xref: /linux/fs/dcache.c (revision 7f71507851fc7764b36a3221839607d3a45c2025)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 #include <asm/runtime-const.h>
39 
40 /*
41  * Usage:
42  * dcache->d_inode->i_lock protects:
43  *   - i_dentry, d_u.d_alias, d_inode of aliases
44  * dcache_hash_bucket lock protects:
45  *   - the dcache hash table
46  * s_roots bl list spinlock protects:
47  *   - the s_roots list (see __d_drop)
48  * dentry->d_sb->s_dentry_lru_lock protects:
49  *   - the dcache lru lists and counters
50  * d_lock protects:
51  *   - d_flags
52  *   - d_name
53  *   - d_lru
54  *   - d_count
55  *   - d_unhashed()
56  *   - d_parent and d_chilren
57  *   - childrens' d_sib and d_parent
58  *   - d_u.d_alias, d_inode
59  *
60  * Ordering:
61  * dentry->d_inode->i_lock
62  *   dentry->d_lock
63  *     dentry->d_sb->s_dentry_lru_lock
64  *     dcache_hash_bucket lock
65  *     s_roots lock
66  *
67  * If there is an ancestor relationship:
68  * dentry->d_parent->...->d_parent->d_lock
69  *   ...
70  *     dentry->d_parent->d_lock
71  *       dentry->d_lock
72  *
73  * If no ancestor relationship:
74  * arbitrary, since it's serialized on rename_lock
75  */
76 int sysctl_vfs_cache_pressure __read_mostly = 100;
77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
78 
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
80 
81 EXPORT_SYMBOL(rename_lock);
82 
83 static struct kmem_cache *dentry_cache __ro_after_init;
84 
85 const struct qstr empty_name = QSTR_INIT("", 0);
86 EXPORT_SYMBOL(empty_name);
87 const struct qstr slash_name = QSTR_INIT("/", 1);
88 EXPORT_SYMBOL(slash_name);
89 const struct qstr dotdot_name = QSTR_INIT("..", 2);
90 EXPORT_SYMBOL(dotdot_name);
91 
92 /*
93  * This is the single most critical data structure when it comes
94  * to the dcache: the hashtable for lookups. Somebody should try
95  * to make this good - I've just made it work.
96  *
97  * This hash-function tries to avoid losing too many bits of hash
98  * information, yet avoid using a prime hash-size or similar.
99  *
100  * Marking the variables "used" ensures that the compiler doesn't
101  * optimize them away completely on architectures with runtime
102  * constant infrastructure, this allows debuggers to see their
103  * values. But updating these values has no effect on those arches.
104  */
105 
106 static unsigned int d_hash_shift __ro_after_init __used;
107 
108 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
109 
110 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
111 {
112 	return runtime_const_ptr(dentry_hashtable) +
113 		runtime_const_shift_right_32(hashlen, d_hash_shift);
114 }
115 
116 #define IN_LOOKUP_SHIFT 10
117 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
118 
119 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
120 					unsigned int hash)
121 {
122 	hash += (unsigned long) parent / L1_CACHE_BYTES;
123 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
124 }
125 
126 struct dentry_stat_t {
127 	long nr_dentry;
128 	long nr_unused;
129 	long age_limit;		/* age in seconds */
130 	long want_pages;	/* pages requested by system */
131 	long nr_negative;	/* # of unused negative dentries */
132 	long dummy;		/* Reserved for future use */
133 };
134 
135 static DEFINE_PER_CPU(long, nr_dentry);
136 static DEFINE_PER_CPU(long, nr_dentry_unused);
137 static DEFINE_PER_CPU(long, nr_dentry_negative);
138 static int dentry_negative_policy;
139 
140 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
141 /* Statistics gathering. */
142 static struct dentry_stat_t dentry_stat = {
143 	.age_limit = 45,
144 };
145 
146 /*
147  * Here we resort to our own counters instead of using generic per-cpu counters
148  * for consistency with what the vfs inode code does. We are expected to harvest
149  * better code and performance by having our own specialized counters.
150  *
151  * Please note that the loop is done over all possible CPUs, not over all online
152  * CPUs. The reason for this is that we don't want to play games with CPUs going
153  * on and off. If one of them goes off, we will just keep their counters.
154  *
155  * glommer: See cffbc8a for details, and if you ever intend to change this,
156  * please update all vfs counters to match.
157  */
158 static long get_nr_dentry(void)
159 {
160 	int i;
161 	long sum = 0;
162 	for_each_possible_cpu(i)
163 		sum += per_cpu(nr_dentry, i);
164 	return sum < 0 ? 0 : sum;
165 }
166 
167 static long get_nr_dentry_unused(void)
168 {
169 	int i;
170 	long sum = 0;
171 	for_each_possible_cpu(i)
172 		sum += per_cpu(nr_dentry_unused, i);
173 	return sum < 0 ? 0 : sum;
174 }
175 
176 static long get_nr_dentry_negative(void)
177 {
178 	int i;
179 	long sum = 0;
180 
181 	for_each_possible_cpu(i)
182 		sum += per_cpu(nr_dentry_negative, i);
183 	return sum < 0 ? 0 : sum;
184 }
185 
186 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
187 			  size_t *lenp, loff_t *ppos)
188 {
189 	dentry_stat.nr_dentry = get_nr_dentry();
190 	dentry_stat.nr_unused = get_nr_dentry_unused();
191 	dentry_stat.nr_negative = get_nr_dentry_negative();
192 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
193 }
194 
195 static struct ctl_table fs_dcache_sysctls[] = {
196 	{
197 		.procname	= "dentry-state",
198 		.data		= &dentry_stat,
199 		.maxlen		= 6*sizeof(long),
200 		.mode		= 0444,
201 		.proc_handler	= proc_nr_dentry,
202 	},
203 	{
204 		.procname	= "dentry-negative",
205 		.data		= &dentry_negative_policy,
206 		.maxlen		= sizeof(dentry_negative_policy),
207 		.mode		= 0644,
208 		.proc_handler	= proc_dointvec_minmax,
209 		.extra1		= SYSCTL_ZERO,
210 		.extra2		= SYSCTL_ONE,
211 	},
212 };
213 
214 static int __init init_fs_dcache_sysctls(void)
215 {
216 	register_sysctl_init("fs", fs_dcache_sysctls);
217 	return 0;
218 }
219 fs_initcall(init_fs_dcache_sysctls);
220 #endif
221 
222 /*
223  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
224  * The strings are both count bytes long, and count is non-zero.
225  */
226 #ifdef CONFIG_DCACHE_WORD_ACCESS
227 
228 #include <asm/word-at-a-time.h>
229 /*
230  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
231  * aligned allocation for this particular component. We don't
232  * strictly need the load_unaligned_zeropad() safety, but it
233  * doesn't hurt either.
234  *
235  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
236  * need the careful unaligned handling.
237  */
238 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
239 {
240 	unsigned long a,b,mask;
241 
242 	for (;;) {
243 		a = read_word_at_a_time(cs);
244 		b = load_unaligned_zeropad(ct);
245 		if (tcount < sizeof(unsigned long))
246 			break;
247 		if (unlikely(a != b))
248 			return 1;
249 		cs += sizeof(unsigned long);
250 		ct += sizeof(unsigned long);
251 		tcount -= sizeof(unsigned long);
252 		if (!tcount)
253 			return 0;
254 	}
255 	mask = bytemask_from_count(tcount);
256 	return unlikely(!!((a ^ b) & mask));
257 }
258 
259 #else
260 
261 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
262 {
263 	do {
264 		if (*cs != *ct)
265 			return 1;
266 		cs++;
267 		ct++;
268 		tcount--;
269 	} while (tcount);
270 	return 0;
271 }
272 
273 #endif
274 
275 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
276 {
277 	/*
278 	 * Be careful about RCU walk racing with rename:
279 	 * use 'READ_ONCE' to fetch the name pointer.
280 	 *
281 	 * NOTE! Even if a rename will mean that the length
282 	 * was not loaded atomically, we don't care. The
283 	 * RCU walk will check the sequence count eventually,
284 	 * and catch it. And we won't overrun the buffer,
285 	 * because we're reading the name pointer atomically,
286 	 * and a dentry name is guaranteed to be properly
287 	 * terminated with a NUL byte.
288 	 *
289 	 * End result: even if 'len' is wrong, we'll exit
290 	 * early because the data cannot match (there can
291 	 * be no NUL in the ct/tcount data)
292 	 */
293 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
294 
295 	return dentry_string_cmp(cs, ct, tcount);
296 }
297 
298 struct external_name {
299 	union {
300 		atomic_t count;
301 		struct rcu_head head;
302 	} u;
303 	unsigned char name[];
304 };
305 
306 static inline struct external_name *external_name(struct dentry *dentry)
307 {
308 	return container_of(dentry->d_name.name, struct external_name, name[0]);
309 }
310 
311 static void __d_free(struct rcu_head *head)
312 {
313 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
314 
315 	kmem_cache_free(dentry_cache, dentry);
316 }
317 
318 static void __d_free_external(struct rcu_head *head)
319 {
320 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
321 	kfree(external_name(dentry));
322 	kmem_cache_free(dentry_cache, dentry);
323 }
324 
325 static inline int dname_external(const struct dentry *dentry)
326 {
327 	return dentry->d_name.name != dentry->d_iname;
328 }
329 
330 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
331 {
332 	spin_lock(&dentry->d_lock);
333 	name->name = dentry->d_name;
334 	if (unlikely(dname_external(dentry))) {
335 		atomic_inc(&external_name(dentry)->u.count);
336 	} else {
337 		memcpy(name->inline_name, dentry->d_iname,
338 		       dentry->d_name.len + 1);
339 		name->name.name = name->inline_name;
340 	}
341 	spin_unlock(&dentry->d_lock);
342 }
343 EXPORT_SYMBOL(take_dentry_name_snapshot);
344 
345 void release_dentry_name_snapshot(struct name_snapshot *name)
346 {
347 	if (unlikely(name->name.name != name->inline_name)) {
348 		struct external_name *p;
349 		p = container_of(name->name.name, struct external_name, name[0]);
350 		if (unlikely(atomic_dec_and_test(&p->u.count)))
351 			kfree_rcu(p, u.head);
352 	}
353 }
354 EXPORT_SYMBOL(release_dentry_name_snapshot);
355 
356 static inline void __d_set_inode_and_type(struct dentry *dentry,
357 					  struct inode *inode,
358 					  unsigned type_flags)
359 {
360 	unsigned flags;
361 
362 	dentry->d_inode = inode;
363 	flags = READ_ONCE(dentry->d_flags);
364 	flags &= ~DCACHE_ENTRY_TYPE;
365 	flags |= type_flags;
366 	smp_store_release(&dentry->d_flags, flags);
367 }
368 
369 static inline void __d_clear_type_and_inode(struct dentry *dentry)
370 {
371 	unsigned flags = READ_ONCE(dentry->d_flags);
372 
373 	flags &= ~DCACHE_ENTRY_TYPE;
374 	WRITE_ONCE(dentry->d_flags, flags);
375 	dentry->d_inode = NULL;
376 	/*
377 	 * The negative counter only tracks dentries on the LRU. Don't inc if
378 	 * d_lru is on another list.
379 	 */
380 	if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
381 		this_cpu_inc(nr_dentry_negative);
382 }
383 
384 static void dentry_free(struct dentry *dentry)
385 {
386 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
387 	if (unlikely(dname_external(dentry))) {
388 		struct external_name *p = external_name(dentry);
389 		if (likely(atomic_dec_and_test(&p->u.count))) {
390 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
391 			return;
392 		}
393 	}
394 	/* if dentry was never visible to RCU, immediate free is OK */
395 	if (dentry->d_flags & DCACHE_NORCU)
396 		__d_free(&dentry->d_u.d_rcu);
397 	else
398 		call_rcu(&dentry->d_u.d_rcu, __d_free);
399 }
400 
401 /*
402  * Release the dentry's inode, using the filesystem
403  * d_iput() operation if defined.
404  */
405 static void dentry_unlink_inode(struct dentry * dentry)
406 	__releases(dentry->d_lock)
407 	__releases(dentry->d_inode->i_lock)
408 {
409 	struct inode *inode = dentry->d_inode;
410 
411 	raw_write_seqcount_begin(&dentry->d_seq);
412 	__d_clear_type_and_inode(dentry);
413 	hlist_del_init(&dentry->d_u.d_alias);
414 	raw_write_seqcount_end(&dentry->d_seq);
415 	spin_unlock(&dentry->d_lock);
416 	spin_unlock(&inode->i_lock);
417 	if (!inode->i_nlink)
418 		fsnotify_inoderemove(inode);
419 	if (dentry->d_op && dentry->d_op->d_iput)
420 		dentry->d_op->d_iput(dentry, inode);
421 	else
422 		iput(inode);
423 }
424 
425 /*
426  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
427  * is in use - which includes both the "real" per-superblock
428  * LRU list _and_ the DCACHE_SHRINK_LIST use.
429  *
430  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
431  * on the shrink list (ie not on the superblock LRU list).
432  *
433  * The per-cpu "nr_dentry_unused" counters are updated with
434  * the DCACHE_LRU_LIST bit.
435  *
436  * The per-cpu "nr_dentry_negative" counters are only updated
437  * when deleted from or added to the per-superblock LRU list, not
438  * from/to the shrink list. That is to avoid an unneeded dec/inc
439  * pair when moving from LRU to shrink list in select_collect().
