xref: /linux/fs/dcache.c (revision 5bf2b19320ec31d094d7370fdf536f7fd91fd799)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include "internal.h"
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static void __d_free(struct dentry *dentry)
71 {
72 	WARN_ON(!list_empty(&dentry->d_alias));
73 	if (dname_external(dentry))
74 		kfree(dentry->d_name.name);
75 	kmem_cache_free(dentry_cache, dentry);
76 }
77 
78 static void d_callback(struct rcu_head *head)
79 {
80 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 	__d_free(dentry);
82 }
83 
84 /*
85  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
86  * inside dcache_lock.
87  */
88 static void d_free(struct dentry *dentry)
89 {
90 	if (dentry->d_op && dentry->d_op->d_release)
91 		dentry->d_op->d_release(dentry);
92 	/* if dentry was never inserted into hash, immediate free is OK */
93 	if (hlist_unhashed(&dentry->d_hash))
94 		__d_free(dentry);
95 	else
96 		call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98 
99 /*
100  * Release the dentry's inode, using the filesystem
101  * d_iput() operation if defined.
102  */
103 static void dentry_iput(struct dentry * dentry)
104 	__releases(dentry->d_lock)
105 	__releases(dcache_lock)
106 {
107 	struct inode *inode = dentry->d_inode;
108 	if (inode) {
109 		dentry->d_inode = NULL;
110 		list_del_init(&dentry->d_alias);
111 		spin_unlock(&dentry->d_lock);
112 		spin_unlock(&dcache_lock);
113 		if (!inode->i_nlink)
114 			fsnotify_inoderemove(inode);
115 		if (dentry->d_op && dentry->d_op->d_iput)
116 			dentry->d_op->d_iput(dentry, inode);
117 		else
118 			iput(inode);
119 	} else {
120 		spin_unlock(&dentry->d_lock);
121 		spin_unlock(&dcache_lock);
122 	}
123 }
124 
125 /*
126  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
127  */
128 static void dentry_lru_add(struct dentry *dentry)
129 {
130 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
131 	dentry->d_sb->s_nr_dentry_unused++;
132 	dentry_stat.nr_unused++;
133 }
134 
135 static void dentry_lru_add_tail(struct dentry *dentry)
136 {
137 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
138 	dentry->d_sb->s_nr_dentry_unused++;
139 	dentry_stat.nr_unused++;
140 }
141 
142 static void dentry_lru_del(struct dentry *dentry)
143 {
144 	if (!list_empty(&dentry->d_lru)) {
145 		list_del(&dentry->d_lru);
146 		dentry->d_sb->s_nr_dentry_unused--;
147 		dentry_stat.nr_unused--;
148 	}
149 }
150 
151 static void dentry_lru_del_init(struct dentry *dentry)
152 {
153 	if (likely(!list_empty(&dentry->d_lru))) {
154 		list_del_init(&dentry->d_lru);
155 		dentry->d_sb->s_nr_dentry_unused--;
156 		dentry_stat.nr_unused--;
157 	}
158 }
159 
160 /**
161  * d_kill - kill dentry and return parent
162  * @dentry: dentry to kill
163  *
164  * The dentry must already be unhashed and removed from the LRU.
165  *
166  * If this is the root of the dentry tree, return NULL.
167  */
168 static struct dentry *d_kill(struct dentry *dentry)
169 	__releases(dentry->d_lock)
170 	__releases(dcache_lock)
171 {
172 	struct dentry *parent;
173 
174 	list_del(&dentry->d_u.d_child);
175 	dentry_stat.nr_dentry--;	/* For d_free, below */
176 	/*drops the locks, at that point nobody can reach this dentry */
177 	dentry_iput(dentry);
178 	if (IS_ROOT(dentry))
179 		parent = NULL;
180 	else
181 		parent = dentry->d_parent;
182 	d_free(dentry);
183 	return parent;
184 }
185 
186 /*
187  * This is dput
188  *
189  * This is complicated by the fact that we do not want to put
190  * dentries that are no longer on any hash chain on the unused
191  * list: we'd much rather just get rid of them immediately.
192  *
193  * However, that implies that we have to traverse the dentry
194  * tree upwards to the parents which might _also_ now be
195  * scheduled for deletion (it may have been only waiting for
196  * its last child to go away).
197  *
198  * This tail recursion is done by hand as we don't want to depend
199  * on the compiler to always get this right (gcc generally doesn't).
200  * Real recursion would eat up our stack space.
201  */
202 
203 /*
204  * dput - release a dentry
205  * @dentry: dentry to release
206  *
207  * Release a dentry. This will drop the usage count and if appropriate
208  * call the dentry unlink method as well as removing it from the queues and
209  * releasing its resources. If the parent dentries were scheduled for release
210  * they too may now get deleted.
211  *
212  * no dcache lock, please.
213  */
214 
215 void dput(struct dentry *dentry)
216 {
217 	if (!dentry)
218 		return;
219 
220 repeat:
221 	if (atomic_read(&dentry->d_count) == 1)
222 		might_sleep();
223 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
224 		return;
225 
226 	spin_lock(&dentry->d_lock);
227 	if (atomic_read(&dentry->d_count)) {
228 		spin_unlock(&dentry->d_lock);
229 		spin_unlock(&dcache_lock);
230 		return;
231 	}
232 
233 	/*
234 	 * AV: ->d_delete() is _NOT_ allowed to block now.
235 	 */
236 	if (dentry->d_op && dentry->d_op->d_delete) {
237 		if (dentry->d_op->d_delete(dentry))
238 			goto unhash_it;
239 	}
240 	/* Unreachable? Get rid of it */
241  	if (d_unhashed(dentry))
242 		goto kill_it;
243   	if (list_empty(&dentry->d_lru)) {
244   		dentry->d_flags |= DCACHE_REFERENCED;
245 		dentry_lru_add(dentry);
246   	}
247  	spin_unlock(&dentry->d_lock);
248 	spin_unlock(&dcache_lock);
249 	return;
250 
251 unhash_it:
252 	__d_drop(dentry);
253 kill_it:
254 	/* if dentry was on the d_lru list delete it from there */
255 	dentry_lru_del(dentry);
256 	dentry = d_kill(dentry);
257 	if (dentry)
258 		goto repeat;
259 }
260 EXPORT_SYMBOL(dput);
261 
262 /**
263  * d_invalidate - invalidate a dentry
264  * @dentry: dentry to invalidate
265  *
266  * Try to invalidate the dentry if it turns out to be
267  * possible. If there are other dentries that can be
268  * reached through this one we can't delete it and we
269  * return -EBUSY. On success we return 0.
270  *
271  * no dcache lock.
272  */
273 
274 int d_invalidate(struct dentry * dentry)
275 {
276 	/*
277 	 * If it's already been dropped, return OK.
278 	 */
279 	spin_lock(&dcache_lock);
280 	if (d_unhashed(dentry)) {
281 		spin_unlock(&dcache_lock);
282 		return 0;
283 	}
284 	/*
285 	 * Check whether to do a partial shrink_dcache
286 	 * to get rid of unused child entries.
287 	 */
288 	if (!list_empty(&dentry->d_subdirs)) {
289 		spin_unlock(&dcache_lock);
290 		shrink_dcache_parent(dentry);
291 		spin_lock(&dcache_lock);
292 	}
293 
294 	/*
295 	 * Somebody else still using it?
296 	 *
297 	 * If it's a directory, we can't drop it
298 	 * for fear of somebody re-populating it
299 	 * with children (even though dropping it
300 	 * would make it unreachable from the root,
301 	 * we might still populate it if it was a
302 	 * working directory or similar).
303 	 */
304 	spin_lock(&dentry->d_lock);
305 	if (atomic_read(&dentry->d_count) > 1) {
306 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
307 			spin_unlock(&dentry->d_lock);
308 			spin_unlock(&dcache_lock);
309 			return -EBUSY;
310 		}
311 	}
312 
313 	__d_drop(dentry);
314 	spin_unlock(&dentry->d_lock);
315 	spin_unlock(&dcache_lock);
316 	return 0;
317 }
318 EXPORT_SYMBOL(d_invalidate);
319 
320 /* This should be called _only_ with dcache_lock held */
321 
322 static inline struct dentry * __dget_locked(struct dentry *dentry)
323 {
324 	atomic_inc(&dentry->d_count);
325 	dentry_lru_del_init(dentry);
326 	return dentry;
327 }
328 
329 struct dentry * dget_locked(struct dentry *dentry)
330 {
331 	return __dget_locked(dentry);
332 }
333 EXPORT_SYMBOL(dget_locked);
334 
335 /**
336  * d_find_alias - grab a hashed alias of inode
337  * @inode: inode in question
338  * @want_discon:  flag, used by d_splice_alias, to request
339  *          that only a DISCONNECTED alias be returned.
340  *
341  * If inode has a hashed alias, or is a directory and has any alias,
342  * acquire the reference to alias and return it. Otherwise return NULL.
343  * Notice that if inode is a directory there can be only one alias and
344  * it can be unhashed only if it has no children, or if it is the root
345  * of a filesystem.
