xref: /linux/fs/dcache.c (revision 498d319bb512992ef0784c278fa03679f2f5649d)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include "internal.h"
42 #include "mount.h"
43 
44 /*
45  * Usage:
46  * dcache->d_inode->i_lock protects:
47  *   - i_dentry, d_alias, d_inode of aliases
48  * dcache_hash_bucket lock protects:
49  *   - the dcache hash table
50  * s_anon bl list spinlock protects:
51  *   - the s_anon list (see __d_drop)
52  * dentry->d_sb->s_dentry_lru_lock protects:
53  *   - the dcache lru lists and counters
54  * d_lock protects:
55  *   - d_flags
56  *   - d_name
57  *   - d_lru
58  *   - d_count
59  *   - d_unhashed()
60  *   - d_parent and d_subdirs
61  *   - childrens' d_child and d_parent
62  *   - d_alias, d_inode
63  *
64  * Ordering:
65  * dentry->d_inode->i_lock
66  *   dentry->d_lock
67  *     dentry->d_sb->s_dentry_lru_lock
68  *     dcache_hash_bucket lock
69  *     s_anon lock
70  *
71  * If there is an ancestor relationship:
72  * dentry->d_parent->...->d_parent->d_lock
73  *   ...
74  *     dentry->d_parent->d_lock
75  *       dentry->d_lock
76  *
77  * If no ancestor relationship:
78  * if (dentry1 < dentry2)
79  *   dentry1->d_lock
80  *     dentry2->d_lock
81  */
82 int sysctl_vfs_cache_pressure __read_mostly = 100;
83 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
84 
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /**
92  * read_seqbegin_or_lock - begin a sequence number check or locking block
93  * @lock: sequence lock
94  * @seq : sequence number to be checked
95  *
96  * First try it once optimistically without taking the lock. If that fails,
97  * take the lock. The sequence number is also used as a marker for deciding
98  * whether to be a reader (even) or writer (odd).
99  * N.B. seq must be initialized to an even number to begin with.
100  */
101 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
102 {
103 	if (!(*seq & 1))	/* Even */
104 		*seq = read_seqbegin(lock);
105 	else			/* Odd */
106 		read_seqlock_excl(lock);
107 }
108 
109 static inline int need_seqretry(seqlock_t *lock, int seq)
110 {
111 	return !(seq & 1) && read_seqretry(lock, seq);
112 }
113 
114 static inline void done_seqretry(seqlock_t *lock, int seq)
115 {
116 	if (seq & 1)
117 		read_sequnlock_excl(lock);
118 }
119 
120 /*
121  * This is the single most critical data structure when it comes
122  * to the dcache: the hashtable for lookups. Somebody should try
123  * to make this good - I've just made it work.
124  *
125  * This hash-function tries to avoid losing too many bits of hash
126  * information, yet avoid using a prime hash-size or similar.
127  */
128 #define D_HASHBITS     d_hash_shift
129 #define D_HASHMASK     d_hash_mask
130 
131 static unsigned int d_hash_mask __read_mostly;
132 static unsigned int d_hash_shift __read_mostly;
133 
134 static struct hlist_bl_head *dentry_hashtable __read_mostly;
135 
136 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
137 					unsigned int hash)
138 {
139 	hash += (unsigned long) parent / L1_CACHE_BYTES;
140 	hash = hash + (hash >> D_HASHBITS);
141 	return dentry_hashtable + (hash & D_HASHMASK);
142 }
143 
144 /* Statistics gathering. */
145 struct dentry_stat_t dentry_stat = {
146 	.age_limit = 45,
147 };
148 
149 static DEFINE_PER_CPU(long, nr_dentry);
150 static DEFINE_PER_CPU(long, nr_dentry_unused);
151 
152 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
153 
154 /*
155  * Here we resort to our own counters instead of using generic per-cpu counters
156  * for consistency with what the vfs inode code does. We are expected to harvest
157  * better code and performance by having our own specialized counters.
158  *
159  * Please note that the loop is done over all possible CPUs, not over all online
160  * CPUs. The reason for this is that we don't want to play games with CPUs going
161  * on and off. If one of them goes off, we will just keep their counters.
162  *
163  * glommer: See cffbc8a for details, and if you ever intend to change this,
164  * please update all vfs counters to match.
165  */
166 static long get_nr_dentry(void)
167 {
168 	int i;
169 	long sum = 0;
170 	for_each_possible_cpu(i)
171 		sum += per_cpu(nr_dentry, i);
172 	return sum < 0 ? 0 : sum;
173 }
174 
175 static long get_nr_dentry_unused(void)
176 {
177 	int i;
178 	long sum = 0;
179 	for_each_possible_cpu(i)
180 		sum += per_cpu(nr_dentry_unused, i);
181 	return sum < 0 ? 0 : sum;
182 }
183 
184 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
185 		   size_t *lenp, loff_t *ppos)
186 {
187 	dentry_stat.nr_dentry = get_nr_dentry();
188 	dentry_stat.nr_unused = get_nr_dentry_unused();
189 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
190 }
191 #endif
192 
193 /*
194  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
195  * The strings are both count bytes long, and count is non-zero.
196  */
197 #ifdef CONFIG_DCACHE_WORD_ACCESS
198 
199 #include <asm/word-at-a-time.h>
200 /*
201  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
202  * aligned allocation for this particular component. We don't
203  * strictly need the load_unaligned_zeropad() safety, but it
204  * doesn't hurt either.
205  *
206  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
207  * need the careful unaligned handling.
208  */
209 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
210 {
211 	unsigned long a,b,mask;
212 
213 	for (;;) {
214 		a = *(unsigned long *)cs;
215 		b = load_unaligned_zeropad(ct);
216 		if (tcount < sizeof(unsigned long))
217 			break;
218 		if (unlikely(a != b))
219 			return 1;
220 		cs += sizeof(unsigned long);
221 		ct += sizeof(unsigned long);
222 		tcount -= sizeof(unsigned long);
223 		if (!tcount)
224 			return 0;
225 	}
226 	mask = ~(~0ul << tcount*8);
227 	return unlikely(!!((a ^ b) & mask));
228 }
229 
230 #else
231 
232 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
233 {
234 	do {
235 		if (*cs != *ct)
236 			return 1;
237 		cs++;
238 		ct++;
239 		tcount--;
240 	} while (tcount);
241 	return 0;
242 }
243 
244 #endif
245 
246 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
247 {
248 	const unsigned char *cs;
249 	/*
250 	 * Be careful about RCU walk racing with rename:
251 	 * use ACCESS_ONCE to fetch the name pointer.
252 	 *
253 	 * NOTE! Even if a rename will mean that the length
254 	 * was not loaded atomically, we don't care. The
255 	 * RCU walk will check the sequence count eventually,
256 	 * and catch it. And we won't overrun the buffer,
257 	 * because we're reading the name pointer atomically,
258 	 * and a dentry name is guaranteed to be properly
259 	 * terminated with a NUL byte.
260 	 *
261 	 * End result: even if 'len' is wrong, we'll exit
262 	 * early because the data cannot match (there can
263 	 * be no NUL in the ct/tcount data)
264 	 */
265 	cs = ACCESS_ONCE(dentry->d_name.name);
266 	smp_read_barrier_depends();
267 	return dentry_string_cmp(cs, ct, tcount);
268 }
269 
270 static void __d_free(struct rcu_head *head)
271 {
272 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
273 
274 	WARN_ON(!hlist_unhashed(&dentry->d_alias));
275 	if (dname_external(dentry))
276 		kfree(dentry->d_name.name);
277 	kmem_cache_free(dentry_cache, dentry);
278 }
279 
280 /*
281  * no locks, please.
282  */
283 static void d_free(struct dentry *dentry)
284 {
285 	BUG_ON((int)dentry->d_lockref.count > 0);
286 	this_cpu_dec(nr_dentry);
287 	if (dentry->d_op && dentry->d_op->d_release)
288 		dentry->d_op->d_release(dentry);
289 
290 	/* if dentry was never visible to RCU, immediate free is OK */
291 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
292 		__d_free(&dentry->d_u.d_rcu);
293 	else
294 		call_rcu(&dentry->d_u.d_rcu, __d_free);
295 }
296 
297 /**
298  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
299  * @dentry: the target dentry
300  * After this call, in-progress rcu-walk path lookup will fail. This
301  * should be called after unhashing, and after changing d_inode (if
302  * the dentry has not already been unhashed).
303  */
304 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
305 {
306 	assert_spin_locked(&dentry->d_lock);
307 	/* Go through a barrier */
308 	write_seqcount_barrier(&dentry->d_seq);
309 }
310 
311 /*
312  * Release the dentry's inode, using the filesystem
313  * d_iput() operation if defined. Dentry has no refcount
314  * and is unhashed.
