1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/module.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include "internal.h" 39 40 /* 41 * Usage: 42 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 46 * s_anon bl list spinlock protects: 47 * - the s_anon list (see __d_drop) 48 * dcache_lru_lock protects: 49 * - the dcache lru lists and counters 50 * d_lock protects: 51 * - d_flags 52 * - d_name 53 * - d_lru 54 * - d_count 55 * - d_unhashed() 56 * - d_parent and d_subdirs 57 * - childrens' d_child and d_parent 58 * - d_alias, d_inode 59 * 60 * Ordering: 61 * dentry->d_inode->i_lock 62 * dentry->d_lock 63 * dcache_lru_lock 64 * dcache_hash_bucket lock 65 * s_anon lock 66 * 67 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 69 * ... 70 * dentry->d_parent->d_lock 71 * dentry->d_lock 72 * 73 * If no ancestor relationship: 74 * if (dentry1 < dentry2) 75 * dentry1->d_lock 76 * dentry2->d_lock 77 */ 78 int sysctl_vfs_cache_pressure __read_mostly = 100; 79 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 80 81 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock); 82 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 83 84 EXPORT_SYMBOL(rename_lock); 85 86 static struct kmem_cache *dentry_cache __read_mostly; 87 88 /* 89 * This is the single most critical data structure when it comes 90 * to the dcache: the hashtable for lookups. Somebody should try 91 * to make this good - I've just made it work. 92 * 93 * This hash-function tries to avoid losing too many bits of hash 94 * information, yet avoid using a prime hash-size or similar. 95 */ 96 #define D_HASHBITS d_hash_shift 97 #define D_HASHMASK d_hash_mask 98 99 static unsigned int d_hash_mask __read_mostly; 100 static unsigned int d_hash_shift __read_mostly; 101 102 static struct hlist_bl_head *dentry_hashtable __read_mostly; 103 104 static inline struct hlist_bl_head *d_hash(struct dentry *parent, 105 unsigned long hash) 106 { 107 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES; 108 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS); 109 return dentry_hashtable + (hash & D_HASHMASK); 110 } 111 112 /* Statistics gathering. */ 113 struct dentry_stat_t dentry_stat = { 114 .age_limit = 45, 115 }; 116 117 static DEFINE_PER_CPU(unsigned int, nr_dentry); 118 119 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 120 static int get_nr_dentry(void) 121 { 122 int i; 123 int sum = 0; 124 for_each_possible_cpu(i) 125 sum += per_cpu(nr_dentry, i); 126 return sum < 0 ? 0 : sum; 127 } 128 129 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 130 size_t *lenp, loff_t *ppos) 131 { 132 dentry_stat.nr_dentry = get_nr_dentry(); 133 return proc_dointvec(table, write, buffer, lenp, ppos); 134 } 135 #endif 136 137 static void __d_free(struct rcu_head *head) 138 { 139 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 140 141 WARN_ON(!list_empty(&dentry->d_alias)); 142 if (dname_external(dentry)) 143 kfree(dentry->d_name.name); 144 kmem_cache_free(dentry_cache, dentry); 145 } 146 147 /* 148 * no locks, please. 149 */ 150 static void d_free(struct dentry *dentry) 151 { 152 BUG_ON(dentry->d_count); 153 this_cpu_dec(nr_dentry); 154 if (dentry->d_op && dentry->d_op->d_release) 155 dentry->d_op->d_release(dentry); 156 157 /* if dentry was never visible to RCU, immediate free is OK */ 158 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 159 __d_free(&dentry->d_u.d_rcu); 160 else 161 call_rcu(&dentry->d_u.d_rcu, __d_free); 162 } 163 164 /** 165 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 166 * @dentry: the target dentry 167 * After this call, in-progress rcu-walk path lookup will fail. This 168 * should be called after unhashing, and after changing d_inode (if 169 * the dentry has not already been unhashed). 170 */ 171 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 172 { 173 assert_spin_locked(&dentry->d_lock); 174 /* Go through a barrier */ 175 write_seqcount_barrier(&dentry->d_seq); 176 } 177 178 /* 179 * Release the dentry's inode, using the filesystem 180 * d_iput() operation if defined. Dentry has no refcount 181 * and is unhashed. 182 */ 183 static void dentry_iput(struct dentry * dentry) 184 __releases(dentry->d_lock) 185 __releases(dentry->d_inode->i_lock) 186 { 187 struct inode *inode = dentry->d_inode; 188 if (inode) { 189 dentry->d_inode = NULL; 190 list_del_init(&dentry->d_alias); 191 spin_unlock(&dentry->d_lock); 192 spin_unlock(&inode->i_lock); 193 if (!inode->i_nlink) 194 fsnotify_inoderemove(inode); 195 if (dentry->d_op && dentry->d_op->d_iput) 196 dentry->d_op->d_iput(dentry, inode); 197 else 198 iput(inode); 199 } else { 200 spin_unlock(&dentry->d_lock); 201 } 202 } 203 204 /* 205 * Release the dentry's inode, using the filesystem 206 * d_iput() operation if defined. dentry remains in-use. 207 */ 208 static void dentry_unlink_inode(struct dentry * dentry) 209 __releases(dentry->d_lock) 210 __releases(dentry->d_inode->i_lock) 211 { 212 struct inode *inode = dentry->d_inode; 213 dentry->d_inode = NULL; 214 list_del_init(&dentry->d_alias); 215 dentry_rcuwalk_barrier(dentry); 216 spin_unlock(&dentry->d_lock); 217 spin_unlock(&inode->i_lock); 218 if (!inode->i_nlink) 219 fsnotify_inoderemove(inode); 220 if (dentry->d_op && dentry->d_op->d_iput) 221 dentry->d_op->d_iput(dentry, inode); 222 else 223 iput(inode); 224 } 225 226 /* 227 * dentry_lru_(add|del|move_tail) must be called with d_lock held. 228 */ 229 static void dentry_lru_add(struct dentry *dentry) 230 { 231 if (list_empty(&dentry->d_lru)) { 232 spin_lock(&dcache_lru_lock); 233 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 234 dentry->d_sb->s_nr_dentry_unused++; 235 dentry_stat.nr_unused++; 236 spin_unlock(&dcache_lru_lock); 237 } 238 } 239 240 static void __dentry_lru_del(struct dentry *dentry) 241 { 242 list_del_init(&dentry->d_lru); 243 dentry->d_sb->s_nr_dentry_unused--; 244 dentry_stat.nr_unused--; 245 } 246 247 static void dentry_lru_del(struct dentry *dentry) 248 { 249 if (!list_empty(&dentry->d_lru)) { 250 spin_lock(&dcache_lru_lock); 251 __dentry_lru_del(dentry); 252 spin_unlock(&dcache_lru_lock); 253 } 254 } 255 256 static void dentry_lru_move_tail(struct dentry *dentry) 257 { 258 spin_lock(&dcache_lru_lock); 259 if (list_empty(&dentry->d_lru)) { 260 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 261 dentry->d_sb->s_nr_dentry_unused++; 262 dentry_stat.nr_unused++; 263 } else { 264 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 265 } 266 spin_unlock(&dcache_lru_lock); 267 } 268 269 /** 270 * d_kill - kill dentry and return parent 271 * @dentry: dentry to kill 272 * @parent: parent dentry 273 * 274 * The dentry must already be unhashed and removed from the LRU. 275 * 276 * If this is the root of the dentry tree, return NULL. 277 * 278 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 279 * d_kill. 280 */ 281 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 282 __releases(dentry->d_lock) 283 __releases(parent->d_lock) 284 __releases(dentry->d_inode->i_lock) 285 { 286 list_del(&dentry->d_u.d_child); 287 /* 288 * Inform try_to_ascend() that we are no longer attached to the 289 * dentry tree 290 */ 291 dentry->d_flags |= DCACHE_DISCONNECTED; 292 if (parent) 293 spin_unlock(&parent->d_lock); 294 dentry_iput(dentry); 295 /* 296 * dentry_iput drops the locks, at which point nobody (except 297 * transient RCU lookups) can reach this dentry. 298 */ 299 d_free(dentry); 300 return parent; 301 } 302 303 /** 304 * d_drop - drop a dentry 305 * @dentry: dentry to drop 306 * 307 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 308 * be found through a VFS lookup any more. Note that this is different from 309 * deleting the dentry - d_delete will try to mark the dentry negative if 310 * possible, giving a successful _negative_ lookup, while d_drop will 311 * just make the cache lookup fail. 312 * 313 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 314 * reason (NFS timeouts or autofs deletes). 315 * 316 * __d_drop requires dentry->d_lock. 317 */ 318 void __d_drop(struct dentry *dentry) 319 { 320 if (!d_unhashed(dentry)) { 321 struct hlist_bl_head *b; 322 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 323 b = &dentry->d_sb->s_anon; 324 else 325 b = d_hash(dentry->d_parent, dentry->d_name.hash); 326 327 hlist_bl_lock(b); 328 __hlist_bl_del(&dentry->d_hash); 329 dentry->d_hash.pprev = NULL; 330 hlist_bl_unlock(b); 331 332 dentry_rcuwalk_barrier(dentry); 333 } 334 } 335 EXPORT_SYMBOL(__d_drop); 336 337 void d_drop(struct dentry *dentry) 338 { 339 spin_lock(&dentry->d_lock); 340 __d_drop(dentry); 341 spin_unlock(&dentry->d_lock); 342 } 343 EXPORT_SYMBOL(d_drop); 344 345 /* 346 * Finish off a dentry we've decided to kill. 347 * dentry->d_lock must be held, returns with it unlocked. 348 * If ref is non-zero, then decrement the refcount too. 349 * Returns dentry requiring refcount drop, or NULL if we're done. 350 */ 351 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref) 352 __releases(dentry->d_lock) 353 { 354 struct inode *inode; 355 struct dentry *parent; 356 357 inode = dentry->d_inode; 358 if (inode && !spin_trylock(&inode->i_lock)) { 359 relock: 360 spin_unlock(&dentry->d_lock); 361 cpu_relax(); 362 return dentry; /* try again with same dentry */ 363 } 364 if (IS_ROOT(dentry)) 365 parent = NULL; 366 else 367 parent = dentry->d_parent; 368 if (parent && !spin_trylock(&parent->d_lock)) { 369 if (inode) 370 spin_unlock(&inode->i_lock); 371 goto relock; 372 } 373 374 if (ref) 375 dentry->d_count--; 376 /* if dentry was on the d_lru list delete it from there */ 377 dentry_lru_del(dentry); 378 /* if it was on the hash then remove it */ 379 __d_drop(dentry); 380 return d_kill(dentry, parent); 381 } 382 383 /* 384 * This is dput 385 * 386 * This is complicated by the fact that we do not want to put 387 * dentries that are no longer on any hash chain on the unused 388 * list: we'd much rather just get rid of them immediately. 389 * 390 * However, that implies that we have to traverse the dentry 391 * tree upwards to the parents which might _also_ now be 392 * scheduled for deletion (it may have been only waiting for 393 * its last child to go away). 394 * 395 * This tail recursion is done by hand as we don't want to depend 396 * on the compiler to always get this right (gcc generally doesn't). 397 * Real recursion would eat up our stack space. 398 */ 399 400 /* 401 * dput - release a dentry 402 * @dentry: dentry to release 403 * 404 * Release a dentry. This will drop the usage count and if appropriate 405 * call the dentry unlink method as well as removing it from the queues and 406 * releasing its resources. If the parent dentries were scheduled for release 407 * they too may now get deleted. 