1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 #include <asm/runtime-const.h> 39 40 /* 41 * Usage: 42 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 46 * s_roots bl list spinlock protects: 47 * - the s_roots list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 50 * d_lock protects: 51 * - d_flags 52 * - d_name 53 * - d_lru 54 * - d_count 55 * - d_unhashed() 56 * - d_parent and d_chilren 57 * - childrens' d_sib and d_parent 58 * - d_u.d_alias, d_inode 59 * 60 * Ordering: 61 * dentry->d_inode->i_lock 62 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 65 * s_roots lock 66 * 67 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 69 * ... 70 * dentry->d_parent->d_lock 71 * dentry->d_lock 72 * 73 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_lock 75 */ 76 int sysctl_vfs_cache_pressure __read_mostly = 100; 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 78 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 80 81 EXPORT_SYMBOL(rename_lock); 82 83 static struct kmem_cache *dentry_cache __ro_after_init; 84 85 const struct qstr empty_name = QSTR_INIT("", 0); 86 EXPORT_SYMBOL(empty_name); 87 const struct qstr slash_name = QSTR_INIT("/", 1); 88 EXPORT_SYMBOL(slash_name); 89 const struct qstr dotdot_name = QSTR_INIT("..", 2); 90 EXPORT_SYMBOL(dotdot_name); 91 92 /* 93 * This is the single most critical data structure when it comes 94 * to the dcache: the hashtable for lookups. Somebody should try 95 * to make this good - I've just made it work. 96 * 97 * This hash-function tries to avoid losing too many bits of hash 98 * information, yet avoid using a prime hash-size or similar. 99 */ 100 101 static unsigned int d_hash_shift __ro_after_init; 102 103 static struct hlist_bl_head *dentry_hashtable __ro_after_init; 104 105 static inline struct hlist_bl_head *d_hash(unsigned long hashlen) 106 { 107 return runtime_const_ptr(dentry_hashtable) + 108 runtime_const_shift_right_32(hashlen, d_hash_shift); 109 } 110 111 #define IN_LOOKUP_SHIFT 10 112 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 113 114 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 115 unsigned int hash) 116 { 117 hash += (unsigned long) parent / L1_CACHE_BYTES; 118 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 119 } 120 121 struct dentry_stat_t { 122 long nr_dentry; 123 long nr_unused; 124 long age_limit; /* age in seconds */ 125 long want_pages; /* pages requested by system */ 126 long nr_negative; /* # of unused negative dentries */ 127 long dummy; /* Reserved for future use */ 128 }; 129 130 static DEFINE_PER_CPU(long, nr_dentry); 131 static DEFINE_PER_CPU(long, nr_dentry_unused); 132 static DEFINE_PER_CPU(long, nr_dentry_negative); 133 134 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 135 /* Statistics gathering. */ 136 static struct dentry_stat_t dentry_stat = { 137 .age_limit = 45, 138 }; 139 140 /* 141 * Here we resort to our own counters instead of using generic per-cpu counters 142 * for consistency with what the vfs inode code does. We are expected to harvest 143 * better code and performance by having our own specialized counters. 144 * 145 * Please note that the loop is done over all possible CPUs, not over all online 146 * CPUs. The reason for this is that we don't want to play games with CPUs going 147 * on and off. If one of them goes off, we will just keep their counters. 148 * 149 * glommer: See cffbc8a for details, and if you ever intend to change this, 150 * please update all vfs counters to match. 151 */ 152 static long get_nr_dentry(void) 153 { 154 int i; 155 long sum = 0; 156 for_each_possible_cpu(i) 157 sum += per_cpu(nr_dentry, i); 158 return sum < 0 ? 0 : sum; 159 } 160 161 static long get_nr_dentry_unused(void) 162 { 163 int i; 164 long sum = 0; 165 for_each_possible_cpu(i) 166 sum += per_cpu(nr_dentry_unused, i); 167 return sum < 0 ? 0 : sum; 168 } 169 170 static long get_nr_dentry_negative(void) 171 { 172 int i; 173 long sum = 0; 174 175 for_each_possible_cpu(i) 176 sum += per_cpu(nr_dentry_negative, i); 177 return sum < 0 ? 0 : sum; 178 } 179 180 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer, 181 size_t *lenp, loff_t *ppos) 182 { 183 dentry_stat.nr_dentry = get_nr_dentry(); 184 dentry_stat.nr_unused = get_nr_dentry_unused(); 185 dentry_stat.nr_negative = get_nr_dentry_negative(); 186 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 187 } 188 189 static struct ctl_table fs_dcache_sysctls[] = { 190 { 191 .procname = "dentry-state", 192 .data = &dentry_stat, 193 .maxlen = 6*sizeof(long), 194 .mode = 0444, 195 .proc_handler = proc_nr_dentry, 196 }, 197 }; 198 199 static int __init init_fs_dcache_sysctls(void) 200 { 201 register_sysctl_init("fs", fs_dcache_sysctls); 202 return 0; 203 } 204 fs_initcall(init_fs_dcache_sysctls); 205 #endif 206 207 /* 208 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 209 * The strings are both count bytes long, and count is non-zero. 210 */ 211 #ifdef CONFIG_DCACHE_WORD_ACCESS 212 213 #include <asm/word-at-a-time.h> 214 /* 215 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 216 * aligned allocation for this particular component. We don't 217 * strictly need the load_unaligned_zeropad() safety, but it 218 * doesn't hurt either. 219 * 220 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 221 * need the careful unaligned handling. 222 */ 223 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 224 { 225 unsigned long a,b,mask; 226 227 for (;;) { 228 a = read_word_at_a_time(cs); 229 b = load_unaligned_zeropad(ct); 230 if (tcount < sizeof(unsigned long)) 231 break; 232 if (unlikely(a != b)) 233 return 1; 234 cs += sizeof(unsigned long); 235 ct += sizeof(unsigned long); 236 tcount -= sizeof(unsigned long); 237 if (!tcount) 238 return 0; 239 } 240 mask = bytemask_from_count(tcount); 241 return unlikely(!!((a ^ b) & mask)); 242 } 243 244 #else 245 246 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 247 { 248 do { 249 if (*cs != *ct) 250 return 1; 251 cs++; 252 ct++; 253 tcount--; 254 } while (tcount); 255 return 0; 256 } 257 258 #endif 259 260 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 261 { 262 /* 263 * Be careful about RCU walk racing with rename: 264 * use 'READ_ONCE' to fetch the name pointer. 265 * 266 * NOTE! Even if a rename will mean that the length 267 * was not loaded atomically, we don't care. The 268 * RCU walk will check the sequence count eventually, 269 * and catch it. And we won't overrun the buffer, 270 * because we're reading the name pointer atomically, 271 * and a dentry name is guaranteed to be properly 272 * terminated with a NUL byte. 273 * 274 * End result: even if 'len' is wrong, we'll exit 275 * early because the data cannot match (there can 276 * be no NUL in the ct/tcount data) 277 */ 278 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 279 280 return dentry_string_cmp(cs, ct, tcount); 281 } 282 283 struct external_name { 284 union { 285 atomic_t count; 286 struct rcu_head head; 287 } u; 288 unsigned char name[]; 289 }; 290 291 static inline struct external_name *external_name(struct dentry *dentry) 292 { 293 return container_of(dentry->d_name.name, struct external_name, name[0]); 294 } 295 296 static void __d_free(struct rcu_head *head) 297 { 298 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 299 300 kmem_cache_free(dentry_cache, dentry); 301 } 302 303 static void __d_free_external(struct rcu_head *head) 304 { 305 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 306 kfree(external_name(dentry)); 307 kmem_cache_free(dentry_cache, dentry); 308 } 309 310 static inline int dname_external(const struct dentry *dentry) 311 { 312 return dentry->d_name.name != dentry->d_iname; 313 } 314 315 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 316 { 317 spin_lock(&dentry->d_lock); 318 name->name = dentry->d_name; 319 if (unlikely(dname_external(dentry))) { 320 atomic_inc(&external_name(dentry)->u.count); 321 } else { 322 memcpy(name->inline_name, dentry->d_iname, 323 dentry->d_name.len + 1); 324 name->name.name = name->inline_name; 325 } 326 spin_unlock(&dentry->d_lock); 327 } 328 EXPORT_SYMBOL(take_dentry_name_snapshot); 329 330 void release_dentry_name_snapshot(struct name_snapshot *name) 331 { 332 if (unlikely(name->name.name != name->inline_name)) { 333 struct external_name *p; 334 p = container_of(name->name.name, struct external_name, name[0]); 335 if (unlikely(atomic_dec_and_test(&p->u.count))) 336 kfree_rcu(p, u.head); 337 } 338 } 339 EXPORT_SYMBOL(release_dentry_name_snapshot); 340 341 static inline void __d_set_inode_and_type(struct dentry *dentry, 342 struct inode *inode, 343 unsigned type_flags) 344 { 345 unsigned flags; 346 347 dentry->d_inode = inode; 348 flags = READ_ONCE(dentry->d_flags); 349 flags &= ~DCACHE_ENTRY_TYPE; 350 flags |= type_flags; 351 smp_store_release(&dentry->d_flags, flags); 352 } 353 354 static inline void __d_clear_type_and_inode(struct dentry *dentry) 355 { 356 unsigned flags = READ_ONCE(dentry->d_flags); 357 358 flags &= ~DCACHE_ENTRY_TYPE; 359 WRITE_ONCE(dentry->d_flags, flags); 360 dentry->d_inode = NULL; 361 /* 362 * The negative counter only tracks dentries on the LRU. Don't inc if 363 * d_lru is on another list. 364 */ 365 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 366 this_cpu_inc(nr_dentry_negative); 367 } 368 369 static void dentry_free(struct dentry *dentry) 370 { 371 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 372 if (unlikely(dname_external(dentry))) { 373 struct external_name *p = external_name(dentry); 374 if (likely(atomic_dec_and_test(&p->u.count))) { 375 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 376 return; 377 } 378 } 379 /* if dentry was never visible to RCU, immediate free is OK */ 380 if (dentry->d_flags & DCACHE_NORCU) 381 __d_free(&dentry->d_u.d_rcu); 382 else 383 call_rcu(&dentry->d_u.d_rcu, __d_free); 384 } 385 386 /* 387 * Release the dentry's inode, using the filesystem 388 * d_iput() operation if defined. 389 */ 390 static void dentry_unlink_inode(struct dentry * dentry) 391 __releases(dentry->d_lock) 392 __releases(dentry->d_inode->i_lock) 393 { 394 struct inode *inode = dentry->d_inode; 395 396 raw_write_seqcount_begin(&dentry->d_seq); 397 __d_clear_type_and_inode(dentry); 398 hlist_del_init(&dentry->d_u.d_alias); 399 raw_write_seqcount_end(&dentry->d_seq); 400 spin_unlock(&dentry->d_lock); 401 spin_unlock(&inode->i_lock); 402 if (!inode->i_nlink) 403 fsnotify_inoderemove(inode); 404 if (dentry->d_op && dentry->d_op->d_iput) 405 dentry->d_op->d_iput(dentry, inode); 406 else 407 iput(inode); 408 } 409 410 /* 411 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 412 * is in use - which includes both the "real" per-superblock 413 * LRU list _and_ the DCACHE_SHRINK_LIST use. 414 * 415 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 416 * on the shrink list (ie not on the superblock LRU list). 417 * 418 * The per-cpu "nr_dentry_unused" counters are updated with 419 * the DCACHE_LRU_LIST bit. 420 * 421 * The per-cpu "nr_dentry_negative" counters are only updated 422 * when deleted from or added to the per-superblock LRU list, not 423 * from/to the shrink list. That is to avoid an unneeded dec/inc 424 * pair when moving from LRU to shrink list in select_collect(). 425 * 426 * These helper functions make sure we always follow the 427 * rules. d_lock must be held by the caller. 