346  *
347  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
348  * any other hashed alias over that one unless @want_discon is set,
349  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
350  */
351 
352 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
353 {
354 	struct list_head *head, *next, *tmp;
355 	struct dentry *alias, *discon_alias=NULL;
356 
357 	head = &inode->i_dentry;
358 	next = inode->i_dentry.next;
359 	while (next != head) {
360 		tmp = next;
361 		next = tmp->next;
362 		prefetch(next);
363 		alias = list_entry(tmp, struct dentry, d_alias);
364  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
365 			if (IS_ROOT(alias) &&
366 			    (alias->d_flags & DCACHE_DISCONNECTED))
367 				discon_alias = alias;
368 			else if (!want_discon) {
369 				__dget_locked(alias);
370 				return alias;
371 			}
372 		}
373 	}
374 	if (discon_alias)
375 		__dget_locked(discon_alias);
376 	return discon_alias;
377 }
378 
379 struct dentry * d_find_alias(struct inode *inode)
380 {
381 	struct dentry *de = NULL;
382 
383 	if (!list_empty(&inode->i_dentry)) {
384 		spin_lock(&dcache_lock);
385 		de = __d_find_alias(inode, 0);
386 		spin_unlock(&dcache_lock);
387 	}
388 	return de;
389 }
390 EXPORT_SYMBOL(d_find_alias);
391 
392 /*
393  *	Try to kill dentries associated with this inode.
394  * WARNING: you must own a reference to inode.
395  */
396 void d_prune_aliases(struct inode *inode)
397 {
398 	struct dentry *dentry;
399 restart:
400 	spin_lock(&dcache_lock);
401 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
402 		spin_lock(&dentry->d_lock);
403 		if (!atomic_read(&dentry->d_count)) {
404 			__dget_locked(dentry);
405 			__d_drop(dentry);
406 			spin_unlock(&dentry->d_lock);
407 			spin_unlock(&dcache_lock);
408 			dput(dentry);
409 			goto restart;
410 		}
411 		spin_unlock(&dentry->d_lock);
412 	}
413 	spin_unlock(&dcache_lock);
414 }
415 EXPORT_SYMBOL(d_prune_aliases);
416 
417 /*
418  * Throw away a dentry - free the inode, dput the parent.  This requires that
419  * the LRU list has already been removed.
420  *
421  * Try to prune ancestors as well.  This is necessary to prevent
422  * quadratic behavior of shrink_dcache_parent(), but is also expected
423  * to be beneficial in reducing dentry cache fragmentation.
424  */
425 static void prune_one_dentry(struct dentry * dentry)
426 	__releases(dentry->d_lock)
427 	__releases(dcache_lock)
428 	__acquires(dcache_lock)
429 {
430 	__d_drop(dentry);
431 	dentry = d_kill(dentry);
432 
433 	/*
434 	 * Prune ancestors.  Locking is simpler than in dput(),
435 	 * because dcache_lock needs to be taken anyway.
436 	 */
437 	spin_lock(&dcache_lock);
438 	while (dentry) {
439 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
440 			return;
441 
442 		if (dentry->d_op && dentry->d_op->d_delete)
443 			dentry->d_op->d_delete(dentry);
444 		dentry_lru_del_init(dentry);
445 		__d_drop(dentry);
446 		dentry = d_kill(dentry);
447 		spin_lock(&dcache_lock);
448 	}
449 }
450 
451 /*
452  * Shrink the dentry LRU on a given superblock.
453  * @sb   : superblock to shrink dentry LRU.
454  * @count: If count is NULL, we prune all dentries on superblock.
455  * @flags: If flags is non-zero, we need to do special processing based on
456  * which flags are set. This means we don't need to maintain multiple
457  * similar copies of this loop.
458  */
459 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
460 {
461 	LIST_HEAD(referenced);
462 	LIST_HEAD(tmp);
463 	struct dentry *dentry;
464 	int cnt = 0;
465 
466 	BUG_ON(!sb);
467 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
468 	spin_lock(&dcache_lock);
469 	if (count != NULL)
470 		/* called from prune_dcache() and shrink_dcache_parent() */
471 		cnt = *count;
472 restart:
473 	if (count == NULL)
474 		list_splice_init(&sb->s_dentry_lru, &tmp);
475 	else {
476 		while (!list_empty(&sb->s_dentry_lru)) {
477 			dentry = list_entry(sb->s_dentry_lru.prev,
478 					struct dentry, d_lru);
479 			BUG_ON(dentry->d_sb != sb);
480 
481 			spin_lock(&dentry->d_lock);
482 			/*
483 			 * If we are honouring the DCACHE_REFERENCED flag and
484 			 * the dentry has this flag set, don't free it. Clear
485 			 * the flag and put it back on the LRU.
486 			 */
487 			if ((flags & DCACHE_REFERENCED)
488 				&& (dentry->d_flags & DCACHE_REFERENCED)) {
489 				dentry->d_flags &= ~DCACHE_REFERENCED;
490 				list_move(&dentry->d_lru, &referenced);
491 				spin_unlock(&dentry->d_lock);
492 			} else {
493 				list_move_tail(&dentry->d_lru, &tmp);
494 				spin_unlock(&dentry->d_lock);
495 				cnt--;
496 				if (!cnt)
497 					break;
498 			}
499 			cond_resched_lock(&dcache_lock);
500 		}
501 	}
502 	while (!list_empty(&tmp)) {
503 		dentry = list_entry(tmp.prev, struct dentry, d_lru);
504 		dentry_lru_del_init(dentry);
505 		spin_lock(&dentry->d_lock);
506 		/*
507 		 * We found an inuse dentry which was not removed from
508 		 * the LRU because of laziness during lookup.  Do not free
509 		 * it - just keep it off the LRU list.
510 		 */
511 		if (atomic_read(&dentry->d_count)) {
512 			spin_unlock(&dentry->d_lock);
513 			continue;
514 		}
515 		prune_one_dentry(dentry);
516 		/* dentry->d_lock was dropped in prune_one_dentry() */
517 		cond_resched_lock(&dcache_lock);
518 	}
519 	if (count == NULL && !list_empty(&sb->s_dentry_lru))
520 		goto restart;
521 	if (count != NULL)
522 		*count = cnt;
523 	if (!list_empty(&referenced))
524 		list_splice(&referenced, &sb->s_dentry_lru);
525 	spin_unlock(&dcache_lock);
526 }
527 
528 /**
529  * prune_dcache - shrink the dcache
530  * @count: number of entries to try to free
531  *
532  * Shrink the dcache. This is done when we need more memory, or simply when we
533  * need to unmount something (at which point we need to unuse all dentries).
534  *
535  * This function may fail to free any resources if all the dentries are in use.
536  */
537 static void prune_dcache(int count)
538 {
539 	struct super_block *sb, *p = NULL;
540 	int w_count;
541 	int unused = dentry_stat.nr_unused;
542 	int prune_ratio;
543 	int pruned;
544 
545 	if (unused == 0 || count == 0)
546 		return;
547 	spin_lock(&dcache_lock);
548 	if (count >= unused)
549 		prune_ratio = 1;
550 	else
551 		prune_ratio = unused / count;
552 	spin_lock(&sb_lock);
553 	list_for_each_entry(sb, &super_blocks, s_list) {
554 		if (list_empty(&sb->s_instances))
555 			continue;
556 		if (sb->s_nr_dentry_unused == 0)
557 			continue;
558 		sb->s_count++;
559 		/* Now, we reclaim unused dentrins with fairness.
560 		 * We reclaim them same percentage from each superblock.
561 		 * We calculate number of dentries to scan on this sb
562 		 * as follows, but the implementation is arranged to avoid
563 		 * overflows:
564 		 * number of dentries to scan on this sb =
565 		 * count * (number of dentries on this sb /
566 		 * number of dentries in the machine)
567 		 */
568 		spin_unlock(&sb_lock);
569 		if (prune_ratio != 1)
570 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
571 		else
572 			w_count = sb->s_nr_dentry_unused;
573 		pruned = w_count;
574 		/*
575 		 * We need to be sure this filesystem isn't being unmounted,
576 		 * otherwise we could race with generic_shutdown_super(), and
577 		 * end up holding a reference to an inode while the filesystem
578 		 * is unmounted.  So we try to get s_umount, and make sure
579 		 * s_root isn't NULL.
580 		 */
581 		if (down_read_trylock(&sb->s_umount)) {
582 			if ((sb->s_root != NULL) &&
583 			    (!list_empty(&sb->s_dentry_lru))) {
584 				spin_unlock(&dcache_lock);
585 				__shrink_dcache_sb(sb, &w_count,
586 						DCACHE_REFERENCED);
587 				pruned -= w_count;
588 				spin_lock(&dcache_lock);
589 			}
590 			up_read(&sb->s_umount);
591 		}
592 		spin_lock(&sb_lock);
593 		if (p)
594 			__put_super(p);
595 		count -= pruned;
596 		p = sb;
597 		/* more work left to do? */
598 		if (count <= 0)
599 			break;
600 	}
601 	if (p)
602 		__put_super(p);
603 	spin_unlock(&sb_lock);
604 	spin_unlock(&dcache_lock);
605 }
606 
607 /**
608  * shrink_dcache_sb - shrink dcache for a superblock
609  * @sb: superblock
610  *
611  * Shrink the dcache for the specified super block. This
612  * is used to free the dcache before unmounting a file
613  * system
614  */
615 void shrink_dcache_sb(struct super_block * sb)
616 {
617 	__shrink_dcache_sb(sb, NULL, 0);
618 }
619 EXPORT_SYMBOL(shrink_dcache_sb);
620 
621 /*
622  * destroy a single subtree of dentries for unmount
623  * - see the comments on shrink_dcache_for_umount() for a description of the
624  *   locking
625  */
626 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
627 {
628 	struct dentry *parent;
629 	unsigned detached = 0;
630 
631 	BUG_ON(!IS_ROOT(dentry));
632 
633 	/* detach this root from the system */
634 	spin_lock(&dcache_lock);
635 	dentry_lru_del_init(dentry);
636 	__d_drop(dentry);
637 	spin_unlock(&dcache_lock);
638 
639 	for (;;) {
640 		/* descend to the first leaf in the current subtree */
641 		while (!list_empty(&dentry->d_subdirs)) {
642 			struct dentry *loop;
643 
644 			/* this is a branch with children - detach all of them
645 			 * from the system in one go */
646 			spin_lock(&dcache_lock);
647 			list_for_each_entry(loop, &dentry->d_subdirs,
648 					    d_u.d_child) {
649 				dentry_lru_del_init(loop);
650 				__d_drop(loop);
651 				cond_resched_lock(&dcache_lock);
652 			}
653 			spin_unlock(&dcache_lock);
654 
655 			/* move to the first child */
656 			dentry = list_entry(dentry->d_subdirs.next,
657 					    struct dentry, d_u.d_child);
658 		}
659 
660 		/* consume the dentries from this leaf up through its parents
661 		 * until we find one with children or run out altogether */
662 		do {
663 			struct inode *inode;
664 
665 			if (atomic_read(&dentry->d_count) != 0) {
666 				printk(KERN_ERR
667 				       "BUG: Dentry %p{i=%lx,n=%s}"
668 				       " still in use (%d)"
669 				       " [unmount of %s %s]\n",
670 				       dentry,
671 				       dentry->d_inode ?