408 */ 409 void dput(struct dentry *dentry) 410 { 411 if (!dentry) 412 return; 413 414 repeat: 415 if (dentry->d_count == 1) 416 might_sleep(); 417 spin_lock(&dentry->d_lock); 418 BUG_ON(!dentry->d_count); 419 if (dentry->d_count > 1) { 420 dentry->d_count--; 421 spin_unlock(&dentry->d_lock); 422 return; 423 } 424 425 if (dentry->d_flags & DCACHE_OP_DELETE) { 426 if (dentry->d_op->d_delete(dentry)) 427 goto kill_it; 428 } 429 430 /* Unreachable? Get rid of it */ 431 if (d_unhashed(dentry)) 432 goto kill_it; 433 434 /* Otherwise leave it cached and ensure it's on the LRU */ 435 dentry->d_flags |= DCACHE_REFERENCED; 436 dentry_lru_add(dentry); 437 438 dentry->d_count--; 439 spin_unlock(&dentry->d_lock); 440 return; 441 442 kill_it: 443 dentry = dentry_kill(dentry, 1); 444 if (dentry) 445 goto repeat; 446 } 447 EXPORT_SYMBOL(dput); 448 449 /** 450 * d_invalidate - invalidate a dentry 451 * @dentry: dentry to invalidate 452 * 453 * Try to invalidate the dentry if it turns out to be 454 * possible. If there are other dentries that can be 455 * reached through this one we can't delete it and we 456 * return -EBUSY. On success we return 0. 457 * 458 * no dcache lock. 459 */ 460 461 int d_invalidate(struct dentry * dentry) 462 { 463 /* 464 * If it's already been dropped, return OK. 465 */ 466 spin_lock(&dentry->d_lock); 467 if (d_unhashed(dentry)) { 468 spin_unlock(&dentry->d_lock); 469 return 0; 470 } 471 /* 472 * Check whether to do a partial shrink_dcache 473 * to get rid of unused child entries. 474 */ 475 if (!list_empty(&dentry->d_subdirs)) { 476 spin_unlock(&dentry->d_lock); 477 shrink_dcache_parent(dentry); 478 spin_lock(&dentry->d_lock); 479 } 480 481 /* 482 * Somebody else still using it? 483 * 484 * If it's a directory, we can't drop it 485 * for fear of somebody re-populating it 486 * with children (even though dropping it 487 * would make it unreachable from the root, 488 * we might still populate it if it was a 489 * working directory or similar). 490 */ 491 if (dentry->d_count > 1) { 492 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { 493 spin_unlock(&dentry->d_lock); 494 return -EBUSY; 495 } 496 } 497 498 __d_drop(dentry); 499 spin_unlock(&dentry->d_lock); 500 return 0; 501 } 502 EXPORT_SYMBOL(d_invalidate); 503 504 /* This must be called with d_lock held */ 505 static inline void __dget_dlock(struct dentry *dentry) 506 { 507 dentry->d_count++; 508 } 509 510 static inline void __dget(struct dentry *dentry) 511 { 512 spin_lock(&dentry->d_lock); 513 __dget_dlock(dentry); 514 spin_unlock(&dentry->d_lock); 515 } 516 517 struct dentry *dget_parent(struct dentry *dentry) 518 { 519 struct dentry *ret; 520 521 repeat: 522 /* 523 * Don't need rcu_dereference because we re-check it was correct under 524 * the lock. 525 */ 526 rcu_read_lock(); 527 ret = dentry->d_parent; 528 if (!ret) { 529 rcu_read_unlock(); 530 goto out; 531 } 532 spin_lock(&ret->d_lock); 533 if (unlikely(ret != dentry->d_parent)) { 534 spin_unlock(&ret->d_lock); 535 rcu_read_unlock(); 536 goto repeat; 537 } 538 rcu_read_unlock(); 539 BUG_ON(!ret->d_count); 540 ret->d_count++; 541 spin_unlock(&ret->d_lock); 542 out: 543 return ret; 544 } 545 EXPORT_SYMBOL(dget_parent); 546 547 /** 548 * d_find_alias - grab a hashed alias of inode 549 * @inode: inode in question 550 * @want_discon: flag, used by d_splice_alias, to request 551 * that only a DISCONNECTED alias be returned. 552 * 553 * If inode has a hashed alias, or is a directory and has any alias, 554 * acquire the reference to alias and return it. Otherwise return NULL. 555 * Notice that if inode is a directory there can be only one alias and 556 * it can be unhashed only if it has no children, or if it is the root 557 * of a filesystem. 558 * 559 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 560 * any other hashed alias over that one unless @want_discon is set, 561 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 562 */ 563 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 564 { 565 struct dentry *alias, *discon_alias; 566 567 again: 568 discon_alias = NULL; 569 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 570 spin_lock(&alias->d_lock); 571 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 572 if (IS_ROOT(alias) && 573 (alias->d_flags & DCACHE_DISCONNECTED)) { 574 discon_alias = alias; 575 } else if (!want_discon) { 576 __dget_dlock(alias); 577 spin_unlock(&alias->d_lock); 578 return alias; 579 } 580 } 581 spin_unlock(&alias->d_lock); 582 } 583 if (discon_alias) { 584 alias = discon_alias; 585 spin_lock(&alias->d_lock); 586 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 587 if (IS_ROOT(alias) && 588 (alias->d_flags & DCACHE_DISCONNECTED)) { 589 __dget_dlock(alias); 590 spin_unlock(&alias->d_lock); 591 return alias; 592 } 593 } 594 spin_unlock(&alias->d_lock); 595 goto again; 596 } 597 return NULL; 598 } 599 600 struct dentry *d_find_alias(struct inode *inode) 601 { 602 struct dentry *de = NULL; 603 604 if (!list_empty(&inode->i_dentry)) { 605 spin_lock(&inode->i_lock); 606 de = __d_find_alias(inode, 0); 607 spin_unlock(&inode->i_lock); 608 } 609 return de; 610 } 611 EXPORT_SYMBOL(d_find_alias); 612 613 /* 614 * Try to kill dentries associated with this inode. 615 * WARNING: you must own a reference to inode. 616 */ 617 void d_prune_aliases(struct inode *inode) 618 { 619 struct dentry *dentry; 620 restart: 621 spin_lock(&inode->i_lock); 622 list_for_each_entry(dentry, &inode->i_dentry, d_alias) { 623 spin_lock(&dentry->d_lock); 624 if (!dentry->d_count) { 625 __dget_dlock(dentry); 626 __d_drop(dentry); 627 spin_unlock(&dentry->d_lock); 628 spin_unlock(&inode->i_lock); 629 dput(dentry); 630 goto restart; 631 } 632 spin_unlock(&dentry->d_lock); 633 } 634 spin_unlock(&inode->i_lock); 635 } 636 EXPORT_SYMBOL(d_prune_aliases); 637 638 /* 639 * Try to throw away a dentry - free the inode, dput the parent. 640 * Requires dentry->d_lock is held, and dentry->d_count == 0. 641 * Releases dentry->d_lock. 642 * 643 * This may fail if locks cannot be acquired no problem, just try again. 644 */ 645 static void try_prune_one_dentry(struct dentry *dentry) 646 __releases(dentry->d_lock) 647 { 648 struct dentry *parent; 649 650 parent = dentry_kill(dentry, 0); 651 /* 652 * If dentry_kill returns NULL, we have nothing more to do. 653 * if it returns the same dentry, trylocks failed. In either 654 * case, just loop again. 655 * 656 * Otherwise, we need to prune ancestors too. This is necessary 657 * to prevent quadratic behavior of shrink_dcache_parent(), but 658 * is also expected to be beneficial in reducing dentry cache 659 * fragmentation. 660 */ 661 if (!parent) 662 return; 663 if (parent == dentry) 664 return; 665 666 /* Prune ancestors. */ 667 dentry = parent; 668 while (dentry) { 669 spin_lock(&dentry->d_lock); 670 if (dentry->d_count > 1) { 671 dentry->d_count--; 672 spin_unlock(&dentry->d_lock); 673 return; 674 } 675 dentry = dentry_kill(dentry, 1); 676 } 677 } 678 679 static void shrink_dentry_list(struct list_head *list) 680 { 681 struct dentry *dentry; 682 683 rcu_read_lock(); 684 for (;;) { 685 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 686 if (&dentry->d_lru == list) 687 break; /* empty */ 688 spin_lock(&dentry->d_lock); 689 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 690 spin_unlock(&dentry->d_lock); 691 continue; 692 } 693 694 /* 695 * We found an inuse dentry which was not removed from 696 * the LRU because of laziness during lookup. Do not free 697 * it - just keep it off the LRU list. 698 */ 699 if (dentry->d_count) { 700 dentry_lru_del(dentry); 701 spin_unlock(&dentry->d_lock); 702 continue; 703 } 704 705 rcu_read_unlock(); 706 707 try_prune_one_dentry(dentry); 708 709 rcu_read_lock(); 710 } 711 rcu_read_unlock(); 712 } 713 714 /** 715 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock 716 * @sb: superblock to shrink dentry LRU. 717 * @count: number of entries to prune 718 * @flags: flags to control the dentry processing 719 * 720 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned. 721 */ 722 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags) 723 { 724 /* called from prune_dcache() and shrink_dcache_parent() */ 725 struct dentry *dentry; 726 LIST_HEAD(referenced); 727 LIST_HEAD(tmp); 728 int cnt = *count; 729 730 relock: 731 spin_lock(&dcache_lru_lock); 732 while (!list_empty(&sb->s_dentry_lru)) { 733 dentry = list_entry(sb->s_dentry_lru.prev, 734 struct dentry, d_lru); 735 BUG_ON(dentry->d_sb != sb); 736 737 if (!spin_trylock(&dentry->d_lock)) { 738 spin_unlock(&dcache_lru_lock); 739 cpu_relax(); 740 goto relock; 741 } 742 743 /* 744 * If we are honouring the DCACHE_REFERENCED flag and the 745 * dentry has this flag set, don't free it. Clear the flag 746 * and put it back on the LRU. 747 */ 748 if (flags & DCACHE_REFERENCED && 749 dentry->d_flags & DCACHE_REFERENCED) { 750 dentry->d_flags &= ~DCACHE_REFERENCED; 751 list_move(&dentry->d_lru, &referenced); 752 spin_unlock(&dentry->d_lock); 753 } else { 754 list_move_tail(&dentry->d_lru, &tmp); 755 spin_unlock(&dentry->d_lock); 756 if (!--cnt) 757 break; 758 } 759 cond_resched_lock(&dcache_lru_lock); 760 } 761 if (!list_empty(&referenced)) 762 list_splice(&referenced, &sb->s_dentry_lru); 763 spin_unlock(&dcache_lru_lock); 764 765 shrink_dentry_list(&tmp); 766 767 *count = cnt; 768 } 769 770 /** 771 * prune_dcache - shrink the dcache 772 * @count: number of entries to try to free 773 * 774 * Shrink the dcache. This is done when we need more memory, or simply when we 775 * need to unmount something (at which point we need to unuse all dentries). 776 * 777 * This function may fail to free any resources if all the dentries are in use. 778 */ 779 static void prune_dcache(int count) 780 { 781 struct super_block *sb, *p = NULL; 782 int w_count; 783 int unused = dentry_stat.nr_unused; 784 int prune_ratio; 785 int pruned; 786 787 if (unused == 0 || count == 0) 788 return; 789 if (count >= unused) 790 prune_ratio = 1; 791 else 792 prune_ratio = unused / count; 793 spin_lock(&sb_lock); 794 list_for_each_entry(sb, &super_blocks, s_list) { 795 if (list_empty(&sb->s_instances)) 796 continue; 797 if (sb->s_nr_dentry_unused == 0) 798 continue; 799 sb->s_count++; 800 /* Now, we reclaim unused dentrins with fairness. 801 * We reclaim them same percentage from each superblock. 