1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include "internal.h" 42 #include "mount.h" 43 44 /* 45 * Usage: 46 * dcache->d_inode->i_lock protects: 47 * - i_dentry, d_alias, d_inode of aliases 48 * dcache_hash_bucket lock protects: 49 * - the dcache hash table 50 * s_anon bl list spinlock protects: 51 * - the s_anon list (see __d_drop) 52 * dentry->d_sb->s_dentry_lru_lock protects: 53 * - the dcache lru lists and counters 54 * d_lock protects: 55 * - d_flags 56 * - d_name 57 * - d_lru 58 * - d_count 59 * - d_unhashed() 60 * - d_parent and d_subdirs 61 * - childrens' d_child and d_parent 62 * - d_alias, d_inode 63 * 64 * Ordering: 65 * dentry->d_inode->i_lock 66 * dentry->d_lock 67 * dentry->d_sb->s_dentry_lru_lock 68 * dcache_hash_bucket lock 69 * s_anon lock 70 * 71 * If there is an ancestor relationship: 72 * dentry->d_parent->...->d_parent->d_lock 73 * ... 74 * dentry->d_parent->d_lock 75 * dentry->d_lock 76 * 77 * If no ancestor relationship: 78 * if (dentry1 < dentry2) 79 * dentry1->d_lock 80 * dentry2->d_lock 81 */ 82 int sysctl_vfs_cache_pressure __read_mostly = 100; 83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 84 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /** 92 * read_seqbegin_or_lock - begin a sequence number check or locking block 93 * @lock: sequence lock 94 * @seq : sequence number to be checked 95 * 96 * First try it once optimistically without taking the lock. If that fails, 97 * take the lock. The sequence number is also used as a marker for deciding 98 * whether to be a reader (even) or writer (odd). 99 * N.B. seq must be initialized to an even number to begin with. 100 */ 101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq) 102 { 103 if (!(*seq & 1)) /* Even */ 104 *seq = read_seqbegin(lock); 105 else /* Odd */ 106 read_seqlock_excl(lock); 107 } 108 109 static inline int need_seqretry(seqlock_t *lock, int seq) 110 { 111 return !(seq & 1) && read_seqretry(lock, seq); 112 } 113 114 static inline void done_seqretry(seqlock_t *lock, int seq) 115 { 116 if (seq & 1) 117 read_sequnlock_excl(lock); 118 } 119 120 /* 121 * This is the single most critical data structure when it comes 122 * to the dcache: the hashtable for lookups. Somebody should try 123 * to make this good - I've just made it work. 124 * 125 * This hash-function tries to avoid losing too many bits of hash 126 * information, yet avoid using a prime hash-size or similar. 127 */ 128 #define D_HASHBITS d_hash_shift 129 #define D_HASHMASK d_hash_mask 130 131 static unsigned int d_hash_mask __read_mostly; 132 static unsigned int d_hash_shift __read_mostly; 133 134 static struct hlist_bl_head *dentry_hashtable __read_mostly; 135 136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 137 unsigned int hash) 138 { 139 hash += (unsigned long) parent / L1_CACHE_BYTES; 140 hash = hash + (hash >> D_HASHBITS); 141 return dentry_hashtable + (hash & D_HASHMASK); 142 } 143 144 /* Statistics gathering. */ 145 struct dentry_stat_t dentry_stat = { 146 .age_limit = 45, 147 }; 148 149 static DEFINE_PER_CPU(long, nr_dentry); 150 static DEFINE_PER_CPU(long, nr_dentry_unused); 151 152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 153 154 /* 155 * Here we resort to our own counters instead of using generic per-cpu counters 156 * for consistency with what the vfs inode code does. We are expected to harvest 157 * better code and performance by having our own specialized counters. 158 * 159 * Please note that the loop is done over all possible CPUs, not over all online 160 * CPUs. The reason for this is that we don't want to play games with CPUs going 161 * on and off. If one of them goes off, we will just keep their counters. 162 * 163 * glommer: See cffbc8a for details, and if you ever intend to change this, 164 * please update all vfs counters to match. 165 */ 166 static long get_nr_dentry(void) 167 { 168 int i; 169 long sum = 0; 170 for_each_possible_cpu(i) 171 sum += per_cpu(nr_dentry, i); 172 return sum < 0 ? 0 : sum; 173 } 174 175 static long get_nr_dentry_unused(void) 176 { 177 int i; 178 long sum = 0; 179 for_each_possible_cpu(i) 180 sum += per_cpu(nr_dentry_unused, i); 181 return sum < 0 ? 0 : sum; 182 } 183 184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 185 size_t *lenp, loff_t *ppos) 186 { 187 dentry_stat.nr_dentry = get_nr_dentry(); 188 dentry_stat.nr_unused = get_nr_dentry_unused(); 189 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 190 } 191 #endif 192 193 /* 194 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 195 * The strings are both count bytes long, and count is non-zero. 196 */ 197 #ifdef CONFIG_DCACHE_WORD_ACCESS 198 199 #include <asm/word-at-a-time.h> 200 /* 201 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 202 * aligned allocation for this particular component. We don't 203 * strictly need the load_unaligned_zeropad() safety, but it 204 * doesn't hurt either. 205 * 206 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 207 * need the careful unaligned handling. 208 */ 209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 210 { 211 unsigned long a,b,mask; 212 213 for (;;) { 214 a = *(unsigned long *)cs; 215 b = load_unaligned_zeropad(ct); 216 if (tcount < sizeof(unsigned long)) 217 break; 218 if (unlikely(a != b)) 219 return 1; 220 cs += sizeof(unsigned long); 221 ct += sizeof(unsigned long); 222 tcount -= sizeof(unsigned long); 223 if (!tcount) 224 return 0; 225 } 226 mask = ~(~0ul << tcount*8); 227 return unlikely(!!((a ^ b) & mask)); 228 } 229 230 #else 231 232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 233 { 234 do { 235 if (*cs != *ct) 236 return 1; 237 cs++; 238 ct++; 239 tcount--; 240 } while (tcount); 241 return 0; 242 } 243 244 #endif 245 246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 247 { 248 const unsigned char *cs; 249 /* 250 * Be careful about RCU walk racing with rename: 251 * use ACCESS_ONCE to fetch the name pointer. 252 * 253 * NOTE! Even if a rename will mean that the length 254 * was not loaded atomically, we don't care. The 255 * RCU walk will check the sequence count eventually, 256 * and catch it. And we won't overrun the buffer, 257 * because we're reading the name pointer atomically, 258 * and a dentry name is guaranteed to be properly 259 * terminated with a NUL byte. 260 * 261 * End result: even if 'len' is wrong, we'll exit 262 * early because the data cannot match (there can 263 * be no NUL in the ct/tcount data) 264 */ 265 cs = ACCESS_ONCE(dentry->d_name.name); 266 smp_read_barrier_depends(); 267 return dentry_string_cmp(cs, ct, tcount); 268 } 269 270 static void __d_free(struct rcu_head *head) 271 { 272 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 273 274 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 275 if (dname_external(dentry)) 276 kfree(dentry->d_name.name); 277 kmem_cache_free(dentry_cache, dentry); 278 } 279 280 /* 281 * no locks, please. 282 */ 283 static void d_free(struct dentry *dentry) 284 { 285 BUG_ON((int)dentry->d_lockref.count > 0); 286 this_cpu_dec(nr_dentry); 287 if (dentry->d_op && dentry->d_op->d_release) 288 dentry->d_op->d_release(dentry); 289 290 /* if dentry was never visible to RCU, immediate free is OK */ 291 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 292 __d_free(&dentry->d_u.d_rcu); 293 else 294 call_rcu(&dentry->d_u.d_rcu, __d_free); 295 } 296 297 /** 298 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 299 * @dentry: the target dentry 300 * After this call, in-progress rcu-walk path lookup will fail. This 301 * should be called after unhashing, and after changing d_inode (if 302 * the dentry has not already been unhashed). 303 */ 304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 305 { 306 assert_spin_locked(&dentry->d_lock); 307 /* Go through a barrier */ 308 write_seqcount_barrier(&dentry->d_seq); 309 } 310 311 /* 312 * Release the dentry's inode, using the filesystem 313 * d_iput() operation if defined. Dentry has no refcount 314 * and is unhashed. 315 */ 316 static void dentry_iput(struct dentry * dentry) 317 __releases(dentry->d_lock) 318 __releases(dentry->d_inode->i_lock) 319 { 320 struct inode *inode = dentry->d_inode; 321 if (inode) { 322 dentry->d_inode = NULL; 323 hlist_del_init(&dentry->d_alias); 324 spin_unlock(&dentry->d_lock); 325 spin_unlock(&inode->i_lock); 326 if (!inode->i_nlink) 327 fsnotify_inoderemove(inode); 328 if (dentry->d_op && dentry->d_op->d_iput) 329 dentry->d_op->d_iput(dentry, inode); 330 else 331 iput(inode); 332 } else { 333 spin_unlock(&dentry->d_lock); 334 } 335 } 336 337 /* 338 * Release the dentry's inode, using the filesystem 339 * d_iput() operation if defined. dentry remains in-use. 340 */ 341 static void dentry_unlink_inode(struct dentry * dentry) 342 __releases(dentry->d_lock) 343 __releases(dentry->d_inode->i_lock) 344 { 345 struct inode *inode = dentry->d_inode; 346 __d_clear_type(dentry); 347 dentry->d_inode = NULL; 348 hlist_del_init(&dentry->d_alias); 349 dentry_rcuwalk_barrier(dentry); 350 spin_unlock(&dentry->d_lock); 351 spin_unlock(&inode->i_lock); 352 if (!inode->i_nlink) 353 fsnotify_inoderemove(inode); 354 if (dentry->d_op && dentry->d_op->d_iput) 355 dentry->d_op->d_iput(dentry, inode); 356 else 357 iput(inode); 358 } 359 360 /* 361 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 362 * is in use - which includes both the "real" per-superblock 363 * LRU list _and_ the DCACHE_SHRINK_LIST use. 364 * 365 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 366 * on the shrink list (ie not on the superblock LRU list). 367 * 368 * The per-cpu "nr_dentry_unused" counters are updated with 369 * the DCACHE_LRU_LIST bit. 370 * 371 * These helper functions make sure we always follow the 372 * rules. d_lock must be held by the caller. 373 */ 374 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 375 static void d_lru_add(struct dentry *dentry) 376 { 377 D_FLAG_VERIFY(dentry, 0); 378 dentry->d_flags |= DCACHE_LRU_LIST; 379 this_cpu_inc(nr_dentry_unused); 380 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 381 } 382 383 static void d_lru_del(struct dentry *dentry) 384 { 385 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 386 dentry->d_flags &= ~DCACHE_LRU_LIST; 387 this_cpu_dec(nr_dentry_unused); 388 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 389 } 390 391 static void d_shrink_del(struct dentry *dentry) 392 { 393 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 394 list_del_init(&dentry->d_lru); 395 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 396 this_cpu_dec(nr_dentry_unused); 397 } 398 399 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 400 { 401 D_FLAG_VERIFY(dentry, 0); 402 list_add(&dentry->d_lru, list); 403 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 404 this_cpu_inc(nr_dentry_unused); 405 } 406 407 /* 408 * These can only be called under the global LRU lock, ie during the 409 * callback for freeing the LRU list. "isolate" removes it from the 410 * LRU lists entirely, while shrink_move moves it to the indicated 411 * private list. 412 */ 413 static void d_lru_isolate(struct dentry *dentry) 414 { 415 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 416 dentry->d_flags &= ~DCACHE_LRU_LIST; 417 this_cpu_dec(nr_dentry_unused); 418 list_del_init(&dentry->d_lru); 419 } 420 421 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list) 422 { 423 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 424 dentry->d_flags |= DCACHE_SHRINK_LIST; 425 list_move_tail(&dentry->d_lru, list); 426 } 427 428 /* 429 * dentry_lru_(add|del)_list) must be called with d_lock held. 430 */ 431 static void dentry_lru_add(struct dentry *dentry) 432 { 433 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 434 d_lru_add(dentry); 435 } 436 437 /* 438 * Remove a dentry with references from the LRU. 439 * 440 * If we are on the shrink list, then we can get to try_prune_one_dentry() and 441 * lose our last reference through the parent walk. In this case, we need to 442 * remove ourselves from the shrink list, not the LRU. 443 */ 444 static void dentry_lru_del(struct dentry *dentry) 445 { 446 if (dentry->d_flags & DCACHE_LRU_LIST) { 447 if (dentry->d_flags & DCACHE_SHRINK_LIST) 448 return d_shrink_del(dentry); 449 d_lru_del(dentry); 450 } 451 } 452 453 /** 454 * d_kill - kill dentry and return parent 455 * @dentry: dentry to kill 456 * @parent: parent dentry 457 * 458 * The dentry must already be unhashed and removed from the LRU. 459 * 460 * If this is the root of the dentry tree, return NULL. 461 * 462 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 463 * d_kill. 464 */ 465 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 466 __releases(dentry->d_lock) 467 __releases(parent->d_lock) 468 __releases(dentry->d_inode->i_lock) 469 { 470 list_del(&dentry->d_u.d_child); 471 /* 472 * Inform try_to_ascend() that we are no longer attached to the 473 * dentry tree 474 */ 475 dentry->d_flags |= DCACHE_DENTRY_KILLED; 476 if (parent) 477 spin_unlock(&parent->d_lock); 478 dentry_iput(dentry); 479 /* 480 * dentry_iput drops the locks, at which point nobody (except 481 * transient RCU lookups) can reach this dentry. 