xref: /linux/fs/dcache.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/config.h>
18 #include <linux/syscalls.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/smp_lock.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/module.h>
29 #include <linux/mount.h>
30 #include <linux/file.h>
31 #include <asm/uaccess.h>
32 #include <linux/security.h>
33 #include <linux/seqlock.h>
34 #include <linux/swap.h>
35 #include <linux/bootmem.h>
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 static seqlock_t rename_lock __cacheline_aligned_in_smp = SEQLOCK_UNLOCKED;
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static kmem_cache_t *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 static LIST_HEAD(dentry_unused);
65 
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat = {
68 	.age_limit = 45,
69 };
70 
71 static void d_callback(struct rcu_head *head)
72 {
73 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
74 
75 	if (dname_external(dentry))
76 		kfree(dentry->d_name.name);
77 	kmem_cache_free(dentry_cache, dentry);
78 }
79 
80 /*
81  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
82  * inside dcache_lock.
83  */
84 static void d_free(struct dentry *dentry)
85 {
86 	if (dentry->d_op && dentry->d_op->d_release)
87 		dentry->d_op->d_release(dentry);
88  	call_rcu(&dentry->d_u.d_rcu, d_callback);
89 }
90 
91 /*
92  * Release the dentry's inode, using the filesystem
93  * d_iput() operation if defined.
94  * Called with dcache_lock and per dentry lock held, drops both.
95  */
96 static void dentry_iput(struct dentry * dentry)
97 {
98 	struct inode *inode = dentry->d_inode;
99 	if (inode) {
100 		dentry->d_inode = NULL;
101 		list_del_init(&dentry->d_alias);
102 		spin_unlock(&dentry->d_lock);
103 		spin_unlock(&dcache_lock);
104 		if (!inode->i_nlink)
105 			fsnotify_inoderemove(inode);
106 		if (dentry->d_op && dentry->d_op->d_iput)
107 			dentry->d_op->d_iput(dentry, inode);
108 		else
109 			iput(inode);
110 	} else {
111 		spin_unlock(&dentry->d_lock);
112 		spin_unlock(&dcache_lock);
113 	}
114 }
115 
116 /*
117  * This is dput
118  *
119  * This is complicated by the fact that we do not want to put
120  * dentries that are no longer on any hash chain on the unused
121  * list: we'd much rather just get rid of them immediately.
122  *
123  * However, that implies that we have to traverse the dentry
124  * tree upwards to the parents which might _also_ now be
125  * scheduled for deletion (it may have been only waiting for
126  * its last child to go away).
127  *
128  * This tail recursion is done by hand as we don't want to depend
129  * on the compiler to always get this right (gcc generally doesn't).
130  * Real recursion would eat up our stack space.
131  */
132 
133 /*
134  * dput - release a dentry
135  * @dentry: dentry to release
136  *
137  * Release a dentry. This will drop the usage count and if appropriate
138  * call the dentry unlink method as well as removing it from the queues and
139  * releasing its resources. If the parent dentries were scheduled for release
140  * they too may now get deleted.
141  *
142  * no dcache lock, please.
143  */
144 
145 void dput(struct dentry *dentry)
146 {
147 	if (!dentry)
148 		return;
149 
150 repeat:
151 	if (atomic_read(&dentry->d_count) == 1)
152 		might_sleep();
153 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
154 		return;
155 
156 	spin_lock(&dentry->d_lock);
157 	if (atomic_read(&dentry->d_count)) {
158 		spin_unlock(&dentry->d_lock);
159 		spin_unlock(&dcache_lock);
160 		return;
161 	}
162 
163 	/*
164 	 * AV: ->d_delete() is _NOT_ allowed to block now.
165 	 */
166 	if (dentry->d_op && dentry->d_op->d_delete) {
167 		if (dentry->d_op->d_delete(dentry))
168 			goto unhash_it;
169 	}
170 	/* Unreachable? Get rid of it */
171  	if (d_unhashed(dentry))
172 		goto kill_it;
173   	if (list_empty(&dentry->d_lru)) {
174   		dentry->d_flags |= DCACHE_REFERENCED;
175   		list_add(&dentry->d_lru, &dentry_unused);
176   		dentry_stat.nr_unused++;
177   	}
178  	spin_unlock(&dentry->d_lock);
179 	spin_unlock(&dcache_lock);
180 	return;
181 
182 unhash_it:
183 	__d_drop(dentry);
184 
185 kill_it: {
186 		struct dentry *parent;
187 
188 		/* If dentry was on d_lru list
189 		 * delete it from there
190 		 */
191   		if (!list_empty(&dentry->d_lru)) {
192   			list_del(&dentry->d_lru);
193   			dentry_stat.nr_unused--;
194   		}
195   		list_del(&dentry->d_u.d_child);
196 		dentry_stat.nr_dentry--;	/* For d_free, below */
197 		/*drops the locks, at that point nobody can reach this dentry */
198 		dentry_iput(dentry);
199 		parent = dentry->d_parent;
200 		d_free(dentry);
201 		if (dentry == parent)
202 			return;
203 		dentry = parent;
204 		goto repeat;
205 	}
206 }
207 
208 /**
209  * d_invalidate - invalidate a dentry
210  * @dentry: dentry to invalidate
211  *
212  * Try to invalidate the dentry if it turns out to be
213  * possible. If there are other dentries that can be
214  * reached through this one we can't delete it and we
215  * return -EBUSY. On success we return 0.
216  *
217  * no dcache lock.
218  */
219 
220 int d_invalidate(struct dentry * dentry)
221 {
222 	/*
223 	 * If it's already been dropped, return OK.
224 	 */
225 	spin_lock(&dcache_lock);
226 	if (d_unhashed(dentry)) {
227 		spin_unlock(&dcache_lock);
228 		return 0;
229 	}
230 	/*
231 	 * Check whether to do a partial shrink_dcache
232 	 * to get rid of unused child entries.
233 	 */
234 	if (!list_empty(&dentry->d_subdirs)) {
235 		spin_unlock(&dcache_lock);
236 		shrink_dcache_parent(dentry);
237 		spin_lock(&dcache_lock);
238 	}
239 
240 	/*
241 	 * Somebody else still using it?
242 	 *
243 	 * If it's a directory, we can't drop it
244 	 * for fear of somebody re-populating it
245 	 * with children (even though dropping it
246 	 * would make it unreachable from the root,
247 	 * we might still populate it if it was a
248 	 * working directory or similar).
249 	 */
250 	spin_lock(&dentry->d_lock);
251 	if (atomic_read(&dentry->d_count) > 1) {
252 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
253 			spin_unlock(&dentry->d_lock);
254 			spin_unlock(&dcache_lock);
255 			return -EBUSY;
256 		}
257 	}
258 
259 	__d_drop(dentry);
260 	spin_unlock(&dentry->d_lock);
261 	spin_unlock(&dcache_lock);
262 	return 0;
263 }
264 
265 /* This should be called _only_ with dcache_lock held */
266 
267 static inline struct dentry * __dget_locked(struct dentry *dentry)
268 {
269 	atomic_inc(&dentry->d_count);
270 	if (!list_empty(&dentry->d_lru)) {
271 		dentry_stat.nr_unused--;
272 		list_del_init(&dentry->d_lru);
273 	}
274 	return dentry;
275 }
276 
277 struct dentry * dget_locked(struct dentry *dentry)
278 {
279 	return __dget_locked(dentry);
280 }
281 
282 /**
283  * d_find_alias - grab a hashed alias of inode
284  * @inode: inode in question
285  * @want_discon:  flag, used by d_splice_alias, to request
286  *          that only a DISCONNECTED alias be returned.
