xref: /linux/fs/dcache.c (revision 5ab1de932e2923f490645ad017a689c5b58dc433)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/ratelimit.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/security.h>
28 #include <linux/seqlock.h>
29 #include <linux/bootmem.h>
30 #include <linux/bit_spinlock.h>
31 #include <linux/rculist_bl.h>
32 #include <linux/list_lru.h>
33 #include "internal.h"
34 #include "mount.h"
35 
36 /*
37  * Usage:
38  * dcache->d_inode->i_lock protects:
39  *   - i_dentry, d_u.d_alias, d_inode of aliases
40  * dcache_hash_bucket lock protects:
41  *   - the dcache hash table
42  * s_roots bl list spinlock protects:
43  *   - the s_roots list (see __d_drop)
44  * dentry->d_sb->s_dentry_lru_lock protects:
45  *   - the dcache lru lists and counters
46  * d_lock protects:
47  *   - d_flags
48  *   - d_name
49  *   - d_lru
50  *   - d_count
51  *   - d_unhashed()
52  *   - d_parent and d_subdirs
53  *   - childrens' d_child and d_parent
54  *   - d_u.d_alias, d_inode
55  *
56  * Ordering:
57  * dentry->d_inode->i_lock
58  *   dentry->d_lock
59  *     dentry->d_sb->s_dentry_lru_lock
60  *     dcache_hash_bucket lock
61  *     s_roots lock
62  *
63  * If there is an ancestor relationship:
64  * dentry->d_parent->...->d_parent->d_lock
65  *   ...
66  *     dentry->d_parent->d_lock
67  *       dentry->d_lock
68  *
69  * If no ancestor relationship:
70  * arbitrary, since it's serialized on rename_lock
71  */
72 int sysctl_vfs_cache_pressure __read_mostly = 100;
73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
74 
75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
76 
77 EXPORT_SYMBOL(rename_lock);
78 
79 static struct kmem_cache *dentry_cache __read_mostly;
80 
81 const struct qstr empty_name = QSTR_INIT("", 0);
82 EXPORT_SYMBOL(empty_name);
83 const struct qstr slash_name = QSTR_INIT("/", 1);
84 EXPORT_SYMBOL(slash_name);
85 
86 /*
87  * This is the single most critical data structure when it comes
88  * to the dcache: the hashtable for lookups. Somebody should try
89  * to make this good - I've just made it work.
90  *
91  * This hash-function tries to avoid losing too many bits of hash
92  * information, yet avoid using a prime hash-size or similar.
93  */
94 
95 static unsigned int d_hash_shift __read_mostly;
96 
97 static struct hlist_bl_head *dentry_hashtable __read_mostly;
98 
99 static inline struct hlist_bl_head *d_hash(unsigned int hash)
100 {
101 	return dentry_hashtable + (hash >> d_hash_shift);
102 }
103 
104 #define IN_LOOKUP_SHIFT 10
105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
106 
107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
112 }
113 
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(long, nr_dentry);
121 static DEFINE_PER_CPU(long, nr_dentry_unused);
122 
123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
124 
125 /*
126  * Here we resort to our own counters instead of using generic per-cpu counters
127  * for consistency with what the vfs inode code does. We are expected to harvest
128  * better code and performance by having our own specialized counters.
129  *
130  * Please note that the loop is done over all possible CPUs, not over all online
131  * CPUs. The reason for this is that we don't want to play games with CPUs going
132  * on and off. If one of them goes off, we will just keep their counters.
133  *
134  * glommer: See cffbc8a for details, and if you ever intend to change this,
135  * please update all vfs counters to match.
136  */
137 static long get_nr_dentry(void)
138 {
139 	int i;
140 	long sum = 0;
141 	for_each_possible_cpu(i)
142 		sum += per_cpu(nr_dentry, i);
143 	return sum < 0 ? 0 : sum;
144 }
145 
146 static long get_nr_dentry_unused(void)
147 {
148 	int i;
149 	long sum = 0;
150 	for_each_possible_cpu(i)
151 		sum += per_cpu(nr_dentry_unused, i);
152 	return sum < 0 ? 0 : sum;
153 }
154 
155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
156 		   size_t *lenp, loff_t *ppos)
157 {
158 	dentry_stat.nr_dentry = get_nr_dentry();
159 	dentry_stat.nr_unused = get_nr_dentry_unused();
160 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
161 }
162 #endif
163 
164 /*
165  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
166  * The strings are both count bytes long, and count is non-zero.
167  */
168 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 
170 #include <asm/word-at-a-time.h>
171 /*
172  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
173  * aligned allocation for this particular component. We don't
174  * strictly need the load_unaligned_zeropad() safety, but it
175  * doesn't hurt either.
176  *
177  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
178  * need the careful unaligned handling.
179  */
180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
181 {
182 	unsigned long a,b,mask;
183 
184 	for (;;) {
185 		a = read_word_at_a_time(cs);
186 		b = load_unaligned_zeropad(ct);
187 		if (tcount < sizeof(unsigned long))
188 			break;
189 		if (unlikely(a != b))
190 			return 1;
191 		cs += sizeof(unsigned long);
192 		ct += sizeof(unsigned long);
193 		tcount -= sizeof(unsigned long);
194 		if (!tcount)
195 			return 0;
196 	}
197 	mask = bytemask_from_count(tcount);
198 	return unlikely(!!((a ^ b) & mask));
199 }
200 
201 #else
202 
203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
204 {
205 	do {
206 		if (*cs != *ct)
207 			return 1;
208 		cs++;
209 		ct++;
210 		tcount--;
211 	} while (tcount);
212 	return 0;
213 }
214 
215 #endif
216 
217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
218 {
219 	/*
220 	 * Be careful about RCU walk racing with rename:
221 	 * use 'READ_ONCE' to fetch the name pointer.
222 	 *
223 	 * NOTE! Even if a rename will mean that the length
224 	 * was not loaded atomically, we don't care. The
225 	 * RCU walk will check the sequence count eventually,
226 	 * and catch it. And we won't overrun the buffer,
227 	 * because we're reading the name pointer atomically,
228 	 * and a dentry name is guaranteed to be properly
229 	 * terminated with a NUL byte.
230 	 *
231 	 * End result: even if 'len' is wrong, we'll exit
232 	 * early because the data cannot match (there can
233 	 * be no NUL in the ct/tcount data)
234 	 */
235 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
236 
237 	return dentry_string_cmp(cs, ct, tcount);
238 }
239 
240 struct external_name {
241 	union {
242 		atomic_t count;
243 		struct rcu_head head;
244 	} u;
245 	unsigned char name[];
246 };
247 
248 static inline struct external_name *external_name(struct dentry *dentry)
249 {
250 	return container_of(dentry->d_name.name, struct external_name, name[0]);
251 }
252 
253 static void __d_free(struct rcu_head *head)
254 {
255 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
256 
257 	kmem_cache_free(dentry_cache, dentry);
258 }
259 
260 static void __d_free_external_name(struct rcu_head *head)
261 {
262 	struct external_name *name = container_of(head, struct external_name,
263 						  u.head);
264 
265 	mod_node_page_state(page_pgdat(virt_to_page(name)),
266 			    NR_INDIRECTLY_RECLAIMABLE_BYTES,
267 			    -ksize(name));
268 
269 	kfree(name);
270 }
271 
272 static void __d_free_external(struct rcu_head *head)
273 {
274 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
275 
276 	__d_free_external_name(&external_name(dentry)->u.head);
277 
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	if (unlikely(dname_external(dentry))) {
290 		struct external_name *p = external_name(dentry);
291 		atomic_inc(&p->u.count);
292 		spin_unlock(&dentry->d_lock);
293 		name->name = p->name;
294 	} else {
295 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
296 		spin_unlock(&dentry->d_lock);
297 		name->name = name->inline_name;
298 	}
299 }
300 EXPORT_SYMBOL(take_dentry_name_snapshot);
301 
302 void release_dentry_name_snapshot(struct name_snapshot *name)
303 {
304 	if (unlikely(name->name != name->inline_name)) {
305 		struct external_name *p;
306 		p = container_of(name->name, struct external_name, name[0]);
307 		if (unlikely(atomic_dec_and_test(&p->u.count)))
308 			call_rcu(&p->u.head, __d_free_external_name);
309 	}
310 }
311 EXPORT_SYMBOL(release_dentry_name_snapshot);
312 
313 static inline void __d_set_inode_and_type(struct dentry *dentry,
314 					  struct inode *inode,
315 					  unsigned type_flags)
316 {
317 	unsigned flags;
318 
319 	dentry->d_inode = inode;
320 	flags = READ_ONCE(dentry->d_flags);
321 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
322 	flags |= type_flags;
323 	WRITE_ONCE(dentry->d_flags, flags);
324 }
325 
326 static inline void __d_clear_type_and_inode(struct dentry *dentry)
327 {
328 	unsigned flags = READ_ONCE(dentry->d_flags);
329 
330 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
331 	WRITE_ONCE(dentry->d_flags, flags);
332 	dentry->d_inode = NULL;
333 }
334 
335 static void dentry_free(struct dentry *dentry)
336 {
337 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
338 	if (unlikely(dname_external(dentry))) {
339 		struct external_name *p = external_name(dentry);
340 		if (likely(atomic_dec_and_test(&p->u.count))) {
341 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
342 			return;
343 		}
344 	}
345 	/* if dentry was never visible to RCU, immediate free is OK */
346 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
347 		__d_free(&dentry->d_u.d_rcu);
348 	else
349 		call_rcu(&dentry->d_u.d_rcu, __d_free);
350 }
351 
352 /*
353  * Release the dentry's inode, using the filesystem
354  * d_iput() operation if defined.
355  */
356 static void dentry_unlink_inode(struct dentry * dentry)
357 	__releases(dentry->d_lock)
358 	__releases(dentry->d_inode->i_lock)
359 {
360 	struct inode *inode = dentry->d_inode;
361 
362 	raw_write_seqcount_begin(&dentry->d_seq);
363 	__d_clear_type_and_inode(dentry);
364 	hlist_del_init(&dentry->d_u.d_alias);
365 	raw_write_seqcount_end(&dentry->d_seq);
366 	spin_unlock(&dentry->d_lock);
367 	spin_unlock(&inode->i_lock);
368 	if (!inode->i_nlink)
369 		fsnotify_inoderemove(inode);
370 	if (dentry->d_op && dentry->d_op->d_iput)
371 		dentry->d_op->d_iput(dentry, inode);
372 	else
373 		iput(inode);
374 }
375 
376 /*
377  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
378  * is in use - which includes both the "real" per-superblock
379  * LRU list _and_ the DCACHE_SHRINK_LIST use.
380  *
381  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
382  * on the shrink list (ie not on the superblock LRU list).
383  *
384  * The per-cpu "nr_dentry_unused" counters are updated with
385  * the DCACHE_LRU_LIST bit.
386  *
387  * These helper functions make sure we always follow the
388  * rules. d_lock must be held by the caller.
389  */
390 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
391 static void d_lru_add(struct dentry *dentry)
392 {
393 	D_FLAG_VERIFY(dentry, 0);
394 	dentry->d_flags |= DCACHE_LRU_LIST;
395 	this_cpu_inc(nr_dentry_unused);
396 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
397 }
398 
399 static void d_lru_del(struct dentry *dentry)
400 {
401 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
402 	dentry->d_flags &= ~DCACHE_LRU_LIST;
403 	this_cpu_dec(nr_dentry_unused);
404 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_shrink_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
410 	list_del_init(&dentry->d_lru);
411 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 	this_cpu_dec(nr_dentry_unused);
413 }
414 
415 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
416 {
417 	D_FLAG_VERIFY(dentry, 0);
418 	list_add(&dentry->d_lru, list);
419 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
420 	this_cpu_inc(nr_dentry_unused);
421 }
422 
423 /*
424  * These can only be called under the global LRU lock, ie during the
425  * callback for freeing the LRU list. "isolate" removes it from the
426  * LRU lists entirely, while shrink_move moves it to the indicated
427  * private list.
428  */
429 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
430 {
431 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
432 	dentry->d_flags &= ~DCACHE_LRU_LIST;
433 	this_cpu_dec(nr_dentry_unused);
434 	list_lru_isolate(lru, &dentry->d_lru);
435 }
436 
437 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
438 			      struct list_head *list)
439 {
440 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
441 	dentry->d_flags |= DCACHE_SHRINK_LIST;
442 	list_lru_isolate_move(lru, &dentry->d_lru, list);
443 }
444 
445 /**
446  * d_drop - drop a dentry
447  * @dentry: dentry to drop
448  *
449  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
450  * be found through a VFS lookup any more. Note that this is different from
451  * deleting the dentry - d_delete will try to mark the dentry negative if
452  * possible, giving a successful _negative_ lookup, while d_drop will
453  * just make the cache lookup fail.
454  *
455  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
456  * reason (NFS timeouts or autofs deletes).
