1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/module.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include "internal.h" 37 38 int sysctl_vfs_cache_pressure __read_mostly = 100; 39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 40 41 __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock); 42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 43 44 EXPORT_SYMBOL(dcache_lock); 45 46 static struct kmem_cache *dentry_cache __read_mostly; 47 48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname)) 49 50 /* 51 * This is the single most critical data structure when it comes 52 * to the dcache: the hashtable for lookups. Somebody should try 53 * to make this good - I've just made it work. 54 * 55 * This hash-function tries to avoid losing too many bits of hash 56 * information, yet avoid using a prime hash-size or similar. 57 */ 58 #define D_HASHBITS d_hash_shift 59 #define D_HASHMASK d_hash_mask 60 61 static unsigned int d_hash_mask __read_mostly; 62 static unsigned int d_hash_shift __read_mostly; 63 static struct hlist_head *dentry_hashtable __read_mostly; 64 65 /* Statistics gathering. */ 66 struct dentry_stat_t dentry_stat = { 67 .age_limit = 45, 68 }; 69 70 static void __d_free(struct dentry *dentry) 71 { 72 WARN_ON(!list_empty(&dentry->d_alias)); 73 if (dname_external(dentry)) 74 kfree(dentry->d_name.name); 75 kmem_cache_free(dentry_cache, dentry); 76 } 77 78 static void d_callback(struct rcu_head *head) 79 { 80 struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu); 81 __d_free(dentry); 82 } 83 84 /* 85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry 86 * inside dcache_lock. 87 */ 88 static void d_free(struct dentry *dentry) 89 { 90 if (dentry->d_op && dentry->d_op->d_release) 91 dentry->d_op->d_release(dentry); 92 /* if dentry was never inserted into hash, immediate free is OK */ 93 if (hlist_unhashed(&dentry->d_hash)) 94 __d_free(dentry); 95 else 96 call_rcu(&dentry->d_u.d_rcu, d_callback); 97 } 98 99 /* 100 * Release the dentry's inode, using the filesystem 101 * d_iput() operation if defined. 102 */ 103 static void dentry_iput(struct dentry * dentry) 104 __releases(dentry->d_lock) 105 __releases(dcache_lock) 106 { 107 struct inode *inode = dentry->d_inode; 108 if (inode) { 109 dentry->d_inode = NULL; 110 list_del_init(&dentry->d_alias); 111 spin_unlock(&dentry->d_lock); 112 spin_unlock(&dcache_lock); 113 if (!inode->i_nlink) 114 fsnotify_inoderemove(inode); 115 if (dentry->d_op && dentry->d_op->d_iput) 116 dentry->d_op->d_iput(dentry, inode); 117 else 118 iput(inode); 119 } else { 120 spin_unlock(&dentry->d_lock); 121 spin_unlock(&dcache_lock); 122 } 123 } 124 125 /* 126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held. 127 */ 128 static void dentry_lru_add(struct dentry *dentry) 129 { 130 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 131 dentry->d_sb->s_nr_dentry_unused++; 132 dentry_stat.nr_unused++; 133 } 134 135 static void dentry_lru_add_tail(struct dentry *dentry) 136 { 137 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 138 dentry->d_sb->s_nr_dentry_unused++; 139 dentry_stat.nr_unused++; 140 } 141 142 static void dentry_lru_del(struct dentry *dentry) 143 { 144 if (!list_empty(&dentry->d_lru)) { 145 list_del(&dentry->d_lru); 146 dentry->d_sb->s_nr_dentry_unused--; 147 dentry_stat.nr_unused--; 148 } 149 } 150 151 static void dentry_lru_del_init(struct dentry *dentry) 152 { 153 if (likely(!list_empty(&dentry->d_lru))) { 154 list_del_init(&dentry->d_lru); 155 dentry->d_sb->s_nr_dentry_unused--; 156 dentry_stat.nr_unused--; 157 } 158 } 159 160 /** 161 * d_kill - kill dentry and return parent 162 * @dentry: dentry to kill 163 * 164 * The dentry must already be unhashed and removed from the LRU. 165 * 166 * If this is the root of the dentry tree, return NULL. 167 */ 168 static struct dentry *d_kill(struct dentry *dentry) 169 __releases(dentry->d_lock) 170 __releases(dcache_lock) 171 { 172 struct dentry *parent; 173 174 list_del(&dentry->d_u.d_child); 175 dentry_stat.nr_dentry--; /* For d_free, below */ 176 /*drops the locks, at that point nobody can reach this dentry */ 177 dentry_iput(dentry); 178 if (IS_ROOT(dentry)) 179 parent = NULL; 180 else 181 parent = dentry->d_parent; 182 d_free(dentry); 183 return parent; 184 } 185 186 /* 187 * This is dput 188 * 189 * This is complicated by the fact that we do not want to put 190 * dentries that are no longer on any hash chain on the unused 191 * list: we'd much rather just get rid of them immediately. 192 * 193 * However, that implies that we have to traverse the dentry 194 * tree upwards to the parents which might _also_ now be 195 * scheduled for deletion (it may have been only waiting for 196 * its last child to go away). 197 * 198 * This tail recursion is done by hand as we don't want to depend 199 * on the compiler to always get this right (gcc generally doesn't). 200 * Real recursion would eat up our stack space. 201 */ 202 203 /* 204 * dput - release a dentry 205 * @dentry: dentry to release 206 * 207 * Release a dentry. This will drop the usage count and if appropriate 208 * call the dentry unlink method as well as removing it from the queues and 209 * releasing its resources. If the parent dentries were scheduled for release 210 * they too may now get deleted. 211 * 212 * no dcache lock, please. 213 */ 214 215 void dput(struct dentry *dentry) 216 { 217 if (!dentry) 218 return; 219 220 repeat: 221 if (atomic_read(&dentry->d_count) == 1) 222 might_sleep(); 223 if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock)) 224 return; 225 226 spin_lock(&dentry->d_lock); 227 if (atomic_read(&dentry->d_count)) { 228 spin_unlock(&dentry->d_lock); 229 spin_unlock(&dcache_lock); 230 return; 231 } 232 233 /* 234 * AV: ->d_delete() is _NOT_ allowed to block now. 235 */ 236 if (dentry->d_op && dentry->d_op->d_delete) { 237 if (dentry->d_op->d_delete(dentry)) 238 goto unhash_it; 239 } 240 /* Unreachable? Get rid of it */ 241 if (d_unhashed(dentry)) 242 goto kill_it; 243 if (list_empty(&dentry->d_lru)) { 244 dentry->d_flags |= DCACHE_REFERENCED; 245 dentry_lru_add(dentry); 246 } 247 spin_unlock(&dentry->d_lock); 248 spin_unlock(&dcache_lock); 249 return; 250 251 unhash_it: 252 __d_drop(dentry); 253 kill_it: 254 /* if dentry was on the d_lru list delete it from there */ 255 dentry_lru_del(dentry); 256 dentry = d_kill(dentry); 257 if (dentry) 258 goto repeat; 259 } 260 EXPORT_SYMBOL(dput); 261 262 /** 263 * d_invalidate - invalidate a dentry 264 * @dentry: dentry to invalidate 265 * 266 * Try to invalidate the dentry if it turns out to be 267 * possible. If there are other dentries that can be 268 * reached through this one we can't delete it and we 269 * return -EBUSY. On success we return 0. 270 * 271 * no dcache lock. 272 */ 273 274 int d_invalidate(struct dentry * dentry) 275 { 276 /* 277 * If it's already been dropped, return OK. 278 */ 279 spin_lock(&dcache_lock); 280 if (d_unhashed(dentry)) { 281 spin_unlock(&dcache_lock); 282 return 0; 283 } 284 /* 285 * Check whether to do a partial shrink_dcache 286 * to get rid of unused child entries. 287 */ 288 if (!list_empty(&dentry->d_subdirs)) { 289 spin_unlock(&dcache_lock); 290 shrink_dcache_parent(dentry); 291 spin_lock(&dcache_lock); 292 } 293 294 /* 295 * Somebody else still using it? 296 * 297 * If it's a directory, we can't drop it 298 * for fear of somebody re-populating it 299 * with children (even though dropping it 300 * would make it unreachable from the root, 301 * we might still populate it if it was a 302 * working directory or similar). 303 */ 304 spin_lock(&dentry->d_lock); 305 if (atomic_read(&dentry->d_count) > 1) { 306 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) { 307 spin_unlock(&dentry->d_lock); 308 spin_unlock(&dcache_lock); 309 return -EBUSY; 310 } 311 } 312 313 __d_drop(dentry); 314 spin_unlock(&dentry->d_lock); 315 spin_unlock(&dcache_lock); 316 return 0; 317 } 318 EXPORT_SYMBOL(d_invalidate); 319 320 /* This should be called _only_ with dcache_lock held */ 321 322 static inline struct dentry * __dget_locked(struct dentry *dentry) 323 { 324 atomic_inc(&dentry->d_count); 325 dentry_lru_del_init(dentry); 326 return dentry; 327 } 328 329 struct dentry * dget_locked(struct dentry *dentry) 330 { 331 return __dget_locked(dentry); 332 } 333 EXPORT_SYMBOL(dget_locked); 334 335 /** 336 * d_find_alias - grab a hashed alias of inode 337 * @inode: inode in question 338 * @want_discon: flag, used by d_splice_alias, to request 339 * that only a DISCONNECTED alias be returned. 