440  *
441  * These helper functions make sure we always follow the
442  * rules. d_lock must be held by the caller.
443  */
444 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
445 static void d_lru_add(struct dentry *dentry)
446 {
447 	D_FLAG_VERIFY(dentry, 0);
448 	dentry->d_flags |= DCACHE_LRU_LIST;
449 	this_cpu_inc(nr_dentry_unused);
450 	if (d_is_negative(dentry))
451 		this_cpu_inc(nr_dentry_negative);
452 	WARN_ON_ONCE(!list_lru_add_obj(
453 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
454 }
455 
456 static void d_lru_del(struct dentry *dentry)
457 {
458 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
459 	dentry->d_flags &= ~DCACHE_LRU_LIST;
460 	this_cpu_dec(nr_dentry_unused);
461 	if (d_is_negative(dentry))
462 		this_cpu_dec(nr_dentry_negative);
463 	WARN_ON_ONCE(!list_lru_del_obj(
464 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
465 }
466 
467 static void d_shrink_del(struct dentry *dentry)
468 {
469 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
470 	list_del_init(&dentry->d_lru);
471 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
472 	this_cpu_dec(nr_dentry_unused);
473 }
474 
475 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
476 {
477 	D_FLAG_VERIFY(dentry, 0);
478 	list_add(&dentry->d_lru, list);
479 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
480 	this_cpu_inc(nr_dentry_unused);
481 }
482 
483 /*
484  * These can only be called under the global LRU lock, ie during the
485  * callback for freeing the LRU list. "isolate" removes it from the
486  * LRU lists entirely, while shrink_move moves it to the indicated
487  * private list.
488  */
489 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
490 {
491 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
492 	dentry->d_flags &= ~DCACHE_LRU_LIST;
493 	this_cpu_dec(nr_dentry_unused);
494 	if (d_is_negative(dentry))
495 		this_cpu_dec(nr_dentry_negative);
496 	list_lru_isolate(lru, &dentry->d_lru);
497 }
498 
499 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
500 			      struct list_head *list)
501 {
502 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
503 	dentry->d_flags |= DCACHE_SHRINK_LIST;
504 	if (d_is_negative(dentry))
505 		this_cpu_dec(nr_dentry_negative);
506 	list_lru_isolate_move(lru, &dentry->d_lru, list);
507 }
508 
509 static void ___d_drop(struct dentry *dentry)
510 {
511 	struct hlist_bl_head *b;
512 	/*
513 	 * Hashed dentries are normally on the dentry hashtable,
514 	 * with the exception of those newly allocated by
515 	 * d_obtain_root, which are always IS_ROOT:
516 	 */
517 	if (unlikely(IS_ROOT(dentry)))
518 		b = &dentry->d_sb->s_roots;
519 	else
520 		b = d_hash(dentry->d_name.hash);
521 
522 	hlist_bl_lock(b);
523 	__hlist_bl_del(&dentry->d_hash);
524 	hlist_bl_unlock(b);
525 }
526 
527 void __d_drop(struct dentry *dentry)
528 {
529 	if (!d_unhashed(dentry)) {
530 		___d_drop(dentry);
531 		dentry->d_hash.pprev = NULL;
532 		write_seqcount_invalidate(&dentry->d_seq);
533 	}
534 }
535 EXPORT_SYMBOL(__d_drop);
536 
537 /**
538  * d_drop - drop a dentry
539  * @dentry: dentry to drop
540  *
541  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
542  * be found through a VFS lookup any more. Note that this is different from
543  * deleting the dentry - d_delete will try to mark the dentry negative if
544  * possible, giving a successful _negative_ lookup, while d_drop will
545  * just make the cache lookup fail.
546  *
547  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
548  * reason (NFS timeouts or autofs deletes).
549  *
550  * __d_drop requires dentry->d_lock
551  *
552  * ___d_drop doesn't mark dentry as "unhashed"
553  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
554  */
555 void d_drop(struct dentry *dentry)
556 {
557 	spin_lock(&dentry->d_lock);
558 	__d_drop(dentry);
559 	spin_unlock(&dentry->d_lock);
560 }
561 EXPORT_SYMBOL(d_drop);
562 
563 static inline void dentry_unlist(struct dentry *dentry)
564 {
565 	struct dentry *next;
566 	/*
567 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
568 	 * attached to the dentry tree
569 	 */
570 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
571 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
572 		return;
573 	__hlist_del(&dentry->d_sib);
574 	/*
575 	 * Cursors can move around the list of children.  While we'd been
576 	 * a normal list member, it didn't matter - ->d_sib.next would've
577 	 * been updated.  However, from now on it won't be and for the
578 	 * things like d_walk() it might end up with a nasty surprise.
579 	 * Normally d_walk() doesn't care about cursors moving around -
580 	 * ->d_lock on parent prevents that and since a cursor has no children
581 	 * of its own, we get through it without ever unlocking the parent.
582 	 * There is one exception, though - if we ascend from a child that
583 	 * gets killed as soon as we unlock it, the next sibling is found
584 	 * using the value left in its ->d_sib.next.  And if _that_
585 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
586 	 * before d_walk() regains parent->d_lock, we'll end up skipping
587 	 * everything the cursor had been moved past.
588 	 *
589 	 * Solution: make sure that the pointer left behind in ->d_sib.next
590 	 * points to something that won't be moving around.  I.e. skip the
591 	 * cursors.
592 	 */
593 	while (dentry->d_sib.next) {
594 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
595 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
596 			break;
597 		dentry->d_sib.next = next->d_sib.next;
598 	}
599 }
600 
601 static struct dentry *__dentry_kill(struct dentry *dentry)
602 {
603 	struct dentry *parent = NULL;
604 	bool can_free = true;
605 
606 	/*
607 	 * The dentry is now unrecoverably dead to the world.
608 	 */
609 	lockref_mark_dead(&dentry->d_lockref);
610 
611 	/*
612 	 * inform the fs via d_prune that this dentry is about to be
613 	 * unhashed and destroyed.
614 	 */
615 	if (dentry->d_flags & DCACHE_OP_PRUNE)
616 		dentry->d_op->d_prune(dentry);
617 
618 	if (dentry->d_flags & DCACHE_LRU_LIST) {
619 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
620 			d_lru_del(dentry);
621 	}
622 	/* if it was on the hash then remove it */
623 	__d_drop(dentry);
624 	if (dentry->d_inode)
625 		dentry_unlink_inode(dentry);
626 	else
627 		spin_unlock(&dentry->d_lock);
628 	this_cpu_dec(nr_dentry);
629 	if (dentry->d_op && dentry->d_op->d_release)
630 		dentry->d_op->d_release(dentry);
631 
632 	cond_resched();
633 	/* now that it's negative, ->d_parent is stable */
634 	if (!IS_ROOT(dentry)) {
635 		parent = dentry->d_parent;
636 		spin_lock(&parent->d_lock);
637 	}
638 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
639 	dentry_unlist(dentry);
640 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
641 		can_free = false;
642 	spin_unlock(&dentry->d_lock);
643 	if (likely(can_free))
644 		dentry_free(dentry);
645 	if (parent && --parent->d_lockref.count) {
646 		spin_unlock(&parent->d_lock);
647 		return NULL;
648 	}
649 	return parent;
650 }
651 
652 /*
653  * Lock a dentry for feeding it to __dentry_kill().
654  * Called under rcu_read_lock() and dentry->d_lock; the former
655  * guarantees that nothing we access will be freed under us.
656  * Note that dentry is *not* protected from concurrent dentry_kill(),
657  * d_delete(), etc.
658  *
659  * Return false if dentry is busy.  Otherwise, return true and have
660  * that dentry's inode locked.
661  */
662 
663 static bool lock_for_kill(struct dentry *dentry)
664 {
665 	struct inode *inode = dentry->d_inode;
666 
667 	if (unlikely(dentry->d_lockref.count))
668 		return false;
669 
670 	if (!inode || likely(spin_trylock(&inode->i_lock)))
671 		return true;
672 
673 	do {
674 		spin_unlock(&dentry->d_lock);
675 		spin_lock(&inode->i_lock);
676 		spin_lock(&dentry->d_lock);
677 		if (likely(inode == dentry->d_inode))
678 			break;
679 		spin_unlock(&inode->i_lock);
680 		inode = dentry->d_inode;
681 	} while (inode);
682 	if (likely(!dentry->d_lockref.count))
683 		return true;
684 	if (inode)
685 		spin_unlock(&inode->i_lock);
686 	return false;
687 }
688 
689 /*
690  * Decide if dentry is worth retaining.  Usually this is called with dentry
691  * locked; if not locked, we are more limited and might not be able to tell
692  * without a lock.  False in this case means "punt to locked path and recheck".
693  *
694  * In case we aren't locked, these predicates are not "stable". However, it is
695  * sufficient that at some point after we dropped the reference the dentry was
696  * hashed and the flags had the proper value. Other dentry users may have
697  * re-gotten a reference to the dentry and change that, but our work is done -
698  * we can leave the dentry around with a zero refcount.
699  */
700 static inline bool retain_dentry(struct dentry *dentry, bool locked)
701 {
702 	unsigned int d_flags;
703 
704 	smp_rmb();
705 	d_flags = READ_ONCE(dentry->d_flags);
706 
707 	// Unreachable? Nobody would be able to look it up, no point retaining
708 	if (unlikely(d_unhashed(dentry)))
709 		return false;
710 
711 	// Same if it's disconnected
712 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
713 		return false;
714 
715 	// ->d_delete() might tell us not to bother, but that requires
716 	// ->d_lock; can't decide without it
717 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
718 		if (!locked || dentry->d_op->d_delete(dentry))
719 			return false;
720 	}
721 
722 	// Explicitly told not to bother
723 	if (unlikely(d_flags & DCACHE_DONTCACHE))
724 		return false;
725 
726 	// At this point it looks like we ought to keep it.  We also might
727 	// need to do something - put it on LRU if it wasn't there already
728 	// and mark it referenced if it was on LRU, but not marked yet.
729 	// Unfortunately, both actions require ->d_lock, so in lockless
730 	// case we'd have to punt rather than doing those.
731 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
732 		if (!locked)
733 			return false;
734 		d_lru_add(dentry);
735 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
736 		if (!locked)
737 			return false;
738 		dentry->d_flags |= DCACHE_REFERENCED;
739 	}
740 	return true;
741 }
742 
743 void d_mark_dontcache(struct inode *inode)
744 {
745 	struct dentry *de;
746 
747 	spin_lock(&inode->i_lock);
748 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
749 		spin_lock(&de->d_lock);
750 		de->d_flags |= DCACHE_DONTCACHE;
751 		spin_unlock(&de->d_lock);
752 	}
753 	inode->i_state |= I_DONTCACHE;
754 	spin_unlock(&inode->i_lock);
755 }
756 EXPORT_SYMBOL(d_mark_dontcache);
757 
758 /*
759  * Try to do a lockless dput(), and return whether that was successful.
760  *
761  * If unsuccessful, we return false, having already taken the dentry lock.
762  * In that case refcount is guaranteed to be zero and we have already
763  * decided that it's not worth keeping around.
764  *
765  * The caller needs to hold the RCU read lock, so that the dentry is
766  * guaranteed to stay around even if the refcount goes down to zero!
767  */
768 static inline bool fast_dput(struct dentry *dentry)
769 {
770 	int ret;
771 
772 	/*
773 	 * try to decrement the lockref optimistically.
774 	 */
775 	ret = lockref_put_return(&dentry->d_lockref);
776 
777 	/*
778 	 * If the lockref_put_return() failed due to the lock being held
779 	 * by somebody else, the fast path has failed. We will need to
780 	 * get the lock, and then check the count again.
781 	 */
782 	if (unlikely(ret < 0)) {
783 		spin_lock(&dentry->d_lock);
784 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
785 			spin_unlock(&dentry->d_lock);
786 			return true;
787 		}
788 		dentry->d_lockref.count--;
789 		goto locked;
790 	}
791 
792 	/*
793 	 * If we weren't the last ref, we're done.
794 	 */
795 	if (ret)
796 		return true;
797 
798 	/*
799 	 * Can we decide that decrement of refcount is all we needed without
800 	 * taking the lock?  There's a very common case when it's all we need -
801 	 * dentry looks like it ought to be retained and there's nothing else
802 	 * to do.
803 	 */
804 	if (retain_dentry(dentry, false))
805 		return true;
806 
807 	/*
808 	 * Either not worth retaining or we can't tell without the lock.
809 	 * Get the lock, then.  We've already decremented the refcount to 0,
810 	 * but we'll need to re-check the situation after getting the lock.
811 	 */
812 	spin_lock(&dentry->d_lock);
813 
814 	/*
815 	 * Did somebody else grab a reference to it in the meantime, and
816 	 * we're no longer the last user after all? Alternatively, somebody
817 	 * else could have killed it and marked it dead. Either way, we
818 	 * don't need to do anything else.
819 	 */
820 locked:
821 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
822 		spin_unlock(&dentry->d_lock);
823 		return true;
824 	}
825 	return false;
826 }
827 
828 
829 /*
830  * This is dput
831  *
832  * This is complicated by the fact that we do not want to put
833  * dentries that are no longer on any hash chain on the unused
834  * list: we'd much rather just get rid of them immediately.
835  *
836  * However, that implies that we have to traverse the dentry
837  * tree upwards to the parents which might _also_ now be
838  * scheduled for deletion (it may have been only waiting for
839  * its last child to go away).