428 */ 429 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 430 static void d_lru_add(struct dentry *dentry) 431 { 432 D_FLAG_VERIFY(dentry, 0); 433 dentry->d_flags |= DCACHE_LRU_LIST; 434 this_cpu_inc(nr_dentry_unused); 435 if (d_is_negative(dentry)) 436 this_cpu_inc(nr_dentry_negative); 437 WARN_ON_ONCE(!list_lru_add_obj( 438 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 439 } 440 441 static void d_lru_del(struct dentry *dentry) 442 { 443 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 444 dentry->d_flags &= ~DCACHE_LRU_LIST; 445 this_cpu_dec(nr_dentry_unused); 446 if (d_is_negative(dentry)) 447 this_cpu_dec(nr_dentry_negative); 448 WARN_ON_ONCE(!list_lru_del_obj( 449 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 450 } 451 452 static void d_shrink_del(struct dentry *dentry) 453 { 454 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 455 list_del_init(&dentry->d_lru); 456 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 457 this_cpu_dec(nr_dentry_unused); 458 } 459 460 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 461 { 462 D_FLAG_VERIFY(dentry, 0); 463 list_add(&dentry->d_lru, list); 464 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 465 this_cpu_inc(nr_dentry_unused); 466 } 467 468 /* 469 * These can only be called under the global LRU lock, ie during the 470 * callback for freeing the LRU list. "isolate" removes it from the 471 * LRU lists entirely, while shrink_move moves it to the indicated 472 * private list. 473 */ 474 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 475 { 476 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 477 dentry->d_flags &= ~DCACHE_LRU_LIST; 478 this_cpu_dec(nr_dentry_unused); 479 if (d_is_negative(dentry)) 480 this_cpu_dec(nr_dentry_negative); 481 list_lru_isolate(lru, &dentry->d_lru); 482 } 483 484 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 485 struct list_head *list) 486 { 487 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 488 dentry->d_flags |= DCACHE_SHRINK_LIST; 489 if (d_is_negative(dentry)) 490 this_cpu_dec(nr_dentry_negative); 491 list_lru_isolate_move(lru, &dentry->d_lru, list); 492 } 493 494 static void ___d_drop(struct dentry *dentry) 495 { 496 struct hlist_bl_head *b; 497 /* 498 * Hashed dentries are normally on the dentry hashtable, 499 * with the exception of those newly allocated by 500 * d_obtain_root, which are always IS_ROOT: 501 */ 502 if (unlikely(IS_ROOT(dentry))) 503 b = &dentry->d_sb->s_roots; 504 else 505 b = d_hash(dentry->d_name.hash); 506 507 hlist_bl_lock(b); 508 __hlist_bl_del(&dentry->d_hash); 509 hlist_bl_unlock(b); 510 } 511 512 void __d_drop(struct dentry *dentry) 513 { 514 if (!d_unhashed(dentry)) { 515 ___d_drop(dentry); 516 dentry->d_hash.pprev = NULL; 517 write_seqcount_invalidate(&dentry->d_seq); 518 } 519 } 520 EXPORT_SYMBOL(__d_drop); 521 522 /** 523 * d_drop - drop a dentry 524 * @dentry: dentry to drop 525 * 526 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 527 * be found through a VFS lookup any more. Note that this is different from 528 * deleting the dentry - d_delete will try to mark the dentry negative if 529 * possible, giving a successful _negative_ lookup, while d_drop will 530 * just make the cache lookup fail. 531 * 532 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 533 * reason (NFS timeouts or autofs deletes). 534 * 535 * __d_drop requires dentry->d_lock 536 * 537 * ___d_drop doesn't mark dentry as "unhashed" 538 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 539 */ 540 void d_drop(struct dentry *dentry) 541 { 542 spin_lock(&dentry->d_lock); 543 __d_drop(dentry); 544 spin_unlock(&dentry->d_lock); 545 } 546 EXPORT_SYMBOL(d_drop); 547 548 static inline void dentry_unlist(struct dentry *dentry) 549 { 550 struct dentry *next; 551 /* 552 * Inform d_walk() and shrink_dentry_list() that we are no longer 553 * attached to the dentry tree 554 */ 555 dentry->d_flags |= DCACHE_DENTRY_KILLED; 556 if (unlikely(hlist_unhashed(&dentry->d_sib))) 557 return; 558 __hlist_del(&dentry->d_sib); 559 /* 560 * Cursors can move around the list of children. While we'd been 561 * a normal list member, it didn't matter - ->d_sib.next would've 562 * been updated. However, from now on it won't be and for the 563 * things like d_walk() it might end up with a nasty surprise. 564 * Normally d_walk() doesn't care about cursors moving around - 565 * ->d_lock on parent prevents that and since a cursor has no children 566 * of its own, we get through it without ever unlocking the parent. 567 * There is one exception, though - if we ascend from a child that 568 * gets killed as soon as we unlock it, the next sibling is found 569 * using the value left in its ->d_sib.next. And if _that_ 570 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 571 * before d_walk() regains parent->d_lock, we'll end up skipping 572 * everything the cursor had been moved past. 573 * 574 * Solution: make sure that the pointer left behind in ->d_sib.next 575 * points to something that won't be moving around. I.e. skip the 576 * cursors. 577 */ 578 while (dentry->d_sib.next) { 579 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib); 580 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 581 break; 582 dentry->d_sib.next = next->d_sib.next; 583 } 584 } 585 586 static struct dentry *__dentry_kill(struct dentry *dentry) 587 { 588 struct dentry *parent = NULL; 589 bool can_free = true; 590 591 /* 592 * The dentry is now unrecoverably dead to the world. 593 */ 594 lockref_mark_dead(&dentry->d_lockref); 595 596 /* 597 * inform the fs via d_prune that this dentry is about to be 598 * unhashed and destroyed. 599 */ 600 if (dentry->d_flags & DCACHE_OP_PRUNE) 601 dentry->d_op->d_prune(dentry); 602 603 if (dentry->d_flags & DCACHE_LRU_LIST) { 604 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 605 d_lru_del(dentry); 606 } 607 /* if it was on the hash then remove it */ 608 __d_drop(dentry); 609 if (dentry->d_inode) 610 dentry_unlink_inode(dentry); 611 else 612 spin_unlock(&dentry->d_lock); 613 this_cpu_dec(nr_dentry); 614 if (dentry->d_op && dentry->d_op->d_release) 615 dentry->d_op->d_release(dentry); 616 617 cond_resched(); 618 /* now that it's negative, ->d_parent is stable */ 619 if (!IS_ROOT(dentry)) { 620 parent = dentry->d_parent; 621 spin_lock(&parent->d_lock); 622 } 623 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 624 dentry_unlist(dentry); 625 if (dentry->d_flags & DCACHE_SHRINK_LIST) 626 can_free = false; 627 spin_unlock(&dentry->d_lock); 628 if (likely(can_free)) 629 dentry_free(dentry); 630 if (parent && --parent->d_lockref.count) { 631 spin_unlock(&parent->d_lock); 632 return NULL; 633 } 634 return parent; 635 } 636 637 /* 638 * Lock a dentry for feeding it to __dentry_kill(). 639 * Called under rcu_read_lock() and dentry->d_lock; the former 640 * guarantees that nothing we access will be freed under us. 641 * Note that dentry is *not* protected from concurrent dentry_kill(), 642 * d_delete(), etc. 643 * 644 * Return false if dentry is busy. Otherwise, return true and have 645 * that dentry's inode locked. 646 */ 647 648 static bool lock_for_kill(struct dentry *dentry) 649 { 650 struct inode *inode = dentry->d_inode; 651 652 if (unlikely(dentry->d_lockref.count)) 653 return false; 654 655 if (!inode || likely(spin_trylock(&inode->i_lock))) 656 return true; 657 658 do { 659 spin_unlock(&dentry->d_lock); 660 spin_lock(&inode->i_lock); 661 spin_lock(&dentry->d_lock); 662 if (likely(inode == dentry->d_inode)) 663 break; 664 spin_unlock(&inode->i_lock); 665 inode = dentry->d_inode; 666 } while (inode); 667 if (likely(!dentry->d_lockref.count)) 668 return true; 669 if (inode) 670 spin_unlock(&inode->i_lock); 671 return false; 672 } 673 674 /* 675 * Decide if dentry is worth retaining. Usually this is called with dentry 676 * locked; if not locked, we are more limited and might not be able to tell 677 * without a lock. False in this case means "punt to locked path and recheck". 678 * 679 * In case we aren't locked, these predicates are not "stable". However, it is 680 * sufficient that at some point after we dropped the reference the dentry was 681 * hashed and the flags had the proper value. Other dentry users may have 682 * re-gotten a reference to the dentry and change that, but our work is done - 683 * we can leave the dentry around with a zero refcount. 684 */ 685 static inline bool retain_dentry(struct dentry *dentry, bool locked) 686 { 687 unsigned int d_flags; 688 689 smp_rmb(); 690 d_flags = READ_ONCE(dentry->d_flags); 691 692 // Unreachable? Nobody would be able to look it up, no point retaining 693 if (unlikely(d_unhashed(dentry))) 694 return false; 695 696 // Same if it's disconnected 697 if (unlikely(d_flags & DCACHE_DISCONNECTED)) 698 return false; 699 700 // ->d_delete() might tell us not to bother, but that requires 701 // ->d_lock; can't decide without it 702 if (unlikely(d_flags & DCACHE_OP_DELETE)) { 703 if (!locked || dentry->d_op->d_delete(dentry)) 704 return false; 705 } 706 707 // Explicitly told not to bother 708 if (unlikely(d_flags & DCACHE_DONTCACHE)) 709 return false; 710 711 // At this point it looks like we ought to keep it. We also might 712 // need to do something - put it on LRU if it wasn't there already 713 // and mark it referenced if it was on LRU, but not marked yet. 714 // Unfortunately, both actions require ->d_lock, so in lockless 715 // case we'd have to punt rather than doing those. 716 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) { 717 if (!locked) 718 return false; 719 d_lru_add(dentry); 720 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) { 721 if (!locked) 722 return false; 723 dentry->d_flags |= DCACHE_REFERENCED; 724 } 725 return true; 726 } 727 728 void d_mark_dontcache(struct inode *inode) 729 { 730 struct dentry *de; 731 732 spin_lock(&inode->i_lock); 733 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 734 spin_lock(&de->d_lock); 735 de->d_flags |= DCACHE_DONTCACHE; 736 spin_unlock(&de->d_lock); 737 } 738 inode->i_state |= I_DONTCACHE; 739 spin_unlock(&inode->i_lock); 740 } 741 EXPORT_SYMBOL(d_mark_dontcache); 742 743 /* 744 * Try to do a lockless dput(), and return whether that was successful. 745 * 746 * If unsuccessful, we return false, having already taken the dentry lock. 747 * In that case refcount is guaranteed to be zero and we have already 748 * decided that it's not worth keeping around. 749 * 750 * The caller needs to hold the RCU read lock, so that the dentry is 751 * guaranteed to stay around even if the refcount goes down to zero! 752 */ 753 static inline bool fast_dput(struct dentry *dentry) 754 { 755 int ret; 756 757 /* 758 * try to decrement the lockref optimistically. 759 */ 760 ret = lockref_put_return(&dentry->d_lockref); 761 762 /* 763 * If the lockref_put_return() failed due to the lock being held 764 * by somebody else, the fast path has failed. We will need to 765 * get the lock, and then check the count again. 766 */ 767 if (unlikely(ret < 0)) { 768 spin_lock(&dentry->d_lock); 769 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { 770 spin_unlock(&dentry->d_lock); 771 return true; 772 } 773 dentry->d_lockref.count--; 774 goto locked; 775 } 776 777 /* 778 * If we weren't the last ref, we're done. 779 */ 780 if (ret) 781 return true; 782 783 /* 784 * Can we decide that decrement of refcount is all we needed without 785 * taking the lock? There's a very common case when it's all we need - 786 * dentry looks like it ought to be retained and there's nothing else 787 * to do. 788 */ 789 if (retain_dentry(dentry, false)) 790 return true; 791 792 /* 793 * Either not worth retaining or we can't tell without the lock. 794 * Get the lock, then. We've already decremented the refcount to 0, 795 * but we'll need to re-check the situation after getting the lock. 796 */ 797 spin_lock(&dentry->d_lock); 798 799 /* 800 * Did somebody else grab a reference to it in the meantime, and 801 * we're no longer the last user after all? Alternatively, somebody 802 * else could have killed it and marked it dead. Either way, we 803 * don't need to do anything else. 804 */ 805 locked: 806 if (dentry->d_lockref.count || retain_dentry(dentry, true)) { 807 spin_unlock(&dentry->d_lock); 808 return true; 809 } 810 return false; 811 } 812 813 814 /* 815 * This is dput 816 * 817 * This is complicated by the fact that we do not want to put 818 * dentries that are no longer on any hash chain on the unused 819 * list: we'd much rather just get rid of them immediately. 