457  *
458  * __d_drop requires dentry->d_lock
459  * ___d_drop doesn't mark dentry as "unhashed"
460  *   (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
461  */
462 static void ___d_drop(struct dentry *dentry)
463 {
464 	struct hlist_bl_head *b;
465 	/*
466 	 * Hashed dentries are normally on the dentry hashtable,
467 	 * with the exception of those newly allocated by
468 	 * d_obtain_root, which are always IS_ROOT:
469 	 */
470 	if (unlikely(IS_ROOT(dentry)))
471 		b = &dentry->d_sb->s_roots;
472 	else
473 		b = d_hash(dentry->d_name.hash);
474 
475 	hlist_bl_lock(b);
476 	__hlist_bl_del(&dentry->d_hash);
477 	hlist_bl_unlock(b);
478 }
479 
480 void __d_drop(struct dentry *dentry)
481 {
482 	if (!d_unhashed(dentry)) {
483 		___d_drop(dentry);
484 		dentry->d_hash.pprev = NULL;
485 		write_seqcount_invalidate(&dentry->d_seq);
486 	}
487 }
488 EXPORT_SYMBOL(__d_drop);
489 
490 void d_drop(struct dentry *dentry)
491 {
492 	spin_lock(&dentry->d_lock);
493 	__d_drop(dentry);
494 	spin_unlock(&dentry->d_lock);
495 }
496 EXPORT_SYMBOL(d_drop);
497 
498 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
499 {
500 	struct dentry *next;
501 	/*
502 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
503 	 * attached to the dentry tree
504 	 */
505 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
506 	if (unlikely(list_empty(&dentry->d_child)))
507 		return;
508 	__list_del_entry(&dentry->d_child);
509 	/*
510 	 * Cursors can move around the list of children.  While we'd been
511 	 * a normal list member, it didn't matter - ->d_child.next would've
512 	 * been updated.  However, from now on it won't be and for the
513 	 * things like d_walk() it might end up with a nasty surprise.
514 	 * Normally d_walk() doesn't care about cursors moving around -
515 	 * ->d_lock on parent prevents that and since a cursor has no children
516 	 * of its own, we get through it without ever unlocking the parent.
517 	 * There is one exception, though - if we ascend from a child that
518 	 * gets killed as soon as we unlock it, the next sibling is found
519 	 * using the value left in its ->d_child.next.  And if _that_
520 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
521 	 * before d_walk() regains parent->d_lock, we'll end up skipping
522 	 * everything the cursor had been moved past.
523 	 *
524 	 * Solution: make sure that the pointer left behind in ->d_child.next
525 	 * points to something that won't be moving around.  I.e. skip the
526 	 * cursors.
527 	 */
528 	while (dentry->d_child.next != &parent->d_subdirs) {
529 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
530 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
531 			break;
532 		dentry->d_child.next = next->d_child.next;
533 	}
534 }
535 
536 static void __dentry_kill(struct dentry *dentry)
537 {
538 	struct dentry *parent = NULL;
539 	bool can_free = true;
540 	if (!IS_ROOT(dentry))
541 		parent = dentry->d_parent;
542 
543 	/*
544 	 * The dentry is now unrecoverably dead to the world.
545 	 */
546 	lockref_mark_dead(&dentry->d_lockref);
547 
548 	/*
549 	 * inform the fs via d_prune that this dentry is about to be
550 	 * unhashed and destroyed.
551 	 */
552 	if (dentry->d_flags & DCACHE_OP_PRUNE)
553 		dentry->d_op->d_prune(dentry);
554 
555 	if (dentry->d_flags & DCACHE_LRU_LIST) {
556 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
557 			d_lru_del(dentry);
558 	}
559 	/* if it was on the hash then remove it */
560 	__d_drop(dentry);
561 	dentry_unlist(dentry, parent);
562 	if (parent)
563 		spin_unlock(&parent->d_lock);
564 	if (dentry->d_inode)
565 		dentry_unlink_inode(dentry);
566 	else
567 		spin_unlock(&dentry->d_lock);
568 	this_cpu_dec(nr_dentry);
569 	if (dentry->d_op && dentry->d_op->d_release)
570 		dentry->d_op->d_release(dentry);
571 
572 	spin_lock(&dentry->d_lock);
573 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
574 		dentry->d_flags |= DCACHE_MAY_FREE;
575 		can_free = false;
576 	}
577 	spin_unlock(&dentry->d_lock);
578 	if (likely(can_free))
579 		dentry_free(dentry);
580 	cond_resched();
581 }
582 
583 static struct dentry *__lock_parent(struct dentry *dentry)
584 {
585 	struct dentry *parent;
586 	rcu_read_lock();
587 	spin_unlock(&dentry->d_lock);
588 again:
589 	parent = READ_ONCE(dentry->d_parent);
590 	spin_lock(&parent->d_lock);
591 	/*
592 	 * We can't blindly lock dentry until we are sure
593 	 * that we won't violate the locking order.
594 	 * Any changes of dentry->d_parent must have
595 	 * been done with parent->d_lock held, so
596 	 * spin_lock() above is enough of a barrier
597 	 * for checking if it's still our child.
598 	 */
599 	if (unlikely(parent != dentry->d_parent)) {
600 		spin_unlock(&parent->d_lock);
601 		goto again;
602 	}
603 	rcu_read_unlock();
604 	if (parent != dentry)
605 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
606 	else
607 		parent = NULL;
608 	return parent;
609 }
610 
611 static inline struct dentry *lock_parent(struct dentry *dentry)
612 {
613 	struct dentry *parent = dentry->d_parent;
614 	if (IS_ROOT(dentry))
615 		return NULL;
616 	if (likely(spin_trylock(&parent->d_lock)))
617 		return parent;
618 	return __lock_parent(dentry);
619 }
620 
621 static inline bool retain_dentry(struct dentry *dentry)
622 {
623 	WARN_ON(d_in_lookup(dentry));
624 
625 	/* Unreachable? Get rid of it */
626 	if (unlikely(d_unhashed(dentry)))
627 		return false;
628 
629 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
630 		return false;
631 
632 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
633 		if (dentry->d_op->d_delete(dentry))
634 			return false;
635 	}
636 	/* retain; LRU fodder */
637 	dentry->d_lockref.count--;
638 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
639 		d_lru_add(dentry);
640 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
641 		dentry->d_flags |= DCACHE_REFERENCED;
642 	return true;
643 }
644 
645 /*
646  * Finish off a dentry we've decided to kill.
647  * dentry->d_lock must be held, returns with it unlocked.
648  * Returns dentry requiring refcount drop, or NULL if we're done.
649  */
650 static struct dentry *dentry_kill(struct dentry *dentry)
651 	__releases(dentry->d_lock)
652 {
653 	struct inode *inode = dentry->d_inode;
654 	struct dentry *parent = NULL;
655 
656 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
657 		goto slow_positive;
658 
659 	if (!IS_ROOT(dentry)) {
660 		parent = dentry->d_parent;
661 		if (unlikely(!spin_trylock(&parent->d_lock))) {
662 			parent = __lock_parent(dentry);
663 			if (likely(inode || !dentry->d_inode))
664 				goto got_locks;
665 			/* negative that became positive */
666 			if (parent)
667 				spin_unlock(&parent->d_lock);
668 			inode = dentry->d_inode;
669 			goto slow_positive;
670 		}
671 	}
672 	__dentry_kill(dentry);
673 	return parent;
674 
675 slow_positive:
676 	spin_unlock(&dentry->d_lock);
677 	spin_lock(&inode->i_lock);
678 	spin_lock(&dentry->d_lock);
679 	parent = lock_parent(dentry);
680 got_locks:
681 	if (unlikely(dentry->d_lockref.count != 1)) {
682 		dentry->d_lockref.count--;
683 	} else if (likely(!retain_dentry(dentry))) {
684 		__dentry_kill(dentry);
685 		return parent;
686 	}
687 	/* we are keeping it, after all */
688 	if (inode)
689 		spin_unlock(&inode->i_lock);
690 	if (parent)
691 		spin_unlock(&parent->d_lock);
692 	spin_unlock(&dentry->d_lock);
693 	return NULL;
694 }
695 
696 /*
697  * Try to do a lockless dput(), and return whether that was successful.
698  *
699  * If unsuccessful, we return false, having already taken the dentry lock.
700  *
701  * The caller needs to hold the RCU read lock, so that the dentry is
702  * guaranteed to stay around even if the refcount goes down to zero!
703  */
704 static inline bool fast_dput(struct dentry *dentry)
705 {
706 	int ret;
707 	unsigned int d_flags;
708 
709 	/*
710 	 * If we have a d_op->d_delete() operation, we sould not
711 	 * let the dentry count go to zero, so use "put_or_lock".
712 	 */
713 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
714 		return lockref_put_or_lock(&dentry->d_lockref);
715 
716 	/*
717 	 * .. otherwise, we can try to just decrement the
718 	 * lockref optimistically.
719 	 */
720 	ret = lockref_put_return(&dentry->d_lockref);
721 
722 	/*
723 	 * If the lockref_put_return() failed due to the lock being held
724 	 * by somebody else, the fast path has failed. We will need to
725 	 * get the lock, and then check the count again.
726 	 */
727 	if (unlikely(ret < 0)) {
728 		spin_lock(&dentry->d_lock);
729 		if (dentry->d_lockref.count > 1) {
730 			dentry->d_lockref.count--;
731 			spin_unlock(&dentry->d_lock);
732 			return 1;
733 		}
734 		return 0;
735 	}
736 
737 	/*
738 	 * If we weren't the last ref, we're done.
739 	 */
740 	if (ret)
741 		return 1;
742 
743 	/*
744 	 * Careful, careful. The reference count went down
745 	 * to zero, but we don't hold the dentry lock, so
746 	 * somebody else could get it again, and do another
747 	 * dput(), and we need to not race with that.
748 	 *
749 	 * However, there is a very special and common case
750 	 * where we don't care, because there is nothing to
751 	 * do: the dentry is still hashed, it does not have
752 	 * a 'delete' op, and it's referenced and already on
753 	 * the LRU list.
754 	 *
755 	 * NOTE! Since we aren't locked, these values are
756 	 * not "stable". However, it is sufficient that at
757 	 * some point after we dropped the reference the
758 	 * dentry was hashed and the flags had the proper
759 	 * value. Other dentry users may have re-gotten
760 	 * a reference to the dentry and change that, but
761 	 * our work is done - we can leave the dentry
762 	 * around with a zero refcount.
763 	 */
764 	smp_rmb();
765 	d_flags = READ_ONCE(dentry->d_flags);
766 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
767 
768 	/* Nothing to do? Dropping the reference was all we needed? */
769 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
770 		return 1;
771 
772 	/*
773 	 * Not the fast normal case? Get the lock. We've already decremented
774 	 * the refcount, but we'll need to re-check the situation after
775 	 * getting the lock.
776 	 */
777 	spin_lock(&dentry->d_lock);
778 
779 	/*
780 	 * Did somebody else grab a reference to it in the meantime, and
781 	 * we're no longer the last user after all? Alternatively, somebody
782 	 * else could have killed it and marked it dead. Either way, we
783 	 * don't need to do anything else.
784 	 */
785 	if (dentry->d_lockref.count) {
786 		spin_unlock(&dentry->d_lock);
787 		return 1;
788 	}
789 
790 	/*
791 	 * Re-get the reference we optimistically dropped. We hold the
792 	 * lock, and we just tested that it was zero, so we can just
793 	 * set it to 1.
794 	 */
795 	dentry->d_lockref.count = 1;
796 	return 0;
797 }
798 
799 
800 /*
801  * This is dput
802  *
803  * This is complicated by the fact that we do not want to put
804  * dentries that are no longer on any hash chain on the unused
805  * list: we'd much rather just get rid of them immediately.
806  *
807  * However, that implies that we have to traverse the dentry
808  * tree upwards to the parents which might _also_ now be
809  * scheduled for deletion (it may have been only waiting for
810  * its last child to go away).
811  *
812  * This tail recursion is done by hand as we don't want to depend
813  * on the compiler to always get this right (gcc generally doesn't).
814  * Real recursion would eat up our stack space.
815  */
816 
817 /*
818  * dput - release a dentry
819  * @dentry: dentry to release
820  *
821  * Release a dentry. This will drop the usage count and if appropriate
822  * call the dentry unlink method as well as removing it from the queues and
823  * releasing its resources. If the parent dentries were scheduled for release
824  * they too may now get deleted.