840  *
841  * This tail recursion is done by hand as we don't want to depend
842  * on the compiler to always get this right (gcc generally doesn't).
843  * Real recursion would eat up our stack space.
844  */
845 
846 /*
847  * dput - release a dentry
848  * @dentry: dentry to release
849  *
850  * Release a dentry. This will drop the usage count and if appropriate
851  * call the dentry unlink method as well as removing it from the queues and
852  * releasing its resources. If the parent dentries were scheduled for release
853  * they too may now get deleted.
854  */
855 void dput(struct dentry *dentry)
856 {
857 	if (!dentry)
858 		return;
859 	might_sleep();
860 	rcu_read_lock();
861 	if (likely(fast_dput(dentry))) {
862 		rcu_read_unlock();
863 		return;
864 	}
865 	while (lock_for_kill(dentry)) {
866 		rcu_read_unlock();
867 		dentry = __dentry_kill(dentry);
868 		if (!dentry)
869 			return;
870 		if (retain_dentry(dentry, true)) {
871 			spin_unlock(&dentry->d_lock);
872 			return;
873 		}
874 		rcu_read_lock();
875 	}
876 	rcu_read_unlock();
877 	spin_unlock(&dentry->d_lock);
878 }
879 EXPORT_SYMBOL(dput);
880 
881 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
882 __must_hold(&dentry->d_lock)
883 {
884 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
885 		if (dentry->d_flags & DCACHE_LRU_LIST)
886 			d_lru_del(dentry);
887 		d_shrink_add(dentry, list);
888 	}
889 }
890 
891 void dput_to_list(struct dentry *dentry, struct list_head *list)
892 {
893 	rcu_read_lock();
894 	if (likely(fast_dput(dentry))) {
895 		rcu_read_unlock();
896 		return;
897 	}
898 	rcu_read_unlock();
899 	to_shrink_list(dentry, list);
900 	spin_unlock(&dentry->d_lock);
901 }
902 
903 struct dentry *dget_parent(struct dentry *dentry)
904 {
905 	int gotref;
906 	struct dentry *ret;
907 	unsigned seq;
908 
909 	/*
910 	 * Do optimistic parent lookup without any
911 	 * locking.
912 	 */
913 	rcu_read_lock();
914 	seq = raw_seqcount_begin(&dentry->d_seq);
915 	ret = READ_ONCE(dentry->d_parent);
916 	gotref = lockref_get_not_zero(&ret->d_lockref);
917 	rcu_read_unlock();
918 	if (likely(gotref)) {
919 		if (!read_seqcount_retry(&dentry->d_seq, seq))
920 			return ret;
921 		dput(ret);
922 	}
923 
924 repeat:
925 	/*
926 	 * Don't need rcu_dereference because we re-check it was correct under
927 	 * the lock.
928 	 */
929 	rcu_read_lock();
930 	ret = dentry->d_parent;
931 	spin_lock(&ret->d_lock);
932 	if (unlikely(ret != dentry->d_parent)) {
933 		spin_unlock(&ret->d_lock);
934 		rcu_read_unlock();
935 		goto repeat;
936 	}
937 	rcu_read_unlock();
938 	BUG_ON(!ret->d_lockref.count);
939 	ret->d_lockref.count++;
940 	spin_unlock(&ret->d_lock);
941 	return ret;
942 }
943 EXPORT_SYMBOL(dget_parent);
944 
945 static struct dentry * __d_find_any_alias(struct inode *inode)
946 {
947 	struct dentry *alias;
948 
949 	if (hlist_empty(&inode->i_dentry))
950 		return NULL;
951 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
952 	lockref_get(&alias->d_lockref);
953 	return alias;
954 }
955 
956 /**
957  * d_find_any_alias - find any alias for a given inode
958  * @inode: inode to find an alias for
959  *
960  * If any aliases exist for the given inode, take and return a
961  * reference for one of them.  If no aliases exist, return %NULL.
962  */
963 struct dentry *d_find_any_alias(struct inode *inode)
964 {
965 	struct dentry *de;
966 
967 	spin_lock(&inode->i_lock);
968 	de = __d_find_any_alias(inode);
969 	spin_unlock(&inode->i_lock);
970 	return de;
971 }
972 EXPORT_SYMBOL(d_find_any_alias);
973 
974 static struct dentry *__d_find_alias(struct inode *inode)
975 {
976 	struct dentry *alias;
977 
978 	if (S_ISDIR(inode->i_mode))
979 		return __d_find_any_alias(inode);
980 
981 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
982 		spin_lock(&alias->d_lock);
983  		if (!d_unhashed(alias)) {
984 			dget_dlock(alias);
985 			spin_unlock(&alias->d_lock);
986 			return alias;
987 		}
988 		spin_unlock(&alias->d_lock);
989 	}
990 	return NULL;
991 }
992 
993 /**
994  * d_find_alias - grab a hashed alias of inode
995  * @inode: inode in question
996  *
997  * If inode has a hashed alias, or is a directory and has any alias,
998  * acquire the reference to alias and return it. Otherwise return NULL.
999  * Notice that if inode is a directory there can be only one alias and
1000  * it can be unhashed only if it has no children, or if it is the root
1001  * of a filesystem, or if the directory was renamed and d_revalidate
1002  * was the first vfs operation to notice.
1003  *
1004  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1005  * any other hashed alias over that one.
1006  */
1007 struct dentry *d_find_alias(struct inode *inode)
1008 {
1009 	struct dentry *de = NULL;
1010 
1011 	if (!hlist_empty(&inode->i_dentry)) {
1012 		spin_lock(&inode->i_lock);
1013 		de = __d_find_alias(inode);
1014 		spin_unlock(&inode->i_lock);
1015 	}
1016 	return de;
1017 }
1018 EXPORT_SYMBOL(d_find_alias);
1019 
1020 /*
1021  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1022  *  that inode won't get freed until rcu_read_unlock().
1023  */
1024 struct dentry *d_find_alias_rcu(struct inode *inode)
1025 {
1026 	struct hlist_head *l = &inode->i_dentry;
1027 	struct dentry *de = NULL;
1028 
1029 	spin_lock(&inode->i_lock);
1030 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1031 	// used without having I_FREEING set, which means no aliases left
1032 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1033 		if (S_ISDIR(inode->i_mode)) {
1034 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1035 		} else {
1036 			hlist_for_each_entry(de, l, d_u.d_alias)
1037 				if (!d_unhashed(de))
1038 					break;
1039 		}
1040 	}
1041 	spin_unlock(&inode->i_lock);
1042 	return de;
1043 }
1044 
1045 /*
1046  *	Try to kill dentries associated with this inode.
1047  * WARNING: you must own a reference to inode.
1048  */
1049 void d_prune_aliases(struct inode *inode)
1050 {
1051 	LIST_HEAD(dispose);
1052 	struct dentry *dentry;
1053 
1054 	spin_lock(&inode->i_lock);
1055 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1056 		spin_lock(&dentry->d_lock);
1057 		if (!dentry->d_lockref.count)
1058 			to_shrink_list(dentry, &dispose);
1059 		spin_unlock(&dentry->d_lock);
1060 	}
1061 	spin_unlock(&inode->i_lock);
1062 	shrink_dentry_list(&dispose);
1063 }
1064 EXPORT_SYMBOL(d_prune_aliases);
1065 
1066 static inline void shrink_kill(struct dentry *victim)
1067 {
1068 	do {
1069 		rcu_read_unlock();
1070 		victim = __dentry_kill(victim);
1071 		rcu_read_lock();
1072 	} while (victim && lock_for_kill(victim));
1073 	rcu_read_unlock();
1074 	if (victim)
1075 		spin_unlock(&victim->d_lock);
1076 }
1077 
1078 void shrink_dentry_list(struct list_head *list)
1079 {
1080 	while (!list_empty(list)) {
1081 		struct dentry *dentry;
1082 
1083 		dentry = list_entry(list->prev, struct dentry, d_lru);
1084 		spin_lock(&dentry->d_lock);
1085 		rcu_read_lock();
1086 		if (!lock_for_kill(dentry)) {
1087 			bool can_free;
1088 			rcu_read_unlock();
1089 			d_shrink_del(dentry);
1090 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1091 			spin_unlock(&dentry->d_lock);
1092 			if (can_free)
1093 				dentry_free(dentry);
1094 			continue;
1095 		}
1096 		d_shrink_del(dentry);
1097 		shrink_kill(dentry);
1098 	}
1099 }
1100 
1101 static enum lru_status dentry_lru_isolate(struct list_head *item,
1102 		struct list_lru_one *lru, void *arg)
1103 {
1104 	struct list_head *freeable = arg;
1105 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1106 
1107 
1108 	/*
1109 	 * we are inverting the lru lock/dentry->d_lock here,
1110 	 * so use a trylock. If we fail to get the lock, just skip
1111 	 * it
1112 	 */
1113 	if (!spin_trylock(&dentry->d_lock))
1114 		return LRU_SKIP;
1115 
1116 	/*
1117 	 * Referenced dentries are still in use. If they have active
1118 	 * counts, just remove them from the LRU. Otherwise give them
1119 	 * another pass through the LRU.
1120 	 */
1121 	if (dentry->d_lockref.count) {
1122 		d_lru_isolate(lru, dentry);
1123 		spin_unlock(&dentry->d_lock);
1124 		return LRU_REMOVED;
1125 	}
1126 
1127 	if (dentry->d_flags & DCACHE_REFERENCED) {
1128 		dentry->d_flags &= ~DCACHE_REFERENCED;
1129 		spin_unlock(&dentry->d_lock);
1130 
1131 		/*
1132 		 * The list move itself will be made by the common LRU code. At
1133 		 * this point, we've dropped the dentry->d_lock but keep the
1134 		 * lru lock. This is safe to do, since every list movement is
1135 		 * protected by the lru lock even if both locks are held.
1136 		 *
1137 		 * This is guaranteed by the fact that all LRU management
1138 		 * functions are intermediated by the LRU API calls like
1139 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1140 		 * only ever occur through this functions or through callbacks
1141 		 * like this one, that are called from the LRU API.
1142 		 *
1143 		 * The only exceptions to this are functions like
1144 		 * shrink_dentry_list, and code that first checks for the
1145 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1146 		 * operating only with stack provided lists after they are
1147 		 * properly isolated from the main list.  It is thus, always a
1148 		 * local access.
1149 		 */
1150 		return LRU_ROTATE;
1151 	}
1152 
1153 	d_lru_shrink_move(lru, dentry, freeable);
1154 	spin_unlock(&dentry->d_lock);
1155 
1156 	return LRU_REMOVED;
1157 }
1158 
1159 /**
1160  * prune_dcache_sb - shrink the dcache
1161  * @sb: superblock
1162  * @sc: shrink control, passed to list_lru_shrink_walk()
1163  *
1164  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1165  * is done when we need more memory and called from the superblock shrinker
1166  * function.
1167  *
1168  * This function may fail to free any resources if all the dentries are in
1169  * use.
1170  */
1171 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1172 {
1173 	LIST_HEAD(dispose);
1174 	long freed;
1175 
1176 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1177 				     dentry_lru_isolate, &dispose);
1178 	shrink_dentry_list(&dispose);
1179 	return freed;
1180 }
1181 
1182 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1183 		struct list_lru_one *lru, void *arg)
1184 {
1185 	struct list_head *freeable = arg;
1186 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1187 
1188 	/*
1189 	 * we are inverting the lru lock/dentry->d_lock here,
1190 	 * so use a trylock. If we fail to get the lock, just skip
1191 	 * it
1192 	 */
1193 	if (!spin_trylock(&dentry->d_lock))
1194 		return LRU_SKIP;
1195 
1196 	d_lru_shrink_move(lru, dentry, freeable);
1197 	spin_unlock(&dentry->d_lock);
1198 
1199 	return LRU_REMOVED;
1200 }
1201 
1202 
1203 /**
1204  * shrink_dcache_sb - shrink dcache for a superblock
1205  * @sb: superblock
1206  *
1207  * Shrink the dcache for the specified super block. This is used to free
1208  * the dcache before unmounting a file system.
1209  */
1210 void shrink_dcache_sb(struct super_block *sb)
1211 {
1212 	do {
1213 		LIST_HEAD(dispose);
1214 
1215 		list_lru_walk(&sb->s_dentry_lru,
1216 			dentry_lru_isolate_shrink, &dispose, 1024);
1217 		shrink_dentry_list(&dispose);
1218 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1219 }
1220 EXPORT_SYMBOL(shrink_dcache_sb);
1221 
1222 /**
1223  * enum d_walk_ret - action to talke during tree walk
1224  * @D_WALK_CONTINUE:	contrinue walk
1225  * @D_WALK_QUIT:	quit walk
1226  * @D_WALK_NORETRY:	quit when retry is needed
1227  * @D_WALK_SKIP:	skip this dentry and its children
1228  */
1229 enum d_walk_ret {
1230 	D_WALK_CONTINUE,
1231 	D_WALK_QUIT,
1232 	D_WALK_NORETRY,
1233 	D_WALK_SKIP,
1234 };
1235 
1236 /**
1237  * d_walk - walk the dentry tree
1238  * @parent:	start of walk
1239  * @data:	data passed to @enter() and @finish()
1240  * @enter:	callback when first entering the dentry
1241  *
1242  * The @enter() callbacks are called with d_lock held.
