1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/ratelimit.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/security.h> 28 #include <linux/seqlock.h> 29 #include <linux/bootmem.h> 30 #include <linux/bit_spinlock.h> 31 #include <linux/rculist_bl.h> 32 #include <linux/list_lru.h> 33 #include "internal.h" 34 #include "mount.h" 35 36 /* 37 * Usage: 38 * dcache->d_inode->i_lock protects: 39 * - i_dentry, d_u.d_alias, d_inode of aliases 40 * dcache_hash_bucket lock protects: 41 * - the dcache hash table 42 * s_roots bl list spinlock protects: 43 * - the s_roots list (see __d_drop) 44 * dentry->d_sb->s_dentry_lru_lock protects: 45 * - the dcache lru lists and counters 46 * d_lock protects: 47 * - d_flags 48 * - d_name 49 * - d_lru 50 * - d_count 51 * - d_unhashed() 52 * - d_parent and d_subdirs 53 * - childrens' d_child and d_parent 54 * - d_u.d_alias, d_inode 55 * 56 * Ordering: 57 * dentry->d_inode->i_lock 58 * dentry->d_lock 59 * dentry->d_sb->s_dentry_lru_lock 60 * dcache_hash_bucket lock 61 * s_roots lock 62 * 63 * If there is an ancestor relationship: 64 * dentry->d_parent->...->d_parent->d_lock 65 * ... 66 * dentry->d_parent->d_lock 67 * dentry->d_lock 68 * 69 * If no ancestor relationship: 70 * arbitrary, since it's serialized on rename_lock 71 */ 72 int sysctl_vfs_cache_pressure __read_mostly = 100; 73 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 74 75 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 76 77 EXPORT_SYMBOL(rename_lock); 78 79 static struct kmem_cache *dentry_cache __read_mostly; 80 81 const struct qstr empty_name = QSTR_INIT("", 0); 82 EXPORT_SYMBOL(empty_name); 83 const struct qstr slash_name = QSTR_INIT("/", 1); 84 EXPORT_SYMBOL(slash_name); 85 86 /* 87 * This is the single most critical data structure when it comes 88 * to the dcache: the hashtable for lookups. Somebody should try 89 * to make this good - I've just made it work. 90 * 91 * This hash-function tries to avoid losing too many bits of hash 92 * information, yet avoid using a prime hash-size or similar. 93 */ 94 95 static unsigned int d_hash_shift __read_mostly; 96 97 static struct hlist_bl_head *dentry_hashtable __read_mostly; 98 99 static inline struct hlist_bl_head *d_hash(unsigned int hash) 100 { 101 return dentry_hashtable + (hash >> d_hash_shift); 102 } 103 104 #define IN_LOOKUP_SHIFT 10 105 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 106 107 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 112 } 113 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(long, nr_dentry); 121 static DEFINE_PER_CPU(long, nr_dentry_unused); 122 123 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 124 125 /* 126 * Here we resort to our own counters instead of using generic per-cpu counters 127 * for consistency with what the vfs inode code does. We are expected to harvest 128 * better code and performance by having our own specialized counters. 129 * 130 * Please note that the loop is done over all possible CPUs, not over all online 131 * CPUs. The reason for this is that we don't want to play games with CPUs going 132 * on and off. If one of them goes off, we will just keep their counters. 133 * 134 * glommer: See cffbc8a for details, and if you ever intend to change this, 135 * please update all vfs counters to match. 136 */ 137 static long get_nr_dentry(void) 138 { 139 int i; 140 long sum = 0; 141 for_each_possible_cpu(i) 142 sum += per_cpu(nr_dentry, i); 143 return sum < 0 ? 0 : sum; 144 } 145 146 static long get_nr_dentry_unused(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry_unused, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 156 size_t *lenp, loff_t *ppos) 157 { 158 dentry_stat.nr_dentry = get_nr_dentry(); 159 dentry_stat.nr_unused = get_nr_dentry_unused(); 160 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 161 } 162 #endif 163 164 /* 165 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 166 * The strings are both count bytes long, and count is non-zero. 167 */ 168 #ifdef CONFIG_DCACHE_WORD_ACCESS 169 170 #include <asm/word-at-a-time.h> 171 /* 172 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 173 * aligned allocation for this particular component. We don't 174 * strictly need the load_unaligned_zeropad() safety, but it 175 * doesn't hurt either. 176 * 177 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 178 * need the careful unaligned handling. 179 */ 180 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 181 { 182 unsigned long a,b,mask; 183 184 for (;;) { 185 a = read_word_at_a_time(cs); 186 b = load_unaligned_zeropad(ct); 187 if (tcount < sizeof(unsigned long)) 188 break; 189 if (unlikely(a != b)) 190 return 1; 191 cs += sizeof(unsigned long); 192 ct += sizeof(unsigned long); 193 tcount -= sizeof(unsigned long); 194 if (!tcount) 195 return 0; 196 } 197 mask = bytemask_from_count(tcount); 198 return unlikely(!!((a ^ b) & mask)); 199 } 200 201 #else 202 203 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 204 { 205 do { 206 if (*cs != *ct) 207 return 1; 208 cs++; 209 ct++; 210 tcount--; 211 } while (tcount); 212 return 0; 213 } 214 215 #endif 216 217 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 218 { 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use 'READ_ONCE' to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 236 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external_name(struct rcu_head *head) 261 { 262 struct external_name *name = container_of(head, struct external_name, 263 u.head); 264 265 mod_node_page_state(page_pgdat(virt_to_page(name)), 266 NR_INDIRECTLY_RECLAIMABLE_BYTES, 267 -ksize(name)); 268 269 kfree(name); 270 } 271 272 static void __d_free_external(struct rcu_head *head) 273 { 274 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 275 276 __d_free_external_name(&external_name(dentry)->u.head); 277 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 if (unlikely(dname_external(dentry))) { 290 struct external_name *p = external_name(dentry); 291 atomic_inc(&p->u.count); 292 spin_unlock(&dentry->d_lock); 293 name->name = p->name; 294 } else { 295 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 296 spin_unlock(&dentry->d_lock); 297 name->name = name->inline_name; 298 } 299 } 300 EXPORT_SYMBOL(take_dentry_name_snapshot); 301 302 void release_dentry_name_snapshot(struct name_snapshot *name) 303 { 304 if (unlikely(name->name != name->inline_name)) { 305 struct external_name *p; 306 p = container_of(name->name, struct external_name, name[0]); 307 if (unlikely(atomic_dec_and_test(&p->u.count))) 308 call_rcu(&p->u.head, __d_free_external_name); 309 } 310 } 311 EXPORT_SYMBOL(release_dentry_name_snapshot); 312 313 static inline void __d_set_inode_and_type(struct dentry *dentry, 314 struct inode *inode, 315 unsigned type_flags) 316 { 317 unsigned flags; 318 319 dentry->d_inode = inode; 320 flags = READ_ONCE(dentry->d_flags); 321 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 322 flags |= type_flags; 323 WRITE_ONCE(dentry->d_flags, flags); 324 } 325 326 static inline void __d_clear_type_and_inode(struct dentry *dentry) 327 { 328 unsigned flags = READ_ONCE(dentry->d_flags); 329 330 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 331 WRITE_ONCE(dentry->d_flags, flags); 332 dentry->d_inode = NULL; 333 } 334 335 static void dentry_free(struct dentry *dentry) 336 { 337 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 338 if (unlikely(dname_external(dentry))) { 339 struct external_name *p = external_name(dentry); 340 if (likely(atomic_dec_and_test(&p->u.count))) { 341 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 342 return; 343 } 344 } 345 /* if dentry was never visible to RCU, immediate free is OK */ 346 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 347 __d_free(&dentry->d_u.d_rcu); 348 else 349 call_rcu(&dentry->d_u.d_rcu, __d_free); 350 } 351 352 /* 353 * Release the dentry's inode, using the filesystem 354 * d_iput() operation if defined. 355 */ 356 static void dentry_unlink_inode(struct dentry * dentry) 357 __releases(dentry->d_lock) 358 __releases(dentry->d_inode->i_lock) 359 { 360 struct inode *inode = dentry->d_inode; 361 362 raw_write_seqcount_begin(&dentry->d_seq); 363 __d_clear_type_and_inode(dentry); 364 hlist_del_init(&dentry->d_u.d_alias); 365 raw_write_seqcount_end(&dentry->d_seq); 366 spin_unlock(&dentry->d_lock); 367 spin_unlock(&inode->i_lock); 368 if (!inode->i_nlink) 369 fsnotify_inoderemove(inode); 370 if (dentry->d_op && dentry->d_op->d_iput) 371 dentry->d_op->d_iput(dentry, inode); 372 else 373 iput(inode); 374 } 375 376 /* 377 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 378 * is in use - which includes both the "real" per-superblock 379 * LRU list _and_ the DCACHE_SHRINK_LIST use. 380 * 381 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 382 * on the shrink list (ie not on the superblock LRU list). 383 * 384 * The per-cpu "nr_dentry_unused" counters are updated with 385 * the DCACHE_LRU_LIST bit. 386 * 387 * These helper functions make sure we always follow the 388 * rules. d_lock must be held by the caller. 389 */ 390 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 391 static void d_lru_add(struct dentry *dentry) 392 { 393 D_FLAG_VERIFY(dentry, 0); 394 dentry->d_flags |= DCACHE_LRU_LIST; 395 this_cpu_inc(nr_dentry_unused); 396 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 397 } 398 399 static void d_lru_del(struct dentry *dentry) 400 { 401 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 402 dentry->d_flags &= ~DCACHE_LRU_LIST; 403 this_cpu_dec(nr_dentry_unused); 404 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_shrink_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 410 list_del_init(&dentry->d_lru); 411 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 412 this_cpu_dec(nr_dentry_unused); 413 } 414 415 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 416 { 417 D_FLAG_VERIFY(dentry, 0); 418 list_add(&dentry->d_lru, list); 419 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 420 this_cpu_inc(nr_dentry_unused); 421 } 422 423 /* 424 * These can only be called under the global LRU lock, ie during the 425 * callback for freeing the LRU list. "isolate" removes it from the 426 * LRU lists entirely, while shrink_move moves it to the indicated 427 * private list. 428 */ 429 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 430 { 431 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 432 dentry->d_flags &= ~DCACHE_LRU_LIST; 433 this_cpu_dec(nr_dentry_unused); 434 list_lru_isolate(lru, &dentry->d_lru); 435 } 436 437 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 438 struct list_head *list) 439 { 440 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 441 dentry->d_flags |= DCACHE_SHRINK_LIST; 442 list_lru_isolate_move(lru, &dentry->d_lru, list); 443 } 444 445 /** 446 * d_drop - drop a dentry 447 * @dentry: dentry to drop 448 * 449 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 450 * be found through a VFS lookup any more. Note that this is different from 451 * deleting the dentry - d_delete will try to mark the dentry negative if 452 * possible, giving a successful _negative_ lookup, while d_drop will 453 * just make the cache lookup fail. 454 * 455 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 456 * reason (NFS timeouts or autofs deletes). 