802 * We calculate number of dentries to scan on this sb 803 * as follows, but the implementation is arranged to avoid 804 * overflows: 805 * number of dentries to scan on this sb = 806 * count * (number of dentries on this sb / 807 * number of dentries in the machine) 808 */ 809 spin_unlock(&sb_lock); 810 if (prune_ratio != 1) 811 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1; 812 else 813 w_count = sb->s_nr_dentry_unused; 814 pruned = w_count; 815 /* 816 * We need to be sure this filesystem isn't being unmounted, 817 * otherwise we could race with generic_shutdown_super(), and 818 * end up holding a reference to an inode while the filesystem 819 * is unmounted. So we try to get s_umount, and make sure 820 * s_root isn't NULL. 821 */ 822 if (down_read_trylock(&sb->s_umount)) { 823 if ((sb->s_root != NULL) && 824 (!list_empty(&sb->s_dentry_lru))) { 825 __shrink_dcache_sb(sb, &w_count, 826 DCACHE_REFERENCED); 827 pruned -= w_count; 828 } 829 up_read(&sb->s_umount); 830 } 831 spin_lock(&sb_lock); 832 if (p) 833 __put_super(p); 834 count -= pruned; 835 p = sb; 836 /* more work left to do? */ 837 if (count <= 0) 838 break; 839 } 840 if (p) 841 __put_super(p); 842 spin_unlock(&sb_lock); 843 } 844 845 /** 846 * shrink_dcache_sb - shrink dcache for a superblock 847 * @sb: superblock 848 * 849 * Shrink the dcache for the specified super block. This is used to free 850 * the dcache before unmounting a file system. 851 */ 852 void shrink_dcache_sb(struct super_block *sb) 853 { 854 LIST_HEAD(tmp); 855 856 spin_lock(&dcache_lru_lock); 857 while (!list_empty(&sb->s_dentry_lru)) { 858 list_splice_init(&sb->s_dentry_lru, &tmp); 859 spin_unlock(&dcache_lru_lock); 860 shrink_dentry_list(&tmp); 861 spin_lock(&dcache_lru_lock); 862 } 863 spin_unlock(&dcache_lru_lock); 864 } 865 EXPORT_SYMBOL(shrink_dcache_sb); 866 867 /* 868 * destroy a single subtree of dentries for unmount 869 * - see the comments on shrink_dcache_for_umount() for a description of the 870 * locking 871 */ 872 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 873 { 874 struct dentry *parent; 875 unsigned detached = 0; 876 877 BUG_ON(!IS_ROOT(dentry)); 878 879 /* detach this root from the system */ 880 spin_lock(&dentry->d_lock); 881 dentry_lru_del(dentry); 882 __d_drop(dentry); 883 spin_unlock(&dentry->d_lock); 884 885 for (;;) { 886 /* descend to the first leaf in the current subtree */ 887 while (!list_empty(&dentry->d_subdirs)) { 888 struct dentry *loop; 889 890 /* this is a branch with children - detach all of them 891 * from the system in one go */ 892 spin_lock(&dentry->d_lock); 893 list_for_each_entry(loop, &dentry->d_subdirs, 894 d_u.d_child) { 895 spin_lock_nested(&loop->d_lock, 896 DENTRY_D_LOCK_NESTED); 897 dentry_lru_del(loop); 898 __d_drop(loop); 899 spin_unlock(&loop->d_lock); 900 } 901 spin_unlock(&dentry->d_lock); 902 903 /* move to the first child */ 904 dentry = list_entry(dentry->d_subdirs.next, 905 struct dentry, d_u.d_child); 906 } 907 908 /* consume the dentries from this leaf up through its parents 909 * until we find one with children or run out altogether */ 910 do { 911 struct inode *inode; 912 913 if (dentry->d_count != 0) { 914 printk(KERN_ERR 915 "BUG: Dentry %p{i=%lx,n=%s}" 916 " still in use (%d)" 917 " [unmount of %s %s]\n", 918 dentry, 919 dentry->d_inode ? 920 dentry->d_inode->i_ino : 0UL, 921 dentry->d_name.name, 922 dentry->d_count, 923 dentry->d_sb->s_type->name, 924 dentry->d_sb->s_id); 925 BUG(); 926 } 927 928 if (IS_ROOT(dentry)) { 929 parent = NULL; 930 list_del(&dentry->d_u.d_child); 931 } else { 932 parent = dentry->d_parent; 933 spin_lock(&parent->d_lock); 934 parent->d_count--; 935 list_del(&dentry->d_u.d_child); 936 spin_unlock(&parent->d_lock); 937 } 938 939 detached++; 940 941 inode = dentry->d_inode; 942 if (inode) { 943 dentry->d_inode = NULL; 944 list_del_init(&dentry->d_alias); 945 if (dentry->d_op && dentry->d_op->d_iput) 946 dentry->d_op->d_iput(dentry, inode); 947 else 948 iput(inode); 949 } 950 951 d_free(dentry); 952 953 /* finished when we fall off the top of the tree, 954 * otherwise we ascend to the parent and move to the 955 * next sibling if there is one */ 956 if (!parent) 957 return; 958 dentry = parent; 959 } while (list_empty(&dentry->d_subdirs)); 960 961 dentry = list_entry(dentry->d_subdirs.next, 962 struct dentry, d_u.d_child); 963 } 964 } 965 966 /* 967 * destroy the dentries attached to a superblock on unmounting 968 * - we don't need to use dentry->d_lock because: 969 * - the superblock is detached from all mountings and open files, so the 970 * dentry trees will not be rearranged by the VFS 971 * - s_umount is write-locked, so the memory pressure shrinker will ignore 972 * any dentries belonging to this superblock that it comes across 973 * - the filesystem itself is no longer permitted to rearrange the dentries 974 * in this superblock 975 */ 976 void shrink_dcache_for_umount(struct super_block *sb) 977 { 978 struct dentry *dentry; 979 980 if (down_read_trylock(&sb->s_umount)) 981 BUG(); 982 983 dentry = sb->s_root; 984 sb->s_root = NULL; 985 spin_lock(&dentry->d_lock); 986 dentry->d_count--; 987 spin_unlock(&dentry->d_lock); 988 shrink_dcache_for_umount_subtree(dentry); 989 990 while (!hlist_bl_empty(&sb->s_anon)) { 991 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 992 shrink_dcache_for_umount_subtree(dentry); 993 } 994 } 995 996 /* 997 * This tries to ascend one level of parenthood, but 998 * we can race with renaming, so we need to re-check 999 * the parenthood after dropping the lock and check 1000 * that the sequence number still matches. 1001 */ 1002 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq) 1003 { 1004 struct dentry *new = old->d_parent; 1005 1006 rcu_read_lock(); 1007 spin_unlock(&old->d_lock); 1008 spin_lock(&new->d_lock); 1009 1010 /* 1011 * might go back up the wrong parent if we have had a rename 1012 * or deletion 1013 */ 1014 if (new != old->d_parent || 1015 (old->d_flags & DCACHE_DISCONNECTED) || 1016 (!locked && read_seqretry(&rename_lock, seq))) { 1017 spin_unlock(&new->d_lock); 1018 new = NULL; 1019 } 1020 rcu_read_unlock(); 1021 return new; 1022 } 1023 1024 1025 /* 1026 * Search for at least 1 mount point in the dentry's subdirs. 1027 * We descend to the next level whenever the d_subdirs 1028 * list is non-empty and continue searching. 1029 */ 1030 1031 /** 1032 * have_submounts - check for mounts over a dentry 1033 * @parent: dentry to check. 1034 * 1035 * Return true if the parent or its subdirectories contain 1036 * a mount point 1037 */ 1038 int have_submounts(struct dentry *parent) 1039 { 1040 struct dentry *this_parent; 1041 struct list_head *next; 1042 unsigned seq; 1043 int locked = 0; 1044 1045 seq = read_seqbegin(&rename_lock); 1046 again: 1047 this_parent = parent; 1048 1049 if (d_mountpoint(parent)) 1050 goto positive; 1051 spin_lock(&this_parent->d_lock); 1052 repeat: 1053 next = this_parent->d_subdirs.next; 1054 resume: 1055 while (next != &this_parent->d_subdirs) { 1056 struct list_head *tmp = next; 1057 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1058 next = tmp->next; 1059 1060 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1061 /* Have we found a mount point ? */ 1062 if (d_mountpoint(dentry)) { 1063 spin_unlock(&dentry->d_lock); 1064 spin_unlock(&this_parent->d_lock); 1065 goto positive; 1066 } 1067 if (!list_empty(&dentry->d_subdirs)) { 1068 spin_unlock(&this_parent->d_lock); 1069 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1070 this_parent = dentry; 1071 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1072 goto repeat; 1073 } 1074 spin_unlock(&dentry->d_lock); 1075 } 1076 /* 1077 * All done at this level ... ascend and resume the search. 1078 */ 1079 if (this_parent != parent) { 1080 struct dentry *child = this_parent; 1081 this_parent = try_to_ascend(this_parent, locked, seq); 1082 if (!this_parent) 1083 goto rename_retry; 1084 next = child->d_u.d_child.next; 1085 goto resume; 1086 } 1087 spin_unlock(&this_parent->d_lock); 1088 if (!locked && read_seqretry(&rename_lock, seq)) 1089 goto rename_retry; 1090 if (locked) 1091 write_sequnlock(&rename_lock); 1092 return 0; /* No mount points found in tree */ 1093 positive: 1094 if (!locked && read_seqretry(&rename_lock, seq)) 1095 goto rename_retry; 1096 if (locked) 1097 write_sequnlock(&rename_lock); 1098 return 1; 1099 1100 rename_retry: 1101 locked = 1; 1102 write_seqlock(&rename_lock); 1103 goto again; 1104 } 1105 EXPORT_SYMBOL(have_submounts); 1106 1107 /* 1108 * Search the dentry child list for the specified parent, 1109 * and move any unused dentries to the end of the unused 1110 * list for prune_dcache(). We descend to the next level 1111 * whenever the d_subdirs list is non-empty and continue 1112 * searching. 1113 * 1114 * It returns zero iff there are no unused children, 1115 * otherwise it returns the number of children moved to 1116 * the end of the unused list. This may not be the total 1117 * number of unused children, because select_parent can 1118 * drop the lock and return early due to latency 1119 * constraints. 1120 */ 1121 static int select_parent(struct dentry * parent) 1122 { 1123 struct dentry *this_parent; 1124 struct list_head *next; 1125 unsigned seq; 1126 int found = 0; 1127 int locked = 0; 1128 1129 seq = read_seqbegin(&rename_lock); 1130 again: 1131 this_parent = parent; 1132 spin_lock(&this_parent->d_lock); 1133 repeat: 1134 next = this_parent->d_subdirs.next; 1135 resume: 1136 while (next != &this_parent->d_subdirs) { 1137 struct list_head *tmp = next; 1138 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1139 next = tmp->next; 1140 1141 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1142 1143 /* 1144 * move only zero ref count dentries to the end 1145 * of the unused list for prune_dcache 1146 */ 1147 if (!dentry->d_count) { 1148 dentry_lru_move_tail(dentry); 1149 found++; 1150 } else { 1151 dentry_lru_del(dentry); 1152 } 1153 1154 /* 1155 * We can return to the caller if we have found some (this 1156 * ensures forward progress). We'll be coming back to find 1157 * the rest. 1158 */ 1159 if (found && need_resched()) { 1160 spin_unlock(&dentry->d_lock); 1161 goto out; 1162 } 1163 1164 /* 1165 * Descend a level if the d_subdirs list is non-empty. 1166 */ 1167 if (!list_empty(&dentry->d_subdirs)) { 1168 spin_unlock(&this_parent->d_lock); 1169 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1170 this_parent = dentry; 1171 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1172 goto repeat; 1173 } 1174 1175 spin_unlock(&dentry->d_lock); 1176 } 1177 /* 1178 * All done at this level ... ascend and resume the search. 1179 */ 1180 if (this_parent != parent) { 1181 struct dentry *child = this_parent; 1182 this_parent = try_to_ascend(this_parent, locked, seq); 1183 if (!this_parent) 1184 goto rename_retry; 1185 next = child->d_u.d_child.next; 1186 goto resume; 1187 } 1188 out: 1189 spin_unlock(&this_parent->d_lock); 1190 if (!locked && read_seqretry(&rename_lock, seq)) 1191 goto rename_retry; 1192 if (locked) 1193 write_sequnlock(&rename_lock); 1194 return found; 1195 1196 rename_retry: 1197 if (found) 1198 return found; 1199 locked = 1; 1200 write_seqlock(&rename_lock); 1201 goto again; 1202 } 1203 1204 /** 1205 * shrink_dcache_parent - prune dcache 1206 * @parent: parent of entries to prune 1207 * 1208 * Prune the dcache to remove unused children of the parent dentry. 