820 * 821 * However, that implies that we have to traverse the dentry 822 * tree upwards to the parents which might _also_ now be 823 * scheduled for deletion (it may have been only waiting for 824 * its last child to go away). 825 * 826 * This tail recursion is done by hand as we don't want to depend 827 * on the compiler to always get this right (gcc generally doesn't). 828 * Real recursion would eat up our stack space. 829 */ 830 831 /* 832 * dput - release a dentry 833 * @dentry: dentry to release 834 * 835 * Release a dentry. This will drop the usage count and if appropriate 836 * call the dentry unlink method as well as removing it from the queues and 837 * releasing its resources. If the parent dentries were scheduled for release 838 * they too may now get deleted. 839 */ 840 void dput(struct dentry *dentry) 841 { 842 if (!dentry) 843 return; 844 might_sleep(); 845 rcu_read_lock(); 846 if (likely(fast_dput(dentry))) { 847 rcu_read_unlock(); 848 return; 849 } 850 while (lock_for_kill(dentry)) { 851 rcu_read_unlock(); 852 dentry = __dentry_kill(dentry); 853 if (!dentry) 854 return; 855 if (retain_dentry(dentry, true)) { 856 spin_unlock(&dentry->d_lock); 857 return; 858 } 859 rcu_read_lock(); 860 } 861 rcu_read_unlock(); 862 spin_unlock(&dentry->d_lock); 863 } 864 EXPORT_SYMBOL(dput); 865 866 static void to_shrink_list(struct dentry *dentry, struct list_head *list) 867 __must_hold(&dentry->d_lock) 868 { 869 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 870 if (dentry->d_flags & DCACHE_LRU_LIST) 871 d_lru_del(dentry); 872 d_shrink_add(dentry, list); 873 } 874 } 875 876 void dput_to_list(struct dentry *dentry, struct list_head *list) 877 { 878 rcu_read_lock(); 879 if (likely(fast_dput(dentry))) { 880 rcu_read_unlock(); 881 return; 882 } 883 rcu_read_unlock(); 884 to_shrink_list(dentry, list); 885 spin_unlock(&dentry->d_lock); 886 } 887 888 struct dentry *dget_parent(struct dentry *dentry) 889 { 890 int gotref; 891 struct dentry *ret; 892 unsigned seq; 893 894 /* 895 * Do optimistic parent lookup without any 896 * locking. 897 */ 898 rcu_read_lock(); 899 seq = raw_seqcount_begin(&dentry->d_seq); 900 ret = READ_ONCE(dentry->d_parent); 901 gotref = lockref_get_not_zero(&ret->d_lockref); 902 rcu_read_unlock(); 903 if (likely(gotref)) { 904 if (!read_seqcount_retry(&dentry->d_seq, seq)) 905 return ret; 906 dput(ret); 907 } 908 909 repeat: 910 /* 911 * Don't need rcu_dereference because we re-check it was correct under 912 * the lock. 913 */ 914 rcu_read_lock(); 915 ret = dentry->d_parent; 916 spin_lock(&ret->d_lock); 917 if (unlikely(ret != dentry->d_parent)) { 918 spin_unlock(&ret->d_lock); 919 rcu_read_unlock(); 920 goto repeat; 921 } 922 rcu_read_unlock(); 923 BUG_ON(!ret->d_lockref.count); 924 ret->d_lockref.count++; 925 spin_unlock(&ret->d_lock); 926 return ret; 927 } 928 EXPORT_SYMBOL(dget_parent); 929 930 static struct dentry * __d_find_any_alias(struct inode *inode) 931 { 932 struct dentry *alias; 933 934 if (hlist_empty(&inode->i_dentry)) 935 return NULL; 936 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 937 lockref_get(&alias->d_lockref); 938 return alias; 939 } 940 941 /** 942 * d_find_any_alias - find any alias for a given inode 943 * @inode: inode to find an alias for 944 * 945 * If any aliases exist for the given inode, take and return a 946 * reference for one of them. If no aliases exist, return %NULL. 947 */ 948 struct dentry *d_find_any_alias(struct inode *inode) 949 { 950 struct dentry *de; 951 952 spin_lock(&inode->i_lock); 953 de = __d_find_any_alias(inode); 954 spin_unlock(&inode->i_lock); 955 return de; 956 } 957 EXPORT_SYMBOL(d_find_any_alias); 958 959 static struct dentry *__d_find_alias(struct inode *inode) 960 { 961 struct dentry *alias; 962 963 if (S_ISDIR(inode->i_mode)) 964 return __d_find_any_alias(inode); 965 966 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 967 spin_lock(&alias->d_lock); 968 if (!d_unhashed(alias)) { 969 dget_dlock(alias); 970 spin_unlock(&alias->d_lock); 971 return alias; 972 } 973 spin_unlock(&alias->d_lock); 974 } 975 return NULL; 976 } 977 978 /** 979 * d_find_alias - grab a hashed alias of inode 980 * @inode: inode in question 981 * 982 * If inode has a hashed alias, or is a directory and has any alias, 983 * acquire the reference to alias and return it. Otherwise return NULL. 984 * Notice that if inode is a directory there can be only one alias and 985 * it can be unhashed only if it has no children, or if it is the root 986 * of a filesystem, or if the directory was renamed and d_revalidate 987 * was the first vfs operation to notice. 988 * 989 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 990 * any other hashed alias over that one. 991 */ 992 struct dentry *d_find_alias(struct inode *inode) 993 { 994 struct dentry *de = NULL; 995 996 if (!hlist_empty(&inode->i_dentry)) { 997 spin_lock(&inode->i_lock); 998 de = __d_find_alias(inode); 999 spin_unlock(&inode->i_lock); 1000 } 1001 return de; 1002 } 1003 EXPORT_SYMBOL(d_find_alias); 1004 1005 /* 1006 * Caller MUST be holding rcu_read_lock() and be guaranteed 1007 * that inode won't get freed until rcu_read_unlock(). 1008 */ 1009 struct dentry *d_find_alias_rcu(struct inode *inode) 1010 { 1011 struct hlist_head *l = &inode->i_dentry; 1012 struct dentry *de = NULL; 1013 1014 spin_lock(&inode->i_lock); 1015 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1016 // used without having I_FREEING set, which means no aliases left 1017 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1018 if (S_ISDIR(inode->i_mode)) { 1019 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1020 } else { 1021 hlist_for_each_entry(de, l, d_u.d_alias) 1022 if (!d_unhashed(de)) 1023 break; 1024 } 1025 } 1026 spin_unlock(&inode->i_lock); 1027 return de; 1028 } 1029 1030 /* 1031 * Try to kill dentries associated with this inode. 1032 * WARNING: you must own a reference to inode. 1033 */ 1034 void d_prune_aliases(struct inode *inode) 1035 { 1036 LIST_HEAD(dispose); 1037 struct dentry *dentry; 1038 1039 spin_lock(&inode->i_lock); 1040 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1041 spin_lock(&dentry->d_lock); 1042 if (!dentry->d_lockref.count) 1043 to_shrink_list(dentry, &dispose); 1044 spin_unlock(&dentry->d_lock); 1045 } 1046 spin_unlock(&inode->i_lock); 1047 shrink_dentry_list(&dispose); 1048 } 1049 EXPORT_SYMBOL(d_prune_aliases); 1050 1051 static inline void shrink_kill(struct dentry *victim) 1052 { 1053 do { 1054 rcu_read_unlock(); 1055 victim = __dentry_kill(victim); 1056 rcu_read_lock(); 1057 } while (victim && lock_for_kill(victim)); 1058 rcu_read_unlock(); 1059 if (victim) 1060 spin_unlock(&victim->d_lock); 1061 } 1062 1063 void shrink_dentry_list(struct list_head *list) 1064 { 1065 while (!list_empty(list)) { 1066 struct dentry *dentry; 1067 1068 dentry = list_entry(list->prev, struct dentry, d_lru); 1069 spin_lock(&dentry->d_lock); 1070 rcu_read_lock(); 1071 if (!lock_for_kill(dentry)) { 1072 bool can_free; 1073 rcu_read_unlock(); 1074 d_shrink_del(dentry); 1075 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED; 1076 spin_unlock(&dentry->d_lock); 1077 if (can_free) 1078 dentry_free(dentry); 1079 continue; 1080 } 1081 d_shrink_del(dentry); 1082 shrink_kill(dentry); 1083 } 1084 } 1085 1086 static enum lru_status dentry_lru_isolate(struct list_head *item, 1087 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1088 { 1089 struct list_head *freeable = arg; 1090 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1091 1092 1093 /* 1094 * we are inverting the lru lock/dentry->d_lock here, 1095 * so use a trylock. If we fail to get the lock, just skip 1096 * it 1097 */ 1098 if (!spin_trylock(&dentry->d_lock)) 1099 return LRU_SKIP; 1100 1101 /* 1102 * Referenced dentries are still in use. If they have active 1103 * counts, just remove them from the LRU. Otherwise give them 1104 * another pass through the LRU. 1105 */ 1106 if (dentry->d_lockref.count) { 1107 d_lru_isolate(lru, dentry); 1108 spin_unlock(&dentry->d_lock); 1109 return LRU_REMOVED; 1110 } 1111 1112 if (dentry->d_flags & DCACHE_REFERENCED) { 1113 dentry->d_flags &= ~DCACHE_REFERENCED; 1114 spin_unlock(&dentry->d_lock); 1115 1116 /* 1117 * The list move itself will be made by the common LRU code. At 1118 * this point, we've dropped the dentry->d_lock but keep the 1119 * lru lock. This is safe to do, since every list movement is 1120 * protected by the lru lock even if both locks are held. 1121 * 1122 * This is guaranteed by the fact that all LRU management 1123 * functions are intermediated by the LRU API calls like 1124 * list_lru_add_obj and list_lru_del_obj. List movement in this file 1125 * only ever occur through this functions or through callbacks 1126 * like this one, that are called from the LRU API. 1127 * 1128 * The only exceptions to this are functions like 1129 * shrink_dentry_list, and code that first checks for the 1130 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1131 * operating only with stack provided lists after they are 1132 * properly isolated from the main list. It is thus, always a 1133 * local access. 1134 */ 1135 return LRU_ROTATE; 1136 } 1137 1138 d_lru_shrink_move(lru, dentry, freeable); 1139 spin_unlock(&dentry->d_lock); 1140 1141 return LRU_REMOVED; 1142 } 1143 1144 /** 1145 * prune_dcache_sb - shrink the dcache 1146 * @sb: superblock 1147 * @sc: shrink control, passed to list_lru_shrink_walk() 1148 * 1149 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1150 * is done when we need more memory and called from the superblock shrinker 1151 * function. 1152 * 1153 * This function may fail to free any resources if all the dentries are in 1154 * use. 1155 */ 1156 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1157 { 1158 LIST_HEAD(dispose); 1159 long freed; 1160 1161 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1162 dentry_lru_isolate, &dispose); 1163 shrink_dentry_list(&dispose); 1164 return freed; 1165 } 1166 1167 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1168 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1169 { 1170 struct list_head *freeable = arg; 1171 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1172 1173 /* 1174 * we are inverting the lru lock/dentry->d_lock here, 1175 * so use a trylock. If we fail to get the lock, just skip 1176 * it 1177 */ 1178 if (!spin_trylock(&dentry->d_lock)) 1179 return LRU_SKIP; 1180 1181 d_lru_shrink_move(lru, dentry, freeable); 1182 spin_unlock(&dentry->d_lock); 1183 1184 return LRU_REMOVED; 1185 } 1186 1187 1188 /** 1189 * shrink_dcache_sb - shrink dcache for a superblock 1190 * @sb: superblock 1191 * 1192 * Shrink the dcache for the specified super block. This is used to free 1193 * the dcache before unmounting a file system. 