457 * 458 * __d_drop requires dentry->d_lock 459 * ___d_drop doesn't mark dentry as "unhashed" 460 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 461 */ 462 static void ___d_drop(struct dentry *dentry) 463 { 464 struct hlist_bl_head *b; 465 /* 466 * Hashed dentries are normally on the dentry hashtable, 467 * with the exception of those newly allocated by 468 * d_obtain_root, which are always IS_ROOT: 469 */ 470 if (unlikely(IS_ROOT(dentry))) 471 b = &dentry->d_sb->s_roots; 472 else 473 b = d_hash(dentry->d_name.hash); 474 475 hlist_bl_lock(b); 476 __hlist_bl_del(&dentry->d_hash); 477 hlist_bl_unlock(b); 478 } 479 480 void __d_drop(struct dentry *dentry) 481 { 482 if (!d_unhashed(dentry)) { 483 ___d_drop(dentry); 484 dentry->d_hash.pprev = NULL; 485 write_seqcount_invalidate(&dentry->d_seq); 486 } 487 } 488 EXPORT_SYMBOL(__d_drop); 489 490 void d_drop(struct dentry *dentry) 491 { 492 spin_lock(&dentry->d_lock); 493 __d_drop(dentry); 494 spin_unlock(&dentry->d_lock); 495 } 496 EXPORT_SYMBOL(d_drop); 497 498 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 499 { 500 struct dentry *next; 501 /* 502 * Inform d_walk() and shrink_dentry_list() that we are no longer 503 * attached to the dentry tree 504 */ 505 dentry->d_flags |= DCACHE_DENTRY_KILLED; 506 if (unlikely(list_empty(&dentry->d_child))) 507 return; 508 __list_del_entry(&dentry->d_child); 509 /* 510 * Cursors can move around the list of children. While we'd been 511 * a normal list member, it didn't matter - ->d_child.next would've 512 * been updated. However, from now on it won't be and for the 513 * things like d_walk() it might end up with a nasty surprise. 514 * Normally d_walk() doesn't care about cursors moving around - 515 * ->d_lock on parent prevents that and since a cursor has no children 516 * of its own, we get through it without ever unlocking the parent. 517 * There is one exception, though - if we ascend from a child that 518 * gets killed as soon as we unlock it, the next sibling is found 519 * using the value left in its ->d_child.next. And if _that_ 520 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 521 * before d_walk() regains parent->d_lock, we'll end up skipping 522 * everything the cursor had been moved past. 523 * 524 * Solution: make sure that the pointer left behind in ->d_child.next 525 * points to something that won't be moving around. I.e. skip the 526 * cursors. 527 */ 528 while (dentry->d_child.next != &parent->d_subdirs) { 529 next = list_entry(dentry->d_child.next, struct dentry, d_child); 530 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 531 break; 532 dentry->d_child.next = next->d_child.next; 533 } 534 } 535 536 static void __dentry_kill(struct dentry *dentry) 537 { 538 struct dentry *parent = NULL; 539 bool can_free = true; 540 if (!IS_ROOT(dentry)) 541 parent = dentry->d_parent; 542 543 /* 544 * The dentry is now unrecoverably dead to the world. 545 */ 546 lockref_mark_dead(&dentry->d_lockref); 547 548 /* 549 * inform the fs via d_prune that this dentry is about to be 550 * unhashed and destroyed. 551 */ 552 if (dentry->d_flags & DCACHE_OP_PRUNE) 553 dentry->d_op->d_prune(dentry); 554 555 if (dentry->d_flags & DCACHE_LRU_LIST) { 556 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 557 d_lru_del(dentry); 558 } 559 /* if it was on the hash then remove it */ 560 __d_drop(dentry); 561 dentry_unlist(dentry, parent); 562 if (parent) 563 spin_unlock(&parent->d_lock); 564 if (dentry->d_inode) 565 dentry_unlink_inode(dentry); 566 else 567 spin_unlock(&dentry->d_lock); 568 this_cpu_dec(nr_dentry); 569 if (dentry->d_op && dentry->d_op->d_release) 570 dentry->d_op->d_release(dentry); 571 572 spin_lock(&dentry->d_lock); 573 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 574 dentry->d_flags |= DCACHE_MAY_FREE; 575 can_free = false; 576 } 577 spin_unlock(&dentry->d_lock); 578 if (likely(can_free)) 579 dentry_free(dentry); 580 cond_resched(); 581 } 582 583 static struct dentry *__lock_parent(struct dentry *dentry) 584 { 585 struct dentry *parent; 586 rcu_read_lock(); 587 spin_unlock(&dentry->d_lock); 588 again: 589 parent = READ_ONCE(dentry->d_parent); 590 spin_lock(&parent->d_lock); 591 /* 592 * We can't blindly lock dentry until we are sure 593 * that we won't violate the locking order. 594 * Any changes of dentry->d_parent must have 595 * been done with parent->d_lock held, so 596 * spin_lock() above is enough of a barrier 597 * for checking if it's still our child. 598 */ 599 if (unlikely(parent != dentry->d_parent)) { 600 spin_unlock(&parent->d_lock); 601 goto again; 602 } 603 rcu_read_unlock(); 604 if (parent != dentry) 605 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 606 else 607 parent = NULL; 608 return parent; 609 } 610 611 static inline struct dentry *lock_parent(struct dentry *dentry) 612 { 613 struct dentry *parent = dentry->d_parent; 614 if (IS_ROOT(dentry)) 615 return NULL; 616 if (likely(spin_trylock(&parent->d_lock))) 617 return parent; 618 return __lock_parent(dentry); 619 } 620 621 static inline bool retain_dentry(struct dentry *dentry) 622 { 623 WARN_ON(d_in_lookup(dentry)); 624 625 /* Unreachable? Get rid of it */ 626 if (unlikely(d_unhashed(dentry))) 627 return false; 628 629 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 630 return false; 631 632 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 633 if (dentry->d_op->d_delete(dentry)) 634 return false; 635 } 636 /* retain; LRU fodder */ 637 dentry->d_lockref.count--; 638 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 639 d_lru_add(dentry); 640 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 641 dentry->d_flags |= DCACHE_REFERENCED; 642 return true; 643 } 644 645 /* 646 * Finish off a dentry we've decided to kill. 647 * dentry->d_lock must be held, returns with it unlocked. 648 * Returns dentry requiring refcount drop, or NULL if we're done. 649 */ 650 static struct dentry *dentry_kill(struct dentry *dentry) 651 __releases(dentry->d_lock) 652 { 653 struct inode *inode = dentry->d_inode; 654 struct dentry *parent = NULL; 655 656 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 657 goto slow_positive; 658 659 if (!IS_ROOT(dentry)) { 660 parent = dentry->d_parent; 661 if (unlikely(!spin_trylock(&parent->d_lock))) { 662 parent = __lock_parent(dentry); 663 if (likely(inode || !dentry->d_inode)) 664 goto got_locks; 665 /* negative that became positive */ 666 if (parent) 667 spin_unlock(&parent->d_lock); 668 inode = dentry->d_inode; 669 goto slow_positive; 670 } 671 } 672 __dentry_kill(dentry); 673 return parent; 674 675 slow_positive: 676 spin_unlock(&dentry->d_lock); 677 spin_lock(&inode->i_lock); 678 spin_lock(&dentry->d_lock); 679 parent = lock_parent(dentry); 680 got_locks: 681 if (unlikely(dentry->d_lockref.count != 1)) { 682 dentry->d_lockref.count--; 683 } else if (likely(!retain_dentry(dentry))) { 684 __dentry_kill(dentry); 685 return parent; 686 } 687 /* we are keeping it, after all */ 688 if (inode) 689 spin_unlock(&inode->i_lock); 690 if (parent) 691 spin_unlock(&parent->d_lock); 692 spin_unlock(&dentry->d_lock); 693 return NULL; 694 } 695 696 /* 697 * Try to do a lockless dput(), and return whether that was successful. 698 * 699 * If unsuccessful, we return false, having already taken the dentry lock. 700 * 701 * The caller needs to hold the RCU read lock, so that the dentry is 702 * guaranteed to stay around even if the refcount goes down to zero! 703 */ 704 static inline bool fast_dput(struct dentry *dentry) 705 { 706 int ret; 707 unsigned int d_flags; 708 709 /* 710 * If we have a d_op->d_delete() operation, we sould not 711 * let the dentry count go to zero, so use "put_or_lock". 712 */ 713 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 714 return lockref_put_or_lock(&dentry->d_lockref); 715 716 /* 717 * .. otherwise, we can try to just decrement the 718 * lockref optimistically. 719 */ 720 ret = lockref_put_return(&dentry->d_lockref); 721 722 /* 723 * If the lockref_put_return() failed due to the lock being held 724 * by somebody else, the fast path has failed. We will need to 725 * get the lock, and then check the count again. 726 */ 727 if (unlikely(ret < 0)) { 728 spin_lock(&dentry->d_lock); 729 if (dentry->d_lockref.count > 1) { 730 dentry->d_lockref.count--; 731 spin_unlock(&dentry->d_lock); 732 return 1; 733 } 734 return 0; 735 } 736 737 /* 738 * If we weren't the last ref, we're done. 739 */ 740 if (ret) 741 return 1; 742 743 /* 744 * Careful, careful. The reference count went down 745 * to zero, but we don't hold the dentry lock, so 746 * somebody else could get it again, and do another 747 * dput(), and we need to not race with that. 748 * 749 * However, there is a very special and common case 750 * where we don't care, because there is nothing to 751 * do: the dentry is still hashed, it does not have 752 * a 'delete' op, and it's referenced and already on 753 * the LRU list. 754 * 755 * NOTE! Since we aren't locked, these values are 756 * not "stable". However, it is sufficient that at 757 * some point after we dropped the reference the 758 * dentry was hashed and the flags had the proper 759 * value. Other dentry users may have re-gotten 760 * a reference to the dentry and change that, but 761 * our work is done - we can leave the dentry 762 * around with a zero refcount. 763 */ 764 smp_rmb(); 765 d_flags = READ_ONCE(dentry->d_flags); 766 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 767 768 /* Nothing to do? Dropping the reference was all we needed? */ 769 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 770 return 1; 771 772 /* 773 * Not the fast normal case? Get the lock. We've already decremented 774 * the refcount, but we'll need to re-check the situation after 775 * getting the lock. 776 */ 777 spin_lock(&dentry->d_lock); 778 779 /* 780 * Did somebody else grab a reference to it in the meantime, and 781 * we're no longer the last user after all? Alternatively, somebody 782 * else could have killed it and marked it dead. Either way, we 783 * don't need to do anything else. 784 */ 785 if (dentry->d_lockref.count) { 786 spin_unlock(&dentry->d_lock); 787 return 1; 788 } 789 790 /* 791 * Re-get the reference we optimistically dropped. We hold the 792 * lock, and we just tested that it was zero, so we can just 793 * set it to 1. 794 */ 795 dentry->d_lockref.count = 1; 796 return 0; 797 } 798 799 800 /* 801 * This is dput 802 * 803 * This is complicated by the fact that we do not want to put 804 * dentries that are no longer on any hash chain on the unused 805 * list: we'd much rather just get rid of them immediately. 806 * 807 * However, that implies that we have to traverse the dentry 808 * tree upwards to the parents which might _also_ now be 809 * scheduled for deletion (it may have been only waiting for 810 * its last child to go away). 811 * 812 * This tail recursion is done by hand as we don't want to depend 813 * on the compiler to always get this right (gcc generally doesn't). 814 * Real recursion would eat up our stack space. 815 */ 816 817 /* 818 * dput - release a dentry 819 * @dentry: dentry to release 820 * 821 * Release a dentry. This will drop the usage count and if appropriate 822 * call the dentry unlink method as well as removing it from the queues and 823 * releasing its resources. If the parent dentries were scheduled for release 824 * they too may now get deleted. 