287  *
288  * If inode has a hashed alias, or is a directory and has any alias,
289  * acquire the reference to alias and return it. Otherwise return NULL.
290  * Notice that if inode is a directory there can be only one alias and
291  * it can be unhashed only if it has no children, or if it is the root
292  * of a filesystem.
293  *
294  * If the inode has a DCACHE_DISCONNECTED alias, then prefer
295  * any other hashed alias over that one unless @want_discon is set,
296  * in which case only return a DCACHE_DISCONNECTED alias.
297  */
298 
299 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
300 {
301 	struct list_head *head, *next, *tmp;
302 	struct dentry *alias, *discon_alias=NULL;
303 
304 	head = &inode->i_dentry;
305 	next = inode->i_dentry.next;
306 	while (next != head) {
307 		tmp = next;
308 		next = tmp->next;
309 		prefetch(next);
310 		alias = list_entry(tmp, struct dentry, d_alias);
311  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
312 			if (alias->d_flags & DCACHE_DISCONNECTED)
313 				discon_alias = alias;
314 			else if (!want_discon) {
315 				__dget_locked(alias);
316 				return alias;
317 			}
318 		}
319 	}
320 	if (discon_alias)
321 		__dget_locked(discon_alias);
322 	return discon_alias;
323 }
324 
325 struct dentry * d_find_alias(struct inode *inode)
326 {
327 	struct dentry *de = NULL;
328 
329 	if (!list_empty(&inode->i_dentry)) {
330 		spin_lock(&dcache_lock);
331 		de = __d_find_alias(inode, 0);
332 		spin_unlock(&dcache_lock);
333 	}
334 	return de;
335 }
336 
337 /*
338  *	Try to kill dentries associated with this inode.
339  * WARNING: you must own a reference to inode.
340  */
341 void d_prune_aliases(struct inode *inode)
342 {
343 	struct dentry *dentry;
344 restart:
345 	spin_lock(&dcache_lock);
346 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
347 		spin_lock(&dentry->d_lock);
348 		if (!atomic_read(&dentry->d_count)) {
349 			__dget_locked(dentry);
350 			__d_drop(dentry);
351 			spin_unlock(&dentry->d_lock);
352 			spin_unlock(&dcache_lock);
353 			dput(dentry);
354 			goto restart;
355 		}
356 		spin_unlock(&dentry->d_lock);
357 	}
358 	spin_unlock(&dcache_lock);
359 }
360 
361 /*
362  * Throw away a dentry - free the inode, dput the parent.  This requires that
363  * the LRU list has already been removed.
364  *
365  * Called with dcache_lock, drops it and then regains.
366  * Called with dentry->d_lock held, drops it.
367  */
368 static void prune_one_dentry(struct dentry * dentry)
369 {
370 	struct dentry * parent;
371 
372 	__d_drop(dentry);
373 	list_del(&dentry->d_u.d_child);
374 	dentry_stat.nr_dentry--;	/* For d_free, below */
375 	dentry_iput(dentry);
376 	parent = dentry->d_parent;
377 	d_free(dentry);
378 	if (parent != dentry)
379 		dput(parent);
380 	spin_lock(&dcache_lock);
381 }
382 
383 /**
384  * prune_dcache - shrink the dcache
385  * @count: number of entries to try and free
386  * @sb: if given, ignore dentries for other superblocks
387  *         which are being unmounted.
388  *
389  * Shrink the dcache. This is done when we need
390  * more memory, or simply when we need to unmount
391  * something (at which point we need to unuse
392  * all dentries).
393  *
394  * This function may fail to free any resources if
395  * all the dentries are in use.
396  */
397 
398 static void prune_dcache(int count, struct super_block *sb)
399 {
400 	spin_lock(&dcache_lock);
401 	for (; count ; count--) {
402 		struct dentry *dentry;
403 		struct list_head *tmp;
404 		struct rw_semaphore *s_umount;
405 
406 		cond_resched_lock(&dcache_lock);
407 
408 		tmp = dentry_unused.prev;
409 		if (sb) {
410 			/* Try to find a dentry for this sb, but don't try
411 			 * too hard, if they aren't near the tail they will
412 			 * be moved down again soon
413 			 */
414 			int skip = count;
415 			while (skip && tmp != &dentry_unused &&
416 			    list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
417 				skip--;
418 				tmp = tmp->prev;
419 			}
420 		}
421 		if (tmp == &dentry_unused)
422 			break;
423 		list_del_init(tmp);
424 		prefetch(dentry_unused.prev);
425  		dentry_stat.nr_unused--;
426 		dentry = list_entry(tmp, struct dentry, d_lru);
427 
428  		spin_lock(&dentry->d_lock);
429 		/*
430 		 * We found an inuse dentry which was not removed from
431 		 * dentry_unused because of laziness during lookup.  Do not free
432 		 * it - just keep it off the dentry_unused list.
433 		 */
434  		if (atomic_read(&dentry->d_count)) {
435  			spin_unlock(&dentry->d_lock);
436 			continue;
437 		}
438 		/* If the dentry was recently referenced, don't free it. */
439 		if (dentry->d_flags & DCACHE_REFERENCED) {
440 			dentry->d_flags &= ~DCACHE_REFERENCED;
441  			list_add(&dentry->d_lru, &dentry_unused);
442  			dentry_stat.nr_unused++;
443  			spin_unlock(&dentry->d_lock);
444 			continue;
445 		}
446 		/*
447 		 * If the dentry is not DCACHED_REFERENCED, it is time
448 		 * to remove it from the dcache, provided the super block is
449 		 * NULL (which means we are trying to reclaim memory)
450 		 * or this dentry belongs to the same super block that
451 		 * we want to shrink.
452 		 */
453 		/*
454 		 * If this dentry is for "my" filesystem, then I can prune it
455 		 * without taking the s_umount lock (I already hold it).
456 		 */
457 		if (sb && dentry->d_sb == sb) {
458 			prune_one_dentry(dentry);
459 			continue;
460 		}
461 		/*
462 		 * ...otherwise we need to be sure this filesystem isn't being
463 		 * unmounted, otherwise we could race with
464 		 * generic_shutdown_super(), and end up holding a reference to
465 		 * an inode while the filesystem is unmounted.
466 		 * So we try to get s_umount, and make sure s_root isn't NULL.
467 		 * (Take a local copy of s_umount to avoid a use-after-free of
468 		 * `dentry').
469 		 */
470 		s_umount = &dentry->d_sb->s_umount;
471 		if (down_read_trylock(s_umount)) {
472 			if (dentry->d_sb->s_root != NULL) {
473 				prune_one_dentry(dentry);
474 				up_read(s_umount);
475 				continue;
476 			}
477 			up_read(s_umount);
478 		}
479 		spin_unlock(&dentry->d_lock);
480 		/* Cannot remove the first dentry, and it isn't appropriate
481 		 * to move it to the head of the list, so give up, and try
482 		 * later
483 		 */
484 		break;
485 	}
486 	spin_unlock(&dcache_lock);
487 }
488 
489 /*
490  * Shrink the dcache for the specified super block.