825  */
826 void dput(struct dentry *dentry)
827 {
828 	while (dentry) {
829 		might_sleep();
830 
831 		rcu_read_lock();
832 		if (likely(fast_dput(dentry))) {
833 			rcu_read_unlock();
834 			return;
835 		}
836 
837 		/* Slow case: now with the dentry lock held */
838 		rcu_read_unlock();
839 
840 		if (likely(retain_dentry(dentry))) {
841 			spin_unlock(&dentry->d_lock);
842 			return;
843 		}
844 
845 		dentry = dentry_kill(dentry);
846 	}
847 }
848 EXPORT_SYMBOL(dput);
849 
850 
851 /* This must be called with d_lock held */
852 static inline void __dget_dlock(struct dentry *dentry)
853 {
854 	dentry->d_lockref.count++;
855 }
856 
857 static inline void __dget(struct dentry *dentry)
858 {
859 	lockref_get(&dentry->d_lockref);
860 }
861 
862 struct dentry *dget_parent(struct dentry *dentry)
863 {
864 	int gotref;
865 	struct dentry *ret;
866 
867 	/*
868 	 * Do optimistic parent lookup without any
869 	 * locking.
870 	 */
871 	rcu_read_lock();
872 	ret = READ_ONCE(dentry->d_parent);
873 	gotref = lockref_get_not_zero(&ret->d_lockref);
874 	rcu_read_unlock();
875 	if (likely(gotref)) {
876 		if (likely(ret == READ_ONCE(dentry->d_parent)))
877 			return ret;
878 		dput(ret);
879 	}
880 
881 repeat:
882 	/*
883 	 * Don't need rcu_dereference because we re-check it was correct under
884 	 * the lock.
885 	 */
886 	rcu_read_lock();
887 	ret = dentry->d_parent;
888 	spin_lock(&ret->d_lock);
889 	if (unlikely(ret != dentry->d_parent)) {
890 		spin_unlock(&ret->d_lock);
891 		rcu_read_unlock();
892 		goto repeat;
893 	}
894 	rcu_read_unlock();
895 	BUG_ON(!ret->d_lockref.count);
896 	ret->d_lockref.count++;
897 	spin_unlock(&ret->d_lock);
898 	return ret;
899 }
900 EXPORT_SYMBOL(dget_parent);
901 
902 static struct dentry * __d_find_any_alias(struct inode *inode)
903 {
904 	struct dentry *alias;
905 
906 	if (hlist_empty(&inode->i_dentry))
907 		return NULL;
908 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
909 	__dget(alias);
910 	return alias;
911 }
912 
913 /**
914  * d_find_any_alias - find any alias for a given inode
915  * @inode: inode to find an alias for
916  *
917  * If any aliases exist for the given inode, take and return a
918  * reference for one of them.  If no aliases exist, return %NULL.
919  */
920 struct dentry *d_find_any_alias(struct inode *inode)
921 {
922 	struct dentry *de;
923 
924 	spin_lock(&inode->i_lock);
925 	de = __d_find_any_alias(inode);
926 	spin_unlock(&inode->i_lock);
927 	return de;
928 }
929 EXPORT_SYMBOL(d_find_any_alias);
930 
931 /**
932  * d_find_alias - grab a hashed alias of inode
933  * @inode: inode in question
934  *
935  * If inode has a hashed alias, or is a directory and has any alias,
936  * acquire the reference to alias and return it. Otherwise return NULL.
937  * Notice that if inode is a directory there can be only one alias and
938  * it can be unhashed only if it has no children, or if it is the root
939  * of a filesystem, or if the directory was renamed and d_revalidate
940  * was the first vfs operation to notice.
941  *
942  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
943  * any other hashed alias over that one.
944  */
945 static struct dentry *__d_find_alias(struct inode *inode)
946 {
947 	struct dentry *alias;
948 
949 	if (S_ISDIR(inode->i_mode))
950 		return __d_find_any_alias(inode);
951 
952 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
953 		spin_lock(&alias->d_lock);
954  		if (!d_unhashed(alias)) {
955 			__dget_dlock(alias);
956 			spin_unlock(&alias->d_lock);
957 			return alias;
958 		}
959 		spin_unlock(&alias->d_lock);
960 	}
961 	return NULL;
962 }
963 
964 struct dentry *d_find_alias(struct inode *inode)
965 {
966 	struct dentry *de = NULL;
967 
968 	if (!hlist_empty(&inode->i_dentry)) {
969 		spin_lock(&inode->i_lock);
970 		de = __d_find_alias(inode);
971 		spin_unlock(&inode->i_lock);
972 	}
973 	return de;
974 }
975 EXPORT_SYMBOL(d_find_alias);
976 
977 /*
978  *	Try to kill dentries associated with this inode.
979  * WARNING: you must own a reference to inode.
980  */
981 void d_prune_aliases(struct inode *inode)
982 {
983 	struct dentry *dentry;
984 restart:
985 	spin_lock(&inode->i_lock);
986 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
987 		spin_lock(&dentry->d_lock);
988 		if (!dentry->d_lockref.count) {
989 			struct dentry *parent = lock_parent(dentry);
990 			if (likely(!dentry->d_lockref.count)) {
991 				__dentry_kill(dentry);
992 				dput(parent);
993 				goto restart;
994 			}
995 			if (parent)
996 				spin_unlock(&parent->d_lock);
997 		}
998 		spin_unlock(&dentry->d_lock);
999 	}
1000 	spin_unlock(&inode->i_lock);
1001 }
1002 EXPORT_SYMBOL(d_prune_aliases);
1003 
1004 /*
1005  * Lock a dentry from shrink list.
1006  * Called under rcu_read_lock() and dentry->d_lock; the former
1007  * guarantees that nothing we access will be freed under us.
1008  * Note that dentry is *not* protected from concurrent dentry_kill(),
1009  * d_delete(), etc.
1010  *
1011  * Return false if dentry has been disrupted or grabbed, leaving
1012  * the caller to kick it off-list.  Otherwise, return true and have
1013  * that dentry's inode and parent both locked.
1014  */
1015 static bool shrink_lock_dentry(struct dentry *dentry)
1016 {
1017 	struct inode *inode;
1018 	struct dentry *parent;
1019 
1020 	if (dentry->d_lockref.count)
1021 		return false;
1022 
1023 	inode = dentry->d_inode;
1024 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1025 		spin_unlock(&dentry->d_lock);
1026 		spin_lock(&inode->i_lock);
1027 		spin_lock(&dentry->d_lock);
1028 		if (unlikely(dentry->d_lockref.count))
1029 			goto out;
1030 		/* changed inode means that somebody had grabbed it */
1031 		if (unlikely(inode != dentry->d_inode))
1032 			goto out;
1033 	}
1034 
1035 	parent = dentry->d_parent;
1036 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1037 		return true;
1038 
1039 	spin_unlock(&dentry->d_lock);
1040 	spin_lock(&parent->d_lock);
1041 	if (unlikely(parent != dentry->d_parent)) {
1042 		spin_unlock(&parent->d_lock);
1043 		spin_lock(&dentry->d_lock);
1044 		goto out;
1045 	}
1046 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1047 	if (likely(!dentry->d_lockref.count))
1048 		return true;
1049 	spin_unlock(&parent->d_lock);
1050 out:
1051 	if (inode)
1052 		spin_unlock(&inode->i_lock);
1053 	return false;
1054 }
1055 
1056 static void shrink_dentry_list(struct list_head *list)
1057 {
1058 	while (!list_empty(list)) {
1059 		struct dentry *dentry, *parent;
1060 
1061 		dentry = list_entry(list->prev, struct dentry, d_lru);
1062 		spin_lock(&dentry->d_lock);
1063 		rcu_read_lock();
1064 		if (!shrink_lock_dentry(dentry)) {
1065 			bool can_free = false;
1066 			rcu_read_unlock();
1067 			d_shrink_del(dentry);
1068 			if (dentry->d_lockref.count < 0)
1069 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1070 			spin_unlock(&dentry->d_lock);
1071 			if (can_free)
1072 				dentry_free(dentry);
1073 			continue;
1074 		}
1075 		rcu_read_unlock();
1076 		d_shrink_del(dentry);
1077 		parent = dentry->d_parent;
1078 		__dentry_kill(dentry);
1079 		if (parent == dentry)
1080 			continue;
1081 		/*
1082 		 * We need to prune ancestors too. This is necessary to prevent
1083 		 * quadratic behavior of shrink_dcache_parent(), but is also
1084 		 * expected to be beneficial in reducing dentry cache
1085 		 * fragmentation.
1086 		 */
1087 		dentry = parent;
1088 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref))
1089 			dentry = dentry_kill(dentry);
1090 	}
1091 }
1092 
1093 static enum lru_status dentry_lru_isolate(struct list_head *item,
1094 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1095 {
1096 	struct list_head *freeable = arg;
1097 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1098 
1099 
1100 	/*
1101 	 * we are inverting the lru lock/dentry->d_lock here,
1102 	 * so use a trylock. If we fail to get the lock, just skip
1103 	 * it
1104 	 */
1105 	if (!spin_trylock(&dentry->d_lock))
1106 		return LRU_SKIP;
1107 
1108 	/*
1109 	 * Referenced dentries are still in use. If they have active
1110 	 * counts, just remove them from the LRU. Otherwise give them
1111 	 * another pass through the LRU.
1112 	 */
1113 	if (dentry->d_lockref.count) {
1114 		d_lru_isolate(lru, dentry);
1115 		spin_unlock(&dentry->d_lock);
1116 		return LRU_REMOVED;
1117 	}
1118 
1119 	if (dentry->d_flags & DCACHE_REFERENCED) {
1120 		dentry->d_flags &= ~DCACHE_REFERENCED;
1121 		spin_unlock(&dentry->d_lock);
1122 
1123 		/*
1124 		 * The list move itself will be made by the common LRU code. At
1125 		 * this point, we've dropped the dentry->d_lock but keep the
1126 		 * lru lock. This is safe to do, since every list movement is
1127 		 * protected by the lru lock even if both locks are held.
1128 		 *
1129 		 * This is guaranteed by the fact that all LRU management
1130 		 * functions are intermediated by the LRU API calls like
1131 		 * list_lru_add and list_lru_del. List movement in this file
1132 		 * only ever occur through this functions or through callbacks
1133 		 * like this one, that are called from the LRU API.
1134 		 *
1135 		 * The only exceptions to this are functions like
1136 		 * shrink_dentry_list, and code that first checks for the
1137 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1138 		 * operating only with stack provided lists after they are
1139 		 * properly isolated from the main list.  It is thus, always a
1140 		 * local access.
1141 		 */
1142 		return LRU_ROTATE;
1143 	}
1144 
1145 	d_lru_shrink_move(lru, dentry, freeable);
1146 	spin_unlock(&dentry->d_lock);
1147 
1148 	return LRU_REMOVED;
1149 }
1150 
1151 /**
1152  * prune_dcache_sb - shrink the dcache
1153  * @sb: superblock
1154  * @sc: shrink control, passed to list_lru_shrink_walk()
1155  *
1156  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1157  * is done when we need more memory and called from the superblock shrinker
1158  * function.
1159  *
1160  * This function may fail to free any resources if all the dentries are in
1161  * use.
1162  */
1163 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1164 {
1165 	LIST_HEAD(dispose);
1166 	long freed;
1167 
1168 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1169 				     dentry_lru_isolate, &dispose);
1170 	shrink_dentry_list(&dispose);
1171 	return freed;
1172 }
1173 
1174 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1175 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1176 {
1177 	struct list_head *freeable = arg;
1178 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1179 
1180 	/*
1181 	 * we are inverting the lru lock/dentry->d_lock here,
1182 	 * so use a trylock. If we fail to get the lock, just skip
1183 	 * it
1184 	 */
1185 	if (!spin_trylock(&dentry->d_lock))
1186 		return LRU_SKIP;
1187 
1188 	d_lru_shrink_move(lru, dentry, freeable);
1189 	spin_unlock(&dentry->d_lock);
1190 
1191 	return LRU_REMOVED;
1192 }
1193 
1194 
1195 /**
1196  * shrink_dcache_sb - shrink dcache for a superblock
1197  * @sb: superblock
1198  *
1199  * Shrink the dcache for the specified super block. This is used to free
1200  * the dcache before unmounting a file system.
1201  */
1202 void shrink_dcache_sb(struct super_block *sb)
1203 {
1204 	long freed;
1205 
1206 	do {
1207 		LIST_HEAD(dispose);
1208 
1209 		freed = list_lru_walk(&sb->s_dentry_lru,
1210 			dentry_lru_isolate_shrink, &dispose, 1024);
1211 
1212 		this_cpu_sub(nr_dentry_unused, freed);
1213 		shrink_dentry_list(&dispose);
1214 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1215 }
1216 EXPORT_SYMBOL(shrink_dcache_sb);
1217 
1218 /**
1219  * enum d_walk_ret - action to talke during tree walk
1220  * @D_WALK_CONTINUE:	contrinue walk
1221  * @D_WALK_QUIT:	quit walk
1222  * @D_WALK_NORETRY:	quit when retry is needed
1223  * @D_WALK_SKIP:	skip this dentry and its children
1224  */
1225 enum d_walk_ret {
1226 	D_WALK_CONTINUE,
1227 	D_WALK_QUIT,
1228 	D_WALK_NORETRY,
1229 	D_WALK_SKIP,
1230 };
1231 
1232 /**
1233  * d_walk - walk the dentry tree
1234  * @parent:	start of walk
1235  * @data:	data passed to @enter() and @finish()
1236  * @enter:	callback when first entering the dentry
1237  *
1238  * The @enter() callbacks are called with d_lock held.