1243  */
1244 static void d_walk(struct dentry *parent, void *data,
1245 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1246 {
1247 	struct dentry *this_parent, *dentry;
1248 	unsigned seq = 0;
1249 	enum d_walk_ret ret;
1250 	bool retry = true;
1251 
1252 again:
1253 	read_seqbegin_or_lock(&rename_lock, &seq);
1254 	this_parent = parent;
1255 	spin_lock(&this_parent->d_lock);
1256 
1257 	ret = enter(data, this_parent);
1258 	switch (ret) {
1259 	case D_WALK_CONTINUE:
1260 		break;
1261 	case D_WALK_QUIT:
1262 	case D_WALK_SKIP:
1263 		goto out_unlock;
1264 	case D_WALK_NORETRY:
1265 		retry = false;
1266 		break;
1267 	}
1268 repeat:
1269 	dentry = d_first_child(this_parent);
1270 resume:
1271 	hlist_for_each_entry_from(dentry, d_sib) {
1272 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1273 			continue;
1274 
1275 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1276 
1277 		ret = enter(data, dentry);
1278 		switch (ret) {
1279 		case D_WALK_CONTINUE:
1280 			break;
1281 		case D_WALK_QUIT:
1282 			spin_unlock(&dentry->d_lock);
1283 			goto out_unlock;
1284 		case D_WALK_NORETRY:
1285 			retry = false;
1286 			break;
1287 		case D_WALK_SKIP:
1288 			spin_unlock(&dentry->d_lock);
1289 			continue;
1290 		}
1291 
1292 		if (!hlist_empty(&dentry->d_children)) {
1293 			spin_unlock(&this_parent->d_lock);
1294 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1295 			this_parent = dentry;
1296 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1297 			goto repeat;
1298 		}
1299 		spin_unlock(&dentry->d_lock);
1300 	}
1301 	/*
1302 	 * All done at this level ... ascend and resume the search.
1303 	 */
1304 	rcu_read_lock();
1305 ascend:
1306 	if (this_parent != parent) {
1307 		dentry = this_parent;
1308 		this_parent = dentry->d_parent;
1309 
1310 		spin_unlock(&dentry->d_lock);
1311 		spin_lock(&this_parent->d_lock);
1312 
1313 		/* might go back up the wrong parent if we have had a rename. */
1314 		if (need_seqretry(&rename_lock, seq))
1315 			goto rename_retry;
1316 		/* go into the first sibling still alive */
1317 		hlist_for_each_entry_continue(dentry, d_sib) {
1318 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1319 				rcu_read_unlock();
1320 				goto resume;
1321 			}
1322 		}
1323 		goto ascend;
1324 	}
1325 	if (need_seqretry(&rename_lock, seq))
1326 		goto rename_retry;
1327 	rcu_read_unlock();
1328 
1329 out_unlock:
1330 	spin_unlock(&this_parent->d_lock);
1331 	done_seqretry(&rename_lock, seq);
1332 	return;
1333 
1334 rename_retry:
1335 	spin_unlock(&this_parent->d_lock);
1336 	rcu_read_unlock();
1337 	BUG_ON(seq & 1);
1338 	if (!retry)
1339 		return;
1340 	seq = 1;
1341 	goto again;
1342 }
1343 
1344 struct check_mount {
1345 	struct vfsmount *mnt;
1346 	unsigned int mounted;
1347 };
1348 
1349 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1350 {
1351 	struct check_mount *info = data;
1352 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1353 
1354 	if (likely(!d_mountpoint(dentry)))
1355 		return D_WALK_CONTINUE;
1356 	if (__path_is_mountpoint(&path)) {
1357 		info->mounted = 1;
1358 		return D_WALK_QUIT;
1359 	}
1360 	return D_WALK_CONTINUE;
1361 }
1362 
1363 /**
1364  * path_has_submounts - check for mounts over a dentry in the
1365  *                      current namespace.
1366  * @parent: path to check.
1367  *
1368  * Return true if the parent or its subdirectories contain
1369  * a mount point in the current namespace.
1370  */
1371 int path_has_submounts(const struct path *parent)
1372 {
1373 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1374 
1375 	read_seqlock_excl(&mount_lock);
1376 	d_walk(parent->dentry, &data, path_check_mount);
1377 	read_sequnlock_excl(&mount_lock);
1378 
1379 	return data.mounted;
1380 }
1381 EXPORT_SYMBOL(path_has_submounts);
1382 
1383 /*
1384  * Called by mount code to set a mountpoint and check if the mountpoint is
1385  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1386  * subtree can become unreachable).
1387  *
1388  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1389  * this reason take rename_lock and d_lock on dentry and ancestors.
1390  */
1391 int d_set_mounted(struct dentry *dentry)
1392 {
1393 	struct dentry *p;
1394 	int ret = -ENOENT;
1395 	write_seqlock(&rename_lock);
1396 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1397 		/* Need exclusion wrt. d_invalidate() */
1398 		spin_lock(&p->d_lock);
1399 		if (unlikely(d_unhashed(p))) {
1400 			spin_unlock(&p->d_lock);
1401 			goto out;
1402 		}
1403 		spin_unlock(&p->d_lock);
1404 	}
1405 	spin_lock(&dentry->d_lock);
1406 	if (!d_unlinked(dentry)) {
1407 		ret = -EBUSY;
1408 		if (!d_mountpoint(dentry)) {
1409 			dentry->d_flags |= DCACHE_MOUNTED;
1410 			ret = 0;
1411 		}
1412 	}
1413  	spin_unlock(&dentry->d_lock);
1414 out:
1415 	write_sequnlock(&rename_lock);
1416 	return ret;
1417 }
1418 
1419 /*
1420  * Search the dentry child list of the specified parent,
1421  * and move any unused dentries to the end of the unused
1422  * list for prune_dcache(). We descend to the next level
1423  * whenever the d_children list is non-empty and continue
1424  * searching.
1425  *
1426  * It returns zero iff there are no unused children,
1427  * otherwise  it returns the number of children moved to
1428  * the end of the unused list. This may not be the total
1429  * number of unused children, because select_parent can
1430  * drop the lock and return early due to latency
1431  * constraints.
1432  */
1433 
1434 struct select_data {
1435 	struct dentry *start;
1436 	union {
1437 		long found;
1438 		struct dentry *victim;
1439 	};
1440 	struct list_head dispose;
1441 };
1442 
1443 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1444 {
1445 	struct select_data *data = _data;
1446 	enum d_walk_ret ret = D_WALK_CONTINUE;
1447 
1448 	if (data->start == dentry)
1449 		goto out;
1450 
1451 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1452 		data->found++;
1453 	} else if (!dentry->d_lockref.count) {
1454 		to_shrink_list(dentry, &data->dispose);
1455 		data->found++;
1456 	} else if (dentry->d_lockref.count < 0) {
1457 		data->found++;
1458 	}
1459 	/*
1460 	 * We can return to the caller if we have found some (this
1461 	 * ensures forward progress). We'll be coming back to find
1462 	 * the rest.
1463 	 */
1464 	if (!list_empty(&data->dispose))
1465 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1466 out:
1467 	return ret;
1468 }
1469 
1470 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1471 {
1472 	struct select_data *data = _data;
1473 	enum d_walk_ret ret = D_WALK_CONTINUE;
1474 
1475 	if (data->start == dentry)
1476 		goto out;
1477 
1478 	if (!dentry->d_lockref.count) {
1479 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1480 			rcu_read_lock();
1481 			data->victim = dentry;
1482 			return D_WALK_QUIT;
1483 		}
1484 		to_shrink_list(dentry, &data->dispose);
1485 	}
1486 	/*
1487 	 * We can return to the caller if we have found some (this
1488 	 * ensures forward progress). We'll be coming back to find
1489 	 * the rest.
1490 	 */
1491 	if (!list_empty(&data->dispose))
1492 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1493 out:
1494 	return ret;
1495 }
1496 
1497 /**
1498  * shrink_dcache_parent - prune dcache
1499  * @parent: parent of entries to prune
1500  *
1501  * Prune the dcache to remove unused children of the parent dentry.
1502  */
1503 void shrink_dcache_parent(struct dentry *parent)
1504 {
1505 	for (;;) {
1506 		struct select_data data = {.start = parent};
1507 
1508 		INIT_LIST_HEAD(&data.dispose);
1509 		d_walk(parent, &data, select_collect);
1510 
1511 		if (!list_empty(&data.dispose)) {
1512 			shrink_dentry_list(&data.dispose);
1513 			continue;
1514 		}
1515 
1516 		cond_resched();
1517 		if (!data.found)
1518 			break;
1519 		data.victim = NULL;
1520 		d_walk(parent, &data, select_collect2);
1521 		if (data.victim) {
1522 			spin_lock(&data.victim->d_lock);
1523 			if (!lock_for_kill(data.victim)) {
1524 				spin_unlock(&data.victim->d_lock);
1525 				rcu_read_unlock();
1526 			} else {
1527 				shrink_kill(data.victim);
1528 			}
1529 		}
1530 		if (!list_empty(&data.dispose))
1531 			shrink_dentry_list(&data.dispose);
1532 	}
1533 }
1534 EXPORT_SYMBOL(shrink_dcache_parent);
1535 
1536 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1537 {
1538 	/* it has busy descendents; complain about those instead */
1539 	if (!hlist_empty(&dentry->d_children))
1540 		return D_WALK_CONTINUE;
1541 
1542 	/* root with refcount 1 is fine */
1543 	if (dentry == _data && dentry->d_lockref.count == 1)
1544 		return D_WALK_CONTINUE;
1545 
1546 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1547 			" still in use (%d) [unmount of %s %s]\n",
1548 		       dentry,
1549 		       dentry->d_inode ?
1550 		       dentry->d_inode->i_ino : 0UL,
1551 		       dentry,
1552 		       dentry->d_lockref.count,
1553 		       dentry->d_sb->s_type->name,
1554 		       dentry->d_sb->s_id);
1555 	return D_WALK_CONTINUE;
1556 }
1557 
1558 static void do_one_tree(struct dentry *dentry)
1559 {
1560 	shrink_dcache_parent(dentry);
1561 	d_walk(dentry, dentry, umount_check);
1562 	d_drop(dentry);
1563 	dput(dentry);
1564 }
1565 
1566 /*
1567  * destroy the dentries attached to a superblock on unmounting
1568  */
1569 void shrink_dcache_for_umount(struct super_block *sb)
1570 {
1571 	struct dentry *dentry;
1572 
1573 	rwsem_assert_held_write(&sb->s_umount);
1574 
1575 	dentry = sb->s_root;
1576 	sb->s_root = NULL;
1577 	do_one_tree(dentry);
1578 
1579 	while (!hlist_bl_empty(&sb->s_roots)) {
1580 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1581 		do_one_tree(dentry);
1582 	}
1583 }
1584 
1585 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1586 {
1587 	struct dentry **victim = _data;
1588 	if (d_mountpoint(dentry)) {
1589 		*victim = dget_dlock(dentry);
1590 		return D_WALK_QUIT;
1591 	}
1592 	return D_WALK_CONTINUE;
1593 }
1594 
1595 /**
1596  * d_invalidate - detach submounts, prune dcache, and drop
1597  * @dentry: dentry to invalidate (aka detach, prune and drop)
1598  */
1599 void d_invalidate(struct dentry *dentry)
1600 {
1601 	bool had_submounts = false;
1602 	spin_lock(&dentry->d_lock);
1603 	if (d_unhashed(dentry)) {
1604 		spin_unlock(&dentry->d_lock);
1605 		return;
1606 	}
1607 	__d_drop(dentry);
1608 	spin_unlock(&dentry->d_lock);
1609 
1610 	/* Negative dentries can be dropped without further checks */
1611 	if (!dentry->d_inode)
1612 		return;
1613 
1614 	shrink_dcache_parent(dentry);
1615 	for (;;) {
1616 		struct dentry *victim = NULL;
1617 		d_walk(dentry, &victim, find_submount);
1618 		if (!victim) {
1619 			if (had_submounts)
1620 				shrink_dcache_parent(dentry);
1621 			return;
1622 		}
1623 		had_submounts = true;
1624 		detach_mounts(victim);
1625 		dput(victim);
1626 	}
1627 }
1628 EXPORT_SYMBOL(d_invalidate);
1629 
1630 /**
1631  * __d_alloc	-	allocate a dcache entry
1632  * @sb: filesystem it will belong to
1633  * @name: qstr of the name
1634  *
1635  * Allocates a dentry. It returns %NULL if there is insufficient memory
1636  * available. On a success the dentry is returned. The name passed in is
1637  * copied and the copy passed in may be reused after this call.
1638  */
1639 
1640 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1641 {
1642 	struct dentry *dentry;
1643 	char *dname;
1644 	int err;
1645 
1646 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1647 				      GFP_KERNEL);
1648 	if (!dentry)
1649 		return NULL;
1650 
1651 	/*
1652 	 * We guarantee that the inline name is always NUL-terminated.