340 * 341 * If inode has a hashed alias, or is a directory and has any alias, 342 * acquire the reference to alias and return it. Otherwise return NULL. 343 * Notice that if inode is a directory there can be only one alias and 344 * it can be unhashed only if it has no children, or if it is the root 345 * of a filesystem. 346 * 347 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 348 * any other hashed alias over that one unless @want_discon is set, 349 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 350 */ 351 352 static struct dentry * __d_find_alias(struct inode *inode, int want_discon) 353 { 354 struct list_head *head, *next, *tmp; 355 struct dentry *alias, *discon_alias=NULL; 356 357 head = &inode->i_dentry; 358 next = inode->i_dentry.next; 359 while (next != head) { 360 tmp = next; 361 next = tmp->next; 362 prefetch(next); 363 alias = list_entry(tmp, struct dentry, d_alias); 364 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 365 if (IS_ROOT(alias) && 366 (alias->d_flags & DCACHE_DISCONNECTED)) 367 discon_alias = alias; 368 else if (!want_discon) { 369 __dget_locked(alias); 370 return alias; 371 } 372 } 373 } 374 if (discon_alias) 375 __dget_locked(discon_alias); 376 return discon_alias; 377 } 378 379 struct dentry * d_find_alias(struct inode *inode) 380 { 381 struct dentry *de = NULL; 382 383 if (!list_empty(&inode->i_dentry)) { 384 spin_lock(&dcache_lock); 385 de = __d_find_alias(inode, 0); 386 spin_unlock(&dcache_lock); 387 } 388 return de; 389 } 390 EXPORT_SYMBOL(d_find_alias); 391 392 /* 393 * Try to kill dentries associated with this inode. 394 * WARNING: you must own a reference to inode. 395 */ 396 void d_prune_aliases(struct inode *inode) 397 { 398 struct dentry *dentry; 399 restart: 400 spin_lock(&dcache_lock); 401 list_for_each_entry(dentry, &inode->i_dentry, d_alias) { 402 spin_lock(&dentry->d_lock); 403 if (!atomic_read(&dentry->d_count)) { 404 __dget_locked(dentry); 405 __d_drop(dentry); 406 spin_unlock(&dentry->d_lock); 407 spin_unlock(&dcache_lock); 408 dput(dentry); 409 goto restart; 410 } 411 spin_unlock(&dentry->d_lock); 412 } 413 spin_unlock(&dcache_lock); 414 } 415 EXPORT_SYMBOL(d_prune_aliases); 416 417 /* 418 * Throw away a dentry - free the inode, dput the parent. This requires that 419 * the LRU list has already been removed. 420 * 421 * Try to prune ancestors as well. This is necessary to prevent 422 * quadratic behavior of shrink_dcache_parent(), but is also expected 423 * to be beneficial in reducing dentry cache fragmentation. 424 */ 425 static void prune_one_dentry(struct dentry * dentry) 426 __releases(dentry->d_lock) 427 __releases(dcache_lock) 428 __acquires(dcache_lock) 429 { 430 __d_drop(dentry); 431 dentry = d_kill(dentry); 432 433 /* 434 * Prune ancestors. Locking is simpler than in dput(), 435 * because dcache_lock needs to be taken anyway. 436 */ 437 spin_lock(&dcache_lock); 438 while (dentry) { 439 if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock)) 440 return; 441 442 if (dentry->d_op && dentry->d_op->d_delete) 443 dentry->d_op->d_delete(dentry); 444 dentry_lru_del_init(dentry); 445 __d_drop(dentry); 446 dentry = d_kill(dentry); 447 spin_lock(&dcache_lock); 448 } 449 } 450 451 /* 452 * Shrink the dentry LRU on a given superblock. 453 * @sb : superblock to shrink dentry LRU. 454 * @count: If count is NULL, we prune all dentries on superblock. 455 * @flags: If flags is non-zero, we need to do special processing based on 456 * which flags are set. This means we don't need to maintain multiple 457 * similar copies of this loop. 458 */ 459 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags) 460 { 461 LIST_HEAD(referenced); 462 LIST_HEAD(tmp); 463 struct dentry *dentry; 464 int cnt = 0; 465 466 BUG_ON(!sb); 467 BUG_ON((flags & DCACHE_REFERENCED) && count == NULL); 468 spin_lock(&dcache_lock); 469 if (count != NULL) 470 /* called from prune_dcache() and shrink_dcache_parent() */ 471 cnt = *count; 472 restart: 473 if (count == NULL) 474 list_splice_init(&sb->s_dentry_lru, &tmp); 475 else { 476 while (!list_empty(&sb->s_dentry_lru)) { 477 dentry = list_entry(sb->s_dentry_lru.prev, 478 struct dentry, d_lru); 479 BUG_ON(dentry->d_sb != sb); 480 481 spin_lock(&dentry->d_lock); 482 /* 483 * If we are honouring the DCACHE_REFERENCED flag and 484 * the dentry has this flag set, don't free it. Clear 485 * the flag and put it back on the LRU. 486 */ 487 if ((flags & DCACHE_REFERENCED) 488 && (dentry->d_flags & DCACHE_REFERENCED)) { 489 dentry->d_flags &= ~DCACHE_REFERENCED; 490 list_move(&dentry->d_lru, &referenced); 491 spin_unlock(&dentry->d_lock); 492 } else { 493 list_move_tail(&dentry->d_lru, &tmp); 494 spin_unlock(&dentry->d_lock); 495 cnt--; 496 if (!cnt) 497 break; 498 } 499 cond_resched_lock(&dcache_lock); 500 } 501 } 502 while (!list_empty(&tmp)) { 503 dentry = list_entry(tmp.prev, struct dentry, d_lru); 504 dentry_lru_del_init(dentry); 505 spin_lock(&dentry->d_lock); 506 /* 507 * We found an inuse dentry which was not removed from 508 * the LRU because of laziness during lookup. Do not free 509 * it - just keep it off the LRU list. 510 */ 511 if (atomic_read(&dentry->d_count)) { 512 spin_unlock(&dentry->d_lock); 513 continue; 514 } 515 prune_one_dentry(dentry); 516 /* dentry->d_lock was dropped in prune_one_dentry() */ 517 cond_resched_lock(&dcache_lock); 518 } 519 if (count == NULL && !list_empty(&sb->s_dentry_lru)) 520 goto restart; 521 if (count != NULL) 522 *count = cnt; 523 if (!list_empty(&referenced)) 524 list_splice(&referenced, &sb->s_dentry_lru); 525 spin_unlock(&dcache_lock); 526 } 527 528 /** 529 * prune_dcache - shrink the dcache 530 * @count: number of entries to try to free 531 * 532 * Shrink the dcache. This is done when we need more memory, or simply when we 533 * need to unmount something (at which point we need to unuse all dentries). 534 * 535 * This function may fail to free any resources if all the dentries are in use. 536 */ 537 static void prune_dcache(int count) 538 { 539 struct super_block *sb, *p = NULL; 540 int w_count; 541 int unused = dentry_stat.nr_unused; 542 int prune_ratio; 543 int pruned; 544 545 if (unused == 0 || count == 0) 546 return; 547 spin_lock(&dcache_lock); 548 if (count >= unused) 549 prune_ratio = 1; 550 else 551 prune_ratio = unused / count; 552 spin_lock(&sb_lock); 553 list_for_each_entry(sb, &super_blocks, s_list) { 554 if (list_empty(&sb->s_instances)) 555 continue; 556 if (sb->s_nr_dentry_unused == 0) 557 continue; 558 sb->s_count++; 559 /* Now, we reclaim unused dentrins with fairness. 560 * We reclaim them same percentage from each superblock. 561 * We calculate number of dentries to scan on this sb 562 * as follows, but the implementation is arranged to avoid 563 * overflows: 564 * number of dentries to scan on this sb = 565 * count * (number of dentries on this sb / 566 * number of dentries in the machine) 567 */ 568 spin_unlock(&sb_lock); 569 if (prune_ratio != 1) 570 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1; 571 else 572 w_count = sb->s_nr_dentry_unused; 573 pruned = w_count; 574 /* 575 * We need to be sure this filesystem isn't being unmounted, 576 * otherwise we could race with generic_shutdown_super(), and 577 * end up holding a reference to an inode while the filesystem 578 * is unmounted. So we try to get s_umount, and make sure 579 * s_root isn't NULL. 580 */ 581 if (down_read_trylock(&sb->s_umount)) { 582 if ((sb->s_root != NULL) && 583 (!list_empty(&sb->s_dentry_lru))) { 584 spin_unlock(&dcache_lock); 585 __shrink_dcache_sb(sb, &w_count, 586 DCACHE_REFERENCED); 587 pruned -= w_count; 588 spin_lock(&dcache_lock); 589 } 590 up_read(&sb->s_umount); 591 } 592 spin_lock(&sb_lock); 593 if (p) 594 __put_super(p); 595 count -= pruned; 596 p = sb; 597 /* more work left to do? */ 598 if (count <= 0) 599 break; 600 } 601 if (p) 602 __put_super(p); 603 spin_unlock(&sb_lock); 604 spin_unlock(&dcache_lock); 605 } 606 607 /** 608 * shrink_dcache_sb - shrink dcache for a superblock 609 * @sb: superblock 610 * 611 * Shrink the dcache for the specified super block. This 612 * is used to free the dcache before unmounting a file 613 * system 614 */ 615 void shrink_dcache_sb(struct super_block * sb) 616 { 617 __shrink_dcache_sb(sb, NULL, 0); 618 } 619 EXPORT_SYMBOL(shrink_dcache_sb); 