1209 */ 1210 1211 void shrink_dcache_parent(struct dentry * parent) 1212 { 1213 struct super_block *sb = parent->d_sb; 1214 int found; 1215 1216 while ((found = select_parent(parent)) != 0) 1217 __shrink_dcache_sb(sb, &found, 0); 1218 } 1219 EXPORT_SYMBOL(shrink_dcache_parent); 1220 1221 /* 1222 * Scan `nr' dentries and return the number which remain. 1223 * 1224 * We need to avoid reentering the filesystem if the caller is performing a 1225 * GFP_NOFS allocation attempt. One example deadlock is: 1226 * 1227 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> 1228 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode-> 1229 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK. 1230 * 1231 * In this case we return -1 to tell the caller that we baled. 1232 */ 1233 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) 1234 { 1235 if (nr) { 1236 if (!(gfp_mask & __GFP_FS)) 1237 return -1; 1238 prune_dcache(nr); 1239 } 1240 1241 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 1242 } 1243 1244 static struct shrinker dcache_shrinker = { 1245 .shrink = shrink_dcache_memory, 1246 .seeks = DEFAULT_SEEKS, 1247 }; 1248 1249 /** 1250 * d_alloc - allocate a dcache entry 1251 * @parent: parent of entry to allocate 1252 * @name: qstr of the name 1253 * 1254 * Allocates a dentry. It returns %NULL if there is insufficient memory 1255 * available. On a success the dentry is returned. The name passed in is 1256 * copied and the copy passed in may be reused after this call. 1257 */ 1258 1259 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1260 { 1261 struct dentry *dentry; 1262 char *dname; 1263 1264 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1265 if (!dentry) 1266 return NULL; 1267 1268 if (name->len > DNAME_INLINE_LEN-1) { 1269 dname = kmalloc(name->len + 1, GFP_KERNEL); 1270 if (!dname) { 1271 kmem_cache_free(dentry_cache, dentry); 1272 return NULL; 1273 } 1274 } else { 1275 dname = dentry->d_iname; 1276 } 1277 dentry->d_name.name = dname; 1278 1279 dentry->d_name.len = name->len; 1280 dentry->d_name.hash = name->hash; 1281 memcpy(dname, name->name, name->len); 1282 dname[name->len] = 0; 1283 1284 dentry->d_count = 1; 1285 dentry->d_flags = 0; 1286 spin_lock_init(&dentry->d_lock); 1287 seqcount_init(&dentry->d_seq); 1288 dentry->d_inode = NULL; 1289 dentry->d_parent = NULL; 1290 dentry->d_sb = NULL; 1291 dentry->d_op = NULL; 1292 dentry->d_fsdata = NULL; 1293 INIT_HLIST_BL_NODE(&dentry->d_hash); 1294 INIT_LIST_HEAD(&dentry->d_lru); 1295 INIT_LIST_HEAD(&dentry->d_subdirs); 1296 INIT_LIST_HEAD(&dentry->d_alias); 1297 INIT_LIST_HEAD(&dentry->d_u.d_child); 1298 1299 if (parent) { 1300 spin_lock(&parent->d_lock); 1301 /* 1302 * don't need child lock because it is not subject 1303 * to concurrency here 1304 */ 1305 __dget_dlock(parent); 1306 dentry->d_parent = parent; 1307 dentry->d_sb = parent->d_sb; 1308 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1309 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1310 spin_unlock(&parent->d_lock); 1311 } 1312 1313 this_cpu_inc(nr_dentry); 1314 1315 return dentry; 1316 } 1317 EXPORT_SYMBOL(d_alloc); 1318 1319 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1320 { 1321 struct dentry *dentry = d_alloc(NULL, name); 1322 if (dentry) { 1323 dentry->d_sb = sb; 1324 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1325 dentry->d_parent = dentry; 1326 dentry->d_flags |= DCACHE_DISCONNECTED; 1327 } 1328 return dentry; 1329 } 1330 EXPORT_SYMBOL(d_alloc_pseudo); 1331 1332 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1333 { 1334 struct qstr q; 1335 1336 q.name = name; 1337 q.len = strlen(name); 1338 q.hash = full_name_hash(q.name, q.len); 1339 return d_alloc(parent, &q); 1340 } 1341 EXPORT_SYMBOL(d_alloc_name); 1342 1343 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1344 { 1345 WARN_ON_ONCE(dentry->d_op); 1346 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1347 DCACHE_OP_COMPARE | 1348 DCACHE_OP_REVALIDATE | 1349 DCACHE_OP_DELETE )); 1350 dentry->d_op = op; 1351 if (!op) 1352 return; 1353 if (op->d_hash) 1354 dentry->d_flags |= DCACHE_OP_HASH; 1355 if (op->d_compare) 1356 dentry->d_flags |= DCACHE_OP_COMPARE; 1357 if (op->d_revalidate) 1358 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1359 if (op->d_delete) 1360 dentry->d_flags |= DCACHE_OP_DELETE; 1361 1362 } 1363 EXPORT_SYMBOL(d_set_d_op); 1364 1365 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1366 { 1367 spin_lock(&dentry->d_lock); 1368 if (inode) { 1369 if (unlikely(IS_AUTOMOUNT(inode))) 1370 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT; 1371 list_add(&dentry->d_alias, &inode->i_dentry); 1372 } 1373 dentry->d_inode = inode; 1374 dentry_rcuwalk_barrier(dentry); 1375 spin_unlock(&dentry->d_lock); 1376 fsnotify_d_instantiate(dentry, inode); 1377 } 1378 1379 /** 1380 * d_instantiate - fill in inode information for a dentry 1381 * @entry: dentry to complete 1382 * @inode: inode to attach to this dentry 1383 * 1384 * Fill in inode information in the entry. 1385 * 1386 * This turns negative dentries into productive full members 1387 * of society. 1388 * 1389 * NOTE! This assumes that the inode count has been incremented 1390 * (or otherwise set) by the caller to indicate that it is now 1391 * in use by the dcache. 1392 */ 1393 1394 void d_instantiate(struct dentry *entry, struct inode * inode) 1395 { 1396 BUG_ON(!list_empty(&entry->d_alias)); 1397 if (inode) 1398 spin_lock(&inode->i_lock); 1399 __d_instantiate(entry, inode); 1400 if (inode) 1401 spin_unlock(&inode->i_lock); 1402 security_d_instantiate(entry, inode); 1403 } 1404 EXPORT_SYMBOL(d_instantiate); 1405 1406 /** 1407 * d_instantiate_unique - instantiate a non-aliased dentry 1408 * @entry: dentry to instantiate 1409 * @inode: inode to attach to this dentry 1410 * 1411 * Fill in inode information in the entry. On success, it returns NULL. 1412 * If an unhashed alias of "entry" already exists, then we return the 1413 * aliased dentry instead and drop one reference to inode. 1414 * 1415 * Note that in order to avoid conflicts with rename() etc, the caller 1416 * had better be holding the parent directory semaphore. 1417 * 1418 * This also assumes that the inode count has been incremented 1419 * (or otherwise set) by the caller to indicate that it is now 1420 * in use by the dcache. 1421 */ 1422 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1423 struct inode *inode) 1424 { 1425 struct dentry *alias; 1426 int len = entry->d_name.len; 1427 const char *name = entry->d_name.name; 1428 unsigned int hash = entry->d_name.hash; 1429 1430 if (!inode) { 1431 __d_instantiate(entry, NULL); 1432 return NULL; 1433 } 1434 1435 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 1436 struct qstr *qstr = &alias->d_name; 1437 1438 /* 1439 * Don't need alias->d_lock here, because aliases with 1440 * d_parent == entry->d_parent are not subject to name or 1441 * parent changes, because the parent inode i_mutex is held. 1442 */ 1443 if (qstr->hash != hash) 1444 continue; 1445 if (alias->d_parent != entry->d_parent) 1446 continue; 1447 if (dentry_cmp(qstr->name, qstr->len, name, len)) 1448 continue; 1449 __dget(alias); 1450 return alias; 1451 } 1452 1453 __d_instantiate(entry, inode); 1454 return NULL; 1455 } 1456 1457 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1458 { 1459 struct dentry *result; 1460 1461 BUG_ON(!list_empty(&entry->d_alias)); 1462 1463 if (inode) 1464 spin_lock(&inode->i_lock); 1465 result = __d_instantiate_unique(entry, inode); 1466 if (inode) 1467 spin_unlock(&inode->i_lock); 1468 1469 if (!result) { 1470 security_d_instantiate(entry, inode); 1471 return NULL; 1472 } 1473 1474 BUG_ON(!d_unhashed(result)); 1475 iput(inode); 1476 return result; 1477 } 1478 1479 EXPORT_SYMBOL(d_instantiate_unique); 1480 1481 /** 1482 * d_alloc_root - allocate root dentry 1483 * @root_inode: inode to allocate the root for 1484 * 1485 * Allocate a root ("/") dentry for the inode given. The inode is 1486 * instantiated and returned. %NULL is returned if there is insufficient 1487 * memory or the inode passed is %NULL. 1488 */ 1489 1490 struct dentry * d_alloc_root(struct inode * root_inode) 1491 { 1492 struct dentry *res = NULL; 1493 1494 if (root_inode) { 1495 static const struct qstr name = { .name = "/", .len = 1 }; 1496 1497 res = d_alloc(NULL, &name); 1498 if (res) { 1499 res->d_sb = root_inode->i_sb; 1500 d_set_d_op(res, res->d_sb->s_d_op); 1501 res->d_parent = res; 1502 d_instantiate(res, root_inode); 1503 } 1504 } 1505 return res; 1506 } 1507 EXPORT_SYMBOL(d_alloc_root); 1508 1509 static struct dentry * __d_find_any_alias(struct inode *inode) 1510 { 1511 struct dentry *alias; 1512 1513 if (list_empty(&inode->i_dentry)) 1514 return NULL; 1515 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias); 1516 __dget(alias); 1517 return alias; 1518 } 1519 1520 static struct dentry * d_find_any_alias(struct inode *inode) 1521 { 1522 struct dentry *de; 1523 1524 spin_lock(&inode->i_lock); 1525 de = __d_find_any_alias(inode); 1526 spin_unlock(&inode->i_lock); 1527 return de; 1528 } 1529 1530 1531 /** 1532 * d_obtain_alias - find or allocate a dentry for a given inode 1533 * @inode: inode to allocate the dentry for 1534 * 1535 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1536 * similar open by handle operations. The returned dentry may be anonymous, 1537 * or may have a full name (if the inode was already in the cache). 1538 * 1539 * When called on a directory inode, we must ensure that the inode only ever 1540 * has one dentry. If a dentry is found, that is returned instead of 1541 * allocating a new one. 1542 * 1543 * On successful return, the reference to the inode has been transferred 1544 * to the dentry. In case of an error the reference on the inode is released. 1545 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1546 * be passed in and will be the error will be propagate to the return value, 1547 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1548 */ 1549 struct dentry *d_obtain_alias(struct inode *inode) 1550 { 1551 static const struct qstr anonstring = { .name = "" }; 1552 struct dentry *tmp; 1553 struct dentry *res; 1554 1555 if (!inode) 1556 return ERR_PTR(-ESTALE); 1557 if (IS_ERR(inode)) 1558 return ERR_CAST(inode); 1559 1560 res = d_find_any_alias(inode); 1561 if (res) 1562 goto out_iput; 1563 1564 tmp = d_alloc(NULL, &anonstring); 1565 if (!tmp) { 1566 res = ERR_PTR(-ENOMEM); 1567 goto out_iput; 1568 } 1569 tmp->d_parent = tmp; /* make sure dput doesn't croak */ 1570 1571 1572 spin_lock(&inode->i_lock); 1573 res = __d_find_any_alias(inode); 1574 if (res) { 1575 spin_unlock(&inode->i_lock); 1576 dput(tmp); 1577 goto out_iput; 1578 } 1579 1580 /* attach a disconnected dentry */ 1581 spin_lock(&tmp->d_lock); 1582 tmp->d_sb = inode->i_sb; 1583 d_set_d_op(tmp, tmp->d_sb->s_d_op); 1584 tmp->d_inode = inode; 1585 tmp->d_flags |= DCACHE_DISCONNECTED; 1586 list_add(&tmp->d_alias, &inode->i_dentry); 1587 hlist_bl_lock(&tmp->d_sb->s_anon); 1588 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1589 hlist_bl_unlock(&tmp->d_sb->s_anon); 1590 spin_unlock(&tmp->d_lock); 1591 spin_unlock(&inode->i_lock); 1592 security_d_instantiate(tmp, inode); 1593 1594 return tmp; 1595 1596 out_iput: 1597 if (res && !IS_ERR(res)) 1598 security_d_instantiate(res, inode); 1599 iput(inode); 1600 return res; 1601 } 1602 EXPORT_SYMBOL(d_obtain_alias); 1603 1604 /** 1605 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1606 * @inode: the inode which may have a disconnected dentry 1607 * @dentry: a negative dentry which we want to point to the inode. 