1653 	 * This way the memcpy() done by the name switching in rename
1654 	 * will still always have a NUL at the end, even if we might
1655 	 * be overwriting an internal NUL character
1656 	 */
1657 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1658 	if (unlikely(!name)) {
1659 		name = &slash_name;
1660 		dname = dentry->d_iname;
1661 	} else if (name->len > DNAME_INLINE_LEN-1) {
1662 		size_t size = offsetof(struct external_name, name[1]);
1663 		struct external_name *p = kmalloc(size + name->len,
1664 						  GFP_KERNEL_ACCOUNT |
1665 						  __GFP_RECLAIMABLE);
1666 		if (!p) {
1667 			kmem_cache_free(dentry_cache, dentry);
1668 			return NULL;
1669 		}
1670 		atomic_set(&p->u.count, 1);
1671 		dname = p->name;
1672 	} else  {
1673 		dname = dentry->d_iname;
1674 	}
1675 
1676 	dentry->d_name.len = name->len;
1677 	dentry->d_name.hash = name->hash;
1678 	memcpy(dname, name->name, name->len);
1679 	dname[name->len] = 0;
1680 
1681 	/* Make sure we always see the terminating NUL character */
1682 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1683 
1684 	dentry->d_lockref.count = 1;
1685 	dentry->d_flags = 0;
1686 	spin_lock_init(&dentry->d_lock);
1687 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1688 	dentry->d_inode = NULL;
1689 	dentry->d_parent = dentry;
1690 	dentry->d_sb = sb;
1691 	dentry->d_op = NULL;
1692 	dentry->d_fsdata = NULL;
1693 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1694 	INIT_LIST_HEAD(&dentry->d_lru);
1695 	INIT_HLIST_HEAD(&dentry->d_children);
1696 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1697 	INIT_HLIST_NODE(&dentry->d_sib);
1698 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1699 
1700 	if (dentry->d_op && dentry->d_op->d_init) {
1701 		err = dentry->d_op->d_init(dentry);
1702 		if (err) {
1703 			if (dname_external(dentry))
1704 				kfree(external_name(dentry));
1705 			kmem_cache_free(dentry_cache, dentry);
1706 			return NULL;
1707 		}
1708 	}
1709 
1710 	this_cpu_inc(nr_dentry);
1711 
1712 	return dentry;
1713 }
1714 
1715 /**
1716  * d_alloc	-	allocate a dcache entry
1717  * @parent: parent of entry to allocate
1718  * @name: qstr of the name
1719  *
1720  * Allocates a dentry. It returns %NULL if there is insufficient memory
1721  * available. On a success the dentry is returned. The name passed in is
1722  * copied and the copy passed in may be reused after this call.
1723  */
1724 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1725 {
1726 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1727 	if (!dentry)
1728 		return NULL;
1729 	spin_lock(&parent->d_lock);
1730 	/*
1731 	 * don't need child lock because it is not subject
1732 	 * to concurrency here
1733 	 */
1734 	dentry->d_parent = dget_dlock(parent);
1735 	hlist_add_head(&dentry->d_sib, &parent->d_children);
1736 	spin_unlock(&parent->d_lock);
1737 
1738 	return dentry;
1739 }
1740 EXPORT_SYMBOL(d_alloc);
1741 
1742 struct dentry *d_alloc_anon(struct super_block *sb)
1743 {
1744 	return __d_alloc(sb, NULL);
1745 }
1746 EXPORT_SYMBOL(d_alloc_anon);
1747 
1748 struct dentry *d_alloc_cursor(struct dentry * parent)
1749 {
1750 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1751 	if (dentry) {
1752 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1753 		dentry->d_parent = dget(parent);
1754 	}
1755 	return dentry;
1756 }
1757 
1758 /**
1759  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1760  * @sb: the superblock
1761  * @name: qstr of the name
1762  *
1763  * For a filesystem that just pins its dentries in memory and never
1764  * performs lookups at all, return an unhashed IS_ROOT dentry.
1765  * This is used for pipes, sockets et.al. - the stuff that should
1766  * never be anyone's children or parents.  Unlike all other
1767  * dentries, these will not have RCU delay between dropping the
1768  * last reference and freeing them.
1769  *
1770  * The only user is alloc_file_pseudo() and that's what should
1771  * be considered a public interface.  Don't use directly.
1772  */
1773 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1774 {
1775 	static const struct dentry_operations anon_ops = {
1776 		.d_dname = simple_dname
1777 	};
1778 	struct dentry *dentry = __d_alloc(sb, name);
1779 	if (likely(dentry)) {
1780 		dentry->d_flags |= DCACHE_NORCU;
1781 		if (!sb->s_d_op)
1782 			d_set_d_op(dentry, &anon_ops);
1783 	}
1784 	return dentry;
1785 }
1786 
1787 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1788 {
1789 	struct qstr q;
1790 
1791 	q.name = name;
1792 	q.hash_len = hashlen_string(parent, name);
1793 	return d_alloc(parent, &q);
1794 }
1795 EXPORT_SYMBOL(d_alloc_name);
1796 
1797 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1798 {
1799 	WARN_ON_ONCE(dentry->d_op);
1800 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1801 				DCACHE_OP_COMPARE	|
1802 				DCACHE_OP_REVALIDATE	|
1803 				DCACHE_OP_WEAK_REVALIDATE	|
1804 				DCACHE_OP_DELETE	|
1805 				DCACHE_OP_REAL));
1806 	dentry->d_op = op;
1807 	if (!op)
1808 		return;
1809 	if (op->d_hash)
1810 		dentry->d_flags |= DCACHE_OP_HASH;
1811 	if (op->d_compare)
1812 		dentry->d_flags |= DCACHE_OP_COMPARE;
1813 	if (op->d_revalidate)
1814 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1815 	if (op->d_weak_revalidate)
1816 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1817 	if (op->d_delete)
1818 		dentry->d_flags |= DCACHE_OP_DELETE;
1819 	if (op->d_prune)
1820 		dentry->d_flags |= DCACHE_OP_PRUNE;
1821 	if (op->d_real)
1822 		dentry->d_flags |= DCACHE_OP_REAL;
1823 
1824 }
1825 EXPORT_SYMBOL(d_set_d_op);
1826 
1827 static unsigned d_flags_for_inode(struct inode *inode)
1828 {
1829 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1830 
1831 	if (!inode)
1832 		return DCACHE_MISS_TYPE;
1833 
1834 	if (S_ISDIR(inode->i_mode)) {
1835 		add_flags = DCACHE_DIRECTORY_TYPE;
1836 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1837 			if (unlikely(!inode->i_op->lookup))
1838 				add_flags = DCACHE_AUTODIR_TYPE;
1839 			else
1840 				inode->i_opflags |= IOP_LOOKUP;
1841 		}
1842 		goto type_determined;
1843 	}
1844 
1845 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1846 		if (unlikely(inode->i_op->get_link)) {
1847 			add_flags = DCACHE_SYMLINK_TYPE;
1848 			goto type_determined;
1849 		}
1850 		inode->i_opflags |= IOP_NOFOLLOW;
1851 	}
1852 
1853 	if (unlikely(!S_ISREG(inode->i_mode)))
1854 		add_flags = DCACHE_SPECIAL_TYPE;
1855 
1856 type_determined:
1857 	if (unlikely(IS_AUTOMOUNT(inode)))
1858 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1859 	return add_flags;
1860 }
1861 
1862 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1863 {
1864 	unsigned add_flags = d_flags_for_inode(inode);
1865 	WARN_ON(d_in_lookup(dentry));
1866 
1867 	spin_lock(&dentry->d_lock);
1868 	/*
1869 	 * The negative counter only tracks dentries on the LRU. Don't dec if
1870 	 * d_lru is on another list.
1871 	 */
1872 	if ((dentry->d_flags &
1873 	     (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1874 		this_cpu_dec(nr_dentry_negative);
1875 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1876 	raw_write_seqcount_begin(&dentry->d_seq);
1877 	__d_set_inode_and_type(dentry, inode, add_flags);
1878 	raw_write_seqcount_end(&dentry->d_seq);
1879 	fsnotify_update_flags(dentry);
1880 	spin_unlock(&dentry->d_lock);
1881 }
1882 
1883 /**
1884  * d_instantiate - fill in inode information for a dentry
1885  * @entry: dentry to complete
1886  * @inode: inode to attach to this dentry
1887  *
1888  * Fill in inode information in the entry.
1889  *
1890  * This turns negative dentries into productive full members
1891  * of society.
1892  *
1893  * NOTE! This assumes that the inode count has been incremented
1894  * (or otherwise set) by the caller to indicate that it is now
1895  * in use by the dcache.
1896  */
1897 
1898 void d_instantiate(struct dentry *entry, struct inode * inode)
1899 {
1900 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1901 	if (inode) {
1902 		security_d_instantiate(entry, inode);
1903 		spin_lock(&inode->i_lock);
1904 		__d_instantiate(entry, inode);
1905 		spin_unlock(&inode->i_lock);
1906 	}
1907 }
1908 EXPORT_SYMBOL(d_instantiate);
1909 
1910 /*
1911  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1912  * with lockdep-related part of unlock_new_inode() done before
1913  * anything else.  Use that instead of open-coding d_instantiate()/
1914  * unlock_new_inode() combinations.
1915  */
1916 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1917 {
1918 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1919 	BUG_ON(!inode);
1920 	lockdep_annotate_inode_mutex_key(inode);
1921 	security_d_instantiate(entry, inode);
1922 	spin_lock(&inode->i_lock);
1923 	__d_instantiate(entry, inode);
1924 	WARN_ON(!(inode->i_state & I_NEW));
1925 	inode->i_state &= ~I_NEW & ~I_CREATING;
1926 	/*
1927 	 * Pairs with the barrier in prepare_to_wait_event() to make sure
1928 	 * ___wait_var_event() either sees the bit cleared or
1929 	 * waitqueue_active() check in wake_up_var() sees the waiter.
1930 	 */
1931 	smp_mb();
1932 	inode_wake_up_bit(inode, __I_NEW);
1933 	spin_unlock(&inode->i_lock);
1934 }
1935 EXPORT_SYMBOL(d_instantiate_new);
1936 
1937 struct dentry *d_make_root(struct inode *root_inode)
1938 {
1939 	struct dentry *res = NULL;
1940 
1941 	if (root_inode) {
1942 		res = d_alloc_anon(root_inode->i_sb);
1943 		if (res)
1944 			d_instantiate(res, root_inode);
1945 		else
1946 			iput(root_inode);
1947 	}
1948 	return res;
1949 }
1950 EXPORT_SYMBOL(d_make_root);
1951 
1952 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1953 {
1954 	struct super_block *sb;
1955 	struct dentry *new, *res;
1956 
1957 	if (!inode)
1958 		return ERR_PTR(-ESTALE);
1959 	if (IS_ERR(inode))
1960 		return ERR_CAST(inode);
1961 
1962 	sb = inode->i_sb;
1963 
1964 	res = d_find_any_alias(inode); /* existing alias? */
1965 	if (res)
1966 		goto out;
1967 
1968 	new = d_alloc_anon(sb);
1969 	if (!new) {
1970 		res = ERR_PTR(-ENOMEM);
1971 		goto out;
1972 	}
1973 
1974 	security_d_instantiate(new, inode);
1975 	spin_lock(&inode->i_lock);
1976 	res = __d_find_any_alias(inode); /* recheck under lock */
1977 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1978 		unsigned add_flags = d_flags_for_inode(inode);
1979 
1980 		if (disconnected)
1981 			add_flags |= DCACHE_DISCONNECTED;
1982 
1983 		spin_lock(&new->d_lock);
1984 		__d_set_inode_and_type(new, inode, add_flags);
1985 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1986 		if (!disconnected) {
1987 			hlist_bl_lock(&sb->s_roots);
1988 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1989 			hlist_bl_unlock(&sb->s_roots);
1990 		}
1991 		spin_unlock(&new->d_lock);
1992 		spin_unlock(&inode->i_lock);
1993 		inode = NULL; /* consumed by new->d_inode */
1994 		res = new;
1995 	} else {
1996 		spin_unlock(&inode->i_lock);
1997 		dput(new);
1998 	}
1999 
2000  out:
2001 	iput(inode);
2002 	return res;
2003 }
2004 
2005 /**
2006  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2007  * @inode: inode to allocate the dentry for
2008  *
2009  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2010  * similar open by handle operations.  The returned dentry may be anonymous,
2011  * or may have a full name (if the inode was already in the cache).
2012  *
2013  * When called on a directory inode, we must ensure that the inode only ever
2014  * has one dentry.  If a dentry is found, that is returned instead of
2015  * allocating a new one.
2016  *
2017  * On successful return, the reference to the inode has been transferred
2018  * to the dentry.  In case of an error the reference on the inode is released.
2019  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2020  * be passed in and the error will be propagated to the return value,
2021  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2022  */
2023 struct dentry *d_obtain_alias(struct inode *inode)
2024 {
2025 	return __d_obtain_alias(inode, true);
2026 }
2027 EXPORT_SYMBOL(d_obtain_alias);
2028 
2029 /**
2030  * d_obtain_root - find or allocate a dentry for a given inode
2031  * @inode: inode to allocate the dentry for
2032  *
2033  * Obtain an IS_ROOT dentry for the root of a filesystem.
2034  *
2035  * We must ensure that directory inodes only ever have one dentry.  If a
2036  * dentry is found, that is returned instead of allocating a new one.
2037  *
2038  * On successful return, the reference to the inode has been transferred
2039  * to the dentry.  In case of an error the reference on the inode is
2040  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2041  * error will be propagate to the return value, with a %NULL @inode
2042  * replaced by ERR_PTR(-ESTALE).