491  * This allows us to unmount a device without disturbing
492  * the dcache for the other devices.
493  *
494  * This implementation makes just two traversals of the
495  * unused list.  On the first pass we move the selected
496  * dentries to the most recent end, and on the second
497  * pass we free them.  The second pass must restart after
498  * each dput(), but since the target dentries are all at
499  * the end, it's really just a single traversal.
500  */
501 
502 /**
503  * shrink_dcache_sb - shrink dcache for a superblock
504  * @sb: superblock
505  *
506  * Shrink the dcache for the specified super block. This
507  * is used to free the dcache before unmounting a file
508  * system
509  */
510 
511 void shrink_dcache_sb(struct super_block * sb)
512 {
513 	struct list_head *tmp, *next;
514 	struct dentry *dentry;
515 
516 	/*
517 	 * Pass one ... move the dentries for the specified
518 	 * superblock to the most recent end of the unused list.
519 	 */
520 	spin_lock(&dcache_lock);
521 	list_for_each_safe(tmp, next, &dentry_unused) {
522 		dentry = list_entry(tmp, struct dentry, d_lru);
523 		if (dentry->d_sb != sb)
524 			continue;
525 		list_move(tmp, &dentry_unused);
526 	}
527 
528 	/*
529 	 * Pass two ... free the dentries for this superblock.
530 	 */
531 repeat:
532 	list_for_each_safe(tmp, next, &dentry_unused) {
533 		dentry = list_entry(tmp, struct dentry, d_lru);
534 		if (dentry->d_sb != sb)
535 			continue;
536 		dentry_stat.nr_unused--;
537 		list_del_init(tmp);
538 		spin_lock(&dentry->d_lock);
539 		if (atomic_read(&dentry->d_count)) {
540 			spin_unlock(&dentry->d_lock);
541 			continue;
542 		}
543 		prune_one_dentry(dentry);
544 		cond_resched_lock(&dcache_lock);
545 		goto repeat;
546 	}
547 	spin_unlock(&dcache_lock);
548 }
549 
550 /*
551  * Search for at least 1 mount point in the dentry's subdirs.
552  * We descend to the next level whenever the d_subdirs
553  * list is non-empty and continue searching.
554  */
555 
556 /**
557  * have_submounts - check for mounts over a dentry
558  * @parent: dentry to check.
559  *
560  * Return true if the parent or its subdirectories contain
561  * a mount point
562  */
563 
564 int have_submounts(struct dentry *parent)
565 {
566 	struct dentry *this_parent = parent;
567 	struct list_head *next;
568 
569 	spin_lock(&dcache_lock);
570 	if (d_mountpoint(parent))
571 		goto positive;
572 repeat:
573 	next = this_parent->d_subdirs.next;
574 resume:
575 	while (next != &this_parent->d_subdirs) {
576 		struct list_head *tmp = next;
577 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
578 		next = tmp->next;
579 		/* Have we found a mount point ? */
580 		if (d_mountpoint(dentry))
581 			goto positive;
582 		if (!list_empty(&dentry->d_subdirs)) {
583 			this_parent = dentry;
584 			goto repeat;
585 		}
586 	}
587 	/*
588 	 * All done at this level ... ascend and resume the search.
589 	 */
590 	if (this_parent != parent) {
591 		next = this_parent->d_u.d_child.next;
592 		this_parent = this_parent->d_parent;
593 		goto resume;
594 	}
595 	spin_unlock(&dcache_lock);
596 	return 0; /* No mount points found in tree */
597 positive:
598 	spin_unlock(&dcache_lock);
599 	return 1;
600 }
601 
602 /*
603  * Search the dentry child list for the specified parent,
604  * and move any unused dentries to the end of the unused
605  * list for prune_dcache(). We descend to the next level
606  * whenever the d_subdirs list is non-empty and continue
607  * searching.
608  *
609  * It returns zero iff there are no unused children,
610  * otherwise  it returns the number of children moved to
611  * the end of the unused list. This may not be the total
612  * number of unused children, because select_parent can
613  * drop the lock and return early due to latency
614  * constraints.
615  */
616 static int select_parent(struct dentry * parent)
617 {
618 	struct dentry *this_parent = parent;
619 	struct list_head *next;
620 	int found = 0;
621 
622 	spin_lock(&dcache_lock);
623 repeat:
624 	next = this_parent->d_subdirs.next;
625 resume:
626 	while (next != &this_parent->d_subdirs) {
627 		struct list_head *tmp = next;
628 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
629 		next = tmp->next;
630 
631 		if (!list_empty(&dentry->d_lru)) {
632 			dentry_stat.nr_unused--;
633 			list_del_init(&dentry->d_lru);
634 		}
635 		/*
636 		 * move only zero ref count dentries to the end
637 		 * of the unused list for prune_dcache
638 		 */
639 		if (!atomic_read(&dentry->d_count)) {
640 			list_add_tail(&dentry->d_lru, &dentry_unused);
641 			dentry_stat.nr_unused++;
642 			found++;
643 		}
644 
645 		/*
646 		 * We can return to the caller if we have found some (this
647 		 * ensures forward progress). We'll be coming back to find
648 		 * the rest.
649 		 */
650 		if (found && need_resched())
651 			goto out;
652 
653 		/*
654 		 * Descend a level if the d_subdirs list is non-empty.
655 		 */
656 		if (!list_empty(&dentry->d_subdirs)) {
657 			this_parent = dentry;
658 			goto repeat;
659 		}
660 	}
661 	/*
662 	 * All done at this level ... ascend and resume the search.
663 	 */
664 	if (this_parent != parent) {
665 		next = this_parent->d_u.d_child.next;
666 		this_parent = this_parent->d_parent;
667 		goto resume;
668 	}
669 out:
670 	spin_unlock(&dcache_lock);
671 	return found;
672 }
673 
674 /**
675  * shrink_dcache_parent - prune dcache
676  * @parent: parent of entries to prune
677  *
678  * Prune the dcache to remove unused children of the parent dentry.
679  */
680 
681 void shrink_dcache_parent(struct dentry * parent)
682 {
683 	int found;
684 
685 	while ((found = select_parent(parent)) != 0)
686 		prune_dcache(found, parent->d_sb);
687 }
688 
689 /*
690  * Scan `nr' dentries and return the number which remain.
691  *
692  * We need to avoid reentering the filesystem if the caller is performing a
693  * GFP_NOFS allocation attempt.  One example deadlock is:
694  *
695  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
696  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
697  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
698  *
699  * In this case we return -1 to tell the caller that we baled.
700  */
701 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
702 {
703 	if (nr) {
704 		if (!(gfp_mask & __GFP_FS))
705 			return -1;
706 		prune_dcache(nr, NULL);
707 	}
708 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
709 }
710 
711 /**
712  * d_alloc	-	allocate a dcache entry
713  * @parent: parent of entry to allocate
714  * @name: qstr of the name
715  *
716  * Allocates a dentry. It returns %NULL if there is insufficient memory
717  * available. On a success the dentry is returned. The name passed in is
718  * copied and the copy passed in may be reused after this call.