1194 */ 1195 void shrink_dcache_sb(struct super_block *sb) 1196 { 1197 do { 1198 LIST_HEAD(dispose); 1199 1200 list_lru_walk(&sb->s_dentry_lru, 1201 dentry_lru_isolate_shrink, &dispose, 1024); 1202 shrink_dentry_list(&dispose); 1203 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1204 } 1205 EXPORT_SYMBOL(shrink_dcache_sb); 1206 1207 /** 1208 * enum d_walk_ret - action to talke during tree walk 1209 * @D_WALK_CONTINUE: contrinue walk 1210 * @D_WALK_QUIT: quit walk 1211 * @D_WALK_NORETRY: quit when retry is needed 1212 * @D_WALK_SKIP: skip this dentry and its children 1213 */ 1214 enum d_walk_ret { 1215 D_WALK_CONTINUE, 1216 D_WALK_QUIT, 1217 D_WALK_NORETRY, 1218 D_WALK_SKIP, 1219 }; 1220 1221 /** 1222 * d_walk - walk the dentry tree 1223 * @parent: start of walk 1224 * @data: data passed to @enter() and @finish() 1225 * @enter: callback when first entering the dentry 1226 * 1227 * The @enter() callbacks are called with d_lock held. 1228 */ 1229 static void d_walk(struct dentry *parent, void *data, 1230 enum d_walk_ret (*enter)(void *, struct dentry *)) 1231 { 1232 struct dentry *this_parent, *dentry; 1233 unsigned seq = 0; 1234 enum d_walk_ret ret; 1235 bool retry = true; 1236 1237 again: 1238 read_seqbegin_or_lock(&rename_lock, &seq); 1239 this_parent = parent; 1240 spin_lock(&this_parent->d_lock); 1241 1242 ret = enter(data, this_parent); 1243 switch (ret) { 1244 case D_WALK_CONTINUE: 1245 break; 1246 case D_WALK_QUIT: 1247 case D_WALK_SKIP: 1248 goto out_unlock; 1249 case D_WALK_NORETRY: 1250 retry = false; 1251 break; 1252 } 1253 repeat: 1254 dentry = d_first_child(this_parent); 1255 resume: 1256 hlist_for_each_entry_from(dentry, d_sib) { 1257 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1258 continue; 1259 1260 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1261 1262 ret = enter(data, dentry); 1263 switch (ret) { 1264 case D_WALK_CONTINUE: 1265 break; 1266 case D_WALK_QUIT: 1267 spin_unlock(&dentry->d_lock); 1268 goto out_unlock; 1269 case D_WALK_NORETRY: 1270 retry = false; 1271 break; 1272 case D_WALK_SKIP: 1273 spin_unlock(&dentry->d_lock); 1274 continue; 1275 } 1276 1277 if (!hlist_empty(&dentry->d_children)) { 1278 spin_unlock(&this_parent->d_lock); 1279 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1280 this_parent = dentry; 1281 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1282 goto repeat; 1283 } 1284 spin_unlock(&dentry->d_lock); 1285 } 1286 /* 1287 * All done at this level ... ascend and resume the search. 1288 */ 1289 rcu_read_lock(); 1290 ascend: 1291 if (this_parent != parent) { 1292 dentry = this_parent; 1293 this_parent = dentry->d_parent; 1294 1295 spin_unlock(&dentry->d_lock); 1296 spin_lock(&this_parent->d_lock); 1297 1298 /* might go back up the wrong parent if we have had a rename. */ 1299 if (need_seqretry(&rename_lock, seq)) 1300 goto rename_retry; 1301 /* go into the first sibling still alive */ 1302 hlist_for_each_entry_continue(dentry, d_sib) { 1303 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) { 1304 rcu_read_unlock(); 1305 goto resume; 1306 } 1307 } 1308 goto ascend; 1309 } 1310 if (need_seqretry(&rename_lock, seq)) 1311 goto rename_retry; 1312 rcu_read_unlock(); 1313 1314 out_unlock: 1315 spin_unlock(&this_parent->d_lock); 1316 done_seqretry(&rename_lock, seq); 1317 return; 1318 1319 rename_retry: 1320 spin_unlock(&this_parent->d_lock); 1321 rcu_read_unlock(); 1322 BUG_ON(seq & 1); 1323 if (!retry) 1324 return; 1325 seq = 1; 1326 goto again; 1327 } 1328 1329 struct check_mount { 1330 struct vfsmount *mnt; 1331 unsigned int mounted; 1332 }; 1333 1334 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1335 { 1336 struct check_mount *info = data; 1337 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1338 1339 if (likely(!d_mountpoint(dentry))) 1340 return D_WALK_CONTINUE; 1341 if (__path_is_mountpoint(&path)) { 1342 info->mounted = 1; 1343 return D_WALK_QUIT; 1344 } 1345 return D_WALK_CONTINUE; 1346 } 1347 1348 /** 1349 * path_has_submounts - check for mounts over a dentry in the 1350 * current namespace. 1351 * @parent: path to check. 1352 * 1353 * Return true if the parent or its subdirectories contain 1354 * a mount point in the current namespace. 1355 */ 1356 int path_has_submounts(const struct path *parent) 1357 { 1358 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1359 1360 read_seqlock_excl(&mount_lock); 1361 d_walk(parent->dentry, &data, path_check_mount); 1362 read_sequnlock_excl(&mount_lock); 1363 1364 return data.mounted; 1365 } 1366 EXPORT_SYMBOL(path_has_submounts); 1367 1368 /* 1369 * Called by mount code to set a mountpoint and check if the mountpoint is 1370 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1371 * subtree can become unreachable). 1372 * 1373 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1374 * this reason take rename_lock and d_lock on dentry and ancestors. 1375 */ 1376 int d_set_mounted(struct dentry *dentry) 1377 { 1378 struct dentry *p; 1379 int ret = -ENOENT; 1380 write_seqlock(&rename_lock); 1381 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1382 /* Need exclusion wrt. d_invalidate() */ 1383 spin_lock(&p->d_lock); 1384 if (unlikely(d_unhashed(p))) { 1385 spin_unlock(&p->d_lock); 1386 goto out; 1387 } 1388 spin_unlock(&p->d_lock); 1389 } 1390 spin_lock(&dentry->d_lock); 1391 if (!d_unlinked(dentry)) { 1392 ret = -EBUSY; 1393 if (!d_mountpoint(dentry)) { 1394 dentry->d_flags |= DCACHE_MOUNTED; 1395 ret = 0; 1396 } 1397 } 1398 spin_unlock(&dentry->d_lock); 1399 out: 1400 write_sequnlock(&rename_lock); 1401 return ret; 1402 } 1403 1404 /* 1405 * Search the dentry child list of the specified parent, 1406 * and move any unused dentries to the end of the unused 1407 * list for prune_dcache(). We descend to the next level 1408 * whenever the d_children list is non-empty and continue 1409 * searching. 1410 * 1411 * It returns zero iff there are no unused children, 1412 * otherwise it returns the number of children moved to 1413 * the end of the unused list. This may not be the total 1414 * number of unused children, because select_parent can 1415 * drop the lock and return early due to latency 1416 * constraints. 1417 */ 1418 1419 struct select_data { 1420 struct dentry *start; 1421 union { 1422 long found; 1423 struct dentry *victim; 1424 }; 1425 struct list_head dispose; 1426 }; 1427 1428 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1429 { 1430 struct select_data *data = _data; 1431 enum d_walk_ret ret = D_WALK_CONTINUE; 1432 1433 if (data->start == dentry) 1434 goto out; 1435 1436 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1437 data->found++; 1438 } else if (!dentry->d_lockref.count) { 1439 to_shrink_list(dentry, &data->dispose); 1440 data->found++; 1441 } else if (dentry->d_lockref.count < 0) { 1442 data->found++; 1443 } 1444 /* 1445 * We can return to the caller if we have found some (this 1446 * ensures forward progress). We'll be coming back to find 1447 * the rest. 1448 */ 1449 if (!list_empty(&data->dispose)) 1450 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1451 out: 1452 return ret; 1453 } 1454 1455 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1456 { 1457 struct select_data *data = _data; 1458 enum d_walk_ret ret = D_WALK_CONTINUE; 1459 1460 if (data->start == dentry) 1461 goto out; 1462 1463 if (!dentry->d_lockref.count) { 1464 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1465 rcu_read_lock(); 1466 data->victim = dentry; 1467 return D_WALK_QUIT; 1468 } 1469 to_shrink_list(dentry, &data->dispose); 1470 } 1471 /* 1472 * We can return to the caller if we have found some (this 1473 * ensures forward progress). We'll be coming back to find 1474 * the rest. 1475 */ 1476 if (!list_empty(&data->dispose)) 1477 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1478 out: 1479 return ret; 1480 } 1481 1482 /** 1483 * shrink_dcache_parent - prune dcache 1484 * @parent: parent of entries to prune 1485 * 1486 * Prune the dcache to remove unused children of the parent dentry. 1487 */ 1488 void shrink_dcache_parent(struct dentry *parent) 1489 { 1490 for (;;) { 1491 struct select_data data = {.start = parent}; 1492 1493 INIT_LIST_HEAD(&data.dispose); 1494 d_walk(parent, &data, select_collect); 1495 1496 if (!list_empty(&data.dispose)) { 1497 shrink_dentry_list(&data.dispose); 1498 continue; 1499 } 1500 1501 cond_resched(); 1502 if (!data.found) 1503 break; 1504 data.victim = NULL; 1505 d_walk(parent, &data, select_collect2); 1506 if (data.victim) { 1507 spin_lock(&data.victim->d_lock); 1508 if (!lock_for_kill(data.victim)) { 1509 spin_unlock(&data.victim->d_lock); 1510 rcu_read_unlock(); 1511 } else { 1512 shrink_kill(data.victim); 1513 } 1514 } 1515 if (!list_empty(&data.dispose)) 1516 shrink_dentry_list(&data.dispose); 1517 } 1518 } 1519 EXPORT_SYMBOL(shrink_dcache_parent); 1520 1521 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1522 { 1523 /* it has busy descendents; complain about those instead */ 1524 if (!hlist_empty(&dentry->d_children)) 1525 return D_WALK_CONTINUE; 1526 1527 /* root with refcount 1 is fine */ 1528 if (dentry == _data && dentry->d_lockref.count == 1) 1529 return D_WALK_CONTINUE; 1530 1531 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " 1532 " still in use (%d) [unmount of %s %s]\n", 1533 dentry, 1534 dentry->d_inode ? 1535 dentry->d_inode->i_ino : 0UL, 1536 dentry, 1537 dentry->d_lockref.count, 1538 dentry->d_sb->s_type->name, 1539 dentry->d_sb->s_id); 1540 return D_WALK_CONTINUE; 1541 } 1542 1543 static void do_one_tree(struct dentry *dentry) 1544 { 1545 shrink_dcache_parent(dentry); 1546 d_walk(dentry, dentry, umount_check); 1547 d_drop(dentry); 1548 dput(dentry); 1549 } 1550 1551 /* 1552 * destroy the dentries attached to a superblock on unmounting 1553 */ 1554 void shrink_dcache_for_umount(struct super_block *sb) 1555 { 1556 struct dentry *dentry; 1557 1558 rwsem_assert_held_write(&sb->s_umount); 1559 1560 dentry = sb->s_root; 1561 sb->s_root = NULL; 1562 do_one_tree(dentry); 1563 1564 while (!hlist_bl_empty(&sb->s_roots)) { 1565 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1566 do_one_tree(dentry); 1567 } 1568 } 1569 1570 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1571 { 1572 struct dentry **victim = _data; 1573 if (d_mountpoint(dentry)) { 1574 *victim = dget_dlock(dentry); 1575 return D_WALK_QUIT; 1576 } 1577 return D_WALK_CONTINUE; 1578 } 1579 1580 /** 1581 * d_invalidate - detach submounts, prune dcache, and drop 1582 * @dentry: dentry to invalidate (aka detach, prune and drop) 1583 */ 1584 void d_invalidate(struct dentry *dentry) 1585 { 1586 bool had_submounts = false; 1587 spin_lock(&dentry->d_lock); 1588 if (d_unhashed(dentry)) { 1589 spin_unlock(&dentry->d_lock); 1590 return; 1591 } 1592 __d_drop(dentry); 1593 spin_unlock(&dentry->d_lock); 1594 1595 /* Negative dentries can be dropped without further checks */ 1596 if (!dentry->d_inode) 1597 return; 1598 1599 shrink_dcache_parent(dentry); 1600 for (;;) { 1601 struct dentry *victim = NULL; 1602 d_walk(dentry, &victim, find_submount); 1603 if (!victim) { 1604 if (had_submounts) 1605 shrink_dcache_parent(dentry); 1606 return; 1607 } 1608 had_submounts = true; 1609 detach_mounts(victim); 1610 dput(victim); 1611 } 1612 } 1613 EXPORT_SYMBOL(d_invalidate); 1614 1615 /** 1616 * __d_alloc - allocate a dcache entry 1617 * @sb: filesystem it will belong to 1618 * @name: qstr of the name 1619 * 1620 * Allocates a dentry. It returns %NULL if there is insufficient memory 1621 * available. On a success the dentry is returned. The name passed in is 1622 * copied and the copy passed in may be reused after this call. 1623 */ 1624 1625 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1626 { 1627 struct dentry *dentry; 1628 char *dname; 1629 int err; 1630 1631 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1632 GFP_KERNEL); 1633 if (!dentry) 1634 return NULL; 1635 1636 /* 1637 * We guarantee that the inline name is always NUL-terminated. 