1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 88 /* 89 * This is the single most critical data structure when it comes 90 * to the dcache: the hashtable for lookups. Somebody should try 91 * to make this good - I've just made it work. 92 * 93 * This hash-function tries to avoid losing too many bits of hash 94 * information, yet avoid using a prime hash-size or similar. 95 */ 96 97 static unsigned int d_hash_shift __read_mostly; 98 99 static struct hlist_bl_head *dentry_hashtable __read_mostly; 100 101 static inline struct hlist_bl_head *d_hash(unsigned int hash) 102 { 103 return dentry_hashtable + (hash >> d_hash_shift); 104 } 105 106 #define IN_LOOKUP_SHIFT 10 107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 108 109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 110 unsigned int hash) 111 { 112 hash += (unsigned long) parent / L1_CACHE_BYTES; 113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 114 } 115 116 117 /* Statistics gathering. */ 118 struct dentry_stat_t dentry_stat = { 119 .age_limit = 45, 120 }; 121 122 static DEFINE_PER_CPU(long, nr_dentry); 123 static DEFINE_PER_CPU(long, nr_dentry_unused); 124 static DEFINE_PER_CPU(long, nr_dentry_negative); 125 126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 127 128 /* 129 * Here we resort to our own counters instead of using generic per-cpu counters 130 * for consistency with what the vfs inode code does. We are expected to harvest 131 * better code and performance by having our own specialized counters. 132 * 133 * Please note that the loop is done over all possible CPUs, not over all online 134 * CPUs. The reason for this is that we don't want to play games with CPUs going 135 * on and off. If one of them goes off, we will just keep their counters. 136 * 137 * glommer: See cffbc8a for details, and if you ever intend to change this, 138 * please update all vfs counters to match. 139 */ 140 static long get_nr_dentry(void) 141 { 142 int i; 143 long sum = 0; 144 for_each_possible_cpu(i) 145 sum += per_cpu(nr_dentry, i); 146 return sum < 0 ? 0 : sum; 147 } 148 149 static long get_nr_dentry_unused(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry_unused, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_negative(void) 159 { 160 int i; 161 long sum = 0; 162 163 for_each_possible_cpu(i) 164 sum += per_cpu(nr_dentry_negative, i); 165 return sum < 0 ? 0 : sum; 166 } 167 168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 169 size_t *lenp, loff_t *ppos) 170 { 171 dentry_stat.nr_dentry = get_nr_dentry(); 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 173 dentry_stat.nr_negative = get_nr_dentry_negative(); 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 175 } 176 #endif 177 178 /* 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 180 * The strings are both count bytes long, and count is non-zero. 181 */ 182 #ifdef CONFIG_DCACHE_WORD_ACCESS 183 184 #include <asm/word-at-a-time.h> 185 /* 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 187 * aligned allocation for this particular component. We don't 188 * strictly need the load_unaligned_zeropad() safety, but it 189 * doesn't hurt either. 190 * 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 192 * need the careful unaligned handling. 193 */ 194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 195 { 196 unsigned long a,b,mask; 197 198 for (;;) { 199 a = read_word_at_a_time(cs); 200 b = load_unaligned_zeropad(ct); 201 if (tcount < sizeof(unsigned long)) 202 break; 203 if (unlikely(a != b)) 204 return 1; 205 cs += sizeof(unsigned long); 206 ct += sizeof(unsigned long); 207 tcount -= sizeof(unsigned long); 208 if (!tcount) 209 return 0; 210 } 211 mask = bytemask_from_count(tcount); 212 return unlikely(!!((a ^ b) & mask)); 213 } 214 215 #else 216 217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 218 { 219 do { 220 if (*cs != *ct) 221 return 1; 222 cs++; 223 ct++; 224 tcount--; 225 } while (tcount); 226 return 0; 227 } 228 229 #endif 230 231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 232 { 233 /* 234 * Be careful about RCU walk racing with rename: 235 * use 'READ_ONCE' to fetch the name pointer. 236 * 237 * NOTE! Even if a rename will mean that the length 238 * was not loaded atomically, we don't care. The 239 * RCU walk will check the sequence count eventually, 240 * and catch it. And we won't overrun the buffer, 241 * because we're reading the name pointer atomically, 242 * and a dentry name is guaranteed to be properly 243 * terminated with a NUL byte. 244 * 245 * End result: even if 'len' is wrong, we'll exit 246 * early because the data cannot match (there can 247 * be no NUL in the ct/tcount data) 248 */ 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 250 251 return dentry_string_cmp(cs, ct, tcount); 252 } 253 254 struct external_name { 255 union { 256 atomic_t count; 257 struct rcu_head head; 258 } u; 259 unsigned char name[]; 260 }; 261 262 static inline struct external_name *external_name(struct dentry *dentry) 263 { 264 return container_of(dentry->d_name.name, struct external_name, name[0]); 265 } 266 267 static void __d_free(struct rcu_head *head) 268 { 269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 270 271 kmem_cache_free(dentry_cache, dentry); 272 } 273 274 static void __d_free_external(struct rcu_head *head) 275 { 276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 277 kfree(external_name(dentry)); 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 name->name = dentry->d_name; 290 if (unlikely(dname_external(dentry))) { 291 atomic_inc(&external_name(dentry)->u.count); 292 } else { 293 memcpy(name->inline_name, dentry->d_iname, 294 dentry->d_name.len + 1); 295 name->name.name = name->inline_name; 296 } 297 spin_unlock(&dentry->d_lock); 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name.name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name.name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 WRITE_ONCE(dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 if (dentry->d_flags & DCACHE_LRU_LIST) 333 this_cpu_inc(nr_dentry_negative); 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (dentry->d_flags & DCACHE_NORCU) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * The per-cpu "nr_dentry_negative" counters are only updated 389 * when deleted from or added to the per-superblock LRU list, not 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 391 * pair when moving from LRU to shrink list in select_collect(). 392 * 393 * These helper functions make sure we always follow the 394 * rules. d_lock must be held by the caller. 395 */ 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 397 static void d_lru_add(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, 0); 400 dentry->d_flags |= DCACHE_LRU_LIST; 401 this_cpu_inc(nr_dentry_unused); 402 if (d_is_negative(dentry)) 403 this_cpu_inc(nr_dentry_negative); 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_lru_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 411 this_cpu_dec(nr_dentry_unused); 412 if (d_is_negative(dentry)) 413 this_cpu_dec(nr_dentry_negative); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 if (d_is_negative(dentry)) 445 this_cpu_dec(nr_dentry_negative); 446 list_lru_isolate(lru, &dentry->d_lru); 447 } 448 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 450 struct list_head *list) 451 { 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 454 if (d_is_negative(dentry)) 455 this_cpu_dec(nr_dentry_negative); 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 457 } 458 459 /** 460 * d_drop - drop a dentry 461 * @dentry: dentry to drop 462 * 463 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 464 * be found through a VFS lookup any more. Note that this is different from 465 * deleting the dentry - d_delete will try to mark the dentry negative if 466 * possible, giving a successful _negative_ lookup, while d_drop will 467 * just make the cache lookup fail. 468 * 469 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 470 * reason (NFS timeouts or autofs deletes). 471 * 472 * __d_drop requires dentry->d_lock 473 * ___d_drop doesn't mark dentry as "unhashed" 474 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 475 */ 476 static void ___d_drop(struct dentry *dentry) 477 { 478 struct hlist_bl_head *b; 479 /* 480 * Hashed dentries are normally on the dentry hashtable, 481 * with the exception of those newly allocated by 482 * d_obtain_root, which are always IS_ROOT: 483 */ 484 if (unlikely(IS_ROOT(dentry))) 485 b = &dentry->d_sb->s_roots; 486 else 487 b = d_hash(dentry->d_name.hash); 488 489 hlist_bl_lock(b); 490 __hlist_bl_del(&dentry->d_hash); 491 hlist_bl_unlock(b); 492 } 493 494 void __d_drop(struct dentry *dentry) 495 { 496 if (!d_unhashed(dentry)) { 497 ___d_drop(dentry); 498 dentry->d_hash.pprev = NULL; 499 write_seqcount_invalidate(&dentry->d_seq); 500 } 501 } 502 EXPORT_SYMBOL(__d_drop); 503 504 void d_drop(struct dentry *dentry) 505 { 506 spin_lock(&dentry->d_lock); 507 __d_drop(dentry); 508 spin_unlock(&dentry->d_lock); 509 } 510 EXPORT_SYMBOL(d_drop); 511 512 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 513 { 514 struct dentry *next; 515 /* 516 * Inform d_walk() and shrink_dentry_list() that we are no longer 517 * attached to the dentry tree 518 */ 519 dentry->d_flags |= DCACHE_DENTRY_KILLED; 520 if (unlikely(list_empty(&dentry->d_child))) 521 return; 522 __list_del_entry(&dentry->d_child); 523 /* 524 * Cursors can move around the list of children. While we'd been 525 * a normal list member, it didn't matter - ->d_child.next would've 526 * been updated. However, from now on it won't be and for the 527 * things like d_walk() it might end up with a nasty surprise. 528 * Normally d_walk() doesn't care about cursors moving around - 529 * ->d_lock on parent prevents that and since a cursor has no children 530 * of its own, we get through it without ever unlocking the parent. 531 * There is one exception, though - if we ascend from a child that 532 * gets killed as soon as we unlock it, the next sibling is found 533 * using the value left in its ->d_child.next. And if _that_ 534 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 535 * before d_walk() regains parent->d_lock, we'll end up skipping 536 * everything the cursor had been moved past. 537 * 538 * Solution: make sure that the pointer left behind in ->d_child.next 539 * points to something that won't be moving around. I.e. skip the 540 * cursors. 541 */ 542 while (dentry->d_child.next != &parent->d_subdirs) { 543 next = list_entry(dentry->d_child.next, struct dentry, d_child); 544 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 545 break; 546 dentry->d_child.next = next->d_child.next; 547 } 548 } 549 550 static void __dentry_kill(struct dentry *dentry) 551 { 552 struct dentry *parent = NULL; 553 bool can_free = true; 554 if (!IS_ROOT(dentry)) 555 parent = dentry->d_parent; 556 557 /* 558 * The dentry is now unrecoverably dead to the world. 