672 				       dentry->d_inode->i_ino : 0UL,
673 				       dentry->d_name.name,
674 				       atomic_read(&dentry->d_count),
675 				       dentry->d_sb->s_type->name,
676 				       dentry->d_sb->s_id);
677 				BUG();
678 			}
679 
680 			if (IS_ROOT(dentry))
681 				parent = NULL;
682 			else {
683 				parent = dentry->d_parent;
684 				atomic_dec(&parent->d_count);
685 			}
686 
687 			list_del(&dentry->d_u.d_child);
688 			detached++;
689 
690 			inode = dentry->d_inode;
691 			if (inode) {
692 				dentry->d_inode = NULL;
693 				list_del_init(&dentry->d_alias);
694 				if (dentry->d_op && dentry->d_op->d_iput)
695 					dentry->d_op->d_iput(dentry, inode);
696 				else
697 					iput(inode);
698 			}
699 
700 			d_free(dentry);
701 
702 			/* finished when we fall off the top of the tree,
703 			 * otherwise we ascend to the parent and move to the
704 			 * next sibling if there is one */
705 			if (!parent)
706 				goto out;
707 
708 			dentry = parent;
709 
710 		} while (list_empty(&dentry->d_subdirs));
711 
712 		dentry = list_entry(dentry->d_subdirs.next,
713 				    struct dentry, d_u.d_child);
714 	}
715 out:
716 	/* several dentries were freed, need to correct nr_dentry */
717 	spin_lock(&dcache_lock);
718 	dentry_stat.nr_dentry -= detached;
719 	spin_unlock(&dcache_lock);
720 }
721 
722 /*
723  * destroy the dentries attached to a superblock on unmounting
724  * - we don't need to use dentry->d_lock, and only need dcache_lock when
725  *   removing the dentry from the system lists and hashes because:
726  *   - the superblock is detached from all mountings and open files, so the
727  *     dentry trees will not be rearranged by the VFS
728  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
729  *     any dentries belonging to this superblock that it comes across
730  *   - the filesystem itself is no longer permitted to rearrange the dentries
731  *     in this superblock
732  */
733 void shrink_dcache_for_umount(struct super_block *sb)
734 {
735 	struct dentry *dentry;
736 
737 	if (down_read_trylock(&sb->s_umount))
738 		BUG();
739 
740 	dentry = sb->s_root;
741 	sb->s_root = NULL;
742 	atomic_dec(&dentry->d_count);
743 	shrink_dcache_for_umount_subtree(dentry);
744 
745 	while (!hlist_empty(&sb->s_anon)) {
746 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
747 		shrink_dcache_for_umount_subtree(dentry);
748 	}
749 }
750 
751 /*
752  * Search for at least 1 mount point in the dentry's subdirs.
753  * We descend to the next level whenever the d_subdirs
754  * list is non-empty and continue searching.
755  */
756 
757 /**
758  * have_submounts - check for mounts over a dentry
759  * @parent: dentry to check.
760  *
761  * Return true if the parent or its subdirectories contain
762  * a mount point
763  */
764 
765 int have_submounts(struct dentry *parent)
766 {
767 	struct dentry *this_parent = parent;
768 	struct list_head *next;
769 
770 	spin_lock(&dcache_lock);
771 	if (d_mountpoint(parent))
772 		goto positive;
773 repeat:
774 	next = this_parent->d_subdirs.next;
775 resume:
776 	while (next != &this_parent->d_subdirs) {
777 		struct list_head *tmp = next;
778 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
779 		next = tmp->next;
780 		/* Have we found a mount point ? */
781 		if (d_mountpoint(dentry))
782 			goto positive;
783 		if (!list_empty(&dentry->d_subdirs)) {
784 			this_parent = dentry;
785 			goto repeat;
786 		}
787 	}
788 	/*
789 	 * All done at this level ... ascend and resume the search.
790 	 */
791 	if (this_parent != parent) {
792 		next = this_parent->d_u.d_child.next;
793 		this_parent = this_parent->d_parent;
794 		goto resume;
795 	}
796 	spin_unlock(&dcache_lock);
797 	return 0; /* No mount points found in tree */
798 positive:
799 	spin_unlock(&dcache_lock);
800 	return 1;
801 }
802 EXPORT_SYMBOL(have_submounts);
803 
804 /*
805  * Search the dentry child list for the specified parent,
806  * and move any unused dentries to the end of the unused
807  * list for prune_dcache(). We descend to the next level
808  * whenever the d_subdirs list is non-empty and continue
809  * searching.
810  *
811  * It returns zero iff there are no unused children,
812  * otherwise  it returns the number of children moved to
813  * the end of the unused list. This may not be the total
814  * number of unused children, because select_parent can
815  * drop the lock and return early due to latency
816  * constraints.
817  */
818 static int select_parent(struct dentry * parent)
819 {
820 	struct dentry *this_parent = parent;
821 	struct list_head *next;
822 	int found = 0;
823 
824 	spin_lock(&dcache_lock);
825 repeat:
826 	next = this_parent->d_subdirs.next;
827 resume:
828 	while (next != &this_parent->d_subdirs) {
829 		struct list_head *tmp = next;
830 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
831 		next = tmp->next;
832 
833 		dentry_lru_del_init(dentry);
834 		/*
835 		 * move only zero ref count dentries to the end
836 		 * of the unused list for prune_dcache
837 		 */
838 		if (!atomic_read(&dentry->d_count)) {
839 			dentry_lru_add_tail(dentry);
840 			found++;
841 		}
842 
843 		/*
844 		 * We can return to the caller if we have found some (this
845 		 * ensures forward progress). We'll be coming back to find
846 		 * the rest.
847 		 */
848 		if (found && need_resched())
849 			goto out;
850 
851 		/*
852 		 * Descend a level if the d_subdirs list is non-empty.
853 		 */
854 		if (!list_empty(&dentry->d_subdirs)) {
855 			this_parent = dentry;
856 			goto repeat;
857 		}
858 	}
859 	/*
860 	 * All done at this level ... ascend and resume the search.
861 	 */
862 	if (this_parent != parent) {
863 		next = this_parent->d_u.d_child.next;
864 		this_parent = this_parent->d_parent;
865 		goto resume;
866 	}
867 out:
868 	spin_unlock(&dcache_lock);
869 	return found;
870 }
871 
872 /**
873  * shrink_dcache_parent - prune dcache
874  * @parent: parent of entries to prune
875  *
876  * Prune the dcache to remove unused children of the parent dentry.
877  */
878 
879 void shrink_dcache_parent(struct dentry * parent)
880 {
881 	struct super_block *sb = parent->d_sb;
882 	int found;
883 
884 	while ((found = select_parent(parent)) != 0)
885 		__shrink_dcache_sb(sb, &found, 0);
886 }
887 EXPORT_SYMBOL(shrink_dcache_parent);
888 
889 /*
890  * Scan `nr' dentries and return the number which remain.
891  *
892  * We need to avoid reentering the filesystem if the caller is performing a
893  * GFP_NOFS allocation attempt.  One example deadlock is:
894  *
895  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
896  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
897  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
898  *
899  * In this case we return -1 to tell the caller that we baled.
900  */
901 static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
902 {
903 	if (nr) {
904 		if (!(gfp_mask & __GFP_FS))
905 			return -1;
906 		prune_dcache(nr);
907 	}
908 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
909 }
910 
911 static struct shrinker dcache_shrinker = {
912 	.shrink = shrink_dcache_memory,
913 	.seeks = DEFAULT_SEEKS,
914 };
915 
916 /**
917  * d_alloc	-	allocate a dcache entry
918  * @parent: parent of entry to allocate
919  * @name: qstr of the name
920  *
921  * Allocates a dentry. It returns %NULL if there is insufficient memory
922  * available. On a success the dentry is returned. The name passed in is
923  * copied and the copy passed in may be reused after this call.