315  */
316 static void dentry_iput(struct dentry * dentry)
317 	__releases(dentry->d_lock)
318 	__releases(dentry->d_inode->i_lock)
319 {
320 	struct inode *inode = dentry->d_inode;
321 	if (inode) {
322 		dentry->d_inode = NULL;
323 		hlist_del_init(&dentry->d_alias);
324 		spin_unlock(&dentry->d_lock);
325 		spin_unlock(&inode->i_lock);
326 		if (!inode->i_nlink)
327 			fsnotify_inoderemove(inode);
328 		if (dentry->d_op && dentry->d_op->d_iput)
329 			dentry->d_op->d_iput(dentry, inode);
330 		else
331 			iput(inode);
332 	} else {
333 		spin_unlock(&dentry->d_lock);
334 	}
335 }
336 
337 /*
338  * Release the dentry's inode, using the filesystem
339  * d_iput() operation if defined. dentry remains in-use.
340  */
341 static void dentry_unlink_inode(struct dentry * dentry)
342 	__releases(dentry->d_lock)
343 	__releases(dentry->d_inode->i_lock)
344 {
345 	struct inode *inode = dentry->d_inode;
346 	__d_clear_type(dentry);
347 	dentry->d_inode = NULL;
348 	hlist_del_init(&dentry->d_alias);
349 	dentry_rcuwalk_barrier(dentry);
350 	spin_unlock(&dentry->d_lock);
351 	spin_unlock(&inode->i_lock);
352 	if (!inode->i_nlink)
353 		fsnotify_inoderemove(inode);
354 	if (dentry->d_op && dentry->d_op->d_iput)
355 		dentry->d_op->d_iput(dentry, inode);
356 	else
357 		iput(inode);
358 }
359 
360 /*
361  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
362  * is in use - which includes both the "real" per-superblock
363  * LRU list _and_ the DCACHE_SHRINK_LIST use.
364  *
365  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
366  * on the shrink list (ie not on the superblock LRU list).
367  *
368  * The per-cpu "nr_dentry_unused" counters are updated with
369  * the DCACHE_LRU_LIST bit.
370  *
371  * These helper functions make sure we always follow the
372  * rules. d_lock must be held by the caller.
373  */
374 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
375 static void d_lru_add(struct dentry *dentry)
376 {
377 	D_FLAG_VERIFY(dentry, 0);
378 	dentry->d_flags |= DCACHE_LRU_LIST;
379 	this_cpu_inc(nr_dentry_unused);
380 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
381 }
382 
383 static void d_lru_del(struct dentry *dentry)
384 {
385 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
386 	dentry->d_flags &= ~DCACHE_LRU_LIST;
387 	this_cpu_dec(nr_dentry_unused);
388 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
389 }
390 
391 static void d_shrink_del(struct dentry *dentry)
392 {
393 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
394 	list_del_init(&dentry->d_lru);
395 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
396 	this_cpu_dec(nr_dentry_unused);
397 }
398 
399 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
400 {
401 	D_FLAG_VERIFY(dentry, 0);
402 	list_add(&dentry->d_lru, list);
403 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
404 	this_cpu_inc(nr_dentry_unused);
405 }
406 
407 /*
408  * These can only be called under the global LRU lock, ie during the
409  * callback for freeing the LRU list. "isolate" removes it from the
410  * LRU lists entirely, while shrink_move moves it to the indicated
411  * private list.
412  */
413 static void d_lru_isolate(struct dentry *dentry)
414 {
415 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
416 	dentry->d_flags &= ~DCACHE_LRU_LIST;
417 	this_cpu_dec(nr_dentry_unused);
418 	list_del_init(&dentry->d_lru);
419 }
420 
421 static void d_lru_shrink_move(struct dentry *dentry, struct list_head *list)
422 {
423 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
424 	dentry->d_flags |= DCACHE_SHRINK_LIST;
425 	list_move_tail(&dentry->d_lru, list);
426 }
427 
428 /*
429  * dentry_lru_(add|del)_list) must be called with d_lock held.
430  */
431 static void dentry_lru_add(struct dentry *dentry)
432 {
433 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
434 		d_lru_add(dentry);
435 }
436 
437 /*
438  * Remove a dentry with references from the LRU.
439  *
440  * If we are on the shrink list, then we can get to try_prune_one_dentry() and
441  * lose our last reference through the parent walk. In this case, we need to
442  * remove ourselves from the shrink list, not the LRU.
443  */
444 static void dentry_lru_del(struct dentry *dentry)
445 {
446 	if (dentry->d_flags & DCACHE_LRU_LIST) {
447 		if (dentry->d_flags & DCACHE_SHRINK_LIST)
448 			return d_shrink_del(dentry);
449 		d_lru_del(dentry);
450 	}
451 }
452 
453 /**
454  * d_kill - kill dentry and return parent
455  * @dentry: dentry to kill
456  * @parent: parent dentry
457  *
458  * The dentry must already be unhashed and removed from the LRU.
459  *
460  * If this is the root of the dentry tree, return NULL.
461  *
462  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
463  * d_kill.
464  */
465 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
466 	__releases(dentry->d_lock)
467 	__releases(parent->d_lock)
468 	__releases(dentry->d_inode->i_lock)
469 {
470 	list_del(&dentry->d_u.d_child);
471 	/*
472 	 * Inform try_to_ascend() that we are no longer attached to the
473 	 * dentry tree
474 	 */
475 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
476 	if (parent)
477 		spin_unlock(&parent->d_lock);
478 	dentry_iput(dentry);
479 	/*
480 	 * dentry_iput drops the locks, at which point nobody (except
481 	 * transient RCU lookups) can reach this dentry.
482 	 */
483 	d_free(dentry);
484 	return parent;
485 }
486 
487 /**
488  * d_drop - drop a dentry
489  * @dentry: dentry to drop
490  *
491  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
492  * be found through a VFS lookup any more. Note that this is different from
493  * deleting the dentry - d_delete will try to mark the dentry negative if
494  * possible, giving a successful _negative_ lookup, while d_drop will
495  * just make the cache lookup fail.
496  *
497  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
498  * reason (NFS timeouts or autofs deletes).
499  *
500  * __d_drop requires dentry->d_lock.
501  */
502 void __d_drop(struct dentry *dentry)
503 {
504 	if (!d_unhashed(dentry)) {
505 		struct hlist_bl_head *b;
506 		/*
507 		 * Hashed dentries are normally on the dentry hashtable,
508 		 * with the exception of those newly allocated by
509 		 * d_obtain_alias, which are always IS_ROOT:
510 		 */
511 		if (unlikely(IS_ROOT(dentry)))
512 			b = &dentry->d_sb->s_anon;
513 		else
514 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
515 
516 		hlist_bl_lock(b);
517 		__hlist_bl_del(&dentry->d_hash);
518 		dentry->d_hash.pprev = NULL;
519 		hlist_bl_unlock(b);
520 		dentry_rcuwalk_barrier(dentry);
521 	}
522 }
523 EXPORT_SYMBOL(__d_drop);
524 
525 void d_drop(struct dentry *dentry)
526 {
527 	spin_lock(&dentry->d_lock);
528 	__d_drop(dentry);
529 	spin_unlock(&dentry->d_lock);
530 }
531 EXPORT_SYMBOL(d_drop);
532 
533 /*
534  * Finish off a dentry we've decided to kill.
535  * dentry->d_lock must be held, returns with it unlocked.
536  * If ref is non-zero, then decrement the refcount too.
537  * Returns dentry requiring refcount drop, or NULL if we're done.
538  */
539 static struct dentry *
540 dentry_kill(struct dentry *dentry, int unlock_on_failure)
541 	__releases(dentry->d_lock)
542 {
543 	struct inode *inode;
544 	struct dentry *parent;
545 
546 	inode = dentry->d_inode;
547 	if (inode && !spin_trylock(&inode->i_lock)) {
548 relock:
549 		if (unlock_on_failure) {
550 			spin_unlock(&dentry->d_lock);
551 			cpu_relax();
552 		}
553 		return dentry; /* try again with same dentry */
554 	}
555 	if (IS_ROOT(dentry))
556 		parent = NULL;
557 	else
558 		parent = dentry->d_parent;
559 	if (parent && !spin_trylock(&parent->d_lock)) {
560 		if (inode)
561 			spin_unlock(&inode->i_lock);
562 		goto relock;
563 	}
564 
565 	/*
566 	 * The dentry is now unrecoverably dead to the world.
567 	 */
568 	lockref_mark_dead(&dentry->d_lockref);
569 
570 	/*
571 	 * inform the fs via d_prune that this dentry is about to be
572 	 * unhashed and destroyed.