2043  */
2044 struct dentry *d_obtain_root(struct inode *inode)
2045 {
2046 	return __d_obtain_alias(inode, false);
2047 }
2048 EXPORT_SYMBOL(d_obtain_root);
2049 
2050 /**
2051  * d_add_ci - lookup or allocate new dentry with case-exact name
2052  * @dentry: the negative dentry that was passed to the parent's lookup func
2053  * @inode:  the inode case-insensitive lookup has found
2054  * @name:   the case-exact name to be associated with the returned dentry
2055  *
2056  * This is to avoid filling the dcache with case-insensitive names to the
2057  * same inode, only the actual correct case is stored in the dcache for
2058  * case-insensitive filesystems.
2059  *
2060  * For a case-insensitive lookup match and if the case-exact dentry
2061  * already exists in the dcache, use it and return it.
2062  *
2063  * If no entry exists with the exact case name, allocate new dentry with
2064  * the exact case, and return the spliced entry.
2065  */
2066 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2067 			struct qstr *name)
2068 {
2069 	struct dentry *found, *res;
2070 
2071 	/*
2072 	 * First check if a dentry matching the name already exists,
2073 	 * if not go ahead and create it now.
2074 	 */
2075 	found = d_hash_and_lookup(dentry->d_parent, name);
2076 	if (found) {
2077 		iput(inode);
2078 		return found;
2079 	}
2080 	if (d_in_lookup(dentry)) {
2081 		found = d_alloc_parallel(dentry->d_parent, name,
2082 					dentry->d_wait);
2083 		if (IS_ERR(found) || !d_in_lookup(found)) {
2084 			iput(inode);
2085 			return found;
2086 		}
2087 	} else {
2088 		found = d_alloc(dentry->d_parent, name);
2089 		if (!found) {
2090 			iput(inode);
2091 			return ERR_PTR(-ENOMEM);
2092 		}
2093 	}
2094 	res = d_splice_alias(inode, found);
2095 	if (res) {
2096 		d_lookup_done(found);
2097 		dput(found);
2098 		return res;
2099 	}
2100 	return found;
2101 }
2102 EXPORT_SYMBOL(d_add_ci);
2103 
2104 /**
2105  * d_same_name - compare dentry name with case-exact name
2106  * @dentry: the negative dentry that was passed to the parent's lookup func
2107  * @parent: parent dentry
2108  * @name:   the case-exact name to be associated with the returned dentry
2109  *
2110  * Return: true if names are same, or false
2111  */
2112 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2113 		 const struct qstr *name)
2114 {
2115 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2116 		if (dentry->d_name.len != name->len)
2117 			return false;
2118 		return dentry_cmp(dentry, name->name, name->len) == 0;
2119 	}
2120 	return parent->d_op->d_compare(dentry,
2121 				       dentry->d_name.len, dentry->d_name.name,
2122 				       name) == 0;
2123 }
2124 EXPORT_SYMBOL_GPL(d_same_name);
2125 
2126 /*
2127  * This is __d_lookup_rcu() when the parent dentry has
2128  * DCACHE_OP_COMPARE, which makes things much nastier.
2129  */
2130 static noinline struct dentry *__d_lookup_rcu_op_compare(
2131 	const struct dentry *parent,
2132 	const struct qstr *name,
2133 	unsigned *seqp)
2134 {
2135 	u64 hashlen = name->hash_len;
2136 	struct hlist_bl_head *b = d_hash(hashlen);
2137 	struct hlist_bl_node *node;
2138 	struct dentry *dentry;
2139 
2140 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2141 		int tlen;
2142 		const char *tname;
2143 		unsigned seq;
2144 
2145 seqretry:
2146 		seq = raw_seqcount_begin(&dentry->d_seq);
2147 		if (dentry->d_parent != parent)
2148 			continue;
2149 		if (d_unhashed(dentry))
2150 			continue;
2151 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2152 			continue;
2153 		tlen = dentry->d_name.len;
2154 		tname = dentry->d_name.name;
2155 		/* we want a consistent (name,len) pair */
2156 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2157 			cpu_relax();
2158 			goto seqretry;
2159 		}
2160 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2161 			continue;
2162 		*seqp = seq;
2163 		return dentry;
2164 	}
2165 	return NULL;
2166 }
2167 
2168 /**
2169  * __d_lookup_rcu - search for a dentry (racy, store-free)
2170  * @parent: parent dentry
2171  * @name: qstr of name we wish to find
2172  * @seqp: returns d_seq value at the point where the dentry was found
2173  * Returns: dentry, or NULL
2174  *
2175  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2176  * resolution (store-free path walking) design described in
2177  * Documentation/filesystems/path-lookup.txt.
2178  *
2179  * This is not to be used outside core vfs.
2180  *
2181  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2182  * held, and rcu_read_lock held. The returned dentry must not be stored into
2183  * without taking d_lock and checking d_seq sequence count against @seq
2184  * returned here.
2185  *
2186  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2187  * the returned dentry, so long as its parent's seqlock is checked after the
2188  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2189  * is formed, giving integrity down the path walk.
2190  *
2191  * NOTE! The caller *has* to check the resulting dentry against the sequence
2192  * number we've returned before using any of the resulting dentry state!
2193  */
2194 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2195 				const struct qstr *name,
2196 				unsigned *seqp)
2197 {
2198 	u64 hashlen = name->hash_len;
2199 	const unsigned char *str = name->name;
2200 	struct hlist_bl_head *b = d_hash(hashlen);
2201 	struct hlist_bl_node *node;
2202 	struct dentry *dentry;
2203 
2204 	/*
2205 	 * Note: There is significant duplication with __d_lookup_rcu which is
2206 	 * required to prevent single threaded performance regressions
2207 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2208 	 * Keep the two functions in sync.
2209 	 */
2210 
2211 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2212 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2213 
2214 	/*
2215 	 * The hash list is protected using RCU.
2216 	 *
2217 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2218 	 * races with d_move().
2219 	 *
2220 	 * It is possible that concurrent renames can mess up our list
2221 	 * walk here and result in missing our dentry, resulting in the
2222 	 * false-negative result. d_lookup() protects against concurrent
2223 	 * renames using rename_lock seqlock.
2224 	 *
2225 	 * See Documentation/filesystems/path-lookup.txt for more details.
2226 	 */
2227 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2228 		unsigned seq;
2229 
2230 		/*
2231 		 * The dentry sequence count protects us from concurrent
2232 		 * renames, and thus protects parent and name fields.
2233 		 *
2234 		 * The caller must perform a seqcount check in order
2235 		 * to do anything useful with the returned dentry.
2236 		 *
2237 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2238 		 * we don't wait for the sequence count to stabilize if it
2239 		 * is in the middle of a sequence change. If we do the slow
2240 		 * dentry compare, we will do seqretries until it is stable,
2241 		 * and if we end up with a successful lookup, we actually
2242 		 * want to exit RCU lookup anyway.
2243 		 *
2244 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2245 		 * we are still guaranteed NUL-termination of ->d_name.name.
2246 		 */
2247 		seq = raw_seqcount_begin(&dentry->d_seq);
2248 		if (dentry->d_parent != parent)
2249 			continue;
2250 		if (d_unhashed(dentry))
2251 			continue;
2252 		if (dentry->d_name.hash_len != hashlen)
2253 			continue;
2254 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2255 			continue;
2256 		*seqp = seq;
2257 		return dentry;
2258 	}
2259 	return NULL;
2260 }
2261 
2262 /**
2263  * d_lookup - search for a dentry
2264  * @parent: parent dentry
2265  * @name: qstr of name we wish to find
2266  * Returns: dentry, or NULL
2267  *
2268  * d_lookup searches the children of the parent dentry for the name in
2269  * question. If the dentry is found its reference count is incremented and the
2270  * dentry is returned. The caller must use dput to free the entry when it has
2271  * finished using it. %NULL is returned if the dentry does not exist.
2272  */
2273 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2274 {
2275 	struct dentry *dentry;
2276 	unsigned seq;
2277 
2278 	do {
2279 		seq = read_seqbegin(&rename_lock);
2280 		dentry = __d_lookup(parent, name);
2281 		if (dentry)
2282 			break;
2283 	} while (read_seqretry(&rename_lock, seq));
2284 	return dentry;
2285 }
2286 EXPORT_SYMBOL(d_lookup);
2287 
2288 /**
2289  * __d_lookup - search for a dentry (racy)
2290  * @parent: parent dentry
2291  * @name: qstr of name we wish to find
2292  * Returns: dentry, or NULL
2293  *
2294  * __d_lookup is like d_lookup, however it may (rarely) return a
2295  * false-negative result due to unrelated rename activity.
2296  *
2297  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2298  * however it must be used carefully, eg. with a following d_lookup in
2299  * the case of failure.
2300  *
2301  * __d_lookup callers must be commented.
2302  */
2303 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2304 {
2305 	unsigned int hash = name->hash;
2306 	struct hlist_bl_head *b = d_hash(hash);
2307 	struct hlist_bl_node *node;
2308 	struct dentry *found = NULL;
2309 	struct dentry *dentry;
2310 
2311 	/*
2312 	 * Note: There is significant duplication with __d_lookup_rcu which is
2313 	 * required to prevent single threaded performance regressions
2314 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2315 	 * Keep the two functions in sync.
2316 	 */
2317 
2318 	/*
2319 	 * The hash list is protected using RCU.
2320 	 *
2321 	 * Take d_lock when comparing a candidate dentry, to avoid races
2322 	 * with d_move().
2323 	 *
2324 	 * It is possible that concurrent renames can mess up our list
2325 	 * walk here and result in missing our dentry, resulting in the
2326 	 * false-negative result. d_lookup() protects against concurrent
2327 	 * renames using rename_lock seqlock.
2328 	 *
2329 	 * See Documentation/filesystems/path-lookup.txt for more details.
2330 	 */
2331 	rcu_read_lock();
2332 
2333 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2334 
2335 		if (dentry->d_name.hash != hash)
2336 			continue;
2337 
2338 		spin_lock(&dentry->d_lock);
2339 		if (dentry->d_parent != parent)
2340 			goto next;
2341 		if (d_unhashed(dentry))
2342 			goto next;
2343 
2344 		if (!d_same_name(dentry, parent, name))
2345 			goto next;
2346 
2347 		dentry->d_lockref.count++;
2348 		found = dentry;
2349 		spin_unlock(&dentry->d_lock);
2350 		break;
2351 next:
2352 		spin_unlock(&dentry->d_lock);
2353  	}
2354  	rcu_read_unlock();
2355 
2356  	return found;
2357 }
2358 
2359 /**
2360  * d_hash_and_lookup - hash the qstr then search for a dentry
2361  * @dir: Directory to search in
2362  * @name: qstr of name we wish to find
2363  *
2364  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2365  */
2366 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2367 {
2368 	/*
2369 	 * Check for a fs-specific hash function. Note that we must
2370 	 * calculate the standard hash first, as the d_op->d_hash()
2371 	 * routine may choose to leave the hash value unchanged.
2372 	 */
2373 	name->hash = full_name_hash(dir, name->name, name->len);
2374 	if (dir->d_flags & DCACHE_OP_HASH) {
2375 		int err = dir->d_op->d_hash(dir, name);
2376 		if (unlikely(err < 0))
2377 			return ERR_PTR(err);
2378 	}
2379 	return d_lookup(dir, name);
2380 }
2381 EXPORT_SYMBOL(d_hash_and_lookup);
2382 
2383 /*
2384  * When a file is deleted, we have two options:
2385  * - turn this dentry into a negative dentry
2386  * - unhash this dentry and free it.
2387  *
2388  * Usually, we want to just turn this into
2389  * a negative dentry, but if anybody else is
2390  * currently using the dentry or the inode
2391  * we can't do that and we fall back on removing
2392  * it from the hash queues and waiting for
2393  * it to be deleted later when it has no users
2394  */
2395 
2396 /**
2397  * d_delete - delete a dentry
2398  * @dentry: The dentry to delete
2399  *
2400  * Turn the dentry into a negative dentry if possible, otherwise
2401  * remove it from the hash queues so it can be deleted later
2402  */
2403 
2404 void d_delete(struct dentry * dentry)
2405 {
2406 	struct inode *inode = dentry->d_inode;
2407 
2408 	spin_lock(&inode->i_lock);
2409 	spin_lock(&dentry->d_lock);
2410 	/*
2411 	 * Are we the only user?
2412 	 */
2413 	if (dentry->d_lockref.count == 1) {
2414 		if (dentry_negative_policy)
2415 			__d_drop(dentry);
2416 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2417 		dentry_unlink_inode(dentry);
2418 	} else {
2419 		__d_drop(dentry);
2420 		spin_unlock(&dentry->d_lock);
2421 		spin_unlock(&inode->i_lock);
2422 	}
2423 }
2424 EXPORT_SYMBOL(d_delete);
2425 
2426 static void __d_rehash(struct dentry *entry)
2427 {
2428 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2429 
2430 	hlist_bl_lock(b);
2431 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2432 	hlist_bl_unlock(b);
2433 }
2434 
2435 /**
2436  * d_rehash	- add an entry back to the hash
2437  * @entry: dentry to add to the hash
2438  *
2439  * Adds a dentry to the hash according to its name.