825 */ 826 void dput(struct dentry *dentry) 827 { 828 while (dentry) { 829 might_sleep(); 830 831 rcu_read_lock(); 832 if (likely(fast_dput(dentry))) { 833 rcu_read_unlock(); 834 return; 835 } 836 837 /* Slow case: now with the dentry lock held */ 838 rcu_read_unlock(); 839 840 if (likely(retain_dentry(dentry))) { 841 spin_unlock(&dentry->d_lock); 842 return; 843 } 844 845 dentry = dentry_kill(dentry); 846 } 847 } 848 EXPORT_SYMBOL(dput); 849 850 851 /* This must be called with d_lock held */ 852 static inline void __dget_dlock(struct dentry *dentry) 853 { 854 dentry->d_lockref.count++; 855 } 856 857 static inline void __dget(struct dentry *dentry) 858 { 859 lockref_get(&dentry->d_lockref); 860 } 861 862 struct dentry *dget_parent(struct dentry *dentry) 863 { 864 int gotref; 865 struct dentry *ret; 866 867 /* 868 * Do optimistic parent lookup without any 869 * locking. 870 */ 871 rcu_read_lock(); 872 ret = READ_ONCE(dentry->d_parent); 873 gotref = lockref_get_not_zero(&ret->d_lockref); 874 rcu_read_unlock(); 875 if (likely(gotref)) { 876 if (likely(ret == READ_ONCE(dentry->d_parent))) 877 return ret; 878 dput(ret); 879 } 880 881 repeat: 882 /* 883 * Don't need rcu_dereference because we re-check it was correct under 884 * the lock. 885 */ 886 rcu_read_lock(); 887 ret = dentry->d_parent; 888 spin_lock(&ret->d_lock); 889 if (unlikely(ret != dentry->d_parent)) { 890 spin_unlock(&ret->d_lock); 891 rcu_read_unlock(); 892 goto repeat; 893 } 894 rcu_read_unlock(); 895 BUG_ON(!ret->d_lockref.count); 896 ret->d_lockref.count++; 897 spin_unlock(&ret->d_lock); 898 return ret; 899 } 900 EXPORT_SYMBOL(dget_parent); 901 902 static struct dentry * __d_find_any_alias(struct inode *inode) 903 { 904 struct dentry *alias; 905 906 if (hlist_empty(&inode->i_dentry)) 907 return NULL; 908 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 909 __dget(alias); 910 return alias; 911 } 912 913 /** 914 * d_find_any_alias - find any alias for a given inode 915 * @inode: inode to find an alias for 916 * 917 * If any aliases exist for the given inode, take and return a 918 * reference for one of them. If no aliases exist, return %NULL. 919 */ 920 struct dentry *d_find_any_alias(struct inode *inode) 921 { 922 struct dentry *de; 923 924 spin_lock(&inode->i_lock); 925 de = __d_find_any_alias(inode); 926 spin_unlock(&inode->i_lock); 927 return de; 928 } 929 EXPORT_SYMBOL(d_find_any_alias); 930 931 /** 932 * d_find_alias - grab a hashed alias of inode 933 * @inode: inode in question 934 * 935 * If inode has a hashed alias, or is a directory and has any alias, 936 * acquire the reference to alias and return it. Otherwise return NULL. 937 * Notice that if inode is a directory there can be only one alias and 938 * it can be unhashed only if it has no children, or if it is the root 939 * of a filesystem, or if the directory was renamed and d_revalidate 940 * was the first vfs operation to notice. 941 * 942 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 943 * any other hashed alias over that one. 944 */ 945 static struct dentry *__d_find_alias(struct inode *inode) 946 { 947 struct dentry *alias; 948 949 if (S_ISDIR(inode->i_mode)) 950 return __d_find_any_alias(inode); 951 952 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 953 spin_lock(&alias->d_lock); 954 if (!d_unhashed(alias)) { 955 __dget_dlock(alias); 956 spin_unlock(&alias->d_lock); 957 return alias; 958 } 959 spin_unlock(&alias->d_lock); 960 } 961 return NULL; 962 } 963 964 struct dentry *d_find_alias(struct inode *inode) 965 { 966 struct dentry *de = NULL; 967 968 if (!hlist_empty(&inode->i_dentry)) { 969 spin_lock(&inode->i_lock); 970 de = __d_find_alias(inode); 971 spin_unlock(&inode->i_lock); 972 } 973 return de; 974 } 975 EXPORT_SYMBOL(d_find_alias); 976 977 /* 978 * Try to kill dentries associated with this inode. 979 * WARNING: you must own a reference to inode. 980 */ 981 void d_prune_aliases(struct inode *inode) 982 { 983 struct dentry *dentry; 984 restart: 985 spin_lock(&inode->i_lock); 986 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 987 spin_lock(&dentry->d_lock); 988 if (!dentry->d_lockref.count) { 989 struct dentry *parent = lock_parent(dentry); 990 if (likely(!dentry->d_lockref.count)) { 991 __dentry_kill(dentry); 992 dput(parent); 993 goto restart; 994 } 995 if (parent) 996 spin_unlock(&parent->d_lock); 997 } 998 spin_unlock(&dentry->d_lock); 999 } 1000 spin_unlock(&inode->i_lock); 1001 } 1002 EXPORT_SYMBOL(d_prune_aliases); 1003 1004 /* 1005 * Lock a dentry from shrink list. 1006 * Called under rcu_read_lock() and dentry->d_lock; the former 1007 * guarantees that nothing we access will be freed under us. 1008 * Note that dentry is *not* protected from concurrent dentry_kill(), 1009 * d_delete(), etc. 1010 * 1011 * Return false if dentry has been disrupted or grabbed, leaving 1012 * the caller to kick it off-list. Otherwise, return true and have 1013 * that dentry's inode and parent both locked. 1014 */ 1015 static bool shrink_lock_dentry(struct dentry *dentry) 1016 { 1017 struct inode *inode; 1018 struct dentry *parent; 1019 1020 if (dentry->d_lockref.count) 1021 return false; 1022 1023 inode = dentry->d_inode; 1024 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1025 spin_unlock(&dentry->d_lock); 1026 spin_lock(&inode->i_lock); 1027 spin_lock(&dentry->d_lock); 1028 if (unlikely(dentry->d_lockref.count)) 1029 goto out; 1030 /* changed inode means that somebody had grabbed it */ 1031 if (unlikely(inode != dentry->d_inode)) 1032 goto out; 1033 } 1034 1035 parent = dentry->d_parent; 1036 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1037 return true; 1038 1039 spin_unlock(&dentry->d_lock); 1040 spin_lock(&parent->d_lock); 1041 if (unlikely(parent != dentry->d_parent)) { 1042 spin_unlock(&parent->d_lock); 1043 spin_lock(&dentry->d_lock); 1044 goto out; 1045 } 1046 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1047 if (likely(!dentry->d_lockref.count)) 1048 return true; 1049 spin_unlock(&parent->d_lock); 1050 out: 1051 if (inode) 1052 spin_unlock(&inode->i_lock); 1053 return false; 1054 } 1055 1056 static void shrink_dentry_list(struct list_head *list) 1057 { 1058 while (!list_empty(list)) { 1059 struct dentry *dentry, *parent; 1060 1061 dentry = list_entry(list->prev, struct dentry, d_lru); 1062 spin_lock(&dentry->d_lock); 1063 rcu_read_lock(); 1064 if (!shrink_lock_dentry(dentry)) { 1065 bool can_free = false; 1066 rcu_read_unlock(); 1067 d_shrink_del(dentry); 1068 if (dentry->d_lockref.count < 0) 1069 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1070 spin_unlock(&dentry->d_lock); 1071 if (can_free) 1072 dentry_free(dentry); 1073 continue; 1074 } 1075 rcu_read_unlock(); 1076 d_shrink_del(dentry); 1077 parent = dentry->d_parent; 1078 __dentry_kill(dentry); 1079 if (parent == dentry) 1080 continue; 1081 /* 1082 * We need to prune ancestors too. This is necessary to prevent 1083 * quadratic behavior of shrink_dcache_parent(), but is also 1084 * expected to be beneficial in reducing dentry cache 1085 * fragmentation. 1086 */ 1087 dentry = parent; 1088 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) 1089 dentry = dentry_kill(dentry); 1090 } 1091 } 1092 1093 static enum lru_status dentry_lru_isolate(struct list_head *item, 1094 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1095 { 1096 struct list_head *freeable = arg; 1097 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1098 1099 1100 /* 1101 * we are inverting the lru lock/dentry->d_lock here, 1102 * so use a trylock. If we fail to get the lock, just skip 1103 * it 1104 */ 1105 if (!spin_trylock(&dentry->d_lock)) 1106 return LRU_SKIP; 1107 1108 /* 1109 * Referenced dentries are still in use. If they have active 1110 * counts, just remove them from the LRU. Otherwise give them 1111 * another pass through the LRU. 1112 */ 1113 if (dentry->d_lockref.count) { 1114 d_lru_isolate(lru, dentry); 1115 spin_unlock(&dentry->d_lock); 1116 return LRU_REMOVED; 1117 } 1118 1119 if (dentry->d_flags & DCACHE_REFERENCED) { 1120 dentry->d_flags &= ~DCACHE_REFERENCED; 1121 spin_unlock(&dentry->d_lock); 1122 1123 /* 1124 * The list move itself will be made by the common LRU code. At 1125 * this point, we've dropped the dentry->d_lock but keep the 1126 * lru lock. This is safe to do, since every list movement is 1127 * protected by the lru lock even if both locks are held. 1128 * 1129 * This is guaranteed by the fact that all LRU management 1130 * functions are intermediated by the LRU API calls like 1131 * list_lru_add and list_lru_del. List movement in this file 1132 * only ever occur through this functions or through callbacks 1133 * like this one, that are called from the LRU API. 1134 * 1135 * The only exceptions to this are functions like 1136 * shrink_dentry_list, and code that first checks for the 1137 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1138 * operating only with stack provided lists after they are 1139 * properly isolated from the main list. It is thus, always a 1140 * local access. 1141 */ 1142 return LRU_ROTATE; 1143 } 1144 1145 d_lru_shrink_move(lru, dentry, freeable); 1146 spin_unlock(&dentry->d_lock); 1147 1148 return LRU_REMOVED; 1149 } 1150 1151 /** 1152 * prune_dcache_sb - shrink the dcache 1153 * @sb: superblock 1154 * @sc: shrink control, passed to list_lru_shrink_walk() 1155 * 1156 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1157 * is done when we need more memory and called from the superblock shrinker 1158 * function. 1159 * 1160 * This function may fail to free any resources if all the dentries are in 1161 * use. 1162 */ 1163 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1164 { 1165 LIST_HEAD(dispose); 1166 long freed; 1167 1168 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1169 dentry_lru_isolate, &dispose); 1170 shrink_dentry_list(&dispose); 1171 return freed; 1172 } 1173 1174 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1175 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1176 { 1177 struct list_head *freeable = arg; 1178 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1179 1180 /* 1181 * we are inverting the lru lock/dentry->d_lock here, 1182 * so use a trylock. If we fail to get the lock, just skip 1183 * it 1184 */ 1185 if (!spin_trylock(&dentry->d_lock)) 1186 return LRU_SKIP; 1187 1188 d_lru_shrink_move(lru, dentry, freeable); 1189 spin_unlock(&dentry->d_lock); 1190 1191 return LRU_REMOVED; 1192 } 1193 1194 1195 /** 1196 * shrink_dcache_sb - shrink dcache for a superblock 1197 * @sb: superblock 1198 * 1199 * Shrink the dcache for the specified super block. This is used to free 1200 * the dcache before unmounting a file system. 