573 	 */
574 	if ((dentry->d_flags & DCACHE_OP_PRUNE) && !d_unhashed(dentry))
575 		dentry->d_op->d_prune(dentry);
576 
577 	dentry_lru_del(dentry);
578 	/* if it was on the hash then remove it */
579 	__d_drop(dentry);
580 	return d_kill(dentry, parent);
581 }
582 
583 /*
584  * This is dput
585  *
586  * This is complicated by the fact that we do not want to put
587  * dentries that are no longer on any hash chain on the unused
588  * list: we'd much rather just get rid of them immediately.
589  *
590  * However, that implies that we have to traverse the dentry
591  * tree upwards to the parents which might _also_ now be
592  * scheduled for deletion (it may have been only waiting for
593  * its last child to go away).
594  *
595  * This tail recursion is done by hand as we don't want to depend
596  * on the compiler to always get this right (gcc generally doesn't).
597  * Real recursion would eat up our stack space.
598  */
599 
600 /*
601  * dput - release a dentry
602  * @dentry: dentry to release
603  *
604  * Release a dentry. This will drop the usage count and if appropriate
605  * call the dentry unlink method as well as removing it from the queues and
606  * releasing its resources. If the parent dentries were scheduled for release
607  * they too may now get deleted.
608  */
609 void dput(struct dentry *dentry)
610 {
611 	if (unlikely(!dentry))
612 		return;
613 
614 repeat:
615 	if (lockref_put_or_lock(&dentry->d_lockref))
616 		return;
617 
618 	/* Unreachable? Get rid of it */
619 	if (unlikely(d_unhashed(dentry)))
620 		goto kill_it;
621 
622 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
623 		if (dentry->d_op->d_delete(dentry))
624 			goto kill_it;
625 	}
626 
627 	if (!(dentry->d_flags & DCACHE_REFERENCED))
628 		dentry->d_flags |= DCACHE_REFERENCED;
629 	dentry_lru_add(dentry);
630 
631 	dentry->d_lockref.count--;
632 	spin_unlock(&dentry->d_lock);
633 	return;
634 
635 kill_it:
636 	dentry = dentry_kill(dentry, 1);
637 	if (dentry)
638 		goto repeat;
639 }
640 EXPORT_SYMBOL(dput);
641 
642 /**
643  * d_invalidate - invalidate a dentry
644  * @dentry: dentry to invalidate
645  *
646  * Try to invalidate the dentry if it turns out to be
647  * possible. If there are other dentries that can be
648  * reached through this one we can't delete it and we
649  * return -EBUSY. On success we return 0.
650  *
651  * no dcache lock.
652  */
653 
654 int d_invalidate(struct dentry * dentry)
655 {
656 	/*
657 	 * If it's already been dropped, return OK.
658 	 */
659 	spin_lock(&dentry->d_lock);
660 	if (d_unhashed(dentry)) {
661 		spin_unlock(&dentry->d_lock);
662 		return 0;
663 	}
664 	/*
665 	 * Check whether to do a partial shrink_dcache
666 	 * to get rid of unused child entries.
667 	 */
668 	if (!list_empty(&dentry->d_subdirs)) {
669 		spin_unlock(&dentry->d_lock);
670 		shrink_dcache_parent(dentry);
671 		spin_lock(&dentry->d_lock);
672 	}
673 
674 	/*
675 	 * Somebody else still using it?
676 	 *
677 	 * If it's a directory, we can't drop it
678 	 * for fear of somebody re-populating it
679 	 * with children (even though dropping it
680 	 * would make it unreachable from the root,
681 	 * we might still populate it if it was a
682 	 * working directory or similar).
683 	 * We also need to leave mountpoints alone,
684 	 * directory or not.
685 	 */
686 	if (dentry->d_lockref.count > 1 && dentry->d_inode) {
687 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
688 			spin_unlock(&dentry->d_lock);
689 			return -EBUSY;
690 		}
691 	}
692 
693 	__d_drop(dentry);
694 	spin_unlock(&dentry->d_lock);
695 	return 0;
696 }
697 EXPORT_SYMBOL(d_invalidate);
698 
699 /* This must be called with d_lock held */
700 static inline void __dget_dlock(struct dentry *dentry)
701 {
702 	dentry->d_lockref.count++;
703 }
704 
705 static inline void __dget(struct dentry *dentry)
706 {
707 	lockref_get(&dentry->d_lockref);
708 }
709 
710 struct dentry *dget_parent(struct dentry *dentry)
711 {
712 	int gotref;
713 	struct dentry *ret;
714 
715 	/*
716 	 * Do optimistic parent lookup without any
717 	 * locking.
718 	 */
719 	rcu_read_lock();
720 	ret = ACCESS_ONCE(dentry->d_parent);
721 	gotref = lockref_get_not_zero(&ret->d_lockref);
722 	rcu_read_unlock();
723 	if (likely(gotref)) {
724 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
725 			return ret;
726 		dput(ret);
727 	}
728 
729 repeat:
730 	/*
731 	 * Don't need rcu_dereference because we re-check it was correct under
732 	 * the lock.
733 	 */
734 	rcu_read_lock();
735 	ret = dentry->d_parent;
736 	spin_lock(&ret->d_lock);
737 	if (unlikely(ret != dentry->d_parent)) {
738 		spin_unlock(&ret->d_lock);
739 		rcu_read_unlock();
740 		goto repeat;
741 	}
742 	rcu_read_unlock();
743 	BUG_ON(!ret->d_lockref.count);
744 	ret->d_lockref.count++;
745 	spin_unlock(&ret->d_lock);
746 	return ret;
747 }
748 EXPORT_SYMBOL(dget_parent);
749 
750 /**
751  * d_find_alias - grab a hashed alias of inode
752  * @inode: inode in question
753  * @want_discon:  flag, used by d_splice_alias, to request
754  *          that only a DISCONNECTED alias be returned.
755  *
756  * If inode has a hashed alias, or is a directory and has any alias,
757  * acquire the reference to alias and return it. Otherwise return NULL.
758  * Notice that if inode is a directory there can be only one alias and
759  * it can be unhashed only if it has no children, or if it is the root
760  * of a filesystem.
761  *
762  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
763  * any other hashed alias over that one unless @want_discon is set,
764  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
765  */
766 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
767 {
768 	struct dentry *alias, *discon_alias;
769 
770 again:
771 	discon_alias = NULL;
772 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
773 		spin_lock(&alias->d_lock);
774  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
775 			if (IS_ROOT(alias) &&
776 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
777 				discon_alias = alias;
778 			} else if (!want_discon) {
779 				__dget_dlock(alias);
780 				spin_unlock(&alias->d_lock);
781 				return alias;
782 			}
783 		}
784 		spin_unlock(&alias->d_lock);
785 	}
786 	if (discon_alias) {
787 		alias = discon_alias;
788 		spin_lock(&alias->d_lock);
789 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
790 			if (IS_ROOT(alias) &&
791 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
792 				__dget_dlock(alias);
793 				spin_unlock(&alias->d_lock);
794 				return alias;
795 			}
796 		}
797 		spin_unlock(&alias->d_lock);
798 		goto again;
799 	}
800 	return NULL;
801 }
802 
803 struct dentry *d_find_alias(struct inode *inode)
804 {
805 	struct dentry *de = NULL;
806 
807 	if (!hlist_empty(&inode->i_dentry)) {
808 		spin_lock(&inode->i_lock);
809 		de = __d_find_alias(inode, 0);
810 		spin_unlock(&inode->i_lock);
811 	}
812 	return de;
813 }
814 EXPORT_SYMBOL(d_find_alias);
815 
816 /*
817  *	Try to kill dentries associated with this inode.
818  * WARNING: you must own a reference to inode.
819  */
820 void d_prune_aliases(struct inode *inode)
821 {
822 	struct dentry *dentry;
823 restart:
824 	spin_lock(&inode->i_lock);
825 	hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
826 		spin_lock(&dentry->d_lock);
827 		if (!dentry->d_lockref.count) {
828 			/*
829 			 * inform the fs via d_prune that this dentry
830 			 * is about to be unhashed and destroyed.
831 			 */
832 			if ((dentry->d_flags & DCACHE_OP_PRUNE) &&
833 			    !d_unhashed(dentry))
834 				dentry->d_op->d_prune(dentry);
835 
836 			__dget_dlock(dentry);
837 			__d_drop(dentry);
838 			spin_unlock(&dentry->d_lock);
839 			spin_unlock(&inode->i_lock);
840 			dput(dentry);
841 			goto restart;
842 		}
843 		spin_unlock(&dentry->d_lock);
844 	}
845 	spin_unlock(&inode->i_lock);
846 }
847 EXPORT_SYMBOL(d_prune_aliases);
848 
849 /*
850  * Try to throw away a dentry - free the inode, dput the parent.