1608 * 1609 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1610 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1611 * and return it, else simply d_add the inode to the dentry and return NULL. 1612 * 1613 * This is needed in the lookup routine of any filesystem that is exportable 1614 * (via knfsd) so that we can build dcache paths to directories effectively. 1615 * 1616 * If a dentry was found and moved, then it is returned. Otherwise NULL 1617 * is returned. This matches the expected return value of ->lookup. 1618 * 1619 */ 1620 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1621 { 1622 struct dentry *new = NULL; 1623 1624 if (inode && S_ISDIR(inode->i_mode)) { 1625 spin_lock(&inode->i_lock); 1626 new = __d_find_alias(inode, 1); 1627 if (new) { 1628 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1629 spin_unlock(&inode->i_lock); 1630 security_d_instantiate(new, inode); 1631 d_move(new, dentry); 1632 iput(inode); 1633 } else { 1634 /* already taking inode->i_lock, so d_add() by hand */ 1635 __d_instantiate(dentry, inode); 1636 spin_unlock(&inode->i_lock); 1637 security_d_instantiate(dentry, inode); 1638 d_rehash(dentry); 1639 } 1640 } else 1641 d_add(dentry, inode); 1642 return new; 1643 } 1644 EXPORT_SYMBOL(d_splice_alias); 1645 1646 /** 1647 * d_add_ci - lookup or allocate new dentry with case-exact name 1648 * @inode: the inode case-insensitive lookup has found 1649 * @dentry: the negative dentry that was passed to the parent's lookup func 1650 * @name: the case-exact name to be associated with the returned dentry 1651 * 1652 * This is to avoid filling the dcache with case-insensitive names to the 1653 * same inode, only the actual correct case is stored in the dcache for 1654 * case-insensitive filesystems. 1655 * 1656 * For a case-insensitive lookup match and if the the case-exact dentry 1657 * already exists in in the dcache, use it and return it. 1658 * 1659 * If no entry exists with the exact case name, allocate new dentry with 1660 * the exact case, and return the spliced entry. 1661 */ 1662 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1663 struct qstr *name) 1664 { 1665 int error; 1666 struct dentry *found; 1667 struct dentry *new; 1668 1669 /* 1670 * First check if a dentry matching the name already exists, 1671 * if not go ahead and create it now. 1672 */ 1673 found = d_hash_and_lookup(dentry->d_parent, name); 1674 if (!found) { 1675 new = d_alloc(dentry->d_parent, name); 1676 if (!new) { 1677 error = -ENOMEM; 1678 goto err_out; 1679 } 1680 1681 found = d_splice_alias(inode, new); 1682 if (found) { 1683 dput(new); 1684 return found; 1685 } 1686 return new; 1687 } 1688 1689 /* 1690 * If a matching dentry exists, and it's not negative use it. 1691 * 1692 * Decrement the reference count to balance the iget() done 1693 * earlier on. 1694 */ 1695 if (found->d_inode) { 1696 if (unlikely(found->d_inode != inode)) { 1697 /* This can't happen because bad inodes are unhashed. */ 1698 BUG_ON(!is_bad_inode(inode)); 1699 BUG_ON(!is_bad_inode(found->d_inode)); 1700 } 1701 iput(inode); 1702 return found; 1703 } 1704 1705 /* 1706 * Negative dentry: instantiate it unless the inode is a directory and 1707 * already has a dentry. 1708 */ 1709 spin_lock(&inode->i_lock); 1710 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) { 1711 __d_instantiate(found, inode); 1712 spin_unlock(&inode->i_lock); 1713 security_d_instantiate(found, inode); 1714 return found; 1715 } 1716 1717 /* 1718 * In case a directory already has a (disconnected) entry grab a 1719 * reference to it, move it in place and use it. 1720 */ 1721 new = list_entry(inode->i_dentry.next, struct dentry, d_alias); 1722 __dget(new); 1723 spin_unlock(&inode->i_lock); 1724 security_d_instantiate(found, inode); 1725 d_move(new, found); 1726 iput(inode); 1727 dput(found); 1728 return new; 1729 1730 err_out: 1731 iput(inode); 1732 return ERR_PTR(error); 1733 } 1734 EXPORT_SYMBOL(d_add_ci); 1735 1736 /** 1737 * __d_lookup_rcu - search for a dentry (racy, store-free) 1738 * @parent: parent dentry 1739 * @name: qstr of name we wish to find 1740 * @seq: returns d_seq value at the point where the dentry was found 1741 * @inode: returns dentry->d_inode when the inode was found valid. 1742 * Returns: dentry, or NULL 1743 * 1744 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 1745 * resolution (store-free path walking) design described in 1746 * Documentation/filesystems/path-lookup.txt. 1747 * 1748 * This is not to be used outside core vfs. 1749 * 1750 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 1751 * held, and rcu_read_lock held. The returned dentry must not be stored into 1752 * without taking d_lock and checking d_seq sequence count against @seq 1753 * returned here. 1754 * 1755 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount 1756 * function. 1757 * 1758 * Alternatively, __d_lookup_rcu may be called again to look up the child of 1759 * the returned dentry, so long as its parent's seqlock is checked after the 1760 * child is looked up. Thus, an interlocking stepping of sequence lock checks 1761 * is formed, giving integrity down the path walk. 1762 */ 1763 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name, 1764 unsigned *seq, struct inode **inode) 1765 { 1766 unsigned int len = name->len; 1767 unsigned int hash = name->hash; 1768 const unsigned char *str = name->name; 1769 struct hlist_bl_head *b = d_hash(parent, hash); 1770 struct hlist_bl_node *node; 1771 struct dentry *dentry; 1772 1773 /* 1774 * Note: There is significant duplication with __d_lookup_rcu which is 1775 * required to prevent single threaded performance regressions 1776 * especially on architectures where smp_rmb (in seqcounts) are costly. 1777 * Keep the two functions in sync. 1778 */ 1779 1780 /* 1781 * The hash list is protected using RCU. 1782 * 1783 * Carefully use d_seq when comparing a candidate dentry, to avoid 1784 * races with d_move(). 1785 * 1786 * It is possible that concurrent renames can mess up our list 1787 * walk here and result in missing our dentry, resulting in the 1788 * false-negative result. d_lookup() protects against concurrent 1789 * renames using rename_lock seqlock. 1790 * 1791 * See Documentation/filesystems/path-lookup.txt for more details. 1792 */ 1793 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1794 struct inode *i; 1795 const char *tname; 1796 int tlen; 1797 1798 if (dentry->d_name.hash != hash) 1799 continue; 1800 1801 seqretry: 1802 *seq = read_seqcount_begin(&dentry->d_seq); 1803 if (dentry->d_parent != parent) 1804 continue; 1805 if (d_unhashed(dentry)) 1806 continue; 1807 tlen = dentry->d_name.len; 1808 tname = dentry->d_name.name; 1809 i = dentry->d_inode; 1810 prefetch(tname); 1811 if (i) 1812 prefetch(i); 1813 /* 1814 * This seqcount check is required to ensure name and 1815 * len are loaded atomically, so as not to walk off the 1816 * edge of memory when walking. If we could load this 1817 * atomically some other way, we could drop this check. 1818 */ 1819 if (read_seqcount_retry(&dentry->d_seq, *seq)) 1820 goto seqretry; 1821 if (parent->d_flags & DCACHE_OP_COMPARE) { 1822 if (parent->d_op->d_compare(parent, *inode, 1823 dentry, i, 1824 tlen, tname, name)) 1825 continue; 1826 } else { 1827 if (dentry_cmp(tname, tlen, str, len)) 1828 continue; 1829 } 1830 /* 1831 * No extra seqcount check is required after the name 1832 * compare. The caller must perform a seqcount check in 1833 * order to do anything useful with the returned dentry 1834 * anyway. 1835 */ 1836 *inode = i; 1837 return dentry; 1838 } 1839 return NULL; 1840 } 1841 1842 /** 1843 * d_lookup - search for a dentry 1844 * @parent: parent dentry 1845 * @name: qstr of name we wish to find 1846 * Returns: dentry, or NULL 1847 * 1848 * d_lookup searches the children of the parent dentry for the name in 1849 * question. If the dentry is found its reference count is incremented and the 1850 * dentry is returned. The caller must use dput to free the entry when it has 1851 * finished using it. %NULL is returned if the dentry does not exist. 1852 */ 1853 struct dentry *d_lookup(struct dentry *parent, struct qstr *name) 1854 { 1855 struct dentry *dentry; 1856 unsigned seq; 1857 1858 do { 1859 seq = read_seqbegin(&rename_lock); 1860 dentry = __d_lookup(parent, name); 1861 if (dentry) 1862 break; 1863 } while (read_seqretry(&rename_lock, seq)); 1864 return dentry; 1865 } 1866 EXPORT_SYMBOL(d_lookup); 1867 1868 /** 1869 * __d_lookup - search for a dentry (racy) 1870 * @parent: parent dentry 1871 * @name: qstr of name we wish to find 1872 * Returns: dentry, or NULL 1873 * 1874 * __d_lookup is like d_lookup, however it may (rarely) return a 1875 * false-negative result due to unrelated rename activity. 1876 * 1877 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 1878 * however it must be used carefully, eg. with a following d_lookup in 1879 * the case of failure. 1880 * 1881 * __d_lookup callers must be commented. 1882 */ 1883 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name) 1884 { 1885 unsigned int len = name->len; 1886 unsigned int hash = name->hash; 1887 const unsigned char *str = name->name; 1888 struct hlist_bl_head *b = d_hash(parent, hash); 1889 struct hlist_bl_node *node; 1890 struct dentry *found = NULL; 1891 struct dentry *dentry; 1892 1893 /* 1894 * Note: There is significant duplication with __d_lookup_rcu which is 1895 * required to prevent single threaded performance regressions 1896 * especially on architectures where smp_rmb (in seqcounts) are costly. 1897 * Keep the two functions in sync. 1898 */ 1899 1900 /* 1901 * The hash list is protected using RCU. 1902 * 1903 * Take d_lock when comparing a candidate dentry, to avoid races 1904 * with d_move(). 1905 * 1906 * It is possible that concurrent renames can mess up our list 1907 * walk here and result in missing our dentry, resulting in the 1908 * false-negative result. d_lookup() protects against concurrent 1909 * renames using rename_lock seqlock. 1910 * 1911 * See Documentation/filesystems/path-lookup.txt for more details. 