482 */ 483 d_free(dentry); 484 return parent; 485 } 486 487 /** 488 * d_drop - drop a dentry 489 * @dentry: dentry to drop 490 * 491 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 492 * be found through a VFS lookup any more. Note that this is different from 493 * deleting the dentry - d_delete will try to mark the dentry negative if 494 * possible, giving a successful _negative_ lookup, while d_drop will 495 * just make the cache lookup fail. 496 * 497 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 498 * reason (NFS timeouts or autofs deletes). 499 * 500 * __d_drop requires dentry->d_lock. 501 */ 502 void __d_drop(struct dentry *dentry) 503 { 504 if (!d_unhashed(dentry)) { 505 struct hlist_bl_head *b; 506 /* 507 * Hashed dentries are normally on the dentry hashtable, 508 * with the exception of those newly allocated by 509 * d_obtain_alias, which are always IS_ROOT: 510 */ 511 if (unlikely(IS_ROOT(dentry))) 512 b = &dentry->d_sb->s_anon; 513 else 514 b = d_hash(dentry->d_parent, dentry->d_name.hash); 515 516 hlist_bl_lock(b); 517 __hlist_bl_del(&dentry->d_hash); 518 dentry->d_hash.pprev = NULL; 519 hlist_bl_unlock(b); 520 dentry_rcuwalk_barrier(dentry); 521 } 522 } 523 EXPORT_SYMBOL(__d_drop); 524 525 void d_drop(struct dentry *dentry) 526 { 527 spin_lock(&dentry->d_lock); 528 __d_drop(dentry); 529 spin_unlock(&dentry->d_lock); 530 } 531 EXPORT_SYMBOL(d_drop); 532 533 /* 534 * Finish off a dentry we've decided to kill. 535 * dentry->d_lock must be held, returns with it unlocked. 536 * If ref is non-zero, then decrement the refcount too. 537 * Returns dentry requiring refcount drop, or NULL if we're done. 538 */ 539 static struct dentry * 540 dentry_kill(struct dentry *dentry, int unlock_on_failure) 541 __releases(dentry->d_lock) 542 { 543 struct inode *inode; 544 struct dentry *parent; 545 546 inode = dentry->d_inode; 547 if (inode && !spin_trylock(&inode->i_lock)) { 548 relock: 549 if (unlock_on_failure) { 550 spin_unlock(&dentry->d_lock); 551 cpu_relax(); 552 } 553 return dentry; /* try again with same dentry */ 554 } 555 if (IS_ROOT(dentry)) 556 parent = NULL; 557 else 558 parent = dentry->d_parent; 559 if (parent && !spin_trylock(&parent->d_lock)) { 560 if (inode) 561 spin_unlock(&inode->i_lock); 562 goto relock; 563 } 564 565 /* 566 * The dentry is now unrecoverably dead to the world. 567 */ 568 lockref_mark_dead(&dentry->d_lockref); 569 570 /* 571 * inform the fs via d_prune that this dentry is about to be 572 * unhashed and destroyed. 573 */ 574 if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry)) 575 dentry->d_op->d_prune(dentry); 576 577 dentry_lru_del(dentry); 578 /* if it was on the hash then remove it */ 579 __d_drop(dentry); 580 return d_kill(dentry, parent); 581 } 582 583 /* 584 * This is dput 585 * 586 * This is complicated by the fact that we do not want to put 587 * dentries that are no longer on any hash chain on the unused 588 * list: we'd much rather just get rid of them immediately. 589 * 590 * However, that implies that we have to traverse the dentry 591 * tree upwards to the parents which might _also_ now be 592 * scheduled for deletion (it may have been only waiting for 593 * its last child to go away). 594 * 595 * This tail recursion is done by hand as we don't want to depend 596 * on the compiler to always get this right (gcc generally doesn't). 597 * Real recursion would eat up our stack space. 598 */ 599 600 /* 601 * dput - release a dentry 602 * @dentry: dentry to release 603 * 604 * Release a dentry. This will drop the usage count and if appropriate 605 * call the dentry unlink method as well as removing it from the queues and 606 * releasing its resources. If the parent dentries were scheduled for release 607 * they too may now get deleted. 608 */ 609 void dput(struct dentry *dentry) 610 { 611 if (unlikely(!dentry)) 612 return; 613 614 repeat: 615 if (lockref_put_or_lock(&dentry->d_lockref)) 616 return; 617 618 /* Unreachable? Get rid of it */ 619 if (unlikely(d_unhashed(dentry))) 620 goto kill_it; 621 622 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 623 if (dentry->d_op->d_delete(dentry)) 624 goto kill_it; 625 } 626 627 if (!(dentry->d_flags & DCACHE_REFERENCED)) 628 dentry->d_flags |= DCACHE_REFERENCED; 629 dentry_lru_add(dentry); 630 631 dentry->d_lockref.count--; 632 spin_unlock(&dentry->d_lock); 633 return; 634 635 kill_it: 636 dentry = dentry_kill(dentry, 1); 637 if (dentry) 638 goto repeat; 639 } 640 EXPORT_SYMBOL(dput); 641 642 /** 643 * d_invalidate - invalidate a dentry 644 * @dentry: dentry to invalidate 645 * 646 * Try to invalidate the dentry if it turns out to be 647 * possible. If there are other dentries that can be 648 * reached through this one we can't delete it and we 649 * return -EBUSY. On success we return 0. 650 * 651 * no dcache lock. 652 */ 653 654 int d_invalidate(struct dentry * dentry) 655 { 656 /* 657 * If it's already been dropped, return OK. 658 */ 659 spin_lock(&dentry->d_lock); 660 if (d_unhashed(dentry)) { 661 spin_unlock(&dentry->d_lock); 662 return 0; 663 } 664 /* 665 * Check whether to do a partial shrink_dcache 666 * to get rid of unused child entries. 667 */ 668 if (!list_empty(&dentry->d_subdirs)) { 669 spin_unlock(&dentry->d_lock); 670 shrink_dcache_parent(dentry); 671 spin_lock(&dentry->d_lock); 672 } 673 674 /* 675 * Somebody else still using it? 676 * 677 * If it's a directory, we can't drop it 678 * for fear of somebody re-populating it 679 * with children (even though dropping it 680 * would make it unreachable from the root, 681 * we might still populate it if it was a 682 * working directory or similar). 683 * We also need to leave mountpoints alone, 684 * directory or not. 685 */ 686 if (dentry->d_lockref.count > 1 && dentry->d_inode) { 687 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 688 spin_unlock(&dentry->d_lock); 689 return -EBUSY; 690 } 691 } 692 693 __d_drop(dentry); 694 spin_unlock(&dentry->d_lock); 695 return 0; 696 } 697 EXPORT_SYMBOL(d_invalidate); 698 699 /* This must be called with d_lock held */ 700 static inline void __dget_dlock(struct dentry *dentry) 701 { 702 dentry->d_lockref.count++; 703 } 704 705 static inline void __dget(struct dentry *dentry) 706 { 707 lockref_get(&dentry->d_lockref); 708 } 709 710 struct dentry *dget_parent(struct dentry *dentry) 711 { 712 int gotref; 713 struct dentry *ret; 714 715 /* 716 * Do optimistic parent lookup without any 717 * locking. 718 */ 719 rcu_read_lock(); 720 ret = ACCESS_ONCE(dentry->d_parent); 721 gotref = lockref_get_not_zero(&ret->d_lockref); 722 rcu_read_unlock(); 723 if (likely(gotref)) { 724 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 725 return ret; 726 dput(ret); 727 } 728 729 repeat: 730 /* 731 * Don't need rcu_dereference because we re-check it was correct under 732 * the lock. 733 */ 734 rcu_read_lock(); 735 ret = dentry->d_parent; 736 spin_lock(&ret->d_lock); 737 if (unlikely(ret != dentry->d_parent)) { 738 spin_unlock(&ret->d_lock); 739 rcu_read_unlock(); 740 goto repeat; 741 } 742 rcu_read_unlock(); 743 BUG_ON(!ret->d_lockref.count); 744 ret->d_lockref.count++; 745 spin_unlock(&ret->d_lock); 746 return ret; 747 } 748 EXPORT_SYMBOL(dget_parent); 749 750 /** 751 * d_find_alias - grab a hashed alias of inode 752 * @inode: inode in question 753 * @want_discon: flag, used by d_splice_alias, to request 754 * that only a DISCONNECTED alias be returned. 755 * 756 * If inode has a hashed alias, or is a directory and has any alias, 757 * acquire the reference to alias and return it. Otherwise return NULL. 758 * Notice that if inode is a directory there can be only one alias and 759 * it can be unhashed only if it has no children, or if it is the root 760 * of a filesystem. 761 * 762 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 763 * any other hashed alias over that one unless @want_discon is set, 764 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 765 */ 766 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 767 { 768 struct dentry *alias, *discon_alias; 769 770 again: 771 discon_alias = NULL; 772 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 773 spin_lock(&alias->d_lock); 774 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 775 if (IS_ROOT(alias) && 776 (alias->d_flags & DCACHE_DISCONNECTED)) { 777 discon_alias = alias; 778 } else if (!want_discon) { 779 __dget_dlock(alias); 780 spin_unlock(&alias->d_lock); 781 return alias; 782 } 783 } 784 spin_unlock(&alias->d_lock); 785 } 786 if (discon_alias) { 787 alias = discon_alias; 788 spin_lock(&alias->d_lock); 789 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 790 if (IS_ROOT(alias) && 791 (alias->d_flags & DCACHE_DISCONNECTED)) { 792 __dget_dlock(alias); 793 spin_unlock(&alias->d_lock); 794 return alias; 795 } 796 } 797 spin_unlock(&alias->d_lock); 798 goto again; 799 } 800 return NULL; 801 } 802 803 struct dentry *d_find_alias(struct inode *inode) 804 { 805 struct dentry *de = NULL; 806 807 if (!hlist_empty(&inode->i_dentry)) { 808 spin_lock(&inode->i_lock); 809 de = __d_find_alias(inode, 0); 810 spin_unlock(&inode->i_lock); 811 } 812 return de; 813 } 814 EXPORT_SYMBOL(d_find_alias); 815 816 /* 817 * Try to kill dentries associated with this inode. 818 * WARNING: you must own a reference to inode. 819 */ 820 void d_prune_aliases(struct inode *inode) 821 { 822 struct dentry *dentry; 823 restart: 824 spin_lock(&inode->i_lock); 825 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) { 826 spin_lock(&dentry->d_lock); 827 if (!dentry->d_lockref.count) { 828 /* 829 * inform the fs via d_prune that this dentry 830 * is about to be unhashed and destroyed. 831 */ 832 if ((dentry->d_flags & DCACHE_OP_PRUNE) && 833 !d_unhashed(dentry)) 834 dentry->d_op->d_prune(dentry); 835 836 __dget_dlock(dentry); 837 __d_drop(dentry); 838 spin_unlock(&dentry->d_lock); 839 spin_unlock(&inode->i_lock); 840 dput(dentry); 841 goto restart; 842 } 843 spin_unlock(&dentry->d_lock); 844 } 845 spin_unlock(&inode->i_lock); 846 } 847 EXPORT_SYMBOL(d_prune_aliases); 848 849 /* 850 * Try to throw away a dentry - free the inode, dput the parent. 851 * Requires dentry->d_lock is held, and dentry->d_count == 0. 852 * Releases dentry->d_lock. 853 * 854 * This may fail if locks cannot be acquired no problem, just try again. 855 */ 856 static struct dentry * try_prune_one_dentry(struct dentry *dentry) 857 __releases(dentry->d_lock) 858 { 859 struct dentry *parent; 860 861 parent = dentry_kill(dentry, 0); 862 /* 863 * If dentry_kill returns NULL, we have nothing more to do. 864 * if it returns the same dentry, trylocks failed. In either 865 * case, just loop again. 866 * 867 * Otherwise, we need to prune ancestors too. This is necessary 868 * to prevent quadratic behavior of shrink_dcache_parent(), but 869 * is also expected to be beneficial in reducing dentry cache 870 * fragmentation. 