851  * Requires dentry->d_lock is held, and dentry->d_count == 0.
852  * Releases dentry->d_lock.
853  *
854  * This may fail if locks cannot be acquired no problem, just try again.
855  */
856 static struct dentry * try_prune_one_dentry(struct dentry *dentry)
857 	__releases(dentry->d_lock)
858 {
859 	struct dentry *parent;
860 
861 	parent = dentry_kill(dentry, 0);
862 	/*
863 	 * If dentry_kill returns NULL, we have nothing more to do.
864 	 * if it returns the same dentry, trylocks failed. In either
865 	 * case, just loop again.
866 	 *
867 	 * Otherwise, we need to prune ancestors too. This is necessary
868 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
869 	 * is also expected to be beneficial in reducing dentry cache
870 	 * fragmentation.
871 	 */
872 	if (!parent)
873 		return NULL;
874 	if (parent == dentry)
875 		return dentry;
876 
877 	/* Prune ancestors. */
878 	dentry = parent;
879 	while (dentry) {
880 		if (lockref_put_or_lock(&dentry->d_lockref))
881 			return NULL;
882 		dentry = dentry_kill(dentry, 1);
883 	}
884 	return NULL;
885 }
886 
887 static void shrink_dentry_list(struct list_head *list)
888 {
889 	struct dentry *dentry;
890 
891 	rcu_read_lock();
892 	for (;;) {
893 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
894 		if (&dentry->d_lru == list)
895 			break; /* empty */
896 
897 		/*
898 		 * Get the dentry lock, and re-verify that the dentry is
899 		 * this on the shrinking list. If it is, we know that
900 		 * DCACHE_SHRINK_LIST and DCACHE_LRU_LIST are set.
901 		 */
902 		spin_lock(&dentry->d_lock);
903 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
904 			spin_unlock(&dentry->d_lock);
905 			continue;
906 		}
907 
908 		/*
909 		 * The dispose list is isolated and dentries are not accounted
910 		 * to the LRU here, so we can simply remove it from the list
911 		 * here regardless of whether it is referenced or not.
912 		 */
913 		d_shrink_del(dentry);
914 
915 		/*
916 		 * We found an inuse dentry which was not removed from
917 		 * the LRU because of laziness during lookup. Do not free it.
918 		 */
919 		if (dentry->d_lockref.count) {
920 			spin_unlock(&dentry->d_lock);
921 			continue;
922 		}
923 		rcu_read_unlock();
924 
925 		/*
926 		 * If 'try_to_prune()' returns a dentry, it will
927 		 * be the same one we passed in, and d_lock will
928 		 * have been held the whole time, so it will not
929 		 * have been added to any other lists. We failed
930 		 * to get the inode lock.
931 		 *
932 		 * We just add it back to the shrink list.
933 		 */
934 		dentry = try_prune_one_dentry(dentry);
935 
936 		rcu_read_lock();
937 		if (dentry) {
938 			d_shrink_add(dentry, list);
939 			spin_unlock(&dentry->d_lock);
940 		}
941 	}
942 	rcu_read_unlock();
943 }
944 
945 static enum lru_status
946 dentry_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
947 {
948 	struct list_head *freeable = arg;
949 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
950 
951 
952 	/*
953 	 * we are inverting the lru lock/dentry->d_lock here,
954 	 * so use a trylock. If we fail to get the lock, just skip
955 	 * it
956 	 */
957 	if (!spin_trylock(&dentry->d_lock))
958 		return LRU_SKIP;
959 
960 	/*
961 	 * Referenced dentries are still in use. If they have active
962 	 * counts, just remove them from the LRU. Otherwise give them
963 	 * another pass through the LRU.
964 	 */
965 	if (dentry->d_lockref.count) {
966 		d_lru_isolate(dentry);
967 		spin_unlock(&dentry->d_lock);
968 		return LRU_REMOVED;
969 	}
970 
971 	if (dentry->d_flags & DCACHE_REFERENCED) {
972 		dentry->d_flags &= ~DCACHE_REFERENCED;
973 		spin_unlock(&dentry->d_lock);
974 
975 		/*
976 		 * The list move itself will be made by the common LRU code. At
977 		 * this point, we've dropped the dentry->d_lock but keep the
978 		 * lru lock. This is safe to do, since every list movement is
979 		 * protected by the lru lock even if both locks are held.
980 		 *
981 		 * This is guaranteed by the fact that all LRU management
982 		 * functions are intermediated by the LRU API calls like
983 		 * list_lru_add and list_lru_del. List movement in this file
984 		 * only ever occur through this functions or through callbacks
985 		 * like this one, that are called from the LRU API.
986 		 *
987 		 * The only exceptions to this are functions like
988 		 * shrink_dentry_list, and code that first checks for the
989 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
990 		 * operating only with stack provided lists after they are
991 		 * properly isolated from the main list.  It is thus, always a
992 		 * local access.
993 		 */
994 		return LRU_ROTATE;
995 	}
996 
997 	d_lru_shrink_move(dentry, freeable);
998 	spin_unlock(&dentry->d_lock);
999 
1000 	return LRU_REMOVED;
1001 }
1002 
1003 /**
1004  * prune_dcache_sb - shrink the dcache
1005  * @sb: superblock
1006  * @nr_to_scan : number of entries to try to free
1007  * @nid: which node to scan for freeable entities
1008  *
1009  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
1010  * done when we need more memory an called from the superblock shrinker
1011  * function.
1012  *
1013  * This function may fail to free any resources if all the dentries are in
1014  * use.
1015  */
1016 long prune_dcache_sb(struct super_block *sb, unsigned long nr_to_scan,
1017 		     int nid)
1018 {
1019 	LIST_HEAD(dispose);
1020 	long freed;
1021 
1022 	freed = list_lru_walk_node(&sb->s_dentry_lru, nid, dentry_lru_isolate,
1023 				       &dispose, &nr_to_scan);
1024 	shrink_dentry_list(&dispose);
1025 	return freed;
1026 }
1027 
1028 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1029 						spinlock_t *lru_lock, void *arg)
1030 {
1031 	struct list_head *freeable = arg;
1032 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1033 
1034 	/*
1035 	 * we are inverting the lru lock/dentry->d_lock here,
1036 	 * so use a trylock. If we fail to get the lock, just skip
1037 	 * it
1038 	 */
1039 	if (!spin_trylock(&dentry->d_lock))
1040 		return LRU_SKIP;
1041 
1042 	d_lru_shrink_move(dentry, freeable);
1043 	spin_unlock(&dentry->d_lock);
1044 
1045 	return LRU_REMOVED;
1046 }
1047 
1048 
1049 /**
1050  * shrink_dcache_sb - shrink dcache for a superblock
1051  * @sb: superblock
1052  *
1053  * Shrink the dcache for the specified super block. This is used to free
1054  * the dcache before unmounting a file system.
1055  */
1056 void shrink_dcache_sb(struct super_block *sb)
1057 {
1058 	long freed;
1059 
1060 	do {
1061 		LIST_HEAD(dispose);
1062 
1063 		freed = list_lru_walk(&sb->s_dentry_lru,
1064 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1065 
1066 		this_cpu_sub(nr_dentry_unused, freed);
1067 		shrink_dentry_list(&dispose);
1068 	} while (freed > 0);
1069 }
1070 EXPORT_SYMBOL(shrink_dcache_sb);
1071 
1072 /*
1073  * This tries to ascend one level of parenthood, but
1074  * we can race with renaming, so we need to re-check
1075  * the parenthood after dropping the lock and check
1076  * that the sequence number still matches.
1077  */
1078 static struct dentry *try_to_ascend(struct dentry *old, unsigned seq)
1079 {
1080 	struct dentry *new = old->d_parent;
1081 
1082 	rcu_read_lock();
1083 	spin_unlock(&old->d_lock);
1084 	spin_lock(&new->d_lock);
1085 
1086 	/*
1087 	 * might go back up the wrong parent if we have had a rename
1088 	 * or deletion
1089 	 */
1090 	if (new != old->d_parent ||
1091 		 (old->d_flags & DCACHE_DENTRY_KILLED) ||
1092 		 need_seqretry(&rename_lock, seq)) {
1093 		spin_unlock(&new->d_lock);
1094 		new = NULL;
1095 	}
1096 	rcu_read_unlock();
1097 	return new;
1098 }
1099 
1100 /**
1101  * enum d_walk_ret - action to talke during tree walk
1102  * @D_WALK_CONTINUE:	contrinue walk
1103  * @D_WALK_QUIT:	quit walk
1104  * @D_WALK_NORETRY:	quit when retry is needed
1105  * @D_WALK_SKIP:	skip this dentry and its children
1106  */
1107 enum d_walk_ret {
1108 	D_WALK_CONTINUE,
1109 	D_WALK_QUIT,
1110 	D_WALK_NORETRY,
1111 	D_WALK_SKIP,
1112 };
1113 
1114 /**
1115  * d_walk - walk the dentry tree
1116  * @parent:	start of walk
1117  * @data:	data passed to @enter() and @finish()
1118  * @enter:	callback when first entering the dentry
1119  * @finish:	callback when successfully finished the walk
1120  *
1121  * The @enter() and @finish() callbacks are called with d_lock held.