1201 */ 1202 void shrink_dcache_sb(struct super_block *sb) 1203 { 1204 long freed; 1205 1206 do { 1207 LIST_HEAD(dispose); 1208 1209 freed = list_lru_walk(&sb->s_dentry_lru, 1210 dentry_lru_isolate_shrink, &dispose, 1024); 1211 1212 this_cpu_sub(nr_dentry_unused, freed); 1213 shrink_dentry_list(&dispose); 1214 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1215 } 1216 EXPORT_SYMBOL(shrink_dcache_sb); 1217 1218 /** 1219 * enum d_walk_ret - action to talke during tree walk 1220 * @D_WALK_CONTINUE: contrinue walk 1221 * @D_WALK_QUIT: quit walk 1222 * @D_WALK_NORETRY: quit when retry is needed 1223 * @D_WALK_SKIP: skip this dentry and its children 1224 */ 1225 enum d_walk_ret { 1226 D_WALK_CONTINUE, 1227 D_WALK_QUIT, 1228 D_WALK_NORETRY, 1229 D_WALK_SKIP, 1230 }; 1231 1232 /** 1233 * d_walk - walk the dentry tree 1234 * @parent: start of walk 1235 * @data: data passed to @enter() and @finish() 1236 * @enter: callback when first entering the dentry 1237 * 1238 * The @enter() callbacks are called with d_lock held. 1239 */ 1240 static void d_walk(struct dentry *parent, void *data, 1241 enum d_walk_ret (*enter)(void *, struct dentry *)) 1242 { 1243 struct dentry *this_parent; 1244 struct list_head *next; 1245 unsigned seq = 0; 1246 enum d_walk_ret ret; 1247 bool retry = true; 1248 1249 again: 1250 read_seqbegin_or_lock(&rename_lock, &seq); 1251 this_parent = parent; 1252 spin_lock(&this_parent->d_lock); 1253 1254 ret = enter(data, this_parent); 1255 switch (ret) { 1256 case D_WALK_CONTINUE: 1257 break; 1258 case D_WALK_QUIT: 1259 case D_WALK_SKIP: 1260 goto out_unlock; 1261 case D_WALK_NORETRY: 1262 retry = false; 1263 break; 1264 } 1265 repeat: 1266 next = this_parent->d_subdirs.next; 1267 resume: 1268 while (next != &this_parent->d_subdirs) { 1269 struct list_head *tmp = next; 1270 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1271 next = tmp->next; 1272 1273 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1274 continue; 1275 1276 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1277 1278 ret = enter(data, dentry); 1279 switch (ret) { 1280 case D_WALK_CONTINUE: 1281 break; 1282 case D_WALK_QUIT: 1283 spin_unlock(&dentry->d_lock); 1284 goto out_unlock; 1285 case D_WALK_NORETRY: 1286 retry = false; 1287 break; 1288 case D_WALK_SKIP: 1289 spin_unlock(&dentry->d_lock); 1290 continue; 1291 } 1292 1293 if (!list_empty(&dentry->d_subdirs)) { 1294 spin_unlock(&this_parent->d_lock); 1295 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1296 this_parent = dentry; 1297 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1298 goto repeat; 1299 } 1300 spin_unlock(&dentry->d_lock); 1301 } 1302 /* 1303 * All done at this level ... ascend and resume the search. 1304 */ 1305 rcu_read_lock(); 1306 ascend: 1307 if (this_parent != parent) { 1308 struct dentry *child = this_parent; 1309 this_parent = child->d_parent; 1310 1311 spin_unlock(&child->d_lock); 1312 spin_lock(&this_parent->d_lock); 1313 1314 /* might go back up the wrong parent if we have had a rename. */ 1315 if (need_seqretry(&rename_lock, seq)) 1316 goto rename_retry; 1317 /* go into the first sibling still alive */ 1318 do { 1319 next = child->d_child.next; 1320 if (next == &this_parent->d_subdirs) 1321 goto ascend; 1322 child = list_entry(next, struct dentry, d_child); 1323 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1324 rcu_read_unlock(); 1325 goto resume; 1326 } 1327 if (need_seqretry(&rename_lock, seq)) 1328 goto rename_retry; 1329 rcu_read_unlock(); 1330 1331 out_unlock: 1332 spin_unlock(&this_parent->d_lock); 1333 done_seqretry(&rename_lock, seq); 1334 return; 1335 1336 rename_retry: 1337 spin_unlock(&this_parent->d_lock); 1338 rcu_read_unlock(); 1339 BUG_ON(seq & 1); 1340 if (!retry) 1341 return; 1342 seq = 1; 1343 goto again; 1344 } 1345 1346 struct check_mount { 1347 struct vfsmount *mnt; 1348 unsigned int mounted; 1349 }; 1350 1351 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1352 { 1353 struct check_mount *info = data; 1354 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1355 1356 if (likely(!d_mountpoint(dentry))) 1357 return D_WALK_CONTINUE; 1358 if (__path_is_mountpoint(&path)) { 1359 info->mounted = 1; 1360 return D_WALK_QUIT; 1361 } 1362 return D_WALK_CONTINUE; 1363 } 1364 1365 /** 1366 * path_has_submounts - check for mounts over a dentry in the 1367 * current namespace. 1368 * @parent: path to check. 1369 * 1370 * Return true if the parent or its subdirectories contain 1371 * a mount point in the current namespace. 1372 */ 1373 int path_has_submounts(const struct path *parent) 1374 { 1375 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1376 1377 read_seqlock_excl(&mount_lock); 1378 d_walk(parent->dentry, &data, path_check_mount); 1379 read_sequnlock_excl(&mount_lock); 1380 1381 return data.mounted; 1382 } 1383 EXPORT_SYMBOL(path_has_submounts); 1384 1385 /* 1386 * Called by mount code to set a mountpoint and check if the mountpoint is 1387 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1388 * subtree can become unreachable). 1389 * 1390 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1391 * this reason take rename_lock and d_lock on dentry and ancestors. 1392 */ 1393 int d_set_mounted(struct dentry *dentry) 1394 { 1395 struct dentry *p; 1396 int ret = -ENOENT; 1397 write_seqlock(&rename_lock); 1398 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1399 /* Need exclusion wrt. d_invalidate() */ 1400 spin_lock(&p->d_lock); 1401 if (unlikely(d_unhashed(p))) { 1402 spin_unlock(&p->d_lock); 1403 goto out; 1404 } 1405 spin_unlock(&p->d_lock); 1406 } 1407 spin_lock(&dentry->d_lock); 1408 if (!d_unlinked(dentry)) { 1409 ret = -EBUSY; 1410 if (!d_mountpoint(dentry)) { 1411 dentry->d_flags |= DCACHE_MOUNTED; 1412 ret = 0; 1413 } 1414 } 1415 spin_unlock(&dentry->d_lock); 1416 out: 1417 write_sequnlock(&rename_lock); 1418 return ret; 1419 } 1420 1421 /* 1422 * Search the dentry child list of the specified parent, 1423 * and move any unused dentries to the end of the unused 1424 * list for prune_dcache(). We descend to the next level 1425 * whenever the d_subdirs list is non-empty and continue 1426 * searching. 1427 * 1428 * It returns zero iff there are no unused children, 1429 * otherwise it returns the number of children moved to 1430 * the end of the unused list. This may not be the total 1431 * number of unused children, because select_parent can 1432 * drop the lock and return early due to latency 1433 * constraints. 1434 */ 1435 1436 struct select_data { 1437 struct dentry *start; 1438 struct list_head dispose; 1439 int found; 1440 }; 1441 1442 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1443 { 1444 struct select_data *data = _data; 1445 enum d_walk_ret ret = D_WALK_CONTINUE; 1446 1447 if (data->start == dentry) 1448 goto out; 1449 1450 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1451 data->found++; 1452 } else { 1453 if (dentry->d_flags & DCACHE_LRU_LIST) 1454 d_lru_del(dentry); 1455 if (!dentry->d_lockref.count) { 1456 d_shrink_add(dentry, &data->dispose); 1457 data->found++; 1458 } 1459 } 1460 /* 1461 * We can return to the caller if we have found some (this 1462 * ensures forward progress). We'll be coming back to find 1463 * the rest. 1464 */ 1465 if (!list_empty(&data->dispose)) 1466 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1467 out: 1468 return ret; 1469 } 1470 1471 /** 1472 * shrink_dcache_parent - prune dcache 1473 * @parent: parent of entries to prune 1474 * 1475 * Prune the dcache to remove unused children of the parent dentry. 1476 */ 1477 void shrink_dcache_parent(struct dentry *parent) 1478 { 1479 for (;;) { 1480 struct select_data data; 1481 1482 INIT_LIST_HEAD(&data.dispose); 1483 data.start = parent; 1484 data.found = 0; 1485 1486 d_walk(parent, &data, select_collect); 1487 1488 if (!list_empty(&data.dispose)) { 1489 shrink_dentry_list(&data.dispose); 1490 continue; 1491 } 1492 1493 cond_resched(); 1494 if (!data.found) 1495 break; 1496 } 1497 } 1498 EXPORT_SYMBOL(shrink_dcache_parent); 1499 1500 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1501 { 1502 /* it has busy descendents; complain about those instead */ 1503 if (!list_empty(&dentry->d_subdirs)) 1504 return D_WALK_CONTINUE; 1505 1506 /* root with refcount 1 is fine */ 1507 if (dentry == _data && dentry->d_lockref.count == 1) 1508 return D_WALK_CONTINUE; 1509 1510 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1511 " still in use (%d) [unmount of %s %s]\n", 1512 dentry, 1513 dentry->d_inode ? 1514 dentry->d_inode->i_ino : 0UL, 1515 dentry, 1516 dentry->d_lockref.count, 1517 dentry->d_sb->s_type->name, 1518 dentry->d_sb->s_id); 1519 WARN_ON(1); 1520 return D_WALK_CONTINUE; 1521 } 1522 1523 static void do_one_tree(struct dentry *dentry) 1524 { 1525 shrink_dcache_parent(dentry); 1526 d_walk(dentry, dentry, umount_check); 1527 d_drop(dentry); 1528 dput(dentry); 1529 } 1530 1531 /* 1532 * destroy the dentries attached to a superblock on unmounting 1533 */ 1534 void shrink_dcache_for_umount(struct super_block *sb) 1535 { 1536 struct dentry *dentry; 1537 1538 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1539 1540 dentry = sb->s_root; 1541 sb->s_root = NULL; 1542 do_one_tree(dentry); 1543 1544 while (!hlist_bl_empty(&sb->s_roots)) { 1545 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1546 do_one_tree(dentry); 1547 } 1548 } 1549 1550 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1551 { 1552 struct dentry **victim = _data; 1553 if (d_mountpoint(dentry)) { 1554 __dget_dlock(dentry); 1555 *victim = dentry; 1556 return D_WALK_QUIT; 1557 } 1558 return D_WALK_CONTINUE; 1559 } 1560 1561 /** 1562 * d_invalidate - detach submounts, prune dcache, and drop 1563 * @dentry: dentry to invalidate (aka detach, prune and drop) 1564 */ 1565 void d_invalidate(struct dentry *dentry) 1566 { 1567 bool had_submounts = false; 1568 spin_lock(&dentry->d_lock); 1569 if (d_unhashed(dentry)) { 1570 spin_unlock(&dentry->d_lock); 1571 return; 1572 } 1573 __d_drop(dentry); 1574 spin_unlock(&dentry->d_lock); 1575 1576 /* Negative dentries can be dropped without further checks */ 1577 if (!dentry->d_inode) 1578 return; 1579 1580 shrink_dcache_parent(dentry); 1581 for (;;) { 1582 struct dentry *victim = NULL; 1583 d_walk(dentry, &victim, find_submount); 1584 if (!victim) { 1585 if (had_submounts) 1586 shrink_dcache_parent(dentry); 1587 return; 1588 } 1589 had_submounts = true; 1590 detach_mounts(victim); 1591 dput(victim); 1592 } 1593 } 1594 EXPORT_SYMBOL(d_invalidate); 1595 1596 /** 1597 * __d_alloc - allocate a dcache entry 1598 * @sb: filesystem it will belong to 1599 * @name: qstr of the name 1600 * 1601 * Allocates a dentry. It returns %NULL if there is insufficient memory 1602 * available. On a success the dentry is returned. The name passed in is 1603 * copied and the copy passed in may be reused after this call. 1604 */ 1605 1606 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1607 { 1608 struct external_name *ext = NULL; 1609 struct dentry *dentry; 1610 char *dname; 1611 int err; 1612 1613 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1614 if (!dentry) 1615 return NULL; 1616 1617 /* 1618 * We guarantee that the inline name is always NUL-terminated. 