620 621 /* 622 * destroy a single subtree of dentries for unmount 623 * - see the comments on shrink_dcache_for_umount() for a description of the 624 * locking 625 */ 626 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 627 { 628 struct dentry *parent; 629 unsigned detached = 0; 630 631 BUG_ON(!IS_ROOT(dentry)); 632 633 /* detach this root from the system */ 634 spin_lock(&dcache_lock); 635 dentry_lru_del_init(dentry); 636 __d_drop(dentry); 637 spin_unlock(&dcache_lock); 638 639 for (;;) { 640 /* descend to the first leaf in the current subtree */ 641 while (!list_empty(&dentry->d_subdirs)) { 642 struct dentry *loop; 643 644 /* this is a branch with children - detach all of them 645 * from the system in one go */ 646 spin_lock(&dcache_lock); 647 list_for_each_entry(loop, &dentry->d_subdirs, 648 d_u.d_child) { 649 dentry_lru_del_init(loop); 650 __d_drop(loop); 651 cond_resched_lock(&dcache_lock); 652 } 653 spin_unlock(&dcache_lock); 654 655 /* move to the first child */ 656 dentry = list_entry(dentry->d_subdirs.next, 657 struct dentry, d_u.d_child); 658 } 659 660 /* consume the dentries from this leaf up through its parents 661 * until we find one with children or run out altogether */ 662 do { 663 struct inode *inode; 664 665 if (atomic_read(&dentry->d_count) != 0) { 666 printk(KERN_ERR 667 "BUG: Dentry %p{i=%lx,n=%s}" 668 " still in use (%d)" 669 " [unmount of %s %s]\n", 670 dentry, 671 dentry->d_inode ? 672 dentry->d_inode->i_ino : 0UL, 673 dentry->d_name.name, 674 atomic_read(&dentry->d_count), 675 dentry->d_sb->s_type->name, 676 dentry->d_sb->s_id); 677 BUG(); 678 } 679 680 if (IS_ROOT(dentry)) 681 parent = NULL; 682 else { 683 parent = dentry->d_parent; 684 atomic_dec(&parent->d_count); 685 } 686 687 list_del(&dentry->d_u.d_child); 688 detached++; 689 690 inode = dentry->d_inode; 691 if (inode) { 692 dentry->d_inode = NULL; 693 list_del_init(&dentry->d_alias); 694 if (dentry->d_op && dentry->d_op->d_iput) 695 dentry->d_op->d_iput(dentry, inode); 696 else 697 iput(inode); 698 } 699 700 d_free(dentry); 701 702 /* finished when we fall off the top of the tree, 703 * otherwise we ascend to the parent and move to the 704 * next sibling if there is one */ 705 if (!parent) 706 goto out; 707 708 dentry = parent; 709 710 } while (list_empty(&dentry->d_subdirs)); 711 712 dentry = list_entry(dentry->d_subdirs.next, 713 struct dentry, d_u.d_child); 714 } 715 out: 716 /* several dentries were freed, need to correct nr_dentry */ 717 spin_lock(&dcache_lock); 718 dentry_stat.nr_dentry -= detached; 719 spin_unlock(&dcache_lock); 720 } 721 722 /* 723 * destroy the dentries attached to a superblock on unmounting 724 * - we don't need to use dentry->d_lock, and only need dcache_lock when 725 * removing the dentry from the system lists and hashes because: 726 * - the superblock is detached from all mountings and open files, so the 727 * dentry trees will not be rearranged by the VFS 728 * - s_umount is write-locked, so the memory pressure shrinker will ignore 729 * any dentries belonging to this superblock that it comes across 730 * - the filesystem itself is no longer permitted to rearrange the dentries 731 * in this superblock 732 */ 733 void shrink_dcache_for_umount(struct super_block *sb) 734 { 735 struct dentry *dentry; 736 737 if (down_read_trylock(&sb->s_umount)) 738 BUG(); 739 740 dentry = sb->s_root; 741 sb->s_root = NULL; 742 atomic_dec(&dentry->d_count); 743 shrink_dcache_for_umount_subtree(dentry); 744 745 while (!hlist_empty(&sb->s_anon)) { 746 dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash); 747 shrink_dcache_for_umount_subtree(dentry); 748 } 749 } 750 751 /* 752 * Search for at least 1 mount point in the dentry's subdirs. 753 * We descend to the next level whenever the d_subdirs 754 * list is non-empty and continue searching. 755 */ 756 757 /** 758 * have_submounts - check for mounts over a dentry 759 * @parent: dentry to check. 760 * 761 * Return true if the parent or its subdirectories contain 762 * a mount point 763 */ 764 765 int have_submounts(struct dentry *parent) 766 { 767 struct dentry *this_parent = parent; 768 struct list_head *next; 769 770 spin_lock(&dcache_lock); 771 if (d_mountpoint(parent)) 772 goto positive; 773 repeat: 774 next = this_parent->d_subdirs.next; 775 resume: 776 while (next != &this_parent->d_subdirs) { 777 struct list_head *tmp = next; 778 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 779 next = tmp->next; 780 /* Have we found a mount point ? */ 781 if (d_mountpoint(dentry)) 782 goto positive; 783 if (!list_empty(&dentry->d_subdirs)) { 784 this_parent = dentry; 785 goto repeat; 786 } 787 } 788 /* 789 * All done at this level ... ascend and resume the search. 790 */ 791 if (this_parent != parent) { 792 next = this_parent->d_u.d_child.next; 793 this_parent = this_parent->d_parent; 794 goto resume; 795 } 796 spin_unlock(&dcache_lock); 797 return 0; /* No mount points found in tree */ 798 positive: 799 spin_unlock(&dcache_lock); 800 return 1; 801 } 802 EXPORT_SYMBOL(have_submounts); 803 804 /* 805 * Search the dentry child list for the specified parent, 806 * and move any unused dentries to the end of the unused 807 * list for prune_dcache(). We descend to the next level 808 * whenever the d_subdirs list is non-empty and continue 809 * searching. 810 * 811 * It returns zero iff there are no unused children, 812 * otherwise it returns the number of children moved to 813 * the end of the unused list. This may not be the total 814 * number of unused children, because select_parent can 815 * drop the lock and return early due to latency 816 * constraints. 817 */ 818 static int select_parent(struct dentry * parent) 819 { 820 struct dentry *this_parent = parent; 821 struct list_head *next; 822 int found = 0; 823 824 spin_lock(&dcache_lock); 825 repeat: 826 next = this_parent->d_subdirs.next; 827 resume: 828 while (next != &this_parent->d_subdirs) { 829 struct list_head *tmp = next; 830 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 831 next = tmp->next; 832 833 dentry_lru_del_init(dentry); 834 /* 835 * move only zero ref count dentries to the end 836 * of the unused list for prune_dcache 837 */ 838 if (!atomic_read(&dentry->d_count)) { 839 dentry_lru_add_tail(dentry); 840 found++; 841 } 842 843 /* 844 * We can return to the caller if we have found some (this 845 * ensures forward progress). We'll be coming back to find 846 * the rest. 847 */ 848 if (found && need_resched()) 849 goto out; 850 851 /* 852 * Descend a level if the d_subdirs list is non-empty. 853 */ 854 if (!list_empty(&dentry->d_subdirs)) { 855 this_parent = dentry; 856 goto repeat; 857 } 858 } 859 /* 860 * All done at this level ... ascend and resume the search. 861 */ 862 if (this_parent != parent) { 863 next = this_parent->d_u.d_child.next; 864 this_parent = this_parent->d_parent; 865 goto resume; 866 } 867 out: 868 spin_unlock(&dcache_lock); 869 return found; 870 } 871 872 /** 873 * shrink_dcache_parent - prune dcache 874 * @parent: parent of entries to prune 875 * 876 * Prune the dcache to remove unused children of the parent dentry. 877 */ 878 879 void shrink_dcache_parent(struct dentry * parent) 880 { 881 struct super_block *sb = parent->d_sb; 882 int found; 883 884 while ((found = select_parent(parent)) != 0) 885 __shrink_dcache_sb(sb, &found, 0); 886 } 887 EXPORT_SYMBOL(shrink_dcache_parent); 888 889 /* 890 * Scan `nr' dentries and return the number which remain. 891 * 892 * We need to avoid reentering the filesystem if the caller is performing a 893 * GFP_NOFS allocation attempt. One example deadlock is: 894 * 895 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache-> 896 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode-> 897 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK. 898 * 899 * In this case we return -1 to tell the caller that we baled. 900 */ 901 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask) 902 { 903 if (nr) { 904 if (!