924  */
925 
926 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
927 {
928 	struct dentry *dentry;
929 	char *dname;
930 
931 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
932 	if (!dentry)
933 		return NULL;
934 
935 	if (name->len > DNAME_INLINE_LEN-1) {
936 		dname = kmalloc(name->len + 1, GFP_KERNEL);
937 		if (!dname) {
938 			kmem_cache_free(dentry_cache, dentry);
939 			return NULL;
940 		}
941 	} else  {
942 		dname = dentry->d_iname;
943 	}
944 	dentry->d_name.name = dname;
945 
946 	dentry->d_name.len = name->len;
947 	dentry->d_name.hash = name->hash;
948 	memcpy(dname, name->name, name->len);
949 	dname[name->len] = 0;
950 
951 	atomic_set(&dentry->d_count, 1);
952 	dentry->d_flags = DCACHE_UNHASHED;
953 	spin_lock_init(&dentry->d_lock);
954 	dentry->d_inode = NULL;
955 	dentry->d_parent = NULL;
956 	dentry->d_sb = NULL;
957 	dentry->d_op = NULL;
958 	dentry->d_fsdata = NULL;
959 	dentry->d_mounted = 0;
960 	INIT_HLIST_NODE(&dentry->d_hash);
961 	INIT_LIST_HEAD(&dentry->d_lru);
962 	INIT_LIST_HEAD(&dentry->d_subdirs);
963 	INIT_LIST_HEAD(&dentry->d_alias);
964 
965 	if (parent) {
966 		dentry->d_parent = dget(parent);
967 		dentry->d_sb = parent->d_sb;
968 	} else {
969 		INIT_LIST_HEAD(&dentry->d_u.d_child);
970 	}
971 
972 	spin_lock(&dcache_lock);
973 	if (parent)
974 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
975 	dentry_stat.nr_dentry++;
976 	spin_unlock(&dcache_lock);
977 
978 	return dentry;
979 }
980 EXPORT_SYMBOL(d_alloc);
981 
982 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
983 {
984 	struct qstr q;
985 
986 	q.name = name;
987 	q.len = strlen(name);
988 	q.hash = full_name_hash(q.name, q.len);
989 	return d_alloc(parent, &q);
990 }
991 EXPORT_SYMBOL(d_alloc_name);
992 
993 /* the caller must hold dcache_lock */
994 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
995 {
996 	if (inode)
997 		list_add(&dentry->d_alias, &inode->i_dentry);
998 	dentry->d_inode = inode;
999 	fsnotify_d_instantiate(dentry, inode);
1000 }
1001 
1002 /**
1003  * d_instantiate - fill in inode information for a dentry
1004  * @entry: dentry to complete
1005  * @inode: inode to attach to this dentry
1006  *
1007  * Fill in inode information in the entry.
1008  *
1009  * This turns negative dentries into productive full members
1010  * of society.
1011  *
1012  * NOTE! This assumes that the inode count has been incremented
1013  * (or otherwise set) by the caller to indicate that it is now
1014  * in use by the dcache.
1015  */
1016 
1017 void d_instantiate(struct dentry *entry, struct inode * inode)
1018 {
1019 	BUG_ON(!list_empty(&entry->d_alias));
1020 	spin_lock(&dcache_lock);
1021 	__d_instantiate(entry, inode);
1022 	spin_unlock(&dcache_lock);
1023 	security_d_instantiate(entry, inode);
1024 }
1025 EXPORT_SYMBOL(d_instantiate);
1026 
1027 /**
1028  * d_instantiate_unique - instantiate a non-aliased dentry
1029  * @entry: dentry to instantiate
1030  * @inode: inode to attach to this dentry
1031  *
1032  * Fill in inode information in the entry. On success, it returns NULL.
1033  * If an unhashed alias of "entry" already exists, then we return the
1034  * aliased dentry instead and drop one reference to inode.
1035  *
1036  * Note that in order to avoid conflicts with rename() etc, the caller
1037  * had better be holding the parent directory semaphore.
1038  *
1039  * This also assumes that the inode count has been incremented
1040  * (or otherwise set) by the caller to indicate that it is now
1041  * in use by the dcache.
1042  */
1043 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1044 					     struct inode *inode)
1045 {
1046 	struct dentry *alias;
1047 	int len = entry->d_name.len;
1048 	const char *name = entry->d_name.name;
1049 	unsigned int hash = entry->d_name.hash;
1050 
1051 	if (!inode) {
1052 		__d_instantiate(entry, NULL);
1053 		return NULL;
1054 	}
1055 
1056 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1057 		struct qstr *qstr = &alias->d_name;
1058 
1059 		if (qstr->hash != hash)
1060 			continue;
1061 		if (alias->d_parent != entry->d_parent)
1062 			continue;
1063 		if (qstr->len != len)
1064 			continue;
1065 		if (memcmp(qstr->name, name, len))
1066 			continue;
1067 		dget_locked(alias);
1068 		return alias;
1069 	}
1070 
1071 	__d_instantiate(entry, inode);
1072 	return NULL;
1073 }
1074 
1075 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1076 {
1077 	struct dentry *result;
1078 
1079 	BUG_ON(!list_empty(&entry->d_alias));
1080 
1081 	spin_lock(&dcache_lock);
1082 	result = __d_instantiate_unique(entry, inode);
1083 	spin_unlock(&dcache_lock);
1084 
1085 	if (!result) {
1086 		security_d_instantiate(entry, inode);
1087 		return NULL;
1088 	}
1089 
1090 	BUG_ON(!d_unhashed(result));
1091 	iput(inode);
1092 	return result;
1093 }
1094 
1095 EXPORT_SYMBOL(d_instantiate_unique);
1096 
1097 /**
1098  * d_alloc_root - allocate root dentry
1099  * @root_inode: inode to allocate the root for
1100  *
1101  * Allocate a root ("/") dentry for the inode given. The inode is
1102  * instantiated and returned. %NULL is returned if there is insufficient
1103  * memory or the inode passed is %NULL.
1104  */
1105 
1106 struct dentry * d_alloc_root(struct inode * root_inode)
1107 {
1108 	struct dentry *res = NULL;
1109 
1110 	if (root_inode) {
1111 		static const struct qstr name = { .name = "/", .len = 1 };
1112 
1113 		res = d_alloc(NULL, &name);
1114 		if (res) {
1115 			res->d_sb = root_inode->i_sb;
1116 			res->d_parent = res;
1117 			d_instantiate(res, root_inode);
1118 		}
1119 	}
1120 	return res;
1121 }
1122 EXPORT_SYMBOL(d_alloc_root);
1123 
1124 static inline struct hlist_head *d_hash(struct dentry *parent,
1125 					unsigned long hash)
1126 {
1127 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1128 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1129 	return dentry_hashtable + (hash & D_HASHMASK);
1130 }
1131 
1132 /**
1133  * d_obtain_alias - find or allocate a dentry for a given inode
1134  * @inode: inode to allocate the dentry for
1135  *
1136  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1137  * similar open by handle operations.  The returned dentry may be anonymous,
1138  * or may have a full name (if the inode was already in the cache).
1139  *
1140  * When called on a directory inode, we must ensure that the inode only ever
1141  * has one dentry.  If a dentry is found, that is returned instead of
1142  * allocating a new one.
1143  *
1144  * On successful return, the reference to the inode has been transferred
1145  * to the dentry.  In case of an error the reference on the inode is released.
1146  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1147  * be passed in and will be the error will be propagate to the return value,
1148  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1149  */
1150 struct dentry *d_obtain_alias(struct inode *inode)
1151 {
1152 	static const struct qstr anonstring = { .name = "" };
1153 	struct dentry *tmp;
1154 	struct dentry *res;
1155 
1156 	if (!inode)
1157 		return ERR_PTR(-ESTALE);
1158 	if (IS_ERR(inode))
1159 		return ERR_CAST(inode);
1160 
1161 	res = d_find_alias(inode);
1162 	if (res)
1163 		goto out_iput;
1164 
1165 	tmp = d_alloc(NULL, &anonstring);
1166 	if (!tmp) {
1167 		res = ERR_PTR(-ENOMEM);
1168 		goto out_iput;
1169 	}
1170 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1171 
1172 	spin_lock(&dcache_lock);
1173 	res = __d_find_alias(inode, 0);
1174 	if (res) {
1175 		spin_unlock(&dcache_lock);
1176 		dput(tmp);
1177 		goto out_iput;
1178 	}
1179 
1180 	/* attach a disconnected dentry */
1181 	spin_lock(&tmp->d_lock);
1182 	tmp->d_sb = inode->i_sb;
1183 	tmp->d_inode = inode;
1184 	tmp->d_flags |= DCACHE_DISCONNECTED;
1185 	tmp->d_flags &= ~DCACHE_UNHASHED;
1186 	list_add(&tmp->d_alias, &inode->i_dentry);
1187 	hlist_add_head(&tmp->d_hash, &inode->i_sb->s_anon);
1188 	spin_unlock(&tmp->d_lock);
1189 
1190 	spin_unlock(&dcache_lock);
1191 	return tmp;
1192 
1193  out_iput:
1194 	iput(inode);
1195 	return res;
1196 }
1197 EXPORT_SYMBOL(d_obtain_alias);
1198 
1199 /**
1200  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1201  * @inode:  the inode which may have a disconnected dentry
1202  * @dentry: a negative dentry which we want to point to the inode.
1203  *
1204  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1205  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1206  * and return it, else simply d_add the inode to the dentry and return NULL.
1207  *
1208  * This is needed in the lookup routine of any filesystem that is exportable
1209  * (via knfsd) so that we can build dcache paths to directories effectively.