1122  */
1123 static void d_walk(struct dentry *parent, void *data,
1124 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1125 		   void (*finish)(void *))
1126 {
1127 	struct dentry *this_parent;
1128 	struct list_head *next;
1129 	unsigned seq = 0;
1130 	enum d_walk_ret ret;
1131 	bool retry = true;
1132 
1133 again:
1134 	read_seqbegin_or_lock(&rename_lock, &seq);
1135 	this_parent = parent;
1136 	spin_lock(&this_parent->d_lock);
1137 
1138 	ret = enter(data, this_parent);
1139 	switch (ret) {
1140 	case D_WALK_CONTINUE:
1141 		break;
1142 	case D_WALK_QUIT:
1143 	case D_WALK_SKIP:
1144 		goto out_unlock;
1145 	case D_WALK_NORETRY:
1146 		retry = false;
1147 		break;
1148 	}
1149 repeat:
1150 	next = this_parent->d_subdirs.next;
1151 resume:
1152 	while (next != &this_parent->d_subdirs) {
1153 		struct list_head *tmp = next;
1154 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1155 		next = tmp->next;
1156 
1157 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1158 
1159 		ret = enter(data, dentry);
1160 		switch (ret) {
1161 		case D_WALK_CONTINUE:
1162 			break;
1163 		case D_WALK_QUIT:
1164 			spin_unlock(&dentry->d_lock);
1165 			goto out_unlock;
1166 		case D_WALK_NORETRY:
1167 			retry = false;
1168 			break;
1169 		case D_WALK_SKIP:
1170 			spin_unlock(&dentry->d_lock);
1171 			continue;
1172 		}
1173 
1174 		if (!list_empty(&dentry->d_subdirs)) {
1175 			spin_unlock(&this_parent->d_lock);
1176 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1177 			this_parent = dentry;
1178 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1179 			goto repeat;
1180 		}
1181 		spin_unlock(&dentry->d_lock);
1182 	}
1183 	/*
1184 	 * All done at this level ... ascend and resume the search.
1185 	 */
1186 	if (this_parent != parent) {
1187 		struct dentry *child = this_parent;
1188 		this_parent = try_to_ascend(this_parent, seq);
1189 		if (!this_parent)
1190 			goto rename_retry;
1191 		next = child->d_u.d_child.next;
1192 		goto resume;
1193 	}
1194 	if (need_seqretry(&rename_lock, seq)) {
1195 		spin_unlock(&this_parent->d_lock);
1196 		goto rename_retry;
1197 	}
1198 	if (finish)
1199 		finish(data);
1200 
1201 out_unlock:
1202 	spin_unlock(&this_parent->d_lock);
1203 	done_seqretry(&rename_lock, seq);
1204 	return;
1205 
1206 rename_retry:
1207 	if (!retry)
1208 		return;
1209 	seq = 1;
1210 	goto again;
1211 }
1212 
1213 /*
1214  * Search for at least 1 mount point in the dentry's subdirs.
1215  * We descend to the next level whenever the d_subdirs
1216  * list is non-empty and continue searching.
1217  */
1218 
1219 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1220 {
1221 	int *ret = data;
1222 	if (d_mountpoint(dentry)) {
1223 		*ret = 1;
1224 		return D_WALK_QUIT;
1225 	}
1226 	return D_WALK_CONTINUE;
1227 }
1228 
1229 /**
1230  * have_submounts - check for mounts over a dentry
1231  * @parent: dentry to check.
1232  *
1233  * Return true if the parent or its subdirectories contain
1234  * a mount point
1235  */
1236 int have_submounts(struct dentry *parent)
1237 {
1238 	int ret = 0;
1239 
1240 	d_walk(parent, &ret, check_mount, NULL);
1241 
1242 	return ret;
1243 }
1244 EXPORT_SYMBOL(have_submounts);
1245 
1246 /*
1247  * Called by mount code to set a mountpoint and check if the mountpoint is
1248  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1249  * subtree can become unreachable).
1250  *
1251  * Only one of check_submounts_and_drop() and d_set_mounted() must succeed.  For
1252  * this reason take rename_lock and d_lock on dentry and ancestors.
1253  */
1254 int d_set_mounted(struct dentry *dentry)
1255 {
1256 	struct dentry *p;
1257 	int ret = -ENOENT;
1258 	write_seqlock(&rename_lock);
1259 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1260 		/* Need exclusion wrt. check_submounts_and_drop() */
1261 		spin_lock(&p->d_lock);
1262 		if (unlikely(d_unhashed(p))) {
1263 			spin_unlock(&p->d_lock);
1264 			goto out;
1265 		}
1266 		spin_unlock(&p->d_lock);
1267 	}
1268 	spin_lock(&dentry->d_lock);
1269 	if (!d_unlinked(dentry)) {
1270 		dentry->d_flags |= DCACHE_MOUNTED;
1271 		ret = 0;
1272 	}
1273  	spin_unlock(&dentry->d_lock);
1274 out:
1275 	write_sequnlock(&rename_lock);
1276 	return ret;
1277 }
1278 
1279 /*
1280  * Search the dentry child list of the specified parent,
1281  * and move any unused dentries to the end of the unused
1282  * list for prune_dcache(). We descend to the next level
1283  * whenever the d_subdirs list is non-empty and continue
1284  * searching.
1285  *
1286  * It returns zero iff there are no unused children,
1287  * otherwise  it returns the number of children moved to
1288  * the end of the unused list. This may not be the total
1289  * number of unused children, because select_parent can
1290  * drop the lock and return early due to latency
1291  * constraints.
1292  */
1293 
1294 struct select_data {
1295 	struct dentry *start;
1296 	struct list_head dispose;
1297 	int found;
1298 };
1299 
1300 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1301 {
1302 	struct select_data *data = _data;
1303 	enum d_walk_ret ret = D_WALK_CONTINUE;
1304 
1305 	if (data->start == dentry)
1306 		goto out;
1307 
1308 	/*
1309 	 * move only zero ref count dentries to the dispose list.
1310 	 *
1311 	 * Those which are presently on the shrink list, being processed
1312 	 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1313 	 * loop in shrink_dcache_parent() might not make any progress
1314 	 * and loop forever.
1315 	 */
1316 	if (dentry->d_lockref.count) {
1317 		dentry_lru_del(dentry);
1318 	} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1319 		/*
1320 		 * We can't use d_lru_shrink_move() because we
1321 		 * need to get the global LRU lock and do the
1322 		 * LRU accounting.
1323 		 */
1324 		d_lru_del(dentry);
1325 		d_shrink_add(dentry, &data->dispose);
1326 		data->found++;
1327 		ret = D_WALK_NORETRY;
1328 	}
1329 	/*
1330 	 * We can return to the caller if we have found some (this
1331 	 * ensures forward progress). We'll be coming back to find
1332 	 * the rest.
1333 	 */
1334 	if (data->found && need_resched())
1335 		ret = D_WALK_QUIT;
1336 out:
1337 	return ret;
1338 }
1339 
1340 /**
1341  * shrink_dcache_parent - prune dcache
1342  * @parent: parent of entries to prune
1343  *
1344  * Prune the dcache to remove unused children of the parent dentry.
1345  */
1346 void shrink_dcache_parent(struct dentry *parent)
1347 {
1348 	for (;;) {
1349 		struct select_data data;
1350 
1351 		INIT_LIST_HEAD(&data.dispose);
1352 		data.start = parent;
1353 		data.found = 0;
1354 
1355 		d_walk(parent, &data, select_collect, NULL);
1356 		if (!data.found)
1357 			break;
1358 
1359 		shrink_dentry_list(&data.dispose);
1360 		cond_resched();
1361 	}
1362 }
1363 EXPORT_SYMBOL(shrink_dcache_parent);
1364 
1365 static enum d_walk_ret umount_collect(void *_data, struct dentry *dentry)
1366 {
1367 	struct select_data *data = _data;
1368 	enum d_walk_ret ret = D_WALK_CONTINUE;
1369 
1370 	if (dentry->d_lockref.count) {
1371 		dentry_lru_del(dentry);
1372 		if (likely(!list_empty(&dentry->d_subdirs)))
1373 			goto out;
1374 		if (dentry == data->start && dentry->d_lockref.count == 1)
1375 			goto out;
1376 		printk(KERN_ERR
1377 		       "BUG: Dentry %p{i=%lx,n=%s}"
1378 		       " still in use (%d)"
1379 		       " [unmount of %s %s]\n",
1380 		       dentry,
1381 		       dentry->d_inode ?