2440  */
2441 
2442 void d_rehash(struct dentry * entry)
2443 {
2444 	spin_lock(&entry->d_lock);
2445 	__d_rehash(entry);
2446 	spin_unlock(&entry->d_lock);
2447 }
2448 EXPORT_SYMBOL(d_rehash);
2449 
2450 static inline unsigned start_dir_add(struct inode *dir)
2451 {
2452 	preempt_disable_nested();
2453 	for (;;) {
2454 		unsigned n = dir->i_dir_seq;
2455 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2456 			return n;
2457 		cpu_relax();
2458 	}
2459 }
2460 
2461 static inline void end_dir_add(struct inode *dir, unsigned int n,
2462 			       wait_queue_head_t *d_wait)
2463 {
2464 	smp_store_release(&dir->i_dir_seq, n + 2);
2465 	preempt_enable_nested();
2466 	wake_up_all(d_wait);
2467 }
2468 
2469 static void d_wait_lookup(struct dentry *dentry)
2470 {
2471 	if (d_in_lookup(dentry)) {
2472 		DECLARE_WAITQUEUE(wait, current);
2473 		add_wait_queue(dentry->d_wait, &wait);
2474 		do {
2475 			set_current_state(TASK_UNINTERRUPTIBLE);
2476 			spin_unlock(&dentry->d_lock);
2477 			schedule();
2478 			spin_lock(&dentry->d_lock);
2479 		} while (d_in_lookup(dentry));
2480 	}
2481 }
2482 
2483 struct dentry *d_alloc_parallel(struct dentry *parent,
2484 				const struct qstr *name,
2485 				wait_queue_head_t *wq)
2486 {
2487 	unsigned int hash = name->hash;
2488 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2489 	struct hlist_bl_node *node;
2490 	struct dentry *new = d_alloc(parent, name);
2491 	struct dentry *dentry;
2492 	unsigned seq, r_seq, d_seq;
2493 
2494 	if (unlikely(!new))
2495 		return ERR_PTR(-ENOMEM);
2496 
2497 retry:
2498 	rcu_read_lock();
2499 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2500 	r_seq = read_seqbegin(&rename_lock);
2501 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2502 	if (unlikely(dentry)) {
2503 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2504 			rcu_read_unlock();
2505 			goto retry;
2506 		}
2507 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2508 			rcu_read_unlock();
2509 			dput(dentry);
2510 			goto retry;
2511 		}
2512 		rcu_read_unlock();
2513 		dput(new);
2514 		return dentry;
2515 	}
2516 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2517 		rcu_read_unlock();
2518 		goto retry;
2519 	}
2520 
2521 	if (unlikely(seq & 1)) {
2522 		rcu_read_unlock();
2523 		goto retry;
2524 	}
2525 
2526 	hlist_bl_lock(b);
2527 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2528 		hlist_bl_unlock(b);
2529 		rcu_read_unlock();
2530 		goto retry;
2531 	}
2532 	/*
2533 	 * No changes for the parent since the beginning of d_lookup().
2534 	 * Since all removals from the chain happen with hlist_bl_lock(),
2535 	 * any potential in-lookup matches are going to stay here until
2536 	 * we unlock the chain.  All fields are stable in everything
2537 	 * we encounter.
2538 	 */
2539 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2540 		if (dentry->d_name.hash != hash)
2541 			continue;
2542 		if (dentry->d_parent != parent)
2543 			continue;
2544 		if (!d_same_name(dentry, parent, name))
2545 			continue;
2546 		hlist_bl_unlock(b);
2547 		/* now we can try to grab a reference */
2548 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2549 			rcu_read_unlock();
2550 			goto retry;
2551 		}
2552 
2553 		rcu_read_unlock();
2554 		/*
2555 		 * somebody is likely to be still doing lookup for it;
2556 		 * wait for them to finish
2557 		 */
2558 		spin_lock(&dentry->d_lock);
2559 		d_wait_lookup(dentry);
2560 		/*
2561 		 * it's not in-lookup anymore; in principle we should repeat
2562 		 * everything from dcache lookup, but it's likely to be what
2563 		 * d_lookup() would've found anyway.  If it is, just return it;
2564 		 * otherwise we really have to repeat the whole thing.
2565 		 */
2566 		if (unlikely(dentry->d_name.hash != hash))
2567 			goto mismatch;
2568 		if (unlikely(dentry->d_parent != parent))
2569 			goto mismatch;
2570 		if (unlikely(d_unhashed(dentry)))
2571 			goto mismatch;
2572 		if (unlikely(!d_same_name(dentry, parent, name)))
2573 			goto mismatch;
2574 		/* OK, it *is* a hashed match; return it */
2575 		spin_unlock(&dentry->d_lock);
2576 		dput(new);
2577 		return dentry;
2578 	}
2579 	rcu_read_unlock();
2580 	/* we can't take ->d_lock here; it's OK, though. */
2581 	new->d_flags |= DCACHE_PAR_LOOKUP;
2582 	new->d_wait = wq;
2583 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2584 	hlist_bl_unlock(b);
2585 	return new;
2586 mismatch:
2587 	spin_unlock(&dentry->d_lock);
2588 	dput(dentry);
2589 	goto retry;
2590 }
2591 EXPORT_SYMBOL(d_alloc_parallel);
2592 
2593 /*
2594  * - Unhash the dentry
2595  * - Retrieve and clear the waitqueue head in dentry
2596  * - Return the waitqueue head
2597  */
2598 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2599 {
2600 	wait_queue_head_t *d_wait;
2601 	struct hlist_bl_head *b;
2602 
2603 	lockdep_assert_held(&dentry->d_lock);
2604 
2605 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2606 	hlist_bl_lock(b);
2607 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2608 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2609 	d_wait = dentry->d_wait;
2610 	dentry->d_wait = NULL;
2611 	hlist_bl_unlock(b);
2612 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2613 	INIT_LIST_HEAD(&dentry->d_lru);
2614 	return d_wait;
2615 }
2616 
2617 void __d_lookup_unhash_wake(struct dentry *dentry)
2618 {
2619 	spin_lock(&dentry->d_lock);
2620 	wake_up_all(__d_lookup_unhash(dentry));
2621 	spin_unlock(&dentry->d_lock);
2622 }
2623 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2624 
2625 /* inode->i_lock held if inode is non-NULL */
2626 
2627 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2628 {
2629 	wait_queue_head_t *d_wait;
2630 	struct inode *dir = NULL;
2631 	unsigned n;
2632 	spin_lock(&dentry->d_lock);
2633 	if (unlikely(d_in_lookup(dentry))) {
2634 		dir = dentry->d_parent->d_inode;
2635 		n = start_dir_add(dir);
2636 		d_wait = __d_lookup_unhash(dentry);
2637 	}
2638 	if (inode) {
2639 		unsigned add_flags = d_flags_for_inode(inode);
2640 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2641 		raw_write_seqcount_begin(&dentry->d_seq);
2642 		__d_set_inode_and_type(dentry, inode, add_flags);
2643 		raw_write_seqcount_end(&dentry->d_seq);
2644 		fsnotify_update_flags(dentry);
2645 	}
2646 	__d_rehash(dentry);
2647 	if (dir)
2648 		end_dir_add(dir, n, d_wait);
2649 	spin_unlock(&dentry->d_lock);
2650 	if (inode)
2651 		spin_unlock(&inode->i_lock);
2652 }
2653 
2654 /**
2655  * d_add - add dentry to hash queues
2656  * @entry: dentry to add
2657  * @inode: The inode to attach to this dentry
2658  *
2659  * This adds the entry to the hash queues and initializes @inode.
2660  * The entry was actually filled in earlier during d_alloc().
2661  */
2662 
2663 void d_add(struct dentry *entry, struct inode *inode)
2664 {
2665 	if (inode) {
2666 		security_d_instantiate(entry, inode);
2667 		spin_lock(&inode->i_lock);
2668 	}
2669 	__d_add(entry, inode);
2670 }
2671 EXPORT_SYMBOL(d_add);
2672 
2673 /**
2674  * d_exact_alias - find and hash an exact unhashed alias
2675  * @entry: dentry to add
2676  * @inode: The inode to go with this dentry
2677  *
2678  * If an unhashed dentry with the same name/parent and desired
2679  * inode already exists, hash and return it.  Otherwise, return
2680  * NULL.
2681  *
2682  * Parent directory should be locked.
2683  */
2684 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2685 {
2686 	struct dentry *alias;
2687 	unsigned int hash = entry->d_name.hash;
2688 
2689 	spin_lock(&inode->i_lock);
2690 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2691 		/*
2692 		 * Don't need alias->d_lock here, because aliases with
2693 		 * d_parent == entry->d_parent are not subject to name or
2694 		 * parent changes, because the parent inode i_mutex is held.
2695 		 */
2696 		if (alias->d_name.hash != hash)
2697 			continue;
2698 		if (alias->d_parent != entry->d_parent)
2699 			continue;
2700 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2701 			continue;
2702 		spin_lock(&alias->d_lock);
2703 		if (!d_unhashed(alias)) {
2704 			spin_unlock(&alias->d_lock);
2705 			alias = NULL;
2706 		} else {
2707 			dget_dlock(alias);
2708 			__d_rehash(alias);
2709 			spin_unlock(&alias->d_lock);
2710 		}
2711 		spin_unlock(&inode->i_lock);
2712 		return alias;
2713 	}
2714 	spin_unlock(&inode->i_lock);
2715 	return NULL;
2716 }
2717 EXPORT_SYMBOL(d_exact_alias);
2718 
2719 static void swap_names(struct dentry *dentry, struct dentry *target)
2720 {
2721 	if (unlikely(dname_external(target))) {
2722 		if (unlikely(dname_external(dentry))) {
2723 			/*
2724 			 * Both external: swap the pointers
2725 			 */
2726 			swap(target->d_name.name, dentry->d_name.name);
2727 		} else {
2728 			/*
2729 			 * dentry:internal, target:external.  Steal target's
2730 			 * storage and make target internal.
2731 			 */
2732 			memcpy(target->d_iname, dentry->d_name.name,
2733 					dentry->d_name.len + 1);
2734 			dentry->d_name.name = target->d_name.name;
2735 			target->d_name.name = target->d_iname;
2736 		}
2737 	} else {
2738 		if (unlikely(dname_external(dentry))) {
2739 			/*
2740 			 * dentry:external, target:internal.  Give dentry's
2741 			 * storage to target and make dentry internal
2742 			 */
2743 			memcpy(dentry->d_iname, target->d_name.name,
2744 					target->d_name.len + 1);
2745 			target->d_name.name = dentry->d_name.name;
2746 			dentry->d_name.name = dentry->d_iname;
2747 		} else {
2748 			/*
2749 			 * Both are internal.
2750 			 */
2751 			unsigned int i;
2752 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2753 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2754 				swap(((long *) &dentry->d_iname)[i],
2755 				     ((long *) &target->d_iname)[i]);
2756 			}
2757 		}
2758 	}
2759 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2760 }
2761 
2762 static void copy_name(struct dentry *dentry, struct dentry *target)
2763 {
2764 	struct external_name *old_name = NULL;
2765 	if (unlikely(dname_external(dentry)))
2766 		old_name = external_name(dentry);
2767 	if (unlikely(dname_external(target))) {
2768 		atomic_inc(&external_name(target)->u.count);
2769 		dentry->d_name = target->d_name;
2770 	} else {
2771 		memcpy(dentry->d_iname, target->d_name.name,
2772 				target->d_name.len + 1);
2773 		dentry->d_name.name = dentry->d_iname;
2774 		dentry->d_name.hash_len = target->d_name.hash_len;
2775 	}
2776 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2777 		kfree_rcu(old_name, u.head);
2778 }
2779 
2780 /*
2781  * __d_move - move a dentry
2782  * @dentry: entry to move
2783  * @target: new dentry
2784  * @exchange: exchange the two dentries
2785  *
2786  * Update the dcache to reflect the move of a file name. Negative
2787  * dcache entries should not be moved in this way. Caller must hold
2788  * rename_lock, the i_mutex of the source and target directories,
2789  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2790  */
2791 static void __d_move(struct dentry *dentry, struct dentry *target,
2792 		     bool exchange)
2793 {
2794 	struct dentry *old_parent, *p;
2795 	wait_queue_head_t *d_wait;
2796 	struct inode *dir = NULL;
2797 	unsigned n;
2798 
2799 	WARN_ON(!dentry->d_inode);
2800 	if (WARN_ON(dentry == target))
2801 		return;
2802 
2803 	BUG_ON(d_ancestor(target, dentry));
2804 	old_parent = dentry->d_parent;
2805 	p = d_ancestor(old_parent, target);
2806 	if (IS_ROOT(dentry)) {
2807 		BUG_ON(p);
2808 		spin_lock(&target->d_parent->d_lock);
2809 	} else if (!p) {
2810 		/* target is not a descendent of dentry->d_parent */
2811 		spin_lock(&target->d_parent->d_lock);
2812 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2813 	} else {
2814 		BUG_ON(p == dentry);
2815 		spin_lock(&old_parent->d_lock);
2816 		if (p != target)
2817 			spin_lock_nested(&target->d_parent->d_lock,
2818 					DENTRY_D_LOCK_NESTED);
2819 	}
2820 	spin_lock_nested(&dentry->d_lock, 2);
2821 	spin_lock_nested(&target->d_lock, 3);
2822 
2823 	if (unlikely(d_in_lookup(target))) {
2824 		dir = target->d_parent->d_inode;
2825 		n = start_dir_add(dir);
2826 		d_wait = __d_lookup_unhash(target);
2827 	}
2828 
2829 	write_seqcount_begin(&dentry->d_seq);
2830 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2831 
2832 	/* unhash both */
2833 	if (!d_unhashed(dentry))
2834 		___d_drop(dentry);
2835 	if (!d_unhashed(target))
2836 		___d_drop(target);
2837 
2838 	/* ... and switch them in the tree */
2839 	dentry->d_parent = target->d_parent;
2840 	if (!exchange) {
2841 		copy_name(dentry, target);
2842 		target->d_hash.pprev = NULL;
2843 		dentry->d_parent->d_lockref.count++;
2844 		if (dentry != old_parent) /* wasn't IS_ROOT */
2845 			WARN_ON(!--old_parent->d_lockref.count);
2846 	} else {
2847 		target->d_parent = old_parent;
2848 		swap_names(dentry, target);
2849 		if (!hlist_unhashed(&target->d_sib))
2850 			__hlist_del(&target->d_sib);
2851 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2852 		__d_rehash(target);
2853 		fsnotify_update_flags(target);
2854 	}
2855 	if (!hlist_unhashed(&dentry->d_sib))
2856 		__hlist_del(&dentry->d_sib);
2857 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2858 	__d_rehash(dentry);
2859 	fsnotify_update_flags(dentry);
2860 	fscrypt_handle_d_move(dentry);
2861 
2862 	write_seqcount_end(&target->d_seq);
2863 	write_seqcount_end(&dentry->d_seq);
2864 
2865 	if (dir)
2866 		end_dir_add(dir, n, d_wait);
2867 
2868 	if (dentry->d_parent != old_parent)
2869 		spin_unlock(&dentry->d_parent->d_lock);
2870 	if (dentry != old_parent)
2871 		spin_unlock(&old_parent->d_lock);
2872 	spin_unlock(&target->d_lock);
2873 	spin_unlock(&dentry->d_lock);
2874 }
2875 
2876 /*
2877  * d_move - move a dentry
2878  * @dentry: entry to move
2879  * @target: new dentry
2880  *
2881  * Update the dcache to reflect the move of a file name. Negative
2882  * dcache entries should not be moved in this way. See the locking
2883  * requirements for __d_move.