(gfp_mask & __GFP_FS)) 905 return -1; 906 prune_dcache(nr); 907 } 908 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 909 } 910 911 static struct shrinker dcache_shrinker = { 912 .shrink = shrink_dcache_memory, 913 .seeks = DEFAULT_SEEKS, 914 }; 915 916 /** 917 * d_alloc - allocate a dcache entry 918 * @parent: parent of entry to allocate 919 * @name: qstr of the name 920 * 921 * Allocates a dentry. It returns %NULL if there is insufficient memory 922 * available. On a success the dentry is returned. The name passed in is 923 * copied and the copy passed in may be reused after this call. 924 */ 925 926 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 927 { 928 struct dentry *dentry; 929 char *dname; 930 931 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 932 if (!dentry) 933 return NULL; 934 935 if (name->len > DNAME_INLINE_LEN-1) { 936 dname = kmalloc(name->len + 1, GFP_KERNEL); 937 if (!dname) { 938 kmem_cache_free(dentry_cache, dentry); 939 return NULL; 940 } 941 } else { 942 dname = dentry->d_iname; 943 } 944 dentry->d_name.name = dname; 945 946 dentry->d_name.len = name->len; 947 dentry->d_name.hash = name->hash; 948 memcpy(dname, name->name, name->len); 949 dname[name->len] = 0; 950 951 atomic_set(&dentry->d_count, 1); 952 dentry->d_flags = DCACHE_UNHASHED; 953 spin_lock_init(&dentry->d_lock); 954 dentry->d_inode = NULL; 955 dentry->d_parent = NULL; 956 dentry->d_sb = NULL; 957 dentry->d_op = NULL; 958 dentry->d_fsdata = NULL; 959 dentry->d_mounted = 0; 960 INIT_HLIST_NODE(&dentry->d_hash); 961 INIT_LIST_HEAD(&dentry->d_lru); 962 INIT_LIST_HEAD(&dentry->d_subdirs); 963 INIT_LIST_HEAD(&dentry->d_alias); 964 965 if (parent) { 966 dentry->d_parent = dget(parent); 967 dentry->d_sb = parent->d_sb; 968 } else { 969 INIT_LIST_HEAD(&dentry->d_u.d_child); 970 } 971 972 spin_lock(&dcache_lock); 973 if (parent) 974 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 975 dentry_stat.nr_dentry++; 976 spin_unlock(&dcache_lock); 977 978 return dentry; 979 } 980 EXPORT_SYMBOL(d_alloc); 981 982 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 983 { 984 struct qstr q; 985 986 q.name = name; 987 q.len = strlen(name); 988 q.hash = full_name_hash(q.name, q.len); 989 return d_alloc(parent, &q); 990 } 991 EXPORT_SYMBOL(d_alloc_name); 992 993 /* the caller must hold dcache_lock */ 994 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 995 { 996 if (inode) 997 list_add(&dentry->d_alias, &inode->i_dentry); 998 dentry->d_inode = inode; 999 fsnotify_d_instantiate(dentry, inode); 1000 } 1001 1002 /** 1003 * d_instantiate - fill in inode information for a dentry 1004 * @entry: dentry to complete 1005 * @inode: inode to attach to this dentry 1006 * 1007 * Fill in inode information in the entry. 1008 * 1009 * This turns negative dentries into productive full members 1010 * of society. 1011 * 1012 * NOTE! This assumes that the inode count has been incremented 1013 * (or otherwise set) by the caller to indicate that it is now 1014 * in use by the dcache. 1015 */ 1016 1017 void d_instantiate(struct dentry *entry, struct inode * inode) 1018 { 1019 BUG_ON(!list_empty(&entry->d_alias)); 1020 spin_lock(&dcache_lock); 1021 __d_instantiate(entry, inode); 1022 spin_unlock(&dcache_lock); 1023 security_d_instantiate(entry, inode); 1024 } 1025 EXPORT_SYMBOL(d_instantiate); 1026 1027 /** 1028 * d_instantiate_unique - instantiate a non-aliased dentry 1029 * @entry: dentry to instantiate 1030 * @inode: inode to attach to this dentry 1031 * 1032 * Fill in inode information in the entry. On success, it returns NULL. 1033 * If an unhashed alias of "entry" already exists, then we return the 1034 * aliased dentry instead and drop one reference to inode. 1035 * 1036 * Note that in order to avoid conflicts with rename() etc, the caller 1037 * had better be holding the parent directory semaphore. 1038 * 1039 * This also assumes that the inode count has been incremented 1040 * (or otherwise set) by the caller to indicate that it is now 1041 * in use by the dcache. 1042 */ 1043 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1044 struct inode *inode) 1045 { 1046 struct dentry *alias; 1047 int len = entry->d_name.len; 1048 const char *name = entry->d_name.name; 1049 unsigned int hash = entry->d_name.hash; 1050 1051 if (!inode) { 1052 __d_instantiate(entry, NULL); 1053 return NULL; 1054 } 1055 1056 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 1057 struct qstr *qstr = &alias->d_name; 1058 1059 if (qstr->hash != hash) 1060 continue; 1061 if (alias->d_parent != entry->d_parent) 1062 continue; 1063 if (qstr->len != len) 1064 continue; 1065 if (memcmp(qstr->name, name, len)) 1066 continue; 1067 dget_locked(alias); 1068 return alias; 1069 } 1070 1071 __d_instantiate(entry, inode); 1072 return NULL; 1073 } 1074 1075 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1076 { 1077 struct dentry *result; 1078 1079 BUG_ON(!list_empty(&entry->d_alias)); 1080 1081 spin_lock(&dcache_lock); 1082 result = __d_instantiate_unique(entry, inode); 1083 spin_unlock(&dcache_lock); 1084 1085 if (!result) { 1086 security_d_instantiate(entry, inode); 1087 return NULL; 1088 } 1089 1090 BUG_ON(!d_unhashed(result)); 1091 iput(inode); 1092 return result; 1093 } 1094 1095 EXPORT_SYMBOL(d_instantiate_unique); 1096 1097 /** 1098 * d_alloc_root - allocate root dentry 1099 * @root_inode: inode to allocate the root for 1100 * 1101 * Allocate a root ("/") dentry for the inode given. The inode is 1102 * instantiated and returned. %NULL is returned if there is insufficient 1103 * memory or the inode passed is %NULL. 1104 */ 1105 1106 struct dentry * d_alloc_root(struct inode * root_inode) 1107 { 1108 struct dentry *res = NULL; 1109 1110 if (root_inode) { 1111 static const struct qstr name = { .name = "/", .len = 1 }; 1112 1113 res = d_alloc(NULL, &name); 1114 if (res) { 1115 res->d_sb = root_inode->i_sb; 1116 res->d_parent = res; 1117 d_instantiate(res, root_inode); 1118 } 1119 } 1120 return res; 1121 } 1122 EXPORT_SYMBOL(d_alloc_root); 1123 1124 static inline struct hlist_head *d_hash(struct dentry *parent, 1125 unsigned long hash) 1126 { 1127 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES; 1128 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS); 1129 return dentry_hashtable + (hash & D_HASHMASK); 1130 } 1131 1132 /** 1133 * d_obtain_alias - find or allocate a dentry for a given inode 1134 * @inode: inode to allocate the dentry for 1135 * 1136 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1137 * similar open by handle operations. The returned dentry may be anonymous, 1138 * or may have a full name (if the inode was already in the cache). 1139 * 1140 * When called on a directory inode, we must ensure that the inode only ever 1141 * has one dentry. If a dentry is found, that is returned instead of 1142 * allocating a new one. 1143 * 1144 * On successful return, the reference to the inode has been transferred 1145 * to the dentry. In case of an error the reference on the inode is released. 1146 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1147 * be passed in and will be the error will be propagate to the return value, 1148 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1149 */ 1150 struct dentry *d_obtain_alias(struct inode *inode) 1151 { 1152 static const struct qstr anonstring = { .name = "" }; 1153 struct dentry *tmp; 1154 struct dentry *res; 1155 1156 if (!inode) 1157 return ERR_PTR(-ESTALE); 1158 if (IS_ERR(inode)) 1159 return ERR_CAST(inode); 1160 1161 res = d_find_alias(inode); 1162 if (res) 1163 goto out_iput; 1164 1165 tmp = d_alloc(NULL, &anonstring); 1166 if (!tmp) { 1167 res = ERR_PTR(-ENOMEM); 1168 goto out_iput; 1169 } 1170 tmp->d_parent = tmp; /* make sure dput doesn't croak */ 1171 1172 spin_lock(&dcache_lock); 1173 res = __d_find_alias(inode, 0); 1174 if (res) { 1175 spin_unlock(&dcache_lock); 1176 dput(tmp); 1177 goto out_iput; 1178 } 1179 1180 /* attach a disconnected dentry */ 1181 spin_lock(&tmp->d_lock); 1182 tmp->d_sb = inode->i_sb; 1183 tmp->d_inode = inode; 1184 tmp->d_flags |= DCACHE_DISCONNECTED; 1185 tmp->d_flags &= ~DCACHE_UNHASHED; 1186 list_add(&tmp->d_alias, &inode->i_dentry); 1187 hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon); 1188 spin_unlock(&tmp->d_lock); 1189 1190 spin_unlock(&dcache_lock); 1191 return tmp; 1192 1193 out_iput: 1194 iput(inode); 1195 return res; 1196 } 1197 EXPORT_SYMBOL(d_obtain_alias); 1198 1199 /** 1200 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1201 * @inode: the inode which may have a disconnected dentry 1202 * @dentry: a negative dentry which we want to point to the inode. 1203 * 1204 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1205 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1206 * and return it, else simply d_add the inode to the dentry and return NULL. 1207 * 1208 * This is needed in the lookup routine of any filesystem that is exportable 1209 * (via knfsd) so that we can build dcache paths to directories effectively. 