871 */ 872 if (!parent) 873 return NULL; 874 if (parent == dentry) 875 return dentry; 876 877 /* Prune ancestors. */ 878 dentry = parent; 879 while (dentry) { 880 if (lockref_put_or_lock(&dentry->d_lockref)) 881 return NULL; 882 dentry = dentry_kill(dentry, 1); 883 } 884 return NULL; 885 } 886 887 static void shrink_dentry_list(struct list_head *list) 888 { 889 struct dentry *dentry; 890 891 rcu_read_lock(); 892 for (;;) { 893 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 894 if (&dentry->d_lru == list) 895 break; /* empty */ 896 897 /* 898 * Get the dentry lock, and re-verify that the dentry is 899 * this on the shrinking list. If it is, we know that 900 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set. 901 */ 902 spin_lock(&dentry->d_lock); 903 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 904 spin_unlock(&dentry->d_lock); 905 continue; 906 } 907 908 /* 909 * The dispose list is isolated and dentries are not accounted 910 * to the LRU here, so we can simply remove it from the list 911 * here regardless of whether it is referenced or not. 912 */ 913 d_shrink_del(dentry); 914 915 /* 916 * We found an inuse dentry which was not removed from 917 * the LRU because of laziness during lookup. Do not free it. 918 */ 919 if (dentry->d_lockref.count) { 920 spin_unlock(&dentry->d_lock); 921 continue; 922 } 923 rcu_read_unlock(); 924 925 /* 926 * If 'try_to_prune()' returns a dentry, it will 927 * be the same one we passed in, and d_lock will 928 * have been held the whole time, so it will not 929 * have been added to any other lists. We failed 930 * to get the inode lock. 931 * 932 * We just add it back to the shrink list. 933 */ 934 dentry = try_prune_one_dentry(dentry); 935 936 rcu_read_lock(); 937 if (dentry) { 938 d_shrink_add(dentry, list); 939 spin_unlock(&dentry->d_lock); 940 } 941 } 942 rcu_read_unlock(); 943 } 944 945 static enum lru_status 946 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 947 { 948 struct list_head *freeable = arg; 949 struct dentry *dentry = container_of(item, struct dentry, d_lru); 950 951 952 /* 953 * we are inverting the lru lock/dentry->d_lock here, 954 * so use a trylock. If we fail to get the lock, just skip 955 * it 956 */ 957 if (!spin_trylock(&dentry->d_lock)) 958 return LRU_SKIP; 959 960 /* 961 * Referenced dentries are still in use. If they have active 962 * counts, just remove them from the LRU. Otherwise give them 963 * another pass through the LRU. 964 */ 965 if (dentry->d_lockref.count) { 966 d_lru_isolate(dentry); 967 spin_unlock(&dentry->d_lock); 968 return LRU_REMOVED; 969 } 970 971 if (dentry->d_flags & DCACHE_REFERENCED) { 972 dentry->d_flags &= ~DCACHE_REFERENCED; 973 spin_unlock(&dentry->d_lock); 974 975 /* 976 * The list move itself will be made by the common LRU code. At 977 * this point, we've dropped the dentry->d_lock but keep the 978 * lru lock. This is safe to do, since every list movement is 979 * protected by the lru lock even if both locks are held. 980 * 981 * This is guaranteed by the fact that all LRU management 982 * functions are intermediated by the LRU API calls like 983 * list_lru_add and list_lru_del. List movement in this file 984 * only ever occur through this functions or through callbacks 985 * like this one, that are called from the LRU API. 986 * 987 * The only exceptions to this are functions like 988 * shrink_dentry_list, and code that first checks for the 989 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 990 * operating only with stack provided lists after they are 991 * properly isolated from the main list. It is thus, always a 992 * local access. 993 */ 994 return LRU_ROTATE; 995 } 996 997 d_lru_shrink_move(dentry, freeable); 998 spin_unlock(&dentry->d_lock); 999 1000 return LRU_REMOVED; 1001 } 1002 1003 /** 1004 * prune_dcache_sb - shrink the dcache 1005 * @sb: superblock 1006 * @nr_to_scan : number of entries to try to free 1007 * @nid: which node to scan for freeable entities 1008 * 1009 * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is 1010 * done when we need more memory an called from the superblock shrinker 1011 * function. 1012 * 1013 * This function may fail to free any resources if all the dentries are in 1014 * use. 1015 */ 1016 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan, 1017 int nid) 1018 { 1019 LIST_HEAD(dispose); 1020 long freed; 1021 1022 freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate, 1023 &dispose, &nr_to_scan); 1024 shrink_dentry_list(&dispose); 1025 return freed; 1026 } 1027 1028 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1029 spinlock_t *lru_lock, void *arg) 1030 { 1031 struct list_head *freeable = arg; 1032 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1033 1034 /* 1035 * we are inverting the lru lock/dentry->d_lock here, 1036 * so use a trylock. If we fail to get the lock, just skip 1037 * it 1038 */ 1039 if (!spin_trylock(&dentry->d_lock)) 1040 return LRU_SKIP; 1041 1042 d_lru_shrink_move(dentry, freeable); 1043 spin_unlock(&dentry->d_lock); 1044 1045 return LRU_REMOVED; 1046 } 1047 1048 1049 /** 1050 * shrink_dcache_sb - shrink dcache for a superblock 1051 * @sb: superblock 1052 * 1053 * Shrink the dcache for the specified super block. This is used to free 1054 * the dcache before unmounting a file system. 1055 */ 1056 void shrink_dcache_sb(struct super_block *sb) 1057 { 1058 long freed; 1059 1060 do { 1061 LIST_HEAD(dispose); 1062 1063 freed = list_lru_walk(&sb->s_dentry_lru, 1064 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1065 1066 this_cpu_sub(nr_dentry_unused, freed); 1067 shrink_dentry_list(&dispose); 1068 } while (freed > 0); 1069 } 1070 EXPORT_SYMBOL(shrink_dcache_sb); 1071 1072 /* 1073 * This tries to ascend one level of parenthood, but 1074 * we can race with renaming, so we need to re-check 1075 * the parenthood after dropping the lock and check 1076 * that the sequence number still matches. 1077 */ 1078 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq) 1079 { 1080 struct dentry *new = old->d_parent; 1081 1082 rcu_read_lock(); 1083 spin_unlock(&old->d_lock); 1084 spin_lock(&new->d_lock); 1085 1086 /* 1087 * might go back up the wrong parent if we have had a rename 1088 * or deletion 1089 */ 1090 if (new != old->d_parent || 1091 (old->d_flags & DCACHE_DENTRY_KILLED) || 1092 need_seqretry(&rename_lock, seq)) { 1093 spin_unlock(&new->d_lock); 1094 new = NULL; 1095 } 1096 rcu_read_unlock(); 1097 return new; 1098 } 1099 1100 /** 1101 * enum d_walk_ret - action to talke during tree walk 1102 * @D_WALK_CONTINUE: contrinue walk 1103 * @D_WALK_QUIT: quit walk 1104 * @D_WALK_NORETRY: quit when retry is needed 1105 * @D_WALK_SKIP: skip this dentry and its children 1106 */ 1107 enum d_walk_ret { 1108 D_WALK_CONTINUE, 1109 D_WALK_QUIT, 1110 D_WALK_NORETRY, 1111 D_WALK_SKIP, 1112 }; 1113 1114 /** 1115 * d_walk - walk the dentry tree 1116 * @parent: start of walk 1117 * @data: data passed to @enter() and @finish() 1118 * @enter: callback when first entering the dentry 1119 * @finish: callback when successfully finished the walk 1120 * 1121 * The @enter() and @finish() callbacks are called with d_lock held. 1122 */ 1123 static void d_walk(struct dentry *parent, void *data, 1124 enum d_walk_ret (*enter)(void *, struct dentry *), 1125 void (*finish)(void *)) 1126 { 1127 struct dentry *this_parent; 1128 struct list_head *next; 1129 unsigned seq = 0; 1130 enum d_walk_ret ret; 1131 bool retry = true; 1132 1133 again: 1134 read_seqbegin_or_lock(&rename_lock, &seq); 1135 this_parent = parent; 1136 spin_lock(&this_parent->d_lock); 1137 1138 ret = enter(data, this_parent); 1139 switch (ret) { 1140 case D_WALK_CONTINUE: 1141 break; 1142 case D_WALK_QUIT: 1143 case D_WALK_SKIP: 1144 goto out_unlock; 1145 case D_WALK_NORETRY: 1146 retry = false; 1147 break; 1148 } 1149 repeat: 1150 next = this_parent->d_subdirs.next; 1151 resume: 1152 while (next != &this_parent->d_subdirs) { 1153 struct list_head *tmp = next; 1154 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1155 next = tmp->next; 1156 1157 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1158 1159 ret = enter(data, dentry); 1160 switch (ret) { 1161 case D_WALK_CONTINUE: 1162 break; 1163 case D_WALK_QUIT: 1164 spin_unlock(&dentry->d_lock); 1165 goto out_unlock; 1166 case D_WALK_NORETRY: 1167 retry = false; 1168 break; 1169 case D_WALK_SKIP: 1170 spin_unlock(&dentry->d_lock); 1171 continue; 1172 } 1173 1174 if (!list_empty(&dentry->d_subdirs)) { 1175 spin_unlock(&this_parent->d_lock); 1176 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1177 this_parent = dentry; 1178 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1179 goto repeat; 1180 } 1181 spin_unlock(&dentry->d_lock); 1182 } 1183 /* 1184 * All done at this level ... ascend and resume the search. 1185 */ 1186 if (this_parent != parent) { 1187 struct dentry *child = this_parent; 1188 this_parent = try_to_ascend(this_parent, seq); 1189 if (!this_parent) 1190 goto rename_retry; 1191 next = child->d_u.d_child.next; 1192 goto resume; 1193 } 1194 if (need_seqretry(&rename_lock, seq)) { 1195 spin_unlock(&this_parent->d_lock); 1196 goto rename_retry; 1197 } 1198 if (finish) 1199 finish(data); 1200 1201 out_unlock: 1202 spin_unlock(&this_parent->d_lock); 1203 done_seqretry(&rename_lock, seq); 1204 return; 1205 1206 rename_retry: 1207 if (!retry) 1208 return; 1209 seq = 1; 1210 goto again; 1211 } 1212 1213 /* 1214 * Search for at least 1 mount point in the dentry's subdirs. 1215 * We descend to the next level whenever the d_subdirs 1216 * list is non-empty and continue searching. 1217 */ 1218 1219 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1220 { 1221 int *ret = data; 1222 if (d_mountpoint(dentry)) { 1223 *ret = 1; 1224 return D_WALK_QUIT; 1225 } 1226 return D_WALK_CONTINUE; 1227 } 1228 1229 /** 1230 * have_submounts - check for mounts over a dentry 1231 * @parent: dentry to check. 1232 * 1233 * Return true if the parent or its subdirectories contain 1234 * a mount point 1235 */ 1236 int have_submounts(struct dentry *parent) 1237 { 1238 int ret = 0; 1239 1240 d_walk(parent, &ret, check_mount, NULL); 1241 1242 return ret; 1243 } 1244 EXPORT_SYMBOL(have_submounts); 1245 1246 /* 1247 * Called by mount code to set a mountpoint and check if the mountpoint is 1248 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1249 * subtree can become unreachable). 1250 * 1251 * Only one of check_submounts_and_drop() and d_set_mounted() must succeed. For 1252 * this reason take rename_lock and d_lock on dentry and ancestors. 1253 */ 1254 int d_set_mounted(struct dentry *dentry) 1255 { 1256 struct dentry *p; 1257 int ret = -ENOENT; 1258 write_seqlock(&rename_lock); 1259 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1260 /* Need exclusion wrt. check_submounts_and_drop() */ 1261 spin_lock(&p->d_lock); 1262 if (unlikely(d_unhashed(p))) { 1263 spin_unlock(&p->d_lock); 1264 goto out; 1265 } 1266 spin_unlock(&p->d_lock); 1267 } 1268 spin_lock(&dentry->d_lock); 1269 if (!d_unlinked(dentry)) { 1270 dentry->d_flags |= DCACHE_MOUNTED; 1271 ret = 0; 1272 } 1273 spin_unlock(&dentry->d_lock); 1274 out: 1275 write_sequnlock(&rename_lock); 1276 return ret; 1277 } 1278 1279 /* 1280 * Search the dentry child list of the specified parent, 1281 * and move any unused dentries to the end of the unused 1282 * list for prune_dcache(). We descend to the next level 1283 * whenever the d_subdirs list is non-empty and continue 1284 * searching. 1285 * 1286 * It returns zero iff there are no unused children, 1287 * otherwise it returns the number of children moved to 1288 * the end of the unused list. This may not be the total 1289 * number of unused children, because select_parent can 1290 * drop the lock and return early due to latency 1291 * constraints. 1292 */ 1293 1294 struct select_data { 1295 struct dentry *start; 1296 struct list_head dispose; 1297 int found; 1298 }; 1299 1300 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1301 { 1302 struct select_data *data = _data; 1303 enum d_walk_ret ret = D_WALK_CONTINUE; 1304 1305 if (data->start == dentry) 1306 goto out; 1307 1308 /* 1309 * move only zero ref count dentries to the dispose list. 1310 * 1311 * Those which are presently on the shrink list, being processed 1312 * by shrink_dentry_list(), shouldn't be moved. Otherwise the 1313 * loop in shrink_dcache_parent() might not make any progress 1314 * and loop forever. 1315 */ 1316 if (dentry->d_lockref.count) { 1317 dentry_lru_del(dentry); 1318 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1319 /* 1320 * We can't use d_lru_shrink_move() because we 1321 * need to get the global LRU lock and do the 1322 * LRU accounting. 1323 */ 1324 d_lru_del(dentry); 1325 d_shrink_add(dentry, &data->dispose); 1326 data->found++; 1327 ret = D_WALK_NORETRY; 1328 } 1329 /* 1330 * We can return to the caller if we have found some (this 1331 * ensures forward progress). We'll be coming back to find 1332 * the rest. 1333 */ 1334 if (data->found && need_resched()) 1335 ret = D_WALK_QUIT; 1336 out: 1337 return ret; 1338 } 1339 1340 /** 1341 * shrink_dcache_parent - prune dcache 1342 * @parent: parent of entries to prune 1343 * 1344 * Prune the dcache to remove unused children of the parent dentry. 