559 */ 560 lockref_mark_dead(&dentry->d_lockref); 561 562 /* 563 * inform the fs via d_prune that this dentry is about to be 564 * unhashed and destroyed. 565 */ 566 if (dentry->d_flags & DCACHE_OP_PRUNE) 567 dentry->d_op->d_prune(dentry); 568 569 if (dentry->d_flags & DCACHE_LRU_LIST) { 570 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 571 d_lru_del(dentry); 572 } 573 /* if it was on the hash then remove it */ 574 __d_drop(dentry); 575 dentry_unlist(dentry, parent); 576 if (parent) 577 spin_unlock(&parent->d_lock); 578 if (dentry->d_inode) 579 dentry_unlink_inode(dentry); 580 else 581 spin_unlock(&dentry->d_lock); 582 this_cpu_dec(nr_dentry); 583 if (dentry->d_op && dentry->d_op->d_release) 584 dentry->d_op->d_release(dentry); 585 586 spin_lock(&dentry->d_lock); 587 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 588 dentry->d_flags |= DCACHE_MAY_FREE; 589 can_free = false; 590 } 591 spin_unlock(&dentry->d_lock); 592 if (likely(can_free)) 593 dentry_free(dentry); 594 cond_resched(); 595 } 596 597 static struct dentry *__lock_parent(struct dentry *dentry) 598 { 599 struct dentry *parent; 600 rcu_read_lock(); 601 spin_unlock(&dentry->d_lock); 602 again: 603 parent = READ_ONCE(dentry->d_parent); 604 spin_lock(&parent->d_lock); 605 /* 606 * We can't blindly lock dentry until we are sure 607 * that we won't violate the locking order. 608 * Any changes of dentry->d_parent must have 609 * been done with parent->d_lock held, so 610 * spin_lock() above is enough of a barrier 611 * for checking if it's still our child. 612 */ 613 if (unlikely(parent != dentry->d_parent)) { 614 spin_unlock(&parent->d_lock); 615 goto again; 616 } 617 rcu_read_unlock(); 618 if (parent != dentry) 619 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 620 else 621 parent = NULL; 622 return parent; 623 } 624 625 static inline struct dentry *lock_parent(struct dentry *dentry) 626 { 627 struct dentry *parent = dentry->d_parent; 628 if (IS_ROOT(dentry)) 629 return NULL; 630 if (likely(spin_trylock(&parent->d_lock))) 631 return parent; 632 return __lock_parent(dentry); 633 } 634 635 static inline bool retain_dentry(struct dentry *dentry) 636 { 637 WARN_ON(d_in_lookup(dentry)); 638 639 /* Unreachable? Get rid of it */ 640 if (unlikely(d_unhashed(dentry))) 641 return false; 642 643 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 644 return false; 645 646 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 647 if (dentry->d_op->d_delete(dentry)) 648 return false; 649 } 650 /* retain; LRU fodder */ 651 dentry->d_lockref.count--; 652 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 653 d_lru_add(dentry); 654 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 655 dentry->d_flags |= DCACHE_REFERENCED; 656 return true; 657 } 658 659 /* 660 * Finish off a dentry we've decided to kill. 661 * dentry->d_lock must be held, returns with it unlocked. 662 * Returns dentry requiring refcount drop, or NULL if we're done. 663 */ 664 static struct dentry *dentry_kill(struct dentry *dentry) 665 __releases(dentry->d_lock) 666 { 667 struct inode *inode = dentry->d_inode; 668 struct dentry *parent = NULL; 669 670 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 671 goto slow_positive; 672 673 if (!IS_ROOT(dentry)) { 674 parent = dentry->d_parent; 675 if (unlikely(!spin_trylock(&parent->d_lock))) { 676 parent = __lock_parent(dentry); 677 if (likely(inode || !dentry->d_inode)) 678 goto got_locks; 679 /* negative that became positive */ 680 if (parent) 681 spin_unlock(&parent->d_lock); 682 inode = dentry->d_inode; 683 goto slow_positive; 684 } 685 } 686 __dentry_kill(dentry); 687 return parent; 688 689 slow_positive: 690 spin_unlock(&dentry->d_lock); 691 spin_lock(&inode->i_lock); 692 spin_lock(&dentry->d_lock); 693 parent = lock_parent(dentry); 694 got_locks: 695 if (unlikely(dentry->d_lockref.count != 1)) { 696 dentry->d_lockref.count--; 697 } else if (likely(!retain_dentry(dentry))) { 698 __dentry_kill(dentry); 699 return parent; 700 } 701 /* we are keeping it, after all */ 702 if (inode) 703 spin_unlock(&inode->i_lock); 704 if (parent) 705 spin_unlock(&parent->d_lock); 706 spin_unlock(&dentry->d_lock); 707 return NULL; 708 } 709 710 /* 711 * Try to do a lockless dput(), and return whether that was successful. 712 * 713 * If unsuccessful, we return false, having already taken the dentry lock. 714 * 715 * The caller needs to hold the RCU read lock, so that the dentry is 716 * guaranteed to stay around even if the refcount goes down to zero! 717 */ 718 static inline bool fast_dput(struct dentry *dentry) 719 { 720 int ret; 721 unsigned int d_flags; 722 723 /* 724 * If we have a d_op->d_delete() operation, we sould not 725 * let the dentry count go to zero, so use "put_or_lock". 726 */ 727 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 728 return lockref_put_or_lock(&dentry->d_lockref); 729 730 /* 731 * .. otherwise, we can try to just decrement the 732 * lockref optimistically. 733 */ 734 ret = lockref_put_return(&dentry->d_lockref); 735 736 /* 737 * If the lockref_put_return() failed due to the lock being held 738 * by somebody else, the fast path has failed. We will need to 739 * get the lock, and then check the count again. 740 */ 741 if (unlikely(ret < 0)) { 742 spin_lock(&dentry->d_lock); 743 if (dentry->d_lockref.count > 1) { 744 dentry->d_lockref.count--; 745 spin_unlock(&dentry->d_lock); 746 return true; 747 } 748 return false; 749 } 750 751 /* 752 * If we weren't the last ref, we're done. 753 */ 754 if (ret) 755 return true; 756 757 /* 758 * Careful, careful. The reference count went down 759 * to zero, but we don't hold the dentry lock, so 760 * somebody else could get it again, and do another 761 * dput(), and we need to not race with that. 762 * 763 * However, there is a very special and common case 764 * where we don't care, because there is nothing to 765 * do: the dentry is still hashed, it does not have 766 * a 'delete' op, and it's referenced and already on 767 * the LRU list. 768 * 769 * NOTE! Since we aren't locked, these values are 770 * not "stable". However, it is sufficient that at 771 * some point after we dropped the reference the 772 * dentry was hashed and the flags had the proper 773 * value. Other dentry users may have re-gotten 774 * a reference to the dentry and change that, but 775 * our work is done - we can leave the dentry 776 * around with a zero refcount. 777 */ 778 smp_rmb(); 779 d_flags = READ_ONCE(dentry->d_flags); 780 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 781 782 /* Nothing to do? Dropping the reference was all we needed? */ 783 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 784 return true; 785 786 /* 787 * Not the fast normal case? Get the lock. We've already decremented 788 * the refcount, but we'll need to re-check the situation after 789 * getting the lock. 790 */ 791 spin_lock(&dentry->d_lock); 792 793 /* 794 * Did somebody else grab a reference to it in the meantime, and 795 * we're no longer the last user after all? Alternatively, somebody 796 * else could have killed it and marked it dead. Either way, we 797 * don't need to do anything else. 798 */ 799 if (dentry->d_lockref.count) { 800 spin_unlock(&dentry->d_lock); 801 return true; 802 } 803 804 /* 805 * Re-get the reference we optimistically dropped. We hold the 806 * lock, and we just tested that it was zero, so we can just 807 * set it to 1. 808 */ 809 dentry->d_lockref.count = 1; 810 return false; 811 } 812 813 814 /* 815 * This is dput 816 * 817 * This is complicated by the fact that we do not want to put 818 * dentries that are no longer on any hash chain on the unused 819 * list: we'd much rather just get rid of them immediately. 820 * 821 * However, that implies that we have to traverse the dentry 822 * tree upwards to the parents which might _also_ now be 823 * scheduled for deletion (it may have been only waiting for 824 * its last child to go away). 825 * 826 * This tail recursion is done by hand as we don't want to depend 827 * on the compiler to always get this right (gcc generally doesn't). 828 * Real recursion would eat up our stack space. 829 */ 830 831 /* 832 * dput - release a dentry 833 * @dentry: dentry to release 834 * 835 * Release a dentry. This will drop the usage count and if appropriate 836 * call the dentry unlink method as well as removing it from the queues and 837 * releasing its resources. If the parent dentries were scheduled for release 838 * they too may now get deleted. 839 */ 840 void dput(struct dentry *dentry) 841 { 842 while (dentry) { 843 might_sleep(); 844 845 rcu_read_lock(); 846 if (likely(fast_dput(dentry))) { 847 rcu_read_unlock(); 848 return; 849 } 850 851 /* Slow case: now with the dentry lock held */ 852 rcu_read_unlock(); 853 854 if (likely(retain_dentry(dentry))) { 855 spin_unlock(&dentry->d_lock); 856 return; 857 } 858 859 dentry = dentry_kill(dentry); 860 } 861 } 862 EXPORT_SYMBOL(dput); 863 864 865 /* This must be called with d_lock held */ 866 static inline void __dget_dlock(struct dentry *dentry) 867 { 868 dentry->d_lockref.count++; 869 } 870 871 static inline void __dget(struct dentry *dentry) 872 { 873 lockref_get(&dentry->d_lockref); 874 } 875 876 struct dentry *dget_parent(struct dentry *dentry) 877 { 878 int gotref; 879 struct dentry *ret; 880 881 /* 882 * Do optimistic parent lookup without any 883 * locking. 884 */ 885 rcu_read_lock(); 886 ret = READ_ONCE(dentry->d_parent); 887 gotref = lockref_get_not_zero(&ret->d_lockref); 888 rcu_read_unlock(); 889 if (likely(gotref)) { 890 if (likely(ret == READ_ONCE(dentry->d_parent))) 891 return ret; 892 dput(ret); 893 } 894 895 repeat: 896 /* 897 * Don't need rcu_dereference because we re-check it was correct under 898 * the lock. 899 */ 900 rcu_read_lock(); 901 ret = dentry->d_parent; 902 spin_lock(&ret->d_lock); 903 if (unlikely(ret != dentry->d_parent)) { 904 spin_unlock(&ret->d_lock); 905 rcu_read_unlock(); 906 goto repeat; 907 } 908 rcu_read_unlock(); 909 BUG_ON(!ret->d_lockref.count); 910 ret->d_lockref.count++; 911 spin_unlock(&ret->d_lock); 912 return ret; 913 } 914 EXPORT_SYMBOL(dget_parent); 915 916 static struct dentry * __d_find_any_alias(struct inode *inode) 917 { 918 struct dentry *alias; 919 920 if (hlist_empty(&inode->i_dentry)) 921 return NULL; 922 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 923 __dget(alias); 924 return alias; 925 } 926 927 /** 928 * d_find_any_alias - find any alias for a given inode 929 * @inode: inode to find an alias for 930 * 931 * If any aliases exist for the given inode, take and return a 932 * reference for one of them. If no aliases exist, return %NULL. 933 */ 934 struct dentry *d_find_any_alias(struct inode *inode) 935 { 936 struct dentry *de; 937 938 spin_lock(&inode->i_lock); 939 de = __d_find_any_alias(inode); 940 spin_unlock(&inode->i_lock); 941 return de; 942 } 943 EXPORT_SYMBOL(d_find_any_alias); 944 945 /** 946 * d_find_alias - grab a hashed alias of inode 947 * @inode: inode in question 948 * 949 * If inode has a hashed alias, or is a directory and has any alias, 950 * acquire the reference to alias and return it. Otherwise return NULL. 951 * Notice that if inode is a directory there can be only one alias and 952 * it can be unhashed only if it has no children, or if it is the root 953 * of a filesystem, or if the directory was renamed and d_revalidate 954 * was the first vfs operation to notice. 