1619 * This way the memcpy() done by the name switching in rename 1620 * will still always have a NUL at the end, even if we might 1621 * be overwriting an internal NUL character 1622 */ 1623 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1624 if (unlikely(!name)) { 1625 name = &slash_name; 1626 dname = dentry->d_iname; 1627 } else if (name->len > DNAME_INLINE_LEN-1) { 1628 size_t size = offsetof(struct external_name, name[1]); 1629 1630 ext = kmalloc(size + name->len, GFP_KERNEL_ACCOUNT); 1631 if (!ext) { 1632 kmem_cache_free(dentry_cache, dentry); 1633 return NULL; 1634 } 1635 atomic_set(&ext->u.count, 1); 1636 dname = ext->name; 1637 } else { 1638 dname = dentry->d_iname; 1639 } 1640 1641 dentry->d_name.len = name->len; 1642 dentry->d_name.hash = name->hash; 1643 memcpy(dname, name->name, name->len); 1644 dname[name->len] = 0; 1645 1646 /* Make sure we always see the terminating NUL character */ 1647 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1648 1649 dentry->d_lockref.count = 1; 1650 dentry->d_flags = 0; 1651 spin_lock_init(&dentry->d_lock); 1652 seqcount_init(&dentry->d_seq); 1653 dentry->d_inode = NULL; 1654 dentry->d_parent = dentry; 1655 dentry->d_sb = sb; 1656 dentry->d_op = NULL; 1657 dentry->d_fsdata = NULL; 1658 INIT_HLIST_BL_NODE(&dentry->d_hash); 1659 INIT_LIST_HEAD(&dentry->d_lru); 1660 INIT_LIST_HEAD(&dentry->d_subdirs); 1661 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1662 INIT_LIST_HEAD(&dentry->d_child); 1663 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1664 1665 if (dentry->d_op && dentry->d_op->d_init) { 1666 err = dentry->d_op->d_init(dentry); 1667 if (err) { 1668 if (dname_external(dentry)) 1669 kfree(external_name(dentry)); 1670 kmem_cache_free(dentry_cache, dentry); 1671 return NULL; 1672 } 1673 } 1674 1675 if (unlikely(ext)) { 1676 pg_data_t *pgdat = page_pgdat(virt_to_page(ext)); 1677 mod_node_page_state(pgdat, NR_INDIRECTLY_RECLAIMABLE_BYTES, 1678 ksize(ext)); 1679 } 1680 1681 this_cpu_inc(nr_dentry); 1682 1683 return dentry; 1684 } 1685 1686 /** 1687 * d_alloc - allocate a dcache entry 1688 * @parent: parent of entry to allocate 1689 * @name: qstr of the name 1690 * 1691 * Allocates a dentry. It returns %NULL if there is insufficient memory 1692 * available. On a success the dentry is returned. The name passed in is 1693 * copied and the copy passed in may be reused after this call. 1694 */ 1695 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1696 { 1697 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1698 if (!dentry) 1699 return NULL; 1700 dentry->d_flags |= DCACHE_RCUACCESS; 1701 spin_lock(&parent->d_lock); 1702 /* 1703 * don't need child lock because it is not subject 1704 * to concurrency here 1705 */ 1706 __dget_dlock(parent); 1707 dentry->d_parent = parent; 1708 list_add(&dentry->d_child, &parent->d_subdirs); 1709 spin_unlock(&parent->d_lock); 1710 1711 return dentry; 1712 } 1713 EXPORT_SYMBOL(d_alloc); 1714 1715 struct dentry *d_alloc_anon(struct super_block *sb) 1716 { 1717 return __d_alloc(sb, NULL); 1718 } 1719 EXPORT_SYMBOL(d_alloc_anon); 1720 1721 struct dentry *d_alloc_cursor(struct dentry * parent) 1722 { 1723 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1724 if (dentry) { 1725 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1726 dentry->d_parent = dget(parent); 1727 } 1728 return dentry; 1729 } 1730 1731 /** 1732 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1733 * @sb: the superblock 1734 * @name: qstr of the name 1735 * 1736 * For a filesystem that just pins its dentries in memory and never 1737 * performs lookups at all, return an unhashed IS_ROOT dentry. 1738 */ 1739 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1740 { 1741 return __d_alloc(sb, name); 1742 } 1743 EXPORT_SYMBOL(d_alloc_pseudo); 1744 1745 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1746 { 1747 struct qstr q; 1748 1749 q.name = name; 1750 q.hash_len = hashlen_string(parent, name); 1751 return d_alloc(parent, &q); 1752 } 1753 EXPORT_SYMBOL(d_alloc_name); 1754 1755 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1756 { 1757 WARN_ON_ONCE(dentry->d_op); 1758 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1759 DCACHE_OP_COMPARE | 1760 DCACHE_OP_REVALIDATE | 1761 DCACHE_OP_WEAK_REVALIDATE | 1762 DCACHE_OP_DELETE | 1763 DCACHE_OP_REAL)); 1764 dentry->d_op = op; 1765 if (!op) 1766 return; 1767 if (op->d_hash) 1768 dentry->d_flags |= DCACHE_OP_HASH; 1769 if (op->d_compare) 1770 dentry->d_flags |= DCACHE_OP_COMPARE; 1771 if (op->d_revalidate) 1772 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1773 if (op->d_weak_revalidate) 1774 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1775 if (op->d_delete) 1776 dentry->d_flags |= DCACHE_OP_DELETE; 1777 if (op->d_prune) 1778 dentry->d_flags |= DCACHE_OP_PRUNE; 1779 if (op->d_real) 1780 dentry->d_flags |= DCACHE_OP_REAL; 1781 1782 } 1783 EXPORT_SYMBOL(d_set_d_op); 1784 1785 1786 /* 1787 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1788 * @dentry - The dentry to mark 1789 * 1790 * Mark a dentry as falling through to the lower layer (as set with 1791 * d_pin_lower()). This flag may be recorded on the medium. 1792 */ 1793 void d_set_fallthru(struct dentry *dentry) 1794 { 1795 spin_lock(&dentry->d_lock); 1796 dentry->d_flags |= DCACHE_FALLTHRU; 1797 spin_unlock(&dentry->d_lock); 1798 } 1799 EXPORT_SYMBOL(d_set_fallthru); 1800 1801 static unsigned d_flags_for_inode(struct inode *inode) 1802 { 1803 unsigned add_flags = DCACHE_REGULAR_TYPE; 1804 1805 if (!inode) 1806 return DCACHE_MISS_TYPE; 1807 1808 if (S_ISDIR(inode->i_mode)) { 1809 add_flags = DCACHE_DIRECTORY_TYPE; 1810 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1811 if (unlikely(!inode->i_op->lookup)) 1812 add_flags = DCACHE_AUTODIR_TYPE; 1813 else 1814 inode->i_opflags |= IOP_LOOKUP; 1815 } 1816 goto type_determined; 1817 } 1818 1819 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1820 if (unlikely(inode->i_op->get_link)) { 1821 add_flags = DCACHE_SYMLINK_TYPE; 1822 goto type_determined; 1823 } 1824 inode->i_opflags |= IOP_NOFOLLOW; 1825 } 1826 1827 if (unlikely(!S_ISREG(inode->i_mode))) 1828 add_flags = DCACHE_SPECIAL_TYPE; 1829 1830 type_determined: 1831 if (unlikely(IS_AUTOMOUNT(inode))) 1832 add_flags |= DCACHE_NEED_AUTOMOUNT; 1833 return add_flags; 1834 } 1835 1836 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1837 { 1838 unsigned add_flags = d_flags_for_inode(inode); 1839 WARN_ON(d_in_lookup(dentry)); 1840 1841 spin_lock(&dentry->d_lock); 1842 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1843 raw_write_seqcount_begin(&dentry->d_seq); 1844 __d_set_inode_and_type(dentry, inode, add_flags); 1845 raw_write_seqcount_end(&dentry->d_seq); 1846 fsnotify_update_flags(dentry); 1847 spin_unlock(&dentry->d_lock); 1848 } 1849 1850 /** 1851 * d_instantiate - fill in inode information for a dentry 1852 * @entry: dentry to complete 1853 * @inode: inode to attach to this dentry 1854 * 1855 * Fill in inode information in the entry. 1856 * 1857 * This turns negative dentries into productive full members 1858 * of society. 1859 * 1860 * NOTE! This assumes that the inode count has been incremented 1861 * (or otherwise set) by the caller to indicate that it is now 1862 * in use by the dcache. 1863 */ 1864 1865 void d_instantiate(struct dentry *entry, struct inode * inode) 1866 { 1867 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1868 if (inode) { 1869 security_d_instantiate(entry, inode); 1870 spin_lock(&inode->i_lock); 1871 __d_instantiate(entry, inode); 1872 spin_unlock(&inode->i_lock); 1873 } 1874 } 1875 EXPORT_SYMBOL(d_instantiate); 1876 1877 /* 1878 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1879 * with lockdep-related part of unlock_new_inode() done before 1880 * anything else. Use that instead of open-coding d_instantiate()/ 1881 * unlock_new_inode() combinations. 1882 */ 1883 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1884 { 1885 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1886 BUG_ON(!inode); 1887 lockdep_annotate_inode_mutex_key(inode); 1888 security_d_instantiate(entry, inode); 1889 spin_lock(&inode->i_lock); 1890 __d_instantiate(entry, inode); 1891 WARN_ON(!(inode->i_state & I_NEW)); 1892 inode->i_state &= ~I_NEW; 1893 smp_mb(); 1894 wake_up_bit(&inode->i_state, __I_NEW); 1895 spin_unlock(&inode->i_lock); 1896 } 1897 EXPORT_SYMBOL(d_instantiate_new); 1898 1899 /** 1900 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1901 * @entry: dentry to complete 1902 * @inode: inode to attach to this dentry 1903 * 1904 * Fill in inode information in the entry. If a directory alias is found, then 1905 * return an error (and drop inode). Together with d_materialise_unique() this 1906 * guarantees that a directory inode may never have more than one alias. 1907 */ 1908 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1909 { 1910 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1911 1912 security_d_instantiate(entry, inode); 1913 spin_lock(&inode->i_lock); 1914 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1915 spin_unlock(&inode->i_lock); 1916 iput(inode); 1917 return -EBUSY; 1918 } 1919 __d_instantiate(entry, inode); 1920 spin_unlock(&inode->i_lock); 1921 1922 return 0; 1923 } 1924 EXPORT_SYMBOL(d_instantiate_no_diralias); 1925 1926 struct dentry *d_make_root(struct inode *root_inode) 1927 { 1928 struct dentry *res = NULL; 1929 1930 if (root_inode) { 1931 res = d_alloc_anon(root_inode->i_sb); 1932 if (res) { 1933 res->d_flags |= DCACHE_RCUACCESS; 1934 d_instantiate(res, root_inode); 1935 } else { 1936 iput(root_inode); 1937 } 1938 } 1939 return res; 1940 } 1941 EXPORT_SYMBOL(d_make_root); 1942 1943 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1944 struct inode *inode, 1945 bool disconnected) 1946 { 1947 struct dentry *res; 1948 unsigned add_flags; 1949 1950 security_d_instantiate(dentry, inode); 1951 spin_lock(&inode->i_lock); 1952 res = __d_find_any_alias(inode); 1953 if (res) { 1954 spin_unlock(&inode->i_lock); 1955 dput(dentry); 1956 goto out_iput; 1957 } 1958 1959 /* attach a disconnected dentry */ 1960 add_flags = d_flags_for_inode(inode); 1961 1962 if (disconnected) 1963 add_flags |= DCACHE_DISCONNECTED; 1964 1965 spin_lock(&dentry->d_lock); 1966 __d_set_inode_and_type(dentry, inode, add_flags); 1967 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1968 if (!disconnected) { 1969 hlist_bl_lock(&dentry->d_sb->s_roots); 1970 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1971 hlist_bl_unlock(&dentry->d_sb->s_roots); 1972 } 1973 spin_unlock(&dentry->d_lock); 1974 spin_unlock(&inode->i_lock); 1975 1976 return dentry; 1977 1978 out_iput: 1979 iput(inode); 1980 return res; 1981 } 1982 1983 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1984 { 1985 return __d_instantiate_anon(dentry, inode, true); 1986 } 1987 EXPORT_SYMBOL(d_instantiate_anon); 1988 1989 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1990 { 1991 struct dentry *tmp; 1992 struct dentry *res; 1993 1994 if (!inode) 1995 return ERR_PTR(-ESTALE); 1996 if (IS_ERR(inode)) 1997 return ERR_CAST(inode); 1998 1999 res = d_find_any_alias(inode); 2000 if (res) 2001 goto out_iput; 2002 2003 tmp = d_alloc_anon(inode->i_sb); 2004 if (!tmp) { 2005 res = ERR_PTR(-ENOMEM); 2006 goto out_iput; 2007 } 2008 2009 return __d_instantiate_anon(tmp, inode, disconnected); 2010 2011 out_iput: 2012 iput(inode); 2013 return res; 2014 } 2015 2016 /** 2017 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2018 * @inode: inode to allocate the dentry for 2019 * 2020 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2021 * similar open by handle operations. The returned dentry may be anonymous, 2022 * or may have a full name (if the inode was already in the cache). 2023 * 2024 * When called on a directory inode, we must ensure that the inode only ever 2025 * has one dentry. If a dentry is found, that is returned instead of 2026 * allocating a new one. 2027 * 2028 * On successful return, the reference to the inode has been transferred 2029 * to the dentry. In case of an error the reference on the inode is released. 2030 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2031 * be passed in and the error will be propagated to the return value, 2032 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2033 */ 2034 struct dentry *d_obtain_alias(struct inode *inode) 2035 { 2036 return __d_obtain_alias(inode, true); 2037 } 2038 EXPORT_SYMBOL(d_obtain_alias); 2039 2040 /** 2041 * d_obtain_root - find or allocate a dentry for a given inode 2042 * @inode: inode to allocate the dentry for 2043 * 2044 * Obtain an IS_ROOT dentry for the root of a filesystem. 2045 * 2046 * We must ensure that directory inodes only ever have one dentry. If a 2047 * dentry is found, that is returned instead of allocating a new one. 2048 * 2049 * On successful return, the reference to the inode has been transferred 2050 * to the dentry. In case of an error the reference on the inode is 2051 * released. A %NULL or IS_ERR inode may be passed in and will be the 2052 * error will be propagate to the return value, with a %NULL @inode 2053 * replaced by ERR_PTR(-ESTALE). 