1345 */ 1346 void shrink_dcache_parent(struct dentry *parent) 1347 { 1348 for (;;) { 1349 struct select_data data; 1350 1351 INIT_LIST_HEAD(&data.dispose); 1352 data.start = parent; 1353 data.found = 0; 1354 1355 d_walk(parent, &data, select_collect, NULL); 1356 if (!data.found) 1357 break; 1358 1359 shrink_dentry_list(&data.dispose); 1360 cond_resched(); 1361 } 1362 } 1363 EXPORT_SYMBOL(shrink_dcache_parent); 1364 1365 static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry) 1366 { 1367 struct select_data *data = _data; 1368 enum d_walk_ret ret = D_WALK_CONTINUE; 1369 1370 if (dentry->d_lockref.count) { 1371 dentry_lru_del(dentry); 1372 if (likely(!list_empty(&dentry->d_subdirs))) 1373 goto out; 1374 if (dentry == data->start && dentry->d_lockref.count == 1) 1375 goto out; 1376 printk(KERN_ERR 1377 "BUG: Dentry %p{i=%lx,n=%s}" 1378 " still in use (%d)" 1379 " [unmount of %s %s]\n", 1380 dentry, 1381 dentry->d_inode ? 1382 dentry->d_inode->i_ino : 0UL, 1383 dentry->d_name.name, 1384 dentry->d_lockref.count, 1385 dentry->d_sb->s_type->name, 1386 dentry->d_sb->s_id); 1387 BUG(); 1388 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1389 /* 1390 * We can't use d_lru_shrink_move() because we 1391 * need to get the global LRU lock and do the 1392 * LRU accounting. 1393 */ 1394 if (dentry->d_flags & DCACHE_LRU_LIST) 1395 d_lru_del(dentry); 1396 d_shrink_add(dentry, &data->dispose); 1397 data->found++; 1398 ret = D_WALK_NORETRY; 1399 } 1400 out: 1401 if (data->found && need_resched()) 1402 ret = D_WALK_QUIT; 1403 return ret; 1404 } 1405 1406 /* 1407 * destroy the dentries attached to a superblock on unmounting 1408 */ 1409 void shrink_dcache_for_umount(struct super_block *sb) 1410 { 1411 struct dentry *dentry; 1412 1413 if (down_read_trylock(&sb->s_umount)) 1414 BUG(); 1415 1416 dentry = sb->s_root; 1417 sb->s_root = NULL; 1418 for (;;) { 1419 struct select_data data; 1420 1421 INIT_LIST_HEAD(&data.dispose); 1422 data.start = dentry; 1423 data.found = 0; 1424 1425 d_walk(dentry, &data, umount_collect, NULL); 1426 if (!data.found) 1427 break; 1428 1429 shrink_dentry_list(&data.dispose); 1430 cond_resched(); 1431 } 1432 d_drop(dentry); 1433 dput(dentry); 1434 1435 while (!hlist_bl_empty(&sb->s_anon)) { 1436 struct select_data data; 1437 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 1438 1439 INIT_LIST_HEAD(&data.dispose); 1440 data.start = NULL; 1441 data.found = 0; 1442 1443 d_walk(dentry, &data, umount_collect, NULL); 1444 if (data.found) 1445 shrink_dentry_list(&data.dispose); 1446 cond_resched(); 1447 } 1448 } 1449 1450 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry) 1451 { 1452 struct select_data *data = _data; 1453 1454 if (d_mountpoint(dentry)) { 1455 data->found = -EBUSY; 1456 return D_WALK_QUIT; 1457 } 1458 1459 return select_collect(_data, dentry); 1460 } 1461 1462 static void check_and_drop(void *_data) 1463 { 1464 struct select_data *data = _data; 1465 1466 if (d_mountpoint(data->start)) 1467 data->found = -EBUSY; 1468 if (!data->found) 1469 __d_drop(data->start); 1470 } 1471 1472 /** 1473 * check_submounts_and_drop - prune dcache, check for submounts and drop 1474 * 1475 * All done as a single atomic operation relative to has_unlinked_ancestor(). 1476 * Returns 0 if successfully unhashed @parent. If there were submounts then 1477 * return -EBUSY. 1478 * 1479 * @dentry: dentry to prune and drop 1480 */ 1481 int check_submounts_and_drop(struct dentry *dentry) 1482 { 1483 int ret = 0; 1484 1485 /* Negative dentries can be dropped without further checks */ 1486 if (!dentry->d_inode) { 1487 d_drop(dentry); 1488 goto out; 1489 } 1490 1491 for (;;) { 1492 struct select_data data; 1493 1494 INIT_LIST_HEAD(&data.dispose); 1495 data.start = dentry; 1496 data.found = 0; 1497 1498 d_walk(dentry, &data, check_and_collect, check_and_drop); 1499 ret = data.found; 1500 1501 if (!list_empty(&data.dispose)) 1502 shrink_dentry_list(&data.dispose); 1503 1504 if (ret <= 0) 1505 break; 1506 1507 cond_resched(); 1508 } 1509 1510 out: 1511 return ret; 1512 } 1513 EXPORT_SYMBOL(check_submounts_and_drop); 1514 1515 /** 1516 * __d_alloc - allocate a dcache entry 1517 * @sb: filesystem it will belong to 1518 * @name: qstr of the name 1519 * 1520 * Allocates a dentry. It returns %NULL if there is insufficient memory 1521 * available. On a success the dentry is returned. The name passed in is 1522 * copied and the copy passed in may be reused after this call. 1523 */ 1524 1525 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1526 { 1527 struct dentry *dentry; 1528 char *dname; 1529 1530 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1531 if (!dentry) 1532 return NULL; 1533 1534 /* 1535 * We guarantee that the inline name is always NUL-terminated. 1536 * This way the memcpy() done by the name switching in rename 1537 * will still always have a NUL at the end, even if we might 1538 * be overwriting an internal NUL character 1539 */ 1540 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1541 if (name->len > DNAME_INLINE_LEN-1) { 1542 dname = kmalloc(name->len + 1, GFP_KERNEL); 1543 if (!dname) { 1544 kmem_cache_free(dentry_cache, dentry); 1545 return NULL; 1546 } 1547 } else { 1548 dname = dentry->d_iname; 1549 } 1550 1551 dentry->d_name.len = name->len; 1552 dentry->d_name.hash = name->hash; 1553 memcpy(dname, name->name, name->len); 1554 dname[name->len] = 0; 1555 1556 /* Make sure we always see the terminating NUL character */ 1557 smp_wmb(); 1558 dentry->d_name.name = dname; 1559 1560 dentry->d_lockref.count = 1; 1561 dentry->d_flags = 0; 1562 spin_lock_init(&dentry->d_lock); 1563 seqcount_init(&dentry->d_seq); 1564 dentry->d_inode = NULL; 1565 dentry->d_parent = dentry; 1566 dentry->d_sb = sb; 1567 dentry->d_op = NULL; 1568 dentry->d_fsdata = NULL; 1569 INIT_HLIST_BL_NODE(&dentry->d_hash); 1570 INIT_LIST_HEAD(&dentry->d_lru); 1571 INIT_LIST_HEAD(&dentry->d_subdirs); 1572 INIT_HLIST_NODE(&dentry->d_alias); 1573 INIT_LIST_HEAD(&dentry->d_u.d_child); 1574 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1575 1576 this_cpu_inc(nr_dentry); 1577 1578 return dentry; 1579 } 1580 1581 /** 1582 * d_alloc - allocate a dcache entry 1583 * @parent: parent of entry to allocate 1584 * @name: qstr of the name 1585 * 1586 * Allocates a dentry. It returns %NULL if there is insufficient memory 1587 * available. On a success the dentry is returned. The name passed in is 1588 * copied and the copy passed in may be reused after this call. 1589 */ 1590 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1591 { 1592 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1593 if (!dentry) 1594 return NULL; 1595 1596 spin_lock(&parent->d_lock); 1597 /* 1598 * don't need child lock because it is not subject 1599 * to concurrency here 1600 */ 1601 __dget_dlock(parent); 1602 dentry->d_parent = parent; 1603 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1604 spin_unlock(&parent->d_lock); 1605 1606 return dentry; 1607 } 1608 EXPORT_SYMBOL(d_alloc); 1609 1610 /** 1611 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1612 * @sb: the superblock 1613 * @name: qstr of the name 1614 * 1615 * For a filesystem that just pins its dentries in memory and never 1616 * performs lookups at all, return an unhashed IS_ROOT dentry. 1617 */ 1618 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1619 { 1620 return __d_alloc(sb, name); 1621 } 1622 EXPORT_SYMBOL(d_alloc_pseudo); 1623 1624 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1625 { 1626 struct qstr q; 1627 1628 q.name = name; 1629 q.len = strlen(name); 1630 q.hash = full_name_hash(q.name, q.len); 1631 return d_alloc(parent, &q); 1632 } 1633 EXPORT_SYMBOL(d_alloc_name); 1634 1635 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1636 { 1637 WARN_ON_ONCE(dentry->d_op); 1638 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1639 DCACHE_OP_COMPARE | 1640 DCACHE_OP_REVALIDATE | 1641 DCACHE_OP_WEAK_REVALIDATE | 1642 DCACHE_OP_DELETE )); 1643 dentry->d_op = op; 1644 if (!op) 1645 return; 1646 if (op->d_hash) 1647 dentry->d_flags |= DCACHE_OP_HASH; 1648 if (op->d_compare) 1649 dentry->d_flags |= DCACHE_OP_COMPARE; 1650 if (op->d_revalidate) 1651 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1652 if (op->d_weak_revalidate) 1653 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1654 if (op->d_delete) 1655 dentry->d_flags |= DCACHE_OP_DELETE; 1656 if (op->d_prune) 1657 dentry->d_flags |= DCACHE_OP_PRUNE; 1658 1659 } 1660 EXPORT_SYMBOL(d_set_d_op); 1661 1662 static unsigned d_flags_for_inode(struct inode *inode) 1663 { 1664 unsigned add_flags = DCACHE_FILE_TYPE; 1665 1666 if (!inode) 1667 return DCACHE_MISS_TYPE; 1668 1669 if (S_ISDIR(inode->i_mode)) { 1670 add_flags = DCACHE_DIRECTORY_TYPE; 1671 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1672 if (unlikely(!inode->i_op->lookup)) 1673 add_flags = DCACHE_AUTODIR_TYPE; 1674 else 1675 inode->i_opflags |= IOP_LOOKUP; 1676 } 1677 } else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1678 if (unlikely(inode->i_op->follow_link)) 1679 add_flags = DCACHE_SYMLINK_TYPE; 1680 else 1681 inode->i_opflags |= IOP_NOFOLLOW; 1682 } 1683 1684 if (unlikely(IS_AUTOMOUNT(inode))) 1685 add_flags |= DCACHE_NEED_AUTOMOUNT; 1686 return add_flags; 1687 } 1688 1689 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1690 { 1691 unsigned add_flags = d_flags_for_inode(inode); 1692 1693 spin_lock(&dentry->d_lock); 1694 dentry->d_flags &= ~DCACHE_ENTRY_TYPE; 1695 dentry->d_flags |= add_flags; 1696 if (inode) 1697 hlist_add_head(&dentry->d_alias, &inode->i_dentry); 1698 dentry->d_inode = inode; 1699 dentry_rcuwalk_barrier(dentry); 1700 spin_unlock(&dentry->d_lock); 1701 fsnotify_d_instantiate(dentry, inode); 1702 } 1703 1704 /** 1705 * d_instantiate - fill in inode information for a dentry 1706 * @entry: dentry to complete 1707 * @inode: inode to attach to this dentry 1708 * 1709 * Fill in inode information in the entry. 1710 * 1711 * This turns negative dentries into productive full members 1712 * of society. 1713 * 1714 * NOTE! This assumes that the inode count has been incremented 1715 * (or otherwise set) by the caller to indicate that it is now 1716 * in use by the dcache. 1717 */ 1718 1719 void d_instantiate(struct dentry *entry, struct inode * inode) 1720 { 1721 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1722 if (inode) 1723 spin_lock(&inode->i_lock); 1724 __d_instantiate(entry, inode); 1725 if (inode) 1726 spin_unlock(&inode->i_lock); 1727 security_d_instantiate(entry, inode); 1728 } 1729 EXPORT_SYMBOL(d_instantiate); 1730 1731 /** 1732 * d_instantiate_unique - instantiate a non-aliased dentry 1733 * @entry: dentry to instantiate 1734 * @inode: inode to attach to this dentry 1735 * 1736 * Fill in inode information in the entry. On success, it returns NULL. 1737 * If an unhashed alias of "entry" already exists, then we return the 1738 * aliased dentry instead and drop one reference to inode. 1739 * 1740 * Note that in order to avoid conflicts with rename() etc, the caller 1741 * had better be holding the parent directory semaphore. 1742 * 1743 * This also assumes that the inode count has been incremented 1744 * (or otherwise set) by the caller to indicate that it is now 1745 * in use by the dcache. 1746 */ 1747 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1748 struct inode *inode) 1749 { 1750 struct dentry *alias; 1751 int len = entry->d_name.len; 1752 const char *name = entry->d_name.name; 1753 unsigned int hash = entry->d_name.hash; 1754 1755 if (!inode) { 1756 __d_instantiate(entry, NULL); 1757 return NULL; 1758 } 1759 1760 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) { 1761 /* 1762 * Don't need alias->d_lock here, because aliases with 1763 * d_parent == entry->d_parent are not subject to name or 1764 * parent changes, because the parent inode i_mutex is held. 1765 */ 1766 if (alias->d_name.hash != hash) 1767 continue; 1768 if (alias->d_parent != entry->d_parent) 1769 continue; 1770 if (alias->d_name.len != len) 1771 continue; 1772 if (dentry_cmp(alias, name, len)) 1773 continue; 1774 __dget(alias); 1775 return alias; 1776 } 1777 1778 __d_instantiate(entry, inode); 1779 return NULL; 1780 } 1781 1782 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1783 { 1784 struct dentry *result; 1785 1786 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1787 1788 if (inode) 1789 spin_lock(&inode->i_lock); 1790 result = __d_instantiate_unique(entry, inode); 1791 if (inode) 1792 spin_unlock(&inode->i_lock); 1793 1794 if (!result) { 1795 security_d_instantiate(entry, inode); 1796 return NULL; 1797 } 1798 1799 BUG_ON(!d_unhashed(result)); 1800 iput(inode); 1801 return result; 1802 } 1803 1804 EXPORT_SYMBOL(d_instantiate_unique); 1805 1806 /** 1807 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1808 * @entry: dentry to complete 1809 * @inode: inode to attach to this dentry 1810 * 1811 * Fill in inode information in the entry. If a directory alias is found, then 1812 * return an error (and drop inode). Together with d_materialise_unique() this 1813 * guarantees that a directory inode may never have more than one alias. 