentry));
2870 	old_parent = dentry->d_parent;
2871 	p = d_ancestor(old_parent, target);
2872 	if (IS_ROOT(dentry)) {
2873 		BUG_ON(p);
2874 		spin_lock(&target->d_parent->d_lock);
2875 	} else if (!p) {
2876 		/* target is not a descendent of dentry->d_parent */
2877 		spin_lock(&target->d_parent->d_lock);
2878 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2879 	} else {
2880 		BUG_ON(p == dentry);
2881 		spin_lock(&old_parent->d_lock);
2882 		if (p != target)
2883 			spin_lock_nested(&target->d_parent->d_lock,
2884 					DENTRY_D_LOCK_NESTED);
2885 	}
2886 	spin_lock_nested(&dentry->d_lock, 2);
2887 	spin_lock_nested(&target->d_lock, 3);
2888 
2889 	if (unlikely(d_in_lookup(target))) {
2890 		dir = target->d_parent->d_inode;
2891 		n = start_dir_add(dir);
2892 		__d_lookup_done(target);
2893 	}
2894 
2895 	write_seqcount_begin(&dentry->d_seq);
2896 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2897 
2898 	/* unhash both */
2899 	if (!d_unhashed(dentry))
2900 		___d_drop(dentry);
2901 	if (!d_unhashed(target))
2902 		___d_drop(target);
2903 
2904 	/* ... and switch them in the tree */
2905 	dentry->d_parent = target->d_parent;
2906 	if (!exchange) {
2907 		copy_name(dentry, target);
2908 		target->d_hash.pprev = NULL;
2909 		dentry->d_parent->d_lockref.count++;
2910 		if (dentry != old_parent) /* wasn't IS_ROOT */
2911 			WARN_ON(!--old_parent->d_lockref.count);
2912 	} else {
2913 		target->d_parent = old_parent;
2914 		swap_names(dentry, target);
2915 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2916 		__d_rehash(target);
2917 		fsnotify_update_flags(target);
2918 	}
2919 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2920 	__d_rehash(dentry);
2921 	fsnotify_update_flags(dentry);
2922 	fscrypt_handle_d_move(dentry);
2923 
2924 	write_seqcount_end(&target->d_seq);
2925 	write_seqcount_end(&dentry->d_seq);
2926 
2927 	if (dir)
2928 		end_dir_add(dir, n);
2929 
2930 	if (dentry->d_parent != old_parent)
2931 		spin_unlock(&dentry->d_parent->d_lock);
2932 	if (dentry != old_parent)
2933 		spin_unlock(&old_parent->d_lock);
2934 	spin_unlock(&target->d_lock);
2935 	spin_unlock(&dentry->d_lock);
2936 }
2937 
2938 /*
2939  * d_move - move a dentry
2940  * @dentry: entry to move
2941  * @target: new dentry
2942  *
2943  * Update the dcache to reflect the move of a file name. Negative
2944  * dcache entries should not be moved in this way. See the locking
2945  * requirements for __d_move.
2946  */
2947 void d_move(struct dentry *dentry, struct dentry *target)
2948 {
2949 	write_seqlock(&rename_lock);
2950 	__d_move(dentry, target, false);
2951 	write_sequnlock(&rename_lock);
2952 }
2953 EXPORT_SYMBOL(d_move);
2954 
2955 /*
2956  * d_exchange - exchange two dentries
2957  * @dentry1: first dentry
2958  * @dentry2: second dentry
2959  */
2960 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2961 {
2962 	write_seqlock(&rename_lock);
2963 
2964 	WARN_ON(!dentry1->d_inode);
2965 	WARN_ON(!dentry2->d_inode);
2966 	WARN_ON(IS_ROOT(dentry1));
2967 	WARN_ON(IS_ROOT(dentry2));
2968 
2969 	__d_move(dentry1, dentry2, true);
2970 
2971 	write_sequnlock(&rename_lock);
2972 }
2973 
2974 /**
2975  * d_ancestor - search for an ancestor
2976  * @p1: ancestor dentry
2977  * @p2: child dentry
2978  *
2979  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2980  * an ancestor of p2, else NULL.
2981  */
2982 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2983 {
2984 	struct dentry *p;
2985 
2986 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2987 		if (p->d_parent == p1)
2988 			return p;
2989 	}
2990 	return NULL;
2991 }
2992 
2993 /*
2994  * This helper attempts to cope with remotely renamed directories
2995  *
2996  * It assumes that the caller is already holding
2997  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2998  *
2999  * Note: If ever the locking in lock_rename() changes, then please
3000  * remember to update this too...