1210  *
1211  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1212  * is returned.  This matches the expected return value of ->lookup.
1213  *
1214  */
1215 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1216 {
1217 	struct dentry *new = NULL;
1218 
1219 	if (inode && S_ISDIR(inode->i_mode)) {
1220 		spin_lock(&dcache_lock);
1221 		new = __d_find_alias(inode, 1);
1222 		if (new) {
1223 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1224 			spin_unlock(&dcache_lock);
1225 			security_d_instantiate(new, inode);
1226 			d_move(new, dentry);
1227 			iput(inode);
1228 		} else {
1229 			/* already taking dcache_lock, so d_add() by hand */
1230 			__d_instantiate(dentry, inode);
1231 			spin_unlock(&dcache_lock);
1232 			security_d_instantiate(dentry, inode);
1233 			d_rehash(dentry);
1234 		}
1235 	} else
1236 		d_add(dentry, inode);
1237 	return new;
1238 }
1239 EXPORT_SYMBOL(d_splice_alias);
1240 
1241 /**
1242  * d_add_ci - lookup or allocate new dentry with case-exact name
1243  * @inode:  the inode case-insensitive lookup has found
1244  * @dentry: the negative dentry that was passed to the parent's lookup func
1245  * @name:   the case-exact name to be associated with the returned dentry
1246  *
1247  * This is to avoid filling the dcache with case-insensitive names to the
1248  * same inode, only the actual correct case is stored in the dcache for
1249  * case-insensitive filesystems.
1250  *
1251  * For a case-insensitive lookup match and if the the case-exact dentry
1252  * already exists in in the dcache, use it and return it.
1253  *
1254  * If no entry exists with the exact case name, allocate new dentry with
1255  * the exact case, and return the spliced entry.
1256  */
1257 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1258 			struct qstr *name)
1259 {
1260 	int error;
1261 	struct dentry *found;
1262 	struct dentry *new;
1263 
1264 	/*
1265 	 * First check if a dentry matching the name already exists,
1266 	 * if not go ahead and create it now.
1267 	 */
1268 	found = d_hash_and_lookup(dentry->d_parent, name);
1269 	if (!found) {
1270 		new = d_alloc(dentry->d_parent, name);
1271 		if (!new) {
1272 			error = -ENOMEM;
1273 			goto err_out;
1274 		}
1275 
1276 		found = d_splice_alias(inode, new);
1277 		if (found) {
1278 			dput(new);
1279 			return found;
1280 		}
1281 		return new;
1282 	}
1283 
1284 	/*
1285 	 * If a matching dentry exists, and it's not negative use it.
1286 	 *
1287 	 * Decrement the reference count to balance the iget() done
1288 	 * earlier on.
1289 	 */
1290 	if (found->d_inode) {
1291 		if (unlikely(found->d_inode != inode)) {
1292 			/* This can't happen because bad inodes are unhashed. */
1293 			BUG_ON(!is_bad_inode(inode));
1294 			BUG_ON(!is_bad_inode(found->d_inode));
1295 		}
1296 		iput(inode);
1297 		return found;
1298 	}
1299 
1300 	/*
1301 	 * Negative dentry: instantiate it unless the inode is a directory and
1302 	 * already has a dentry.
1303 	 */
1304 	spin_lock(&dcache_lock);
1305 	if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1306 		__d_instantiate(found, inode);
1307 		spin_unlock(&dcache_lock);
1308 		security_d_instantiate(found, inode);
1309 		return found;
1310 	}
1311 
1312 	/*
1313 	 * In case a directory already has a (disconnected) entry grab a
1314 	 * reference to it, move it in place and use it.
1315 	 */
1316 	new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1317 	dget_locked(new);
1318 	spin_unlock(&dcache_lock);
1319 	security_d_instantiate(found, inode);
1320 	d_move(new, found);
1321 	iput(inode);
1322 	dput(found);
1323 	return new;
1324 
1325 err_out:
1326 	iput(inode);
1327 	return ERR_PTR(error);
1328 }
1329 EXPORT_SYMBOL(d_add_ci);
1330 
1331 /**
1332  * d_lookup - search for a dentry
1333  * @parent: parent dentry
1334  * @name: qstr of name we wish to find
1335  *
1336  * Searches the children of the parent dentry for the name in question. If
1337  * the dentry is found its reference count is incremented and the dentry
1338  * is returned. The caller must use dput to free the entry when it has
1339  * finished using it. %NULL is returned on failure.
1340  *
1341  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1342  * Memory barriers are used while updating and doing lockless traversal.
1343  * To avoid races with d_move while rename is happening, d_lock is used.
1344  *
1345  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1346  * and name pointer in one structure pointed by d_qstr.
1347  *
1348  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1349  * lookup is going on.
1350  *
1351  * The dentry unused LRU is not updated even if lookup finds the required dentry
1352  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1353  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1354  * acquisition.
1355  *
1356  * d_lookup() is protected against the concurrent renames in some unrelated
1357  * directory using the seqlockt_t rename_lock.
1358  */
1359 
1360 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1361 {
1362 	struct dentry * dentry = NULL;
1363 	unsigned long seq;
1364 
1365         do {
1366                 seq = read_seqbegin(&rename_lock);
1367                 dentry = __d_lookup(parent, name);
1368                 if (dentry)
1369 			break;
1370 	} while (read_seqretry(&rename_lock, seq));
1371 	return dentry;
1372 }
1373 EXPORT_SYMBOL(d_lookup);
1374 
1375 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1376 {
1377 	unsigned int len = name->len;
1378 	unsigned int hash = name->hash;
1379 	const unsigned char *str = name->name;
1380 	struct hlist_head *head = d_hash(parent,hash);
1381 	struct dentry *found = NULL;
1382 	struct hlist_node *node;
1383 	struct dentry *dentry;
1384 
1385 	rcu_read_lock();
1386 
1387 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1388 		struct qstr *qstr;
1389 
1390 		if (dentry->d_name.hash != hash)
1391 			continue;
1392 		if (dentry->d_parent != parent)
1393 			continue;
1394 
1395 		spin_lock(&dentry->d_lock);
1396 
1397 		/*
1398 		 * Recheck the dentry after taking the lock - d_move may have
1399 		 * changed things.  Don't bother checking the hash because we're
1400 		 * about to compare the whole name anyway.
1401 		 */
1402 		if (dentry->d_parent != parent)
1403 			goto next;
1404 
1405 		/* non-existing due to RCU? */
1406 		if (d_unhashed(dentry))
1407 			goto next;
1408 
1409 		/*
1410 		 * It is safe to compare names since d_move() cannot
1411 		 * change the qstr (protected by d_lock).
1412 		 */
1413 		qstr = &dentry->d_name;
1414 		if (parent->d_op && parent->d_op->d_compare) {
1415 			if (parent->d_op->d_compare(parent, qstr, name))
1416 				goto next;
1417 		} else {
1418 			if (qstr->len != len)
1419 				goto next;
1420 			if (memcmp(qstr->name, str, len))
1421 				goto next;
1422 		}
1423 
1424 		atomic_inc(&dentry->d_count);
1425 		found = dentry;
1426 		spin_unlock(&dentry->d_lock);
1427 		break;
1428 next:
1429 		spin_unlock(&dentry->d_lock);
1430  	}
1431  	rcu_read_unlock();
1432 
1433  	return found;
1434 }
1435 
1436 /**
1437  * d_hash_and_lookup - hash the qstr then search for a dentry
1438  * @dir: Directory to search in
1439  * @name: qstr of name we wish to find
1440  *
1441  * On hash failure or on lookup failure NULL is returned.
1442  */
1443 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1444 {
1445 	struct dentry *dentry = NULL;
1446 
1447 	/*
1448 	 * Check for a fs-specific hash function. Note that we must
1449 	 * calculate the standard hash first, as the d_op->d_hash()
1450 	 * routine may choose to leave the hash value unchanged.
1451 	 */
1452 	name->hash = full_name_hash(name->name, name->len);
1453 	if (dir->d_op && dir->d_op->d_hash) {
1454 		if (dir->d_op->d_hash(dir, name) < 0)
1455 			goto out;
1456 	}
1457 	dentry = d_lookup(dir, name);
1458 out:
1459 	return dentry;
1460 }
1461 
1462 /**
1463  * d_validate - verify dentry provided from insecure source
1464  * @dentry: The dentry alleged to be valid child of @dparent
1465  * @dparent: The parent dentry (known to be valid)
1466  *
1467  * An insecure source has sent us a dentry, here we verify it and dget() it.
1468  * This is used by ncpfs in its readdir implementation.
1469  * Zero is returned in the dentry is invalid.
1470  */
1471 
1472 int d_validate(struct dentry *dentry, struct dentry *dparent)
1473 {
1474 	struct hlist_head *base;
1475 	struct hlist_node *lhp;
1476 
1477 	/* Check whether the ptr might be valid at all.. */
1478 	if (!kmem_ptr_validate(dentry_cache, dentry))
1479 		goto out;
1480 
1481 	if (dentry->d_parent != dparent)
1482 		goto out;
1483 
1484 	spin_lock(&dcache_lock);
1485 	base = d_hash(dparent, dentry->d_name.hash);
1486 	hlist_for_each(lhp,base) {
1487 		/* hlist_for_each_entry_rcu() not required for d_hash list
1488 		 * as it is parsed under dcache_lock
1489 		 */
1490 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1491 			__dget_locked(dentry);
1492 			spin_unlock(&dcache_lock);
1493 			return 1;
1494 		}
1495 	}
1496 	spin_unlock(&dcache_lock);
1497 out:
1498 	return 0;
1499 }
1500 EXPORT_SYMBOL(d_validate);
1501 
1502 /*
1503  * When a file is deleted, we have two options:
1504  * - turn this dentry into a negative dentry
1505  * - unhash this dentry and free it.