955 * 956 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 957 * any other hashed alias over that one. 958 */ 959 static struct dentry *__d_find_alias(struct inode *inode) 960 { 961 struct dentry *alias; 962 963 if (S_ISDIR(inode->i_mode)) 964 return __d_find_any_alias(inode); 965 966 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 967 spin_lock(&alias->d_lock); 968 if (!d_unhashed(alias)) { 969 __dget_dlock(alias); 970 spin_unlock(&alias->d_lock); 971 return alias; 972 } 973 spin_unlock(&alias->d_lock); 974 } 975 return NULL; 976 } 977 978 struct dentry *d_find_alias(struct inode *inode) 979 { 980 struct dentry *de = NULL; 981 982 if (!hlist_empty(&inode->i_dentry)) { 983 spin_lock(&inode->i_lock); 984 de = __d_find_alias(inode); 985 spin_unlock(&inode->i_lock); 986 } 987 return de; 988 } 989 EXPORT_SYMBOL(d_find_alias); 990 991 /* 992 * Try to kill dentries associated with this inode. 993 * WARNING: you must own a reference to inode. 994 */ 995 void d_prune_aliases(struct inode *inode) 996 { 997 struct dentry *dentry; 998 restart: 999 spin_lock(&inode->i_lock); 1000 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1001 spin_lock(&dentry->d_lock); 1002 if (!dentry->d_lockref.count) { 1003 struct dentry *parent = lock_parent(dentry); 1004 if (likely(!dentry->d_lockref.count)) { 1005 __dentry_kill(dentry); 1006 dput(parent); 1007 goto restart; 1008 } 1009 if (parent) 1010 spin_unlock(&parent->d_lock); 1011 } 1012 spin_unlock(&dentry->d_lock); 1013 } 1014 spin_unlock(&inode->i_lock); 1015 } 1016 EXPORT_SYMBOL(d_prune_aliases); 1017 1018 /* 1019 * Lock a dentry from shrink list. 1020 * Called under rcu_read_lock() and dentry->d_lock; the former 1021 * guarantees that nothing we access will be freed under us. 1022 * Note that dentry is *not* protected from concurrent dentry_kill(), 1023 * d_delete(), etc. 1024 * 1025 * Return false if dentry has been disrupted or grabbed, leaving 1026 * the caller to kick it off-list. Otherwise, return true and have 1027 * that dentry's inode and parent both locked. 1028 */ 1029 static bool shrink_lock_dentry(struct dentry *dentry) 1030 { 1031 struct inode *inode; 1032 struct dentry *parent; 1033 1034 if (dentry->d_lockref.count) 1035 return false; 1036 1037 inode = dentry->d_inode; 1038 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1039 spin_unlock(&dentry->d_lock); 1040 spin_lock(&inode->i_lock); 1041 spin_lock(&dentry->d_lock); 1042 if (unlikely(dentry->d_lockref.count)) 1043 goto out; 1044 /* changed inode means that somebody had grabbed it */ 1045 if (unlikely(inode != dentry->d_inode)) 1046 goto out; 1047 } 1048 1049 parent = dentry->d_parent; 1050 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1051 return true; 1052 1053 spin_unlock(&dentry->d_lock); 1054 spin_lock(&parent->d_lock); 1055 if (unlikely(parent != dentry->d_parent)) { 1056 spin_unlock(&parent->d_lock); 1057 spin_lock(&dentry->d_lock); 1058 goto out; 1059 } 1060 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1061 if (likely(!dentry->d_lockref.count)) 1062 return true; 1063 spin_unlock(&parent->d_lock); 1064 out: 1065 if (inode) 1066 spin_unlock(&inode->i_lock); 1067 return false; 1068 } 1069 1070 static void shrink_dentry_list(struct list_head *list) 1071 { 1072 while (!list_empty(list)) { 1073 struct dentry *dentry, *parent; 1074 1075 dentry = list_entry(list->prev, struct dentry, d_lru); 1076 spin_lock(&dentry->d_lock); 1077 rcu_read_lock(); 1078 if (!shrink_lock_dentry(dentry)) { 1079 bool can_free = false; 1080 rcu_read_unlock(); 1081 d_shrink_del(dentry); 1082 if (dentry->d_lockref.count < 0) 1083 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1084 spin_unlock(&dentry->d_lock); 1085 if (can_free) 1086 dentry_free(dentry); 1087 continue; 1088 } 1089 rcu_read_unlock(); 1090 d_shrink_del(dentry); 1091 parent = dentry->d_parent; 1092 __dentry_kill(dentry); 1093 if (parent == dentry) 1094 continue; 1095 /* 1096 * We need to prune ancestors too. This is necessary to prevent 1097 * quadratic behavior of shrink_dcache_parent(), but is also 1098 * expected to be beneficial in reducing dentry cache 1099 * fragmentation. 1100 */ 1101 dentry = parent; 1102 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1103 dentry = dentry_kill(dentry); 1104 } 1105 } 1106 1107 static enum lru_status dentry_lru_isolate(struct list_head *item, 1108 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1109 { 1110 struct list_head *freeable = arg; 1111 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1112 1113 1114 /* 1115 * we are inverting the lru lock/dentry->d_lock here, 1116 * so use a trylock. If we fail to get the lock, just skip 1117 * it 1118 */ 1119 if (!spin_trylock(&dentry->d_lock)) 1120 return LRU_SKIP; 1121 1122 /* 1123 * Referenced dentries are still in use. If they have active 1124 * counts, just remove them from the LRU. Otherwise give them 1125 * another pass through the LRU. 1126 */ 1127 if (dentry->d_lockref.count) { 1128 d_lru_isolate(lru, dentry); 1129 spin_unlock(&dentry->d_lock); 1130 return LRU_REMOVED; 1131 } 1132 1133 if (dentry->d_flags & DCACHE_REFERENCED) { 1134 dentry->d_flags &= ~DCACHE_REFERENCED; 1135 spin_unlock(&dentry->d_lock); 1136 1137 /* 1138 * The list move itself will be made by the common LRU code. At 1139 * this point, we've dropped the dentry->d_lock but keep the 1140 * lru lock. This is safe to do, since every list movement is 1141 * protected by the lru lock even if both locks are held. 1142 * 1143 * This is guaranteed by the fact that all LRU management 1144 * functions are intermediated by the LRU API calls like 1145 * list_lru_add and list_lru_del. List movement in this file 1146 * only ever occur through this functions or through callbacks 1147 * like this one, that are called from the LRU API. 1148 * 1149 * The only exceptions to this are functions like 1150 * shrink_dentry_list, and code that first checks for the 1151 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1152 * operating only with stack provided lists after they are 1153 * properly isolated from the main list. It is thus, always a 1154 * local access. 1155 */ 1156 return LRU_ROTATE; 1157 } 1158 1159 d_lru_shrink_move(lru, dentry, freeable); 1160 spin_unlock(&dentry->d_lock); 1161 1162 return LRU_REMOVED; 1163 } 1164 1165 /** 1166 * prune_dcache_sb - shrink the dcache 1167 * @sb: superblock 1168 * @sc: shrink control, passed to list_lru_shrink_walk() 1169 * 1170 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1171 * is done when we need more memory and called from the superblock shrinker 1172 * function. 1173 * 1174 * This function may fail to free any resources if all the dentries are in 1175 * use. 1176 */ 1177 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1178 { 1179 LIST_HEAD(dispose); 1180 long freed; 1181 1182 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1183 dentry_lru_isolate, &dispose); 1184 shrink_dentry_list(&dispose); 1185 return freed; 1186 } 1187 1188 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1189 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1190 { 1191 struct list_head *freeable = arg; 1192 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1193 1194 /* 1195 * we are inverting the lru lock/dentry->d_lock here, 1196 * so use a trylock. If we fail to get the lock, just skip 1197 * it 1198 */ 1199 if (!spin_trylock(&dentry->d_lock)) 1200 return LRU_SKIP; 1201 1202 d_lru_shrink_move(lru, dentry, freeable); 1203 spin_unlock(&dentry->d_lock); 1204 1205 return LRU_REMOVED; 1206 } 1207 1208 1209 /** 1210 * shrink_dcache_sb - shrink dcache for a superblock 1211 * @sb: superblock 1212 * 1213 * Shrink the dcache for the specified super block. This is used to free 1214 * the dcache before unmounting a file system. 1215 */ 1216 void shrink_dcache_sb(struct super_block *sb) 1217 { 1218 do { 1219 LIST_HEAD(dispose); 1220 1221 list_lru_walk(&sb->s_dentry_lru, 1222 dentry_lru_isolate_shrink, &dispose, 1024); 1223 shrink_dentry_list(&dispose); 1224 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1225 } 1226 EXPORT_SYMBOL(shrink_dcache_sb); 1227 1228 /** 1229 * enum d_walk_ret - action to talke during tree walk 1230 * @D_WALK_CONTINUE: contrinue walk 1231 * @D_WALK_QUIT: quit walk 1232 * @D_WALK_NORETRY: quit when retry is needed 1233 * @D_WALK_SKIP: skip this dentry and its children 1234 */ 1235 enum d_walk_ret { 1236 D_WALK_CONTINUE, 1237 D_WALK_QUIT, 1238 D_WALK_NORETRY, 1239 D_WALK_SKIP, 1240 }; 1241 1242 /** 1243 * d_walk - walk the dentry tree 1244 * @parent: start of walk 1245 * @data: data passed to @enter() and @finish() 1246 * @enter: callback when first entering the dentry 1247 * 1248 * The @enter() callbacks are called with d_lock held. 1249 */ 1250 static void d_walk(struct dentry *parent, void *data, 1251 enum d_walk_ret (*enter)(void *, struct dentry *)) 1252 { 1253 struct dentry *this_parent; 1254 struct list_head *next; 1255 unsigned seq = 0; 1256 enum d_walk_ret ret; 1257 bool retry = true; 1258 1259 again: 1260 read_seqbegin_or_lock(&rename_lock, &seq); 1261 this_parent = parent; 1262 spin_lock(&this_parent->d_lock); 1263 1264 ret = enter(data, this_parent); 1265 switch (ret) { 1266 case D_WALK_CONTINUE: 1267 break; 1268 case D_WALK_QUIT: 1269 case D_WALK_SKIP: 1270 goto out_unlock; 1271 case D_WALK_NORETRY: 1272 retry = false; 1273 break; 1274 } 1275 repeat: 1276 next = this_parent->d_subdirs.next; 1277 resume: 1278 while (next != &this_parent->d_subdirs) { 1279 struct list_head *tmp = next; 1280 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1281 next = tmp->next; 1282 1283 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1284 continue; 1285 1286 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1287 1288 ret = enter(data, dentry); 1289 switch (ret) { 1290 case D_WALK_CONTINUE: 1291 break; 1292 case D_WALK_QUIT: 1293 spin_unlock(&dentry->d_lock); 1294 goto out_unlock; 1295 case D_WALK_NORETRY: 1296 retry = false; 1297 break; 1298 case D_WALK_SKIP: 1299 spin_unlock(&dentry->d_lock); 1300 continue; 1301 } 1302 1303 if (!list_empty(&dentry->d_subdirs)) { 1304 spin_unlock(&this_parent->d_lock); 1305 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1306 this_parent = dentry; 1307 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1308 goto repeat; 1309 } 1310 spin_unlock(&dentry->d_lock); 1311 } 1312 /* 1313 * All done at this level ... ascend and resume the search. 