1210 * 1211 * If a dentry was found and moved, then it is returned. Otherwise NULL 1212 * is returned. This matches the expected return value of ->lookup. 1213 * 1214 */ 1215 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1216 { 1217 struct dentry *new = NULL; 1218 1219 if (inode && S_ISDIR(inode->i_mode)) { 1220 spin_lock(&dcache_lock); 1221 new = __d_find_alias(inode, 1); 1222 if (new) { 1223 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1224 spin_unlock(&dcache_lock); 1225 security_d_instantiate(new, inode); 1226 d_move(new, dentry); 1227 iput(inode); 1228 } else { 1229 /* already taking dcache_lock, so d_add() by hand */ 1230 __d_instantiate(dentry, inode); 1231 spin_unlock(&dcache_lock); 1232 security_d_instantiate(dentry, inode); 1233 d_rehash(dentry); 1234 } 1235 } else 1236 d_add(dentry, inode); 1237 return new; 1238 } 1239 EXPORT_SYMBOL(d_splice_alias); 1240 1241 /** 1242 * d_add_ci - lookup or allocate new dentry with case-exact name 1243 * @inode: the inode case-insensitive lookup has found 1244 * @dentry: the negative dentry that was passed to the parent's lookup func 1245 * @name: the case-exact name to be associated with the returned dentry 1246 * 1247 * This is to avoid filling the dcache with case-insensitive names to the 1248 * same inode, only the actual correct case is stored in the dcache for 1249 * case-insensitive filesystems. 1250 * 1251 * For a case-insensitive lookup match and if the the case-exact dentry 1252 * already exists in in the dcache, use it and return it. 1253 * 1254 * If no entry exists with the exact case name, allocate new dentry with 1255 * the exact case, and return the spliced entry. 1256 */ 1257 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1258 struct qstr *name) 1259 { 1260 int error; 1261 struct dentry *found; 1262 struct dentry *new; 1263 1264 /* 1265 * First check if a dentry matching the name already exists, 1266 * if not go ahead and create it now. 1267 */ 1268 found = d_hash_and_lookup(dentry->d_parent, name); 1269 if (!found) { 1270 new = d_alloc(dentry->d_parent, name); 1271 if (!new) { 1272 error = -ENOMEM; 1273 goto err_out; 1274 } 1275 1276 found = d_splice_alias(inode, new); 1277 if (found) { 1278 dput(new); 1279 return found; 1280 } 1281 return new; 1282 } 1283 1284 /* 1285 * If a matching dentry exists, and it's not negative use it. 1286 * 1287 * Decrement the reference count to balance the iget() done 1288 * earlier on. 1289 */ 1290 if (found->d_inode) { 1291 if (unlikely(found->d_inode != inode)) { 1292 /* This can't happen because bad inodes are unhashed. */ 1293 BUG_ON(!is_bad_inode(inode)); 1294 BUG_ON(!is_bad_inode(found->d_inode)); 1295 } 1296 iput(inode); 1297 return found; 1298 } 1299 1300 /* 1301 * Negative dentry: instantiate it unless the inode is a directory and 1302 * already has a dentry. 1303 */ 1304 spin_lock(&dcache_lock); 1305 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) { 1306 __d_instantiate(found, inode); 1307 spin_unlock(&dcache_lock); 1308 security_d_instantiate(found, inode); 1309 return found; 1310 } 1311 1312 /* 1313 * In case a directory already has a (disconnected) entry grab a 1314 * reference to it, move it in place and use it. 1315 */ 1316 new = list_entry(inode->i_dentry.next, struct dentry, d_alias); 1317 dget_locked(new); 1318 spin_unlock(&dcache_lock); 1319 security_d_instantiate(found, inode); 1320 d_move(new, found); 1321 iput(inode); 1322 dput(found); 1323 return new; 1324 1325 err_out: 1326 iput(inode); 1327 return ERR_PTR(error); 1328 } 1329 EXPORT_SYMBOL(d_add_ci); 1330 1331 /** 1332 * d_lookup - search for a dentry 1333 * @parent: parent dentry 1334 * @name: qstr of name we wish to find 1335 * 1336 * Searches the children of the parent dentry for the name in question. If 1337 * the dentry is found its reference count is incremented and the dentry 1338 * is returned. The caller must use dput to free the entry when it has 1339 * finished using it. %NULL is returned on failure. 1340 * 1341 * __d_lookup is dcache_lock free. The hash list is protected using RCU. 1342 * Memory barriers are used while updating and doing lockless traversal. 1343 * To avoid races with d_move while rename is happening, d_lock is used. 1344 * 1345 * Overflows in memcmp(), while d_move, are avoided by keeping the length 1346 * and name pointer in one structure pointed by d_qstr. 1347 * 1348 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while 1349 * lookup is going on. 1350 * 1351 * The dentry unused LRU is not updated even if lookup finds the required dentry 1352 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb, 1353 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock 1354 * acquisition. 1355 * 1356 * d_lookup() is protected against the concurrent renames in some unrelated 1357 * directory using the seqlockt_t rename_lock. 1358 */ 1359 1360 struct dentry * d_lookup(struct dentry * parent, struct qstr * name) 1361 { 1362 struct dentry * dentry = NULL; 1363 unsigned long seq; 1364 1365 do { 1366 seq = read_seqbegin(&rename_lock); 1367 dentry = __d_lookup(parent, name); 1368 if (dentry) 1369 break; 1370 } while (read_seqretry(&rename_lock, seq)); 1371 return dentry; 1372 } 1373 EXPORT_SYMBOL(d_lookup); 1374 1375 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name) 1376 { 1377 unsigned int len = name->len; 1378 unsigned int hash = name->hash; 1379 const unsigned char *str = name->name; 1380 struct hlist_head *head = d_hash(parent,hash); 1381 struct dentry *found = NULL; 1382 struct hlist_node *node; 1383 struct dentry *dentry; 1384 1385 rcu_read_lock(); 1386 1387 hlist_for_each_entry_rcu(dentry, node, head, d_hash) { 1388 struct qstr *qstr; 1389 1390 if (dentry->d_name.hash != hash) 1391 continue; 1392 if (dentry->d_parent != parent) 1393 continue; 1394 1395 spin_lock(&dentry->d_lock); 1396 1397 /* 1398 * Recheck the dentry after taking the lock - d_move may have 1399 * changed things. Don't bother checking the hash because we're 1400 * about to compare the whole name anyway. 1401 */ 1402 if (dentry->d_parent != parent) 1403 goto next; 1404 1405 /* non-existing due to RCU? */ 1406 if (d_unhashed(dentry)) 1407 goto next; 1408 1409 /* 1410 * It is safe to compare names since d_move() cannot 1411 * change the qstr (protected by d_lock). 1412 */ 1413 qstr = &dentry->d_name; 1414 if (parent->d_op && parent->d_op->d_compare) { 1415 if (parent->d_op->d_compare(parent, qstr, name)) 1416 goto next; 1417 } else { 1418 if (qstr->len != len) 1419 goto next; 1420 if (memcmp(qstr->name, str, len)) 1421 goto next; 1422 } 1423 1424 atomic_inc(&dentry->d_count); 1425 found = dentry; 1426 spin_unlock(&dentry->d_lock); 1427 break; 1428 next: 1429 spin_unlock(&dentry->d_lock); 1430 } 1431 rcu_read_unlock(); 1432 1433 return found; 1434 } 1435 1436 /** 1437 * d_hash_and_lookup - hash the qstr then search for a dentry 1438 * @dir: Directory to search in 1439 * @name: qstr of name we wish to find 1440 * 1441 * On hash failure or on lookup failure NULL is returned. 1442 */ 1443 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 1444 { 1445 struct dentry *dentry = NULL; 1446 1447 /* 1448 * Check for a fs-specific hash function. Note that we must 1449 * calculate the standard hash first, as the d_op->d_hash() 1450 * routine may choose to leave the hash value unchanged. 1451 */ 1452 name->hash = full_name_hash(name->name, name->len); 1453 if (dir->d_op && dir->d_op->d_hash) { 1454 if (dir->d_op->d_hash(dir, name) < 0) 1455 goto out; 1456 } 1457 dentry = d_lookup(dir, name); 1458 out: 1459 return dentry; 1460 } 1461 1462 /** 1463 * d_validate - verify dentry provided from insecure source 1464 * @dentry: The dentry alleged to be valid child of @dparent 1465 * @dparent: The parent dentry (known to be valid) 1466 * 1467 * An insecure source has sent us a dentry, here we verify it and dget() it. 1468 * This is used by ncpfs in its readdir implementation. 1469 * Zero is returned in the dentry is invalid. 