1239  */
1240 static void d_walk(struct dentry *parent, void *data,
1241 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1242 {
1243 	struct dentry *this_parent;
1244 	struct list_head *next;
1245 	unsigned seq = 0;
1246 	enum d_walk_ret ret;
1247 	bool retry = true;
1248 
1249 again:
1250 	read_seqbegin_or_lock(&rename_lock, &seq);
1251 	this_parent = parent;
1252 	spin_lock(&this_parent->d_lock);
1253 
1254 	ret = enter(data, this_parent);
1255 	switch (ret) {
1256 	case D_WALK_CONTINUE:
1257 		break;
1258 	case D_WALK_QUIT:
1259 	case D_WALK_SKIP:
1260 		goto out_unlock;
1261 	case D_WALK_NORETRY:
1262 		retry = false;
1263 		break;
1264 	}
1265 repeat:
1266 	next = this_parent->d_subdirs.next;
1267 resume:
1268 	while (next != &this_parent->d_subdirs) {
1269 		struct list_head *tmp = next;
1270 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1271 		next = tmp->next;
1272 
1273 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1274 			continue;
1275 
1276 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1277 
1278 		ret = enter(data, dentry);
1279 		switch (ret) {
1280 		case D_WALK_CONTINUE:
1281 			break;
1282 		case D_WALK_QUIT:
1283 			spin_unlock(&dentry->d_lock);
1284 			goto out_unlock;
1285 		case D_WALK_NORETRY:
1286 			retry = false;
1287 			break;
1288 		case D_WALK_SKIP:
1289 			spin_unlock(&dentry->d_lock);
1290 			continue;
1291 		}
1292 
1293 		if (!list_empty(&dentry->d_subdirs)) {
1294 			spin_unlock(&this_parent->d_lock);
1295 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1296 			this_parent = dentry;
1297 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1298 			goto repeat;
1299 		}
1300 		spin_unlock(&dentry->d_lock);
1301 	}
1302 	/*
1303 	 * All done at this level ... ascend and resume the search.
1304 	 */
1305 	rcu_read_lock();
1306 ascend:
1307 	if (this_parent != parent) {
1308 		struct dentry *child = this_parent;
1309 		this_parent = child->d_parent;
1310 
1311 		spin_unlock(&child->d_lock);
1312 		spin_lock(&this_parent->d_lock);
1313 
1314 		/* might go back up the wrong parent if we have had a rename. */
1315 		if (need_seqretry(&rename_lock, seq))
1316 			goto rename_retry;
1317 		/* go into the first sibling still alive */
1318 		do {
1319 			next = child->d_child.next;
1320 			if (next == &this_parent->d_subdirs)
1321 				goto ascend;
1322 			child = list_entry(next, struct dentry, d_child);
1323 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1324 		rcu_read_unlock();
1325 		goto resume;
1326 	}
1327 	if (need_seqretry(&rename_lock, seq))
1328 		goto rename_retry;
1329 	rcu_read_unlock();
1330 
1331 out_unlock:
1332 	spin_unlock(&this_parent->d_lock);
1333 	done_seqretry(&rename_lock, seq);
1334 	return;
1335 
1336 rename_retry:
1337 	spin_unlock(&this_parent->d_lock);
1338 	rcu_read_unlock();
1339 	BUG_ON(seq & 1);
1340 	if (!retry)
1341 		return;
1342 	seq = 1;
1343 	goto again;
1344 }
1345 
1346 struct check_mount {
1347 	struct vfsmount *mnt;
1348 	unsigned int mounted;
1349 };
1350 
1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1352 {
1353 	struct check_mount *info = data;
1354 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1355 
1356 	if (likely(!d_mountpoint(dentry)))
1357 		return D_WALK_CONTINUE;
1358 	if (__path_is_mountpoint(&path)) {
1359 		info->mounted = 1;
1360 		return D_WALK_QUIT;
1361 	}
1362 	return D_WALK_CONTINUE;
1363 }
1364 
1365 /**
1366  * path_has_submounts - check for mounts over a dentry in the
1367  *                      current namespace.
1368  * @parent: path to check.
1369  *
1370  * Return true if the parent or its subdirectories contain
1371  * a mount point in the current namespace.
1372  */
1373 int path_has_submounts(const struct path *parent)
1374 {
1375 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1376 
1377 	read_seqlock_excl(&mount_lock);
1378 	d_walk(parent->dentry, &data, path_check_mount);
1379 	read_sequnlock_excl(&mount_lock);
1380 
1381 	return data.mounted;
1382 }
1383 EXPORT_SYMBOL(path_has_submounts);
1384 
1385 /*
1386  * Called by mount code to set a mountpoint and check if the mountpoint is
1387  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1388  * subtree can become unreachable).
1389  *
1390  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1391  * this reason take rename_lock and d_lock on dentry and ancestors.
1392  */
1393 int d_set_mounted(struct dentry *dentry)
1394 {
1395 	struct dentry *p;
1396 	int ret = -ENOENT;
1397 	write_seqlock(&rename_lock);
1398 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1399 		/* Need exclusion wrt. d_invalidate() */
1400 		spin_lock(&p->d_lock);
1401 		if (unlikely(d_unhashed(p))) {
1402 			spin_unlock(&p->d_lock);
1403 			goto out;
1404 		}
1405 		spin_unlock(&p->d_lock);
1406 	}
1407 	spin_lock(&dentry->d_lock);
1408 	if (!d_unlinked(dentry)) {
1409 		ret = -EBUSY;
1410 		if (!d_mountpoint(dentry)) {
1411 			dentry->d_flags |= DCACHE_MOUNTED;
1412 			ret = 0;
1413 		}
1414 	}
1415  	spin_unlock(&dentry->d_lock);
1416 out:
1417 	write_sequnlock(&rename_lock);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * Search the dentry child list of the specified parent,
1423  * and move any unused dentries to the end of the unused
1424  * list for prune_dcache(). We descend to the next level
1425  * whenever the d_subdirs list is non-empty and continue
1426  * searching.
1427  *
1428  * It returns zero iff there are no unused children,
1429  * otherwise  it returns the number of children moved to
1430  * the end of the unused list. This may not be the total
1431  * number of unused children, because select_parent can
1432  * drop the lock and return early due to latency
1433  * constraints.
1434  */
1435 
1436 struct select_data {
1437 	struct dentry *start;
1438 	struct list_head dispose;
1439 	int found;
1440 };
1441 
1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1443 {
1444 	struct select_data *data = _data;
1445 	enum d_walk_ret ret = D_WALK_CONTINUE;
1446 
1447 	if (data->start == dentry)
1448 		goto out;
1449 
1450 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1451 		data->found++;
1452 	} else {
1453 		if (dentry->d_flags & DCACHE_LRU_LIST)
1454 			d_lru_del(dentry);
1455 		if (!dentry->d_lockref.count) {
1456 			d_shrink_add(dentry, &data->dispose);
1457 			data->found++;
1458 		}
1459 	}
1460 	/*
1461 	 * We can return to the caller if we have found some (this
1462 	 * ensures forward progress). We'll be coming back to find
1463 	 * the rest.
1464 	 */
1465 	if (!list_empty(&data->dispose))
1466 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1467 out:
1468 	return ret;
1469 }
1470 
1471 /**
1472  * shrink_dcache_parent - prune dcache
1473  * @parent: parent of entries to prune
1474  *
1475  * Prune the dcache to remove unused children of the parent dentry.
1476  */
1477 void shrink_dcache_parent(struct dentry *parent)
1478 {
1479 	for (;;) {
1480 		struct select_data data;
1481 
1482 		INIT_LIST_HEAD(&data.dispose);
1483 		data.start = parent;
1484 		data.found = 0;
1485 
1486 		d_walk(parent, &data, select_collect);
1487 
1488 		if (!list_empty(&data.dispose)) {
1489 			shrink_dentry_list(&data.dispose);
1490 			continue;
1491 		}
1492 
1493 		cond_resched();
1494 		if (!data.found)
1495 			break;
1496 	}
1497 }
1498 EXPORT_SYMBOL(shrink_dcache_parent);
1499 
1500 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1501 {
1502 	/* it has busy descendents; complain about those instead */
1503 	if (!list_empty(&dentry->d_subdirs))
1504 		return D_WALK_CONTINUE;
1505 
1506 	/* root with refcount 1 is fine */
1507 	if (dentry == _data && dentry->d_lockref.count == 1)
1508 		return D_WALK_CONTINUE;
1509 
1510 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1511 			" still in use (%d) [unmount of %s %s]\n",
1512 		       dentry,
1513 		       dentry->d_inode ?
1514 		       dentry->d_inode->i_ino : 0UL,
1515 		       dentry,
1516 		       dentry->d_lockref.count,
1517 		       dentry->d_sb->s_type->name,
1518 		       dentry->d_sb->s_id);
1519 	WARN_ON(1);
1520 	return D_WALK_CONTINUE;
1521 }
1522 
1523 static void do_one_tree(struct dentry *dentry)
1524 {
1525 	shrink_dcache_parent(dentry);
1526 	d_walk(dentry, dentry, umount_check);
1527 	d_drop(dentry);
1528 	dput(dentry);
1529 }
1530 
1531 /*
1532  * destroy the dentries attached to a superblock on unmounting
1533  */
1534 void shrink_dcache_for_umount(struct super_block *sb)
1535 {
1536 	struct dentry *dentry;
1537 
1538 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1539 
1540 	dentry = sb->s_root;
1541 	sb->s_root = NULL;
1542 	do_one_tree(dentry);
1543 
1544 	while (!hlist_bl_empty(&sb->s_roots)) {
1545 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1546 		do_one_tree(dentry);
1547 	}
1548 }
1549 
1550 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1551 {
1552 	struct dentry **victim = _data;
1553 	if (d_mountpoint(dentry)) {
1554 		__dget_dlock(dentry);
1555 		*victim = dentry;
1556 		return D_WALK_QUIT;
1557 	}
1558 	return D_WALK_CONTINUE;
1559 }
1560 
1561 /**
1562  * d_invalidate - detach submounts, prune dcache, and drop
1563  * @dentry: dentry to invalidate (aka detach, prune and drop)
1564  */
1565 void d_invalidate(struct dentry *dentry)
1566 {
1567 	bool had_submounts = false;
1568 	spin_lock(&dentry->d_lock);
1569 	if (d_unhashed(dentry)) {
1570 		spin_unlock(&dentry->d_lock);
1571 		return;
1572 	}
1573 	__d_drop(dentry);
1574 	spin_unlock(&dentry->d_lock);
1575 
1576 	/* Negative dentries can be dropped without further checks */
1577 	if (!dentry->d_inode)
1578 		return;
1579 
1580 	shrink_dcache_parent(dentry);
1581 	for (;;) {
1582 		struct dentry *victim = NULL;
1583 		d_walk(dentry, &victim, find_submount);
1584 		if (!victim) {
1585 			if (had_submounts)
1586 				shrink_dcache_parent(dentry);
1587 			return;
1588 		}
1589 		had_submounts = true;
1590 		detach_mounts(victim);
1591 		dput(victim);
1592 	}
1593 }
1594 EXPORT_SYMBOL(d_invalidate);
1595 
1596 /**
1597  * __d_alloc	-	allocate a dcache entry
1598  * @sb: filesystem it will belong to
1599  * @name: qstr of the name
1600  *
1601  * Allocates a dentry. It returns %NULL if there is insufficient memory
1602  * available. On a success the dentry is returned. The name passed in is
1603  * copied and the copy passed in may be reused after this call.
1604  */
1605 
1606 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1607 {
1608 	struct external_name *ext = NULL;
1609 	struct dentry *dentry;
1610 	char *dname;
1611 	int err;
1612 
1613 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1614 	if (!dentry)
1615 		return NULL;
1616 
1617 	/*
1618 	 * We guarantee that the inline name is always NUL-terminated.