1314 */ 1315 rcu_read_lock(); 1316 ascend: 1317 if (this_parent != parent) { 1318 struct dentry *child = this_parent; 1319 this_parent = child->d_parent; 1320 1321 spin_unlock(&child->d_lock); 1322 spin_lock(&this_parent->d_lock); 1323 1324 /* might go back up the wrong parent if we have had a rename. */ 1325 if (need_seqretry(&rename_lock, seq)) 1326 goto rename_retry; 1327 /* go into the first sibling still alive */ 1328 do { 1329 next = child->d_child.next; 1330 if (next == &this_parent->d_subdirs) 1331 goto ascend; 1332 child = list_entry(next, struct dentry, d_child); 1333 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1334 rcu_read_unlock(); 1335 goto resume; 1336 } 1337 if (need_seqretry(&rename_lock, seq)) 1338 goto rename_retry; 1339 rcu_read_unlock(); 1340 1341 out_unlock: 1342 spin_unlock(&this_parent->d_lock); 1343 done_seqretry(&rename_lock, seq); 1344 return; 1345 1346 rename_retry: 1347 spin_unlock(&this_parent->d_lock); 1348 rcu_read_unlock(); 1349 BUG_ON(seq & 1); 1350 if (!retry) 1351 return; 1352 seq = 1; 1353 goto again; 1354 } 1355 1356 struct check_mount { 1357 struct vfsmount *mnt; 1358 unsigned int mounted; 1359 }; 1360 1361 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1362 { 1363 struct check_mount *info = data; 1364 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1365 1366 if (likely(!d_mountpoint(dentry))) 1367 return D_WALK_CONTINUE; 1368 if (__path_is_mountpoint(&path)) { 1369 info->mounted = 1; 1370 return D_WALK_QUIT; 1371 } 1372 return D_WALK_CONTINUE; 1373 } 1374 1375 /** 1376 * path_has_submounts - check for mounts over a dentry in the 1377 * current namespace. 1378 * @parent: path to check. 1379 * 1380 * Return true if the parent or its subdirectories contain 1381 * a mount point in the current namespace. 1382 */ 1383 int path_has_submounts(const struct path *parent) 1384 { 1385 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1386 1387 read_seqlock_excl(&mount_lock); 1388 d_walk(parent->dentry, &data, path_check_mount); 1389 read_sequnlock_excl(&mount_lock); 1390 1391 return data.mounted; 1392 } 1393 EXPORT_SYMBOL(path_has_submounts); 1394 1395 /* 1396 * Called by mount code to set a mountpoint and check if the mountpoint is 1397 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1398 * subtree can become unreachable). 1399 * 1400 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1401 * this reason take rename_lock and d_lock on dentry and ancestors. 1402 */ 1403 int d_set_mounted(struct dentry *dentry) 1404 { 1405 struct dentry *p; 1406 int ret = -ENOENT; 1407 write_seqlock(&rename_lock); 1408 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1409 /* Need exclusion wrt. d_invalidate() */ 1410 spin_lock(&p->d_lock); 1411 if (unlikely(d_unhashed(p))) { 1412 spin_unlock(&p->d_lock); 1413 goto out; 1414 } 1415 spin_unlock(&p->d_lock); 1416 } 1417 spin_lock(&dentry->d_lock); 1418 if (!d_unlinked(dentry)) { 1419 ret = -EBUSY; 1420 if (!d_mountpoint(dentry)) { 1421 dentry->d_flags |= DCACHE_MOUNTED; 1422 ret = 0; 1423 } 1424 } 1425 spin_unlock(&dentry->d_lock); 1426 out: 1427 write_sequnlock(&rename_lock); 1428 return ret; 1429 } 1430 1431 /* 1432 * Search the dentry child list of the specified parent, 1433 * and move any unused dentries to the end of the unused 1434 * list for prune_dcache(). We descend to the next level 1435 * whenever the d_subdirs list is non-empty and continue 1436 * searching. 1437 * 1438 * It returns zero iff there are no unused children, 1439 * otherwise it returns the number of children moved to 1440 * the end of the unused list. This may not be the total 1441 * number of unused children, because select_parent can 1442 * drop the lock and return early due to latency 1443 * constraints. 1444 */ 1445 1446 struct select_data { 1447 struct dentry *start; 1448 struct list_head dispose; 1449 int found; 1450 }; 1451 1452 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1453 { 1454 struct select_data *data = _data; 1455 enum d_walk_ret ret = D_WALK_CONTINUE; 1456 1457 if (data->start == dentry) 1458 goto out; 1459 1460 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1461 data->found++; 1462 } else { 1463 if (dentry->d_flags & DCACHE_LRU_LIST) 1464 d_lru_del(dentry); 1465 if (!dentry->d_lockref.count) { 1466 d_shrink_add(dentry, &data->dispose); 1467 data->found++; 1468 } 1469 } 1470 /* 1471 * We can return to the caller if we have found some (this 1472 * ensures forward progress). We'll be coming back to find 1473 * the rest. 1474 */ 1475 if (!list_empty(&data->dispose)) 1476 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1477 out: 1478 return ret; 1479 } 1480 1481 /** 1482 * shrink_dcache_parent - prune dcache 1483 * @parent: parent of entries to prune 1484 * 1485 * Prune the dcache to remove unused children of the parent dentry. 1486 */ 1487 void shrink_dcache_parent(struct dentry *parent) 1488 { 1489 for (;;) { 1490 struct select_data data; 1491 1492 INIT_LIST_HEAD(&data.dispose); 1493 data.start = parent; 1494 data.found = 0; 1495 1496 d_walk(parent, &data, select_collect); 1497 1498 if (!list_empty(&data.dispose)) { 1499 shrink_dentry_list(&data.dispose); 1500 continue; 1501 } 1502 1503 cond_resched(); 1504 if (!data.found) 1505 break; 1506 } 1507 } 1508 EXPORT_SYMBOL(shrink_dcache_parent); 1509 1510 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1511 { 1512 /* it has busy descendents; complain about those instead */ 1513 if (!list_empty(&dentry->d_subdirs)) 1514 return D_WALK_CONTINUE; 1515 1516 /* root with refcount 1 is fine */ 1517 if (dentry == _data && dentry->d_lockref.count == 1) 1518 return D_WALK_CONTINUE; 1519 1520 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1521 " still in use (%d) [unmount of %s %s]\n", 1522 dentry, 1523 dentry->d_inode ? 1524 dentry->d_inode->i_ino : 0UL, 1525 dentry, 1526 dentry->d_lockref.count, 1527 dentry->d_sb->s_type->name, 1528 dentry->d_sb->s_id); 1529 WARN_ON(1); 1530 return D_WALK_CONTINUE; 1531 } 1532 1533 static void do_one_tree(struct dentry *dentry) 1534 { 1535 shrink_dcache_parent(dentry); 1536 d_walk(dentry, dentry, umount_check); 1537 d_drop(dentry); 1538 dput(dentry); 1539 } 1540 1541 /* 1542 * destroy the dentries attached to a superblock on unmounting 1543 */ 1544 void shrink_dcache_for_umount(struct super_block *sb) 1545 { 1546 struct dentry *dentry; 1547 1548 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1549 1550 dentry = sb->s_root; 1551 sb->s_root = NULL; 1552 do_one_tree(dentry); 1553 1554 while (!hlist_bl_empty(&sb->s_roots)) { 1555 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1556 do_one_tree(dentry); 1557 } 1558 } 1559 1560 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1561 { 1562 struct dentry **victim = _data; 1563 if (d_mountpoint(dentry)) { 1564 __dget_dlock(dentry); 1565 *victim = dentry; 1566 return D_WALK_QUIT; 1567 } 1568 return D_WALK_CONTINUE; 1569 } 1570 1571 /** 1572 * d_invalidate - detach submounts, prune dcache, and drop 1573 * @dentry: dentry to invalidate (aka detach, prune and drop) 1574 */ 1575 void d_invalidate(struct dentry *dentry) 1576 { 1577 bool had_submounts = false; 1578 spin_lock(&dentry->d_lock); 1579 if (d_unhashed(dentry)) { 1580 spin_unlock(&dentry->d_lock); 1581 return; 1582 } 1583 __d_drop(dentry); 1584 spin_unlock(&dentry->d_lock); 1585 1586 /* Negative dentries can be dropped without further checks */ 1587 if (!dentry->d_inode) 1588 return; 1589 1590 shrink_dcache_parent(dentry); 1591 for (;;) { 1592 struct dentry *victim = NULL; 1593 d_walk(dentry, &victim, find_submount); 1594 if (!victim) { 1595 if (had_submounts) 1596 shrink_dcache_parent(dentry); 1597 return; 1598 } 1599 had_submounts = true; 1600 detach_mounts(victim); 1601 dput(victim); 1602 } 1603 } 1604 EXPORT_SYMBOL(d_invalidate); 1605 1606 /** 1607 * __d_alloc - allocate a dcache entry 1608 * @sb: filesystem it will belong to 1609 * @name: qstr of the name 1610 * 1611 * Allocates a dentry. It returns %NULL if there is insufficient memory 1612 * available. On a success the dentry is returned. The name passed in is 1613 * copied and the copy passed in may be reused after this call. 1614 */ 1615 1616 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1617 { 1618 struct dentry *dentry; 1619 char *dname; 1620 int err; 1621 1622 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1623 if (!dentry) 1624 return NULL; 1625 1626 /* 1627 * We guarantee that the inline name is always NUL-terminated. 1628 * This way the memcpy() done by the name switching in rename 1629 * will still always have a NUL at the end, even if we might 1630 * be overwriting an internal NUL character 1631 */ 1632 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1633 if (unlikely(!name)) { 1634 name = &slash_name; 1635 dname = dentry->d_iname; 1636 } else if (name->len > DNAME_INLINE_LEN-1) { 1637 size_t size = offsetof(struct external_name, name[1]); 1638 struct external_name *p = kmalloc(size + name->len, 1639 GFP_KERNEL_ACCOUNT | 1640 __GFP_RECLAIMABLE); 1641 if (!p) { 1642 kmem_cache_free(dentry_cache, dentry); 1643 return NULL; 1644 } 1645 atomic_set(&p->u.count, 1); 1646 dname = p->name; 1647 } else { 1648 dname = dentry->d_iname; 1649 } 1650 1651 dentry->d_name.len = name->len; 1652 dentry->d_name.hash = name->hash; 1653 memcpy(dname, name->name, name->len); 1654 dname[name->len] = 0; 1655 1656 /* Make sure we always see the terminating NUL character */ 1657 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1658 1659 dentry->d_lockref.count = 1; 1660 dentry->d_flags = 0; 1661 spin_lock_init(&dentry->d_lock); 1662 seqcount_init(&dentry->d_seq); 1663 dentry->d_inode = NULL; 1664 dentry->d_parent = dentry; 1665 dentry->d_sb = sb; 1666 dentry->d_op = NULL; 1667 dentry->d_fsdata = NULL; 1668 INIT_HLIST_BL_NODE(&dentry->d_hash); 1669 INIT_LIST_HEAD(&dentry->d_lru); 1670 INIT_LIST_HEAD(&dentry->d_subdirs); 1671 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1672 INIT_LIST_HEAD(&dentry->d_child); 1673 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1674 1675 if (dentry->d_op && dentry->d_op->d_init) { 1676 err = dentry->d_op->d_init(dentry); 1677 if (err) { 1678 if (dname_external(dentry)) 1679 kfree(external_name(dentry)); 1680 kmem_cache_free(dentry_cache, dentry); 1681 return NULL; 1682 } 1683 } 1684 1685 this_cpu_inc(nr_dentry); 1686 1687 return dentry; 1688 } 1689 1690 /** 1691 * d_alloc - allocate a dcache entry 1692 * @parent: parent of entry to allocate 1693 * @name: qstr of the name 1694 * 1695 * Allocates a dentry. It returns %NULL if there is insufficient memory 1696 * available. On a success the dentry is returned. The name passed in is 1697 * copied and the copy passed in may be reused after this call. 1698 */ 1699 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1700 { 1701 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1702 if (!dentry) 1703 return NULL; 1704 spin_lock(&parent->d_lock); 1705 /* 1706 * don't need child lock because it is not subject 1707 * to concurrency here 1708 */ 1709 __dget_dlock(parent); 1710 dentry->d_parent = parent; 1711 list_add(&dentry->d_child, &parent->d_subdirs); 1712 spin_unlock(&parent->d_lock); 1713 1714 return dentry; 1715 } 1716 EXPORT_SYMBOL(d_alloc); 1717 1718 struct dentry *d_alloc_anon(struct super_block *sb) 1719 { 1720 return __d_alloc(sb, NULL); 1721 } 1722 EXPORT_SYMBOL(d_alloc_anon); 1723 1724 struct dentry *d_alloc_cursor(struct dentry * parent) 1725 { 1726 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1727 if (dentry) { 1728 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1729 dentry->d_parent = dget(parent); 1730 } 1731 return dentry; 1732 } 1733 1734 /** 1735 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1736 * @sb: the superblock 1737 * @name: qstr of the name 1738 * 1739 * For a filesystem that just pins its dentries in memory and never 1740 * performs lookups at all, return an unhashed IS_ROOT dentry. 