719  */
720 
721 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
722 {
723 	struct dentry *dentry;
724 	char *dname;
725 
726 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
727 	if (!dentry)
728 		return NULL;
729 
730 	if (name->len > DNAME_INLINE_LEN-1) {
731 		dname = kmalloc(name->len + 1, GFP_KERNEL);
732 		if (!dname) {
733 			kmem_cache_free(dentry_cache, dentry);
734 			return NULL;
735 		}
736 	} else  {
737 		dname = dentry->d_iname;
738 	}
739 	dentry->d_name.name = dname;
740 
741 	dentry->d_name.len = name->len;
742 	dentry->d_name.hash = name->hash;
743 	memcpy(dname, name->name, name->len);
744 	dname[name->len] = 0;
745 
746 	atomic_set(&dentry->d_count, 1);
747 	dentry->d_flags = DCACHE_UNHASHED;
748 	spin_lock_init(&dentry->d_lock);
749 	dentry->d_inode = NULL;
750 	dentry->d_parent = NULL;
751 	dentry->d_sb = NULL;
752 	dentry->d_op = NULL;
753 	dentry->d_fsdata = NULL;
754 	dentry->d_mounted = 0;
755 #ifdef CONFIG_PROFILING
756 	dentry->d_cookie = NULL;
757 #endif
758 	INIT_HLIST_NODE(&dentry->d_hash);
759 	INIT_LIST_HEAD(&dentry->d_lru);
760 	INIT_LIST_HEAD(&dentry->d_subdirs);
761 	INIT_LIST_HEAD(&dentry->d_alias);
762 
763 	if (parent) {
764 		dentry->d_parent = dget(parent);
765 		dentry->d_sb = parent->d_sb;
766 	} else {
767 		INIT_LIST_HEAD(&dentry->d_u.d_child);
768 	}
769 
770 	spin_lock(&dcache_lock);
771 	if (parent)
772 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
773 	dentry_stat.nr_dentry++;
774 	spin_unlock(&dcache_lock);
775 
776 	return dentry;
777 }
778 
779 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
780 {
781 	struct qstr q;
782 
783 	q.name = name;
784 	q.len = strlen(name);
785 	q.hash = full_name_hash(q.name, q.len);
786 	return d_alloc(parent, &q);
787 }
788 
789 /**
790  * d_instantiate - fill in inode information for a dentry
791  * @entry: dentry to complete
792  * @inode: inode to attach to this dentry
793  *
794  * Fill in inode information in the entry.
795  *
796  * This turns negative dentries into productive full members
797  * of society.
798  *
799  * NOTE! This assumes that the inode count has been incremented
800  * (or otherwise set) by the caller to indicate that it is now
801  * in use by the dcache.
802  */
803 
804 void d_instantiate(struct dentry *entry, struct inode * inode)
805 {
806 	BUG_ON(!list_empty(&entry->d_alias));
807 	spin_lock(&dcache_lock);
808 	if (inode)
809 		list_add(&entry->d_alias, &inode->i_dentry);
810 	entry->d_inode = inode;
811 	fsnotify_d_instantiate(entry, inode);
812 	spin_unlock(&dcache_lock);
813 	security_d_instantiate(entry, inode);
814 }
815 
816 /**
817  * d_instantiate_unique - instantiate a non-aliased dentry
818  * @entry: dentry to instantiate
819  * @inode: inode to attach to this dentry
820  *
821  * Fill in inode information in the entry. On success, it returns NULL.
822  * If an unhashed alias of "entry" already exists, then we return the
823  * aliased dentry instead and drop one reference to inode.
824  *
825  * Note that in order to avoid conflicts with rename() etc, the caller
826  * had better be holding the parent directory semaphore.
827  *
828  * This also assumes that the inode count has been incremented
829  * (or otherwise set) by the caller to indicate that it is now
830  * in use by the dcache.
831  */
832 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
833 {
834 	struct dentry *alias;
835 	int len = entry->d_name.len;
836 	const char *name = entry->d_name.name;
837 	unsigned int hash = entry->d_name.hash;
838 
839 	BUG_ON(!list_empty(&entry->d_alias));
840 	spin_lock(&dcache_lock);
841 	if (!inode)
842 		goto do_negative;
843 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
844 		struct qstr *qstr = &alias->d_name;
845 
846 		if (qstr->hash != hash)
847 			continue;
848 		if (alias->d_parent != entry->d_parent)
849 			continue;
850 		if (qstr->len != len)
851 			continue;
852 		if (memcmp(qstr->name, name, len))
853 			continue;
854 		dget_locked(alias);
855 		spin_unlock(&dcache_lock);
856 		BUG_ON(!d_unhashed(alias));
857 		iput(inode);
858 		return alias;
859 	}
860 	list_add(&entry->d_alias, &inode->i_dentry);
861 do_negative:
862 	entry->d_inode = inode;
863 	fsnotify_d_instantiate(entry, inode);
864 	spin_unlock(&dcache_lock);
865 	security_d_instantiate(entry, inode);
866 	return NULL;
867 }
868 EXPORT_SYMBOL(d_instantiate_unique);
869 
870 /**
871  * d_alloc_root - allocate root dentry
872  * @root_inode: inode to allocate the root for
873  *
874  * Allocate a root ("/") dentry for the inode given. The inode is
875  * instantiated and returned. %NULL is returned if there is insufficient
876  * memory or the inode passed is %NULL.
877  */
878 
879 struct dentry * d_alloc_root(struct inode * root_inode)
880 {
881 	struct dentry *res = NULL;
882 
883 	if (root_inode) {
884 		static const struct qstr name = { .name = "/", .len = 1 };
885 
886 		res = d_alloc(NULL, &name);
887 		if (res) {
888 			res->d_sb = root_inode->i_sb;
889 			res->d_parent = res;
890 			d_instantiate(res, root_inode);
891 		}
892 	}
893 	return res;
894 }
895 
896 static inline struct hlist_head *d_hash(struct dentry *parent,
897 					unsigned long hash)
898 {
899 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
900 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
901 	return dentry_hashtable + (hash & D_HASHMASK);
902 }
903 
904 /**
905  * d_alloc_anon - allocate an anonymous dentry
906  * @inode: inode to allocate the dentry for
907  *
908  * This is similar to d_alloc_root.  It is used by filesystems when
909  * creating a dentry for a given inode, often in the process of
910  * mapping a filehandle to a dentry.  The returned dentry may be
911  * anonymous, or may have a full name (if the inode was already
912  * in the cache).  The file system may need to make further
913  * efforts to connect this dentry into the dcache properly.
914  *
915  * When called on a directory inode, we must ensure that
916  * the inode only ever has one dentry.  If a dentry is
917  * found, that is returned instead of allocating a new one.
918  *
919  * On successful return, the reference to the inode has been transferred
920  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
921  * the reference on the inode has not been released.