2884  */
2885 void d_move(struct dentry *dentry, struct dentry *target)
2886 {
2887 	write_seqlock(&rename_lock);
2888 	__d_move(dentry, target, false);
2889 	write_sequnlock(&rename_lock);
2890 }
2891 EXPORT_SYMBOL(d_move);
2892 
2893 /*
2894  * d_exchange - exchange two dentries
2895  * @dentry1: first dentry
2896  * @dentry2: second dentry
2897  */
2898 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2899 {
2900 	write_seqlock(&rename_lock);
2901 
2902 	WARN_ON(!dentry1->d_inode);
2903 	WARN_ON(!dentry2->d_inode);
2904 	WARN_ON(IS_ROOT(dentry1));
2905 	WARN_ON(IS_ROOT(dentry2));
2906 
2907 	__d_move(dentry1, dentry2, true);
2908 
2909 	write_sequnlock(&rename_lock);
2910 }
2911 
2912 /**
2913  * d_ancestor - search for an ancestor
2914  * @p1: ancestor dentry
2915  * @p2: child dentry
2916  *
2917  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2918  * an ancestor of p2, else NULL.
2919  */
2920 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2921 {
2922 	struct dentry *p;
2923 
2924 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2925 		if (p->d_parent == p1)
2926 			return p;
2927 	}
2928 	return NULL;
2929 }
2930 
2931 /*
2932  * This helper attempts to cope with remotely renamed directories
2933  *
2934  * It assumes that the caller is already holding
2935  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2936  *
2937  * Note: If ever the locking in lock_rename() changes, then please
2938  * remember to update this too...
2939  */
2940 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2941 {
2942 	struct mutex *m1 = NULL;
2943 	struct rw_semaphore *m2 = NULL;
2944 	int ret = -ESTALE;
2945 
2946 	/* If alias and dentry share a parent, then no extra locks required */
2947 	if (alias->d_parent == dentry->d_parent)
2948 		goto out_unalias;
2949 
2950 	/* See lock_rename() */
2951 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2952 		goto out_err;
2953 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2954 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2955 		goto out_err;
2956 	m2 = &alias->d_parent->d_inode->i_rwsem;
2957 out_unalias:
2958 	__d_move(alias, dentry, false);
2959 	ret = 0;
2960 out_err:
2961 	if (m2)
2962 		up_read(m2);
2963 	if (m1)
2964 		mutex_unlock(m1);
2965 	return ret;
2966 }
2967 
2968 /**
2969  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2970  * @inode:  the inode which may have a disconnected dentry
2971  * @dentry: a negative dentry which we want to point to the inode.
2972  *
2973  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2974  * place of the given dentry and return it, else simply d_add the inode
2975  * to the dentry and return NULL.
2976  *
2977  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2978  * we should error out: directories can't have multiple aliases.
2979  *
2980  * This is needed in the lookup routine of any filesystem that is exportable
2981  * (via knfsd) so that we can build dcache paths to directories effectively.
2982  *
2983  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2984  * is returned.  This matches the expected return value of ->lookup.
2985  *
2986  * Cluster filesystems may call this function with a negative, hashed dentry.
2987  * In that case, we know that the inode will be a regular file, and also this
2988  * will only occur during atomic_open. So we need to check for the dentry
2989  * being already hashed only in the final case.
2990  */
2991 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2992 {
2993 	if (IS_ERR(inode))
2994 		return ERR_CAST(inode);
2995 
2996 	BUG_ON(!d_unhashed(dentry));
2997 
2998 	if (!inode)
2999 		goto out;
3000 
3001 	security_d_instantiate(dentry, inode);
3002 	spin_lock(&inode->i_lock);
3003 	if (S_ISDIR(inode->i_mode)) {
3004 		struct dentry *new = __d_find_any_alias(inode);
3005 		if (unlikely(new)) {
3006 			/* The reference to new ensures it remains an alias */
3007 			spin_unlock(&inode->i_lock);
3008 			write_seqlock(&rename_lock);
3009 			if (unlikely(d_ancestor(new, dentry))) {
3010 				write_sequnlock(&rename_lock);
3011 				dput(new);
3012 				new = ERR_PTR(-ELOOP);
3013 				pr_warn_ratelimited(
3014 					"VFS: Lookup of '%s' in %s %s"
3015 					" would have caused loop\n",
3016 					dentry->d_name.name,
3017 					inode->i_sb->s_type->name,
3018 					inode->i_sb->s_id);
3019 			} else if (!IS_ROOT(new)) {
3020 				struct dentry *old_parent = dget(new->d_parent);
3021 				int err = __d_unalias(dentry, new);
3022 				write_sequnlock(&rename_lock);
3023 				if (err) {
3024 					dput(new);
3025 					new = ERR_PTR(err);
3026 				}
3027 				dput(old_parent);
3028 			} else {
3029 				__d_move(new, dentry, false);
3030 				write_sequnlock(&rename_lock);
3031 			}
3032 			iput(inode);
3033 			return new;
3034 		}
3035 	}
3036 out:
3037 	__d_add(dentry, inode);
3038 	return NULL;
3039 }
3040 EXPORT_SYMBOL(d_splice_alias);
3041 
3042 /*
3043  * Test whether new_dentry is a subdirectory of old_dentry.
3044  *
3045  * Trivially implemented using the dcache structure
3046  */
3047 
3048 /**
3049  * is_subdir - is new dentry a subdirectory of old_dentry
3050  * @new_dentry: new dentry
3051  * @old_dentry: old dentry
3052  *
3053  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3054  * Returns false otherwise.
3055  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3056  */
3057 
3058 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3059 {
3060 	bool subdir;
3061 	unsigned seq;
3062 
3063 	if (new_dentry == old_dentry)
3064 		return true;
3065 
3066 	/* Access d_parent under rcu as d_move() may change it. */
3067 	rcu_read_lock();
3068 	seq = read_seqbegin(&rename_lock);
3069 	subdir = d_ancestor(old_dentry, new_dentry);
3070 	 /* Try lockless once... */
3071 	if (read_seqretry(&rename_lock, seq)) {
3072 		/* ...else acquire lock for progress even on deep chains. */
3073 		read_seqlock_excl(&rename_lock);
3074 		subdir = d_ancestor(old_dentry, new_dentry);
3075 		read_sequnlock_excl(&rename_lock);
3076 	}
3077 	rcu_read_unlock();
3078 	return subdir;
3079 }
3080 EXPORT_SYMBOL(is_subdir);
3081 
3082 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3083 {
3084 	struct dentry *root = data;
3085 	if (dentry != root) {
3086 		if (d_unhashed(dentry) || !dentry->d_inode)
3087 			return D_WALK_SKIP;
3088 
3089 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3090 			dentry->d_flags |= DCACHE_GENOCIDE;
3091 			dentry->d_lockref.count--;
3092 		}
3093 	}
3094 	return D_WALK_CONTINUE;
3095 }
3096 
3097 void d_genocide(struct dentry *parent)
3098 {
3099 	d_walk(parent, parent, d_genocide_kill);
3100 }
3101 
3102 void d_mark_tmpfile(struct file *file, struct inode *inode)
3103 {
3104 	struct dentry *dentry = file->f_path.dentry;
3105 
3106 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3107 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3108 		!d_unlinked(dentry));
3109 	spin_lock(&dentry->d_parent->d_lock);
3110 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3111 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3112 				(unsigned long long)inode->i_ino);
3113 	spin_unlock(&dentry->d_lock);
3114 	spin_unlock(&dentry->d_parent->d_lock);
3115 }
3116 EXPORT_SYMBOL(d_mark_tmpfile);
3117 
3118 void d_tmpfile(struct file *file, struct inode *inode)
3119 {
3120 	struct dentry *dentry = file->f_path.dentry;
3121 
3122 	inode_dec_link_count(inode);
3123 	d_mark_tmpfile(file, inode);
3124 	d_instantiate(dentry, inode);
3125 }
3126 EXPORT_SYMBOL(d_tmpfile);
3127 
3128 /*
3129  * Obtain inode number of the parent dentry.
3130  */
3131 ino_t d_parent_ino(struct dentry *dentry)
3132 {
3133 	struct dentry *parent;
3134 	struct inode *iparent;
3135 	unsigned seq;
3136 	ino_t ret;
3137 
3138 	scoped_guard(rcu) {
3139 		seq = raw_seqcount_begin(&dentry->d_seq);
3140 		parent = READ_ONCE(dentry->d_parent);
3141 		iparent = d_inode_rcu(parent);
3142 		if (likely(iparent)) {
3143 			ret = iparent->i_ino;
3144 			if (!read_seqcount_retry(&dentry->d_seq, seq))
3145 				return ret;
3146 		}
3147 	}
3148 
3149 	spin_lock(&dentry->d_lock);
3150 	ret = dentry->d_parent->d_inode->i_ino;
3151 	spin_unlock(&dentry->d_lock);
3152 	return ret;
3153 }
3154 EXPORT_SYMBOL(d_parent_ino);
3155 
3156 static __initdata unsigned long dhash_entries;
3157 static int __init set_dhash_entries(char *str)
3158 {
3159 	if (!str)
3160 		return 0;
3161 	dhash_entries = simple_strtoul(str, &str, 0);
3162 	return 1;
3163 }
3164 __setup("dhash_entries=", set_dhash_entries);
3165 
3166 static void __init dcache_init_early(void)
3167 {
3168 	/* If hashes are distributed across NUMA nodes, defer
3169 	 * hash allocation until vmalloc space is available.
3170 	 */
3171 	if (hashdist)
3172 		return;
3173 
3174 	dentry_hashtable =
3175 		alloc_large_system_hash("Dentry cache",
3176 					sizeof(struct hlist_bl_head),
3177 					dhash_entries,
3178 					13,
3179 					HASH_EARLY | HASH_ZERO,
3180 					&d_hash_shift,
3181 					NULL,
3182 					0,
3183 					0);
3184 	d_hash_shift = 32 - d_hash_shift;
3185 
3186 	runtime_const_init(shift, d_hash_shift);
3187 	runtime_const_init(ptr, dentry_hashtable);
3188 }
3189 
3190 static void __init dcache_init(void)
3191 {
3192 	/*
3193 	 * A constructor could be added for stable state like the lists,
3194 	 * but it is probably not worth it because of the cache nature
3195 	 * of the dcache.
3196 	 */
3197 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3198 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3199 		d_iname);
3200 
3201 	/* Hash may have been set up in dcache_init_early */
3202 	if (!hashdist)
3203 		return;
3204 
3205 	dentry_hashtable =
3206 		alloc_large_system_hash("Dentry cache",
3207 					sizeof(struct hlist_bl_head),
3208 					dhash_entries,
3209 					13,
3210 					HASH_ZERO,
3211 					&d_hash_shift,
3212 					NULL,
3213 					0,
3214 					0);
3215 	d_hash_shift = 32 - d_hash_shift;
3216 
3217 	runtime_const_init(shift, d_hash_shift);
3218 	runtime_const_init(ptr, dentry_hashtable);
3219 }
3220 
3221 /* SLAB cache for __getname() consumers */
3222 struct kmem_cache *names_cachep __ro_after_init;
3223 EXPORT_SYMBOL(names_cachep);
3224 
3225 void __init vfs_caches_init_early(void)
3226 {
3227 	int i;
3228 
3229 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3230 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3231 
3232 	dcache_init_early();
3233 	inode_init_early();
3234 }
3235 
3236 void __init vfs_caches_init(void)
3237 {
3238 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3239 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3240 
3241 	dcache_init();
3242 	inode_init();
3243 	files_init();
3244 	files_maxfiles_init();
3245 	mnt_init();
3246 	bdev_cache_init();
3247 	chrdev_init();
3248 }
3249