1741 * This is used for pipes, sockets et.al. - the stuff that should 1742 * never be anyone's children or parents. Unlike all other 1743 * dentries, these will not have RCU delay between dropping the 1744 * last reference and freeing them. 1745 * 1746 * The only user is alloc_file_pseudo() and that's what should 1747 * be considered a public interface. Don't use directly. 1748 */ 1749 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1750 { 1751 struct dentry *dentry = __d_alloc(sb, name); 1752 if (likely(dentry)) 1753 dentry->d_flags |= DCACHE_NORCU; 1754 return dentry; 1755 } 1756 1757 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1758 { 1759 struct qstr q; 1760 1761 q.name = name; 1762 q.hash_len = hashlen_string(parent, name); 1763 return d_alloc(parent, &q); 1764 } 1765 EXPORT_SYMBOL(d_alloc_name); 1766 1767 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1768 { 1769 WARN_ON_ONCE(dentry->d_op); 1770 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1771 DCACHE_OP_COMPARE | 1772 DCACHE_OP_REVALIDATE | 1773 DCACHE_OP_WEAK_REVALIDATE | 1774 DCACHE_OP_DELETE | 1775 DCACHE_OP_REAL)); 1776 dentry->d_op = op; 1777 if (!op) 1778 return; 1779 if (op->d_hash) 1780 dentry->d_flags |= DCACHE_OP_HASH; 1781 if (op->d_compare) 1782 dentry->d_flags |= DCACHE_OP_COMPARE; 1783 if (op->d_revalidate) 1784 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1785 if (op->d_weak_revalidate) 1786 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1787 if (op->d_delete) 1788 dentry->d_flags |= DCACHE_OP_DELETE; 1789 if (op->d_prune) 1790 dentry->d_flags |= DCACHE_OP_PRUNE; 1791 if (op->d_real) 1792 dentry->d_flags |= DCACHE_OP_REAL; 1793 1794 } 1795 EXPORT_SYMBOL(d_set_d_op); 1796 1797 1798 /* 1799 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1800 * @dentry - The dentry to mark 1801 * 1802 * Mark a dentry as falling through to the lower layer (as set with 1803 * d_pin_lower()). This flag may be recorded on the medium. 1804 */ 1805 void d_set_fallthru(struct dentry *dentry) 1806 { 1807 spin_lock(&dentry->d_lock); 1808 dentry->d_flags |= DCACHE_FALLTHRU; 1809 spin_unlock(&dentry->d_lock); 1810 } 1811 EXPORT_SYMBOL(d_set_fallthru); 1812 1813 static unsigned d_flags_for_inode(struct inode *inode) 1814 { 1815 unsigned add_flags = DCACHE_REGULAR_TYPE; 1816 1817 if (!inode) 1818 return DCACHE_MISS_TYPE; 1819 1820 if (S_ISDIR(inode->i_mode)) { 1821 add_flags = DCACHE_DIRECTORY_TYPE; 1822 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1823 if (unlikely(!inode->i_op->lookup)) 1824 add_flags = DCACHE_AUTODIR_TYPE; 1825 else 1826 inode->i_opflags |= IOP_LOOKUP; 1827 } 1828 goto type_determined; 1829 } 1830 1831 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1832 if (unlikely(inode->i_op->get_link)) { 1833 add_flags = DCACHE_SYMLINK_TYPE; 1834 goto type_determined; 1835 } 1836 inode->i_opflags |= IOP_NOFOLLOW; 1837 } 1838 1839 if (unlikely(!S_ISREG(inode->i_mode))) 1840 add_flags = DCACHE_SPECIAL_TYPE; 1841 1842 type_determined: 1843 if (unlikely(IS_AUTOMOUNT(inode))) 1844 add_flags |= DCACHE_NEED_AUTOMOUNT; 1845 return add_flags; 1846 } 1847 1848 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1849 { 1850 unsigned add_flags = d_flags_for_inode(inode); 1851 WARN_ON(d_in_lookup(dentry)); 1852 1853 spin_lock(&dentry->d_lock); 1854 /* 1855 * Decrement negative dentry count if it was in the LRU list. 1856 */ 1857 if (dentry->d_flags & DCACHE_LRU_LIST) 1858 this_cpu_dec(nr_dentry_negative); 1859 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1860 raw_write_seqcount_begin(&dentry->d_seq); 1861 __d_set_inode_and_type(dentry, inode, add_flags); 1862 raw_write_seqcount_end(&dentry->d_seq); 1863 fsnotify_update_flags(dentry); 1864 spin_unlock(&dentry->d_lock); 1865 } 1866 1867 /** 1868 * d_instantiate - fill in inode information for a dentry 1869 * @entry: dentry to complete 1870 * @inode: inode to attach to this dentry 1871 * 1872 * Fill in inode information in the entry. 1873 * 1874 * This turns negative dentries into productive full members 1875 * of society. 1876 * 1877 * NOTE! This assumes that the inode count has been incremented 1878 * (or otherwise set) by the caller to indicate that it is now 1879 * in use by the dcache. 1880 */ 1881 1882 void d_instantiate(struct dentry *entry, struct inode * inode) 1883 { 1884 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1885 if (inode) { 1886 security_d_instantiate(entry, inode); 1887 spin_lock(&inode->i_lock); 1888 __d_instantiate(entry, inode); 1889 spin_unlock(&inode->i_lock); 1890 } 1891 } 1892 EXPORT_SYMBOL(d_instantiate); 1893 1894 /* 1895 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1896 * with lockdep-related part of unlock_new_inode() done before 1897 * anything else. Use that instead of open-coding d_instantiate()/ 1898 * unlock_new_inode() combinations. 1899 */ 1900 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1901 { 1902 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1903 BUG_ON(!inode); 1904 lockdep_annotate_inode_mutex_key(inode); 1905 security_d_instantiate(entry, inode); 1906 spin_lock(&inode->i_lock); 1907 __d_instantiate(entry, inode); 1908 WARN_ON(!(inode->i_state & I_NEW)); 1909 inode->i_state &= ~I_NEW & ~I_CREATING; 1910 smp_mb(); 1911 wake_up_bit(&inode->i_state, __I_NEW); 1912 spin_unlock(&inode->i_lock); 1913 } 1914 EXPORT_SYMBOL(d_instantiate_new); 1915 1916 struct dentry *d_make_root(struct inode *root_inode) 1917 { 1918 struct dentry *res = NULL; 1919 1920 if (root_inode) { 1921 res = d_alloc_anon(root_inode->i_sb); 1922 if (res) 1923 d_instantiate(res, root_inode); 1924 else 1925 iput(root_inode); 1926 } 1927 return res; 1928 } 1929 EXPORT_SYMBOL(d_make_root); 1930 1931 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1932 struct inode *inode, 1933 bool disconnected) 1934 { 1935 struct dentry *res; 1936 unsigned add_flags; 1937 1938 security_d_instantiate(dentry, inode); 1939 spin_lock(&inode->i_lock); 1940 res = __d_find_any_alias(inode); 1941 if (res) { 1942 spin_unlock(&inode->i_lock); 1943 dput(dentry); 1944 goto out_iput; 1945 } 1946 1947 /* attach a disconnected dentry */ 1948 add_flags = d_flags_for_inode(inode); 1949 1950 if (disconnected) 1951 add_flags |= DCACHE_DISCONNECTED; 1952 1953 spin_lock(&dentry->d_lock); 1954 __d_set_inode_and_type(dentry, inode, add_flags); 1955 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1956 if (!disconnected) { 1957 hlist_bl_lock(&dentry->d_sb->s_roots); 1958 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1959 hlist_bl_unlock(&dentry->d_sb->s_roots); 1960 } 1961 spin_unlock(&dentry->d_lock); 1962 spin_unlock(&inode->i_lock); 1963 1964 return dentry; 1965 1966 out_iput: 1967 iput(inode); 1968 return res; 1969 } 1970 1971 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1972 { 1973 return __d_instantiate_anon(dentry, inode, true); 1974 } 1975 EXPORT_SYMBOL(d_instantiate_anon); 1976 1977 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1978 { 1979 struct dentry *tmp; 1980 struct dentry *res; 1981 1982 if (!inode) 1983 return ERR_PTR(-ESTALE); 1984 if (IS_ERR(inode)) 1985 return ERR_CAST(inode); 1986 1987 res = d_find_any_alias(inode); 1988 if (res) 1989 goto out_iput; 1990 1991 tmp = d_alloc_anon(inode->i_sb); 1992 if (!tmp) { 1993 res = ERR_PTR(-ENOMEM); 1994 goto out_iput; 1995 } 1996 1997 return __d_instantiate_anon(tmp, inode, disconnected); 1998 1999 out_iput: 2000 iput(inode); 2001 return res; 2002 } 2003 2004 /** 2005 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2006 * @inode: inode to allocate the dentry for 2007 * 2008 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2009 * similar open by handle operations. The returned dentry may be anonymous, 2010 * or may have a full name (if the inode was already in the cache). 2011 * 2012 * When called on a directory inode, we must ensure that the inode only ever 2013 * has one dentry. If a dentry is found, that is returned instead of 2014 * allocating a new one. 2015 * 2016 * On successful return, the reference to the inode has been transferred 2017 * to the dentry. In case of an error the reference on the inode is released. 2018 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2019 * be passed in and the error will be propagated to the return value, 2020 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2021 */ 2022 struct dentry *d_obtain_alias(struct inode *inode) 2023 { 2024 return __d_obtain_alias(inode, true); 2025 } 2026 EXPORT_SYMBOL(d_obtain_alias); 2027 2028 /** 2029 * d_obtain_root - find or allocate a dentry for a given inode 2030 * @inode: inode to allocate the dentry for 2031 * 2032 * Obtain an IS_ROOT dentry for the root of a filesystem. 2033 * 2034 * We must ensure that directory inodes only ever have one dentry. If a 2035 * dentry is found, that is returned instead of allocating a new one. 2036 * 2037 * On successful return, the reference to the inode has been transferred 2038 * to the dentry. In case of an error the reference on the inode is 2039 * released. A %NULL or IS_ERR inode may be passed in and will be the 2040 * error will be propagate to the return value, with a %NULL @inode 2041 * replaced by ERR_PTR(-ESTALE). 2042 */ 2043 struct dentry *d_obtain_root(struct inode *inode) 2044 { 2045 return __d_obtain_alias(inode, false); 2046 } 2047 EXPORT_SYMBOL(d_obtain_root); 2048 2049 /** 2050 * d_add_ci - lookup or allocate new dentry with case-exact name 2051 * @inode: the inode case-insensitive lookup has found 2052 * @dentry: the negative dentry that was passed to the parent's lookup func 2053 * @name: the case-exact name to be associated with the returned dentry 2054 * 2055 * This is to avoid filling the dcache with case-insensitive names to the 2056 * same inode, only the actual correct case is stored in the dcache for 2057 * case-insensitive filesystems. 