1619 	 * This way the memcpy() done by the name switching in rename
1620 	 * will still always have a NUL at the end, even if we might
1621 	 * be overwriting an internal NUL character
1622 	 */
1623 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1624 	if (unlikely(!name)) {
1625 		name = &slash_name;
1626 		dname = dentry->d_iname;
1627 	} else if (name->len > DNAME_INLINE_LEN-1) {
1628 		size_t size = offsetof(struct external_name, name[1]);
1629 
1630 		ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT);
1631 		if (!ext) {
1632 			kmem_cache_free(dentry_cache, dentry);
1633 			return NULL;
1634 		}
1635 		atomic_set(&ext->u.count, 1);
1636 		dname = ext->name;
1637 	} else  {
1638 		dname = dentry->d_iname;
1639 	}
1640 
1641 	dentry->d_name.len = name->len;
1642 	dentry->d_name.hash = name->hash;
1643 	memcpy(dname, name->name, name->len);
1644 	dname[name->len] = 0;
1645 
1646 	/* Make sure we always see the terminating NUL character */
1647 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1648 
1649 	dentry->d_lockref.count = 1;
1650 	dentry->d_flags = 0;
1651 	spin_lock_init(&dentry->d_lock);
1652 	seqcount_init(&dentry->d_seq);
1653 	dentry->d_inode = NULL;
1654 	dentry->d_parent = dentry;
1655 	dentry->d_sb = sb;
1656 	dentry->d_op = NULL;
1657 	dentry->d_fsdata = NULL;
1658 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1659 	INIT_LIST_HEAD(&dentry->d_lru);
1660 	INIT_LIST_HEAD(&dentry->d_subdirs);
1661 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1662 	INIT_LIST_HEAD(&dentry->d_child);
1663 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1664 
1665 	if (dentry->d_op && dentry->d_op->d_init) {
1666 		err = dentry->d_op->d_init(dentry);
1667 		if (err) {
1668 			if (dname_external(dentry))
1669 				kfree(external_name(dentry));
1670 			kmem_cache_free(dentry_cache, dentry);
1671 			return NULL;
1672 		}
1673 	}
1674 
1675 	if (unlikely(ext)) {
1676 		pg_data_t *pgdat = page_pgdat(virt_to_page(ext));
1677 		mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES,
1678 				    ksize(ext));
1679 	}
1680 
1681 	this_cpu_inc(nr_dentry);
1682 
1683 	return dentry;
1684 }
1685 
1686 /**
1687  * d_alloc	-	allocate a dcache entry
1688  * @parent: parent of entry to allocate
1689  * @name: qstr of the name
1690  *
1691  * Allocates a dentry. It returns %NULL if there is insufficient memory
1692  * available. On a success the dentry is returned. The name passed in is
1693  * copied and the copy passed in may be reused after this call.
1694  */
1695 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1696 {
1697 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1698 	if (!dentry)
1699 		return NULL;
1700 	dentry->d_flags |= DCACHE_RCUACCESS;
1701 	spin_lock(&parent->d_lock);
1702 	/*
1703 	 * don't need child lock because it is not subject
1704 	 * to concurrency here
1705 	 */
1706 	__dget_dlock(parent);
1707 	dentry->d_parent = parent;
1708 	list_add(&dentry->d_child, &parent->d_subdirs);
1709 	spin_unlock(&parent->d_lock);
1710 
1711 	return dentry;
1712 }
1713 EXPORT_SYMBOL(d_alloc);
1714 
1715 struct dentry *d_alloc_anon(struct super_block *sb)
1716 {
1717 	return __d_alloc(sb, NULL);
1718 }
1719 EXPORT_SYMBOL(d_alloc_anon);
1720 
1721 struct dentry *d_alloc_cursor(struct dentry * parent)
1722 {
1723 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1724 	if (dentry) {
1725 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1726 		dentry->d_parent = dget(parent);
1727 	}
1728 	return dentry;
1729 }
1730 
1731 /**
1732  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1733  * @sb: the superblock
1734  * @name: qstr of the name
1735  *
1736  * For a filesystem that just pins its dentries in memory and never
1737  * performs lookups at all, return an unhashed IS_ROOT dentry.
1738  */
1739 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1740 {
1741 	return __d_alloc(sb, name);
1742 }
1743 EXPORT_SYMBOL(d_alloc_pseudo);
1744 
1745 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1746 {
1747 	struct qstr q;
1748 
1749 	q.name = name;
1750 	q.hash_len = hashlen_string(parent, name);
1751 	return d_alloc(parent, &q);
1752 }
1753 EXPORT_SYMBOL(d_alloc_name);
1754 
1755 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1756 {
1757 	WARN_ON_ONCE(dentry->d_op);
1758 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1759 				DCACHE_OP_COMPARE	|
1760 				DCACHE_OP_REVALIDATE	|
1761 				DCACHE_OP_WEAK_REVALIDATE	|
1762 				DCACHE_OP_DELETE	|
1763 				DCACHE_OP_REAL));
1764 	dentry->d_op = op;
1765 	if (!op)
1766 		return;
1767 	if (op->d_hash)
1768 		dentry->d_flags |= DCACHE_OP_HASH;
1769 	if (op->d_compare)
1770 		dentry->d_flags |= DCACHE_OP_COMPARE;
1771 	if (op->d_revalidate)
1772 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1773 	if (op->d_weak_revalidate)
1774 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1775 	if (op->d_delete)
1776 		dentry->d_flags |= DCACHE_OP_DELETE;
1777 	if (op->d_prune)
1778 		dentry->d_flags |= DCACHE_OP_PRUNE;
1779 	if (op->d_real)
1780 		dentry->d_flags |= DCACHE_OP_REAL;
1781 
1782 }
1783 EXPORT_SYMBOL(d_set_d_op);
1784 
1785 
1786 /*
1787  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1788  * @dentry - The dentry to mark
1789  *
1790  * Mark a dentry as falling through to the lower layer (as set with
1791  * d_pin_lower()).  This flag may be recorded on the medium.
1792  */
1793 void d_set_fallthru(struct dentry *dentry)
1794 {
1795 	spin_lock(&dentry->d_lock);
1796 	dentry->d_flags |= DCACHE_FALLTHRU;
1797 	spin_unlock(&dentry->d_lock);
1798 }
1799 EXPORT_SYMBOL(d_set_fallthru);
1800 
1801 static unsigned d_flags_for_inode(struct inode *inode)
1802 {
1803 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1804 
1805 	if (!inode)
1806 		return DCACHE_MISS_TYPE;
1807 
1808 	if (S_ISDIR(inode->i_mode)) {
1809 		add_flags = DCACHE_DIRECTORY_TYPE;
1810 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1811 			if (unlikely(!inode->i_op->lookup))
1812 				add_flags = DCACHE_AUTODIR_TYPE;
1813 			else
1814 				inode->i_opflags |= IOP_LOOKUP;
1815 		}
1816 		goto type_determined;
1817 	}
1818 
1819 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1820 		if (unlikely(inode->i_op->get_link)) {
1821 			add_flags = DCACHE_SYMLINK_TYPE;
1822 			goto type_determined;
1823 		}
1824 		inode->i_opflags |= IOP_NOFOLLOW;
1825 	}
1826 
1827 	if (unlikely(!S_ISREG(inode->i_mode)))
1828 		add_flags = DCACHE_SPECIAL_TYPE;
1829 
1830 type_determined:
1831 	if (unlikely(IS_AUTOMOUNT(inode)))
1832 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1833 	return add_flags;
1834 }
1835 
1836 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1837 {
1838 	unsigned add_flags = d_flags_for_inode(inode);
1839 	WARN_ON(d_in_lookup(dentry));
1840 
1841 	spin_lock(&dentry->d_lock);
1842 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1843 	raw_write_seqcount_begin(&dentry->d_seq);
1844 	__d_set_inode_and_type(dentry, inode, add_flags);
1845 	raw_write_seqcount_end(&dentry->d_seq);
1846 	fsnotify_update_flags(dentry);
1847 	spin_unlock(&dentry->d_lock);
1848 }
1849 
1850 /**
1851  * d_instantiate - fill in inode information for a dentry
1852  * @entry: dentry to complete
1853  * @inode: inode to attach to this dentry
1854  *
1855  * Fill in inode information in the entry.
1856  *
1857  * This turns negative dentries into productive full members
1858  * of society.
1859  *
1860  * NOTE! This assumes that the inode count has been incremented
1861  * (or otherwise set) by the caller to indicate that it is now
1862  * in use by the dcache.
1863  */
1864 
1865 void d_instantiate(struct dentry *entry, struct inode * inode)
1866 {
1867 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1868 	if (inode) {
1869 		security_d_instantiate(entry, inode);
1870 		spin_lock(&inode->i_lock);
1871 		__d_instantiate(entry, inode);
1872 		spin_unlock(&inode->i_lock);
1873 	}
1874 }
1875 EXPORT_SYMBOL(d_instantiate);
1876 
1877 /*
1878  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1879  * with lockdep-related part of unlock_new_inode() done before
1880  * anything else.  Use that instead of open-coding d_instantiate()/
1881  * unlock_new_inode() combinations.
1882  */
1883 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1884 {
1885 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1886 	BUG_ON(!inode);
1887 	lockdep_annotate_inode_mutex_key(inode);
1888 	security_d_instantiate(entry, inode);
1889 	spin_lock(&inode->i_lock);
1890 	__d_instantiate(entry, inode);
1891 	WARN_ON(!(inode->i_state & I_NEW));
1892 	inode->i_state &= ~I_NEW;
1893 	smp_mb();
1894 	wake_up_bit(&inode->i_state, __I_NEW);
1895 	spin_unlock(&inode->i_lock);
1896 }
1897 EXPORT_SYMBOL(d_instantiate_new);
1898 
1899 /**
1900  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1901  * @entry: dentry to complete
1902  * @inode: inode to attach to this dentry
1903  *
1904  * Fill in inode information in the entry.  If a directory alias is found, then
1905  * return an error (and drop inode).  Together with d_materialise_unique() this
1906  * guarantees that a directory inode may never have more than one alias.
1907  */
1908 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1909 {
1910 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1911 
1912 	security_d_instantiate(entry, inode);
1913 	spin_lock(&inode->i_lock);
1914 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1915 		spin_unlock(&inode->i_lock);
1916 		iput(inode);
1917 		return -EBUSY;
1918 	}
1919 	__d_instantiate(entry, inode);
1920 	spin_unlock(&inode->i_lock);
1921 
1922 	return 0;
1923 }
1924 EXPORT_SYMBOL(d_instantiate_no_diralias);
1925 
1926 struct dentry *d_make_root(struct inode *root_inode)
1927 {
1928 	struct dentry *res = NULL;
1929 
1930 	if (root_inode) {
1931 		res = d_alloc_anon(root_inode->i_sb);
1932 		if (res) {
1933 			res->d_flags |= DCACHE_RCUACCESS;
1934 			d_instantiate(res, root_inode);
1935 		} else {
1936 			iput(root_inode);
1937 		}
1938 	}
1939 	return res;
1940 }
1941 EXPORT_SYMBOL(d_make_root);
1942 
1943 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
1944 					   struct inode *inode,
1945 					   bool disconnected)
1946 {
1947 	struct dentry *res;
1948 	unsigned add_flags;
1949 
1950 	security_d_instantiate(dentry, inode);
1951 	spin_lock(&inode->i_lock);
1952 	res = __d_find_any_alias(inode);
1953 	if (res) {
1954 		spin_unlock(&inode->i_lock);
1955 		dput(dentry);
1956 		goto out_iput;
1957 	}
1958 
1959 	/* attach a disconnected dentry */
1960 	add_flags = d_flags_for_inode(inode);
1961 
1962 	if (disconnected)
1963 		add_flags |= DCACHE_DISCONNECTED;
1964 
1965 	spin_lock(&dentry->d_lock);
1966 	__d_set_inode_and_type(dentry, inode, add_flags);
1967 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1968 	if (!disconnected) {
1969 		hlist_bl_lock(&dentry->d_sb->s_roots);
1970 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
1971 		hlist_bl_unlock(&dentry->d_sb->s_roots);
1972 	}
1973 	spin_unlock(&dentry->d_lock);
1974 	spin_unlock(&inode->i_lock);
1975 
1976 	return dentry;
1977 
1978  out_iput:
1979 	iput(inode);
1980 	return res;
1981 }
1982 
1983 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
1984 {
1985 	return __d_instantiate_anon(dentry, inode, true);
1986 }
1987 EXPORT_SYMBOL(d_instantiate_anon);
1988 
1989 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1990 {
1991 	struct dentry *tmp;
1992 	struct dentry *res;
1993 
1994 	if (!inode)
1995 		return ERR_PTR(-ESTALE);
1996 	if (IS_ERR(inode))
1997 		return ERR_CAST(inode);
1998 
1999 	res = d_find_any_alias(inode);
2000 	if (res)
2001 		goto out_iput;
2002 
2003 	tmp = d_alloc_anon(inode->i_sb);
2004 	if (!tmp) {
2005 		res = ERR_PTR(-ENOMEM);
2006 		goto out_iput;
2007 	}
2008 
2009 	return __d_instantiate_anon(tmp, inode, disconnected);
2010 
2011 out_iput:
2012 	iput(inode);
2013 	return res;
2014 }
2015 
2016 /**
2017  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2018  * @inode: inode to allocate the dentry for
2019  *
2020  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2021  * similar open by handle operations.  The returned dentry may be anonymous,
2022  * or may have a full name (if the inode was already in the cache).
2023  *
2024  * When called on a directory inode, we must ensure that the inode only ever
2025  * has one dentry.  If a dentry is found, that is returned instead of
2026  * allocating a new one.
2027  *
2028  * On successful return, the reference to the inode has been transferred
2029  * to the dentry.  In case of an error the reference on the inode is released.