1382 		       dentry->d_inode->i_ino : 0UL,
1383 		       dentry->d_name.name,
1384 		       dentry->d_lockref.count,
1385 		       dentry->d_sb->s_type->name,
1386 		       dentry->d_sb->s_id);
1387 		BUG();
1388 	} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1389 		/*
1390 		 * We can't use d_lru_shrink_move() because we
1391 		 * need to get the global LRU lock and do the
1392 		 * LRU accounting.
1393 		 */
1394 		if (dentry->d_flags & DCACHE_LRU_LIST)
1395 			d_lru_del(dentry);
1396 		d_shrink_add(dentry, &data->dispose);
1397 		data->found++;
1398 		ret = D_WALK_NORETRY;
1399 	}
1400 out:
1401 	if (data->found && need_resched())
1402 		ret = D_WALK_QUIT;
1403 	return ret;
1404 }
1405 
1406 /*
1407  * destroy the dentries attached to a superblock on unmounting
1408  */
1409 void shrink_dcache_for_umount(struct super_block *sb)
1410 {
1411 	struct dentry *dentry;
1412 
1413 	if (down_read_trylock(&sb->s_umount))
1414 		BUG();
1415 
1416 	dentry = sb->s_root;
1417 	sb->s_root = NULL;
1418 	for (;;) {
1419 		struct select_data data;
1420 
1421 		INIT_LIST_HEAD(&data.dispose);
1422 		data.start = dentry;
1423 		data.found = 0;
1424 
1425 		d_walk(dentry, &data, umount_collect, NULL);
1426 		if (!data.found)
1427 			break;
1428 
1429 		shrink_dentry_list(&data.dispose);
1430 		cond_resched();
1431 	}
1432 	d_drop(dentry);
1433 	dput(dentry);
1434 
1435 	while (!hlist_bl_empty(&sb->s_anon)) {
1436 		struct select_data data;
1437 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1438 
1439 		INIT_LIST_HEAD(&data.dispose);
1440 		data.start = NULL;
1441 		data.found = 0;
1442 
1443 		d_walk(dentry, &data, umount_collect, NULL);
1444 		if (data.found)
1445 			shrink_dentry_list(&data.dispose);
1446 		cond_resched();
1447 	}
1448 }
1449 
1450 static enum d_walk_ret check_and_collect(void *_data, struct dentry *dentry)
1451 {
1452 	struct select_data *data = _data;
1453 
1454 	if (d_mountpoint(dentry)) {
1455 		data->found = -EBUSY;
1456 		return D_WALK_QUIT;
1457 	}
1458 
1459 	return select_collect(_data, dentry);
1460 }
1461 
1462 static void check_and_drop(void *_data)
1463 {
1464 	struct select_data *data = _data;
1465 
1466 	if (d_mountpoint(data->start))
1467 		data->found = -EBUSY;
1468 	if (!data->found)
1469 		__d_drop(data->start);
1470 }
1471 
1472 /**
1473  * check_submounts_and_drop - prune dcache, check for submounts and drop
1474  *
1475  * All done as a single atomic operation relative to has_unlinked_ancestor().
1476  * Returns 0 if successfully unhashed @parent.  If there were submounts then
1477  * return -EBUSY.
1478  *
1479  * @dentry: dentry to prune and drop
1480  */
1481 int check_submounts_and_drop(struct dentry *dentry)
1482 {
1483 	int ret = 0;
1484 
1485 	/* Negative dentries can be dropped without further checks */
1486 	if (!dentry->d_inode) {
1487 		d_drop(dentry);
1488 		goto out;
1489 	}
1490 
1491 	for (;;) {
1492 		struct select_data data;
1493 
1494 		INIT_LIST_HEAD(&data.dispose);
1495 		data.start = dentry;
1496 		data.found = 0;
1497 
1498 		d_walk(dentry, &data, check_and_collect, check_and_drop);
1499 		ret = data.found;
1500 
1501 		if (!list_empty(&data.dispose))
1502 			shrink_dentry_list(&data.dispose);
1503 
1504 		if (ret <= 0)
1505 			break;
1506 
1507 		cond_resched();
1508 	}
1509 
1510 out:
1511 	return ret;
1512 }
1513 EXPORT_SYMBOL(check_submounts_and_drop);
1514 
1515 /**
1516  * __d_alloc	-	allocate a dcache entry
1517  * @sb: filesystem it will belong to
1518  * @name: qstr of the name
1519  *
1520  * Allocates a dentry. It returns %NULL if there is insufficient memory
1521  * available. On a success the dentry is returned. The name passed in is
1522  * copied and the copy passed in may be reused after this call.
1523  */
1524 
1525 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1526 {
1527 	struct dentry *dentry;
1528 	char *dname;
1529 
1530 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1531 	if (!dentry)
1532 		return NULL;
1533 
1534 	/*
1535 	 * We guarantee that the inline name is always NUL-terminated.
1536 	 * This way the memcpy() done by the name switching in rename
1537 	 * will still always have a NUL at the end, even if we might
1538 	 * be overwriting an internal NUL character
1539 	 */
1540 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1541 	if (name->len > DNAME_INLINE_LEN-1) {
1542 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1543 		if (!dname) {
1544 			kmem_cache_free(dentry_cache, dentry);
1545 			return NULL;
1546 		}
1547 	} else  {
1548 		dname = dentry->d_iname;
1549 	}
1550 
1551 	dentry->d_name.len = name->len;
1552 	dentry->d_name.hash = name->hash;
1553 	memcpy(dname, name->name, name->len);
1554 	dname[name->len] = 0;
1555 
1556 	/* Make sure we always see the terminating NUL character */
1557 	smp_wmb();
1558 	dentry->d_name.name = dname;
1559 
1560 	dentry->d_lockref.count = 1;
1561 	dentry->d_flags = 0;
1562 	spin_lock_init(&dentry->d_lock);
1563 	seqcount_init(&dentry->d_seq);
1564 	dentry->d_inode = NULL;
1565 	dentry->d_parent = dentry;
1566 	dentry->d_sb = sb;
1567 	dentry->d_op = NULL;
1568 	dentry->d_fsdata = NULL;
1569 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1570 	INIT_LIST_HEAD(&dentry->d_lru);
1571 	INIT_LIST_HEAD(&dentry->d_subdirs);
1572 	INIT_HLIST_NODE(&dentry->d_alias);
1573 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1574 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1575 
1576 	this_cpu_inc(nr_dentry);
1577 
1578 	return dentry;
1579 }
1580 
1581 /**
1582  * d_alloc	-	allocate a dcache entry
1583  * @parent: parent of entry to allocate
1584  * @name: qstr of the name
1585  *
1586  * Allocates a dentry. It returns %NULL if there is insufficient memory
1587  * available. On a success the dentry is returned. The name passed in is
1588  * copied and the copy passed in may be reused after this call.
1589  */
1590 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1591 {
1592 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1593 	if (!dentry)
1594 		return NULL;
1595 
1596 	spin_lock(&parent->d_lock);
1597 	/*
1598 	 * don't need child lock because it is not subject
1599 	 * to concurrency here
1600 	 */
1601 	__dget_dlock(parent);
1602 	dentry->d_parent = parent;
1603 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1604 	spin_unlock(&parent->d_lock);
1605 
1606 	return dentry;
1607 }
1608 EXPORT_SYMBOL(d_alloc);
1609 
1610 /**
1611  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1612  * @sb: the superblock
1613  * @name: qstr of the name
1614  *
1615  * For a filesystem that just pins its dentries in memory and never
1616  * performs lookups at all, return an unhashed IS_ROOT dentry.