922  */
923 
924 struct dentry * d_alloc_anon(struct inode *inode)
925 {
926 	static const struct qstr anonstring = { .name = "" };
927 	struct dentry *tmp;
928 	struct dentry *res;
929 
930 	if ((res = d_find_alias(inode))) {
931 		iput(inode);
932 		return res;
933 	}
934 
935 	tmp = d_alloc(NULL, &anonstring);
936 	if (!tmp)
937 		return NULL;
938 
939 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
940 
941 	spin_lock(&dcache_lock);
942 	res = __d_find_alias(inode, 0);
943 	if (!res) {
944 		/* attach a disconnected dentry */
945 		res = tmp;
946 		tmp = NULL;
947 		spin_lock(&res->d_lock);
948 		res->d_sb = inode->i_sb;
949 		res->d_parent = res;
950 		res->d_inode = inode;
951 		res->d_flags |= DCACHE_DISCONNECTED;
952 		res->d_flags &= ~DCACHE_UNHASHED;
953 		list_add(&res->d_alias, &inode->i_dentry);
954 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
955 		spin_unlock(&res->d_lock);
956 
957 		inode = NULL; /* don't drop reference */
958 	}
959 	spin_unlock(&dcache_lock);
960 
961 	if (inode)
962 		iput(inode);
963 	if (tmp)
964 		dput(tmp);
965 	return res;
966 }
967 
968 
969 /**
970  * d_splice_alias - splice a disconnected dentry into the tree if one exists
971  * @inode:  the inode which may have a disconnected dentry
972  * @dentry: a negative dentry which we want to point to the inode.
973  *
974  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
975  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
976  * and return it, else simply d_add the inode to the dentry and return NULL.
977  *
978  * This is needed in the lookup routine of any filesystem that is exportable
979  * (via knfsd) so that we can build dcache paths to directories effectively.
980  *
981  * If a dentry was found and moved, then it is returned.  Otherwise NULL
982  * is returned.  This matches the expected return value of ->lookup.
983  *
984  */
985 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
986 {
987 	struct dentry *new = NULL;
988 
989 	if (inode) {
990 		spin_lock(&dcache_lock);
991 		new = __d_find_alias(inode, 1);
992 		if (new) {
993 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
994 			fsnotify_d_instantiate(new, inode);
995 			spin_unlock(&dcache_lock);
996 			security_d_instantiate(new, inode);
997 			d_rehash(dentry);
998 			d_move(new, dentry);
999 			iput(inode);
1000 		} else {
1001 			/* d_instantiate takes dcache_lock, so we do it by hand */
1002 			list_add(&dentry->d_alias, &inode->i_dentry);
1003 			dentry->d_inode = inode;
1004 			fsnotify_d_instantiate(dentry, inode);
1005 			spin_unlock(&dcache_lock);
1006 			security_d_instantiate(dentry, inode);
1007 			d_rehash(dentry);
1008 		}
1009 	} else
1010 		d_add(dentry, inode);
1011 	return new;
1012 }
1013 
1014 
1015 /**
1016  * d_lookup - search for a dentry
1017  * @parent: parent dentry
1018  * @name: qstr of name we wish to find
1019  *
1020  * Searches the children of the parent dentry for the name in question. If
1021  * the dentry is found its reference count is incremented and the dentry
1022  * is returned. The caller must use d_put to free the entry when it has
1023  * finished using it. %NULL is returned on failure.
1024  *
1025  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1026  * Memory barriers are used while updating and doing lockless traversal.
1027  * To avoid races with d_move while rename is happening, d_lock is used.
1028  *
1029  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1030  * and name pointer in one structure pointed by d_qstr.
1031  *
1032  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1033  * lookup is going on.
1034  *
1035  * dentry_unused list is not updated even if lookup finds the required dentry
1036  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1037  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1038  * acquisition.
1039  *
1040  * d_lookup() is protected against the concurrent renames in some unrelated
1041  * directory using the seqlockt_t rename_lock.
1042  */
1043 
1044 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1045 {
1046 	struct dentry * dentry = NULL;
1047 	unsigned long seq;
1048 
1049         do {
1050                 seq = read_seqbegin(&rename_lock);
1051                 dentry = __d_lookup(parent, name);
1052                 if (dentry)
1053 			break;
1054 	} while (read_seqretry(&rename_lock, seq));
1055 	return dentry;
1056 }
1057 
1058 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1059 {
1060 	unsigned int len = name->len;
1061 	unsigned int hash = name->hash;
1062 	const unsigned char *str = name->name;
1063 	struct hlist_head *head = d_hash(parent,hash);
1064 	struct dentry *found = NULL;
1065 	struct hlist_node *node;
1066 	struct dentry *dentry;
1067 
1068 	rcu_read_lock();
1069 
1070 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1071 		struct qstr *qstr;
1072 
1073 		if (dentry->d_name.hash != hash)
1074 			continue;
1075 		if (dentry->d_parent != parent)
1076 			continue;
1077 
1078 		spin_lock(&dentry->d_lock);
1079 
1080 		/*
1081 		 * Recheck the dentry after taking the lock - d_move may have
1082 		 * changed things.  Don't bother checking the hash because we're
1083 		 * about to compare the whole name anyway.
1084 		 */
1085 		if (dentry->d_parent != parent)
1086 			goto next;
1087 
1088 		/*
1089 		 * It is safe to compare names since d_move() cannot
1090 		 * change the qstr (protected by d_lock).
1091 		 */
1092 		qstr = &dentry->d_name;
1093 		if (parent->d_op && parent->d_op->d_compare) {
1094 			if (parent->d_op->d_compare(parent, qstr, name))
1095 				goto next;
1096 		} else {
1097 			if (qstr->len != len)
1098 				goto next;
1099 			if (memcmp(qstr->name, str, len))
1100 				goto next;
1101 		}
1102 
1103 		if (!d_unhashed(dentry)) {
1104 			atomic_inc(&dentry->d_count);
1105 			found = dentry;
1106 		}
1107 		spin_unlock(&dentry->d_lock);
1108 		break;
1109 next:
1110 		spin_unlock(&dentry->d_lock);
1111  	}
1112  	rcu_read_unlock();
1113 
1114  	return found;
1115 }
1116 
1117 /**
1118  * d_hash_and_lookup - hash the qstr then search for a dentry
1119  * @dir: Directory to search in
1120  * @name: qstr of name we wish to find
1121  *
1122  * On hash failure or on lookup failure NULL is returned.
1123  */
1124 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1125 {
1126 	struct dentry *dentry = NULL;
1127 
1128 	/*
1129 	 * Check for a fs-specific hash function. Note that we must
1130 	 * calculate the standard hash first, as the d_op->d_hash()
1131 	 * routine may choose to leave the hash value unchanged.
1132 	 */
1133 	name->hash = full_name_hash(name->name, name->len);
1134 	if (dir->d_op && dir->d_op->d_hash) {
1135 		if (dir->d_op->d_hash(dir, name) < 0)
1136 			goto out;
1137 	}
1138 	dentry = d_lookup(dir, name);
1139 out:
1140 	return dentry;
1141 }
1142 
1143 /**
1144  * d_validate - verify dentry provided from insecure source
1145  * @dentry: The dentry alleged to be valid child of @dparent
1146  * @dparent: The parent dentry (known to be valid)
1147  * @hash: Hash of the dentry
1148  * @len: Length of the name
1149  *
1150  * An insecure source has sent us a dentry, here we verify it and dget() it.
1151  * This is used by ncpfs in its readdir implementation.
1152  * Zero is returned in the dentry is invalid.