2030  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2031  * be passed in and the error will be propagated to the return value,
2032  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2033  */
2034 struct dentry *d_obtain_alias(struct inode *inode)
2035 {
2036 	return __d_obtain_alias(inode, true);
2037 }
2038 EXPORT_SYMBOL(d_obtain_alias);
2039 
2040 /**
2041  * d_obtain_root - find or allocate a dentry for a given inode
2042  * @inode: inode to allocate the dentry for
2043  *
2044  * Obtain an IS_ROOT dentry for the root of a filesystem.
2045  *
2046  * We must ensure that directory inodes only ever have one dentry.  If a
2047  * dentry is found, that is returned instead of allocating a new one.
2048  *
2049  * On successful return, the reference to the inode has been transferred
2050  * to the dentry.  In case of an error the reference on the inode is
2051  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2052  * error will be propagate to the return value, with a %NULL @inode
2053  * replaced by ERR_PTR(-ESTALE).
2054  */
2055 struct dentry *d_obtain_root(struct inode *inode)
2056 {
2057 	return __d_obtain_alias(inode, false);
2058 }
2059 EXPORT_SYMBOL(d_obtain_root);
2060 
2061 /**
2062  * d_add_ci - lookup or allocate new dentry with case-exact name
2063  * @inode:  the inode case-insensitive lookup has found
2064  * @dentry: the negative dentry that was passed to the parent's lookup func
2065  * @name:   the case-exact name to be associated with the returned dentry
2066  *
2067  * This is to avoid filling the dcache with case-insensitive names to the
2068  * same inode, only the actual correct case is stored in the dcache for
2069  * case-insensitive filesystems.
2070  *
2071  * For a case-insensitive lookup match and if the the case-exact dentry
2072  * already exists in in the dcache, use it and return it.
2073  *
2074  * If no entry exists with the exact case name, allocate new dentry with
2075  * the exact case, and return the spliced entry.
2076  */
2077 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2078 			struct qstr *name)
2079 {
2080 	struct dentry *found, *res;
2081 
2082 	/*
2083 	 * First check if a dentry matching the name already exists,
2084 	 * if not go ahead and create it now.
2085 	 */
2086 	found = d_hash_and_lookup(dentry->d_parent, name);
2087 	if (found) {
2088 		iput(inode);
2089 		return found;
2090 	}
2091 	if (d_in_lookup(dentry)) {
2092 		found = d_alloc_parallel(dentry->d_parent, name,
2093 					dentry->d_wait);
2094 		if (IS_ERR(found) || !d_in_lookup(found)) {
2095 			iput(inode);
2096 			return found;
2097 		}
2098 	} else {
2099 		found = d_alloc(dentry->d_parent, name);
2100 		if (!found) {
2101 			iput(inode);
2102 			return ERR_PTR(-ENOMEM);
2103 		}
2104 	}
2105 	res = d_splice_alias(inode, found);
2106 	if (res) {
2107 		dput(found);
2108 		return res;
2109 	}
2110 	return found;
2111 }
2112 EXPORT_SYMBOL(d_add_ci);
2113 
2114 
2115 static inline bool d_same_name(const struct dentry *dentry,
2116 				const struct dentry *parent,
2117 				const struct qstr *name)
2118 {
2119 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2120 		if (dentry->d_name.len != name->len)
2121 			return false;
2122 		return dentry_cmp(dentry, name->name, name->len) == 0;
2123 	}
2124 	return parent->d_op->d_compare(dentry,
2125 				       dentry->d_name.len, dentry->d_name.name,
2126 				       name) == 0;
2127 }
2128 
2129 /**
2130  * __d_lookup_rcu - search for a dentry (racy, store-free)
2131  * @parent: parent dentry
2132  * @name: qstr of name we wish to find
2133  * @seqp: returns d_seq value at the point where the dentry was found
2134  * Returns: dentry, or NULL
2135  *
2136  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2137  * resolution (store-free path walking) design described in
2138  * Documentation/filesystems/path-lookup.txt.
2139  *
2140  * This is not to be used outside core vfs.
2141  *
2142  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2143  * held, and rcu_read_lock held. The returned dentry must not be stored into
2144  * without taking d_lock and checking d_seq sequence count against @seq
2145  * returned here.
2146  *
2147  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2148  * function.
2149  *
2150  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2151  * the returned dentry, so long as its parent's seqlock is checked after the
2152  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2153  * is formed, giving integrity down the path walk.
2154  *
2155  * NOTE! The caller *has* to check the resulting dentry against the sequence
2156  * number we've returned before using any of the resulting dentry state!
2157  */
2158 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2159 				const struct qstr *name,
2160 				unsigned *seqp)
2161 {
2162 	u64 hashlen = name->hash_len;
2163 	const unsigned char *str = name->name;
2164 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2165 	struct hlist_bl_node *node;
2166 	struct dentry *dentry;
2167 
2168 	/*
2169 	 * Note: There is significant duplication with __d_lookup_rcu which is
2170 	 * required to prevent single threaded performance regressions
2171 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2172 	 * Keep the two functions in sync.
2173 	 */
2174 
2175 	/*
2176 	 * The hash list is protected using RCU.
2177 	 *
2178 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2179 	 * races with d_move().
2180 	 *
2181 	 * It is possible that concurrent renames can mess up our list
2182 	 * walk here and result in missing our dentry, resulting in the
2183 	 * false-negative result. d_lookup() protects against concurrent
2184 	 * renames using rename_lock seqlock.
2185 	 *
2186 	 * See Documentation/filesystems/path-lookup.txt for more details.
2187 	 */
2188 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2189 		unsigned seq;
2190 
2191 seqretry:
2192 		/*
2193 		 * The dentry sequence count protects us from concurrent
2194 		 * renames, and thus protects parent and name fields.
2195 		 *
2196 		 * The caller must perform a seqcount check in order
2197 		 * to do anything useful with the returned dentry.
2198 		 *
2199 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2200 		 * we don't wait for the sequence count to stabilize if it
2201 		 * is in the middle of a sequence change. If we do the slow
2202 		 * dentry compare, we will do seqretries until it is stable,
2203 		 * and if we end up with a successful lookup, we actually
2204 		 * want to exit RCU lookup anyway.
2205 		 *
2206 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2207 		 * we are still guaranteed NUL-termination of ->d_name.name.
2208 		 */
2209 		seq = raw_seqcount_begin(&dentry->d_seq);
2210 		if (dentry->d_parent != parent)
2211 			continue;
2212 		if (d_unhashed(dentry))
2213 			continue;
2214 
2215 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2216 			int tlen;
2217 			const char *tname;
2218 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2219 				continue;
2220 			tlen = dentry->d_name.len;
2221 			tname = dentry->d_name.name;
2222 			/* we want a consistent (name,len) pair */
2223 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2224 				cpu_relax();
2225 				goto seqretry;
2226 			}
2227 			if (parent->d_op->d_compare(dentry,
2228 						    tlen, tname, name) != 0)
2229 				continue;
2230 		} else {
2231 			if (dentry->d_name.hash_len != hashlen)
2232 				continue;
2233 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2234 				continue;
2235 		}
2236 		*seqp = seq;
2237 		return dentry;
2238 	}
2239 	return NULL;
2240 }
2241 
2242 /**
2243  * d_lookup - search for a dentry
2244  * @parent: parent dentry
2245  * @name: qstr of name we wish to find
2246  * Returns: dentry, or NULL
2247  *
2248  * d_lookup searches the children of the parent dentry for the name in
2249  * question. If the dentry is found its reference count is incremented and the
2250  * dentry is returned. The caller must use dput to free the entry when it has
2251  * finished using it. %NULL is returned if the dentry does not exist.
2252  */
2253 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2254 {
2255 	struct dentry *dentry;
2256 	unsigned seq;
2257 
2258 	do {
2259 		seq = read_seqbegin(&rename_lock);
2260 		dentry = __d_lookup(parent, name);
2261 		if (dentry)
2262 			break;
2263 	} while (read_seqretry(&rename_lock, seq));
2264 	return dentry;
2265 }
2266 EXPORT_SYMBOL(d_lookup);
2267 
2268 /**
2269  * __d_lookup - search for a dentry (racy)
2270  * @parent: parent dentry
2271  * @name: qstr of name we wish to find
2272  * Returns: dentry, or NULL
2273  *
2274  * __d_lookup is like d_lookup, however it may (rarely) return a
2275  * false-negative result due to unrelated rename activity.
2276  *
2277  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2278  * however it must be used carefully, eg. with a following d_lookup in
2279  * the case of failure.
2280  *
2281  * __d_lookup callers must be commented.
2282  */
2283 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2284 {
2285 	unsigned int hash = name->hash;
2286 	struct hlist_bl_head *b = d_hash(hash);
2287 	struct hlist_bl_node *node;
2288 	struct dentry *found = NULL;
2289 	struct dentry *dentry;
2290 
2291 	/*
2292 	 * Note: There is significant duplication with __d_lookup_rcu which is
2293 	 * required to prevent single threaded performance regressions
2294 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2295 	 * Keep the two functions in sync.
2296 	 */
2297 
2298 	/*
2299 	 * The hash list is protected using RCU.
2300 	 *
2301 	 * Take d_lock when comparing a candidate dentry, to avoid races
2302 	 * with d_move().
2303 	 *
2304 	 * It is possible that concurrent renames can mess up our list
2305 	 * walk here and result in missing our dentry, resulting in the
2306 	 * false-negative result. d_lookup() protects against concurrent
2307 	 * renames using rename_lock seqlock.
2308 	 *
2309 	 * See Documentation/filesystems/path-lookup.txt for more details.
2310 	 */
2311 	rcu_read_lock();
2312 
2313 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2314 
2315 		if (dentry->d_name.hash != hash)
2316 			continue;
2317 
2318 		spin_lock(&dentry->d_lock);
2319 		if (dentry->d_parent != parent)
2320 			goto next;
2321 		if (d_unhashed(dentry))
2322 			goto next;
2323 
2324 		if (!d_same_name(dentry, parent, name))
2325 			goto next;
2326 
2327 		dentry->d_lockref.count++;
2328 		found = dentry;
2329 		spin_unlock(&dentry->d_lock);
2330 		break;
2331 next:
2332 		spin_unlock(&dentry->d_lock);
2333  	}
2334  	rcu_read_unlock();
2335 
2336  	return found;
2337 }
2338 
2339 /**
2340  * d_hash_and_lookup - hash the qstr then search for a dentry
2341  * @dir: Directory to search in
2342  * @name: qstr of name we wish to find
2343  *
2344  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2345  */
2346 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2347 {
2348 	/*
2349 	 * Check for a fs-specific hash function. Note that we must
2350 	 * calculate the standard hash first, as the d_op->d_hash()
2351 	 * routine may choose to leave the hash value unchanged.
2352 	 */
2353 	name->hash = full_name_hash(dir, name->name, name->len);
2354 	if (dir->d_flags & DCACHE_OP_HASH) {
2355 		int err = dir->d_op->d_hash(dir, name);
2356 		if (unlikely(err < 0))
2357 			return ERR_PTR(err);
2358 	}
2359 	return d_lookup(dir, name);
2360 }
2361 EXPORT_SYMBOL(d_hash_and_lookup);
2362 
2363 /*
2364  * When a file is deleted, we have two options:
2365  * - turn this dentry into a negative dentry
2366  * - unhash this dentry and free it.
2367  *
2368  * Usually, we want to just turn this into
2369  * a negative dentry, but if anybody else is
2370  * currently using the dentry or the inode
2371  * we can't do that and we fall back on removing
2372  * it from the hash queues and waiting for
2373  * it to be deleted later when it has no users
2374  */
2375 
2376 /**
2377  * d_delete - delete a dentry
2378  * @dentry: The dentry to delete
2379  *
2380  * Turn the dentry into a negative dentry if possible, otherwise
2381  * remove it from the hash queues so it can be deleted later
2382  */
2383 
2384 void d_delete(struct dentry * dentry)
2385 {
2386 	struct inode *inode = dentry->d_inode;
2387 	int isdir = d_is_dir(dentry);
2388 
2389 	spin_lock(&inode->i_lock);
2390 	spin_lock(&dentry->d_lock);
2391 	/*
2392 	 * Are we the only user?
2393 	 */
2394 	if (dentry->d_lockref.count == 1) {
2395 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2396 		dentry_unlink_inode(dentry);
2397 	} else {
2398 		__d_drop(dentry);
2399 		spin_unlock(&dentry->d_lock);
2400 		spin_unlock(&inode->i_lock);
2401 	}
2402 	fsnotify_nameremove(dentry, isdir);
2403 }
2404 EXPORT_SYMBOL(d_delete);
2405 
2406 static void __d_rehash(struct dentry *entry)
2407 {
2408 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2409 
2410 	hlist_bl_lock(b);
2411 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2412 	hlist_bl_unlock(b);
2413 }
2414 
2415 /**
2416  * d_rehash	- add an entry back to the hash
2417  * @entry: dentry to add to the hash
2418  *
2419  * Adds a dentry to the hash according to its name.