1506  *
1507  * Usually, we want to just turn this into
1508  * a negative dentry, but if anybody else is
1509  * currently using the dentry or the inode
1510  * we can't do that and we fall back on removing
1511  * it from the hash queues and waiting for
1512  * it to be deleted later when it has no users
1513  */
1514 
1515 /**
1516  * d_delete - delete a dentry
1517  * @dentry: The dentry to delete
1518  *
1519  * Turn the dentry into a negative dentry if possible, otherwise
1520  * remove it from the hash queues so it can be deleted later
1521  */
1522 
1523 void d_delete(struct dentry * dentry)
1524 {
1525 	int isdir = 0;
1526 	/*
1527 	 * Are we the only user?
1528 	 */
1529 	spin_lock(&dcache_lock);
1530 	spin_lock(&dentry->d_lock);
1531 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1532 	if (atomic_read(&dentry->d_count) == 1) {
1533 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1534 		dentry_iput(dentry);
1535 		fsnotify_nameremove(dentry, isdir);
1536 		return;
1537 	}
1538 
1539 	if (!d_unhashed(dentry))
1540 		__d_drop(dentry);
1541 
1542 	spin_unlock(&dentry->d_lock);
1543 	spin_unlock(&dcache_lock);
1544 
1545 	fsnotify_nameremove(dentry, isdir);
1546 }
1547 EXPORT_SYMBOL(d_delete);
1548 
1549 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1550 {
1551 
1552  	entry->d_flags &= ~DCACHE_UNHASHED;
1553  	hlist_add_head_rcu(&entry->d_hash, list);
1554 }
1555 
1556 static void _d_rehash(struct dentry * entry)
1557 {
1558 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1559 }
1560 
1561 /**
1562  * d_rehash	- add an entry back to the hash
1563  * @entry: dentry to add to the hash
1564  *
1565  * Adds a dentry to the hash according to its name.
1566  */
1567 
1568 void d_rehash(struct dentry * entry)
1569 {
1570 	spin_lock(&dcache_lock);
1571 	spin_lock(&entry->d_lock);
1572 	_d_rehash(entry);
1573 	spin_unlock(&entry->d_lock);
1574 	spin_unlock(&dcache_lock);
1575 }
1576 EXPORT_SYMBOL(d_rehash);
1577 
1578 /*
1579  * When switching names, the actual string doesn't strictly have to
1580  * be preserved in the target - because we're dropping the target
1581  * anyway. As such, we can just do a simple memcpy() to copy over
1582  * the new name before we switch.
1583  *
1584  * Note that we have to be a lot more careful about getting the hash
1585  * switched - we have to switch the hash value properly even if it
1586  * then no longer matches the actual (corrupted) string of the target.
1587  * The hash value has to match the hash queue that the dentry is on..
1588  */
1589 static void switch_names(struct dentry *dentry, struct dentry *target)
1590 {
1591 	if (dname_external(target)) {
1592 		if (dname_external(dentry)) {
1593 			/*
1594 			 * Both external: swap the pointers
1595 			 */
1596 			swap(target->d_name.name, dentry->d_name.name);
1597 		} else {
1598 			/*
1599 			 * dentry:internal, target:external.  Steal target's
1600 			 * storage and make target internal.
1601 			 */
1602 			memcpy(target->d_iname, dentry->d_name.name,
1603 					dentry->d_name.len + 1);
1604 			dentry->d_name.name = target->d_name.name;
1605 			target->d_name.name = target->d_iname;
1606 		}
1607 	} else {
1608 		if (dname_external(dentry)) {
1609 			/*
1610 			 * dentry:external, target:internal.  Give dentry's
1611 			 * storage to target and make dentry internal
1612 			 */
1613 			memcpy(dentry->d_iname, target->d_name.name,
1614 					target->d_name.len + 1);
1615 			target->d_name.name = dentry->d_name.name;
1616 			dentry->d_name.name = dentry->d_iname;
1617 		} else {
1618 			/*
1619 			 * Both are internal.  Just copy target to dentry
1620 			 */
1621 			memcpy(dentry->d_iname, target->d_name.name,
1622 					target->d_name.len + 1);
1623 			dentry->d_name.len = target->d_name.len;
1624 			return;
1625 		}
1626 	}
1627 	swap(dentry->d_name.len, target->d_name.len);
1628 }
1629 
1630 /*
1631  * We cannibalize "target" when moving dentry on top of it,
1632  * because it's going to be thrown away anyway. We could be more
1633  * polite about it, though.
1634  *
1635  * This forceful removal will result in ugly /proc output if
1636  * somebody holds a file open that got deleted due to a rename.
1637  * We could be nicer about the deleted file, and let it show
1638  * up under the name it had before it was deleted rather than
1639  * under the original name of the file that was moved on top of it.
1640  */
1641 
1642 /*
1643  * d_move_locked - move a dentry
1644  * @dentry: entry to move
1645  * @target: new dentry
1646  *
1647  * Update the dcache to reflect the move of a file name. Negative
1648  * dcache entries should not be moved in this way.
1649  */
1650 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1651 {
1652 	struct hlist_head *list;
1653 
1654 	if (!dentry->d_inode)
1655 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1656 
1657 	write_seqlock(&rename_lock);
1658 	/*
1659 	 * XXXX: do we really need to take target->d_lock?
1660 	 */
1661 	if (target < dentry) {
1662 		spin_lock(&target->d_lock);
1663 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1664 	} else {
1665 		spin_lock(&dentry->d_lock);
1666 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1667 	}
1668 
1669 	/* Move the dentry to the target hash queue, if on different bucket */
1670 	if (d_unhashed(dentry))
1671 		goto already_unhashed;
1672 
1673 	hlist_del_rcu(&dentry->d_hash);
1674 
1675 already_unhashed:
1676 	list = d_hash(target->d_parent, target->d_name.hash);
1677 	__d_rehash(dentry, list);
1678 
1679 	/* Unhash the target: dput() will then get rid of it */
1680 	__d_drop(target);
1681 
1682 	list_del(&dentry->d_u.d_child);
1683 	list_del(&target->d_u.d_child);
1684 
1685 	/* Switch the names.. */
1686 	switch_names(dentry, target);
1687 	swap(dentry->d_name.hash, target->d_name.hash);
1688 
1689 	/* ... and switch the parents */
1690 	if (IS_ROOT(dentry)) {
1691 		dentry->d_parent = target->d_parent;
1692 		target->d_parent = target;
1693 		INIT_LIST_HEAD(&target->d_u.d_child);
1694 	} else {
1695 		swap(dentry->d_parent, target->d_parent);
1696 
1697 		/* And add them back to the (new) parent lists */
1698 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1699 	}
1700 
1701 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1702 	spin_unlock(&target->d_lock);
1703 	fsnotify_d_move(dentry);
1704 	spin_unlock(&dentry->d_lock);
1705 	write_sequnlock(&rename_lock);
1706 }
1707 
1708 /**
1709  * d_move - move a dentry
1710  * @dentry: entry to move
1711  * @target: new dentry
1712  *
1713  * Update the dcache to reflect the move of a file name. Negative
1714  * dcache entries should not be moved in this way.
1715  */
1716 
1717 void d_move(struct dentry * dentry, struct dentry * target)
1718 {
1719 	spin_lock(&dcache_lock);
1720 	d_move_locked(dentry, target);
1721 	spin_unlock(&dcache_lock);
1722 }
1723 EXPORT_SYMBOL(d_move);
1724 
1725 /**
1726  * d_ancestor - search for an ancestor
1727  * @p1: ancestor dentry
1728  * @p2: child dentry
1729  *
1730  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1731  * an ancestor of p2, else NULL.
1732  */
1733 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
1734 {
1735 	struct dentry *p;
1736 
1737 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
1738 		if (p->d_parent == p1)
1739 			return p;
1740 	}
1741 	return NULL;
1742 }
1743 
1744 /*
1745  * This helper attempts to cope with remotely renamed directories
1746  *
1747  * It assumes that the caller is already holding
1748  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1749  *
1750  * Note: If ever the locking in lock_rename() changes, then please
1751  * remember to update this too...
1752  */
1753 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1754 	__releases(dcache_lock)
1755 {
1756 	struct mutex *m1 = NULL, *m2 = NULL;
1757 	struct dentry *ret;
1758 
1759 	/* If alias and dentry share a parent, then no extra locks required */
1760 	if (alias->d_parent == dentry->d_parent)
1761 		goto out_unalias;
1762 
1763 	/* Check for loops */
1764 	ret = ERR_PTR(-ELOOP);
1765 	if (d_ancestor(alias, dentry))
1766 		goto out_err;
1767 
1768 	/* See lock_rename() */
1769 	ret = ERR_PTR(-EBUSY);
1770 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1771 		goto out_err;
1772 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1773 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1774 		goto out_err;
1775 	m2 = &alias->d_parent->d_inode->i_mutex;
1776 out_unalias:
1777 	d_move_locked(alias, dentry);
1778 	ret = alias;
1779 out_err:
1780 	spin_unlock(&dcache_lock);
1781 	if (m2)
1782 		mutex_unlock(m2);
1783 	if (m1)
1784 		mutex_unlock(m1);
1785 	return ret;
1786 }
1787 
1788 /*
1789  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1790  * named dentry in place of the dentry to be replaced.