1470 */ 1471 1472 int d_validate(struct dentry *dentry, struct dentry *dparent) 1473 { 1474 struct hlist_head *base; 1475 struct hlist_node *lhp; 1476 1477 /* Check whether the ptr might be valid at all.. */ 1478 if (!kmem_ptr_validate(dentry_cache, dentry)) 1479 goto out; 1480 1481 if (dentry->d_parent != dparent) 1482 goto out; 1483 1484 spin_lock(&dcache_lock); 1485 base = d_hash(dparent, dentry->d_name.hash); 1486 hlist_for_each(lhp,base) { 1487 /* hlist_for_each_entry_rcu() not required for d_hash list 1488 * as it is parsed under dcache_lock 1489 */ 1490 if (dentry == hlist_entry(lhp, struct dentry, d_hash)) { 1491 __dget_locked(dentry); 1492 spin_unlock(&dcache_lock); 1493 return 1; 1494 } 1495 } 1496 spin_unlock(&dcache_lock); 1497 out: 1498 return 0; 1499 } 1500 EXPORT_SYMBOL(d_validate); 1501 1502 /* 1503 * When a file is deleted, we have two options: 1504 * - turn this dentry into a negative dentry 1505 * - unhash this dentry and free it. 1506 * 1507 * Usually, we want to just turn this into 1508 * a negative dentry, but if anybody else is 1509 * currently using the dentry or the inode 1510 * we can't do that and we fall back on removing 1511 * it from the hash queues and waiting for 1512 * it to be deleted later when it has no users 1513 */ 1514 1515 /** 1516 * d_delete - delete a dentry 1517 * @dentry: The dentry to delete 1518 * 1519 * Turn the dentry into a negative dentry if possible, otherwise 1520 * remove it from the hash queues so it can be deleted later 1521 */ 1522 1523 void d_delete(struct dentry * dentry) 1524 { 1525 int isdir = 0; 1526 /* 1527 * Are we the only user? 1528 */ 1529 spin_lock(&dcache_lock); 1530 spin_lock(&dentry->d_lock); 1531 isdir = S_ISDIR(dentry->d_inode->i_mode); 1532 if (atomic_read(&dentry->d_count) == 1) { 1533 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 1534 dentry_iput(dentry); 1535 fsnotify_nameremove(dentry, isdir); 1536 return; 1537 } 1538 1539 if (!d_unhashed(dentry)) 1540 __d_drop(dentry); 1541 1542 spin_unlock(&dentry->d_lock); 1543 spin_unlock(&dcache_lock); 1544 1545 fsnotify_nameremove(dentry, isdir); 1546 } 1547 EXPORT_SYMBOL(d_delete); 1548 1549 static void __d_rehash(struct dentry * entry, struct hlist_head *list) 1550 { 1551 1552 entry->d_flags &= ~DCACHE_UNHASHED; 1553 hlist_add_head_rcu(&entry->d_hash, list); 1554 } 1555 1556 static void _d_rehash(struct dentry * entry) 1557 { 1558 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 1559 } 1560 1561 /** 1562 * d_rehash - add an entry back to the hash 1563 * @entry: dentry to add to the hash 1564 * 1565 * Adds a dentry to the hash according to its name. 1566 */ 1567 1568 void d_rehash(struct dentry * entry) 1569 { 1570 spin_lock(&dcache_lock); 1571 spin_lock(&entry->d_lock); 1572 _d_rehash(entry); 1573 spin_unlock(&entry->d_lock); 1574 spin_unlock(&dcache_lock); 1575 } 1576 EXPORT_SYMBOL(d_rehash); 1577 1578 /* 1579 * When switching names, the actual string doesn't strictly have to 1580 * be preserved in the target - because we're dropping the target 1581 * anyway. As such, we can just do a simple memcpy() to copy over 1582 * the new name before we switch. 1583 * 1584 * Note that we have to be a lot more careful about getting the hash 1585 * switched - we have to switch the hash value properly even if it 1586 * then no longer matches the actual (corrupted) string of the target. 1587 * The hash value has to match the hash queue that the dentry is on.. 1588 */ 1589 static void switch_names(struct dentry *dentry, struct dentry *target) 1590 { 1591 if (dname_external(target)) { 1592 if (dname_external(dentry)) { 1593 /* 1594 * Both external: swap the pointers 1595 */ 1596 swap(target->d_name.name, dentry->d_name.name); 1597 } else { 1598 /* 1599 * dentry:internal, target:external. Steal target's 1600 * storage and make target internal. 1601 */ 1602 memcpy(target->d_iname, dentry->d_name.name, 1603 dentry->d_name.len + 1); 1604 dentry->d_name.name = target->d_name.name; 1605 target->d_name.name = target->d_iname; 1606 } 1607 } else { 1608 if (dname_external(dentry)) { 1609 /* 1610 * dentry:external, target:internal. Give dentry's 1611 * storage to target and make dentry internal 1612 */ 1613 memcpy(dentry->d_iname, target->d_name.name, 1614 target->d_name.len + 1); 1615 target->d_name.name = dentry->d_name.name; 1616 dentry->d_name.name = dentry->d_iname; 1617 } else { 1618 /* 1619 * Both are internal. Just copy target to dentry 1620 */ 1621 memcpy(dentry->d_iname, target->d_name.name, 1622 target->d_name.len + 1); 1623 dentry->d_name.len = target->d_name.len; 1624 return; 1625 } 1626 } 1627 swap(dentry->d_name.len, target->d_name.len); 1628 } 1629 1630 /* 1631 * We cannibalize "target" when moving dentry on top of it, 1632 * because it's going to be thrown away anyway. We could be more 1633 * polite about it, though. 1634 * 1635 * This forceful removal will result in ugly /proc output if 1636 * somebody holds a file open that got deleted due to a rename. 1637 * We could be nicer about the deleted file, and let it show 1638 * up under the name it had before it was deleted rather than 1639 * under the original name of the file that was moved on top of it. 1640 */ 1641 1642 /* 1643 * d_move_locked - move a dentry 1644 * @dentry: entry to move 1645 * @target: new dentry 1646 * 1647 * Update the dcache to reflect the move of a file name. Negative 1648 * dcache entries should not be moved in this way. 1649 */ 1650 static void d_move_locked(struct dentry * dentry, struct dentry * target) 1651 { 1652 struct hlist_head *list; 1653 1654 if (!dentry->d_inode) 1655 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 1656 1657 write_seqlock(&rename_lock); 1658 /* 1659 * XXXX: do we really need to take target->d_lock? 1660 */ 1661 if (target < dentry) { 1662 spin_lock(&target->d_lock); 1663 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1664 } else { 1665 spin_lock(&dentry->d_lock); 1666 spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED); 1667 } 1668 1669 /* Move the dentry to the target hash queue, if on different bucket */ 1670 if (d_unhashed(dentry)) 1671 goto already_unhashed; 1672 1673 hlist_del_rcu(&dentry->d_hash); 1674 1675 already_unhashed: 1676 list = d_hash(target->d_parent, target->d_name.hash); 1677 __d_rehash(dentry, list); 1678 1679 /* Unhash the target: dput() will then get rid of it */ 1680 __d_drop(target); 1681 1682 list_del(&dentry->d_u.d_child); 1683 list_del(&target->d_u.d_child); 1684 1685 /* Switch the names.. */ 1686 switch_names(dentry, target); 1687 swap(dentry->d_name.hash, target->d_name.hash); 1688 1689 /* ... and switch the parents */ 1690 if (IS_ROOT(dentry)) { 1691 dentry->d_parent = target->d_parent; 1692 target->d_parent = target; 1693 INIT_LIST_HEAD(&target->d_u.d_child); 1694 } else { 1695 swap(dentry->d_parent, target->d_parent); 1696 1697 /* And add them back to the (new) parent lists */ 1698 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 1699 } 1700 1701 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 1702 spin_unlock(&target->d_lock); 1703 fsnotify_d_move(dentry); 1704 spin_unlock(&dentry->d_lock); 1705 write_sequnlock(&rename_lock); 1706 } 1707 1708 /** 1709 * d_move - move a dentry 1710 * @dentry: entry to move 1711 * @target: new dentry 1712 * 1713 * Update the dcache to reflect the move of a file name. Negative 1714 * dcache entries should not be moved in this way. 1715 */ 1716 1717 void d_move(struct dentry * dentry, struct dentry * target) 1718 { 1719 spin_lock(&dcache_lock); 1720 d_move_locked(dentry, target); 1721 spin_unlock(&dcache_lock); 1722 } 1723 EXPORT_SYMBOL(d_move); 1724 1725 /** 1726 * d_ancestor - search for an ancestor 1727 * @p1: ancestor dentry 1728 * @p2: child dentry 1729 * 1730 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 1731 * an ancestor of p2, else NULL. 1732 */ 1733 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 1734 { 1735 struct dentry *p; 1736 1737 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 1738 if (p->d_parent == p1) 1739 return p; 1740 } 1741 return NULL; 1742 } 1743 1744 /* 1745 * This helper attempts to cope with remotely renamed directories 1746 * 1747 * It assumes that the caller is already holding 1748 * dentry->d_parent->d_inode->i_mutex and the dcache_lock 1749 * 1750 * Note: If ever the locking in lock_rename() changes, then please 1751 * remember to update this too... 1752 */ 1753 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias) 1754 __releases(dcache_lock) 1755 { 1756 struct mutex *m1 = NULL, *m2 = NULL; 1757 struct dentry *ret; 1758 1759 /* If alias and dentry share a parent, then no extra locks required */ 1760 if (alias->d_parent == dentry->d_parent) 1761 goto out_unalias; 1762 1763 /* Check for loops */ 1764 ret = ERR_PTR(-ELOOP); 1765 if (d_ancestor(alias, dentry)) 1766 goto out_err; 1767 1768 /* See lock_rename() */ 1769 ret = ERR_PTR(-EBUSY); 1770 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 1771 goto out_err; 1772 m1 = &dentry->d_sb->s_vfs_rename_mutex; 1773 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 1774 goto out_err; 1775 m2 = &alias->d_parent->d_inode->i_mutex; 1776 out_unalias: 1777 d_move_locked(alias, dentry); 1778 ret = alias; 1779 out_err: 1780 spin_unlock(&dcache_lock); 1781 if (m2) 1782 mutex_unlock(m2); 1783 if (m1) 1784 mutex_unlock(m1); 1785 return ret; 1786 } 1787 1788 /* 1789 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 1790 * named dentry in place of the dentry to be replaced. 