1912 */ 1913 rcu_read_lock(); 1914 1915 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1916 const char *tname; 1917 int tlen; 1918 1919 if (dentry->d_name.hash != hash) 1920 continue; 1921 1922 spin_lock(&dentry->d_lock); 1923 if (dentry->d_parent != parent) 1924 goto next; 1925 if (d_unhashed(dentry)) 1926 goto next; 1927 1928 /* 1929 * It is safe to compare names since d_move() cannot 1930 * change the qstr (protected by d_lock). 1931 */ 1932 tlen = dentry->d_name.len; 1933 tname = dentry->d_name.name; 1934 if (parent->d_flags & DCACHE_OP_COMPARE) { 1935 if (parent->d_op->d_compare(parent, parent->d_inode, 1936 dentry, dentry->d_inode, 1937 tlen, tname, name)) 1938 goto next; 1939 } else { 1940 if (dentry_cmp(tname, tlen, str, len)) 1941 goto next; 1942 } 1943 1944 dentry->d_count++; 1945 found = dentry; 1946 spin_unlock(&dentry->d_lock); 1947 break; 1948 next: 1949 spin_unlock(&dentry->d_lock); 1950 } 1951 rcu_read_unlock(); 1952 1953 return found; 1954 } 1955 1956 /** 1957 * d_hash_and_lookup - hash the qstr then search for a dentry 1958 * @dir: Directory to search in 1959 * @name: qstr of name we wish to find 1960 * 1961 * On hash failure or on lookup failure NULL is returned. 1962 */ 1963 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 1964 { 1965 struct dentry *dentry = NULL; 1966 1967 /* 1968 * Check for a fs-specific hash function. Note that we must 1969 * calculate the standard hash first, as the d_op->d_hash() 1970 * routine may choose to leave the hash value unchanged. 1971 */ 1972 name->hash = full_name_hash(name->name, name->len); 1973 if (dir->d_flags & DCACHE_OP_HASH) { 1974 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0) 1975 goto out; 1976 } 1977 dentry = d_lookup(dir, name); 1978 out: 1979 return dentry; 1980 } 1981 1982 /** 1983 * d_validate - verify dentry provided from insecure source (deprecated) 1984 * @dentry: The dentry alleged to be valid child of @dparent 1985 * @dparent: The parent dentry (known to be valid) 1986 * 1987 * An insecure source has sent us a dentry, here we verify it and dget() it. 1988 * This is used by ncpfs in its readdir implementation. 1989 * Zero is returned in the dentry is invalid. 1990 * 1991 * This function is slow for big directories, and deprecated, do not use it. 1992 */ 1993 int d_validate(struct dentry *dentry, struct dentry *dparent) 1994 { 1995 struct dentry *child; 1996 1997 spin_lock(&dparent->d_lock); 1998 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 1999 if (dentry == child) { 2000 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2001 __dget_dlock(dentry); 2002 spin_unlock(&dentry->d_lock); 2003 spin_unlock(&dparent->d_lock); 2004 return 1; 2005 } 2006 } 2007 spin_unlock(&dparent->d_lock); 2008 2009 return 0; 2010 } 2011 EXPORT_SYMBOL(d_validate); 2012 2013 /* 2014 * When a file is deleted, we have two options: 2015 * - turn this dentry into a negative dentry 2016 * - unhash this dentry and free it. 2017 * 2018 * Usually, we want to just turn this into 2019 * a negative dentry, but if anybody else is 2020 * currently using the dentry or the inode 2021 * we can't do that and we fall back on removing 2022 * it from the hash queues and waiting for 2023 * it to be deleted later when it has no users 2024 */ 2025 2026 /** 2027 * d_delete - delete a dentry 2028 * @dentry: The dentry to delete 2029 * 2030 * Turn the dentry into a negative dentry if possible, otherwise 2031 * remove it from the hash queues so it can be deleted later 2032 */ 2033 2034 void d_delete(struct dentry * dentry) 2035 { 2036 struct inode *inode; 2037 int isdir = 0; 2038 /* 2039 * Are we the only user? 2040 */ 2041 again: 2042 spin_lock(&dentry->d_lock); 2043 inode = dentry->d_inode; 2044 isdir = S_ISDIR(inode->i_mode); 2045 if (dentry->d_count == 1) { 2046 if (inode && !spin_trylock(&inode->i_lock)) { 2047 spin_unlock(&dentry->d_lock); 2048 cpu_relax(); 2049 goto again; 2050 } 2051 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2052 dentry_unlink_inode(dentry); 2053 fsnotify_nameremove(dentry, isdir); 2054 return; 2055 } 2056 2057 if (!d_unhashed(dentry)) 2058 __d_drop(dentry); 2059 2060 spin_unlock(&dentry->d_lock); 2061 2062 fsnotify_nameremove(dentry, isdir); 2063 } 2064 EXPORT_SYMBOL(d_delete); 2065 2066 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2067 { 2068 BUG_ON(!d_unhashed(entry)); 2069 hlist_bl_lock(b); 2070 entry->d_flags |= DCACHE_RCUACCESS; 2071 hlist_bl_add_head_rcu(&entry->d_hash, b); 2072 hlist_bl_unlock(b); 2073 } 2074 2075 static void _d_rehash(struct dentry * entry) 2076 { 2077 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2078 } 2079 2080 /** 2081 * d_rehash - add an entry back to the hash 2082 * @entry: dentry to add to the hash 2083 * 2084 * Adds a dentry to the hash according to its name. 2085 */ 2086 2087 void d_rehash(struct dentry * entry) 2088 { 2089 spin_lock(&entry->d_lock); 2090 _d_rehash(entry); 2091 spin_unlock(&entry->d_lock); 2092 } 2093 EXPORT_SYMBOL(d_rehash); 2094 2095 /** 2096 * dentry_update_name_case - update case insensitive dentry with a new name 2097 * @dentry: dentry to be updated 2098 * @name: new name 2099 * 2100 * Update a case insensitive dentry with new case of name. 2101 * 2102 * dentry must have been returned by d_lookup with name @name. Old and new 2103 * name lengths must match (ie. no d_compare which allows mismatched name 2104 * lengths). 2105 * 2106 * Parent inode i_mutex must be held over d_lookup and into this call (to 2107 * keep renames and concurrent inserts, and readdir(2) away). 2108 */ 2109 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2110 { 2111 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2112 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2113 2114 spin_lock(&dentry->d_lock); 2115 write_seqcount_begin(&dentry->d_seq); 2116 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2117 write_seqcount_end(&dentry->d_seq); 2118 spin_unlock(&dentry->d_lock); 2119 } 2120 EXPORT_SYMBOL(dentry_update_name_case); 2121 2122 static void switch_names(struct dentry *dentry, struct dentry *target) 2123 { 2124 if (dname_external(target)) { 2125 if (dname_external(dentry)) { 2126 /* 2127 * Both external: swap the pointers 2128 */ 2129 swap(target->d_name.name, dentry->d_name.name); 2130 } else { 2131 /* 2132 * dentry:internal, target:external. Steal target's 2133 * storage and make target internal. 2134 */ 2135 memcpy(target->d_iname, dentry->d_name.name, 2136 dentry->d_name.len + 1); 2137 dentry->d_name.name = target->d_name.name; 2138 target->d_name.name = target->d_iname; 2139 } 2140 } else { 2141 if (dname_external(dentry)) { 2142 /* 2143 * dentry:external, target:internal. Give dentry's 2144 * storage to target and make dentry internal 2145 */ 2146 memcpy(dentry->d_iname, target->d_name.name, 2147 target->d_name.len + 1); 2148 target->d_name.name = dentry->d_name.name; 2149 dentry->d_name.name = dentry->d_iname; 2150 } else { 2151 /* 2152 * Both are internal. Just copy target to dentry 2153 */ 2154 memcpy(dentry->d_iname, target->d_name.name, 2155 target->d_name.len + 1); 2156 dentry->d_name.len = target->d_name.len; 2157 return; 2158 } 2159 } 2160 swap(dentry->d_name.len, target->d_name.len); 2161 } 2162 2163 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2164 { 2165 /* 2166 * XXXX: do we really need to take target->d_lock? 2167 */ 2168 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2169 spin_lock(&target->d_parent->d_lock); 2170 else { 2171 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2172 spin_lock(&dentry->d_parent->d_lock); 2173 spin_lock_nested(&target->d_parent->d_lock, 2174 DENTRY_D_LOCK_NESTED); 2175 } else { 2176 spin_lock(&target->d_parent->d_lock); 2177 spin_lock_nested(&dentry->d_parent->d_lock, 2178 DENTRY_D_LOCK_NESTED); 2179 } 2180 } 2181 if (target < dentry) { 2182 spin_lock_nested(&target->d_lock, 2); 2183 spin_lock_nested(&dentry->d_lock, 3); 2184 } else { 2185 spin_lock_nested(&dentry->d_lock, 2); 2186 spin_lock_nested(&target->d_lock, 3); 2187 } 2188 } 2189 2190 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2191 struct dentry *target) 2192 { 2193 if (target->d_parent != dentry->d_parent) 2194 spin_unlock(&dentry->d_parent->d_lock); 2195 if (target->d_parent != target) 2196 spin_unlock(&target->d_parent->d_lock); 2197 } 2198 2199 /* 2200 * When switching names, the actual string doesn't strictly have to 2201 * be preserved in the target - because we're dropping the target 2202 * anyway. As such, we can just do a simple memcpy() to copy over 2203 * the new name before we switch. 2204 * 2205 * Note that we have to be a lot more careful about getting the hash 2206 * switched - we have to switch the hash value properly even if it 2207 * then no longer matches the actual (corrupted) string of the target. 2208 * The hash value has to match the hash queue that the dentry is on.. 2209 */ 2210 /* 2211 * d_move - move a dentry 2212 * @dentry: entry to move 2213 * @target: new dentry 2214 * 2215 * Update the dcache to reflect the move of a file name. Negative 2216 * dcache entries should not be moved in this way. 2217 */ 2218 void d_move(struct dentry * dentry, struct dentry * target) 2219 { 2220 if (!dentry->d_inode) 2221 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2222 2223 BUG_ON(d_ancestor(dentry, target)); 2224 BUG_ON(d_ancestor(target, dentry)); 2225 2226 write_seqlock(&rename_lock); 2227 2228 dentry_lock_for_move(dentry, target); 2229 2230 write_seqcount_begin(&dentry->d_seq); 2231 write_seqcount_begin(&target->d_seq); 2232 2233 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2234 2235 /* 2236 * Move the dentry to the target hash queue. Don't bother checking 2237 * for the same hash queue because of how unlikely it is. 2238 */ 2239 __d_drop(dentry); 2240 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2241 2242 /* Unhash the target: dput() will then get rid of it */ 2243 __d_drop(target); 2244 2245 list_del(&dentry->d_u.d_child); 2246 list_del(&target->d_u.d_child); 2247 2248 /* Switch the names.. */ 2249 switch_names(dentry, target); 2250 swap(dentry->d_name.hash, target->d_name.hash); 2251 2252 /* ... and switch the parents */ 2253 if (IS_ROOT(dentry)) { 2254 dentry->d_parent = target->d_parent; 2255 target->d_parent = target; 2256 INIT_LIST_HEAD(&target->d_u.d_child); 2257 } else { 2258 swap(dentry->d_parent, target->d_parent); 2259 2260 /* And add them back to the (new) parent lists */ 2261 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2262 } 2263 2264 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2265 2266 write_seqcount_end(&target->d_seq); 2267 write_seqcount_end(&dentry->d_seq); 2268 2269 dentry_unlock_parents_for_move(dentry, target); 2270 spin_unlock(&target->d_lock); 2271 fsnotify_d_move(dentry); 2272 spin_unlock(&dentry->d_lock); 2273 write_sequnlock(&rename_lock); 2274 } 2275 EXPORT_SYMBOL(d_move); 2276 2277 /** 2278 * d_ancestor - search for an ancestor 2279 * @p1: ancestor dentry 2280 * @p2: child dentry 2281 * 2282 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2283 * an ancestor of p2, else NULL. 2284 */ 2285 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2286 { 2287 struct dentry *p; 2288 2289 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2290 if (p->d_parent == p1) 2291 return p; 2292 } 2293 return NULL; 2294 } 2295 2296 /* 2297 * This helper attempts to cope with remotely renamed directories 2298 * 2299 * It assumes that the caller is already holding 2300 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock 2301 * 2302 * Note: If ever the locking in lock_rename() changes, then please 2303 * remember to update this too... 2304 */ 2305 static struct dentry *__d_unalias(struct inode *inode, 2306 struct dentry *dentry, struct dentry *alias) 2307 { 2308 struct mutex *m1 = NULL, *m2 = NULL; 2309 struct dentry *ret; 2310 2311 /* If alias and dentry share a parent, then no extra locks required */ 2312 if (alias->d_parent == dentry->d_parent) 2313 goto out_unalias; 2314 2315 /* Check for loops */ 2316 ret = ERR_PTR(-ELOOP); 2317 if (d_ancestor(alias, dentry)) 2318 goto out_err; 2319 2320 /* See lock_rename() */ 2321 ret = ERR_PTR(-EBUSY); 2322 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2323 goto out_err; 2324 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2325 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2326 goto out_err; 2327 m2 = &alias->d_parent->d_inode->i_mutex; 2328 out_unalias: 2329 d_move(alias, dentry); 2330 ret = alias; 2331 out_err: 2332 spin_unlock(&inode->i_lock); 2333 if (m2) 2334 mutex_unlock(m2); 2335 if (m1) 2336 mutex_unlock(m1); 2337 return ret; 2338 } 2339 2340 /* 2341 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2342 * named dentry in place of the dentry to be replaced. 2343 * returns with anon->d_lock held! 2344 */ 2345 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2346 { 2347 struct dentry *dparent, *aparent; 2348 2349 dentry_lock_for_move(anon, dentry); 2350 2351 write_seqcount_begin(&dentry->d_seq); 2352 write_seqcount_begin(&anon->d_seq); 2353 2354 dparent = dentry->d_parent; 2355 aparent = anon->d_parent; 2356 2357 switch_names(dentry, anon); 2358 swap(dentry->d_name.hash, anon->d_name.hash); 2359 2360 dentry->d_parent = (aparent == anon) ? dentry : aparent; 2361 list_del(&dentry->d_u.d_child); 2362 if (!IS_ROOT(dentry)) 2363 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2364 else 2365 INIT_LIST_HEAD(&dentry->d_u.d_child); 2366 2367 anon->d_parent = (dparent == dentry) ? anon : dparent; 2368 list_del(&anon->d_u.d_child); 2369 if (!IS_ROOT(anon)) 2370 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); 2371 else 2372 INIT_LIST_HEAD(&anon->d_u.d_child); 2373 2374 write_seqcount_end(&dentry->d_seq); 2375 write_seqcount_end(&anon->d_seq); 2376 2377 dentry_unlock_parents_for_move(anon, dentry); 2378 spin_unlock(&dentry->d_lock); 2379 2380 /* anon->d_lock still locked, returns locked */ 2381 anon->d_flags &= ~DCACHE_DISCONNECTED; 2382 } 2383 2384 /** 2385 * d_materialise_unique - introduce an inode into the tree 2386 * @dentry: candidate dentry 2387 * @inode: inode to bind to the dentry, to which aliases may be attached 2388 * 2389 * Introduces an dentry into the tree, substituting an extant disconnected 2390 * root directory alias in its place if there is one 2391 */ 2392 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2393 { 2394 struct dentry *actual; 2395 2396 BUG_ON(!d_unhashed(dentry)); 2397 2398 if (!inode) { 2399 actual = dentry; 2400 __d_instantiate(dentry, NULL); 2401 d_rehash(actual); 2402 goto out_nolock; 2403 } 2404 2405 spin_lock(&inode->i_lock); 2406 2407 if (S_ISDIR(inode->i_mode)) { 2408 struct dentry *alias; 2409 2410 /* Does an aliased dentry already exist? */ 2411 alias = __d_find_alias(inode, 0); 2412 if (alias) { 2413 actual = alias; 2414 /* Is this an anonymous mountpoint that we could splice 2415 * into our tree? */ 2416 if (IS_ROOT(alias)) { 2417 __d_materialise_dentry(dentry, alias); 2418 __d_drop(alias); 2419 goto found; 2420 } 2421 /* Nope, but we must(!) avoid directory aliasing */ 2422 actual = __d_unalias(inode, dentry, alias); 2423 if (IS_ERR(actual)) 2424 dput(alias); 2425 goto out_nolock; 2426 } 2427 } 2428 2429 /* Add a unique reference */ 2430 actual = __d_instantiate_unique(dentry, inode); 2431 if (!actual) 2432 actual = dentry; 2433 else 2434 BUG_ON(!d_unhashed(actual)); 2435 2436 spin_lock(&actual->d_lock); 2437 found: 2438 _d_rehash(actual); 2439 spin_unlock(&actual->d_lock); 2440 spin_unlock(&inode->i_lock); 2441 out_nolock: 2442 if (actual == dentry) { 2443 security_d_instantiate(dentry, inode); 2444 return NULL; 2445 } 2446 2447 iput(inode); 2448 return actual; 2449 } 2450 EXPORT_SYMBOL_GPL(d_materialise_unique); 2451 2452 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2453 { 2454 *buflen -= namelen; 2455 if (*buflen < 0) 2456 return -ENAMETOOLONG; 2457 *buffer -= namelen; 2458 memcpy(*buffer, str, namelen); 2459 return 0; 2460 } 2461 2462 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2463 { 2464 return prepend(buffer, buflen, name->name, name->len); 2465 } 2466 2467 /** 2468 * prepend_path - Prepend path string to a buffer 2469 * @path: the dentry/vfsmount to report 2470 * @root: root vfsmnt/dentry (may be modified by this function) 2471 * @buffer: pointer to the end of the buffer 2472 * @buflen: pointer to buffer length 2473 * 2474 * Caller holds the rename_lock. 2475 * 2476 * If path is not reachable from the supplied root, then the value of 2477 * root is changed (without modifying refcounts). 2478 */ 2479 static int prepend_path(const struct path *path, struct path *root, 2480 char **buffer, int *buflen) 2481 { 2482 struct dentry *dentry = path->dentry; 2483 struct vfsmount *vfsmnt = path->mnt; 2484 bool slash = false; 2485 int error = 0; 2486 2487 br_read_lock(vfsmount_lock); 2488 while (dentry != root->dentry || vfsmnt != root->mnt) { 2489 struct dentry * parent; 2490 2491 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2492 /* Global root? */ 2493 if (vfsmnt->mnt_parent == vfsmnt) { 2494 goto global_root; 2495 } 2496 dentry = vfsmnt->mnt_mountpoint; 2497 vfsmnt = vfsmnt->mnt_parent; 2498 continue; 2499 } 2500 parent = dentry->d_parent; 2501 prefetch(parent); 2502 spin_lock(&dentry->d_lock); 2503 error = prepend_name(buffer, buflen, &dentry->d_name); 2504 spin_unlock(&dentry->d_lock); 2505 if (!error) 2506 error = prepend(buffer, buflen, "/", 1); 2507 if (error) 2508 break; 2509 2510 slash = true; 2511 dentry = parent; 2512 } 2513 2514 out: 2515 if (!error && !slash) 2516 error = prepend(buffer, buflen, "/", 1); 2517 2518 br_read_unlock(vfsmount_lock); 2519 return error; 2520 2521 global_root: 2522 /* 2523 * Filesystems needing to implement special "root names" 2524 * should do so with ->d_dname() 2525 */ 2526 if (IS_ROOT(dentry) && 2527 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) { 2528 WARN(1, "Root dentry has weird name <%.*s>\n", 2529 (int) dentry->d_name.len, dentry->d_name.name); 2530 } 2531 root->mnt = vfsmnt; 2532 root->dentry = dentry; 2533 goto out; 2534 } 2535 2536 /** 2537 * __d_path - return the path of a dentry 2538 * @path: the dentry/vfsmount to report 2539 * @root: root vfsmnt/dentry (may be modified by this function) 2540 * @buf: buffer to return value in 2541 * @buflen: buffer length 2542 * 2543 * Convert a dentry into an ASCII path name. 2544 * 2545 * Returns a pointer into the buffer or an error code if the 2546 * path was too long. 2547 * 2548 * "buflen" should be positive. 2549 * 2550 * If path is not reachable from the supplied root, then the value of 2551 * root is changed (without modifying refcounts). 2552 */ 2553 char *__d_path(const struct path *path, struct path *root, 2554 char *buf, int buflen) 2555 { 2556 char *res = buf + buflen; 2557 int error; 2558 2559 prepend(&res, &buflen, "\0", 1); 2560 write_seqlock(&rename_lock); 2561 error = prepend_path(path, root, &res, &buflen); 2562 write_sequnlock(&rename_lock); 2563 2564 if (error) 2565 return ERR_PTR(error); 2566 return res; 2567 } 2568 2569 /* 2570 * same as __d_path but appends "(deleted)" for unlinked files. 2571 */ 2572 static int path_with_deleted(const struct path *path, struct path *root, 2573 char **buf, int *buflen) 2574 { 2575 prepend(buf, buflen, "\0", 1); 2576 if (d_unlinked(path->dentry)) { 2577 int error = prepend(buf, buflen, " (deleted)", 10); 2578 if (error) 2579 return error; 2580 } 2581 2582 return prepend_path(path, root, buf, buflen); 2583 } 2584 2585 static int prepend_unreachable(char **buffer, int *buflen) 2586 { 2587 return prepend(buffer, buflen, "(unreachable)", 13); 2588 } 2589 2590 /** 2591 * d_path - return the path of a dentry 2592 * @path: path to report 2593 * @buf: buffer to return value in 2594 * @buflen: buffer length 2595 * 2596 * Convert a dentry into an ASCII path name. If the entry has been deleted 2597 * the string " (deleted)" is appended. Note that this is ambiguous. 2598 * 2599 * Returns a pointer into the buffer or an error code if the path was 2600 * too long. Note: Callers should use the returned pointer, not the passed 2601 * in buffer, to use the name! The implementation often starts at an offset 2602 * into the buffer, and may leave 0 bytes at the start. 2603 * 2604 * "buflen" should be positive. 2605 */ 2606 char *d_path(const struct path *path, char *buf, int buflen) 2607 { 2608 char *res = buf + buflen; 2609 struct path root; 2610 struct path tmp; 2611 int error; 2612 2613 /* 2614 * We have various synthetic filesystems that never get mounted. On 2615 * these filesystems dentries are never used for lookup purposes, and 2616 * thus don't need to be hashed. They also don't need a name until a 2617 * user wants to identify the object in /proc/pid/fd/. The little hack 2618 * below allows us to generate a name for these objects on demand: 2619 */ 2620 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2621 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2622 2623 get_fs_root(current->fs, &root); 2624 write_seqlock(&rename_lock); 2625 tmp = root; 2626 error = path_with_deleted(path, &tmp, &res, &buflen); 2627 if (error) 2628 res = ERR_PTR(error); 2629 write_sequnlock(&rename_lock); 2630 path_put(&root); 2631 return res; 2632 } 2633 EXPORT_SYMBOL(d_path); 2634 2635 /** 2636 * d_path_with_unreachable - return the path of a dentry 2637 * @path: path to report 2638 * @buf: buffer to return value in 2639 * @buflen: buffer length 2640 * 2641 * The difference from d_path() is that this prepends "(unreachable)" 2642 * to paths which are unreachable from the current process' root. 2643 */ 2644 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen) 2645 { 2646 char *res = buf + buflen; 2647 struct path root; 2648 struct path tmp; 2649 int error; 2650 2651 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2652 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2653 2654 get_fs_root(current->fs, &root); 2655 write_seqlock(&rename_lock); 2656 tmp = root; 2657 error = path_with_deleted(path, &tmp, &res, &buflen); 2658 if (!error && !path_equal(&tmp, &root)) 2659 error = prepend_unreachable(&res, &buflen); 2660 write_sequnlock(&rename_lock); 2661 path_put(&root); 2662 if (error) 2663 res = ERR_PTR(error); 2664 2665 return res; 2666 } 2667 2668 /* 2669 * Helper function for dentry_operations.d_dname() members 2670 */ 2671 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2672 const char *fmt, ...) 