1638 * This way the memcpy() done by the name switching in rename 1639 * will still always have a NUL at the end, even if we might 1640 * be overwriting an internal NUL character 1641 */ 1642 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1643 if (unlikely(!name)) { 1644 name = &slash_name; 1645 dname = dentry->d_iname; 1646 } else if (name->len > DNAME_INLINE_LEN-1) { 1647 size_t size = offsetof(struct external_name, name[1]); 1648 struct external_name *p = kmalloc(size + name->len, 1649 GFP_KERNEL_ACCOUNT | 1650 __GFP_RECLAIMABLE); 1651 if (!p) { 1652 kmem_cache_free(dentry_cache, dentry); 1653 return NULL; 1654 } 1655 atomic_set(&p->u.count, 1); 1656 dname = p->name; 1657 } else { 1658 dname = dentry->d_iname; 1659 } 1660 1661 dentry->d_name.len = name->len; 1662 dentry->d_name.hash = name->hash; 1663 memcpy(dname, name->name, name->len); 1664 dname[name->len] = 0; 1665 1666 /* Make sure we always see the terminating NUL character */ 1667 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1668 1669 dentry->d_lockref.count = 1; 1670 dentry->d_flags = 0; 1671 spin_lock_init(&dentry->d_lock); 1672 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1673 dentry->d_inode = NULL; 1674 dentry->d_parent = dentry; 1675 dentry->d_sb = sb; 1676 dentry->d_op = NULL; 1677 dentry->d_fsdata = NULL; 1678 INIT_HLIST_BL_NODE(&dentry->d_hash); 1679 INIT_LIST_HEAD(&dentry->d_lru); 1680 INIT_HLIST_HEAD(&dentry->d_children); 1681 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1682 INIT_HLIST_NODE(&dentry->d_sib); 1683 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1684 1685 if (dentry->d_op && dentry->d_op->d_init) { 1686 err = dentry->d_op->d_init(dentry); 1687 if (err) { 1688 if (dname_external(dentry)) 1689 kfree(external_name(dentry)); 1690 kmem_cache_free(dentry_cache, dentry); 1691 return NULL; 1692 } 1693 } 1694 1695 this_cpu_inc(nr_dentry); 1696 1697 return dentry; 1698 } 1699 1700 /** 1701 * d_alloc - allocate a dcache entry 1702 * @parent: parent of entry to allocate 1703 * @name: qstr of the name 1704 * 1705 * Allocates a dentry. It returns %NULL if there is insufficient memory 1706 * available. On a success the dentry is returned. The name passed in is 1707 * copied and the copy passed in may be reused after this call. 1708 */ 1709 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1710 { 1711 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1712 if (!dentry) 1713 return NULL; 1714 spin_lock(&parent->d_lock); 1715 /* 1716 * don't need child lock because it is not subject 1717 * to concurrency here 1718 */ 1719 dentry->d_parent = dget_dlock(parent); 1720 hlist_add_head(&dentry->d_sib, &parent->d_children); 1721 spin_unlock(&parent->d_lock); 1722 1723 return dentry; 1724 } 1725 EXPORT_SYMBOL(d_alloc); 1726 1727 struct dentry *d_alloc_anon(struct super_block *sb) 1728 { 1729 return __d_alloc(sb, NULL); 1730 } 1731 EXPORT_SYMBOL(d_alloc_anon); 1732 1733 struct dentry *d_alloc_cursor(struct dentry * parent) 1734 { 1735 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1736 if (dentry) { 1737 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1738 dentry->d_parent = dget(parent); 1739 } 1740 return dentry; 1741 } 1742 1743 /** 1744 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1745 * @sb: the superblock 1746 * @name: qstr of the name 1747 * 1748 * For a filesystem that just pins its dentries in memory and never 1749 * performs lookups at all, return an unhashed IS_ROOT dentry. 1750 * This is used for pipes, sockets et.al. - the stuff that should 1751 * never be anyone's children or parents. Unlike all other 1752 * dentries, these will not have RCU delay between dropping the 1753 * last reference and freeing them. 1754 * 1755 * The only user is alloc_file_pseudo() and that's what should 1756 * be considered a public interface. Don't use directly. 1757 */ 1758 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1759 { 1760 static const struct dentry_operations anon_ops = { 1761 .d_dname = simple_dname 1762 }; 1763 struct dentry *dentry = __d_alloc(sb, name); 1764 if (likely(dentry)) { 1765 dentry->d_flags |= DCACHE_NORCU; 1766 if (!sb->s_d_op) 1767 d_set_d_op(dentry, &anon_ops); 1768 } 1769 return dentry; 1770 } 1771 1772 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1773 { 1774 struct qstr q; 1775 1776 q.name = name; 1777 q.hash_len = hashlen_string(parent, name); 1778 return d_alloc(parent, &q); 1779 } 1780 EXPORT_SYMBOL(d_alloc_name); 1781 1782 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1783 { 1784 WARN_ON_ONCE(dentry->d_op); 1785 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1786 DCACHE_OP_COMPARE | 1787 DCACHE_OP_REVALIDATE | 1788 DCACHE_OP_WEAK_REVALIDATE | 1789 DCACHE_OP_DELETE | 1790 DCACHE_OP_REAL)); 1791 dentry->d_op = op; 1792 if (!op) 1793 return; 1794 if (op->d_hash) 1795 dentry->d_flags |= DCACHE_OP_HASH; 1796 if (op->d_compare) 1797 dentry->d_flags |= DCACHE_OP_COMPARE; 1798 if (op->d_revalidate) 1799 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1800 if (op->d_weak_revalidate) 1801 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1802 if (op->d_delete) 1803 dentry->d_flags |= DCACHE_OP_DELETE; 1804 if (op->d_prune) 1805 dentry->d_flags |= DCACHE_OP_PRUNE; 1806 if (op->d_real) 1807 dentry->d_flags |= DCACHE_OP_REAL; 1808 1809 } 1810 EXPORT_SYMBOL(d_set_d_op); 1811 1812 static unsigned d_flags_for_inode(struct inode *inode) 1813 { 1814 unsigned add_flags = DCACHE_REGULAR_TYPE; 1815 1816 if (!inode) 1817 return DCACHE_MISS_TYPE; 1818 1819 if (S_ISDIR(inode->i_mode)) { 1820 add_flags = DCACHE_DIRECTORY_TYPE; 1821 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1822 if (unlikely(!inode->i_op->lookup)) 1823 add_flags = DCACHE_AUTODIR_TYPE; 1824 else 1825 inode->i_opflags |= IOP_LOOKUP; 1826 } 1827 goto type_determined; 1828 } 1829 1830 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1831 if (unlikely(inode->i_op->get_link)) { 1832 add_flags = DCACHE_SYMLINK_TYPE; 1833 goto type_determined; 1834 } 1835 inode->i_opflags |= IOP_NOFOLLOW; 1836 } 1837 1838 if (unlikely(!S_ISREG(inode->i_mode))) 1839 add_flags = DCACHE_SPECIAL_TYPE; 1840 1841 type_determined: 1842 if (unlikely(IS_AUTOMOUNT(inode))) 1843 add_flags |= DCACHE_NEED_AUTOMOUNT; 1844 return add_flags; 1845 } 1846 1847 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1848 { 1849 unsigned add_flags = d_flags_for_inode(inode); 1850 WARN_ON(d_in_lookup(dentry)); 1851 1852 spin_lock(&dentry->d_lock); 1853 /* 1854 * The negative counter only tracks dentries on the LRU. Don't dec if 1855 * d_lru is on another list. 1856 */ 1857 if ((dentry->d_flags & 1858 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 1859 this_cpu_dec(nr_dentry_negative); 1860 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1861 raw_write_seqcount_begin(&dentry->d_seq); 1862 __d_set_inode_and_type(dentry, inode, add_flags); 1863 raw_write_seqcount_end(&dentry->d_seq); 1864 fsnotify_update_flags(dentry); 1865 spin_unlock(&dentry->d_lock); 1866 } 1867 1868 /** 1869 * d_instantiate - fill in inode information for a dentry 1870 * @entry: dentry to complete 1871 * @inode: inode to attach to this dentry 1872 * 1873 * Fill in inode information in the entry. 1874 * 1875 * This turns negative dentries into productive full members 1876 * of society. 1877 * 1878 * NOTE! This assumes that the inode count has been incremented 1879 * (or otherwise set) by the caller to indicate that it is now 1880 * in use by the dcache. 1881 */ 1882 1883 void d_instantiate(struct dentry *entry, struct inode * inode) 1884 { 1885 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1886 if (inode) { 1887 security_d_instantiate(entry, inode); 1888 spin_lock(&inode->i_lock); 1889 __d_instantiate(entry, inode); 1890 spin_unlock(&inode->i_lock); 1891 } 1892 } 1893 EXPORT_SYMBOL(d_instantiate); 1894 1895 /* 1896 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1897 * with lockdep-related part of unlock_new_inode() done before 1898 * anything else. Use that instead of open-coding d_instantiate()/ 1899 * unlock_new_inode() combinations. 1900 */ 1901 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1902 { 1903 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1904 BUG_ON(!inode); 1905 lockdep_annotate_inode_mutex_key(inode); 1906 security_d_instantiate(entry, inode); 1907 spin_lock(&inode->i_lock); 1908 __d_instantiate(entry, inode); 1909 WARN_ON(!(inode->i_state & I_NEW)); 1910 inode->i_state &= ~I_NEW & ~I_CREATING; 1911 smp_mb(); 1912 wake_up_bit(&inode->i_state, __I_NEW); 1913 spin_unlock(&inode->i_lock); 1914 } 1915 EXPORT_SYMBOL(d_instantiate_new); 1916 1917 struct dentry *d_make_root(struct inode *root_inode) 1918 { 1919 struct dentry *res = NULL; 1920 1921 if (root_inode) { 1922 res = d_alloc_anon(root_inode->i_sb); 1923 if (res) 1924 d_instantiate(res, root_inode); 1925 else 1926 iput(root_inode); 1927 } 1928 return res; 1929 } 1930 EXPORT_SYMBOL(d_make_root); 1931 1932 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1933 { 1934 struct super_block *sb; 1935 struct dentry *new, *res; 1936 1937 if (!inode) 1938 return ERR_PTR(-ESTALE); 1939 if (IS_ERR(inode)) 1940 return ERR_CAST(inode); 1941 1942 sb = inode->i_sb; 1943 1944 res = d_find_any_alias(inode); /* existing alias? */ 1945 if (res) 1946 goto out; 1947 1948 new = d_alloc_anon(sb); 1949 if (!new) { 1950 res = ERR_PTR(-ENOMEM); 1951 goto out; 1952 } 1953 1954 security_d_instantiate(new, inode); 1955 spin_lock(&inode->i_lock); 1956 res = __d_find_any_alias(inode); /* recheck under lock */ 1957 if (likely(!res)) { /* still no alias, attach a disconnected dentry */ 1958 unsigned add_flags = d_flags_for_inode(inode); 1959 1960 if (disconnected) 1961 add_flags |= DCACHE_DISCONNECTED; 1962 1963 spin_lock(&new->d_lock); 1964 __d_set_inode_and_type(new, inode, add_flags); 1965 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry); 1966 if (!disconnected) { 1967 hlist_bl_lock(&sb->s_roots); 1968 hlist_bl_add_head(&new->d_hash, &sb->s_roots); 1969 hlist_bl_unlock(&sb->s_roots); 1970 } 1971 spin_unlock(&new->d_lock); 1972 spin_unlock(&inode->i_lock); 1973 inode = NULL; /* consumed by new->d_inode */ 1974 res = new; 1975 } else { 1976 spin_unlock(&inode->i_lock); 1977 dput(new); 1978 } 1979 1980 out: 1981 iput(inode); 1982 return res; 1983 } 1984 1985 /** 1986 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1987 * @inode: inode to allocate the dentry for 1988 * 1989 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1990 * similar open by handle operations. The returned dentry may be anonymous, 1991 * or may have a full name (if the inode was already in the cache). 1992 * 1993 * When called on a directory inode, we must ensure that the inode only ever 1994 * has one dentry. If a dentry is found, that is returned instead of 1995 * allocating a new one. 1996 * 1997 * On successful return, the reference to the inode has been transferred 1998 * to the dentry. In case of an error the reference on the inode is released. 1999 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2000 * be passed in and the error will be propagated to the return value, 2001 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2002 */ 2003 struct dentry *d_obtain_alias(struct inode *inode) 2004 { 2005 return __d_obtain_alias(inode, true); 2006 } 2007 EXPORT_SYMBOL(d_obtain_alias); 2008 2009 /** 2010 * d_obtain_root - find or allocate a dentry for a given inode 2011 * @inode: inode to allocate the dentry for 2012 * 2013 * Obtain an IS_ROOT dentry for the root of a filesystem. 2014 * 2015 * We must ensure that directory inodes only ever have one dentry. If a 2016 * dentry is found, that is returned instead of allocating a new one. 2017 * 2018 * On successful return, the reference to the inode has been transferred 2019 * to the dentry. In case of an error the reference on the inode is 2020 * released. A %NULL or IS_ERR inode may be passed in and will be the 2021 * error will be propagate to the return value, with a %NULL @inode 2022 * replaced by ERR_PTR(-ESTALE). 2023 */ 2024 struct dentry *d_obtain_root(struct inode *inode) 2025 { 2026 return __d_obtain_alias(inode, false); 2027 } 2028 EXPORT_SYMBOL(d_obtain_root); 2029 2030 /** 2031 * d_add_ci - lookup or allocate new dentry with case-exact name 2032 * @inode: the inode case-insensitive lookup has found 2033 * @dentry: the negative dentry that was passed to the parent's lookup func 2034 * @name: the case-exact name to be associated with the returned dentry 2035 * 2036 * This is to avoid filling the dcache with case-insensitive names to the 2037 * same inode, only the actual correct case is stored in the dcache for 2038 * case-insensitive filesystems. 