3001  */
3002 static int __d_unalias(struct inode *inode,
3003 		struct dentry *dentry, struct dentry *alias)
3004 {
3005 	struct mutex *m1 = NULL;
3006 	struct rw_semaphore *m2 = NULL;
3007 	int ret = -ESTALE;
3008 
3009 	/* If alias and dentry share a parent, then no extra locks required */
3010 	if (alias->d_parent == dentry->d_parent)
3011 		goto out_unalias;
3012 
3013 	/* See lock_rename() */
3014 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3015 		goto out_err;
3016 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
3017 	if (!inode_trylock_shared(alias->d_parent->d_inode))
3018 		goto out_err;
3019 	m2 = &alias->d_parent->d_inode->i_rwsem;
3020 out_unalias:
3021 	__d_move(alias, dentry, false);
3022 	ret = 0;
3023 out_err:
3024 	if (m2)
3025 		up_read(m2);
3026 	if (m1)
3027 		mutex_unlock(m1);
3028 	return ret;
3029 }
3030 
3031 /**
3032  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3033  * @inode:  the inode which may have a disconnected dentry
3034  * @dentry: a negative dentry which we want to point to the inode.
3035  *
3036  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3037  * place of the given dentry and return it, else simply d_add the inode
3038  * to the dentry and return NULL.
3039  *
3040  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3041  * we should error out: directories can't have multiple aliases.
3042  *
3043  * This is needed in the lookup routine of any filesystem that is exportable
3044  * (via knfsd) so that we can build dcache paths to directories effectively.
3045  *
3046  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3047  * is returned.  This matches the expected return value of ->lookup.
3048  *
3049  * Cluster filesystems may call this function with a negative, hashed dentry.
3050  * In that case, we know that the inode will be a regular file, and also this
3051  * will only occur during atomic_open. So we need to check for the dentry
3052  * being already hashed only in the final case.
3053  */
3054 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3055 {
3056 	if (IS_ERR(inode))
3057 		return ERR_CAST(inode);
3058 
3059 	BUG_ON(!d_unhashed(dentry));
3060 
3061 	if (!inode)
3062 		goto out;
3063 
3064 	security_d_instantiate(dentry, inode);
3065 	spin_lock(&inode->i_lock);
3066 	if (S_ISDIR(inode->i_mode)) {
3067 		struct dentry *new = __d_find_any_alias(inode);
3068 		if (unlikely(new)) {
3069 			/* The reference to new ensures it remains an alias */
3070 			spin_unlock(&inode->i_lock);
3071 			write_seqlock(&rename_lock);
3072 			if (unlikely(d_ancestor(new, dentry))) {
3073 				write_sequnlock(&rename_lock);
3074 				dput(new);
3075 				new = ERR_PTR(-ELOOP);
3076 				pr_warn_ratelimited(
3077 					"VFS: Lookup of '%s' in %s %s"
3078 					" would have caused loop\n",
3079 					dentry->d_name.name,
3080 					inode->i_sb->s_type->name,
3081 					inode->i_sb->s_id);
3082 			} else if (!IS_ROOT(new)) {
3083 				struct dentry *old_parent = dget(new->d_parent);
3084 				int err = __d_unalias(inode, dentry, new);
3085 				write_sequnlock(&rename_lock);
3086 				if (err) {
3087 					dput(new);
3088 					new = ERR_PTR(err);
3089 				}
3090 				dput(old_parent);
3091 			} else {
3092 				__d_move(new, dentry, false);
3093 				write_sequnlock(&rename_lock);
3094 			}
3095 			iput(inode);
3096 			return new;
3097 		}
3098 	}
3099 out:
3100 	__d_add(dentry, inode);
3101 	return NULL;
3102 }
3103 EXPORT_SYMBOL(d_splice_alias);
3104 
3105 /*
3106  * Test whether new_dentry is a subdirectory of old_dentry.
3107  *
3108  * Trivially implemented using the dcache structure
3109  */
3110 
3111 /**
3112  * is_subdir - is new dentry a subdirectory of old_dentry
3113  * @new_dentry: new dentry
3114  * @old_dentry: old dentry
3115  *
3116  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3117  * Returns false otherwise.