2054 */ 2055 struct dentry *d_obtain_root(struct inode *inode) 2056 { 2057 return __d_obtain_alias(inode, false); 2058 } 2059 EXPORT_SYMBOL(d_obtain_root); 2060 2061 /** 2062 * d_add_ci - lookup or allocate new dentry with case-exact name 2063 * @inode: the inode case-insensitive lookup has found 2064 * @dentry: the negative dentry that was passed to the parent's lookup func 2065 * @name: the case-exact name to be associated with the returned dentry 2066 * 2067 * This is to avoid filling the dcache with case-insensitive names to the 2068 * same inode, only the actual correct case is stored in the dcache for 2069 * case-insensitive filesystems. 2070 * 2071 * For a case-insensitive lookup match and if the the case-exact dentry 2072 * already exists in in the dcache, use it and return it. 2073 * 2074 * If no entry exists with the exact case name, allocate new dentry with 2075 * the exact case, and return the spliced entry. 2076 */ 2077 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2078 struct qstr *name) 2079 { 2080 struct dentry *found, *res; 2081 2082 /* 2083 * First check if a dentry matching the name already exists, 2084 * if not go ahead and create it now. 2085 */ 2086 found = d_hash_and_lookup(dentry->d_parent, name); 2087 if (found) { 2088 iput(inode); 2089 return found; 2090 } 2091 if (d_in_lookup(dentry)) { 2092 found = d_alloc_parallel(dentry->d_parent, name, 2093 dentry->d_wait); 2094 if (IS_ERR(found) || !d_in_lookup(found)) { 2095 iput(inode); 2096 return found; 2097 } 2098 } else { 2099 found = d_alloc(dentry->d_parent, name); 2100 if (!found) { 2101 iput(inode); 2102 return ERR_PTR(-ENOMEM); 2103 } 2104 } 2105 res = d_splice_alias(inode, found); 2106 if (res) { 2107 dput(found); 2108 return res; 2109 } 2110 return found; 2111 } 2112 EXPORT_SYMBOL(d_add_ci); 2113 2114 2115 static inline bool d_same_name(const struct dentry *dentry, 2116 const struct dentry *parent, 2117 const struct qstr *name) 2118 { 2119 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2120 if (dentry->d_name.len != name->len) 2121 return false; 2122 return dentry_cmp(dentry, name->name, name->len) == 0; 2123 } 2124 return parent->d_op->d_compare(dentry, 2125 dentry->d_name.len, dentry->d_name.name, 2126 name) == 0; 2127 } 2128 2129 /** 2130 * __d_lookup_rcu - search for a dentry (racy, store-free) 2131 * @parent: parent dentry 2132 * @name: qstr of name we wish to find 2133 * @seqp: returns d_seq value at the point where the dentry was found 2134 * Returns: dentry, or NULL 2135 * 2136 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2137 * resolution (store-free path walking) design described in 2138 * Documentation/filesystems/path-lookup.txt. 2139 * 2140 * This is not to be used outside core vfs. 2141 * 2142 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2143 * held, and rcu_read_lock held. The returned dentry must not be stored into 2144 * without taking d_lock and checking d_seq sequence count against @seq 2145 * returned here. 2146 * 2147 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2148 * function. 2149 * 2150 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2151 * the returned dentry, so long as its parent's seqlock is checked after the 2152 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2153 * is formed, giving integrity down the path walk. 2154 * 2155 * NOTE! The caller *has* to check the resulting dentry against the sequence 2156 * number we've returned before using any of the resulting dentry state! 2157 */ 2158 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2159 const struct qstr *name, 2160 unsigned *seqp) 2161 { 2162 u64 hashlen = name->hash_len; 2163 const unsigned char *str = name->name; 2164 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2165 struct hlist_bl_node *node; 2166 struct dentry *dentry; 2167 2168 /* 2169 * Note: There is significant duplication with __d_lookup_rcu which is 2170 * required to prevent single threaded performance regressions 2171 * especially on architectures where smp_rmb (in seqcounts) are costly. 2172 * Keep the two functions in sync. 2173 */ 2174 2175 /* 2176 * The hash list is protected using RCU. 2177 * 2178 * Carefully use d_seq when comparing a candidate dentry, to avoid 2179 * races with d_move(). 2180 * 2181 * It is possible that concurrent renames can mess up our list 2182 * walk here and result in missing our dentry, resulting in the 2183 * false-negative result. d_lookup() protects against concurrent 2184 * renames using rename_lock seqlock. 2185 * 2186 * See Documentation/filesystems/path-lookup.txt for more details. 2187 */ 2188 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2189 unsigned seq; 2190 2191 seqretry: 2192 /* 2193 * The dentry sequence count protects us from concurrent 2194 * renames, and thus protects parent and name fields. 2195 * 2196 * The caller must perform a seqcount check in order 2197 * to do anything useful with the returned dentry. 2198 * 2199 * NOTE! We do a "raw" seqcount_begin here. That means that 2200 * we don't wait for the sequence count to stabilize if it 2201 * is in the middle of a sequence change. If we do the slow 2202 * dentry compare, we will do seqretries until it is stable, 2203 * and if we end up with a successful lookup, we actually 2204 * want to exit RCU lookup anyway. 2205 * 2206 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2207 * we are still guaranteed NUL-termination of ->d_name.name. 2208 */ 2209 seq = raw_seqcount_begin(&dentry->d_seq); 2210 if (dentry->d_parent != parent) 2211 continue; 2212 if (d_unhashed(dentry)) 2213 continue; 2214 2215 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2216 int tlen; 2217 const char *tname; 2218 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2219 continue; 2220 tlen = dentry->d_name.len; 2221 tname = dentry->d_name.name; 2222 /* we want a consistent (name,len) pair */ 2223 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2224 cpu_relax(); 2225 goto seqretry; 2226 } 2227 if (parent->d_op->d_compare(dentry, 2228 tlen, tname, name) != 0) 2229 continue; 2230 } else { 2231 if (dentry->d_name.hash_len != hashlen) 2232 continue; 2233 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2234 continue; 2235 } 2236 *seqp = seq; 2237 return dentry; 2238 } 2239 return NULL; 2240 } 2241 2242 /** 2243 * d_lookup - search for a dentry 2244 * @parent: parent dentry 2245 * @name: qstr of name we wish to find 2246 * Returns: dentry, or NULL 2247 * 2248 * d_lookup searches the children of the parent dentry for the name in 2249 * question. If the dentry is found its reference count is incremented and the 2250 * dentry is returned. The caller must use dput to free the entry when it has 2251 * finished using it. %NULL is returned if the dentry does not exist. 2252 */ 2253 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2254 { 2255 struct dentry *dentry; 2256 unsigned seq; 2257 2258 do { 2259 seq = read_seqbegin(&rename_lock); 2260 dentry = __d_lookup(parent, name); 2261 if (dentry) 2262 break; 2263 } while (read_seqretry(&rename_lock, seq)); 2264 return dentry; 2265 } 2266 EXPORT_SYMBOL(d_lookup); 2267 2268 /** 2269 * __d_lookup - search for a dentry (racy) 2270 * @parent: parent dentry 2271 * @name: qstr of name we wish to find 2272 * Returns: dentry, or NULL 2273 * 2274 * __d_lookup is like d_lookup, however it may (rarely) return a 2275 * false-negative result due to unrelated rename activity. 2276 * 2277 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2278 * however it must be used carefully, eg. with a following d_lookup in 2279 * the case of failure. 2280 * 2281 * __d_lookup callers must be commented. 2282 */ 2283 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2284 { 2285 unsigned int hash = name->hash; 2286 struct hlist_bl_head *b = d_hash(hash); 2287 struct hlist_bl_node *node; 2288 struct dentry *found = NULL; 2289 struct dentry *dentry; 2290 2291 /* 2292 * Note: There is significant duplication with __d_lookup_rcu which is 2293 * required to prevent single threaded performance regressions 2294 * especially on architectures where smp_rmb (in seqcounts) are costly. 2295 * Keep the two functions in sync. 2296 */ 2297 2298 /* 2299 * The hash list is protected using RCU. 2300 * 2301 * Take d_lock when comparing a candidate dentry, to avoid races 2302 * with d_move(). 2303 * 2304 * It is possible that concurrent renames can mess up our list 2305 * walk here and result in missing our dentry, resulting in the 2306 * false-negative result. d_lookup() protects against concurrent 2307 * renames using rename_lock seqlock. 2308 * 2309 * See Documentation/filesystems/path-lookup.txt for more details. 2310 */ 2311 rcu_read_lock(); 2312 2313 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2314 2315 if (dentry->d_name.hash != hash) 2316 continue; 2317 2318 spin_lock(&dentry->d_lock); 2319 if (dentry->d_parent != parent) 2320 goto next; 2321 if (d_unhashed(dentry)) 2322 goto next; 2323 2324 if (!d_same_name(dentry, parent, name)) 2325 goto next; 2326 2327 dentry->d_lockref.count++; 2328 found = dentry; 2329 spin_unlock(&dentry->d_lock); 2330 break; 2331 next: 2332 spin_unlock(&dentry->d_lock); 2333 } 2334 rcu_read_unlock(); 2335 2336 return found; 2337 } 2338 2339 /** 2340 * d_hash_and_lookup - hash the qstr then search for a dentry 2341 * @dir: Directory to search in 2342 * @name: qstr of name we wish to find 2343 * 2344 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2345 */ 2346 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2347 { 2348 /* 2349 * Check for a fs-specific hash function. Note that we must 2350 * calculate the standard hash first, as the d_op->d_hash() 2351 * routine may choose to leave the hash value unchanged. 