1153  */
1154 
1155 int d_validate(struct dentry *dentry, struct dentry *dparent)
1156 {
1157 	struct hlist_head *base;
1158 	struct hlist_node *lhp;
1159 
1160 	/* Check whether the ptr might be valid at all.. */
1161 	if (!kmem_ptr_validate(dentry_cache, dentry))
1162 		goto out;
1163 
1164 	if (dentry->d_parent != dparent)
1165 		goto out;
1166 
1167 	spin_lock(&dcache_lock);
1168 	base = d_hash(dparent, dentry->d_name.hash);
1169 	hlist_for_each(lhp,base) {
1170 		/* hlist_for_each_entry_rcu() not required for d_hash list
1171 		 * as it is parsed under dcache_lock
1172 		 */
1173 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1174 			__dget_locked(dentry);
1175 			spin_unlock(&dcache_lock);
1176 			return 1;
1177 		}
1178 	}
1179 	spin_unlock(&dcache_lock);
1180 out:
1181 	return 0;
1182 }
1183 
1184 /*
1185  * When a file is deleted, we have two options:
1186  * - turn this dentry into a negative dentry
1187  * - unhash this dentry and free it.
1188  *
1189  * Usually, we want to just turn this into
1190  * a negative dentry, but if anybody else is
1191  * currently using the dentry or the inode
1192  * we can't do that and we fall back on removing
1193  * it from the hash queues and waiting for
1194  * it to be deleted later when it has no users
1195  */
1196 
1197 /**
1198  * d_delete - delete a dentry
1199  * @dentry: The dentry to delete
1200  *
1201  * Turn the dentry into a negative dentry if possible, otherwise
1202  * remove it from the hash queues so it can be deleted later
1203  */
1204 
1205 void d_delete(struct dentry * dentry)
1206 {
1207 	int isdir = 0;
1208 	/*
1209 	 * Are we the only user?
1210 	 */
1211 	spin_lock(&dcache_lock);
1212 	spin_lock(&dentry->d_lock);
1213 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1214 	if (atomic_read(&dentry->d_count) == 1) {
1215 		dentry_iput(dentry);
1216 		fsnotify_nameremove(dentry, isdir);
1217 
1218 		/* remove this and other inotify debug checks after 2.6.18 */
1219 		dentry->d_flags &= ~DCACHE_INOTIFY_PARENT_WATCHED;
1220 		return;
1221 	}
1222 
1223 	if (!d_unhashed(dentry))
1224 		__d_drop(dentry);
1225 
1226 	spin_unlock(&dentry->d_lock);
1227 	spin_unlock(&dcache_lock);
1228 
1229 	fsnotify_nameremove(dentry, isdir);
1230 }
1231 
1232 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1233 {
1234 
1235  	entry->d_flags &= ~DCACHE_UNHASHED;
1236  	hlist_add_head_rcu(&entry->d_hash, list);
1237 }
1238 
1239 /**
1240  * d_rehash	- add an entry back to the hash
1241  * @entry: dentry to add to the hash
1242  *
1243  * Adds a dentry to the hash according to its name.
1244  */
1245 
1246 void d_rehash(struct dentry * entry)
1247 {
1248 	struct hlist_head *list = d_hash(entry->d_parent, entry->d_name.hash);
1249 
1250 	spin_lock(&dcache_lock);
1251 	spin_lock(&entry->d_lock);
1252 	__d_rehash(entry, list);
1253 	spin_unlock(&entry->d_lock);
1254 	spin_unlock(&dcache_lock);
1255 }
1256 
1257 #define do_switch(x,y) do { \
1258 	__typeof__ (x) __tmp = x; \
1259 	x = y; y = __tmp; } while (0)
1260 
1261 /*
1262  * When switching names, the actual string doesn't strictly have to
1263  * be preserved in the target - because we're dropping the target
1264  * anyway. As such, we can just do a simple memcpy() to copy over
1265  * the new name before we switch.
1266  *
1267  * Note that we have to be a lot more careful about getting the hash
1268  * switched - we have to switch the hash value properly even if it
1269  * then no longer matches the actual (corrupted) string of the target.
1270  * The hash value has to match the hash queue that the dentry is on..
1271  */
1272 static void switch_names(struct dentry *dentry, struct dentry *target)
1273 {
1274 	if (dname_external(target)) {
1275 		if (dname_external(dentry)) {
1276 			/*
1277 			 * Both external: swap the pointers
1278 			 */
1279 			do_switch(target->d_name.name, dentry->d_name.name);
1280 		} else {
1281 			/*
1282 			 * dentry:internal, target:external.  Steal target's
1283 			 * storage and make target internal.
1284 			 */
1285 			dentry->d_name.name = target->d_name.name;
1286 			target->d_name.name = target->d_iname;
1287 		}
1288 	} else {
1289 		if (dname_external(dentry)) {
1290 			/*
1291 			 * dentry:external, target:internal.  Give dentry's
1292 			 * storage to target and make dentry internal
1293 			 */
1294 			memcpy(dentry->d_iname, target->d_name.name,
1295 					target->d_name.len + 1);
1296 			target->d_name.name = dentry->d_name.name;
1297 			dentry->d_name.name = dentry->d_iname;
1298 		} else {
1299 			/*
1300 			 * Both are internal.  Just copy target to dentry
1301 			 */
1302 			memcpy(dentry->d_iname, target->d_name.name,
1303 					target->d_name.len + 1);
1304 		}
1305 	}
1306 }
1307 
1308 /*
1309  * We cannibalize "target" when moving dentry on top of it,
1310  * because it's going to be thrown away anyway. We could be more
1311  * polite about it, though.
1312  *
1313  * This forceful removal will result in ugly /proc output if
1314  * somebody holds a file open that got deleted due to a rename.
1315  * We could be nicer about the deleted file, and let it show
1316  * up under the name it got deleted rather than the name that
1317  * deleted it.
1318  */
1319 
1320 /**
1321  * d_move - move a dentry
1322  * @dentry: entry to move
1323  * @target: new dentry
1324  *
1325  * Update the dcache to reflect the move of a file name. Negative
1326  * dcache entries should not be moved in this way.
1327  */
1328 
1329 void d_move(struct dentry * dentry, struct dentry * target)
1330 {
1331 	struct hlist_head *list;
1332 
1333 	if (!dentry->d_inode)
1334 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1335 
1336 	spin_lock(&dcache_lock);
1337 	write_seqlock(&rename_lock);
1338 	/*
1339 	 * XXXX: do we really need to take target->d_lock?