1791  */
1792 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1793 {
1794 	struct dentry *dparent, *aparent;
1795 
1796 	switch_names(dentry, anon);
1797 	swap(dentry->d_name.hash, anon->d_name.hash);
1798 
1799 	dparent = dentry->d_parent;
1800 	aparent = anon->d_parent;
1801 
1802 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1803 	list_del(&dentry->d_u.d_child);
1804 	if (!IS_ROOT(dentry))
1805 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1806 	else
1807 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1808 
1809 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1810 	list_del(&anon->d_u.d_child);
1811 	if (!IS_ROOT(anon))
1812 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1813 	else
1814 		INIT_LIST_HEAD(&anon->d_u.d_child);
1815 
1816 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1817 }
1818 
1819 /**
1820  * d_materialise_unique - introduce an inode into the tree
1821  * @dentry: candidate dentry
1822  * @inode: inode to bind to the dentry, to which aliases may be attached
1823  *
1824  * Introduces an dentry into the tree, substituting an extant disconnected
1825  * root directory alias in its place if there is one
1826  */
1827 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1828 {
1829 	struct dentry *actual;
1830 
1831 	BUG_ON(!d_unhashed(dentry));
1832 
1833 	spin_lock(&dcache_lock);
1834 
1835 	if (!inode) {
1836 		actual = dentry;
1837 		__d_instantiate(dentry, NULL);
1838 		goto found_lock;
1839 	}
1840 
1841 	if (S_ISDIR(inode->i_mode)) {
1842 		struct dentry *alias;
1843 
1844 		/* Does an aliased dentry already exist? */
1845 		alias = __d_find_alias(inode, 0);
1846 		if (alias) {
1847 			actual = alias;
1848 			/* Is this an anonymous mountpoint that we could splice
1849 			 * into our tree? */
1850 			if (IS_ROOT(alias)) {
1851 				spin_lock(&alias->d_lock);
1852 				__d_materialise_dentry(dentry, alias);
1853 				__d_drop(alias);
1854 				goto found;
1855 			}
1856 			/* Nope, but we must(!) avoid directory aliasing */
1857 			actual = __d_unalias(dentry, alias);
1858 			if (IS_ERR(actual))
1859 				dput(alias);
1860 			goto out_nolock;
1861 		}
1862 	}
1863 
1864 	/* Add a unique reference */
1865 	actual = __d_instantiate_unique(dentry, inode);
1866 	if (!actual)
1867 		actual = dentry;
1868 	else if (unlikely(!d_unhashed(actual)))
1869 		goto shouldnt_be_hashed;
1870 
1871 found_lock:
1872 	spin_lock(&actual->d_lock);
1873 found:
1874 	_d_rehash(actual);
1875 	spin_unlock(&actual->d_lock);
1876 	spin_unlock(&dcache_lock);
1877 out_nolock:
1878 	if (actual == dentry) {
1879 		security_d_instantiate(dentry, inode);
1880 		return NULL;
1881 	}
1882 
1883 	iput(inode);
1884 	return actual;
1885 
1886 shouldnt_be_hashed:
1887 	spin_unlock(&dcache_lock);
1888 	BUG();
1889 }
1890 EXPORT_SYMBOL_GPL(d_materialise_unique);
1891 
1892 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1893 {
1894 	*buflen -= namelen;
1895 	if (*buflen < 0)
1896 		return -ENAMETOOLONG;
1897 	*buffer -= namelen;
1898 	memcpy(*buffer, str, namelen);
1899 	return 0;
1900 }
1901 
1902 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1903 {
1904 	return prepend(buffer, buflen, name->name, name->len);
1905 }
1906 
1907 /**
1908  * __d_path - return the path of a dentry
1909  * @path: the dentry/vfsmount to report
1910  * @root: root vfsmnt/dentry (may be modified by this function)
1911  * @buffer: buffer to return value in
1912  * @buflen: buffer length
1913  *
1914  * Convert a dentry into an ASCII path name. If the entry has been deleted
1915  * the string " (deleted)" is appended. Note that this is ambiguous.
1916  *
1917  * Returns a pointer into the buffer or an error code if the
1918  * path was too long.
1919  *
1920  * "buflen" should be positive. Caller holds the dcache_lock.
1921  *
1922  * If path is not reachable from the supplied root, then the value of
1923  * root is changed (without modifying refcounts).
1924  */
1925 char *__d_path(const struct path *path, struct path *root,
1926 	       char *buffer, int buflen)
1927 {
1928 	struct dentry *dentry = path->dentry;
1929 	struct vfsmount *vfsmnt = path->mnt;
1930 	char *end = buffer + buflen;
1931 	char *retval;
1932 
1933 	spin_lock(&vfsmount_lock);
1934 	prepend(&end, &buflen, "\0", 1);
1935 	if (d_unlinked(dentry) &&
1936 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1937 			goto Elong;
1938 
1939 	if (buflen < 1)
1940 		goto Elong;
1941 	/* Get '/' right */
1942 	retval = end-1;
1943 	*retval = '/';
1944 
1945 	for (;;) {
1946 		struct dentry * parent;
1947 
1948 		if (dentry == root->dentry && vfsmnt == root->mnt)
1949 			break;
1950 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1951 			/* Global root? */
1952 			if (vfsmnt->mnt_parent == vfsmnt) {
1953 				goto global_root;
1954 			}
1955 			dentry = vfsmnt->mnt_mountpoint;
1956 			vfsmnt = vfsmnt->mnt_parent;
1957 			continue;
1958 		}
1959 		parent = dentry->d_parent;
1960 		prefetch(parent);
1961 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1962 		    (prepend(&end, &buflen, "/", 1) != 0))
1963 			goto Elong;
1964 		retval = end;
1965 		dentry = parent;
1966 	}
1967 
1968 out:
1969 	spin_unlock(&vfsmount_lock);
1970 	return retval;
1971 
1972 global_root:
1973 	retval += 1;	/* hit the slash */
1974 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1975 		goto Elong;
1976 	root->mnt = vfsmnt;
1977 	root->dentry = dentry;
1978 	goto out;
1979 
1980 Elong:
1981 	retval = ERR_PTR(-ENAMETOOLONG);
1982 	goto out;
1983 }
1984 
1985 /**
1986  * d_path - return the path of a dentry
1987  * @path: path to report
1988  * @buf: buffer to return value in
1989  * @buflen: buffer length
1990  *
1991  * Convert a dentry into an ASCII path name. If the entry has been deleted
1992  * the string " (deleted)" is appended. Note that this is ambiguous.
1993  *
1994  * Returns a pointer into the buffer or an error code if the path was
1995  * too long. Note: Callers should use the returned pointer, not the passed
1996  * in buffer, to use the name! The implementation often starts at an offset
1997  * into the buffer, and may leave 0 bytes at the start.
1998  *
1999  * "buflen" should be positive.
2000  */
2001 char *d_path(const struct path *path, char *buf, int buflen)
2002 {
2003 	char *res;
2004 	struct path root;
2005 	struct path tmp;
2006 
2007 	/*
2008 	 * We have various synthetic filesystems that never get mounted.  On
2009 	 * these filesystems dentries are never used for lookup purposes, and
2010 	 * thus don't need to be hashed.  They also don't need a name until a
2011 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2012 	 * below allows us to generate a name for these objects on demand:
2013 	 */
2014 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2015 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2016 
2017 	read_lock(&current->fs->lock);
2018 	root = current->fs->root;
2019 	path_get(&root);
2020 	read_unlock(&current->fs->lock);
2021 	spin_lock(&dcache_lock);
2022 	tmp = root;
2023 	res = __d_path(path, &tmp, buf, buflen);
2024 	spin_unlock(&dcache_lock);
2025 	path_put(&root);
2026 	return res;
2027 }
2028 EXPORT_SYMBOL(d_path);
2029 
2030 /*
2031  * Helper function for dentry_operations.d_dname() members
2032  */
2033 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2034 			const char *fmt, ...)
2035 {
2036 	va_list args;
2037 	char temp[64];
2038 	int sz;
2039 
2040 	va_start(args, fmt);
2041 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2042 	va_end(args);
2043 
2044 	if (sz > sizeof(temp) || sz > buflen)
2045 		return ERR_PTR(-ENAMETOOLONG);
2046 
2047 	buffer += buflen - sz;
2048 	return memcpy(buffer, temp, sz);
2049 }
2050 
2051 /*
2052  * Write full pathname from the root of the filesystem into the buffer.