2352 */ 2353 name->hash = full_name_hash(dir, name->name, name->len); 2354 if (dir->d_flags & DCACHE_OP_HASH) { 2355 int err = dir->d_op->d_hash(dir, name); 2356 if (unlikely(err < 0)) 2357 return ERR_PTR(err); 2358 } 2359 return d_lookup(dir, name); 2360 } 2361 EXPORT_SYMBOL(d_hash_and_lookup); 2362 2363 /* 2364 * When a file is deleted, we have two options: 2365 * - turn this dentry into a negative dentry 2366 * - unhash this dentry and free it. 2367 * 2368 * Usually, we want to just turn this into 2369 * a negative dentry, but if anybody else is 2370 * currently using the dentry or the inode 2371 * we can't do that and we fall back on removing 2372 * it from the hash queues and waiting for 2373 * it to be deleted later when it has no users 2374 */ 2375 2376 /** 2377 * d_delete - delete a dentry 2378 * @dentry: The dentry to delete 2379 * 2380 * Turn the dentry into a negative dentry if possible, otherwise 2381 * remove it from the hash queues so it can be deleted later 2382 */ 2383 2384 void d_delete(struct dentry * dentry) 2385 { 2386 struct inode *inode = dentry->d_inode; 2387 int isdir = d_is_dir(dentry); 2388 2389 spin_lock(&inode->i_lock); 2390 spin_lock(&dentry->d_lock); 2391 /* 2392 * Are we the only user? 2393 */ 2394 if (dentry->d_lockref.count == 1) { 2395 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2396 dentry_unlink_inode(dentry); 2397 } else { 2398 __d_drop(dentry); 2399 spin_unlock(&dentry->d_lock); 2400 spin_unlock(&inode->i_lock); 2401 } 2402 fsnotify_nameremove(dentry, isdir); 2403 } 2404 EXPORT_SYMBOL(d_delete); 2405 2406 static void __d_rehash(struct dentry *entry) 2407 { 2408 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2409 2410 hlist_bl_lock(b); 2411 hlist_bl_add_head_rcu(&entry->d_hash, b); 2412 hlist_bl_unlock(b); 2413 } 2414 2415 /** 2416 * d_rehash - add an entry back to the hash 2417 * @entry: dentry to add to the hash 2418 * 2419 * Adds a dentry to the hash according to its name. 2420 */ 2421 2422 void d_rehash(struct dentry * entry) 2423 { 2424 spin_lock(&entry->d_lock); 2425 __d_rehash(entry); 2426 spin_unlock(&entry->d_lock); 2427 } 2428 EXPORT_SYMBOL(d_rehash); 2429 2430 static inline unsigned start_dir_add(struct inode *dir) 2431 { 2432 2433 for (;;) { 2434 unsigned n = dir->i_dir_seq; 2435 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2436 return n; 2437 cpu_relax(); 2438 } 2439 } 2440 2441 static inline void end_dir_add(struct inode *dir, unsigned n) 2442 { 2443 smp_store_release(&dir->i_dir_seq, n + 2); 2444 } 2445 2446 static void d_wait_lookup(struct dentry *dentry) 2447 { 2448 if (d_in_lookup(dentry)) { 2449 DECLARE_WAITQUEUE(wait, current); 2450 add_wait_queue(dentry->d_wait, &wait); 2451 do { 2452 set_current_state(TASK_UNINTERRUPTIBLE); 2453 spin_unlock(&dentry->d_lock); 2454 schedule(); 2455 spin_lock(&dentry->d_lock); 2456 } while (d_in_lookup(dentry)); 2457 } 2458 } 2459 2460 struct dentry *d_alloc_parallel(struct dentry *parent, 2461 const struct qstr *name, 2462 wait_queue_head_t *wq) 2463 { 2464 unsigned int hash = name->hash; 2465 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2466 struct hlist_bl_node *node; 2467 struct dentry *new = d_alloc(parent, name); 2468 struct dentry *dentry; 2469 unsigned seq, r_seq, d_seq; 2470 2471 if (unlikely(!new)) 2472 return ERR_PTR(-ENOMEM); 2473 2474 retry: 2475 rcu_read_lock(); 2476 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2477 r_seq = read_seqbegin(&rename_lock); 2478 dentry = __d_lookup_rcu(parent, name, &d_seq); 2479 if (unlikely(dentry)) { 2480 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2481 rcu_read_unlock(); 2482 goto retry; 2483 } 2484 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2485 rcu_read_unlock(); 2486 dput(dentry); 2487 goto retry; 2488 } 2489 rcu_read_unlock(); 2490 dput(new); 2491 return dentry; 2492 } 2493 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2494 rcu_read_unlock(); 2495 goto retry; 2496 } 2497 2498 if (unlikely(seq & 1)) { 2499 rcu_read_unlock(); 2500 goto retry; 2501 } 2502 2503 hlist_bl_lock(b); 2504 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2505 hlist_bl_unlock(b); 2506 rcu_read_unlock(); 2507 goto retry; 2508 } 2509 /* 2510 * No changes for the parent since the beginning of d_lookup(). 2511 * Since all removals from the chain happen with hlist_bl_lock(), 2512 * any potential in-lookup matches are going to stay here until 2513 * we unlock the chain. All fields are stable in everything 2514 * we encounter. 2515 */ 2516 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2517 if (dentry->d_name.hash != hash) 2518 continue; 2519 if (dentry->d_parent != parent) 2520 continue; 2521 if (!d_same_name(dentry, parent, name)) 2522 continue; 2523 hlist_bl_unlock(b); 2524 /* now we can try to grab a reference */ 2525 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2526 rcu_read_unlock(); 2527 goto retry; 2528 } 2529 2530 rcu_read_unlock(); 2531 /* 2532 * somebody is likely to be still doing lookup for it; 2533 * wait for them to finish 2534 */ 2535 spin_lock(&dentry->d_lock); 2536 d_wait_lookup(dentry); 2537 /* 2538 * it's not in-lookup anymore; in principle we should repeat 2539 * everything from dcache lookup, but it's likely to be what 2540 * d_lookup() would've found anyway. If it is, just return it; 2541 * otherwise we really have to repeat the whole thing. 2542 */ 2543 if (unlikely(dentry->d_name.hash != hash)) 2544 goto mismatch; 2545 if (unlikely(dentry->d_parent != parent)) 2546 goto mismatch; 2547 if (unlikely(d_unhashed(dentry))) 2548 goto mismatch; 2549 if (unlikely(!d_same_name(dentry, parent, name))) 2550 goto mismatch; 2551 /* OK, it *is* a hashed match; return it */ 2552 spin_unlock(&dentry->d_lock); 2553 dput(new); 2554 return dentry; 2555 } 2556 rcu_read_unlock(); 2557 /* we can't take ->d_lock here; it's OK, though. */ 2558 new->d_flags |= DCACHE_PAR_LOOKUP; 2559 new->d_wait = wq; 2560 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2561 hlist_bl_unlock(b); 2562 return new; 2563 mismatch: 2564 spin_unlock(&dentry->d_lock); 2565 dput(dentry); 2566 goto retry; 2567 } 2568 EXPORT_SYMBOL(d_alloc_parallel); 2569 2570 void __d_lookup_done(struct dentry *dentry) 2571 { 2572 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2573 dentry->d_name.hash); 2574 hlist_bl_lock(b); 2575 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2576 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2577 wake_up_all(dentry->d_wait); 2578 dentry->d_wait = NULL; 2579 hlist_bl_unlock(b); 2580 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2581 INIT_LIST_HEAD(&dentry->d_lru); 2582 } 2583 EXPORT_SYMBOL(__d_lookup_done); 2584 2585 /* inode->i_lock held if inode is non-NULL */ 2586 2587 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2588 { 2589 struct inode *dir = NULL; 2590 unsigned n; 2591 spin_lock(&dentry->d_lock); 2592 if (unlikely(d_in_lookup(dentry))) { 2593 dir = dentry->d_parent->d_inode; 2594 n = start_dir_add(dir); 2595 __d_lookup_done(dentry); 2596 } 2597 if (inode) { 2598 unsigned add_flags = d_flags_for_inode(inode); 2599 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2600 raw_write_seqcount_begin(&dentry->d_seq); 2601 __d_set_inode_and_type(dentry, inode, add_flags); 2602 raw_write_seqcount_end(&dentry->d_seq); 2603 fsnotify_update_flags(dentry); 2604 } 2605 __d_rehash(dentry); 2606 if (dir) 2607 end_dir_add(dir, n); 2608 spin_unlock(&dentry->d_lock); 2609 if (inode) 2610 spin_unlock(&inode->i_lock); 2611 } 2612 2613 /** 2614 * d_add - add dentry to hash queues 2615 * @entry: dentry to add 2616 * @inode: The inode to attach to this dentry 2617 * 2618 * This adds the entry to the hash queues and initializes @inode. 2619 * The entry was actually filled in earlier during d_alloc(). 2620 */ 2621 2622 void d_add(struct dentry *entry, struct inode *inode) 2623 { 2624 if (inode) { 2625 security_d_instantiate(entry, inode); 2626 spin_lock(&inode->i_lock); 2627 } 2628 __d_add(entry, inode); 2629 } 2630 EXPORT_SYMBOL(d_add); 2631 2632 /** 2633 * d_exact_alias - find and hash an exact unhashed alias 2634 * @entry: dentry to add 2635 * @inode: The inode to go with this dentry 2636 * 2637 * If an unhashed dentry with the same name/parent and desired 2638 * inode already exists, hash and return it. Otherwise, return 2639 * NULL. 2640 * 2641 * Parent directory should be locked. 2642 */ 2643 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2644 { 2645 struct dentry *alias; 2646 unsigned int hash = entry->d_name.hash; 2647 2648 spin_lock(&inode->i_lock); 2649 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2650 /* 2651 * Don't need alias->d_lock here, because aliases with 2652 * d_parent == entry->d_parent are not subject to name or 2653 * parent changes, because the parent inode i_mutex is held. 2654 */ 2655 if (alias->d_name.hash != hash) 2656 continue; 2657 if (alias->d_parent != entry->d_parent) 2658 continue; 2659 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2660 continue; 2661 spin_lock(&alias->d_lock); 2662 if (!d_unhashed(alias)) { 2663 spin_unlock(&alias->d_lock); 2664 alias = NULL; 2665 } else { 2666 __dget_dlock(alias); 2667 __d_rehash(alias); 2668 spin_unlock(&alias->d_lock); 2669 } 2670 spin_unlock(&inode->i_lock); 2671 return alias; 2672 } 2673 spin_unlock(&inode->i_lock); 2674 return NULL; 2675 } 2676 EXPORT_SYMBOL(d_exact_alias); 2677 2678 /** 2679 * dentry_update_name_case - update case insensitive dentry with a new name 2680 * @dentry: dentry to be updated 2681 * @name: new name 2682 * 2683 * Update a case insensitive dentry with new case of name. 2684 * 2685 * dentry must have been returned by d_lookup with name @name. Old and new 2686 * name lengths must match (ie. no d_compare which allows mismatched name 2687 * lengths). 2688 * 2689 * Parent inode i_mutex must be held over d_lookup and into this call (to 2690 * keep renames and concurrent inserts, and readdir(2) away). 2691 */ 2692 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2693 { 2694 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2695 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2696 2697 spin_lock(&dentry->d_lock); 2698 write_seqcount_begin(&dentry->d_seq); 2699 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2700 write_seqcount_end(&dentry->d_seq); 2701 spin_unlock(&dentry->d_lock); 2702 } 2703 EXPORT_SYMBOL(dentry_update_name_case); 2704 2705 static void swap_names(struct dentry *dentry, struct dentry *target) 2706 { 2707 if (unlikely(dname_external(target))) { 2708 if (unlikely(dname_external(dentry))) { 2709 /* 2710 * Both external: swap the pointers 2711 */ 2712 swap(target->d_name.name, dentry->d_name.name); 2713 } else { 2714 /* 2715 * dentry:internal, target:external. Steal target's 2716 * storage and make target internal. 2717 */ 2718 memcpy(target->d_iname, dentry->d_name.name, 2719 dentry->d_name.len + 1); 2720 dentry->d_name.name = target->d_name.name; 2721 target->d_name.name = target->d_iname; 2722 } 2723 } else { 2724 if (unlikely(dname_external(dentry))) { 2725 /* 2726 * dentry:external, target:internal. Give dentry's 2727 * storage to target and make dentry internal 2728 */ 2729 memcpy(dentry->d_iname, target->d_name.name, 2730 target->d_name.len + 1); 2731 target->d_name.name = dentry->d_name.name; 2732 dentry->d_name.name = dentry->d_iname; 2733 } else { 2734 /* 2735 * Both are internal. 2736 */ 2737 unsigned int i; 2738 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2739 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2740 swap(((long *) &dentry->d_iname)[i], 2741 ((long *) &target->d_iname)[i]); 2742 } 2743 } 2744 } 2745 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2746 } 2747 2748 static void copy_name(struct dentry *dentry, struct dentry *target) 2749 { 2750 struct external_name *old_name = NULL; 2751 if (unlikely(dname_external(dentry))) 2752 old_name = external_name(dentry); 2753 if (unlikely(dname_external(target))) { 2754 atomic_inc(&external_name(target)->u.count); 2755 dentry->d_name = target->d_name; 2756 } else { 2757 memcpy(dentry->d_iname, target->d_name.name, 2758 target->d_name.len + 1); 2759 dentry->d_name.name = dentry->d_iname; 2760 dentry->d_name.hash_len = target->d_name.hash_len; 2761 } 2762 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2763 call_rcu(&old_name->u.head, __d_free_external_name); 2764 } 2765 2766 /* 2767 * __d_move - move a dentry 2768 * @dentry: entry to move 2769 * @target: new dentry 2770 * @exchange: exchange the two dentries 2771 * 2772 * Update the dcache to reflect the move of a file name. Negative 2773 * dcache entries should not be moved in this way. Caller must hold 2774 * rename_lock, the i_mutex of the source and target directories, 2775 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2776 */ 2777 static void __d_move(struct dentry *dentry, struct dentry *target, 2778 bool exchange) 2779 { 2780 struct dentry *old_parent, *p; 2781 struct inode *dir = NULL; 2782 unsigned n; 2783 2784 WARN_ON(!dentry->d_inode); 2785 if (WARN_ON(dentry == target)) 2786 return; 2787 2788 BUG_ON(d_ancestor(target, dentry)); 2789 old_parent = dentry->d_parent; 2790 p = d_ancestor(old_parent, target); 2791 if (IS_ROOT(dentry)) { 2792 BUG_ON(p); 2793 spin_lock(&target->d_parent->d_lock); 2794 } else if (!p) { 2795 /* target is not a descendent of dentry->d_parent */ 2796 spin_lock(&target->d_parent->d_lock); 2797 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2798 } else { 2799 BUG_ON(p == dentry); 2800 spin_lock(&old_parent->d_lock); 2801 if (p != target) 2802 spin_lock_nested(&target->d_parent->d_lock, 2803 DENTRY_D_LOCK_NESTED); 2804 } 2805 spin_lock_nested(&dentry->d_lock, 2); 2806 spin_lock_nested(&target->d_lock, 3); 2807 2808 if (unlikely(d_in_lookup(target))) { 2809 dir = target->d_parent->d_inode; 2810 n = start_dir_add(dir); 2811 __d_lookup_done(target); 2812 } 2813 2814 write_seqcount_begin(&dentry->d_seq); 2815 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2816 2817 /* unhash both */ 2818 if (!d_unhashed(dentry)) 2819 ___d_drop(dentry); 2820 if (!d_unhashed(target)) 2821 ___d_drop(target); 2822 2823 /* ... and switch them in the tree */ 2824 dentry->d_parent = target->d_parent; 2825 if (!exchange) { 2826 copy_name(dentry, target); 2827 target->d_hash.pprev = NULL; 2828 dentry->d_parent->d_lockref.count++; 2829 if (dentry == old_parent) 2830 dentry->d_flags |= DCACHE_RCUACCESS; 2831 else 2832 WARN_ON(!