1814 */ 1815 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1816 { 1817 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1818 1819 spin_lock(&inode->i_lock); 1820 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1821 spin_unlock(&inode->i_lock); 1822 iput(inode); 1823 return -EBUSY; 1824 } 1825 __d_instantiate(entry, inode); 1826 spin_unlock(&inode->i_lock); 1827 security_d_instantiate(entry, inode); 1828 1829 return 0; 1830 } 1831 EXPORT_SYMBOL(d_instantiate_no_diralias); 1832 1833 struct dentry *d_make_root(struct inode *root_inode) 1834 { 1835 struct dentry *res = NULL; 1836 1837 if (root_inode) { 1838 static const struct qstr name = QSTR_INIT("/", 1); 1839 1840 res = __d_alloc(root_inode->i_sb, &name); 1841 if (res) 1842 d_instantiate(res, root_inode); 1843 else 1844 iput(root_inode); 1845 } 1846 return res; 1847 } 1848 EXPORT_SYMBOL(d_make_root); 1849 1850 static struct dentry * __d_find_any_alias(struct inode *inode) 1851 { 1852 struct dentry *alias; 1853 1854 if (hlist_empty(&inode->i_dentry)) 1855 return NULL; 1856 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias); 1857 __dget(alias); 1858 return alias; 1859 } 1860 1861 /** 1862 * d_find_any_alias - find any alias for a given inode 1863 * @inode: inode to find an alias for 1864 * 1865 * If any aliases exist for the given inode, take and return a 1866 * reference for one of them. If no aliases exist, return %NULL. 1867 */ 1868 struct dentry *d_find_any_alias(struct inode *inode) 1869 { 1870 struct dentry *de; 1871 1872 spin_lock(&inode->i_lock); 1873 de = __d_find_any_alias(inode); 1874 spin_unlock(&inode->i_lock); 1875 return de; 1876 } 1877 EXPORT_SYMBOL(d_find_any_alias); 1878 1879 /** 1880 * d_obtain_alias - find or allocate a dentry for a given inode 1881 * @inode: inode to allocate the dentry for 1882 * 1883 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1884 * similar open by handle operations. The returned dentry may be anonymous, 1885 * or may have a full name (if the inode was already in the cache). 1886 * 1887 * When called on a directory inode, we must ensure that the inode only ever 1888 * has one dentry. If a dentry is found, that is returned instead of 1889 * allocating a new one. 1890 * 1891 * On successful return, the reference to the inode has been transferred 1892 * to the dentry. In case of an error the reference on the inode is released. 1893 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1894 * be passed in and will be the error will be propagate to the return value, 1895 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1896 */ 1897 struct dentry *d_obtain_alias(struct inode *inode) 1898 { 1899 static const struct qstr anonstring = QSTR_INIT("/", 1); 1900 struct dentry *tmp; 1901 struct dentry *res; 1902 unsigned add_flags; 1903 1904 if (!inode) 1905 return ERR_PTR(-ESTALE); 1906 if (IS_ERR(inode)) 1907 return ERR_CAST(inode); 1908 1909 res = d_find_any_alias(inode); 1910 if (res) 1911 goto out_iput; 1912 1913 tmp = __d_alloc(inode->i_sb, &anonstring); 1914 if (!tmp) { 1915 res = ERR_PTR(-ENOMEM); 1916 goto out_iput; 1917 } 1918 1919 spin_lock(&inode->i_lock); 1920 res = __d_find_any_alias(inode); 1921 if (res) { 1922 spin_unlock(&inode->i_lock); 1923 dput(tmp); 1924 goto out_iput; 1925 } 1926 1927 /* attach a disconnected dentry */ 1928 add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED; 1929 1930 spin_lock(&tmp->d_lock); 1931 tmp->d_inode = inode; 1932 tmp->d_flags |= add_flags; 1933 hlist_add_head(&tmp->d_alias, &inode->i_dentry); 1934 hlist_bl_lock(&tmp->d_sb->s_anon); 1935 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1936 hlist_bl_unlock(&tmp->d_sb->s_anon); 1937 spin_unlock(&tmp->d_lock); 1938 spin_unlock(&inode->i_lock); 1939 security_d_instantiate(tmp, inode); 1940 1941 return tmp; 1942 1943 out_iput: 1944 if (res && !IS_ERR(res)) 1945 security_d_instantiate(res, inode); 1946 iput(inode); 1947 return res; 1948 } 1949 EXPORT_SYMBOL(d_obtain_alias); 1950 1951 /** 1952 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1953 * @inode: the inode which may have a disconnected dentry 1954 * @dentry: a negative dentry which we want to point to the inode. 1955 * 1956 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1957 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1958 * and return it, else simply d_add the inode to the dentry and return NULL. 1959 * 1960 * This is needed in the lookup routine of any filesystem that is exportable 1961 * (via knfsd) so that we can build dcache paths to directories effectively. 1962 * 1963 * If a dentry was found and moved, then it is returned. Otherwise NULL 1964 * is returned. This matches the expected return value of ->lookup. 1965 * 1966 * Cluster filesystems may call this function with a negative, hashed dentry. 1967 * In that case, we know that the inode will be a regular file, and also this 1968 * will only occur during atomic_open. So we need to check for the dentry 1969 * being already hashed only in the final case. 1970 */ 1971 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1972 { 1973 struct dentry *new = NULL; 1974 1975 if (IS_ERR(inode)) 1976 return ERR_CAST(inode); 1977 1978 if (inode && S_ISDIR(inode->i_mode)) { 1979 spin_lock(&inode->i_lock); 1980 new = __d_find_alias(inode, 1); 1981 if (new) { 1982 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1983 spin_unlock(&inode->i_lock); 1984 security_d_instantiate(new, inode); 1985 d_move(new, dentry); 1986 iput(inode); 1987 } else { 1988 /* already taking inode->i_lock, so d_add() by hand */ 1989 __d_instantiate(dentry, inode); 1990 spin_unlock(&inode->i_lock); 1991 security_d_instantiate(dentry, inode); 1992 d_rehash(dentry); 1993 } 1994 } else { 1995 d_instantiate(dentry, inode); 1996 if (d_unhashed(dentry)) 1997 d_rehash(dentry); 1998 } 1999 return new; 2000 } 2001 EXPORT_SYMBOL(d_splice_alias); 2002 2003 /** 2004 * d_add_ci - lookup or allocate new dentry with case-exact name 2005 * @inode: the inode case-insensitive lookup has found 2006 * @dentry: the negative dentry that was passed to the parent's lookup func 2007 * @name: the case-exact name to be associated with the returned dentry 2008 * 2009 * This is to avoid filling the dcache with case-insensitive names to the 2010 * same inode, only the actual correct case is stored in the dcache for 2011 * case-insensitive filesystems. 2012 * 2013 * For a case-insensitive lookup match and if the the case-exact dentry 2014 * already exists in in the dcache, use it and return it. 2015 * 2016 * If no entry exists with the exact case name, allocate new dentry with 2017 * the exact case, and return the spliced entry. 2018 */ 2019 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2020 struct qstr *name) 2021 { 2022 struct dentry *found; 2023 struct dentry *new; 2024 2025 /* 2026 * First check if a dentry matching the name already exists, 2027 * if not go ahead and create it now. 2028 */ 2029 found = d_hash_and_lookup(dentry->d_parent, name); 2030 if (unlikely(IS_ERR(found))) 2031 goto err_out; 2032 if (!found) { 2033 new = d_alloc(dentry->d_parent, name); 2034 if (!new) { 2035 found = ERR_PTR(-ENOMEM); 2036 goto err_out; 2037 } 2038 2039 found = d_splice_alias(inode, new); 2040 if (found) { 2041 dput(new); 2042 return found; 2043 } 2044 return new; 2045 } 2046 2047 /* 2048 * If a matching dentry exists, and it's not negative use it. 2049 * 2050 * Decrement the reference count to balance the iget() done 2051 * earlier on. 2052 */ 2053 if (found->d_inode) { 2054 if (unlikely(found->d_inode != inode)) { 2055 /* This can't happen because bad inodes are unhashed. */ 2056 BUG_ON(!is_bad_inode(inode)); 2057 BUG_ON(!is_bad_inode(found->d_inode)); 2058 } 2059 iput(inode); 2060 return found; 2061 } 2062 2063 /* 2064 * Negative dentry: instantiate it unless the inode is a directory and 2065 * already has a dentry. 2066 */ 2067 new = d_splice_alias(inode, found); 2068 if (new) { 2069 dput(found); 2070 found = new; 2071 } 2072 return found; 2073 2074 err_out: 2075 iput(inode); 2076 return found; 2077 } 2078 EXPORT_SYMBOL(d_add_ci); 2079 2080 /* 2081 * Do the slow-case of the dentry name compare. 2082 * 2083 * Unlike the dentry_cmp() function, we need to atomically 2084 * load the name and length information, so that the 2085 * filesystem can rely on them, and can use the 'name' and 2086 * 'len' information without worrying about walking off the 2087 * end of memory etc. 2088 * 2089 * Thus the read_seqcount_retry() and the "duplicate" info 2090 * in arguments (the low-level filesystem should not look 2091 * at the dentry inode or name contents directly, since 2092 * rename can change them while we're in RCU mode). 2093 */ 2094 enum slow_d_compare { 2095 D_COMP_OK, 2096 D_COMP_NOMATCH, 2097 D_COMP_SEQRETRY, 2098 }; 2099 2100 static noinline enum slow_d_compare slow_dentry_cmp( 2101 const struct dentry *parent, 2102 struct dentry *dentry, 2103 unsigned int seq, 2104 const struct qstr *name) 2105 { 2106 int tlen = dentry->d_name.len; 2107 const char *tname = dentry->d_name.name; 2108 2109 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2110 cpu_relax(); 2111 return D_COMP_SEQRETRY; 2112 } 2113 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2114 return D_COMP_NOMATCH; 2115 return D_COMP_OK; 2116 } 2117 2118 /** 2119 * __d_lookup_rcu - search for a dentry (racy, store-free) 2120 * @parent: parent dentry 2121 * @name: qstr of name we wish to find 2122 * @seqp: returns d_seq value at the point where the dentry was found 2123 * Returns: dentry, or NULL 2124 * 2125 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2126 * resolution (store-free path walking) design described in 2127 * Documentation/filesystems/path-lookup.txt. 2128 * 2129 * This is not to be used outside core vfs. 2130 * 2131 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2132 * held, and rcu_read_lock held. The returned dentry must not be stored into 2133 * without taking d_lock and checking d_seq sequence count against @seq 2134 * returned here. 2135 * 2136 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2137 * function. 2138 * 2139 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2140 * the returned dentry, so long as its parent's seqlock is checked after the 2141 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2142 * is formed, giving integrity down the path walk. 2143 * 2144 * NOTE! The caller *has* to check the resulting dentry against the sequence 2145 * number we've returned before using any of the resulting dentry state! 2146 */ 2147 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2148 const struct qstr *name, 2149 unsigned *seqp) 2150 { 2151 u64 hashlen = name->hash_len; 2152 const unsigned char *str = name->name; 2153 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2154 struct hlist_bl_node *node; 2155 struct dentry *dentry; 2156 2157 /* 2158 * Note: There is significant duplication with __d_lookup_rcu which is 2159 * required to prevent single threaded performance regressions 2160 * especially on architectures where smp_rmb (in seqcounts) are costly. 2161 * Keep the two functions in sync. 2162 */ 2163 2164 /* 2165 * The hash list is protected using RCU. 2166 * 2167 * Carefully use d_seq when comparing a candidate dentry, to avoid 2168 * races with d_move(). 2169 * 2170 * It is possible that concurrent renames can mess up our list 2171 * walk here and result in missing our dentry, resulting in the 2172 * false-negative result. d_lookup() protects against concurrent 2173 * renames using rename_lock seqlock. 2174 * 2175 * See Documentation/filesystems/path-lookup.txt for more details. 2176 */ 2177 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2178 unsigned seq; 2179 2180 seqretry: 2181 /* 2182 * The dentry sequence count protects us from concurrent 2183 * renames, and thus protects parent and name fields. 