1617  */
1618 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1619 {
1620 	return __d_alloc(sb, name);
1621 }
1622 EXPORT_SYMBOL(d_alloc_pseudo);
1623 
1624 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1625 {
1626 	struct qstr q;
1627 
1628 	q.name = name;
1629 	q.len = strlen(name);
1630 	q.hash = full_name_hash(q.name, q.len);
1631 	return d_alloc(parent, &q);
1632 }
1633 EXPORT_SYMBOL(d_alloc_name);
1634 
1635 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1636 {
1637 	WARN_ON_ONCE(dentry->d_op);
1638 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1639 				DCACHE_OP_COMPARE	|
1640 				DCACHE_OP_REVALIDATE	|
1641 				DCACHE_OP_WEAK_REVALIDATE	|
1642 				DCACHE_OP_DELETE ));
1643 	dentry->d_op = op;
1644 	if (!op)
1645 		return;
1646 	if (op->d_hash)
1647 		dentry->d_flags |= DCACHE_OP_HASH;
1648 	if (op->d_compare)
1649 		dentry->d_flags |= DCACHE_OP_COMPARE;
1650 	if (op->d_revalidate)
1651 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1652 	if (op->d_weak_revalidate)
1653 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1654 	if (op->d_delete)
1655 		dentry->d_flags |= DCACHE_OP_DELETE;
1656 	if (op->d_prune)
1657 		dentry->d_flags |= DCACHE_OP_PRUNE;
1658 
1659 }
1660 EXPORT_SYMBOL(d_set_d_op);
1661 
1662 static unsigned d_flags_for_inode(struct inode *inode)
1663 {
1664 	unsigned add_flags = DCACHE_FILE_TYPE;
1665 
1666 	if (!inode)
1667 		return DCACHE_MISS_TYPE;
1668 
1669 	if (S_ISDIR(inode->i_mode)) {
1670 		add_flags = DCACHE_DIRECTORY_TYPE;
1671 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1672 			if (unlikely(!inode->i_op->lookup))
1673 				add_flags = DCACHE_AUTODIR_TYPE;
1674 			else
1675 				inode->i_opflags |= IOP_LOOKUP;
1676 		}
1677 	} else if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1678 		if (unlikely(inode->i_op->follow_link))
1679 			add_flags = DCACHE_SYMLINK_TYPE;
1680 		else
1681 			inode->i_opflags |= IOP_NOFOLLOW;
1682 	}
1683 
1684 	if (unlikely(IS_AUTOMOUNT(inode)))
1685 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1686 	return add_flags;
1687 }
1688 
1689 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1690 {
1691 	unsigned add_flags = d_flags_for_inode(inode);
1692 
1693 	spin_lock(&dentry->d_lock);
1694 	dentry->d_flags &= ~DCACHE_ENTRY_TYPE;
1695 	dentry->d_flags |= add_flags;
1696 	if (inode)
1697 		hlist_add_head(&dentry->d_alias, &inode->i_dentry);
1698 	dentry->d_inode = inode;
1699 	dentry_rcuwalk_barrier(dentry);
1700 	spin_unlock(&dentry->d_lock);
1701 	fsnotify_d_instantiate(dentry, inode);
1702 }
1703 
1704 /**
1705  * d_instantiate - fill in inode information for a dentry
1706  * @entry: dentry to complete
1707  * @inode: inode to attach to this dentry
1708  *
1709  * Fill in inode information in the entry.
1710  *
1711  * This turns negative dentries into productive full members
1712  * of society.
1713  *
1714  * NOTE! This assumes that the inode count has been incremented
1715  * (or otherwise set) by the caller to indicate that it is now
1716  * in use by the dcache.
1717  */
1718 
1719 void d_instantiate(struct dentry *entry, struct inode * inode)
1720 {
1721 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1722 	if (inode)
1723 		spin_lock(&inode->i_lock);
1724 	__d_instantiate(entry, inode);
1725 	if (inode)
1726 		spin_unlock(&inode->i_lock);
1727 	security_d_instantiate(entry, inode);
1728 }
1729 EXPORT_SYMBOL(d_instantiate);
1730 
1731 /**
1732  * d_instantiate_unique - instantiate a non-aliased dentry
1733  * @entry: dentry to instantiate
1734  * @inode: inode to attach to this dentry
1735  *
1736  * Fill in inode information in the entry. On success, it returns NULL.
1737  * If an unhashed alias of "entry" already exists, then we return the
1738  * aliased dentry instead and drop one reference to inode.
1739  *
1740  * Note that in order to avoid conflicts with rename() etc, the caller
1741  * had better be holding the parent directory semaphore.
1742  *
1743  * This also assumes that the inode count has been incremented
1744  * (or otherwise set) by the caller to indicate that it is now
1745  * in use by the dcache.
1746  */
1747 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1748 					     struct inode *inode)
1749 {
1750 	struct dentry *alias;
1751 	int len = entry->d_name.len;
1752 	const char *name = entry->d_name.name;
1753 	unsigned int hash = entry->d_name.hash;
1754 
1755 	if (!inode) {
1756 		__d_instantiate(entry, NULL);
1757 		return NULL;
1758 	}
1759 
1760 	hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
1761 		/*
1762 		 * Don't need alias->d_lock here, because aliases with
1763 		 * d_parent == entry->d_parent are not subject to name or
1764 		 * parent changes, because the parent inode i_mutex is held.
1765 		 */
1766 		if (alias->d_name.hash != hash)
1767 			continue;
1768 		if (alias->d_parent != entry->d_parent)
1769 			continue;
1770 		if (alias->d_name.len != len)
1771 			continue;
1772 		if (dentry_cmp(alias, name, len))
1773 			continue;
1774 		__dget(alias);
1775 		return alias;
1776 	}
1777 
1778 	__d_instantiate(entry, inode);
1779 	return NULL;
1780 }
1781 
1782 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1783 {
1784 	struct dentry *result;
1785 
1786 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1787 
1788 	if (inode)
1789 		spin_lock(&inode->i_lock);
1790 	result = __d_instantiate_unique(entry, inode);
1791 	if (inode)
1792 		spin_unlock(&inode->i_lock);
1793 
1794 	if (!result) {
1795 		security_d_instantiate(entry, inode);
1796 		return NULL;
1797 	}
1798 
1799 	BUG_ON(!d_unhashed(result));
1800 	iput(inode);
1801 	return result;
1802 }
1803 
1804 EXPORT_SYMBOL(d_instantiate_unique);
1805 
1806 /**
1807  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1808  * @entry: dentry to complete
1809  * @inode: inode to attach to this dentry
1810  *
1811  * Fill in inode information in the entry.  If a directory alias is found, then
1812  * return an error (and drop inode).  Together with d_materialise_unique() this
1813  * guarantees that a directory inode may never have more than one alias.
1814  */
1815 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1816 {
1817 	BUG_ON(!hlist_unhashed(&entry->d_alias));
1818 
1819 	spin_lock(&inode->i_lock);
1820 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1821 		spin_unlock(&inode->i_lock);
1822 		iput(inode);
1823 		return -EBUSY;
1824 	}
1825 	__d_instantiate(entry, inode);
1826 	spin_unlock(&inode->i_lock);
1827 	security_d_instantiate(entry, inode);
1828 
1829 	return 0;
1830 }
1831 EXPORT_SYMBOL(d_instantiate_no_diralias);
1832 
1833 struct dentry *d_make_root(struct inode *root_inode)
1834 {
1835 	struct dentry *res = NULL;
1836 
1837 	if (root_inode) {
1838 		static const struct qstr name = QSTR_INIT("/", 1);
1839 
1840 		res = __d_alloc(root_inode->i_sb, &name);
1841 		if (res)
1842 			d_instantiate(res, root_inode);
1843 		else
1844 			iput(root_inode);
1845 	}
1846 	return res;
1847 }
1848 EXPORT_SYMBOL(d_make_root);
1849 
1850 static struct dentry * __d_find_any_alias(struct inode *inode)
1851 {
1852 	struct dentry *alias;
1853 
1854 	if (hlist_empty(&inode->i_dentry))
1855 		return NULL;
1856 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
1857 	__dget(alias);
1858 	return alias;
1859 }
1860 
1861 /**
1862  * d_find_any_alias - find any alias for a given inode
1863  * @inode: inode to find an alias for
1864  *
1865  * If any aliases exist for the given inode, take and return a
1866  * reference for one of them.  If no aliases exist, return %NULL.
1867  */
1868 struct dentry *d_find_any_alias(struct inode *inode)
1869 {
1870 	struct dentry *de;
1871 
1872 	spin_lock(&inode->i_lock);
1873 	de = __d_find_any_alias(inode);
1874 	spin_unlock(&inode->i_lock);
1875 	return de;
1876 }
1877 EXPORT_SYMBOL(d_find_any_alias);
1878 
1879 /**
1880  * d_obtain_alias - find or allocate a dentry for a given inode
1881  * @inode: inode to allocate the dentry for
1882  *
1883  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1884  * similar open by handle operations.  The returned dentry may be anonymous,
1885  * or may have a full name (if the inode was already in the cache).
1886  *
1887  * When called on a directory inode, we must ensure that the inode only ever
1888  * has one dentry.  If a dentry is found, that is returned instead of
1889  * allocating a new one.
1890  *
1891  * On successful return, the reference to the inode has been transferred
1892  * to the dentry.  In case of an error the reference on the inode is released.