2673 { 2674 va_list args; 2675 char temp[64]; 2676 int sz; 2677 2678 va_start(args, fmt); 2679 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2680 va_end(args); 2681 2682 if (sz > sizeof(temp) || sz > buflen) 2683 return ERR_PTR(-ENAMETOOLONG); 2684 2685 buffer += buflen - sz; 2686 return memcpy(buffer, temp, sz); 2687 } 2688 2689 /* 2690 * Write full pathname from the root of the filesystem into the buffer. 2691 */ 2692 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 2693 { 2694 char *end = buf + buflen; 2695 char *retval; 2696 2697 prepend(&end, &buflen, "\0", 1); 2698 if (buflen < 1) 2699 goto Elong; 2700 /* Get '/' right */ 2701 retval = end-1; 2702 *retval = '/'; 2703 2704 while (!IS_ROOT(dentry)) { 2705 struct dentry *parent = dentry->d_parent; 2706 int error; 2707 2708 prefetch(parent); 2709 spin_lock(&dentry->d_lock); 2710 error = prepend_name(&end, &buflen, &dentry->d_name); 2711 spin_unlock(&dentry->d_lock); 2712 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0) 2713 goto Elong; 2714 2715 retval = end; 2716 dentry = parent; 2717 } 2718 return retval; 2719 Elong: 2720 return ERR_PTR(-ENAMETOOLONG); 2721 } 2722 2723 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 2724 { 2725 char *retval; 2726 2727 write_seqlock(&rename_lock); 2728 retval = __dentry_path(dentry, buf, buflen); 2729 write_sequnlock(&rename_lock); 2730 2731 return retval; 2732 } 2733 EXPORT_SYMBOL(dentry_path_raw); 2734 2735 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2736 { 2737 char *p = NULL; 2738 char *retval; 2739 2740 write_seqlock(&rename_lock); 2741 if (d_unlinked(dentry)) { 2742 p = buf + buflen; 2743 if (prepend(&p, &buflen, "//deleted", 10) != 0) 2744 goto Elong; 2745 buflen++; 2746 } 2747 retval = __dentry_path(dentry, buf, buflen); 2748 write_sequnlock(&rename_lock); 2749 if (!IS_ERR(retval) && p) 2750 *p = '/'; /* restore '/' overriden with '\0' */ 2751 return retval; 2752 Elong: 2753 return ERR_PTR(-ENAMETOOLONG); 2754 } 2755 2756 /* 2757 * NOTE! The user-level library version returns a 2758 * character pointer. The kernel system call just 2759 * returns the length of the buffer filled (which 2760 * includes the ending '\0' character), or a negative 2761 * error value. So libc would do something like 2762 * 2763 * char *getcwd(char * buf, size_t size) 2764 * { 2765 * int retval; 2766 * 2767 * retval = sys_getcwd(buf, size); 2768 * if (retval >= 0) 2769 * return buf; 2770 * errno = -retval; 2771 * return NULL; 2772 * } 2773 */ 2774 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2775 { 2776 int error; 2777 struct path pwd, root; 2778 char *page = (char *) __get_free_page(GFP_USER); 2779 2780 if (!page) 2781 return -ENOMEM; 2782 2783 get_fs_root_and_pwd(current->fs, &root, &pwd); 2784 2785 error = -ENOENT; 2786 write_seqlock(&rename_lock); 2787 if (!d_unlinked(pwd.dentry)) { 2788 unsigned long len; 2789 struct path tmp = root; 2790 char *cwd = page + PAGE_SIZE; 2791 int buflen = PAGE_SIZE; 2792 2793 prepend(&cwd, &buflen, "\0", 1); 2794 error = prepend_path(&pwd, &tmp, &cwd, &buflen); 2795 write_sequnlock(&rename_lock); 2796 2797 if (error) 2798 goto out; 2799 2800 /* Unreachable from current root */ 2801 if (!path_equal(&tmp, &root)) { 2802 error = prepend_unreachable(&cwd, &buflen); 2803 if (error) 2804 goto out; 2805 } 2806 2807 error = -ERANGE; 2808 len = PAGE_SIZE + page - cwd; 2809 if (len <= size) { 2810 error = len; 2811 if (copy_to_user(buf, cwd, len)) 2812 error = -EFAULT; 2813 } 2814 } else { 2815 write_sequnlock(&rename_lock); 2816 } 2817 2818 out: 2819 path_put(&pwd); 2820 path_put(&root); 2821 free_page((unsigned long) page); 2822 return error; 2823 } 2824 2825 /* 2826 * Test whether new_dentry is a subdirectory of old_dentry. 2827 * 2828 * Trivially implemented using the dcache structure 2829 */ 2830 2831 /** 2832 * is_subdir - is new dentry a subdirectory of old_dentry 2833 * @new_dentry: new dentry 2834 * @old_dentry: old dentry 2835 * 2836 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2837 * Returns 0 otherwise. 2838 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2839 */ 2840 2841 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2842 { 2843 int result; 2844 unsigned seq; 2845 2846 if (new_dentry == old_dentry) 2847 return 1; 2848 2849 do { 2850 /* for restarting inner loop in case of seq retry */ 2851 seq = read_seqbegin(&rename_lock); 2852 /* 2853 * Need rcu_readlock to protect against the d_parent trashing 2854 * due to d_move 2855 */ 2856 rcu_read_lock(); 2857 if (d_ancestor(old_dentry, new_dentry)) 2858 result = 1; 2859 else 2860 result = 0; 2861 rcu_read_unlock(); 2862 } while (read_seqretry(&rename_lock, seq)); 2863 2864 return result; 2865 } 2866 2867 int path_is_under(struct path *path1, struct path *path2) 2868 { 2869 struct vfsmount *mnt = path1->mnt; 2870 struct dentry *dentry = path1->dentry; 2871 int res; 2872 2873 br_read_lock(vfsmount_lock); 2874 if (mnt != path2->mnt) { 2875 for (;;) { 2876 if (mnt->mnt_parent == mnt) { 2877 br_read_unlock(vfsmount_lock); 2878 return 0; 2879 } 2880 if (mnt->mnt_parent == path2->mnt) 2881 break; 2882 mnt = mnt->mnt_parent; 2883 } 2884 dentry = mnt->mnt_mountpoint; 2885 } 2886 res = is_subdir(dentry, path2->dentry); 2887 br_read_unlock(vfsmount_lock); 2888 return res; 2889 } 2890 EXPORT_SYMBOL(path_is_under); 2891 2892 void d_genocide(struct dentry *root) 2893 { 2894 struct dentry *this_parent; 2895 struct list_head *next; 2896 unsigned seq; 2897 int locked = 0; 2898 2899 seq = read_seqbegin(&rename_lock); 2900 again: 2901 this_parent = root; 2902 spin_lock(&this_parent->d_lock); 2903 repeat: 2904 next = this_parent->d_subdirs.next; 2905 resume: 2906 while (next != &this_parent->d_subdirs) { 2907 struct list_head *tmp = next; 2908 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 2909 next = tmp->next; 2910 2911 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2912 if (d_unhashed(dentry) || !dentry->d_inode) { 2913 spin_unlock(&dentry->d_lock); 2914 continue; 2915 } 2916 if (!list_empty(&dentry->d_subdirs)) { 2917 spin_unlock(&this_parent->d_lock); 2918 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 2919 this_parent = dentry; 2920 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 2921 goto repeat; 2922 } 2923 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 2924 dentry->d_flags |= DCACHE_GENOCIDE; 2925 dentry->d_count--; 2926 } 2927 spin_unlock(&dentry->d_lock); 2928 } 2929 if (this_parent != root) { 2930 struct dentry *child = this_parent; 2931 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) { 2932 this_parent->d_flags |= DCACHE_GENOCIDE; 2933 this_parent->d_count--; 2934 } 2935 this_parent = try_to_ascend(this_parent, locked, seq); 2936 if (!this_parent) 2937 goto rename_retry; 2938 next = child->d_u.d_child.next; 2939 goto resume; 2940 } 2941 spin_unlock(&this_parent->d_lock); 2942 if (!locked && read_seqretry(&rename_lock, seq)) 2943 goto rename_retry; 2944 if (locked) 2945 write_sequnlock(&rename_lock); 2946 return; 2947 2948 rename_retry: 2949 locked = 1; 2950 write_seqlock(&rename_lock); 2951 goto again; 2952 } 2953 2954 /** 2955 * find_inode_number - check for dentry with name 2956 * @dir: directory to check 2957 * @name: Name to find. 2958 * 2959 * Check whether a dentry already exists for the given name, 2960 * and return the inode number if it has an inode. Otherwise 2961 * 0 is returned. 2962 * 2963 * This routine is used to post-process directory listings for 2964 * filesystems using synthetic inode numbers, and is necessary 2965 * to keep getcwd() working. 2966 */ 2967 2968 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 2969 { 2970 struct dentry * dentry; 2971 ino_t ino = 0; 2972 2973 dentry = d_hash_and_lookup(dir, name); 2974 if (dentry) { 2975 if (dentry->d_inode) 2976 ino = dentry->d_inode->i_ino; 2977 dput(dentry); 2978 } 2979 return ino; 2980 } 2981 EXPORT_SYMBOL(find_inode_number); 2982 2983 static __initdata unsigned long dhash_entries; 2984 static int __init set_dhash_entries(char *str) 2985 { 2986 if (!str) 2987 return 0; 2988 dhash_entries = simple_strtoul(str, &str, 0); 2989 return 1; 2990 } 2991 __setup("dhash_entries=", set_dhash_entries); 2992 2993 static void __init dcache_init_early(void) 2994 { 2995 int loop; 2996 2997 /* If hashes are distributed across NUMA nodes, defer 2998 * hash allocation until vmalloc space is available. 2999 */ 3000 if (hashdist) 3001 return; 3002 3003 dentry_hashtable = 3004 alloc_large_system_hash("Dentry cache", 3005 sizeof(struct hlist_bl_head), 3006 dhash_entries, 3007 13, 3008 HASH_EARLY, 3009 &d_hash_shift, 3010 &d_hash_mask, 3011 0); 3012 3013 for (loop = 0; loop < (1 << d_hash_shift); loop++) 3014 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3015 } 3016 3017 static void __init dcache_init(void) 3018 { 3019 int loop; 3020 3021 /* 3022 * A constructor could be added for stable state like the lists, 3023 * but it is probably not worth it because of the cache nature 3024 * of the dcache. 3025 */ 3026 dentry_cache = KMEM_CACHE(dentry, 3027 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3028 3029 register_shrinker(&dcache_shrinker); 3030 3031 /* Hash may have been set up in dcache_init_early */ 3032 if (!hashdist) 3033 return; 3034 3035 dentry_hashtable = 3036 alloc_large_system_hash("Dentry cache", 3037 sizeof(struct hlist_bl_head), 3038 dhash_entries, 3039 13, 3040 0, 3041 &d_hash_shift, 3042 &d_hash_mask, 3043 0); 3044 3045 for (loop = 0; loop < (1 << d_hash_shift); loop++) 3046 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3047 } 3048 3049 /* SLAB cache for __getname() consumers */ 3050 struct kmem_cache *names_cachep __read_mostly; 3051 EXPORT_SYMBOL(names_cachep); 3052 3053 EXPORT_SYMBOL(d_genocide); 3054 3055 void __init vfs_caches_init_early(void) 3056 { 3057 dcache_init_early(); 3058 inode_init_early(); 3059 } 3060 3061 void __init vfs_caches_init(unsigned long mempages) 3062 { 3063 unsigned long reserve; 3064 3065 /* Base hash sizes on available memory, with a reserve equal to 3066 150% of current kernel size */ 3067 3068 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3069 mempages -= reserve; 3070 3071 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3072 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3073 3074 dcache_init(); 3075 inode_init(); 3076 files_init(mempages); 3077 mnt_init(); 3078 bdev_cache_init(); 3079 chrdev_init(); 3080 } 3081