2184 * 2185 * The caller must perform a seqcount check in order 2186 * to do anything useful with the returned dentry. 2187 * 2188 * NOTE! We do a "raw" seqcount_begin here. That means that 2189 * we don't wait for the sequence count to stabilize if it 2190 * is in the middle of a sequence change. If we do the slow 2191 * dentry compare, we will do seqretries until it is stable, 2192 * and if we end up with a successful lookup, we actually 2193 * want to exit RCU lookup anyway. 2194 */ 2195 seq = raw_seqcount_begin(&dentry->d_seq); 2196 if (dentry->d_parent != parent) 2197 continue; 2198 if (d_unhashed(dentry)) 2199 continue; 2200 2201 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2202 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2203 continue; 2204 *seqp = seq; 2205 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2206 case D_COMP_OK: 2207 return dentry; 2208 case D_COMP_NOMATCH: 2209 continue; 2210 default: 2211 goto seqretry; 2212 } 2213 } 2214 2215 if (dentry->d_name.hash_len != hashlen) 2216 continue; 2217 *seqp = seq; 2218 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2219 return dentry; 2220 } 2221 return NULL; 2222 } 2223 2224 /** 2225 * d_lookup - search for a dentry 2226 * @parent: parent dentry 2227 * @name: qstr of name we wish to find 2228 * Returns: dentry, or NULL 2229 * 2230 * d_lookup searches the children of the parent dentry for the name in 2231 * question. If the dentry is found its reference count is incremented and the 2232 * dentry is returned. The caller must use dput to free the entry when it has 2233 * finished using it. %NULL is returned if the dentry does not exist. 2234 */ 2235 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2236 { 2237 struct dentry *dentry; 2238 unsigned seq; 2239 2240 do { 2241 seq = read_seqbegin(&rename_lock); 2242 dentry = __d_lookup(parent, name); 2243 if (dentry) 2244 break; 2245 } while (read_seqretry(&rename_lock, seq)); 2246 return dentry; 2247 } 2248 EXPORT_SYMBOL(d_lookup); 2249 2250 /** 2251 * __d_lookup - search for a dentry (racy) 2252 * @parent: parent dentry 2253 * @name: qstr of name we wish to find 2254 * Returns: dentry, or NULL 2255 * 2256 * __d_lookup is like d_lookup, however it may (rarely) return a 2257 * false-negative result due to unrelated rename activity. 2258 * 2259 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2260 * however it must be used carefully, eg. with a following d_lookup in 2261 * the case of failure. 2262 * 2263 * __d_lookup callers must be commented. 2264 */ 2265 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2266 { 2267 unsigned int len = name->len; 2268 unsigned int hash = name->hash; 2269 const unsigned char *str = name->name; 2270 struct hlist_bl_head *b = d_hash(parent, hash); 2271 struct hlist_bl_node *node; 2272 struct dentry *found = NULL; 2273 struct dentry *dentry; 2274 2275 /* 2276 * Note: There is significant duplication with __d_lookup_rcu which is 2277 * required to prevent single threaded performance regressions 2278 * especially on architectures where smp_rmb (in seqcounts) are costly. 2279 * Keep the two functions in sync. 2280 */ 2281 2282 /* 2283 * The hash list is protected using RCU. 2284 * 2285 * Take d_lock when comparing a candidate dentry, to avoid races 2286 * with d_move(). 2287 * 2288 * It is possible that concurrent renames can mess up our list 2289 * walk here and result in missing our dentry, resulting in the 2290 * false-negative result. d_lookup() protects against concurrent 2291 * renames using rename_lock seqlock. 2292 * 2293 * See Documentation/filesystems/path-lookup.txt for more details. 2294 */ 2295 rcu_read_lock(); 2296 2297 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2298 2299 if (dentry->d_name.hash != hash) 2300 continue; 2301 2302 spin_lock(&dentry->d_lock); 2303 if (dentry->d_parent != parent) 2304 goto next; 2305 if (d_unhashed(dentry)) 2306 goto next; 2307 2308 /* 2309 * It is safe to compare names since d_move() cannot 2310 * change the qstr (protected by d_lock). 2311 */ 2312 if (parent->d_flags & DCACHE_OP_COMPARE) { 2313 int tlen = dentry->d_name.len; 2314 const char *tname = dentry->d_name.name; 2315 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2316 goto next; 2317 } else { 2318 if (dentry->d_name.len != len) 2319 goto next; 2320 if (dentry_cmp(dentry, str, len)) 2321 goto next; 2322 } 2323 2324 dentry->d_lockref.count++; 2325 found = dentry; 2326 spin_unlock(&dentry->d_lock); 2327 break; 2328 next: 2329 spin_unlock(&dentry->d_lock); 2330 } 2331 rcu_read_unlock(); 2332 2333 return found; 2334 } 2335 2336 /** 2337 * d_hash_and_lookup - hash the qstr then search for a dentry 2338 * @dir: Directory to search in 2339 * @name: qstr of name we wish to find 2340 * 2341 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2342 */ 2343 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2344 { 2345 /* 2346 * Check for a fs-specific hash function. Note that we must 2347 * calculate the standard hash first, as the d_op->d_hash() 2348 * routine may choose to leave the hash value unchanged. 2349 */ 2350 name->hash = full_name_hash(name->name, name->len); 2351 if (dir->d_flags & DCACHE_OP_HASH) { 2352 int err = dir->d_op->d_hash(dir, name); 2353 if (unlikely(err < 0)) 2354 return ERR_PTR(err); 2355 } 2356 return d_lookup(dir, name); 2357 } 2358 EXPORT_SYMBOL(d_hash_and_lookup); 2359 2360 /** 2361 * d_validate - verify dentry provided from insecure source (deprecated) 2362 * @dentry: The dentry alleged to be valid child of @dparent 2363 * @dparent: The parent dentry (known to be valid) 2364 * 2365 * An insecure source has sent us a dentry, here we verify it and dget() it. 2366 * This is used by ncpfs in its readdir implementation. 2367 * Zero is returned in the dentry is invalid. 2368 * 2369 * This function is slow for big directories, and deprecated, do not use it. 2370 */ 2371 int d_validate(struct dentry *dentry, struct dentry *dparent) 2372 { 2373 struct dentry *child; 2374 2375 spin_lock(&dparent->d_lock); 2376 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2377 if (dentry == child) { 2378 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2379 __dget_dlock(dentry); 2380 spin_unlock(&dentry->d_lock); 2381 spin_unlock(&dparent->d_lock); 2382 return 1; 2383 } 2384 } 2385 spin_unlock(&dparent->d_lock); 2386 2387 return 0; 2388 } 2389 EXPORT_SYMBOL(d_validate); 2390 2391 /* 2392 * When a file is deleted, we have two options: 2393 * - turn this dentry into a negative dentry 2394 * - unhash this dentry and free it. 2395 * 2396 * Usually, we want to just turn this into 2397 * a negative dentry, but if anybody else is 2398 * currently using the dentry or the inode 2399 * we can't do that and we fall back on removing 2400 * it from the hash queues and waiting for 2401 * it to be deleted later when it has no users 2402 */ 2403 2404 /** 2405 * d_delete - delete a dentry 2406 * @dentry: The dentry to delete 2407 * 2408 * Turn the dentry into a negative dentry if possible, otherwise 2409 * remove it from the hash queues so it can be deleted later 2410 */ 2411 2412 void d_delete(struct dentry * dentry) 2413 { 2414 struct inode *inode; 2415 int isdir = 0; 2416 /* 2417 * Are we the only user? 2418 */ 2419 again: 2420 spin_lock(&dentry->d_lock); 2421 inode = dentry->d_inode; 2422 isdir = S_ISDIR(inode->i_mode); 2423 if (dentry->d_lockref.count == 1) { 2424 if (!spin_trylock(&inode->i_lock)) { 2425 spin_unlock(&dentry->d_lock); 2426 cpu_relax(); 2427 goto again; 2428 } 2429 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2430 dentry_unlink_inode(dentry); 2431 fsnotify_nameremove(dentry, isdir); 2432 return; 2433 } 2434 2435 if (!d_unhashed(dentry)) 2436 __d_drop(dentry); 2437 2438 spin_unlock(&dentry->d_lock); 2439 2440 fsnotify_nameremove(dentry, isdir); 2441 } 2442 EXPORT_SYMBOL(d_delete); 2443 2444 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2445 { 2446 BUG_ON(!d_unhashed(entry)); 2447 hlist_bl_lock(b); 2448 entry->d_flags |= DCACHE_RCUACCESS; 2449 hlist_bl_add_head_rcu(&entry->d_hash, b); 2450 hlist_bl_unlock(b); 2451 } 2452 2453 static void _d_rehash(struct dentry * entry) 2454 { 2455 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2456 } 2457 2458 /** 2459 * d_rehash - add an entry back to the hash 2460 * @entry: dentry to add to the hash 2461 * 2462 * Adds a dentry to the hash according to its name. 2463 */ 2464 2465 void d_rehash(struct dentry * entry) 2466 { 2467 spin_lock(&entry->d_lock); 2468 _d_rehash(entry); 2469 spin_unlock(&entry->d_lock); 2470 } 2471 EXPORT_SYMBOL(d_rehash); 2472 2473 /** 2474 * dentry_update_name_case - update case insensitive dentry with a new name 2475 * @dentry: dentry to be updated 2476 * @name: new name 2477 * 2478 * Update a case insensitive dentry with new case of name. 2479 * 2480 * dentry must have been returned by d_lookup with name @name. Old and new 2481 * name lengths must match (ie. no d_compare which allows mismatched name 2482 * lengths). 2483 * 2484 * Parent inode i_mutex must be held over d_lookup and into this call (to 2485 * keep renames and concurrent inserts, and readdir(2) away). 2486 */ 2487 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2488 { 2489 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2490 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2491 2492 spin_lock(&dentry->d_lock); 2493 write_seqcount_begin(&dentry->d_seq); 2494 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2495 write_seqcount_end(&dentry->d_seq); 2496 spin_unlock(&dentry->d_lock); 2497 } 2498 EXPORT_SYMBOL(dentry_update_name_case); 2499 2500 static void switch_names(struct dentry *dentry, struct dentry *target) 2501 { 2502 if (dname_external(target)) { 2503 if (dname_external(dentry)) { 2504 /* 2505 * Both external: swap the pointers 2506 */ 2507 swap(target->d_name.name, dentry->d_name.name); 2508 } else { 2509 /* 2510 * dentry:internal, target:external. Steal target's 2511 * storage and make target internal. 2512 */ 2513 memcpy(target->d_iname, dentry->d_name.name, 2514 dentry->d_name.len + 1); 2515 dentry->d_name.name = target->d_name.name; 2516 target->d_name.name = target->d_iname; 2517 } 2518 } else { 2519 if (dname_external(dentry)) { 2520 /* 2521 * dentry:external, target:internal. Give dentry's 2522 * storage to target and make dentry internal 2523 */ 2524 memcpy(dentry->d_iname, target->d_name.name, 2525 target->d_name.len + 1); 2526 target->d_name.name = dentry->d_name.name; 2527 dentry->d_name.name = dentry->d_iname; 2528 } else { 2529 /* 2530 * Both are internal. Just copy target to dentry 2531 */ 2532 memcpy(dentry->d_iname, target->d_name.name, 2533 target->d_name.len + 1); 2534 dentry->d_name.len = target->d_name.len; 2535 return; 2536 } 2537 } 2538 swap(dentry->d_name.len, target->d_name.len); 2539 } 2540 2541 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2542 { 2543 /* 2544 * XXXX: do we really need to take target->d_lock? 2545 */ 2546 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2547 spin_lock(&target->d_parent->d_lock); 2548 else { 2549 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2550 spin_lock(&dentry->d_parent->d_lock); 2551 spin_lock_nested(&target->d_parent->d_lock, 2552 DENTRY_D_LOCK_NESTED); 2553 } else { 2554 spin_lock(&target->d_parent->d_lock); 2555 spin_lock_nested(&dentry->d_parent->d_lock, 2556 DENTRY_D_LOCK_NESTED); 2557 } 2558 } 2559 if (target < dentry) { 2560 spin_lock_nested(&target->d_lock, 2); 2561 spin_lock_nested(&dentry->d_lock, 3); 2562 } else { 2563 spin_lock_nested(&dentry->d_lock, 2); 2564 spin_lock_nested(&target->d_lock, 3); 2565 } 2566 } 2567 2568 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2569 struct dentry *target) 2570 { 2571 if (target->d_parent != dentry->d_parent) 2572 spin_unlock(&dentry->d_parent->d_lock); 2573 if (target->d_parent != target) 2574 spin_unlock(&target->d_parent->d_lock); 2575 } 2576 2577 /* 2578 * When switching names, the actual string doesn't strictly have to 2579 * be preserved in the target - because we're dropping the target 2580 * anyway. As such, we can just do a simple memcpy() to copy over 2581 * the new name before we switch. 2582 * 2583 * Note that we have to be a lot more careful about getting the hash 2584 * switched - we have to switch the hash value properly even if it 2585 * then no longer matches the actual (corrupted) string of the target. 