1791 */ 1792 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 1793 { 1794 struct dentry *dparent, *aparent; 1795 1796 switch_names(dentry, anon); 1797 swap(dentry->d_name.hash, anon->d_name.hash); 1798 1799 dparent = dentry->d_parent; 1800 aparent = anon->d_parent; 1801 1802 dentry->d_parent = (aparent == anon) ? dentry : aparent; 1803 list_del(&dentry->d_u.d_child); 1804 if (!IS_ROOT(dentry)) 1805 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 1806 else 1807 INIT_LIST_HEAD(&dentry->d_u.d_child); 1808 1809 anon->d_parent = (dparent == dentry) ? anon : dparent; 1810 list_del(&anon->d_u.d_child); 1811 if (!IS_ROOT(anon)) 1812 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); 1813 else 1814 INIT_LIST_HEAD(&anon->d_u.d_child); 1815 1816 anon->d_flags &= ~DCACHE_DISCONNECTED; 1817 } 1818 1819 /** 1820 * d_materialise_unique - introduce an inode into the tree 1821 * @dentry: candidate dentry 1822 * @inode: inode to bind to the dentry, to which aliases may be attached 1823 * 1824 * Introduces an dentry into the tree, substituting an extant disconnected 1825 * root directory alias in its place if there is one 1826 */ 1827 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 1828 { 1829 struct dentry *actual; 1830 1831 BUG_ON(!d_unhashed(dentry)); 1832 1833 spin_lock(&dcache_lock); 1834 1835 if (!inode) { 1836 actual = dentry; 1837 __d_instantiate(dentry, NULL); 1838 goto found_lock; 1839 } 1840 1841 if (S_ISDIR(inode->i_mode)) { 1842 struct dentry *alias; 1843 1844 /* Does an aliased dentry already exist? */ 1845 alias = __d_find_alias(inode, 0); 1846 if (alias) { 1847 actual = alias; 1848 /* Is this an anonymous mountpoint that we could splice 1849 * into our tree? */ 1850 if (IS_ROOT(alias)) { 1851 spin_lock(&alias->d_lock); 1852 __d_materialise_dentry(dentry, alias); 1853 __d_drop(alias); 1854 goto found; 1855 } 1856 /* Nope, but we must(!) avoid directory aliasing */ 1857 actual = __d_unalias(dentry, alias); 1858 if (IS_ERR(actual)) 1859 dput(alias); 1860 goto out_nolock; 1861 } 1862 } 1863 1864 /* Add a unique reference */ 1865 actual = __d_instantiate_unique(dentry, inode); 1866 if (!actual) 1867 actual = dentry; 1868 else if (unlikely(!d_unhashed(actual))) 1869 goto shouldnt_be_hashed; 1870 1871 found_lock: 1872 spin_lock(&actual->d_lock); 1873 found: 1874 _d_rehash(actual); 1875 spin_unlock(&actual->d_lock); 1876 spin_unlock(&dcache_lock); 1877 out_nolock: 1878 if (actual == dentry) { 1879 security_d_instantiate(dentry, inode); 1880 return NULL; 1881 } 1882 1883 iput(inode); 1884 return actual; 1885 1886 shouldnt_be_hashed: 1887 spin_unlock(&dcache_lock); 1888 BUG(); 1889 } 1890 EXPORT_SYMBOL_GPL(d_materialise_unique); 1891 1892 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 1893 { 1894 *buflen -= namelen; 1895 if (*buflen < 0) 1896 return -ENAMETOOLONG; 1897 *buffer -= namelen; 1898 memcpy(*buffer, str, namelen); 1899 return 0; 1900 } 1901 1902 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 1903 { 1904 return prepend(buffer, buflen, name->name, name->len); 1905 } 1906 1907 /** 1908 * __d_path - return the path of a dentry 1909 * @path: the dentry/vfsmount to report 1910 * @root: root vfsmnt/dentry (may be modified by this function) 1911 * @buffer: buffer to return value in 1912 * @buflen: buffer length 1913 * 1914 * Convert a dentry into an ASCII path name. If the entry has been deleted 1915 * the string " (deleted)" is appended. Note that this is ambiguous. 1916 * 1917 * Returns a pointer into the buffer or an error code if the 1918 * path was too long. 1919 * 1920 * "buflen" should be positive. Caller holds the dcache_lock. 1921 * 1922 * If path is not reachable from the supplied root, then the value of 1923 * root is changed (without modifying refcounts). 1924 */ 1925 char *__d_path(const struct path *path, struct path *root, 1926 char *buffer, int buflen) 1927 { 1928 struct dentry *dentry = path->dentry; 1929 struct vfsmount *vfsmnt = path->mnt; 1930 char *end = buffer + buflen; 1931 char *retval; 1932 1933 spin_lock(&vfsmount_lock); 1934 prepend(&end, &buflen, "\0", 1); 1935 if (d_unlinked(dentry) && 1936 (prepend(&end, &buflen, " (deleted)", 10) != 0)) 1937 goto Elong; 1938 1939 if (buflen < 1) 1940 goto Elong; 1941 /* Get '/' right */ 1942 retval = end-1; 1943 *retval = '/'; 1944 1945 for (;;) { 1946 struct dentry * parent; 1947 1948 if (dentry == root->dentry && vfsmnt == root->mnt) 1949 break; 1950 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 1951 /* Global root? */ 1952 if (vfsmnt->mnt_parent == vfsmnt) { 1953 goto global_root; 1954 } 1955 dentry = vfsmnt->mnt_mountpoint; 1956 vfsmnt = vfsmnt->mnt_parent; 1957 continue; 1958 } 1959 parent = dentry->d_parent; 1960 prefetch(parent); 1961 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) || 1962 (prepend(&end, &buflen, "/", 1) != 0)) 1963 goto Elong; 1964 retval = end; 1965 dentry = parent; 1966 } 1967 1968 out: 1969 spin_unlock(&vfsmount_lock); 1970 return retval; 1971 1972 global_root: 1973 retval += 1; /* hit the slash */ 1974 if (prepend_name(&retval, &buflen, &dentry->d_name) != 0) 1975 goto Elong; 1976 root->mnt = vfsmnt; 1977 root->dentry = dentry; 1978 goto out; 1979 1980 Elong: 1981 retval = ERR_PTR(-ENAMETOOLONG); 1982 goto out; 1983 } 1984 1985 /** 1986 * d_path - return the path of a dentry 1987 * @path: path to report 1988 * @buf: buffer to return value in 1989 * @buflen: buffer length 1990 * 1991 * Convert a dentry into an ASCII path name. If the entry has been deleted 1992 * the string " (deleted)" is appended. Note that this is ambiguous. 1993 * 1994 * Returns a pointer into the buffer or an error code if the path was 1995 * too long. Note: Callers should use the returned pointer, not the passed 1996 * in buffer, to use the name! The implementation often starts at an offset 1997 * into the buffer, and may leave 0 bytes at the start. 1998 * 1999 * "buflen" should be positive. 2000 */ 2001 char *d_path(const struct path *path, char *buf, int buflen) 2002 { 2003 char *res; 2004 struct path root; 2005 struct path tmp; 2006 2007 /* 2008 * We have various synthetic filesystems that never get mounted. On 2009 * these filesystems dentries are never used for lookup purposes, and 2010 * thus don't need to be hashed. They also don't need a name until a 2011 * user wants to identify the object in /proc/pid/fd/. The little hack 2012 * below allows us to generate a name for these objects on demand: 2013 */ 2014 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2015 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2016 2017 read_lock(¤t->fs->lock); 2018 root = current->fs->root; 2019 path_get(&root); 2020 read_unlock(¤t->fs->lock); 2021 spin_lock(&dcache_lock); 2022 tmp = root; 2023 res = __d_path(path, &tmp, buf, buflen); 2024 spin_unlock(&dcache_lock); 2025 path_put(&root); 2026 return res; 2027 } 2028 EXPORT_SYMBOL(d_path); 2029 2030 /* 2031 * Helper function for dentry_operations.d_dname() members 2032 */ 2033 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2034 const char *fmt, ...) 2035 { 2036 va_list args; 2037 char temp[64]; 2038 int sz; 2039 2040 va_start(args, fmt); 2041 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2042 va_end(args); 2043 2044 if (sz > sizeof(temp) || sz > buflen) 2045 return ERR_PTR(-ENAMETOOLONG); 2046 2047 buffer += buflen - sz; 2048 return memcpy(buffer, temp, sz); 2049 } 2050 2051 /* 2052 * Write full pathname from the root of the filesystem into the buffer. 