1340 	 */
1341 	if (target < dentry) {
1342 		spin_lock(&target->d_lock);
1343 		spin_lock(&dentry->d_lock);
1344 	} else {
1345 		spin_lock(&dentry->d_lock);
1346 		spin_lock(&target->d_lock);
1347 	}
1348 
1349 	/* Move the dentry to the target hash queue, if on different bucket */
1350 	if (dentry->d_flags & DCACHE_UNHASHED)
1351 		goto already_unhashed;
1352 
1353 	hlist_del_rcu(&dentry->d_hash);
1354 
1355 already_unhashed:
1356 	list = d_hash(target->d_parent, target->d_name.hash);
1357 	__d_rehash(dentry, list);
1358 
1359 	/* Unhash the target: dput() will then get rid of it */
1360 	__d_drop(target);
1361 
1362 	list_del(&dentry->d_u.d_child);
1363 	list_del(&target->d_u.d_child);
1364 
1365 	/* Switch the names.. */
1366 	switch_names(dentry, target);
1367 	do_switch(dentry->d_name.len, target->d_name.len);
1368 	do_switch(dentry->d_name.hash, target->d_name.hash);
1369 
1370 	/* ... and switch the parents */
1371 	if (IS_ROOT(dentry)) {
1372 		dentry->d_parent = target->d_parent;
1373 		target->d_parent = target;
1374 		INIT_LIST_HEAD(&target->d_u.d_child);
1375 	} else {
1376 		do_switch(dentry->d_parent, target->d_parent);
1377 
1378 		/* And add them back to the (new) parent lists */
1379 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1380 	}
1381 
1382 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1383 	spin_unlock(&target->d_lock);
1384 	fsnotify_d_move(dentry);
1385 	spin_unlock(&dentry->d_lock);
1386 	write_sequnlock(&rename_lock);
1387 	spin_unlock(&dcache_lock);
1388 }
1389 
1390 /**
1391  * d_path - return the path of a dentry
1392  * @dentry: dentry to report
1393  * @vfsmnt: vfsmnt to which the dentry belongs
1394  * @root: root dentry
1395  * @rootmnt: vfsmnt to which the root dentry belongs
1396  * @buffer: buffer to return value in
1397  * @buflen: buffer length
1398  *
1399  * Convert a dentry into an ASCII path name. If the entry has been deleted
1400  * the string " (deleted)" is appended. Note that this is ambiguous.
1401  *
1402  * Returns the buffer or an error code if the path was too long.
1403  *
1404  * "buflen" should be positive. Caller holds the dcache_lock.
1405  */
1406 static char * __d_path( struct dentry *dentry, struct vfsmount *vfsmnt,
1407 			struct dentry *root, struct vfsmount *rootmnt,
1408 			char *buffer, int buflen)
1409 {
1410 	char * end = buffer+buflen;
1411 	char * retval;
1412 	int namelen;
1413 
1414 	*--end = '\0';
1415 	buflen--;
1416 	if (!IS_ROOT(dentry) && d_unhashed(dentry)) {
1417 		buflen -= 10;
1418 		end -= 10;
1419 		if (buflen < 0)
1420 			goto Elong;
1421 		memcpy(end, " (deleted)", 10);
1422 	}
1423 
1424 	if (buflen < 1)
1425 		goto Elong;
1426 	/* Get '/' right */
1427 	retval = end-1;
1428 	*retval = '/';
1429 
1430 	for (;;) {
1431 		struct dentry * parent;
1432 
1433 		if (dentry == root && vfsmnt == rootmnt)
1434 			break;
1435 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1436 			/* Global root? */
1437 			spin_lock(&vfsmount_lock);
1438 			if (vfsmnt->mnt_parent == vfsmnt) {
1439 				spin_unlock(&vfsmount_lock);
1440 				goto global_root;
1441 			}
1442 			dentry = vfsmnt->mnt_mountpoint;
1443 			vfsmnt = vfsmnt->mnt_parent;
1444 			spin_unlock(&vfsmount_lock);
1445 			continue;
1446 		}
1447 		parent = dentry->d_parent;
1448 		prefetch(parent);
1449 		namelen = dentry->d_name.len;
1450 		buflen -= namelen + 1;
1451 		if (buflen < 0)
1452 			goto Elong;
1453 		end -= namelen;
1454 		memcpy(end, dentry->d_name.name, namelen);
1455 		*--end = '/';
1456 		retval = end;
1457 		dentry = parent;
1458 	}
1459 
1460 	return retval;
1461 
1462 global_root:
1463 	namelen = dentry->d_name.len;
1464 	buflen -= namelen;
1465 	if (buflen < 0)
1466 		goto Elong;
1467 	retval -= namelen-1;	/* hit the slash */
1468 	memcpy(retval, dentry->d_name.name, namelen);
1469 	return retval;
1470 Elong:
1471 	return ERR_PTR(-ENAMETOOLONG);
1472 }
1473 
1474 /* write full pathname into buffer and return start of pathname */
1475 char * d_path(struct dentry *dentry, struct vfsmount *vfsmnt,
1476 				char *buf, int buflen)
1477 {
1478 	char *res;
1479 	struct vfsmount *rootmnt;
1480 	struct dentry *root;
1481 
1482 	read_lock(&current->fs->lock);
1483 	rootmnt = mntget(current->fs->rootmnt);
1484 	root = dget(current->fs->root);
1485 	read_unlock(&current->fs->lock);
1486 	spin_lock(&dcache_lock);
1487 	res = __d_path(dentry, vfsmnt, root, rootmnt, buf, buflen);
1488 	spin_unlock(&dcache_lock);
1489 	dput(root);
1490 	mntput(rootmnt);
1491 	return res;
1492 }
1493 
1494 /*
1495  * NOTE! The user-level library version returns a
1496  * character pointer. The kernel system call just
1497  * returns the length of the buffer filled (which
1498  * includes the ending '\0' character), or a negative
1499  * error value. So libc would do something like
1500  *
1501  *	char *getcwd(char * buf, size_t size)
1502  *	{
1503  *		int retval;
1504  *
1505  *		retval = sys_getcwd(buf, size);
1506  *		if (retval >= 0)
1507  *			return buf;
1508  *		errno = -retval;
1509  *		return NULL;
1510  *	}
1511  */
1512 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1513 {
1514 	int error;
1515 	struct vfsmount *pwdmnt, *rootmnt;
1516 	struct dentry *pwd, *root;
1517 	char *page = (char *) __get_free_page(GFP_USER);
1518 
1519 	if (!page)
1520 		return -ENOMEM;
1521 
1522 	read_lock(&current->fs->lock);
1523 	pwdmnt = mntget(current->fs->pwdmnt);
1524 	pwd = dget(current->fs->pwd);
1525 	rootmnt = mntget(current->fs->rootmnt);
1526 	root = dget(current->fs->root);
1527 	read_unlock(&current->fs->lock);
1528 
1529 	error = -ENOENT;
1530 	/* Has the current directory has been unlinked? */
1531 	spin_lock(&dcache_lock);
1532 	if (pwd->d_parent == pwd || !d_unhashed(pwd)) {
1533 		unsigned long len;
1534 		char * cwd;
1535 
1536 		cwd = __d_path(pwd, pwdmnt, root, rootmnt, page, PAGE_SIZE);
1537 		spin_unlock(&dcache_lock);
1538 
1539 		error = PTR_ERR(cwd);
1540 		if (IS_ERR(cwd))
1541 			goto out;
1542 
1543 		error = -ERANGE;
1544 		len = PAGE_SIZE + page - cwd;
1545 		if (len <= size) {
1546 			error = len;
1547 			if (copy_to_user(buf, cwd, len))
1548 				error = -EFAULT;
1549 		}
1550 	} else
1551 		spin_unlock(&dcache_lock);
1552 
1553 out:
1554 	dput(pwd);
1555 	mntput(pwdmnt);
1556 	dput(root);
1557 	mntput(rootmnt);
1558 	free_page((unsigned long) page);
1559 	return error;
1560 }
1561 
1562 /*
1563  * Test whether new_dentry is a subdirectory of old_dentry.
1564  *
1565  * Trivially implemented using the dcache structure
1566  */
1567 
1568 /**
1569  * is_subdir - is new dentry a subdirectory of old_dentry
1570  * @new_dentry: new dentry
1571  * @old_dentry: old dentry
1572  *
1573  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
1574  * Returns 0 otherwise.