2420  */
2421 
2422 void d_rehash(struct dentry * entry)
2423 {
2424 	spin_lock(&entry->d_lock);
2425 	__d_rehash(entry);
2426 	spin_unlock(&entry->d_lock);
2427 }
2428 EXPORT_SYMBOL(d_rehash);
2429 
2430 static inline unsigned start_dir_add(struct inode *dir)
2431 {
2432 
2433 	for (;;) {
2434 		unsigned n = dir->i_dir_seq;
2435 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2436 			return n;
2437 		cpu_relax();
2438 	}
2439 }
2440 
2441 static inline void end_dir_add(struct inode *dir, unsigned n)
2442 {
2443 	smp_store_release(&dir->i_dir_seq, n + 2);
2444 }
2445 
2446 static void d_wait_lookup(struct dentry *dentry)
2447 {
2448 	if (d_in_lookup(dentry)) {
2449 		DECLARE_WAITQUEUE(wait, current);
2450 		add_wait_queue(dentry->d_wait, &wait);
2451 		do {
2452 			set_current_state(TASK_UNINTERRUPTIBLE);
2453 			spin_unlock(&dentry->d_lock);
2454 			schedule();
2455 			spin_lock(&dentry->d_lock);
2456 		} while (d_in_lookup(dentry));
2457 	}
2458 }
2459 
2460 struct dentry *d_alloc_parallel(struct dentry *parent,
2461 				const struct qstr *name,
2462 				wait_queue_head_t *wq)
2463 {
2464 	unsigned int hash = name->hash;
2465 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2466 	struct hlist_bl_node *node;
2467 	struct dentry *new = d_alloc(parent, name);
2468 	struct dentry *dentry;
2469 	unsigned seq, r_seq, d_seq;
2470 
2471 	if (unlikely(!new))
2472 		return ERR_PTR(-ENOMEM);
2473 
2474 retry:
2475 	rcu_read_lock();
2476 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2477 	r_seq = read_seqbegin(&rename_lock);
2478 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2479 	if (unlikely(dentry)) {
2480 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2481 			rcu_read_unlock();
2482 			goto retry;
2483 		}
2484 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2485 			rcu_read_unlock();
2486 			dput(dentry);
2487 			goto retry;
2488 		}
2489 		rcu_read_unlock();
2490 		dput(new);
2491 		return dentry;
2492 	}
2493 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2494 		rcu_read_unlock();
2495 		goto retry;
2496 	}
2497 
2498 	if (unlikely(seq & 1)) {
2499 		rcu_read_unlock();
2500 		goto retry;
2501 	}
2502 
2503 	hlist_bl_lock(b);
2504 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2505 		hlist_bl_unlock(b);
2506 		rcu_read_unlock();
2507 		goto retry;
2508 	}
2509 	/*
2510 	 * No changes for the parent since the beginning of d_lookup().
2511 	 * Since all removals from the chain happen with hlist_bl_lock(),
2512 	 * any potential in-lookup matches are going to stay here until
2513 	 * we unlock the chain.  All fields are stable in everything
2514 	 * we encounter.
2515 	 */
2516 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2517 		if (dentry->d_name.hash != hash)
2518 			continue;
2519 		if (dentry->d_parent != parent)
2520 			continue;
2521 		if (!d_same_name(dentry, parent, name))
2522 			continue;
2523 		hlist_bl_unlock(b);
2524 		/* now we can try to grab a reference */
2525 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2526 			rcu_read_unlock();
2527 			goto retry;
2528 		}
2529 
2530 		rcu_read_unlock();
2531 		/*
2532 		 * somebody is likely to be still doing lookup for it;
2533 		 * wait for them to finish
2534 		 */
2535 		spin_lock(&dentry->d_lock);
2536 		d_wait_lookup(dentry);
2537 		/*
2538 		 * it's not in-lookup anymore; in principle we should repeat
2539 		 * everything from dcache lookup, but it's likely to be what
2540 		 * d_lookup() would've found anyway.  If it is, just return it;
2541 		 * otherwise we really have to repeat the whole thing.
2542 		 */
2543 		if (unlikely(dentry->d_name.hash != hash))
2544 			goto mismatch;
2545 		if (unlikely(dentry->d_parent != parent))
2546 			goto mismatch;
2547 		if (unlikely(d_unhashed(dentry)))
2548 			goto mismatch;
2549 		if (unlikely(!d_same_name(dentry, parent, name)))
2550 			goto mismatch;
2551 		/* OK, it *is* a hashed match; return it */
2552 		spin_unlock(&dentry->d_lock);
2553 		dput(new);
2554 		return dentry;
2555 	}
2556 	rcu_read_unlock();
2557 	/* we can't take ->d_lock here; it's OK, though. */
2558 	new->d_flags |= DCACHE_PAR_LOOKUP;
2559 	new->d_wait = wq;
2560 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2561 	hlist_bl_unlock(b);
2562 	return new;
2563 mismatch:
2564 	spin_unlock(&dentry->d_lock);
2565 	dput(dentry);
2566 	goto retry;
2567 }
2568 EXPORT_SYMBOL(d_alloc_parallel);
2569 
2570 void __d_lookup_done(struct dentry *dentry)
2571 {
2572 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2573 						 dentry->d_name.hash);
2574 	hlist_bl_lock(b);
2575 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2576 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2577 	wake_up_all(dentry->d_wait);
2578 	dentry->d_wait = NULL;
2579 	hlist_bl_unlock(b);
2580 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2581 	INIT_LIST_HEAD(&dentry->d_lru);
2582 }
2583 EXPORT_SYMBOL(__d_lookup_done);
2584 
2585 /* inode->i_lock held if inode is non-NULL */
2586 
2587 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2588 {
2589 	struct inode *dir = NULL;
2590 	unsigned n;
2591 	spin_lock(&dentry->d_lock);
2592 	if (unlikely(d_in_lookup(dentry))) {
2593 		dir = dentry->d_parent->d_inode;
2594 		n = start_dir_add(dir);
2595 		__d_lookup_done(dentry);
2596 	}
2597 	if (inode) {
2598 		unsigned add_flags = d_flags_for_inode(inode);
2599 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2600 		raw_write_seqcount_begin(&dentry->d_seq);
2601 		__d_set_inode_and_type(dentry, inode, add_flags);
2602 		raw_write_seqcount_end(&dentry->d_seq);
2603 		fsnotify_update_flags(dentry);
2604 	}
2605 	__d_rehash(dentry);
2606 	if (dir)
2607 		end_dir_add(dir, n);
2608 	spin_unlock(&dentry->d_lock);
2609 	if (inode)
2610 		spin_unlock(&inode->i_lock);
2611 }
2612 
2613 /**
2614  * d_add - add dentry to hash queues
2615  * @entry: dentry to add
2616  * @inode: The inode to attach to this dentry
2617  *
2618  * This adds the entry to the hash queues and initializes @inode.
2619  * The entry was actually filled in earlier during d_alloc().
2620  */
2621 
2622 void d_add(struct dentry *entry, struct inode *inode)
2623 {
2624 	if (inode) {
2625 		security_d_instantiate(entry, inode);
2626 		spin_lock(&inode->i_lock);
2627 	}
2628 	__d_add(entry, inode);
2629 }
2630 EXPORT_SYMBOL(d_add);
2631 
2632 /**
2633  * d_exact_alias - find and hash an exact unhashed alias
2634  * @entry: dentry to add
2635  * @inode: The inode to go with this dentry
2636  *
2637  * If an unhashed dentry with the same name/parent and desired
2638  * inode already exists, hash and return it.  Otherwise, return
2639  * NULL.
2640  *
2641  * Parent directory should be locked.
2642  */
2643 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2644 {
2645 	struct dentry *alias;
2646 	unsigned int hash = entry->d_name.hash;
2647 
2648 	spin_lock(&inode->i_lock);
2649 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2650 		/*
2651 		 * Don't need alias->d_lock here, because aliases with
2652 		 * d_parent == entry->d_parent are not subject to name or
2653 		 * parent changes, because the parent inode i_mutex is held.
2654 		 */
2655 		if (alias->d_name.hash != hash)
2656 			continue;
2657 		if (alias->d_parent != entry->d_parent)
2658 			continue;
2659 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2660 			continue;
2661 		spin_lock(&alias->d_lock);
2662 		if (!d_unhashed(alias)) {
2663 			spin_unlock(&alias->d_lock);
2664 			alias = NULL;
2665 		} else {
2666 			__dget_dlock(alias);
2667 			__d_rehash(alias);
2668 			spin_unlock(&alias->d_lock);
2669 		}
2670 		spin_unlock(&inode->i_lock);
2671 		return alias;
2672 	}
2673 	spin_unlock(&inode->i_lock);
2674 	return NULL;
2675 }
2676 EXPORT_SYMBOL(d_exact_alias);
2677 
2678 /**
2679  * dentry_update_name_case - update case insensitive dentry with a new name
2680  * @dentry: dentry to be updated
2681  * @name: new name
2682  *
2683  * Update a case insensitive dentry with new case of name.
2684  *
2685  * dentry must have been returned by d_lookup with name @name. Old and new
2686  * name lengths must match (ie. no d_compare which allows mismatched name
2687  * lengths).
2688  *
2689  * Parent inode i_mutex must be held over d_lookup and into this call (to
2690  * keep renames and concurrent inserts, and readdir(2) away).
2691  */
2692 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2693 {
2694 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2695 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2696 
2697 	spin_lock(&dentry->d_lock);
2698 	write_seqcount_begin(&dentry->d_seq);
2699 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2700 	write_seqcount_end(&dentry->d_seq);
2701 	spin_unlock(&dentry->d_lock);
2702 }
2703 EXPORT_SYMBOL(dentry_update_name_case);
2704 
2705 static void swap_names(struct dentry *dentry, struct dentry *target)
2706 {
2707 	if (unlikely(dname_external(target))) {
2708 		if (unlikely(dname_external(dentry))) {
2709 			/*
2710 			 * Both external: swap the pointers
2711 			 */
2712 			swap(target->d_name.name, dentry->d_name.name);
2713 		} else {
2714 			/*
2715 			 * dentry:internal, target:external.  Steal target's
2716 			 * storage and make target internal.
2717 			 */
2718 			memcpy(target->d_iname, dentry->d_name.name,
2719 					dentry->d_name.len + 1);
2720 			dentry->d_name.name = target->d_name.name;
2721 			target->d_name.name = target->d_iname;
2722 		}
2723 	} else {
2724 		if (unlikely(dname_external(dentry))) {
2725 			/*
2726 			 * dentry:external, target:internal.  Give dentry's
2727 			 * storage to target and make dentry internal
2728 			 */
2729 			memcpy(dentry->d_iname, target->d_name.name,
2730 					target->d_name.len + 1);
2731 			target->d_name.name = dentry->d_name.name;
2732 			dentry->d_name.name = dentry->d_iname;
2733 		} else {
2734 			/*
2735 			 * Both are internal.