2586 * The hash value has to match the hash queue that the dentry is on.. 2587 */ 2588 /* 2589 * __d_move - move a dentry 2590 * @dentry: entry to move 2591 * @target: new dentry 2592 * 2593 * Update the dcache to reflect the move of a file name. Negative 2594 * dcache entries should not be moved in this way. Caller must hold 2595 * rename_lock, the i_mutex of the source and target directories, 2596 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2597 */ 2598 static void __d_move(struct dentry * dentry, struct dentry * target) 2599 { 2600 if (!dentry->d_inode) 2601 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2602 2603 BUG_ON(d_ancestor(dentry, target)); 2604 BUG_ON(d_ancestor(target, dentry)); 2605 2606 dentry_lock_for_move(dentry, target); 2607 2608 write_seqcount_begin(&dentry->d_seq); 2609 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2610 2611 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2612 2613 /* 2614 * Move the dentry to the target hash queue. Don't bother checking 2615 * for the same hash queue because of how unlikely it is. 2616 */ 2617 __d_drop(dentry); 2618 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2619 2620 /* Unhash the target: dput() will then get rid of it */ 2621 __d_drop(target); 2622 2623 list_del(&dentry->d_u.d_child); 2624 list_del(&target->d_u.d_child); 2625 2626 /* Switch the names.. */ 2627 switch_names(dentry, target); 2628 swap(dentry->d_name.hash, target->d_name.hash); 2629 2630 /* ... and switch the parents */ 2631 if (IS_ROOT(dentry)) { 2632 dentry->d_parent = target->d_parent; 2633 target->d_parent = target; 2634 INIT_LIST_HEAD(&target->d_u.d_child); 2635 } else { 2636 swap(dentry->d_parent, target->d_parent); 2637 2638 /* And add them back to the (new) parent lists */ 2639 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2640 } 2641 2642 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2643 2644 write_seqcount_end(&target->d_seq); 2645 write_seqcount_end(&dentry->d_seq); 2646 2647 dentry_unlock_parents_for_move(dentry, target); 2648 spin_unlock(&target->d_lock); 2649 fsnotify_d_move(dentry); 2650 spin_unlock(&dentry->d_lock); 2651 } 2652 2653 /* 2654 * d_move - move a dentry 2655 * @dentry: entry to move 2656 * @target: new dentry 2657 * 2658 * Update the dcache to reflect the move of a file name. Negative 2659 * dcache entries should not be moved in this way. See the locking 2660 * requirements for __d_move. 2661 */ 2662 void d_move(struct dentry *dentry, struct dentry *target) 2663 { 2664 write_seqlock(&rename_lock); 2665 __d_move(dentry, target); 2666 write_sequnlock(&rename_lock); 2667 } 2668 EXPORT_SYMBOL(d_move); 2669 2670 /** 2671 * d_ancestor - search for an ancestor 2672 * @p1: ancestor dentry 2673 * @p2: child dentry 2674 * 2675 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2676 * an ancestor of p2, else NULL. 2677 */ 2678 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2679 { 2680 struct dentry *p; 2681 2682 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2683 if (p->d_parent == p1) 2684 return p; 2685 } 2686 return NULL; 2687 } 2688 2689 /* 2690 * This helper attempts to cope with remotely renamed directories 2691 * 2692 * It assumes that the caller is already holding 2693 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2694 * 2695 * Note: If ever the locking in lock_rename() changes, then please 2696 * remember to update this too... 2697 */ 2698 static struct dentry *__d_unalias(struct inode *inode, 2699 struct dentry *dentry, struct dentry *alias) 2700 { 2701 struct mutex *m1 = NULL, *m2 = NULL; 2702 struct dentry *ret = ERR_PTR(-EBUSY); 2703 2704 /* If alias and dentry share a parent, then no extra locks required */ 2705 if (alias->d_parent == dentry->d_parent) 2706 goto out_unalias; 2707 2708 /* See lock_rename() */ 2709 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2710 goto out_err; 2711 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2712 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2713 goto out_err; 2714 m2 = &alias->d_parent->d_inode->i_mutex; 2715 out_unalias: 2716 if (likely(!d_mountpoint(alias))) { 2717 __d_move(alias, dentry); 2718 ret = alias; 2719 } 2720 out_err: 2721 spin_unlock(&inode->i_lock); 2722 if (m2) 2723 mutex_unlock(m2); 2724 if (m1) 2725 mutex_unlock(m1); 2726 return ret; 2727 } 2728 2729 /* 2730 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2731 * named dentry in place of the dentry to be replaced. 2732 * returns with anon->d_lock held! 2733 */ 2734 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2735 { 2736 struct dentry *dparent; 2737 2738 dentry_lock_for_move(anon, dentry); 2739 2740 write_seqcount_begin(&dentry->d_seq); 2741 write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED); 2742 2743 dparent = dentry->d_parent; 2744 2745 switch_names(dentry, anon); 2746 swap(dentry->d_name.hash, anon->d_name.hash); 2747 2748 dentry->d_parent = dentry; 2749 list_del_init(&dentry->d_u.d_child); 2750 anon->d_parent = dparent; 2751 list_move(&anon->d_u.d_child, &dparent->d_subdirs); 2752 2753 write_seqcount_end(&dentry->d_seq); 2754 write_seqcount_end(&anon->d_seq); 2755 2756 dentry_unlock_parents_for_move(anon, dentry); 2757 spin_unlock(&dentry->d_lock); 2758 2759 /* anon->d_lock still locked, returns locked */ 2760 } 2761 2762 /** 2763 * d_materialise_unique - introduce an inode into the tree 2764 * @dentry: candidate dentry 2765 * @inode: inode to bind to the dentry, to which aliases may be attached 2766 * 2767 * Introduces an dentry into the tree, substituting an extant disconnected 2768 * root directory alias in its place if there is one. Caller must hold the 2769 * i_mutex of the parent directory. 2770 */ 2771 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2772 { 2773 struct dentry *actual; 2774 2775 BUG_ON(!d_unhashed(dentry)); 2776 2777 if (!inode) { 2778 actual = dentry; 2779 __d_instantiate(dentry, NULL); 2780 d_rehash(actual); 2781 goto out_nolock; 2782 } 2783 2784 spin_lock(&inode->i_lock); 2785 2786 if (S_ISDIR(inode->i_mode)) { 2787 struct dentry *alias; 2788 2789 /* Does an aliased dentry already exist? */ 2790 alias = __d_find_alias(inode, 0); 2791 if (alias) { 2792 actual = alias; 2793 write_seqlock(&rename_lock); 2794 2795 if (d_ancestor(alias, dentry)) { 2796 /* Check for loops */ 2797 actual = ERR_PTR(-ELOOP); 2798 spin_unlock(&inode->i_lock); 2799 } else if (IS_ROOT(alias)) { 2800 /* Is this an anonymous mountpoint that we 2801 * could splice into our tree? */ 2802 __d_materialise_dentry(dentry, alias); 2803 write_sequnlock(&rename_lock); 2804 __d_drop(alias); 2805 goto found; 2806 } else { 2807 /* Nope, but we must(!) avoid directory 2808 * aliasing. This drops inode->i_lock */ 2809 actual = __d_unalias(inode, dentry, alias); 2810 } 2811 write_sequnlock(&rename_lock); 2812 if (IS_ERR(actual)) { 2813 if (PTR_ERR(actual) == -ELOOP) 2814 pr_warn_ratelimited( 2815 "VFS: Lookup of '%s' in %s %s" 2816 " would have caused loop\n", 2817 dentry->d_name.name, 2818 inode->i_sb->s_type->name, 2819 inode->i_sb->s_id); 2820 dput(alias); 2821 } 2822 goto out_nolock; 2823 } 2824 } 2825 2826 /* Add a unique reference */ 2827 actual = __d_instantiate_unique(dentry, inode); 2828 if (!actual) 2829 actual = dentry; 2830 else 2831 BUG_ON(!d_unhashed(actual)); 2832 2833 spin_lock(&actual->d_lock); 2834 found: 2835 _d_rehash(actual); 2836 spin_unlock(&actual->d_lock); 2837 spin_unlock(&inode->i_lock); 2838 out_nolock: 2839 if (actual == dentry) { 2840 security_d_instantiate(dentry, inode); 2841 return NULL; 2842 } 2843 2844 iput(inode); 2845 return actual; 2846 } 2847 EXPORT_SYMBOL_GPL(d_materialise_unique); 2848 2849 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2850 { 2851 *buflen -= namelen; 2852 if (*buflen < 0) 2853 return -ENAMETOOLONG; 2854 *buffer -= namelen; 2855 memcpy(*buffer, str, namelen); 2856 return 0; 2857 } 2858 2859 /** 2860 * prepend_name - prepend a pathname in front of current buffer pointer 2861 * @buffer: buffer pointer 2862 * @buflen: allocated length of the buffer 2863 * @name: name string and length qstr structure 2864 * 2865 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2866 * make sure that either the old or the new name pointer and length are 2867 * fetched. However, there may be mismatch between length and pointer. 2868 * The length cannot be trusted, we need to copy it byte-by-byte until 2869 * the length is reached or a null byte is found. It also prepends "/" at 2870 * the beginning of the name. The sequence number check at the caller will 2871 * retry it again when a d_move() does happen. So any garbage in the buffer 2872 * due to mismatched pointer and length will be discarded. 2873 */ 2874 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2875 { 2876 const char *dname = ACCESS_ONCE(name->name); 2877 u32 dlen = ACCESS_ONCE(name->len); 2878 char *p; 2879 2880 if (*buflen < dlen + 1) 2881 return -ENAMETOOLONG; 2882 *buflen -= dlen + 1; 2883 p = *buffer -= dlen + 1; 2884 *p++ = '/'; 2885 while (dlen--) { 2886 char c = *dname++; 2887 if (!c) 2888 break; 2889 *p++ = c; 2890 } 2891 return 0; 2892 } 2893 2894 /** 2895 * prepend_path - Prepend path string to a buffer 2896 * @path: the dentry/vfsmount to report 2897 * @root: root vfsmnt/dentry 2898 * @buffer: pointer to the end of the buffer 2899 * @buflen: pointer to buffer length 2900 * 2901 * The function will first try to write out the pathname without taking any 2902 * lock other than the RCU read lock to make sure that dentries won't go away. 2903 * It only checks the sequence number of the global rename_lock as any change 2904 * in the dentry's d_seq will be preceded by changes in the rename_lock 2905 * sequence number. If the sequence number had been changed, it will restart 2906 * the whole pathname back-tracing sequence again by taking the rename_lock. 2907 * In this case, there is no need to take the RCU read lock as the recursive 2908 * parent pointer references will keep the dentry chain alive as long as no 2909 * rename operation is performed. 2910 */ 2911 static int prepend_path(const struct path *path, 2912 const struct path *root, 2913 char **buffer, int *buflen) 2914 { 2915 struct dentry *dentry; 2916 struct vfsmount *vfsmnt; 2917 struct mount *mnt; 2918 int error = 0; 2919 unsigned seq, m_seq = 0; 2920 char *bptr; 2921 int blen; 2922 2923 rcu_read_lock(); 2924 restart_mnt: 2925 read_seqbegin_or_lock(&mount_lock, &m_seq); 2926 seq = 0; 2927 rcu_read_lock(); 2928 restart: 2929 bptr = *buffer; 2930 blen = *buflen; 2931 error = 0; 2932 dentry = path->dentry; 2933 vfsmnt = path->mnt; 2934 mnt = real_mount(vfsmnt); 2935 read_seqbegin_or_lock(&rename_lock, &seq); 2936 while (dentry != root->dentry || vfsmnt != root->mnt) { 2937 struct dentry * parent; 2938 2939 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2940 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2941 /* Global root? */ 2942 if (mnt != parent) { 2943 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2944 mnt = parent; 2945 vfsmnt = &mnt->mnt; 2946 continue; 2947 } 2948 /* 2949 * Filesystems needing to implement special "root names" 2950 * should do so with ->d_dname() 2951 */ 2952 if (IS_ROOT(dentry) && 2953 (dentry->d_name.len != 1 || 2954 dentry->d_name.name[0] != '/')) { 2955 WARN(1, "Root dentry has weird name <%.*s>\n", 2956 (int) dentry->d_name.len, 2957 dentry->d_name.name); 2958 } 2959 if (!error) 2960 error = is_mounted(vfsmnt) ? 1 : 2; 2961 break; 2962 } 2963 parent = dentry->d_parent; 2964 prefetch(parent); 2965 error = prepend_name(&bptr, &blen, &dentry->d_name); 2966 if (error) 2967 break; 2968 2969 dentry = parent; 2970 } 2971 if (!(seq & 1)) 2972 rcu_read_unlock(); 2973 if (need_seqretry(&rename_lock, seq)) { 2974 seq = 1; 2975 goto restart; 2976 } 2977 done_seqretry(&rename_lock, seq); 2978 2979 if (!(m_seq & 1)) 2980 rcu_read_unlock(); 2981 if (need_seqretry(&mount_lock, m_seq)) { 2982 m_seq = 1; 2983 goto restart_mnt; 2984 } 2985 done_seqretry(&mount_lock, m_seq); 2986 2987 if (error >= 0 && bptr == *buffer) { 2988 if (--blen < 0) 2989 error = -ENAMETOOLONG; 2990 else 2991 *--bptr = '/'; 2992 } 2993 *buffer = bptr; 2994 *buflen = blen; 2995 return error; 2996 } 2997 2998 /** 2999 * __d_path - return the path of a dentry 3000 * @path: the dentry/vfsmount to report 3001 * @root: root vfsmnt/dentry 3002 * @buf: buffer to return value in 3003 * @buflen: buffer length 3004 * 3005 * Convert a dentry into an ASCII path name. 3006 * 3007 * Returns a pointer into the buffer or an error code if the 3008 * path was too long. 3009 * 3010 * "buflen" should be positive. 