2053 */ 2054 char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 2055 { 2056 char *end = buf + buflen; 2057 char *retval; 2058 2059 prepend(&end, &buflen, "\0", 1); 2060 if (buflen < 1) 2061 goto Elong; 2062 /* Get '/' right */ 2063 retval = end-1; 2064 *retval = '/'; 2065 2066 while (!IS_ROOT(dentry)) { 2067 struct dentry *parent = dentry->d_parent; 2068 2069 prefetch(parent); 2070 if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) || 2071 (prepend(&end, &buflen, "/", 1) != 0)) 2072 goto Elong; 2073 2074 retval = end; 2075 dentry = parent; 2076 } 2077 return retval; 2078 Elong: 2079 return ERR_PTR(-ENAMETOOLONG); 2080 } 2081 EXPORT_SYMBOL(__dentry_path); 2082 2083 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2084 { 2085 char *p = NULL; 2086 char *retval; 2087 2088 spin_lock(&dcache_lock); 2089 if (d_unlinked(dentry)) { 2090 p = buf + buflen; 2091 if (prepend(&p, &buflen, "//deleted", 10) != 0) 2092 goto Elong; 2093 buflen++; 2094 } 2095 retval = __dentry_path(dentry, buf, buflen); 2096 spin_unlock(&dcache_lock); 2097 if (!IS_ERR(retval) && p) 2098 *p = '/'; /* restore '/' overriden with '\0' */ 2099 return retval; 2100 Elong: 2101 spin_unlock(&dcache_lock); 2102 return ERR_PTR(-ENAMETOOLONG); 2103 } 2104 2105 /* 2106 * NOTE! The user-level library version returns a 2107 * character pointer. The kernel system call just 2108 * returns the length of the buffer filled (which 2109 * includes the ending '\0' character), or a negative 2110 * error value. So libc would do something like 2111 * 2112 * char *getcwd(char * buf, size_t size) 2113 * { 2114 * int retval; 2115 * 2116 * retval = sys_getcwd(buf, size); 2117 * if (retval >= 0) 2118 * return buf; 2119 * errno = -retval; 2120 * return NULL; 2121 * } 2122 */ 2123 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2124 { 2125 int error; 2126 struct path pwd, root; 2127 char *page = (char *) __get_free_page(GFP_USER); 2128 2129 if (!page) 2130 return -ENOMEM; 2131 2132 read_lock(¤t->fs->lock); 2133 pwd = current->fs->pwd; 2134 path_get(&pwd); 2135 root = current->fs->root; 2136 path_get(&root); 2137 read_unlock(¤t->fs->lock); 2138 2139 error = -ENOENT; 2140 spin_lock(&dcache_lock); 2141 if (!d_unlinked(pwd.dentry)) { 2142 unsigned long len; 2143 struct path tmp = root; 2144 char * cwd; 2145 2146 cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE); 2147 spin_unlock(&dcache_lock); 2148 2149 error = PTR_ERR(cwd); 2150 if (IS_ERR(cwd)) 2151 goto out; 2152 2153 error = -ERANGE; 2154 len = PAGE_SIZE + page - cwd; 2155 if (len <= size) { 2156 error = len; 2157 if (copy_to_user(buf, cwd, len)) 2158 error = -EFAULT; 2159 } 2160 } else 2161 spin_unlock(&dcache_lock); 2162 2163 out: 2164 path_put(&pwd); 2165 path_put(&root); 2166 free_page((unsigned long) page); 2167 return error; 2168 } 2169 2170 /* 2171 * Test whether new_dentry is a subdirectory of old_dentry. 2172 * 2173 * Trivially implemented using the dcache structure 2174 */ 2175 2176 /** 2177 * is_subdir - is new dentry a subdirectory of old_dentry 2178 * @new_dentry: new dentry 2179 * @old_dentry: old dentry 2180 * 2181 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2182 * Returns 0 otherwise. 2183 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2184 */ 2185 2186 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2187 { 2188 int result; 2189 unsigned long seq; 2190 2191 if (new_dentry == old_dentry) 2192 return 1; 2193 2194 /* 2195 * Need rcu_readlock to protect against the d_parent trashing 2196 * due to d_move 2197 */ 2198 rcu_read_lock(); 2199 do { 2200 /* for restarting inner loop in case of seq retry */ 2201 seq = read_seqbegin(&rename_lock); 2202 if (d_ancestor(old_dentry, new_dentry)) 2203 result = 1; 2204 else 2205 result = 0; 2206 } while (read_seqretry(&rename_lock, seq)); 2207 rcu_read_unlock(); 2208 2209 return result; 2210 } 2211 2212 int path_is_under(struct path *path1, struct path *path2) 2213 { 2214 struct vfsmount *mnt = path1->mnt; 2215 struct dentry *dentry = path1->dentry; 2216 int res; 2217 spin_lock(&vfsmount_lock); 2218 if (mnt != path2->mnt) { 2219 for (;;) { 2220 if (mnt->mnt_parent == mnt) { 2221 spin_unlock(&vfsmount_lock); 2222 return 0; 2223 } 2224 if (mnt->mnt_parent == path2->mnt) 2225 break; 2226 mnt = mnt->mnt_parent; 2227 } 2228 dentry = mnt->mnt_mountpoint; 2229 } 2230 res = is_subdir(dentry, path2->dentry); 2231 spin_unlock(&vfsmount_lock); 2232 return res; 2233 } 2234 EXPORT_SYMBOL(path_is_under); 2235 2236 void d_genocide(struct dentry *root) 2237 { 2238 struct dentry *this_parent = root; 2239 struct list_head *next; 2240 2241 spin_lock(&dcache_lock); 2242 repeat: 2243 next = this_parent->d_subdirs.next; 2244 resume: 2245 while (next != &this_parent->d_subdirs) { 2246 struct list_head *tmp = next; 2247 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 2248 next = tmp->next; 2249 if (d_unhashed(dentry)||!dentry->d_inode) 2250 continue; 2251 if (!list_empty(&dentry->d_subdirs)) { 2252 this_parent = dentry; 2253 goto repeat; 2254 } 2255 atomic_dec(&dentry->d_count); 2256 } 2257 if (this_parent != root) { 2258 next = this_parent->d_u.d_child.next; 2259 atomic_dec(&this_parent->d_count); 2260 this_parent = this_parent->d_parent; 2261 goto resume; 2262 } 2263 spin_unlock(&dcache_lock); 2264 } 2265 2266 /** 2267 * find_inode_number - check for dentry with name 2268 * @dir: directory to check 2269 * @name: Name to find. 2270 * 2271 * Check whether a dentry already exists for the given name, 2272 * and return the inode number if it has an inode. Otherwise 2273 * 0 is returned. 2274 * 2275 * This routine is used to post-process directory listings for 2276 * filesystems using synthetic inode numbers, and is necessary 2277 * to keep getcwd() working. 2278 */ 2279 2280 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 2281 { 2282 struct dentry * dentry; 2283 ino_t ino = 0; 2284 2285 dentry = d_hash_and_lookup(dir, name); 2286 if (dentry) { 2287 if (dentry->d_inode) 2288 ino = dentry->d_inode->i_ino; 2289 dput(dentry); 2290 } 2291 return ino; 2292 } 2293 EXPORT_SYMBOL(find_inode_number); 2294 2295 static __initdata unsigned long dhash_entries; 2296 static int __init set_dhash_entries(char *str) 2297 { 2298 if (!str) 2299 return 0; 2300 dhash_entries = simple_strtoul(str, &str, 0); 2301 return 1; 2302 } 2303 __setup("dhash_entries=", set_dhash_entries); 2304 2305 static void __init dcache_init_early(void) 2306 { 2307 int loop; 2308 2309 /* If hashes are distributed across NUMA nodes, defer 2310 * hash allocation until vmalloc space is available. 2311 */ 2312 if (hashdist) 2313 return; 2314 2315 dentry_hashtable = 2316 alloc_large_system_hash("Dentry cache", 2317 sizeof(struct hlist_head), 2318 dhash_entries, 2319 13, 2320 HASH_EARLY, 2321 &d_hash_shift, 2322 &d_hash_mask, 2323 0); 2324 2325 for (loop = 0; loop < (1 << d_hash_shift); loop++) 2326 INIT_HLIST_HEAD(&dentry_hashtable[loop]); 2327 } 2328 2329 static void __init dcache_init(void) 2330 { 2331 int loop; 2332 2333 /* 2334 * A constructor could be added for stable state like the lists, 2335 * but it is probably not worth it because of the cache nature 2336 * of the dcache. 2337 */ 2338 dentry_cache = KMEM_CACHE(dentry, 2339 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 2340 2341 register_shrinker(&dcache_shrinker); 2342 2343 /* Hash may have been set up in dcache_init_early */ 2344 if (!hashdist) 2345 return; 2346 2347 dentry_hashtable = 2348 alloc_large_system_hash("Dentry cache", 2349 sizeof(struct hlist_head), 2350 dhash_entries, 2351 13, 2352 0, 2353 &d_hash_shift, 2354 &d_hash_mask, 2355 0); 2356 2357 for (loop = 0; loop < (1 << d_hash_shift); loop++) 2358 INIT_HLIST_HEAD(&dentry_hashtable[loop]); 2359 } 2360 2361 /* SLAB cache for __getname() consumers */ 2362 struct kmem_cache *names_cachep __read_mostly; 2363 EXPORT_SYMBOL(names_cachep); 2364 2365 EXPORT_SYMBOL(d_genocide); 2366 2367 void __init vfs_caches_init_early(void) 2368 { 2369 dcache_init_early(); 2370 inode_init_early(); 2371 } 2372 2373 void __init vfs_caches_init(unsigned long mempages) 2374 { 2375 unsigned long reserve; 2376 2377 /* Base hash sizes on available memory, with a reserve equal to 2378 150% of current kernel size */ 2379 2380 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 2381 mempages -= reserve; 2382 2383 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 2384 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 2385 2386 dcache_init(); 2387 inode_init(); 2388 files_init(mempages); 2389 mnt_init(); 2390 bdev_cache_init(); 2391 chrdev_init(); 2392 } 2393