1575  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
1576  */
1577 
1578 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
1579 {
1580 	int result;
1581 	struct dentry * saved = new_dentry;
1582 	unsigned long seq;
1583 
1584 	/* need rcu_readlock to protect against the d_parent trashing due to
1585 	 * d_move
1586 	 */
1587 	rcu_read_lock();
1588         do {
1589 		/* for restarting inner loop in case of seq retry */
1590 		new_dentry = saved;
1591 		result = 0;
1592 		seq = read_seqbegin(&rename_lock);
1593 		for (;;) {
1594 			if (new_dentry != old_dentry) {
1595 				struct dentry * parent = new_dentry->d_parent;
1596 				if (parent == new_dentry)
1597 					break;
1598 				new_dentry = parent;
1599 				continue;
1600 			}
1601 			result = 1;
1602 			break;
1603 		}
1604 	} while (read_seqretry(&rename_lock, seq));
1605 	rcu_read_unlock();
1606 
1607 	return result;
1608 }
1609 
1610 void d_genocide(struct dentry *root)
1611 {
1612 	struct dentry *this_parent = root;
1613 	struct list_head *next;
1614 
1615 	spin_lock(&dcache_lock);
1616 repeat:
1617 	next = this_parent->d_subdirs.next;
1618 resume:
1619 	while (next != &this_parent->d_subdirs) {
1620 		struct list_head *tmp = next;
1621 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1622 		next = tmp->next;
1623 		if (d_unhashed(dentry)||!dentry->d_inode)
1624 			continue;
1625 		if (!list_empty(&dentry->d_subdirs)) {
1626 			this_parent = dentry;
1627 			goto repeat;
1628 		}
1629 		atomic_dec(&dentry->d_count);
1630 	}
1631 	if (this_parent != root) {
1632 		next = this_parent->d_u.d_child.next;
1633 		atomic_dec(&this_parent->d_count);
1634 		this_parent = this_parent->d_parent;
1635 		goto resume;
1636 	}
1637 	spin_unlock(&dcache_lock);
1638 }
1639 
1640 /**
1641  * find_inode_number - check for dentry with name
1642  * @dir: directory to check
1643  * @name: Name to find.
1644  *
1645  * Check whether a dentry already exists for the given name,
1646  * and return the inode number if it has an inode. Otherwise
1647  * 0 is returned.
1648  *
1649  * This routine is used to post-process directory listings for
1650  * filesystems using synthetic inode numbers, and is necessary
1651  * to keep getcwd() working.
1652  */
1653 
1654 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
1655 {
1656 	struct dentry * dentry;
1657 	ino_t ino = 0;
1658 
1659 	dentry = d_hash_and_lookup(dir, name);
1660 	if (dentry) {
1661 		if (dentry->d_inode)
1662 			ino = dentry->d_inode->i_ino;
1663 		dput(dentry);
1664 	}
1665 	return ino;
1666 }
1667 
1668 static __initdata unsigned long dhash_entries;
1669 static int __init set_dhash_entries(char *str)
1670 {
1671 	if (!str)
1672 		return 0;
1673 	dhash_entries = simple_strtoul(str, &str, 0);
1674 	return 1;
1675 }
1676 __setup("dhash_entries=", set_dhash_entries);
1677 
1678 static void __init dcache_init_early(void)
1679 {
1680 	int loop;
1681 
1682 	/* If hashes are distributed across NUMA nodes, defer
1683 	 * hash allocation until vmalloc space is available.
1684 	 */
1685 	if (hashdist)
1686 		return;
1687 
1688 	dentry_hashtable =
1689 		alloc_large_system_hash("Dentry cache",
1690 					sizeof(struct hlist_head),
1691 					dhash_entries,
1692 					13,
1693 					HASH_EARLY,
1694 					&d_hash_shift,
1695 					&d_hash_mask,
1696 					0);
1697 
1698 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1699 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1700 }
1701 
1702 static void __init dcache_init(unsigned long mempages)
1703 {
1704 	int loop;
1705 
1706 	/*
1707 	 * A constructor could be added for stable state like the lists,
1708 	 * but it is probably not worth it because of the cache nature
1709 	 * of the dcache.
1710 	 */
1711 	dentry_cache = kmem_cache_create("dentry_cache",
1712 					 sizeof(struct dentry),
1713 					 0,
1714 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1715 					 SLAB_MEM_SPREAD),
1716 					 NULL, NULL);
1717 
1718 	set_shrinker(DEFAULT_SEEKS, shrink_dcache_memory);
1719 
1720 	/* Hash may have been set up in dcache_init_early */
1721 	if (!hashdist)
1722 		return;
1723 
1724 	dentry_hashtable =
1725 		alloc_large_system_hash("Dentry cache",
1726 					sizeof(struct hlist_head),
1727 					dhash_entries,
1728 					13,
1729 					0,
1730 					&d_hash_shift,
1731 					&d_hash_mask,
1732 					0);
1733 
1734 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
1735 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
1736 }
1737 
1738 /* SLAB cache for __getname() consumers */
1739 kmem_cache_t *names_cachep __read_mostly;
1740 
1741 /* SLAB cache for file structures */
1742 kmem_cache_t *filp_cachep __read_mostly;
1743 
1744 EXPORT_SYMBOL(d_genocide);
1745 
1746 extern void bdev_cache_init(void);
1747 extern void chrdev_init(void);
1748 
1749 void __init vfs_caches_init_early(void)
1750 {
1751 	dcache_init_early();
1752 	inode_init_early();
1753 }
1754 
1755 void __init vfs_caches_init(unsigned long mempages)
1756 {
1757 	unsigned long reserve;
1758 
1759 	/* Base hash sizes on available memory, with a reserve equal to
1760            150% of current kernel size */
1761 
1762 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
1763 	mempages -= reserve;
1764 
1765 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
1766 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1767 
1768 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
1769 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1770 
1771 	dcache_init(mempages);
1772 	inode_init(mempages);
1773 	files_init(mempages);
1774 	mnt_init(mempages);
1775 	bdev_cache_init();
1776 	chrdev_init();
1777 }
1778 
1779 EXPORT_SYMBOL(d_alloc);
1780 EXPORT_SYMBOL(d_alloc_anon);
1781 EXPORT_SYMBOL(d_alloc_root);
1782 EXPORT_SYMBOL(d_delete);
1783 EXPORT_SYMBOL(d_find_alias);
1784 EXPORT_SYMBOL(d_instantiate);
1785 EXPORT_SYMBOL(d_invalidate);
1786 EXPORT_SYMBOL(d_lookup);
1787 EXPORT_SYMBOL(d_move);
1788 EXPORT_SYMBOL(d_path);
1789 EXPORT_SYMBOL(d_prune_aliases);
1790 EXPORT_SYMBOL(d_rehash);
1791 EXPORT_SYMBOL(d_splice_alias);
1792 EXPORT_SYMBOL(d_validate);
1793 EXPORT_SYMBOL(dget_locked);
1794 EXPORT_SYMBOL(dput);
1795 EXPORT_SYMBOL(find_inode_number);
1796 EXPORT_SYMBOL(have_submounts);
1797 EXPORT_SYMBOL(names_cachep);
1798 EXPORT_SYMBOL(shrink_dcache_parent);
1799 EXPORT_SYMBOL(shrink_dcache_sb);
1800