2039 * 2040 * For a case-insensitive lookup match and if the case-exact dentry 2041 * already exists in the dcache, use it and return it. 2042 * 2043 * If no entry exists with the exact case name, allocate new dentry with 2044 * the exact case, and return the spliced entry. 2045 */ 2046 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2047 struct qstr *name) 2048 { 2049 struct dentry *found, *res; 2050 2051 /* 2052 * First check if a dentry matching the name already exists, 2053 * if not go ahead and create it now. 2054 */ 2055 found = d_hash_and_lookup(dentry->d_parent, name); 2056 if (found) { 2057 iput(inode); 2058 return found; 2059 } 2060 if (d_in_lookup(dentry)) { 2061 found = d_alloc_parallel(dentry->d_parent, name, 2062 dentry->d_wait); 2063 if (IS_ERR(found) || !d_in_lookup(found)) { 2064 iput(inode); 2065 return found; 2066 } 2067 } else { 2068 found = d_alloc(dentry->d_parent, name); 2069 if (!found) { 2070 iput(inode); 2071 return ERR_PTR(-ENOMEM); 2072 } 2073 } 2074 res = d_splice_alias(inode, found); 2075 if (res) { 2076 d_lookup_done(found); 2077 dput(found); 2078 return res; 2079 } 2080 return found; 2081 } 2082 EXPORT_SYMBOL(d_add_ci); 2083 2084 /** 2085 * d_same_name - compare dentry name with case-exact name 2086 * @parent: parent dentry 2087 * @dentry: the negative dentry that was passed to the parent's lookup func 2088 * @name: the case-exact name to be associated with the returned dentry 2089 * 2090 * Return: true if names are same, or false 2091 */ 2092 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2093 const struct qstr *name) 2094 { 2095 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2096 if (dentry->d_name.len != name->len) 2097 return false; 2098 return dentry_cmp(dentry, name->name, name->len) == 0; 2099 } 2100 return parent->d_op->d_compare(dentry, 2101 dentry->d_name.len, dentry->d_name.name, 2102 name) == 0; 2103 } 2104 EXPORT_SYMBOL_GPL(d_same_name); 2105 2106 /* 2107 * This is __d_lookup_rcu() when the parent dentry has 2108 * DCACHE_OP_COMPARE, which makes things much nastier. 2109 */ 2110 static noinline struct dentry *__d_lookup_rcu_op_compare( 2111 const struct dentry *parent, 2112 const struct qstr *name, 2113 unsigned *seqp) 2114 { 2115 u64 hashlen = name->hash_len; 2116 struct hlist_bl_head *b = d_hash(hashlen); 2117 struct hlist_bl_node *node; 2118 struct dentry *dentry; 2119 2120 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2121 int tlen; 2122 const char *tname; 2123 unsigned seq; 2124 2125 seqretry: 2126 seq = raw_seqcount_begin(&dentry->d_seq); 2127 if (dentry->d_parent != parent) 2128 continue; 2129 if (d_unhashed(dentry)) 2130 continue; 2131 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2132 continue; 2133 tlen = dentry->d_name.len; 2134 tname = dentry->d_name.name; 2135 /* we want a consistent (name,len) pair */ 2136 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2137 cpu_relax(); 2138 goto seqretry; 2139 } 2140 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2141 continue; 2142 *seqp = seq; 2143 return dentry; 2144 } 2145 return NULL; 2146 } 2147 2148 /** 2149 * __d_lookup_rcu - search for a dentry (racy, store-free) 2150 * @parent: parent dentry 2151 * @name: qstr of name we wish to find 2152 * @seqp: returns d_seq value at the point where the dentry was found 2153 * Returns: dentry, or NULL 2154 * 2155 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2156 * resolution (store-free path walking) design described in 2157 * Documentation/filesystems/path-lookup.txt. 2158 * 2159 * This is not to be used outside core vfs. 2160 * 2161 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2162 * held, and rcu_read_lock held. The returned dentry must not be stored into 2163 * without taking d_lock and checking d_seq sequence count against @seq 2164 * returned here. 2165 * 2166 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2167 * function. 2168 * 2169 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2170 * the returned dentry, so long as its parent's seqlock is checked after the 2171 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2172 * is formed, giving integrity down the path walk. 2173 * 2174 * NOTE! The caller *has* to check the resulting dentry against the sequence 2175 * number we've returned before using any of the resulting dentry state! 2176 */ 2177 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2178 const struct qstr *name, 2179 unsigned *seqp) 2180 { 2181 u64 hashlen = name->hash_len; 2182 const unsigned char *str = name->name; 2183 struct hlist_bl_head *b = d_hash(hashlen); 2184 struct hlist_bl_node *node; 2185 struct dentry *dentry; 2186 2187 /* 2188 * Note: There is significant duplication with __d_lookup_rcu which is 2189 * required to prevent single threaded performance regressions 2190 * especially on architectures where smp_rmb (in seqcounts) are costly. 2191 * Keep the two functions in sync. 2192 */ 2193 2194 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2195 return __d_lookup_rcu_op_compare(parent, name, seqp); 2196 2197 /* 2198 * The hash list is protected using RCU. 2199 * 2200 * Carefully use d_seq when comparing a candidate dentry, to avoid 2201 * races with d_move(). 2202 * 2203 * It is possible that concurrent renames can mess up our list 2204 * walk here and result in missing our dentry, resulting in the 2205 * false-negative result. d_lookup() protects against concurrent 2206 * renames using rename_lock seqlock. 2207 * 2208 * See Documentation/filesystems/path-lookup.txt for more details. 2209 */ 2210 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2211 unsigned seq; 2212 2213 /* 2214 * The dentry sequence count protects us from concurrent 2215 * renames, and thus protects parent and name fields. 2216 * 2217 * The caller must perform a seqcount check in order 2218 * to do anything useful with the returned dentry. 2219 * 2220 * NOTE! We do a "raw" seqcount_begin here. That means that 2221 * we don't wait for the sequence count to stabilize if it 2222 * is in the middle of a sequence change. If we do the slow 2223 * dentry compare, we will do seqretries until it is stable, 2224 * and if we end up with a successful lookup, we actually 2225 * want to exit RCU lookup anyway. 2226 * 2227 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2228 * we are still guaranteed NUL-termination of ->d_name.name. 2229 */ 2230 seq = raw_seqcount_begin(&dentry->d_seq); 2231 if (dentry->d_parent != parent) 2232 continue; 2233 if (d_unhashed(dentry)) 2234 continue; 2235 if (dentry->d_name.hash_len != hashlen) 2236 continue; 2237 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2238 continue; 2239 *seqp = seq; 2240 return dentry; 2241 } 2242 return NULL; 2243 } 2244 2245 /** 2246 * d_lookup - search for a dentry 2247 * @parent: parent dentry 2248 * @name: qstr of name we wish to find 2249 * Returns: dentry, or NULL 2250 * 2251 * d_lookup searches the children of the parent dentry for the name in 2252 * question. If the dentry is found its reference count is incremented and the 2253 * dentry is returned. The caller must use dput to free the entry when it has 2254 * finished using it. %NULL is returned if the dentry does not exist. 2255 */ 2256 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2257 { 2258 struct dentry *dentry; 2259 unsigned seq; 2260 2261 do { 2262 seq = read_seqbegin(&rename_lock); 2263 dentry = __d_lookup(parent, name); 2264 if (dentry) 2265 break; 2266 } while (read_seqretry(&rename_lock, seq)); 2267 return dentry; 2268 } 2269 EXPORT_SYMBOL(d_lookup); 2270 2271 /** 2272 * __d_lookup - search for a dentry (racy) 2273 * @parent: parent dentry 2274 * @name: qstr of name we wish to find 2275 * Returns: dentry, or NULL 2276 * 2277 * __d_lookup is like d_lookup, however it may (rarely) return a 2278 * false-negative result due to unrelated rename activity. 2279 * 2280 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2281 * however it must be used carefully, eg. with a following d_lookup in 2282 * the case of failure. 2283 * 2284 * __d_lookup callers must be commented. 2285 */ 2286 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2287 { 2288 unsigned int hash = name->hash; 2289 struct hlist_bl_head *b = d_hash(hash); 2290 struct hlist_bl_node *node; 2291 struct dentry *found = NULL; 2292 struct dentry *dentry; 2293 2294 /* 2295 * Note: There is significant duplication with __d_lookup_rcu which is 2296 * required to prevent single threaded performance regressions 2297 * especially on architectures where smp_rmb (in seqcounts) are costly. 2298 * Keep the two functions in sync. 2299 */ 2300 2301 /* 2302 * The hash list is protected using RCU. 2303 * 2304 * Take d_lock when comparing a candidate dentry, to avoid races 2305 * with d_move(). 2306 * 2307 * It is possible that concurrent renames can mess up our list 2308 * walk here and result in missing our dentry, resulting in the 2309 * false-negative result. d_lookup() protects against concurrent 2310 * renames using rename_lock seqlock. 2311 * 2312 * See Documentation/filesystems/path-lookup.txt for more details. 2313 */ 2314 rcu_read_lock(); 2315 2316 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2317 2318 if (dentry->d_name.hash != hash) 2319 continue; 2320 2321 spin_lock(&dentry->d_lock); 2322 if (dentry->d_parent != parent) 2323 goto next; 2324 if (d_unhashed(dentry)) 2325 goto next; 2326 2327 if (!d_same_name(dentry, parent, name)) 2328 goto next; 2329 2330 dentry->d_lockref.count++; 2331 found = dentry; 2332 spin_unlock(&dentry->d_lock); 2333 break; 2334 next: 2335 spin_unlock(&dentry->d_lock); 2336 } 2337 rcu_read_unlock(); 2338 2339 return found; 2340 } 2341 2342 /** 2343 * d_hash_and_lookup - hash the qstr then search for a dentry 2344 * @dir: Directory to search in 2345 * @name: qstr of name we wish to find 2346 * 2347 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2348 */ 2349 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2350 { 2351 /* 2352 * Check for a fs-specific hash function. Note that we must 2353 * calculate the standard hash first, as the d_op->d_hash() 2354 * routine may choose to leave the hash value unchanged. 