2053  */
2054 char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2055 {
2056 	char *end = buf + buflen;
2057 	char *retval;
2058 
2059 	prepend(&end, &buflen, "\0", 1);
2060 	if (buflen < 1)
2061 		goto Elong;
2062 	/* Get '/' right */
2063 	retval = end-1;
2064 	*retval = '/';
2065 
2066 	while (!IS_ROOT(dentry)) {
2067 		struct dentry *parent = dentry->d_parent;
2068 
2069 		prefetch(parent);
2070 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
2071 		    (prepend(&end, &buflen, "/", 1) != 0))
2072 			goto Elong;
2073 
2074 		retval = end;
2075 		dentry = parent;
2076 	}
2077 	return retval;
2078 Elong:
2079 	return ERR_PTR(-ENAMETOOLONG);
2080 }
2081 EXPORT_SYMBOL(__dentry_path);
2082 
2083 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2084 {
2085 	char *p = NULL;
2086 	char *retval;
2087 
2088 	spin_lock(&dcache_lock);
2089 	if (d_unlinked(dentry)) {
2090 		p = buf + buflen;
2091 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2092 			goto Elong;
2093 		buflen++;
2094 	}
2095 	retval = __dentry_path(dentry, buf, buflen);
2096 	spin_unlock(&dcache_lock);
2097 	if (!IS_ERR(retval) && p)
2098 		*p = '/';	/* restore '/' overriden with '\0' */
2099 	return retval;
2100 Elong:
2101 	spin_unlock(&dcache_lock);
2102 	return ERR_PTR(-ENAMETOOLONG);
2103 }
2104 
2105 /*
2106  * NOTE! The user-level library version returns a
2107  * character pointer. The kernel system call just
2108  * returns the length of the buffer filled (which
2109  * includes the ending '\0' character), or a negative
2110  * error value. So libc would do something like
2111  *
2112  *	char *getcwd(char * buf, size_t size)
2113  *	{
2114  *		int retval;
2115  *
2116  *		retval = sys_getcwd(buf, size);
2117  *		if (retval >= 0)
2118  *			return buf;
2119  *		errno = -retval;
2120  *		return NULL;
2121  *	}
2122  */
2123 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2124 {
2125 	int error;
2126 	struct path pwd, root;
2127 	char *page = (char *) __get_free_page(GFP_USER);
2128 
2129 	if (!page)
2130 		return -ENOMEM;
2131 
2132 	read_lock(&current->fs->lock);
2133 	pwd = current->fs->pwd;
2134 	path_get(&pwd);
2135 	root = current->fs->root;
2136 	path_get(&root);
2137 	read_unlock(&current->fs->lock);
2138 
2139 	error = -ENOENT;
2140 	spin_lock(&dcache_lock);
2141 	if (!d_unlinked(pwd.dentry)) {
2142 		unsigned long len;
2143 		struct path tmp = root;
2144 		char * cwd;
2145 
2146 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2147 		spin_unlock(&dcache_lock);
2148 
2149 		error = PTR_ERR(cwd);
2150 		if (IS_ERR(cwd))
2151 			goto out;
2152 
2153 		error = -ERANGE;
2154 		len = PAGE_SIZE + page - cwd;
2155 		if (len <= size) {
2156 			error = len;
2157 			if (copy_to_user(buf, cwd, len))
2158 				error = -EFAULT;
2159 		}
2160 	} else
2161 		spin_unlock(&dcache_lock);
2162 
2163 out:
2164 	path_put(&pwd);
2165 	path_put(&root);
2166 	free_page((unsigned long) page);
2167 	return error;
2168 }
2169 
2170 /*
2171  * Test whether new_dentry is a subdirectory of old_dentry.
2172  *
2173  * Trivially implemented using the dcache structure
2174  */
2175 
2176 /**
2177  * is_subdir - is new dentry a subdirectory of old_dentry
2178  * @new_dentry: new dentry
2179  * @old_dentry: old dentry
2180  *
2181  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2182  * Returns 0 otherwise.
2183  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2184  */
2185 
2186 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2187 {
2188 	int result;
2189 	unsigned long seq;
2190 
2191 	if (new_dentry == old_dentry)
2192 		return 1;
2193 
2194 	/*
2195 	 * Need rcu_readlock to protect against the d_parent trashing
2196 	 * due to d_move
2197 	 */
2198 	rcu_read_lock();
2199 	do {
2200 		/* for restarting inner loop in case of seq retry */
2201 		seq = read_seqbegin(&rename_lock);
2202 		if (d_ancestor(old_dentry, new_dentry))
2203 			result = 1;
2204 		else
2205 			result = 0;
2206 	} while (read_seqretry(&rename_lock, seq));
2207 	rcu_read_unlock();
2208 
2209 	return result;
2210 }
2211 
2212 int path_is_under(struct path *path1, struct path *path2)
2213 {
2214 	struct vfsmount *mnt = path1->mnt;
2215 	struct dentry *dentry = path1->dentry;
2216 	int res;
2217 	spin_lock(&vfsmount_lock);
2218 	if (mnt != path2->mnt) {
2219 		for (;;) {
2220 			if (mnt->mnt_parent == mnt) {
2221 				spin_unlock(&vfsmount_lock);
2222 				return 0;
2223 			}
2224 			if (mnt->mnt_parent == path2->mnt)
2225 				break;
2226 			mnt = mnt->mnt_parent;
2227 		}
2228 		dentry = mnt->mnt_mountpoint;
2229 	}
2230 	res = is_subdir(dentry, path2->dentry);
2231 	spin_unlock(&vfsmount_lock);
2232 	return res;
2233 }
2234 EXPORT_SYMBOL(path_is_under);
2235 
2236 void d_genocide(struct dentry *root)
2237 {
2238 	struct dentry *this_parent = root;
2239 	struct list_head *next;
2240 
2241 	spin_lock(&dcache_lock);
2242 repeat:
2243 	next = this_parent->d_subdirs.next;
2244 resume:
2245 	while (next != &this_parent->d_subdirs) {
2246 		struct list_head *tmp = next;
2247 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2248 		next = tmp->next;
2249 		if (d_unhashed(dentry)||!dentry->d_inode)
2250 			continue;
2251 		if (!list_empty(&dentry->d_subdirs)) {
2252 			this_parent = dentry;
2253 			goto repeat;
2254 		}
2255 		atomic_dec(&dentry->d_count);
2256 	}
2257 	if (this_parent != root) {
2258 		next = this_parent->d_u.d_child.next;
2259 		atomic_dec(&this_parent->d_count);
2260 		this_parent = this_parent->d_parent;
2261 		goto resume;
2262 	}
2263 	spin_unlock(&dcache_lock);
2264 }
2265 
2266 /**
2267  * find_inode_number - check for dentry with name
2268  * @dir: directory to check
2269  * @name: Name to find.
2270  *
2271  * Check whether a dentry already exists for the given name,
2272  * and return the inode number if it has an inode. Otherwise
2273  * 0 is returned.
2274  *
2275  * This routine is used to post-process directory listings for
2276  * filesystems using synthetic inode numbers, and is necessary
2277  * to keep getcwd() working.
2278  */
2279 
2280 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2281 {
2282 	struct dentry * dentry;
2283 	ino_t ino = 0;
2284 
2285 	dentry = d_hash_and_lookup(dir, name);
2286 	if (dentry) {
2287 		if (dentry->d_inode)
2288 			ino = dentry->d_inode->i_ino;
2289 		dput(dentry);
2290 	}
2291 	return ino;
2292 }
2293 EXPORT_SYMBOL(find_inode_number);
2294 
2295 static __initdata unsigned long dhash_entries;
2296 static int __init set_dhash_entries(char *str)
2297 {
2298 	if (!str)
2299 		return 0;
2300 	dhash_entries = simple_strtoul(str, &str, 0);
2301 	return 1;
2302 }
2303 __setup("dhash_entries=", set_dhash_entries);
2304 
2305 static void __init dcache_init_early(void)
2306 {
2307 	int loop;
2308 
2309 	/* If hashes are distributed across NUMA nodes, defer
2310 	 * hash allocation until vmalloc space is available.
2311 	 */
2312 	if (hashdist)
2313 		return;
2314 
2315 	dentry_hashtable =
2316 		alloc_large_system_hash("Dentry cache",
2317 					sizeof(struct hlist_head),
2318 					dhash_entries,
2319 					13,
2320 					HASH_EARLY,
2321 					&d_hash_shift,
2322 					&d_hash_mask,
2323 					0);
2324 
2325 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2326 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2327 }
2328 
2329 static void __init dcache_init(void)
2330 {
2331 	int loop;
2332 
2333 	/*
2334 	 * A constructor could be added for stable state like the lists,
2335 	 * but it is probably not worth it because of the cache nature
2336 	 * of the dcache.
2337 	 */
2338 	dentry_cache = KMEM_CACHE(dentry,
2339 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2340 
2341 	register_shrinker(&dcache_shrinker);
2342 
2343 	/* Hash may have been set up in dcache_init_early */
2344 	if (!hashdist)
2345 		return;
2346 
2347 	dentry_hashtable =
2348 		alloc_large_system_hash("Dentry cache",
2349 					sizeof(struct hlist_head),
2350 					dhash_entries,
2351 					13,
2352 					0,
2353 					&d_hash_shift,
2354 					&d_hash_mask,
2355 					0);
2356 
2357 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2358 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2359 }
2360 
2361 /* SLAB cache for __getname() consumers */
2362 struct kmem_cache *names_cachep __read_mostly;
2363 EXPORT_SYMBOL(names_cachep);
2364 
2365 EXPORT_SYMBOL(d_genocide);
2366 
2367 void __init vfs_caches_init_early(void)
2368 {
2369 	dcache_init_early();
2370 	inode_init_early();
2371 }
2372 
2373 void __init vfs_caches_init(unsigned long mempages)
2374 {
2375 	unsigned long reserve;
2376 
2377 	/* Base hash sizes on available memory, with a reserve equal to
2378            150% of current kernel size */
2379 
2380 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2381 	mempages -= reserve;
2382 
2383 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2384 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2385 
2386 	dcache_init();
2387 	inode_init();
2388 	files_init(mempages);
2389 	mnt_init();
2390 	bdev_cache_init();
2391 	chrdev_init();
2392 }
2393