2058 * 2059 * For a case-insensitive lookup match and if the the case-exact dentry 2060 * already exists in in the dcache, use it and return it. 2061 * 2062 * If no entry exists with the exact case name, allocate new dentry with 2063 * the exact case, and return the spliced entry. 2064 */ 2065 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2066 struct qstr *name) 2067 { 2068 struct dentry *found, *res; 2069 2070 /* 2071 * First check if a dentry matching the name already exists, 2072 * if not go ahead and create it now. 2073 */ 2074 found = d_hash_and_lookup(dentry->d_parent, name); 2075 if (found) { 2076 iput(inode); 2077 return found; 2078 } 2079 if (d_in_lookup(dentry)) { 2080 found = d_alloc_parallel(dentry->d_parent, name, 2081 dentry->d_wait); 2082 if (IS_ERR(found) || !d_in_lookup(found)) { 2083 iput(inode); 2084 return found; 2085 } 2086 } else { 2087 found = d_alloc(dentry->d_parent, name); 2088 if (!found) { 2089 iput(inode); 2090 return ERR_PTR(-ENOMEM); 2091 } 2092 } 2093 res = d_splice_alias(inode, found); 2094 if (res) { 2095 dput(found); 2096 return res; 2097 } 2098 return found; 2099 } 2100 EXPORT_SYMBOL(d_add_ci); 2101 2102 2103 static inline bool d_same_name(const struct dentry *dentry, 2104 const struct dentry *parent, 2105 const struct qstr *name) 2106 { 2107 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2108 if (dentry->d_name.len != name->len) 2109 return false; 2110 return dentry_cmp(dentry, name->name, name->len) == 0; 2111 } 2112 return parent->d_op->d_compare(dentry, 2113 dentry->d_name.len, dentry->d_name.name, 2114 name) == 0; 2115 } 2116 2117 /** 2118 * __d_lookup_rcu - search for a dentry (racy, store-free) 2119 * @parent: parent dentry 2120 * @name: qstr of name we wish to find 2121 * @seqp: returns d_seq value at the point where the dentry was found 2122 * Returns: dentry, or NULL 2123 * 2124 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2125 * resolution (store-free path walking) design described in 2126 * Documentation/filesystems/path-lookup.txt. 2127 * 2128 * This is not to be used outside core vfs. 2129 * 2130 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2131 * held, and rcu_read_lock held. The returned dentry must not be stored into 2132 * without taking d_lock and checking d_seq sequence count against @seq 2133 * returned here. 2134 * 2135 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2136 * function. 2137 * 2138 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2139 * the returned dentry, so long as its parent's seqlock is checked after the 2140 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2141 * is formed, giving integrity down the path walk. 2142 * 2143 * NOTE! The caller *has* to check the resulting dentry against the sequence 2144 * number we've returned before using any of the resulting dentry state! 2145 */ 2146 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2147 const struct qstr *name, 2148 unsigned *seqp) 2149 { 2150 u64 hashlen = name->hash_len; 2151 const unsigned char *str = name->name; 2152 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2153 struct hlist_bl_node *node; 2154 struct dentry *dentry; 2155 2156 /* 2157 * Note: There is significant duplication with __d_lookup_rcu which is 2158 * required to prevent single threaded performance regressions 2159 * especially on architectures where smp_rmb (in seqcounts) are costly. 2160 * Keep the two functions in sync. 2161 */ 2162 2163 /* 2164 * The hash list is protected using RCU. 2165 * 2166 * Carefully use d_seq when comparing a candidate dentry, to avoid 2167 * races with d_move(). 2168 * 2169 * It is possible that concurrent renames can mess up our list 2170 * walk here and result in missing our dentry, resulting in the 2171 * false-negative result. d_lookup() protects against concurrent 2172 * renames using rename_lock seqlock. 2173 * 2174 * See Documentation/filesystems/path-lookup.txt for more details. 2175 */ 2176 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2177 unsigned seq; 2178 2179 seqretry: 2180 /* 2181 * The dentry sequence count protects us from concurrent 2182 * renames, and thus protects parent and name fields. 2183 * 2184 * The caller must perform a seqcount check in order 2185 * to do anything useful with the returned dentry. 2186 * 2187 * NOTE! We do a "raw" seqcount_begin here. That means that 2188 * we don't wait for the sequence count to stabilize if it 2189 * is in the middle of a sequence change. If we do the slow 2190 * dentry compare, we will do seqretries until it is stable, 2191 * and if we end up with a successful lookup, we actually 2192 * want to exit RCU lookup anyway. 2193 * 2194 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2195 * we are still guaranteed NUL-termination of ->d_name.name. 2196 */ 2197 seq = raw_seqcount_begin(&dentry->d_seq); 2198 if (dentry->d_parent != parent) 2199 continue; 2200 if (d_unhashed(dentry)) 2201 continue; 2202 2203 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2204 int tlen; 2205 const char *tname; 2206 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2207 continue; 2208 tlen = dentry->d_name.len; 2209 tname = dentry->d_name.name; 2210 /* we want a consistent (name,len) pair */ 2211 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2212 cpu_relax(); 2213 goto seqretry; 2214 } 2215 if (parent->d_op->d_compare(dentry, 2216 tlen, tname, name) != 0) 2217 continue; 2218 } else { 2219 if (dentry->d_name.hash_len != hashlen) 2220 continue; 2221 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2222 continue; 2223 } 2224 *seqp = seq; 2225 return dentry; 2226 } 2227 return NULL; 2228 } 2229 2230 /** 2231 * d_lookup - search for a dentry 2232 * @parent: parent dentry 2233 * @name: qstr of name we wish to find 2234 * Returns: dentry, or NULL 2235 * 2236 * d_lookup searches the children of the parent dentry for the name in 2237 * question. If the dentry is found its reference count is incremented and the 2238 * dentry is returned. The caller must use dput to free the entry when it has 2239 * finished using it. %NULL is returned if the dentry does not exist. 2240 */ 2241 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2242 { 2243 struct dentry *dentry; 2244 unsigned seq; 2245 2246 do { 2247 seq = read_seqbegin(&rename_lock); 2248 dentry = __d_lookup(parent, name); 2249 if (dentry) 2250 break; 2251 } while (read_seqretry(&rename_lock, seq)); 2252 return dentry; 2253 } 2254 EXPORT_SYMBOL(d_lookup); 2255 2256 /** 2257 * __d_lookup - search for a dentry (racy) 2258 * @parent: parent dentry 2259 * @name: qstr of name we wish to find 2260 * Returns: dentry, or NULL 2261 * 2262 * __d_lookup is like d_lookup, however it may (rarely) return a 2263 * false-negative result due to unrelated rename activity. 2264 * 2265 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2266 * however it must be used carefully, eg. with a following d_lookup in 2267 * the case of failure. 2268 * 2269 * __d_lookup callers must be commented. 2270 */ 2271 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2272 { 2273 unsigned int hash = name->hash; 2274 struct hlist_bl_head *b = d_hash(hash); 2275 struct hlist_bl_node *node; 2276 struct dentry *found = NULL; 2277 struct dentry *dentry; 2278 2279 /* 2280 * Note: There is significant duplication with __d_lookup_rcu which is 2281 * required to prevent single threaded performance regressions 2282 * especially on architectures where smp_rmb (in seqcounts) are costly. 2283 * Keep the two functions in sync. 2284 */ 2285 2286 /* 2287 * The hash list is protected using RCU. 2288 * 2289 * Take d_lock when comparing a candidate dentry, to avoid races 2290 * with d_move(). 2291 * 2292 * It is possible that concurrent renames can mess up our list 2293 * walk here and result in missing our dentry, resulting in the 2294 * false-negative result. d_lookup() protects against concurrent 2295 * renames using rename_lock seqlock. 2296 * 2297 * See Documentation/filesystems/path-lookup.txt for more details. 2298 */ 2299 rcu_read_lock(); 2300 2301 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2302 2303 if (dentry->d_name.hash != hash) 2304 continue; 2305 2306 spin_lock(&dentry->d_lock); 2307 if (dentry->d_parent != parent) 2308 goto next; 2309 if (d_unhashed(dentry)) 2310 goto next; 2311 2312 if (!d_same_name(dentry, parent, name)) 2313 goto next; 2314 2315 dentry->d_lockref.count++; 2316 found = dentry; 2317 spin_unlock(&dentry->d_lock); 2318 break; 2319 next: 2320 spin_unlock(&dentry->d_lock); 2321 } 2322 rcu_read_unlock(); 2323 2324 return found; 2325 } 2326 2327 /** 2328 * d_hash_and_lookup - hash the qstr then search for a dentry 2329 * @dir: Directory to search in 2330 * @name: qstr of name we wish to find 2331 * 2332 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2333 */ 2334 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2335 { 2336 /* 2337 * Check for a fs-specific hash function. Note that we must 2338 * calculate the standard hash first, as the d_op->d_hash() 2339 * routine may choose to leave the hash value unchanged. 2340 */ 2341 name->hash = full_name_hash(dir, name->name, name->len); 2342 if (dir->d_flags & DCACHE_OP_HASH) { 2343 int err = dir->d_op->d_hash(dir, name); 2344 if (unlikely(err < 0)) 2345 return ERR_PTR(err); 2346 } 2347 return d_lookup(dir, name); 2348 } 2349 EXPORT_SYMBOL(d_hash_and_lookup); 2350 2351 /* 2352 * When a file is deleted, we have two options: 2353 * - turn this dentry into a negative dentry 2354 * - unhash this dentry and free it. 2355 * 2356 * Usually, we want to just turn this into 2357 * a negative dentry, but if anybody else is 2358 * currently using the dentry or the inode 2359 * we can't do that and we fall back on removing 2360 * it from the hash queues and waiting for 2361 * it to be deleted later when it has no users 2362 */ 2363 2364 /** 2365 * d_delete - delete a dentry 2366 * @dentry: The dentry to delete 2367 * 2368 * Turn the dentry into a negative dentry if possible, otherwise 2369 * remove it from the hash queues so it can be deleted later 2370 */ 2371 2372 void d_delete(struct dentry * dentry) 2373 { 2374 struct inode *inode = dentry->d_inode; 2375 int isdir = d_is_dir(dentry); 2376 2377 spin_lock(&inode->i_lock); 2378 spin_lock(&dentry->d_lock); 2379 /* 2380 * Are we the only user? 2381 */ 2382 if (dentry->d_lockref.count == 1) { 2383 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2384 dentry_unlink_inode(dentry); 2385 } else { 2386 __d_drop(dentry); 2387 spin_unlock(&dentry->d_lock); 2388 spin_unlock(&inode->i_lock); 2389 } 2390 fsnotify_nameremove(dentry, isdir); 2391 } 2392 EXPORT_SYMBOL(d_delete); 2393 2394 static void __d_rehash(struct dentry *entry) 2395 { 2396 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2397 2398 hlist_bl_lock(b); 2399 