2736 			 */
2737 			unsigned int i;
2738 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2739 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2740 				swap(((long *) &dentry->d_iname)[i],
2741 				     ((long *) &target->d_iname)[i]);
2742 			}
2743 		}
2744 	}
2745 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2746 }
2747 
2748 static void copy_name(struct dentry *dentry, struct dentry *target)
2749 {
2750 	struct external_name *old_name = NULL;
2751 	if (unlikely(dname_external(dentry)))
2752 		old_name = external_name(dentry);
2753 	if (unlikely(dname_external(target))) {
2754 		atomic_inc(&external_name(target)->u.count);
2755 		dentry->d_name = target->d_name;
2756 	} else {
2757 		memcpy(dentry->d_iname, target->d_name.name,
2758 				target->d_name.len + 1);
2759 		dentry->d_name.name = dentry->d_iname;
2760 		dentry->d_name.hash_len = target->d_name.hash_len;
2761 	}
2762 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2763 		call_rcu(&old_name->u.head, __d_free_external_name);
2764 }
2765 
2766 /*
2767  * __d_move - move a dentry
2768  * @dentry: entry to move
2769  * @target: new dentry
2770  * @exchange: exchange the two dentries
2771  *
2772  * Update the dcache to reflect the move of a file name. Negative
2773  * dcache entries should not be moved in this way. Caller must hold
2774  * rename_lock, the i_mutex of the source and target directories,
2775  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2776  */
2777 static void __d_move(struct dentry *dentry, struct dentry *target,
2778 		     bool exchange)
2779 {
2780 	struct dentry *old_parent, *p;
2781 	struct inode *dir = NULL;
2782 	unsigned n;
2783 
2784 	WARN_ON(!dentry->d_inode);
2785 	if (WARN_ON(dentry == target))
2786 		return;
2787 
2788 	BUG_ON(d_ancestor(target, dentry));
2789 	old_parent = dentry->d_parent;
2790 	p = d_ancestor(old_parent, target);
2791 	if (IS_ROOT(dentry)) {
2792 		BUG_ON(p);
2793 		spin_lock(&target->d_parent->d_lock);
2794 	} else if (!p) {
2795 		/* target is not a descendent of dentry->d_parent */
2796 		spin_lock(&target->d_parent->d_lock);
2797 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2798 	} else {
2799 		BUG_ON(p == dentry);
2800 		spin_lock(&old_parent->d_lock);
2801 		if (p != target)
2802 			spin_lock_nested(&target->d_parent->d_lock,
2803 					DENTRY_D_LOCK_NESTED);
2804 	}
2805 	spin_lock_nested(&dentry->d_lock, 2);
2806 	spin_lock_nested(&target->d_lock, 3);
2807 
2808 	if (unlikely(d_in_lookup(target))) {
2809 		dir = target->d_parent->d_inode;
2810 		n = start_dir_add(dir);
2811 		__d_lookup_done(target);
2812 	}
2813 
2814 	write_seqcount_begin(&dentry->d_seq);
2815 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2816 
2817 	/* unhash both */
2818 	if (!d_unhashed(dentry))
2819 		___d_drop(dentry);
2820 	if (!d_unhashed(target))
2821 		___d_drop(target);
2822 
2823 	/* ... and switch them in the tree */
2824 	dentry->d_parent = target->d_parent;
2825 	if (!exchange) {
2826 		copy_name(dentry, target);
2827 		target->d_hash.pprev = NULL;
2828 		dentry->d_parent->d_lockref.count++;
2829 		if (dentry == old_parent)
2830 			dentry->d_flags |= DCACHE_RCUACCESS;
2831 		else
2832 			WARN_ON(!--old_parent->d_lockref.count);
2833 	} else {
2834 		target->d_parent = old_parent;
2835 		swap_names(dentry, target);
2836 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2837 		__d_rehash(target);
2838 		fsnotify_update_flags(target);
2839 	}
2840 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2841 	__d_rehash(dentry);
2842 	fsnotify_update_flags(dentry);
2843 
2844 	write_seqcount_end(&target->d_seq);
2845 	write_seqcount_end(&dentry->d_seq);
2846 
2847 	if (dir)
2848 		end_dir_add(dir, n);
2849 
2850 	if (dentry->d_parent != old_parent)
2851 		spin_unlock(&dentry->d_parent->d_lock);
2852 	if (dentry != old_parent)
2853 		spin_unlock(&old_parent->d_lock);
2854 	spin_unlock(&target->d_lock);
2855 	spin_unlock(&dentry->d_lock);
2856 }
2857 
2858 /*
2859  * d_move - move a dentry
2860  * @dentry: entry to move
2861  * @target: new dentry
2862  *
2863  * Update the dcache to reflect the move of a file name. Negative
2864  * dcache entries should not be moved in this way. See the locking
2865  * requirements for __d_move.
2866  */
2867 void d_move(struct dentry *dentry, struct dentry *target)
2868 {
2869 	write_seqlock(&rename_lock);
2870 	__d_move(dentry, target, false);
2871 	write_sequnlock(&rename_lock);
2872 }
2873 EXPORT_SYMBOL(d_move);
2874 
2875 /*
2876  * d_exchange - exchange two dentries
2877  * @dentry1: first dentry
2878  * @dentry2: second dentry
2879  */
2880 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2881 {
2882 	write_seqlock(&rename_lock);
2883 
2884 	WARN_ON(!dentry1->d_inode);
2885 	WARN_ON(!dentry2->d_inode);
2886 	WARN_ON(IS_ROOT(dentry1));
2887 	WARN_ON(IS_ROOT(dentry2));
2888 
2889 	__d_move(dentry1, dentry2, true);
2890 
2891 	write_sequnlock(&rename_lock);
2892 }
2893 
2894 /**
2895  * d_ancestor - search for an ancestor
2896  * @p1: ancestor dentry
2897  * @p2: child dentry
2898  *
2899  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2900  * an ancestor of p2, else NULL.
2901  */
2902 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2903 {
2904 	struct dentry *p;
2905 
2906 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2907 		if (p->d_parent == p1)
2908 			return p;
2909 	}
2910 	return NULL;
2911 }
2912 
2913 /*
2914  * This helper attempts to cope with remotely renamed directories
2915  *
2916  * It assumes that the caller is already holding
2917  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2918  *
2919  * Note: If ever the locking in lock_rename() changes, then please
2920  * remember to update this too...
2921  */
2922 static int __d_unalias(struct inode *inode,
2923 		struct dentry *dentry, struct dentry *alias)
2924 {
2925 	struct mutex *m1 = NULL;
2926 	struct rw_semaphore *m2 = NULL;
2927 	int ret = -ESTALE;
2928 
2929 	/* If alias and dentry share a parent, then no extra locks required */
2930 	if (alias->d_parent == dentry->d_parent)
2931 		goto out_unalias;
2932 
2933 	/* See lock_rename() */
2934 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2935 		goto out_err;
2936 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2937 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2938 		goto out_err;
2939 	m2 = &alias->d_parent->d_inode->i_rwsem;
2940 out_unalias:
2941 	__d_move(alias, dentry, false);
2942 	ret = 0;
2943 out_err:
2944 	if (m2)
2945 		up_read(m2);
2946 	if (m1)
2947 		mutex_unlock(m1);
2948 	return ret;
2949 }
2950 
2951 /**
2952  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2953  * @inode:  the inode which may have a disconnected dentry
2954  * @dentry: a negative dentry which we want to point to the inode.
2955  *
2956  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2957  * place of the given dentry and return it, else simply d_add the inode
2958  * to the dentry and return NULL.
2959  *
2960  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2961  * we should error out: directories can't have multiple aliases.
2962  *
2963  * This is needed in the lookup routine of any filesystem that is exportable
2964  * (via knfsd) so that we can build dcache paths to directories effectively.
2965  *
2966  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2967  * is returned.  This matches the expected return value of ->lookup.
2968  *
2969  * Cluster filesystems may call this function with a negative, hashed dentry.
2970  * In that case, we know that the inode will be a regular file, and also this
2971  * will only occur during atomic_open. So we need to check for the dentry
2972  * being already hashed only in the final case.
2973  */
2974 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2975 {
2976 	if (IS_ERR(inode))
2977 		return ERR_CAST(inode);
2978 
2979 	BUG_ON(!d_unhashed(dentry));
2980 
2981 	if (!inode)
2982 		goto out;
2983 
2984 	security_d_instantiate(dentry, inode);
2985 	spin_lock(&inode->i_lock);
2986 	if (S_ISDIR(inode->i_mode)) {
2987 		struct dentry *new = __d_find_any_alias(inode);
2988 		if (unlikely(new)) {
2989 			/* The reference to new ensures it remains an alias */
2990 			spin_unlock(&inode->i_lock);
2991 			write_seqlock(&rename_lock);
2992 			if (unlikely(d_ancestor(new, dentry))) {
2993 				write_sequnlock(&rename_lock);
2994 				dput(new);
2995 				new = ERR_PTR(-ELOOP);
2996 				pr_warn_ratelimited(
2997 					"VFS: Lookup of '%s' in %s %s"
2998 					" would have caused loop\n",
2999 					dentry->d_name.name,
3000 					inode->i_sb->s_type->name,
3001 					inode->i_sb->s_id);
3002 			} else if (!IS_ROOT(new)) {
3003 				struct dentry *old_parent = dget(new->d_parent);
3004 				int err = __d_unalias(inode, dentry, new);
3005 				write_sequnlock(&rename_lock);
3006 				if (err) {
3007 					dput(new);
3008 					new = ERR_PTR(err);
3009 				}
3010 				dput(old_parent);
3011 			} else {
3012 				__d_move(new, dentry, false);
3013 				write_sequnlock(&rename_lock);
3014 			}
3015 			iput(inode);
3016 			return new;
3017 		}
3018 	}
3019 out:
3020 	__d_add(dentry, inode);
3021 	return NULL;
3022 }
3023 EXPORT_SYMBOL(d_splice_alias);
3024 
3025 /*
3026  * Test whether new_dentry is a subdirectory of old_dentry.
3027  *
3028  * Trivially implemented using the dcache structure
3029  */
3030 
3031 /**
3032  * is_subdir - is new dentry a subdirectory of old_dentry
3033  * @new_dentry: new dentry
3034  * @old_dentry: old dentry
3035  *
3036  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3037  * Returns false otherwise.
3038  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3039  */
3040 
3041 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3042 {
3043 	bool result;
3044 	unsigned seq;
3045 
3046 	if (new_dentry == old_dentry)
3047 		return true;
3048 
3049 	do {
3050 		/* for restarting inner loop in case of seq retry */
3051 		seq = read_seqbegin(&rename_lock);
3052 		/*
3053 		 * Need rcu_readlock to protect against the d_parent trashing
3054 		 * due to d_move
3055 		 */
3056 		rcu_read_lock();
3057 		if (d_ancestor(old_dentry, new_dentry))
3058 			result = true;
3059 		else
3060 			result = false;
3061 		rcu_read_unlock();
3062 	} while (read_seqretry(&rename_lock, seq));
3063 
3064 	return result;
3065 }
3066 EXPORT_SYMBOL(is_subdir);
3067 
3068 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3069 {
3070 	struct dentry *root = data;
3071 	if (dentry != root) {
3072 		if (d_unhashed(dentry) || !dentry->d_inode)
3073 			return D_WALK_SKIP;
3074 
3075 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3076 			dentry->d_flags |= DCACHE_GENOCIDE;
3077 			dentry->d_lockref.count--;
3078 		}
3079 	}
3080 	return D_WALK_CONTINUE;
3081 }
3082 
3083 void d_genocide(struct dentry *parent)
3084 {
3085 	d_walk(parent, parent, d_genocide_kill);
3086 }
3087 
3088 EXPORT_SYMBOL(d_genocide);
3089 
3090 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3091 {
3092 	inode_dec_link_count(inode);
3093 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3094 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3095 		!d_unlinked(dentry));
3096 	spin_lock(&dentry->d_parent->d_lock);
3097 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3098 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3099 				(unsigned long long)inode->i_ino);
3100 	spin_unlock(&dentry->d_lock);
3101 	spin_unlock(&dentry->d_parent->d_lock);
3102 	d_instantiate(dentry, inode);
3103 }
3104 EXPORT_SYMBOL(d_tmpfile);
3105 
3106 static __initdata unsigned long dhash_entries;
3107 static int __init set_dhash_entries(char *str)
3108 {
3109 	if (!str)
3110 		return 0;
3111 	dhash_entries = simple_strtoul(str, &str, 0);
3112 	return 1;
3113 }
3114 __setup("dhash_entries=", set_dhash_entries);
3115 
3116 static void __init dcache_init_early(void)
3117 {
3118 	/* If hashes are distributed across NUMA nodes, defer
3119 	 * hash allocation until vmalloc space is available.
3120 	 */
3121 	if (hashdist)
3122 		return;
3123 
3124 	dentry_hashtable =
3125 		alloc_large_system_hash("Dentry cache",
3126 					sizeof(struct hlist_bl_head),
3127 					dhash_entries,
3128 					13,
3129 					HASH_EARLY | HASH_ZERO,
3130 					&d_hash_shift,
3131 					NULL,
3132 					0,
3133 					0);
3134 	d_hash_shift = 32 - d_hash_shift;
3135 }
3136 
3137 static void __init dcache_init(void)
3138 {
3139 	/*
3140 	 * A constructor could be added for stable state like the lists,
3141 	 * but it is probably not worth it because of the cache nature
3142 	 * of the dcache.
3143 	 */
3144 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3145 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3146 		d_iname);
3147 
3148 	/* Hash may have been set up in dcache_init_early */
3149 	if (!hashdist)
3150 		return;
3151 
3152 	dentry_hashtable =
3153 		alloc_large_system_hash("Dentry cache",
3154 					sizeof(struct hlist_bl_head),
3155 					dhash_entries,
3156 					13,
3157 					HASH_ZERO,
3158 					&d_hash_shift,
3159 					NULL,
3160 					0,
3161 					0);
3162 	d_hash_shift = 32 - d_hash_shift;
3163 }
3164 
3165 /* SLAB cache for __getname() consumers */
3166 struct kmem_cache *names_cachep __read_mostly;
3167 EXPORT_SYMBOL(names_cachep);
3168 
3169 void __init vfs_caches_init_early(void)
3170 {
3171 	int i;
3172 
3173 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3174 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3175 
3176 	dcache_init_early();
3177 	inode_init_early();
3178 }
3179 
3180 void __init vfs_caches_init(void)
3181 {
3182 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3183 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3184 
3185 	dcache_init();
3186 	inode_init();
3187 	files_init();
3188 	files_maxfiles_init();
3189 	mnt_init();
3190 	bdev_cache_init();
3191 	chrdev_init();
3192 }
3193