3118  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3119  */
3120 
3121 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3122 {
3123 	bool result;
3124 	unsigned seq;
3125 
3126 	if (new_dentry == old_dentry)
3127 		return true;
3128 
3129 	do {
3130 		/* for restarting inner loop in case of seq retry */
3131 		seq = read_seqbegin(&rename_lock);
3132 		/*
3133 		 * Need rcu_readlock to protect against the d_parent trashing
3134 		 * due to d_move
3135 		 */
3136 		rcu_read_lock();
3137 		if (d_ancestor(old_dentry, new_dentry))
3138 			result = true;
3139 		else
3140 			result = false;
3141 		rcu_read_unlock();
3142 	} while (read_seqretry(&rename_lock, seq));
3143 
3144 	return result;
3145 }
3146 EXPORT_SYMBOL(is_subdir);
3147 
3148 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3149 {
3150 	struct dentry *root = data;
3151 	if (dentry != root) {
3152 		if (d_unhashed(dentry) || !dentry->d_inode)
3153 			return D_WALK_SKIP;
3154 
3155 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3156 			dentry->d_flags |= DCACHE_GENOCIDE;
3157 			dentry->d_lockref.count--;
3158 		}
3159 	}
3160 	return D_WALK_CONTINUE;
3161 }
3162 
3163 void d_genocide(struct dentry *parent)
3164 {
3165 	d_walk(parent, parent, d_genocide_kill);
3166 }
3167 
3168 EXPORT_SYMBOL(d_genocide);
3169 
3170 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3171 {
3172 	inode_dec_link_count(inode);
3173 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3174 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3175 		!d_unlinked(dentry));
3176 	spin_lock(&dentry->d_parent->d_lock);
3177 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3178 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3179 				(unsigned long long)inode->i_ino);
3180 	spin_unlock(&dentry->d_lock);
3181 	spin_unlock(&dentry->d_parent->d_lock);
3182 	d_instantiate(dentry, inode);
3183 }
3184 EXPORT_SYMBOL(d_tmpfile);
3185 
3186 static __initdata unsigned long dhash_entries;
3187 static int __init set_dhash_entries(char *str)
3188 {
3189 	if (!str)
3190 		return 0;
3191 	dhash_entries = simple_strtoul(str, &str, 0);
3192 	return 1;
3193 }
3194 __setup("dhash_entries=", set_dhash_entries);
3195 
3196 static void __init dcache_init_early(void)
3197 {
3198 	/* If hashes are distributed across NUMA nodes, defer
3199 	 * hash allocation until vmalloc space is available.
3200 	 */
3201 	if (hashdist)
3202 		return;
3203 
3204 	dentry_hashtable =
3205 		alloc_large_system_hash("Dentry cache",
3206 					sizeof(struct hlist_bl_head),
3207 					dhash_entries,
3208 					13,
3209 					HASH_EARLY | HASH_ZERO,
3210 					&d_hash_shift,
3211 					NULL,
3212 					0,
3213 					0);
3214 	d_hash_shift = 32 - d_hash_shift;
3215 }
3216 
3217 static void __init dcache_init(void)
3218 {
3219 	/*
3220 	 * A constructor could be added for stable state like the lists,
3221 	 * but it is probably not worth it because of the cache nature
3222 	 * of the dcache.
3223 	 */
3224 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3225 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3226 		d_iname);
3227 
3228 	/* Hash may have been set up in dcache_init_early */
3229 	if (!hashdist)
3230 		return;
3231 
3232 	dentry_hashtable =
3233 		alloc_large_system_hash("Dentry cache",
3234 					sizeof(struct hlist_bl_head),
3235 					dhash_entries,
3236 					13,
3237 					HASH_ZERO,
3238 					&d_hash_shift,
3239 					NULL,
3240 					0,
3241 					0);
3242 	d_hash_shift = 32 - d_hash_shift;
3243 }
3244 
3245 /* SLAB cache for __getname() consumers */
3246 struct kmem_cache *names_cachep __read_mostly;
3247 EXPORT_SYMBOL(names_cachep);
3248 
3249 void __init vfs_caches_init_early(void)
3250 {
3251 	int i;
3252 
3253 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3254 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3255 
3256 	dcache_init_early();
3257 	inode_init_early();
3258 }
3259 
3260 void __init vfs_caches_init(void)
3261 {
3262 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3263 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3264 
3265 	dcache_init();
3266 	inode_init();
3267 	files_init();
3268 	files_maxfiles_init();
3269 	mnt_init();
3270 	bdev_cache_init();
3271 	chrdev_init();
3272 }
3273