hlist_bl_add_head_rcu(&entry->d_hash, b); 2400 hlist_bl_unlock(b); 2401 } 2402 2403 /** 2404 * d_rehash - add an entry back to the hash 2405 * @entry: dentry to add to the hash 2406 * 2407 * Adds a dentry to the hash according to its name. 2408 */ 2409 2410 void d_rehash(struct dentry * entry) 2411 { 2412 spin_lock(&entry->d_lock); 2413 __d_rehash(entry); 2414 spin_unlock(&entry->d_lock); 2415 } 2416 EXPORT_SYMBOL(d_rehash); 2417 2418 static inline unsigned start_dir_add(struct inode *dir) 2419 { 2420 2421 for (;;) { 2422 unsigned n = dir->i_dir_seq; 2423 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2424 return n; 2425 cpu_relax(); 2426 } 2427 } 2428 2429 static inline void end_dir_add(struct inode *dir, unsigned n) 2430 { 2431 smp_store_release(&dir->i_dir_seq, n + 2); 2432 } 2433 2434 static void d_wait_lookup(struct dentry *dentry) 2435 { 2436 if (d_in_lookup(dentry)) { 2437 DECLARE_WAITQUEUE(wait, current); 2438 add_wait_queue(dentry->d_wait, &wait); 2439 do { 2440 set_current_state(TASK_UNINTERRUPTIBLE); 2441 spin_unlock(&dentry->d_lock); 2442 schedule(); 2443 spin_lock(&dentry->d_lock); 2444 } while (d_in_lookup(dentry)); 2445 } 2446 } 2447 2448 struct dentry *d_alloc_parallel(struct dentry *parent, 2449 const struct qstr *name, 2450 wait_queue_head_t *wq) 2451 { 2452 unsigned int hash = name->hash; 2453 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2454 struct hlist_bl_node *node; 2455 struct dentry *new = d_alloc(parent, name); 2456 struct dentry *dentry; 2457 unsigned seq, r_seq, d_seq; 2458 2459 if (unlikely(!new)) 2460 return ERR_PTR(-ENOMEM); 2461 2462 retry: 2463 rcu_read_lock(); 2464 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2465 r_seq = read_seqbegin(&rename_lock); 2466 dentry = __d_lookup_rcu(parent, name, &d_seq); 2467 if (unlikely(dentry)) { 2468 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2469 rcu_read_unlock(); 2470 goto retry; 2471 } 2472 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2473 rcu_read_unlock(); 2474 dput(dentry); 2475 goto retry; 2476 } 2477 rcu_read_unlock(); 2478 dput(new); 2479 return dentry; 2480 } 2481 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2482 rcu_read_unlock(); 2483 goto retry; 2484 } 2485 2486 if (unlikely(seq & 1)) { 2487 rcu_read_unlock(); 2488 goto retry; 2489 } 2490 2491 hlist_bl_lock(b); 2492 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2493 hlist_bl_unlock(b); 2494 rcu_read_unlock(); 2495 goto retry; 2496 } 2497 /* 2498 * No changes for the parent since the beginning of d_lookup(). 2499 * Since all removals from the chain happen with hlist_bl_lock(), 2500 * any potential in-lookup matches are going to stay here until 2501 * we unlock the chain. All fields are stable in everything 2502 * we encounter. 2503 */ 2504 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2505 if (dentry->d_name.hash != hash) 2506 continue; 2507 if (dentry->d_parent != parent) 2508 continue; 2509 if (!d_same_name(dentry, parent, name)) 2510 continue; 2511 hlist_bl_unlock(b); 2512 /* now we can try to grab a reference */ 2513 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2514 rcu_read_unlock(); 2515 goto retry; 2516 } 2517 2518 rcu_read_unlock(); 2519 /* 2520 * somebody is likely to be still doing lookup for it; 2521 * wait for them to finish 2522 */ 2523 spin_lock(&dentry->d_lock); 2524 d_wait_lookup(dentry); 2525 /* 2526 * it's not in-lookup anymore; in principle we should repeat 2527 * everything from dcache lookup, but it's likely to be what 2528 * d_lookup() would've found anyway. If it is, just return it; 2529 * otherwise we really have to repeat the whole thing. 2530 */ 2531 if (unlikely(dentry->d_name.hash != hash)) 2532 goto mismatch; 2533 if (unlikely(dentry->d_parent != parent)) 2534 goto mismatch; 2535 if (unlikely(d_unhashed(dentry))) 2536 goto mismatch; 2537 if (unlikely(!d_same_name(dentry, parent, name))) 2538 goto mismatch; 2539 /* OK, it *is* a hashed match; return it */ 2540 spin_unlock(&dentry->d_lock); 2541 dput(new); 2542 return dentry; 2543 } 2544 rcu_read_unlock(); 2545 /* we can't take ->d_lock here; it's OK, though. */ 2546 new->d_flags |= DCACHE_PAR_LOOKUP; 2547 new->d_wait = wq; 2548 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2549 hlist_bl_unlock(b); 2550 return new; 2551 mismatch: 2552 spin_unlock(&dentry->d_lock); 2553 dput(dentry); 2554 goto retry; 2555 } 2556 EXPORT_SYMBOL(d_alloc_parallel); 2557 2558 void __d_lookup_done(struct dentry *dentry) 2559 { 2560 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2561 dentry->d_name.hash); 2562 hlist_bl_lock(b); 2563 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2564 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2565 wake_up_all(dentry->d_wait); 2566 dentry->d_wait = NULL; 2567 hlist_bl_unlock(b); 2568 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2569 INIT_LIST_HEAD(&dentry->d_lru); 2570 } 2571 EXPORT_SYMBOL(__d_lookup_done); 2572 2573 /* inode->i_lock held if inode is non-NULL */ 2574 2575 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2576 { 2577 struct inode *dir = NULL; 2578 unsigned n; 2579 spin_lock(&dentry->d_lock); 2580 if (unlikely(d_in_lookup(dentry))) { 2581 dir = dentry->d_parent->d_inode; 2582 n = start_dir_add(dir); 2583 __d_lookup_done(dentry); 2584 } 2585 if (inode) { 2586 unsigned add_flags = d_flags_for_inode(inode); 2587 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2588 raw_write_seqcount_begin(&dentry->d_seq); 2589 __d_set_inode_and_type(dentry, inode, add_flags); 2590 raw_write_seqcount_end(&dentry->d_seq); 2591 fsnotify_update_flags(dentry); 2592 } 2593 __d_rehash(dentry); 2594 if (dir) 2595 end_dir_add(dir, n); 2596 spin_unlock(&dentry->d_lock); 2597 if (inode) 2598 spin_unlock(&inode->i_lock); 2599 } 2600 2601 /** 2602 * d_add - add dentry to hash queues 2603 * @entry: dentry to add 2604 * @inode: The inode to attach to this dentry 2605 * 2606 * This adds the entry to the hash queues and initializes @inode. 2607 * The entry was actually filled in earlier during d_alloc(). 2608 */ 2609 2610 void d_add(struct dentry *entry, struct inode *inode) 2611 { 2612 if (inode) { 2613 security_d_instantiate(entry, inode); 2614 spin_lock(&inode->i_lock); 2615 } 2616 __d_add(entry, inode); 2617 } 2618 EXPORT_SYMBOL(d_add); 2619 2620 /** 2621 * d_exact_alias - find and hash an exact unhashed alias 2622 * @entry: dentry to add 2623 * @inode: The inode to go with this dentry 2624 * 2625 * If an unhashed dentry with the same name/parent and desired 2626 * inode already exists, hash and return it. Otherwise, return 2627 * NULL. 2628 * 2629 * Parent directory should be locked. 2630 */ 2631 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2632 { 2633 struct dentry *alias; 2634 unsigned int hash = entry->d_name.hash; 2635 2636 spin_lock(&inode->i_lock); 2637 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2638 /* 2639 * Don't need alias->d_lock here, because aliases with 2640 * d_parent == entry->d_parent are not subject to name or 2641 * parent changes, because the parent inode i_mutex is held. 2642 */ 2643 if (alias->d_name.hash != hash) 2644 continue; 2645 if (alias->d_parent != entry->d_parent) 2646 continue; 2647 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2648 continue; 2649 spin_lock(&alias->d_lock); 2650 if (!d_unhashed(alias)) { 2651 spin_unlock(&alias->d_lock); 2652 alias = NULL; 2653 } else { 2654 __dget_dlock(alias); 2655 __d_rehash(alias); 2656 spin_unlock(&alias->d_lock); 2657 } 2658 spin_unlock(&inode->i_lock); 2659 return alias; 2660 } 2661 spin_unlock(&inode->i_lock); 2662 return NULL; 2663 } 2664 EXPORT_SYMBOL(d_exact_alias); 2665 2666 static void swap_names(struct dentry *dentry, struct dentry *target) 2667 { 2668 if (unlikely(dname_external(target))) { 2669 if (unlikely(dname_external(dentry))) { 2670 /* 2671 * Both external: swap the pointers 2672 */ 2673 swap(target->d_name.name, dentry->d_name.name); 2674 } else { 2675 /* 2676 * dentry:internal, target:external. Steal target's 2677 * storage and make target internal. 2678 */ 2679 memcpy(target->d_iname, dentry->d_name.name, 2680 dentry->d_name.len + 1); 2681 dentry->d_name.name = target->d_name.name; 2682 target->d_name.name = target->d_iname; 2683 } 2684 } else { 2685 if (unlikely(dname_external(dentry))) { 2686 /* 2687 * dentry:external, target:internal. Give dentry's 2688 * storage to target and make dentry internal 2689 */ 2690 memcpy(dentry->d_iname, target->d_name.name, 2691 target->d_name.len + 1); 2692 target->d_name.name = dentry->d_name.name; 2693 dentry->d_name.name = dentry->d_iname; 2694 } else { 2695 /* 2696 * Both are internal. 2697 */ 2698 unsigned int i; 2699 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2700 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2701 swap(((long *) &dentry->d_iname)[i], 2702 ((long *) &target->d_iname)[i]); 2703 } 2704 } 2705 } 2706 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2707 } 2708 2709 static void copy_name(struct dentry *dentry, struct dentry *target) 2710 { 2711 struct external_name *old_name = NULL; 2712 if (unlikely(dname_external(dentry))) 2713 old_name = external_name(dentry); 2714 if (unlikely(dname_external(target))) { 2715 atomic_inc(&external_name(target)->u.count); 2716 dentry->d_name = target->d_name; 2717 } else { 2718 memcpy(dentry->d_iname, target->d_name.name, 2719 target->d_name.len + 1); 2720 dentry->d_name.name = dentry->d_iname; 2721 dentry->d_name.hash_len = target->d_name.hash_len; 2722 } 2723 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2724 kfree_rcu(old_name, u.head); 2725 } 2726 2727 /* 2728 * __d_move - move a dentry 2729 * @dentry: entry to move 2730 * @target: new dentry 2731 * @exchange: exchange the two dentries 2732 * 2733 * Update the dcache to reflect the move of a file name. Negative 2734 * dcache entries should not be moved in this way. Caller must hold 2735 * rename_lock, the i_mutex of the source and target directories, 2736 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2737 */ 2738 static void __d_move(struct dentry *dentry, struct dentry *target, 2739 bool exchange) 2740 { 2741 struct dentry *old_parent, *p; 2742 struct inode *dir = NULL; 2743 unsigned n; 2744 2745 WARN_ON(!dentry->d_inode); 2746 if (WARN_ON(dentry == target)) 2747 return; 2748 2749 BUG_ON(d_ancestor(target, dentry)); 2750 old_parent = dentry->d_parent; 2751 p = d_ancestor(old_parent, target); 2752 if (IS_ROOT(dentry)) { 2753 BUG_ON(p); 2754 spin_lock(&target->d_parent->d_lock); 2755 } else if (!p) { 2756 /* target is not a descendent of dentry->d_parent */ 2757 spin_lock(&target->d_parent->d_lock); 2758 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2759 } else { 2760 BUG_ON(p == dentry); 2761 spin_lock(&old_parent->d_lock); 2762 if (p != target) 2763 spin_lock_nested(&target->d_parent->d_lock, 2764 DENTRY_D_LOCK_NESTED); 2765 } 2766 spin_lock_nested(&dentry->d_lock, 2); 2767 spin_lock_nested(&target->d_lock, 3); 2768 2769 if (unlikely(d_in_lookup(target))) { 2770 dir = target->d_parent->d_inode; 2771 n = start_dir_add(dir); 2772 __d_lookup_done(target); 2773 } 2774 2775 write_seqcount_begin(&dentry->d_seq); 2776 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2777 2778 /* unhash both */ 2779 if (!d_unhashed(dentry)) 2780 ___d_drop(dentry); 2781 if (!d_unhashed(target)) 2782 ___d_drop(target); 2783 2784 /* ... and switch them in the tree */ 2785 dentry->d_parent = target->d_parent; 2786 if (!exchange) { 2787 copy_name(dentry, target); 2788 target->d_hash.pprev = NULL; 2789 dentry->d_parent->d_lockref.count++; 2790 if (dentry != old_parent) /* wasn't IS_ROOT */ 2791 WARN_ON(!