2355 */ 2356 name->hash = full_name_hash(dir, name->name, name->len); 2357 if (dir->d_flags & DCACHE_OP_HASH) { 2358 int err = dir->d_op->d_hash(dir, name); 2359 if (unlikely(err < 0)) 2360 return ERR_PTR(err); 2361 } 2362 return d_lookup(dir, name); 2363 } 2364 EXPORT_SYMBOL(d_hash_and_lookup); 2365 2366 /* 2367 * When a file is deleted, we have two options: 2368 * - turn this dentry into a negative dentry 2369 * - unhash this dentry and free it. 2370 * 2371 * Usually, we want to just turn this into 2372 * a negative dentry, but if anybody else is 2373 * currently using the dentry or the inode 2374 * we can't do that and we fall back on removing 2375 * it from the hash queues and waiting for 2376 * it to be deleted later when it has no users 2377 */ 2378 2379 /** 2380 * d_delete - delete a dentry 2381 * @dentry: The dentry to delete 2382 * 2383 * Turn the dentry into a negative dentry if possible, otherwise 2384 * remove it from the hash queues so it can be deleted later 2385 */ 2386 2387 void d_delete(struct dentry * dentry) 2388 { 2389 struct inode *inode = dentry->d_inode; 2390 2391 spin_lock(&inode->i_lock); 2392 spin_lock(&dentry->d_lock); 2393 /* 2394 * Are we the only user? 2395 */ 2396 if (dentry->d_lockref.count == 1) { 2397 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2398 dentry_unlink_inode(dentry); 2399 } else { 2400 __d_drop(dentry); 2401 spin_unlock(&dentry->d_lock); 2402 spin_unlock(&inode->i_lock); 2403 } 2404 } 2405 EXPORT_SYMBOL(d_delete); 2406 2407 static void __d_rehash(struct dentry *entry) 2408 { 2409 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2410 2411 hlist_bl_lock(b); 2412 hlist_bl_add_head_rcu(&entry->d_hash, b); 2413 hlist_bl_unlock(b); 2414 } 2415 2416 /** 2417 * d_rehash - add an entry back to the hash 2418 * @entry: dentry to add to the hash 2419 * 2420 * Adds a dentry to the hash according to its name. 2421 */ 2422 2423 void d_rehash(struct dentry * entry) 2424 { 2425 spin_lock(&entry->d_lock); 2426 __d_rehash(entry); 2427 spin_unlock(&entry->d_lock); 2428 } 2429 EXPORT_SYMBOL(d_rehash); 2430 2431 static inline unsigned start_dir_add(struct inode *dir) 2432 { 2433 preempt_disable_nested(); 2434 for (;;) { 2435 unsigned n = dir->i_dir_seq; 2436 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2437 return n; 2438 cpu_relax(); 2439 } 2440 } 2441 2442 static inline void end_dir_add(struct inode *dir, unsigned int n, 2443 wait_queue_head_t *d_wait) 2444 { 2445 smp_store_release(&dir->i_dir_seq, n + 2); 2446 preempt_enable_nested(); 2447 wake_up_all(d_wait); 2448 } 2449 2450 static void d_wait_lookup(struct dentry *dentry) 2451 { 2452 if (d_in_lookup(dentry)) { 2453 DECLARE_WAITQUEUE(wait, current); 2454 add_wait_queue(dentry->d_wait, &wait); 2455 do { 2456 set_current_state(TASK_UNINTERRUPTIBLE); 2457 spin_unlock(&dentry->d_lock); 2458 schedule(); 2459 spin_lock(&dentry->d_lock); 2460 } while (d_in_lookup(dentry)); 2461 } 2462 } 2463 2464 struct dentry *d_alloc_parallel(struct dentry *parent, 2465 const struct qstr *name, 2466 wait_queue_head_t *wq) 2467 { 2468 unsigned int hash = name->hash; 2469 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2470 struct hlist_bl_node *node; 2471 struct dentry *new = d_alloc(parent, name); 2472 struct dentry *dentry; 2473 unsigned seq, r_seq, d_seq; 2474 2475 if (unlikely(!new)) 2476 return ERR_PTR(-ENOMEM); 2477 2478 retry: 2479 rcu_read_lock(); 2480 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2481 r_seq = read_seqbegin(&rename_lock); 2482 dentry = __d_lookup_rcu(parent, name, &d_seq); 2483 if (unlikely(dentry)) { 2484 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2485 rcu_read_unlock(); 2486 goto retry; 2487 } 2488 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2489 rcu_read_unlock(); 2490 dput(dentry); 2491 goto retry; 2492 } 2493 rcu_read_unlock(); 2494 dput(new); 2495 return dentry; 2496 } 2497 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2498 rcu_read_unlock(); 2499 goto retry; 2500 } 2501 2502 if (unlikely(seq & 1)) { 2503 rcu_read_unlock(); 2504 goto retry; 2505 } 2506 2507 hlist_bl_lock(b); 2508 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2509 hlist_bl_unlock(b); 2510 rcu_read_unlock(); 2511 goto retry; 2512 } 2513 /* 2514 * No changes for the parent since the beginning of d_lookup(). 2515 * Since all removals from the chain happen with hlist_bl_lock(), 2516 * any potential in-lookup matches are going to stay here until 2517 * we unlock the chain. All fields are stable in everything 2518 * we encounter. 2519 */ 2520 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2521 if (dentry->d_name.hash != hash) 2522 continue; 2523 if (dentry->d_parent != parent) 2524 continue; 2525 if (!d_same_name(dentry, parent, name)) 2526 continue; 2527 hlist_bl_unlock(b); 2528 /* now we can try to grab a reference */ 2529 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2530 rcu_read_unlock(); 2531 goto retry; 2532 } 2533 2534 rcu_read_unlock(); 2535 /* 2536 * somebody is likely to be still doing lookup for it; 2537 * wait for them to finish 2538 */ 2539 spin_lock(&dentry->d_lock); 2540 d_wait_lookup(dentry); 2541 /* 2542 * it's not in-lookup anymore; in principle we should repeat 2543 * everything from dcache lookup, but it's likely to be what 2544 * d_lookup() would've found anyway. If it is, just return it; 2545 * otherwise we really have to repeat the whole thing. 2546 */ 2547 if (unlikely(dentry->d_name.hash != hash)) 2548 goto mismatch; 2549 if (unlikely(dentry->d_parent != parent)) 2550 goto mismatch; 2551 if (unlikely(d_unhashed(dentry))) 2552 goto mismatch; 2553 if (unlikely(!d_same_name(dentry, parent, name))) 2554 goto mismatch; 2555 /* OK, it *is* a hashed match; return it */ 2556 spin_unlock(&dentry->d_lock); 2557 dput(new); 2558 return dentry; 2559 } 2560 rcu_read_unlock(); 2561 /* we can't take ->d_lock here; it's OK, though. */ 2562 new->d_flags |= DCACHE_PAR_LOOKUP; 2563 new->d_wait = wq; 2564 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b); 2565 hlist_bl_unlock(b); 2566 return new; 2567 mismatch: 2568 spin_unlock(&dentry->d_lock); 2569 dput(dentry); 2570 goto retry; 2571 } 2572 EXPORT_SYMBOL(d_alloc_parallel); 2573 2574 /* 2575 * - Unhash the dentry 2576 * - Retrieve and clear the waitqueue head in dentry 2577 * - Return the waitqueue head 2578 */ 2579 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2580 { 2581 wait_queue_head_t *d_wait; 2582 struct hlist_bl_head *b; 2583 2584 lockdep_assert_held(&dentry->d_lock); 2585 2586 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2587 hlist_bl_lock(b); 2588 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2589 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2590 d_wait = dentry->d_wait; 2591 dentry->d_wait = NULL; 2592 hlist_bl_unlock(b); 2593 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2594 INIT_LIST_HEAD(&dentry->d_lru); 2595 return d_wait; 2596 } 2597 2598 void __d_lookup_unhash_wake(struct dentry *dentry) 2599 { 2600 spin_lock(&dentry->d_lock); 2601 wake_up_all(__d_lookup_unhash(dentry)); 2602 spin_unlock(&dentry->d_lock); 2603 } 2604 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2605 2606 /* inode->i_lock held if inode is non-NULL */ 2607 2608 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2609 { 2610 wait_queue_head_t *d_wait; 2611 struct inode *dir = NULL; 2612 unsigned n; 2613 spin_lock(&dentry->d_lock); 2614 if (unlikely(d_in_lookup(dentry))) { 2615 dir = dentry->d_parent->d_inode; 2616 n = start_dir_add(dir); 2617 d_wait = __d_lookup_unhash(dentry); 2618 } 2619 if (inode) { 2620 unsigned add_flags = d_flags_for_inode(inode); 2621 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2622 raw_write_seqcount_begin(&dentry->d_seq); 2623 __d_set_inode_and_type(dentry, inode, add_flags); 2624 raw_write_seqcount_end(&dentry->d_seq); 2625 fsnotify_update_flags(dentry); 2626 } 2627 __d_rehash(dentry); 2628 if (dir) 2629 end_dir_add(dir, n, d_wait); 2630 spin_unlock(&dentry->d_lock); 2631 if (inode) 2632 spin_unlock(&inode->i_lock); 2633 } 2634 2635 /** 2636 * d_add - add dentry to hash queues 2637 * @entry: dentry to add 2638 * @inode: The inode to attach to this dentry 2639 * 2640 * This adds the entry to the hash queues and initializes @inode. 2641 * The entry was actually filled in earlier during d_alloc(). 2642 */ 2643 2644 void d_add(struct dentry *entry, struct inode *inode) 2645 { 2646 if (inode) { 2647 security_d_instantiate(entry, inode); 2648 spin_lock(&inode->i_lock); 2649 } 2650 __d_add(entry, inode); 2651 } 2652 EXPORT_SYMBOL(d_add); 2653 2654 /** 2655 * d_exact_alias - find and hash an exact unhashed alias 2656 * @entry: dentry to add 2657 * @inode: The inode to go with this dentry 2658 * 2659 * If an unhashed dentry with the same name/parent and desired 2660 * inode already exists, hash and return it. Otherwise, return 2661 * NULL. 2662 * 2663 * Parent directory should be locked. 2664 */ 2665 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2666 { 2667 struct dentry *alias; 2668 unsigned int hash = entry->d_name.hash; 2669 2670 spin_lock(&inode->i_lock); 2671 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2672 /* 2673 * Don't need alias->d_lock here, because aliases with 2674 * d_parent == entry->d_parent are not subject to name or 2675 * parent changes, because the parent inode i_mutex is held. 2676 */ 2677 if (alias->d_name.hash != hash) 2678 continue; 2679 if (alias->d_parent != entry->d_parent) 2680 continue; 2681 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2682 continue; 2683 spin_lock(&alias->d_lock); 2684 if (!d_unhashed(alias)) { 2685 spin_unlock(&alias->d_lock); 2686 alias = NULL; 2687 } else { 2688 dget_dlock(alias); 2689 __d_rehash(alias); 2690 spin_unlock(&alias->d_lock); 2691 } 2692 spin_unlock(&inode->i_lock); 2693 return alias; 2694 } 2695 spin_unlock(&inode->i_lock); 2696 return NULL; 2697 } 2698 EXPORT_SYMBOL(d_exact_alias); 2699 2700 static void swap_names(struct dentry *dentry, struct dentry *target) 2701 { 2702 if (unlikely(dname_external(target))) { 2703 if (unlikely(dname_external(dentry))) { 2704 /* 2705 * Both external: swap the pointers 2706 */ 2707 swap(target->d_name.name, dentry->d_name.name); 2708 } else { 2709 /* 2710 * dentry:internal, target:external. Steal target's 2711 * storage and make target internal. 2712 */ 2713 memcpy(target->d_iname, dentry->d_name.name, 2714 dentry->d_name.len + 1); 2715 dentry->d_name.name = target->d_name.name; 2716 target->d_name.name = target->d_iname; 2717 } 2718 } else { 2719 if (unlikely(dname_external(dentry))) { 2720 /* 2721 * dentry:external, target:internal. Give dentry's 2722 * storage to target and make dentry internal 2723 */ 2724 memcpy(dentry->d_iname, target->d_name.name, 2725 target->d_name.len + 1); 2726 target->d_name.name = dentry->d_name.name; 2727 dentry->d_name.name = dentry->d_iname; 2728 } else { 2729 /* 2730 * Both are internal. 2731 */ 2732 unsigned int i; 2733 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2734 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2735 swap(((long *) &dentry->d_iname)[i], 2736 ((long *) &target->d_iname)[i]); 2737 } 2738 } 2739 } 2740 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2741 } 2742 2743 static void copy_name(struct dentry *dentry, struct dentry *target) 2744 { 2745 struct external_name *old_name = NULL; 2746 if (unlikely(dname_external(dentry))) 2747 old_name = external_name(dentry); 2748 if (unlikely(dname_external(target))) { 2749 atomic_inc(&external_name(target)->u.count); 2750 dentry->d_name = target->d_name; 2751 } else { 2752 memcpy(dentry->d_iname, target->d_name.name, 2753 target->d_name.len + 1); 2754 dentry->d_name.name = dentry->d_iname; 2755 dentry->d_name.hash_len = target->d_name.hash_len; 2756 } 2757 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2758 kfree_rcu(old_name, u.head); 2759 } 2760 2761 /* 2762 * __d_move - move a dentry 2763 * @dentry: entry to move 2764 * @target: new dentry 2765 * @exchange: exchange the two dentries 2766 * 2767 * Update the dcache to reflect the move of a file name. Negative 2768 * dcache entries should not be moved in this way. Caller must hold 2769 * rename_lock, the i_mutex of the source and target directories, 2770 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2771 */ 2772 static void __d_move(struct dentry *dentry, struct dentry *target, 2773 bool exchange) 2774 { 2775 struct dentry *old_parent, *p; 2776 wait_queue_head_t *d_wait; 2777 struct inode *dir = NULL; 2778 unsigned n; 2779 2780 WARN_ON(!dentry->d_inode); 2781 if (WARN_ON(dentry == target)) 2782 return; 2783 2784 BUG_ON(d_ancestor(target, dentry)); 2785 old_parent = dentry->d_parent; 2786 p = d_ancestor(old_parent, target); 2787 if (IS_ROOT(dentry)) { 2788 BUG_ON(p); 2789 spin_lock(&target->d_parent->d_lock); 2790 } else if (!p) { 2791 /* target is not a descendent of dentry->d_parent */ 2792 spin_lock(&target->d_parent->d_lock); 2793 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2794 } else { 2795 BUG_ON(p == dentry); 2796 spin_lock(&old_parent->d_lock); 2797 if (p != target) 2798 spin_lock_nested(&target->d_parent->d_lock, 2799 DENTRY_D_LOCK_NESTED); 2800 } 2801 spin_lock_nested(&dentry->d_lock, 2); 2802 spin_lock_nested(&target->d_lock, 3); 2803 2804 if (unlikely(d_in_lookup(target))) { 2805 dir = target->d_parent->d_inode; 2806 n = start_dir_add(dir); 2807 d_wait = __d_lookup_unhash(target); 2808 } 2809 2810 write_seqcount_begin(&dentry->d_seq); 2811 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2812 2813 /* unhash both */ 2814 if (!d_unhashed(dentry)) 2815 ___d_drop(dentry); 2816 if (!d_unhashed(target)) 2817 ___d_drop(target); 2818 2819 /* ... and switch them in the tree */ 2820 dentry->d_parent = target->d_parent; 2821 if (!exchange) { 2822 copy_name(dentry, target); 2823 target->d_hash.pprev = NULL; 2824 dentry->d_parent->d_lockref.count++; 2825 if (dentry != old_parent) /* wasn't IS_ROOT */ 2826 WARN_ON(!