3011 * 3012 * If the path is not reachable from the supplied root, return %NULL. 3013 */ 3014 char *__d_path(const struct path *path, 3015 const struct path *root, 3016 char *buf, int buflen) 3017 { 3018 char *res = buf + buflen; 3019 int error; 3020 3021 prepend(&res, &buflen, "\0", 1); 3022 error = prepend_path(path, root, &res, &buflen); 3023 3024 if (error < 0) 3025 return ERR_PTR(error); 3026 if (error > 0) 3027 return NULL; 3028 return res; 3029 } 3030 3031 char *d_absolute_path(const struct path *path, 3032 char *buf, int buflen) 3033 { 3034 struct path root = {}; 3035 char *res = buf + buflen; 3036 int error; 3037 3038 prepend(&res, &buflen, "\0", 1); 3039 error = prepend_path(path, &root, &res, &buflen); 3040 3041 if (error > 1) 3042 error = -EINVAL; 3043 if (error < 0) 3044 return ERR_PTR(error); 3045 return res; 3046 } 3047 3048 /* 3049 * same as __d_path but appends "(deleted)" for unlinked files. 3050 */ 3051 static int path_with_deleted(const struct path *path, 3052 const struct path *root, 3053 char **buf, int *buflen) 3054 { 3055 prepend(buf, buflen, "\0", 1); 3056 if (d_unlinked(path->dentry)) { 3057 int error = prepend(buf, buflen, " (deleted)", 10); 3058 if (error) 3059 return error; 3060 } 3061 3062 return prepend_path(path, root, buf, buflen); 3063 } 3064 3065 static int prepend_unreachable(char **buffer, int *buflen) 3066 { 3067 return prepend(buffer, buflen, "(unreachable)", 13); 3068 } 3069 3070 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3071 { 3072 unsigned seq; 3073 3074 do { 3075 seq = read_seqcount_begin(&fs->seq); 3076 *root = fs->root; 3077 } while (read_seqcount_retry(&fs->seq, seq)); 3078 } 3079 3080 /** 3081 * d_path - return the path of a dentry 3082 * @path: path to report 3083 * @buf: buffer to return value in 3084 * @buflen: buffer length 3085 * 3086 * Convert a dentry into an ASCII path name. If the entry has been deleted 3087 * the string " (deleted)" is appended. Note that this is ambiguous. 3088 * 3089 * Returns a pointer into the buffer or an error code if the path was 3090 * too long. Note: Callers should use the returned pointer, not the passed 3091 * in buffer, to use the name! The implementation often starts at an offset 3092 * into the buffer, and may leave 0 bytes at the start. 3093 * 3094 * "buflen" should be positive. 3095 */ 3096 char *d_path(const struct path *path, char *buf, int buflen) 3097 { 3098 char *res = buf + buflen; 3099 struct path root; 3100 int error; 3101 3102 /* 3103 * We have various synthetic filesystems that never get mounted. On 3104 * these filesystems dentries are never used for lookup purposes, and 3105 * thus don't need to be hashed. They also don't need a name until a 3106 * user wants to identify the object in /proc/pid/fd/. The little hack 3107 * below allows us to generate a name for these objects on demand: 3108 */ 3109 if (path->dentry->d_op && path->dentry->d_op->d_dname) 3110 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3111 3112 rcu_read_lock(); 3113 get_fs_root_rcu(current->fs, &root); 3114 error = path_with_deleted(path, &root, &res, &buflen); 3115 rcu_read_unlock(); 3116 3117 if (error < 0) 3118 res = ERR_PTR(error); 3119 return res; 3120 } 3121 EXPORT_SYMBOL(d_path); 3122 3123 /* 3124 * Helper function for dentry_operations.d_dname() members 3125 */ 3126 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3127 const char *fmt, ...) 3128 { 3129 va_list args; 3130 char temp[64]; 3131 int sz; 3132 3133 va_start(args, fmt); 3134 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3135 va_end(args); 3136 3137 if (sz > sizeof(temp) || sz > buflen) 3138 return ERR_PTR(-ENAMETOOLONG); 3139 3140 buffer += buflen - sz; 3141 return memcpy(buffer, temp, sz); 3142 } 3143 3144 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3145 { 3146 char *end = buffer + buflen; 3147 /* these dentries are never renamed, so d_lock is not needed */ 3148 if (prepend(&end, &buflen, " (deleted)", 11) || 3149 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3150 prepend(&end, &buflen, "/", 1)) 3151 end = ERR_PTR(-ENAMETOOLONG); 3152 return end; 3153 } 3154 3155 /* 3156 * Write full pathname from the root of the filesystem into the buffer. 3157 */ 3158 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 3159 { 3160 char *end, *retval; 3161 int len, seq = 0; 3162 int error = 0; 3163 3164 rcu_read_lock(); 3165 restart: 3166 end = buf + buflen; 3167 len = buflen; 3168 prepend(&end, &len, "\0", 1); 3169 if (buflen < 1) 3170 goto Elong; 3171 /* Get '/' right */ 3172 retval = end-1; 3173 *retval = '/'; 3174 read_seqbegin_or_lock(&rename_lock, &seq); 3175 while (!IS_ROOT(dentry)) { 3176 struct dentry *parent = dentry->d_parent; 3177 int error; 3178 3179 prefetch(parent); 3180 error = prepend_name(&end, &len, &dentry->d_name); 3181 if (error) 3182 break; 3183 3184 retval = end; 3185 dentry = parent; 3186 } 3187 if (!(seq & 1)) 3188 rcu_read_unlock(); 3189 if (need_seqretry(&rename_lock, seq)) { 3190 seq = 1; 3191 goto restart; 3192 } 3193 done_seqretry(&rename_lock, seq); 3194 if (error) 3195 goto Elong; 3196 return retval; 3197 Elong: 3198 return ERR_PTR(-ENAMETOOLONG); 3199 } 3200 3201 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3202 { 3203 return __dentry_path(dentry, buf, buflen); 3204 } 3205 EXPORT_SYMBOL(dentry_path_raw); 3206 3207 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3208 { 3209 char *p = NULL; 3210 char *retval; 3211 3212 if (d_unlinked(dentry)) { 3213 p = buf + buflen; 3214 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3215 goto Elong; 3216 buflen++; 3217 } 3218 retval = __dentry_path(dentry, buf, buflen); 3219 if (!IS_ERR(retval) && p) 3220 *p = '/'; /* restore '/' overriden with '\0' */ 3221 return retval; 3222 Elong: 3223 return ERR_PTR(-ENAMETOOLONG); 3224 } 3225 3226 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3227 struct path *pwd) 3228 { 3229 unsigned seq; 3230 3231 do { 3232 seq = read_seqcount_begin(&fs->seq); 3233 *root = fs->root; 3234 *pwd = fs->pwd; 3235 } while (read_seqcount_retry(&fs->seq, seq)); 3236 } 3237 3238 /* 3239 * NOTE! The user-level library version returns a 3240 * character pointer. The kernel system call just 3241 * returns the length of the buffer filled (which 3242 * includes the ending '\0' character), or a negative 3243 * error value. So libc would do something like 3244 * 3245 * char *getcwd(char * buf, size_t size) 3246 * { 3247 * int retval; 3248 * 3249 * retval = sys_getcwd(buf, size); 3250 * if (retval >= 0) 3251 * return buf; 3252 * errno = -retval; 3253 * return NULL; 3254 * } 3255 */ 3256 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3257 { 3258 int error; 3259 struct path pwd, root; 3260 char *page = __getname(); 3261 3262 if (!page) 3263 return -ENOMEM; 3264 3265 rcu_read_lock(); 3266 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3267 3268 error = -ENOENT; 3269 if (!d_unlinked(pwd.dentry)) { 3270 unsigned long len; 3271 char *cwd = page + PATH_MAX; 3272 int buflen = PATH_MAX; 3273 3274 prepend(&cwd, &buflen, "\0", 1); 3275 error = prepend_path(&pwd, &root, &cwd, &buflen); 3276 rcu_read_unlock(); 3277 3278 if (error < 0) 3279 goto out; 3280 3281 /* Unreachable from current root */ 3282 if (error > 0) { 3283 error = prepend_unreachable(&cwd, &buflen); 3284 if (error) 3285 goto out; 3286 } 3287 3288 error = -ERANGE; 3289 len = PATH_MAX + page - cwd; 3290 if (len <= size) { 3291 error = len; 3292 if (copy_to_user(buf, cwd, len)) 3293 error = -EFAULT; 3294 } 3295 } else { 3296 rcu_read_unlock(); 3297 } 3298 3299 out: 3300 __putname(page); 3301 return error; 3302 } 3303 3304 /* 3305 * Test whether new_dentry is a subdirectory of old_dentry. 3306 * 3307 * Trivially implemented using the dcache structure 3308 */ 3309 3310 /** 3311 * is_subdir - is new dentry a subdirectory of old_dentry 3312 * @new_dentry: new dentry 3313 * @old_dentry: old dentry 3314 * 3315 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 3316 * Returns 0 otherwise. 3317 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3318 */ 3319 3320 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3321 { 3322 int result; 3323 unsigned seq; 3324 3325 if (new_dentry == old_dentry) 3326 return 1; 3327 3328 do { 3329 /* for restarting inner loop in case of seq retry */ 3330 seq = read_seqbegin(&rename_lock); 3331 /* 3332 * Need rcu_readlock to protect against the d_parent trashing 3333 * due to d_move 3334 */ 3335 rcu_read_lock(); 3336 if (d_ancestor(old_dentry, new_dentry)) 3337 result = 1; 3338 else 3339 result = 0; 3340 rcu_read_unlock(); 3341 } while (read_seqretry(&rename_lock, seq)); 3342 3343 return result; 3344 } 3345 3346 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3347 { 3348 struct dentry *root = data; 3349 if (dentry != root) { 3350 if (d_unhashed(dentry) || !dentry->d_inode) 3351 return D_WALK_SKIP; 3352 3353 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3354 dentry->d_flags |= DCACHE_GENOCIDE; 3355 dentry->d_lockref.count--; 3356 } 3357 } 3358 return D_WALK_CONTINUE; 3359 } 3360 3361 void d_genocide(struct dentry *parent) 3362 { 3363 d_walk(parent, parent, d_genocide_kill, NULL); 3364 } 3365 3366 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3367 { 3368 inode_dec_link_count(inode); 3369 BUG_ON(dentry->d_name.name != dentry->d_iname || 3370 !hlist_unhashed(&dentry->d_alias) || 3371 !d_unlinked(dentry)); 3372 spin_lock(&dentry->d_parent->d_lock); 3373 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3374 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3375 (unsigned long long)inode->i_ino); 3376 spin_unlock(&dentry->d_lock); 3377 spin_unlock(&dentry->d_parent->d_lock); 3378 d_instantiate(dentry, inode); 3379 } 3380 EXPORT_SYMBOL(d_tmpfile); 3381 3382 static __initdata unsigned long dhash_entries; 3383 static int __init set_dhash_entries(char *str) 3384 { 3385 if (!str) 3386 return 0; 3387 dhash_entries = simple_strtoul(str, &str, 0); 3388 return 1; 3389 } 3390 __setup("dhash_entries=", set_dhash_entries); 3391 3392 static void __init dcache_init_early(void) 3393 { 3394 unsigned int loop; 3395 3396 /* If hashes are distributed across NUMA nodes, defer 3397 * hash allocation until vmalloc space is available. 3398 */ 3399 if (hashdist) 3400 return; 3401 3402 dentry_hashtable = 3403 alloc_large_system_hash("Dentry cache", 3404 sizeof(struct hlist_bl_head), 3405 dhash_entries, 3406 13, 3407 HASH_EARLY, 3408 &d_hash_shift, 3409 &d_hash_mask, 3410 0, 3411 0); 3412 3413 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3414 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3415 } 3416 3417 static void __init dcache_init(void) 3418 { 3419 unsigned int loop; 3420 3421 /* 3422 * A constructor could be added for stable state like the lists, 3423 * but it is probably not worth it because of the cache nature 3424 * of the dcache. 3425 */ 3426 dentry_cache = KMEM_CACHE(dentry, 3427 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3428 3429 /* Hash may have been set up in dcache_init_early */ 3430 if (!hashdist) 3431 return; 3432 3433 dentry_hashtable = 3434 alloc_large_system_hash("Dentry cache", 3435 sizeof(struct hlist_bl_head), 3436 dhash_entries, 3437 13, 3438 0, 3439 &d_hash_shift, 3440 &d_hash_mask, 3441 0, 3442 0); 3443 3444 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3445 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3446 } 3447 3448 /* SLAB cache for __getname() consumers */ 3449 struct kmem_cache *names_cachep __read_mostly; 3450 EXPORT_SYMBOL(names_cachep); 3451 3452 EXPORT_SYMBOL(d_genocide); 3453 3454 void __init vfs_caches_init_early(void) 3455 { 3456 dcache_init_early(); 3457 inode_init_early(); 3458 } 3459 3460 void __init vfs_caches_init(unsigned long mempages) 3461 { 3462 unsigned long reserve; 3463 3464 /* Base hash sizes on available memory, with a reserve equal to 3465 150% of current kernel size */ 3466 3467 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3468 mempages -= reserve; 3469 3470 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3471 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3472 3473 dcache_init(); 3474 inode_init(); 3475 files_init(mempages); 3476 mnt_init(); 3477 bdev_cache_init(); 3478 chrdev_init(); 3479 } 3480