--old_parent->d_lockref.count); 2792 } else { 2793 target->d_parent = old_parent; 2794 swap_names(dentry, target); 2795 list_move(&target->d_child, &target->d_parent->d_subdirs); 2796 __d_rehash(target); 2797 fsnotify_update_flags(target); 2798 } 2799 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2800 __d_rehash(dentry); 2801 fsnotify_update_flags(dentry); 2802 fscrypt_handle_d_move(dentry); 2803 2804 write_seqcount_end(&target->d_seq); 2805 write_seqcount_end(&dentry->d_seq); 2806 2807 if (dir) 2808 end_dir_add(dir, n); 2809 2810 if (dentry->d_parent != old_parent) 2811 spin_unlock(&dentry->d_parent->d_lock); 2812 if (dentry != old_parent) 2813 spin_unlock(&old_parent->d_lock); 2814 spin_unlock(&target->d_lock); 2815 spin_unlock(&dentry->d_lock); 2816 } 2817 2818 /* 2819 * d_move - move a dentry 2820 * @dentry: entry to move 2821 * @target: new dentry 2822 * 2823 * Update the dcache to reflect the move of a file name. Negative 2824 * dcache entries should not be moved in this way. See the locking 2825 * requirements for __d_move. 2826 */ 2827 void d_move(struct dentry *dentry, struct dentry *target) 2828 { 2829 write_seqlock(&rename_lock); 2830 __d_move(dentry, target, false); 2831 write_sequnlock(&rename_lock); 2832 } 2833 EXPORT_SYMBOL(d_move); 2834 2835 /* 2836 * d_exchange - exchange two dentries 2837 * @dentry1: first dentry 2838 * @dentry2: second dentry 2839 */ 2840 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2841 { 2842 write_seqlock(&rename_lock); 2843 2844 WARN_ON(!dentry1->d_inode); 2845 WARN_ON(!dentry2->d_inode); 2846 WARN_ON(IS_ROOT(dentry1)); 2847 WARN_ON(IS_ROOT(dentry2)); 2848 2849 __d_move(dentry1, dentry2, true); 2850 2851 write_sequnlock(&rename_lock); 2852 } 2853 2854 /** 2855 * d_ancestor - search for an ancestor 2856 * @p1: ancestor dentry 2857 * @p2: child dentry 2858 * 2859 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2860 * an ancestor of p2, else NULL. 2861 */ 2862 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2863 { 2864 struct dentry *p; 2865 2866 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2867 if (p->d_parent == p1) 2868 return p; 2869 } 2870 return NULL; 2871 } 2872 2873 /* 2874 * This helper attempts to cope with remotely renamed directories 2875 * 2876 * It assumes that the caller is already holding 2877 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2878 * 2879 * Note: If ever the locking in lock_rename() changes, then please 2880 * remember to update this too... 2881 */ 2882 static int __d_unalias(struct inode *inode, 2883 struct dentry *dentry, struct dentry *alias) 2884 { 2885 struct mutex *m1 = NULL; 2886 struct rw_semaphore *m2 = NULL; 2887 int ret = -ESTALE; 2888 2889 /* If alias and dentry share a parent, then no extra locks required */ 2890 if (alias->d_parent == dentry->d_parent) 2891 goto out_unalias; 2892 2893 /* See lock_rename() */ 2894 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2895 goto out_err; 2896 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2897 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2898 goto out_err; 2899 m2 = &alias->d_parent->d_inode->i_rwsem; 2900 out_unalias: 2901 __d_move(alias, dentry, false); 2902 ret = 0; 2903 out_err: 2904 if (m2) 2905 up_read(m2); 2906 if (m1) 2907 mutex_unlock(m1); 2908 return ret; 2909 } 2910 2911 /** 2912 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2913 * @inode: the inode which may have a disconnected dentry 2914 * @dentry: a negative dentry which we want to point to the inode. 2915 * 2916 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2917 * place of the given dentry and return it, else simply d_add the inode 2918 * to the dentry and return NULL. 2919 * 2920 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2921 * we should error out: directories can't have multiple aliases. 2922 * 2923 * This is needed in the lookup routine of any filesystem that is exportable 2924 * (via knfsd) so that we can build dcache paths to directories effectively. 2925 * 2926 * If a dentry was found and moved, then it is returned. Otherwise NULL 2927 * is returned. This matches the expected return value of ->lookup. 2928 * 2929 * Cluster filesystems may call this function with a negative, hashed dentry. 2930 * In that case, we know that the inode will be a regular file, and also this 2931 * will only occur during atomic_open. So we need to check for the dentry 2932 * being already hashed only in the final case. 2933 */ 2934 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2935 { 2936 if (IS_ERR(inode)) 2937 return ERR_CAST(inode); 2938 2939 BUG_ON(!d_unhashed(dentry)); 2940 2941 if (!inode) 2942 goto out; 2943 2944 security_d_instantiate(dentry, inode); 2945 spin_lock(&inode->i_lock); 2946 if (S_ISDIR(inode->i_mode)) { 2947 struct dentry *new = __d_find_any_alias(inode); 2948 if (unlikely(new)) { 2949 /* The reference to new ensures it remains an alias */ 2950 spin_unlock(&inode->i_lock); 2951 write_seqlock(&rename_lock); 2952 if (unlikely(d_ancestor(new, dentry))) { 2953 write_sequnlock(&rename_lock); 2954 dput(new); 2955 new = ERR_PTR(-ELOOP); 2956 pr_warn_ratelimited( 2957 "VFS: Lookup of '%s' in %s %s" 2958 " would have caused loop\n", 2959 dentry->d_name.name, 2960 inode->i_sb->s_type->name, 2961 inode->i_sb->s_id); 2962 } else if (!IS_ROOT(new)) { 2963 struct dentry *old_parent = dget(new->d_parent); 2964 int err = __d_unalias(inode, dentry, new); 2965 write_sequnlock(&rename_lock); 2966 if (err) { 2967 dput(new); 2968 new = ERR_PTR(err); 2969 } 2970 dput(old_parent); 2971 } else { 2972 __d_move(new, dentry, false); 2973 write_sequnlock(&rename_lock); 2974 } 2975 iput(inode); 2976 return new; 2977 } 2978 } 2979 out: 2980 __d_add(dentry, inode); 2981 return NULL; 2982 } 2983 EXPORT_SYMBOL(d_splice_alias); 2984 2985 /* 2986 * Test whether new_dentry is a subdirectory of old_dentry. 2987 * 2988 * Trivially implemented using the dcache structure 2989 */ 2990 2991 /** 2992 * is_subdir - is new dentry a subdirectory of old_dentry 2993 * @new_dentry: new dentry 2994 * @old_dentry: old dentry 2995 * 2996 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 2997 * Returns false otherwise. 2998 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2999 */ 3000 3001 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3002 { 3003 bool result; 3004 unsigned seq; 3005 3006 if (new_dentry == old_dentry) 3007 return true; 3008 3009 do { 3010 /* for restarting inner loop in case of seq retry */ 3011 seq = read_seqbegin(&rename_lock); 3012 /* 3013 * Need rcu_readlock to protect against the d_parent trashing 3014 * due to d_move 3015 */ 3016 rcu_read_lock(); 3017 if (d_ancestor(old_dentry, new_dentry)) 3018 result = true; 3019 else 3020 result = false; 3021 rcu_read_unlock(); 3022 } while (read_seqretry(&rename_lock, seq)); 3023 3024 return result; 3025 } 3026 EXPORT_SYMBOL(is_subdir); 3027 3028 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3029 { 3030 struct dentry *root = data; 3031 if (dentry != root) { 3032 if (d_unhashed(dentry) || !dentry->d_inode) 3033 return D_WALK_SKIP; 3034 3035 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3036 dentry->d_flags |= DCACHE_GENOCIDE; 3037 dentry->d_lockref.count--; 3038 } 3039 } 3040 return D_WALK_CONTINUE; 3041 } 3042 3043 void d_genocide(struct dentry *parent) 3044 { 3045 d_walk(parent, parent, d_genocide_kill); 3046 } 3047 3048 EXPORT_SYMBOL(d_genocide); 3049 3050 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3051 { 3052 inode_dec_link_count(inode); 3053 BUG_ON(dentry->d_name.name != dentry->d_iname || 3054 !hlist_unhashed(&dentry->d_u.d_alias) || 3055 !d_unlinked(dentry)); 3056 spin_lock(&dentry->d_parent->d_lock); 3057 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3058 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3059 (unsigned long long)inode->i_ino); 3060 spin_unlock(&dentry->d_lock); 3061 spin_unlock(&dentry->d_parent->d_lock); 3062 d_instantiate(dentry, inode); 3063 } 3064 EXPORT_SYMBOL(d_tmpfile); 3065 3066 static __initdata unsigned long dhash_entries; 3067 static int __init set_dhash_entries(char *str) 3068 { 3069 if (!str) 3070 return 0; 3071 dhash_entries = simple_strtoul(str, &str, 0); 3072 return 1; 3073 } 3074 __setup("dhash_entries=", set_dhash_entries); 3075 3076 static void __init dcache_init_early(void) 3077 { 3078 /* If hashes are distributed across NUMA nodes, defer 3079 * hash allocation until vmalloc space is available. 3080 */ 3081 if (hashdist) 3082 return; 3083 3084 dentry_hashtable = 3085 alloc_large_system_hash("Dentry cache", 3086 sizeof(struct hlist_bl_head), 3087 dhash_entries, 3088 13, 3089 HASH_EARLY | HASH_ZERO, 3090 &d_hash_shift, 3091 NULL, 3092 0, 3093 0); 3094 d_hash_shift = 32 - d_hash_shift; 3095 } 3096 3097 static void __init dcache_init(void) 3098 { 3099 /* 3100 * A constructor could be added for stable state like the lists, 3101 * but it is probably not worth it because of the cache nature 3102 * of the dcache. 3103 */ 3104 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3105 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3106 d_iname); 3107 3108 /* Hash may have been set up in dcache_init_early */ 3109 if (!hashdist) 3110 return; 3111 3112 dentry_hashtable = 3113 alloc_large_system_hash("Dentry cache", 3114 sizeof(struct hlist_bl_head), 3115 dhash_entries, 3116 13, 3117 HASH_ZERO, 3118 &d_hash_shift, 3119 NULL, 3120 0, 3121 0); 3122 d_hash_shift = 32 - d_hash_shift; 3123 } 3124 3125 /* SLAB cache for __getname() consumers */ 3126 struct kmem_cache *names_cachep __read_mostly; 3127 EXPORT_SYMBOL(names_cachep); 3128 3129 void __init vfs_caches_init_early(void) 3130 { 3131 int i; 3132 3133 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3134 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3135 3136 dcache_init_early(); 3137 inode_init_early(); 3138 } 3139 3140 void __init vfs_caches_init(void) 3141 { 3142 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3143 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3144 3145 dcache_init(); 3146 inode_init(); 3147 files_init(); 3148 files_maxfiles_init(); 3149 mnt_init(); 3150 bdev_cache_init(); 3151 chrdev_init(); 3152 } 3153