--old_parent->d_lockref.count); 2827 } else { 2828 target->d_parent = old_parent; 2829 swap_names(dentry, target); 2830 if (!hlist_unhashed(&target->d_sib)) 2831 __hlist_del(&target->d_sib); 2832 hlist_add_head(&target->d_sib, &target->d_parent->d_children); 2833 __d_rehash(target); 2834 fsnotify_update_flags(target); 2835 } 2836 if (!hlist_unhashed(&dentry->d_sib)) 2837 __hlist_del(&dentry->d_sib); 2838 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children); 2839 __d_rehash(dentry); 2840 fsnotify_update_flags(dentry); 2841 fscrypt_handle_d_move(dentry); 2842 2843 write_seqcount_end(&target->d_seq); 2844 write_seqcount_end(&dentry->d_seq); 2845 2846 if (dir) 2847 end_dir_add(dir, n, d_wait); 2848 2849 if (dentry->d_parent != old_parent) 2850 spin_unlock(&dentry->d_parent->d_lock); 2851 if (dentry != old_parent) 2852 spin_unlock(&old_parent->d_lock); 2853 spin_unlock(&target->d_lock); 2854 spin_unlock(&dentry->d_lock); 2855 } 2856 2857 /* 2858 * d_move - move a dentry 2859 * @dentry: entry to move 2860 * @target: new dentry 2861 * 2862 * Update the dcache to reflect the move of a file name. Negative 2863 * dcache entries should not be moved in this way. See the locking 2864 * requirements for __d_move. 2865 */ 2866 void d_move(struct dentry *dentry, struct dentry *target) 2867 { 2868 write_seqlock(&rename_lock); 2869 __d_move(dentry, target, false); 2870 write_sequnlock(&rename_lock); 2871 } 2872 EXPORT_SYMBOL(d_move); 2873 2874 /* 2875 * d_exchange - exchange two dentries 2876 * @dentry1: first dentry 2877 * @dentry2: second dentry 2878 */ 2879 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2880 { 2881 write_seqlock(&rename_lock); 2882 2883 WARN_ON(!dentry1->d_inode); 2884 WARN_ON(!dentry2->d_inode); 2885 WARN_ON(IS_ROOT(dentry1)); 2886 WARN_ON(IS_ROOT(dentry2)); 2887 2888 __d_move(dentry1, dentry2, true); 2889 2890 write_sequnlock(&rename_lock); 2891 } 2892 2893 /** 2894 * d_ancestor - search for an ancestor 2895 * @p1: ancestor dentry 2896 * @p2: child dentry 2897 * 2898 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2899 * an ancestor of p2, else NULL. 2900 */ 2901 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2902 { 2903 struct dentry *p; 2904 2905 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2906 if (p->d_parent == p1) 2907 return p; 2908 } 2909 return NULL; 2910 } 2911 2912 /* 2913 * This helper attempts to cope with remotely renamed directories 2914 * 2915 * It assumes that the caller is already holding 2916 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2917 * 2918 * Note: If ever the locking in lock_rename() changes, then please 2919 * remember to update this too... 2920 */ 2921 static int __d_unalias(struct dentry *dentry, struct dentry *alias) 2922 { 2923 struct mutex *m1 = NULL; 2924 struct rw_semaphore *m2 = NULL; 2925 int ret = -ESTALE; 2926 2927 /* If alias and dentry share a parent, then no extra locks required */ 2928 if (alias->d_parent == dentry->d_parent) 2929 goto out_unalias; 2930 2931 /* See lock_rename() */ 2932 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2933 goto out_err; 2934 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2935 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2936 goto out_err; 2937 m2 = &alias->d_parent->d_inode->i_rwsem; 2938 out_unalias: 2939 __d_move(alias, dentry, false); 2940 ret = 0; 2941 out_err: 2942 if (m2) 2943 up_read(m2); 2944 if (m1) 2945 mutex_unlock(m1); 2946 return ret; 2947 } 2948 2949 /** 2950 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2951 * @inode: the inode which may have a disconnected dentry 2952 * @dentry: a negative dentry which we want to point to the inode. 2953 * 2954 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2955 * place of the given dentry and return it, else simply d_add the inode 2956 * to the dentry and return NULL. 2957 * 2958 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2959 * we should error out: directories can't have multiple aliases. 2960 * 2961 * This is needed in the lookup routine of any filesystem that is exportable 2962 * (via knfsd) so that we can build dcache paths to directories effectively. 2963 * 2964 * If a dentry was found and moved, then it is returned. Otherwise NULL 2965 * is returned. This matches the expected return value of ->lookup. 2966 * 2967 * Cluster filesystems may call this function with a negative, hashed dentry. 2968 * In that case, we know that the inode will be a regular file, and also this 2969 * will only occur during atomic_open. So we need to check for the dentry 2970 * being already hashed only in the final case. 2971 */ 2972 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2973 { 2974 if (IS_ERR(inode)) 2975 return ERR_CAST(inode); 2976 2977 BUG_ON(!d_unhashed(dentry)); 2978 2979 if (!inode) 2980 goto out; 2981 2982 security_d_instantiate(dentry, inode); 2983 spin_lock(&inode->i_lock); 2984 if (S_ISDIR(inode->i_mode)) { 2985 struct dentry *new = __d_find_any_alias(inode); 2986 if (unlikely(new)) { 2987 /* The reference to new ensures it remains an alias */ 2988 spin_unlock(&inode->i_lock); 2989 write_seqlock(&rename_lock); 2990 if (unlikely(d_ancestor(new, dentry))) { 2991 write_sequnlock(&rename_lock); 2992 dput(new); 2993 new = ERR_PTR(-ELOOP); 2994 pr_warn_ratelimited( 2995 "VFS: Lookup of '%s' in %s %s" 2996 " would have caused loop\n", 2997 dentry->d_name.name, 2998 inode->i_sb->s_type->name, 2999 inode->i_sb->s_id); 3000 } else if (!IS_ROOT(new)) { 3001 struct dentry *old_parent = dget(new->d_parent); 3002 int err = __d_unalias(dentry, new); 3003 write_sequnlock(&rename_lock); 3004 if (err) { 3005 dput(new); 3006 new = ERR_PTR(err); 3007 } 3008 dput(old_parent); 3009 } else { 3010 __d_move(new, dentry, false); 3011 write_sequnlock(&rename_lock); 3012 } 3013 iput(inode); 3014 return new; 3015 } 3016 } 3017 out: 3018 __d_add(dentry, inode); 3019 return NULL; 3020 } 3021 EXPORT_SYMBOL(d_splice_alias); 3022 3023 /* 3024 * Test whether new_dentry is a subdirectory of old_dentry. 3025 * 3026 * Trivially implemented using the dcache structure 3027 */ 3028 3029 /** 3030 * is_subdir - is new dentry a subdirectory of old_dentry 3031 * @new_dentry: new dentry 3032 * @old_dentry: old dentry 3033 * 3034 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3035 * Returns false otherwise. 3036 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3037 */ 3038 3039 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3040 { 3041 bool subdir; 3042 unsigned seq; 3043 3044 if (new_dentry == old_dentry) 3045 return true; 3046 3047 /* Access d_parent under rcu as d_move() may change it. */ 3048 rcu_read_lock(); 3049 seq = read_seqbegin(&rename_lock); 3050 subdir = d_ancestor(old_dentry, new_dentry); 3051 /* Try lockless once... */ 3052 if (read_seqretry(&rename_lock, seq)) { 3053 /* ...else acquire lock for progress even on deep chains. */ 3054 read_seqlock_excl(&rename_lock); 3055 subdir = d_ancestor(old_dentry, new_dentry); 3056 read_sequnlock_excl(&rename_lock); 3057 } 3058 rcu_read_unlock(); 3059 return subdir; 3060 } 3061 EXPORT_SYMBOL(is_subdir); 3062 3063 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3064 { 3065 struct dentry *root = data; 3066 if (dentry != root) { 3067 if (d_unhashed(dentry) || !dentry->d_inode) 3068 return D_WALK_SKIP; 3069 3070 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3071 dentry->d_flags |= DCACHE_GENOCIDE; 3072 dentry->d_lockref.count--; 3073 } 3074 } 3075 return D_WALK_CONTINUE; 3076 } 3077 3078 void d_genocide(struct dentry *parent) 3079 { 3080 d_walk(parent, parent, d_genocide_kill); 3081 } 3082 3083 void d_mark_tmpfile(struct file *file, struct inode *inode) 3084 { 3085 struct dentry *dentry = file->f_path.dentry; 3086 3087 BUG_ON(dentry->d_name.name != dentry->d_iname || 3088 !hlist_unhashed(&dentry->d_u.d_alias) || 3089 !d_unlinked(dentry)); 3090 spin_lock(&dentry->d_parent->d_lock); 3091 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3092 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3093 (unsigned long long)inode->i_ino); 3094 spin_unlock(&dentry->d_lock); 3095 spin_unlock(&dentry->d_parent->d_lock); 3096 } 3097 EXPORT_SYMBOL(d_mark_tmpfile); 3098 3099 void d_tmpfile(struct file *file, struct inode *inode) 3100 { 3101 struct dentry *dentry = file->f_path.dentry; 3102 3103 inode_dec_link_count(inode); 3104 d_mark_tmpfile(file, inode); 3105 d_instantiate(dentry, inode); 3106 } 3107 EXPORT_SYMBOL(d_tmpfile); 3108 3109 /* 3110 * Obtain inode number of the parent dentry. 3111 */ 3112 ino_t d_parent_ino(struct dentry *dentry) 3113 { 3114 struct dentry *parent; 3115 struct inode *iparent; 3116 unsigned seq; 3117 ino_t ret; 3118 3119 scoped_guard(rcu) { 3120 seq = raw_seqcount_begin(&dentry->d_seq); 3121 parent = READ_ONCE(dentry->d_parent); 3122 iparent = d_inode_rcu(parent); 3123 if (likely(iparent)) { 3124 ret = iparent->i_ino; 3125 if (!read_seqcount_retry(&dentry->d_seq, seq)) 3126 return ret; 3127 } 3128 } 3129 3130 spin_lock(&dentry->d_lock); 3131 ret = dentry->d_parent->d_inode->i_ino; 3132 spin_unlock(&dentry->d_lock); 3133 return ret; 3134 } 3135 EXPORT_SYMBOL(d_parent_ino); 3136 3137 static __initdata unsigned long dhash_entries; 3138 static int __init set_dhash_entries(char *str) 3139 { 3140 if (!str) 3141 return 0; 3142 dhash_entries = simple_strtoul(str, &str, 0); 3143 return 1; 3144 } 3145 __setup("dhash_entries=", set_dhash_entries); 3146 3147 static void __init dcache_init_early(void) 3148 { 3149 /* If hashes are distributed across NUMA nodes, defer 3150 * hash allocation until vmalloc space is available. 3151 */ 3152 if (hashdist) 3153 return; 3154 3155 dentry_hashtable = 3156 alloc_large_system_hash("Dentry cache", 3157 sizeof(struct hlist_bl_head), 3158 dhash_entries, 3159 13, 3160 HASH_EARLY | HASH_ZERO, 3161 &d_hash_shift, 3162 NULL, 3163 0, 3164 0); 3165 d_hash_shift = 32 - d_hash_shift; 3166 3167 runtime_const_init(shift, d_hash_shift); 3168 runtime_const_init(ptr, dentry_hashtable); 3169 } 3170 3171 static void __init dcache_init(void) 3172 { 3173 /* 3174 * A constructor could be added for stable state like the lists, 3175 * but it is probably not worth it because of the cache nature 3176 * of the dcache. 3177 */ 3178 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3179 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT, 3180 d_iname); 3181 3182 /* Hash may have been set up in dcache_init_early */ 3183 if (!hashdist) 3184 return; 3185 3186 dentry_hashtable = 3187 alloc_large_system_hash("Dentry cache", 3188 sizeof(struct hlist_bl_head), 3189 dhash_entries, 3190 13, 3191 HASH_ZERO, 3192 &d_hash_shift, 3193 NULL, 3194 0, 3195 0); 3196 d_hash_shift = 32 - d_hash_shift; 3197 3198 runtime_const_init(shift, d_hash_shift); 3199 runtime_const_init(ptr, dentry_hashtable); 3200 } 3201 3202 /* SLAB cache for __getname() consumers */ 3203 struct kmem_cache *names_cachep __ro_after_init; 3204 EXPORT_SYMBOL(names_cachep); 3205 3206 void __init vfs_caches_init_early(void) 3207 { 3208 int i; 3209 3210 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3211 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3212 3213 dcache_init_early(); 3214 inode_init_early(); 3215 } 3216 3217 void __init vfs_caches_init(void) 3218 { 3219 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3220 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3221 3222 dcache_init(); 3223 inode_init(); 3224 files_init(); 3225 files_maxfiles_init(); 3226 mnt_init(); 3227 bdev_cache_init(); 3228 chrdev_init(); 3229 } 3230