--old_parent->d_lockref.count); 2833 } else { 2834 target->d_parent = old_parent; 2835 swap_names(dentry, target); 2836 list_move(&target->d_child, &target->d_parent->d_subdirs); 2837 __d_rehash(target); 2838 fsnotify_update_flags(target); 2839 } 2840 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2841 __d_rehash(dentry); 2842 fsnotify_update_flags(dentry); 2843 2844 write_seqcount_end(&target->d_seq); 2845 write_seqcount_end(&dentry->d_seq); 2846 2847 if (dir) 2848 end_dir_add(dir, n); 2849 2850 if (dentry->d_parent != old_parent) 2851 spin_unlock(&dentry->d_parent->d_lock); 2852 if (dentry != old_parent) 2853 spin_unlock(&old_parent->d_lock); 2854 spin_unlock(&target->d_lock); 2855 spin_unlock(&dentry->d_lock); 2856 } 2857 2858 /* 2859 * d_move - move a dentry 2860 * @dentry: entry to move 2861 * @target: new dentry 2862 * 2863 * Update the dcache to reflect the move of a file name. Negative 2864 * dcache entries should not be moved in this way. See the locking 2865 * requirements for __d_move. 2866 */ 2867 void d_move(struct dentry *dentry, struct dentry *target) 2868 { 2869 write_seqlock(&rename_lock); 2870 __d_move(dentry, target, false); 2871 write_sequnlock(&rename_lock); 2872 } 2873 EXPORT_SYMBOL(d_move); 2874 2875 /* 2876 * d_exchange - exchange two dentries 2877 * @dentry1: first dentry 2878 * @dentry2: second dentry 2879 */ 2880 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2881 { 2882 write_seqlock(&rename_lock); 2883 2884 WARN_ON(!dentry1->d_inode); 2885 WARN_ON(!dentry2->d_inode); 2886 WARN_ON(IS_ROOT(dentry1)); 2887 WARN_ON(IS_ROOT(dentry2)); 2888 2889 __d_move(dentry1, dentry2, true); 2890 2891 write_sequnlock(&rename_lock); 2892 } 2893 2894 /** 2895 * d_ancestor - search for an ancestor 2896 * @p1: ancestor dentry 2897 * @p2: child dentry 2898 * 2899 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2900 * an ancestor of p2, else NULL. 2901 */ 2902 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2903 { 2904 struct dentry *p; 2905 2906 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2907 if (p->d_parent == p1) 2908 return p; 2909 } 2910 return NULL; 2911 } 2912 2913 /* 2914 * This helper attempts to cope with remotely renamed directories 2915 * 2916 * It assumes that the caller is already holding 2917 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2918 * 2919 * Note: If ever the locking in lock_rename() changes, then please 2920 * remember to update this too... 2921 */ 2922 static int __d_unalias(struct inode *inode, 2923 struct dentry *dentry, struct dentry *alias) 2924 { 2925 struct mutex *m1 = NULL; 2926 struct rw_semaphore *m2 = NULL; 2927 int ret = -ESTALE; 2928 2929 /* If alias and dentry share a parent, then no extra locks required */ 2930 if (alias->d_parent == dentry->d_parent) 2931 goto out_unalias; 2932 2933 /* See lock_rename() */ 2934 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2935 goto out_err; 2936 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2937 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2938 goto out_err; 2939 m2 = &alias->d_parent->d_inode->i_rwsem; 2940 out_unalias: 2941 __d_move(alias, dentry, false); 2942 ret = 0; 2943 out_err: 2944 if (m2) 2945 up_read(m2); 2946 if (m1) 2947 mutex_unlock(m1); 2948 return ret; 2949 } 2950 2951 /** 2952 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2953 * @inode: the inode which may have a disconnected dentry 2954 * @dentry: a negative dentry which we want to point to the inode. 2955 * 2956 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2957 * place of the given dentry and return it, else simply d_add the inode 2958 * to the dentry and return NULL. 2959 * 2960 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2961 * we should error out: directories can't have multiple aliases. 2962 * 2963 * This is needed in the lookup routine of any filesystem that is exportable 2964 * (via knfsd) so that we can build dcache paths to directories effectively. 2965 * 2966 * If a dentry was found and moved, then it is returned. Otherwise NULL 2967 * is returned. This matches the expected return value of ->lookup. 2968 * 2969 * Cluster filesystems may call this function with a negative, hashed dentry. 2970 * In that case, we know that the inode will be a regular file, and also this 2971 * will only occur during atomic_open. So we need to check for the dentry 2972 * being already hashed only in the final case. 2973 */ 2974 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2975 { 2976 if (IS_ERR(inode)) 2977 return ERR_CAST(inode); 2978 2979 BUG_ON(!d_unhashed(dentry)); 2980 2981 if (!inode) 2982 goto out; 2983 2984 security_d_instantiate(dentry, inode); 2985 spin_lock(&inode->i_lock); 2986 if (S_ISDIR(inode->i_mode)) { 2987 struct dentry *new = __d_find_any_alias(inode); 2988 if (unlikely(new)) { 2989 /* The reference to new ensures it remains an alias */ 2990 spin_unlock(&inode->i_lock); 2991 write_seqlock(&rename_lock); 2992 if (unlikely(d_ancestor(new, dentry))) { 2993 write_sequnlock(&rename_lock); 2994 dput(new); 2995 new = ERR_PTR(-ELOOP); 2996 pr_warn_ratelimited( 2997 "VFS: Lookup of '%s' in %s %s" 2998 " would have caused loop\n", 2999 dentry->d_name.name, 3000 inode->i_sb->s_type->name, 3001 inode->i_sb->s_id); 3002 } else if (!IS_ROOT(new)) { 3003 struct dentry *old_parent = dget(new->d_parent); 3004 int err = __d_unalias(inode, dentry, new); 3005 write_sequnlock(&rename_lock); 3006 if (err) { 3007 dput(new); 3008 new = ERR_PTR(err); 3009 } 3010 dput(old_parent); 3011 } else { 3012 __d_move(new, dentry, false); 3013 write_sequnlock(&rename_lock); 3014 } 3015 iput(inode); 3016 return new; 3017 } 3018 } 3019 out: 3020 __d_add(dentry, inode); 3021 return NULL; 3022 } 3023 EXPORT_SYMBOL(d_splice_alias); 3024 3025 /* 3026 * Test whether new_dentry is a subdirectory of old_dentry. 3027 * 3028 * Trivially implemented using the dcache structure 3029 */ 3030 3031 /** 3032 * is_subdir - is new dentry a subdirectory of old_dentry 3033 * @new_dentry: new dentry 3034 * @old_dentry: old dentry 3035 * 3036 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3037 * Returns false otherwise. 3038 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3039 */ 3040 3041 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3042 { 3043 bool result; 3044 unsigned seq; 3045 3046 if (new_dentry == old_dentry) 3047 return true; 3048 3049 do { 3050 /* for restarting inner loop in case of seq retry */ 3051 seq = read_seqbegin(&rename_lock); 3052 /* 3053 * Need rcu_readlock to protect against the d_parent trashing 3054 * due to d_move 3055 */ 3056 rcu_read_lock(); 3057 if (d_ancestor(old_dentry, new_dentry)) 3058 result = true; 3059 else 3060 result = false; 3061 rcu_read_unlock(); 3062 } while (read_seqretry(&rename_lock, seq)); 3063 3064 return result; 3065 } 3066 EXPORT_SYMBOL(is_subdir); 3067 3068 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3069 { 3070 struct dentry *root = data; 3071 if (dentry != root) { 3072 if (d_unhashed(dentry) || !dentry->d_inode) 3073 return D_WALK_SKIP; 3074 3075 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3076 dentry->d_flags |= DCACHE_GENOCIDE; 3077 dentry->d_lockref.count--; 3078 } 3079 } 3080 return D_WALK_CONTINUE; 3081 } 3082 3083 void d_genocide(struct dentry *parent) 3084 { 3085 d_walk(parent, parent, d_genocide_kill); 3086 } 3087 3088 EXPORT_SYMBOL(d_genocide); 3089 3090 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3091 { 3092 inode_dec_link_count(inode); 3093 BUG_ON(dentry->d_name.name != dentry->d_iname || 3094 !hlist_unhashed(&dentry->d_u.d_alias) || 3095 !d_unlinked(dentry)); 3096 spin_lock(&dentry->d_parent->d_lock); 3097 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3098 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3099 (unsigned long long)inode->i_ino); 3100 spin_unlock(&dentry->d_lock); 3101 spin_unlock(&dentry->d_parent->d_lock); 3102 d_instantiate(dentry, inode); 3103 } 3104 EXPORT_SYMBOL(d_tmpfile); 3105 3106 static __initdata unsigned long dhash_entries; 3107 static int __init set_dhash_entries(char *str) 3108 { 3109 if (!str) 3110 return 0; 3111 dhash_entries = simple_strtoul(str, &str, 0); 3112 return 1; 3113 } 3114 __setup("dhash_entries=", set_dhash_entries); 3115 3116 static void __init dcache_init_early(void) 3117 { 3118 /* If hashes are distributed across NUMA nodes, defer 3119 * hash allocation until vmalloc space is available. 3120 */ 3121 if (hashdist) 3122 return; 3123 3124 dentry_hashtable = 3125 alloc_large_system_hash("Dentry cache", 3126 sizeof(struct hlist_bl_head), 3127 dhash_entries, 3128 13, 3129 HASH_EARLY | HASH_ZERO, 3130 &d_hash_shift, 3131 NULL, 3132 0, 3133 0); 3134 d_hash_shift = 32 - d_hash_shift; 3135 } 3136 3137 static void __init dcache_init(void) 3138 { 3139 /* 3140 * A constructor could be added for stable state like the lists, 3141 * but it is probably not worth it because of the cache nature 3142 * of the dcache. 3143 */ 3144 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3145 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3146 d_iname); 3147 3148 /* Hash may have been set up in dcache_init_early */ 3149 if (!hashdist) 3150 return; 3151 3152 dentry_hashtable = 3153 alloc_large_system_hash("Dentry cache", 3154 sizeof(struct hlist_bl_head), 3155 dhash_entries, 3156 13, 3157 HASH_ZERO, 3158 &d_hash_shift, 3159 NULL, 3160 0, 3161 0); 3162 d_hash_shift = 32 - d_hash_shift; 3163 } 3164 3165 /* SLAB cache for __getname() consumers */ 3166 struct kmem_cache *names_cachep __read_mostly; 3167 EXPORT_SYMBOL(names_cachep); 3168 3169 void __init vfs_caches_init_early(void) 3170 { 3171 int i; 3172 3173 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3174 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3175 3176 dcache_init_early(); 3177 inode_init_early(); 3178 } 3179 3180 void __init vfs_caches_init(void) 3181 { 3182 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3183 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3184 3185 dcache_init(); 3186 inode_init(); 3187 files_init(); 3188 files_maxfiles_init(); 3189 mnt_init(); 3190 bdev_cache_init(); 3191 chrdev_init(); 3192 } 3193