1893  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1894  * be passed in and will be the error will be propagate to the return value,
1895  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1896  */
1897 struct dentry *d_obtain_alias(struct inode *inode)
1898 {
1899 	static const struct qstr anonstring = QSTR_INIT("/", 1);
1900 	struct dentry *tmp;
1901 	struct dentry *res;
1902 	unsigned add_flags;
1903 
1904 	if (!inode)
1905 		return ERR_PTR(-ESTALE);
1906 	if (IS_ERR(inode))
1907 		return ERR_CAST(inode);
1908 
1909 	res = d_find_any_alias(inode);
1910 	if (res)
1911 		goto out_iput;
1912 
1913 	tmp = __d_alloc(inode->i_sb, &anonstring);
1914 	if (!tmp) {
1915 		res = ERR_PTR(-ENOMEM);
1916 		goto out_iput;
1917 	}
1918 
1919 	spin_lock(&inode->i_lock);
1920 	res = __d_find_any_alias(inode);
1921 	if (res) {
1922 		spin_unlock(&inode->i_lock);
1923 		dput(tmp);
1924 		goto out_iput;
1925 	}
1926 
1927 	/* attach a disconnected dentry */
1928 	add_flags = d_flags_for_inode(inode) | DCACHE_DISCONNECTED;
1929 
1930 	spin_lock(&tmp->d_lock);
1931 	tmp->d_inode = inode;
1932 	tmp->d_flags |= add_flags;
1933 	hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1934 	hlist_bl_lock(&tmp->d_sb->s_anon);
1935 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1936 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1937 	spin_unlock(&tmp->d_lock);
1938 	spin_unlock(&inode->i_lock);
1939 	security_d_instantiate(tmp, inode);
1940 
1941 	return tmp;
1942 
1943  out_iput:
1944 	if (res && !IS_ERR(res))
1945 		security_d_instantiate(res, inode);
1946 	iput(inode);
1947 	return res;
1948 }
1949 EXPORT_SYMBOL(d_obtain_alias);
1950 
1951 /**
1952  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1953  * @inode:  the inode which may have a disconnected dentry
1954  * @dentry: a negative dentry which we want to point to the inode.
1955  *
1956  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1957  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1958  * and return it, else simply d_add the inode to the dentry and return NULL.
1959  *
1960  * This is needed in the lookup routine of any filesystem that is exportable
1961  * (via knfsd) so that we can build dcache paths to directories effectively.
1962  *
1963  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1964  * is returned.  This matches the expected return value of ->lookup.
1965  *
1966  * Cluster filesystems may call this function with a negative, hashed dentry.
1967  * In that case, we know that the inode will be a regular file, and also this
1968  * will only occur during atomic_open. So we need to check for the dentry
1969  * being already hashed only in the final case.
1970  */
1971 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1972 {
1973 	struct dentry *new = NULL;
1974 
1975 	if (IS_ERR(inode))
1976 		return ERR_CAST(inode);
1977 
1978 	if (inode && S_ISDIR(inode->i_mode)) {
1979 		spin_lock(&inode->i_lock);
1980 		new = __d_find_alias(inode, 1);
1981 		if (new) {
1982 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1983 			spin_unlock(&inode->i_lock);
1984 			security_d_instantiate(new, inode);
1985 			d_move(new, dentry);
1986 			iput(inode);
1987 		} else {
1988 			/* already taking inode->i_lock, so d_add() by hand */
1989 			__d_instantiate(dentry, inode);
1990 			spin_unlock(&inode->i_lock);
1991 			security_d_instantiate(dentry, inode);
1992 			d_rehash(dentry);
1993 		}
1994 	} else {
1995 		d_instantiate(dentry, inode);
1996 		if (d_unhashed(dentry))
1997 			d_rehash(dentry);
1998 	}
1999 	return new;
2000 }
2001 EXPORT_SYMBOL(d_splice_alias);
2002 
2003 /**
2004  * d_add_ci - lookup or allocate new dentry with case-exact name
2005  * @inode:  the inode case-insensitive lookup has found
2006  * @dentry: the negative dentry that was passed to the parent's lookup func
2007  * @name:   the case-exact name to be associated with the returned dentry
2008  *
2009  * This is to avoid filling the dcache with case-insensitive names to the
2010  * same inode, only the actual correct case is stored in the dcache for
2011  * case-insensitive filesystems.
2012  *
2013  * For a case-insensitive lookup match and if the the case-exact dentry
2014  * already exists in in the dcache, use it and return it.
2015  *
2016  * If no entry exists with the exact case name, allocate new dentry with
2017  * the exact case, and return the spliced entry.
2018  */
2019 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2020 			struct qstr *name)
2021 {
2022 	struct dentry *found;
2023 	struct dentry *new;
2024 
2025 	/*
2026 	 * First check if a dentry matching the name already exists,
2027 	 * if not go ahead and create it now.
2028 	 */
2029 	found = d_hash_and_lookup(dentry->d_parent, name);
2030 	if (unlikely(IS_ERR(found)))
2031 		goto err_out;
2032 	if (!found) {
2033 		new = d_alloc(dentry->d_parent, name);
2034 		if (!new) {
2035 			found = ERR_PTR(-ENOMEM);
2036 			goto err_out;
2037 		}
2038 
2039 		found = d_splice_alias(inode, new);
2040 		if (found) {
2041 			dput(new);
2042 			return found;
2043 		}
2044 		return new;
2045 	}
2046 
2047 	/*
2048 	 * If a matching dentry exists, and it's not negative use it.
2049 	 *
2050 	 * Decrement the reference count to balance the iget() done
2051 	 * earlier on.
2052 	 */
2053 	if (found->d_inode) {
2054 		if (unlikely(found->d_inode != inode)) {
2055 			/* This can't happen because bad inodes are unhashed. */
2056 			BUG_ON(!is_bad_inode(inode));
2057 			BUG_ON(!is_bad_inode(found->d_inode));
2058 		}
2059 		iput(inode);
2060 		return found;
2061 	}
2062 
2063 	/*
2064 	 * Negative dentry: instantiate it unless the inode is a directory and
2065 	 * already has a dentry.
2066 	 */
2067 	new = d_splice_alias(inode, found);
2068 	if (new) {
2069 		dput(found);
2070 		found = new;
2071 	}
2072 	return found;
2073 
2074 err_out:
2075 	iput(inode);
2076 	return found;
2077 }
2078 EXPORT_SYMBOL(d_add_ci);
2079 
2080 /*
2081  * Do the slow-case of the dentry name compare.
2082  *
2083  * Unlike the dentry_cmp() function, we need to atomically
2084  * load the name and length information, so that the
2085  * filesystem can rely on them, and can use the 'name' and
2086  * 'len' information without worrying about walking off the
2087  * end of memory etc.
2088  *
2089  * Thus the read_seqcount_retry() and the "duplicate" info
2090  * in arguments (the low-level filesystem should not look
2091  * at the dentry inode or name contents directly, since
2092  * rename can change them while we're in RCU mode).
2093  */
2094 enum slow_d_compare {
2095 	D_COMP_OK,
2096 	D_COMP_NOMATCH,
2097 	D_COMP_SEQRETRY,
2098 };
2099 
2100 static noinline enum slow_d_compare slow_dentry_cmp(
2101 		const struct dentry *parent,
2102 		struct dentry *dentry,
2103 		unsigned int seq,
2104 		const struct qstr *name)
2105 {
2106 	int tlen = dentry->d_name.len;
2107 	const char *tname = dentry->d_name.name;
2108 
2109 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2110 		cpu_relax();
2111 		return D_COMP_SEQRETRY;
2112 	}
2113 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2114 		return D_COMP_NOMATCH;
2115 	return D_COMP_OK;
2116 }
2117 
2118 /**
2119  * __d_lookup_rcu - search for a dentry (racy, store-free)
2120  * @parent: parent dentry
2121  * @name: qstr of name we wish to find
2122  * @seqp: returns d_seq value at the point where the dentry was found
2123  * Returns: dentry, or NULL
2124  *
2125  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2126  * resolution (store-free path walking) design described in
2127  * Documentation/filesystems/path-lookup.txt.
2128  *
2129  * This is not to be used outside core vfs.
2130  *
2131  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2132  * held, and rcu_read_lock held. The returned dentry must not be stored into
2133  * without taking d_lock and checking d_seq sequence count against @seq
2134  * returned here.
2135  *
2136  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2137  * function.
2138  *
2139  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2140  * the returned dentry, so long as its parent's seqlock is checked after the
2141  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2142  * is formed, giving integrity down the path walk.
2143  *
2144  * NOTE! The caller *has* to check the resulting dentry against the sequence
2145  * number we've returned before using any of the resulting dentry state!
2146  */
2147 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2148 				const struct qstr *name,
2149 				unsigned *seqp)
2150 {
2151 	u64 hashlen = name->hash_len;
2152 	const unsigned char *str = name->name;
2153 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2154 	struct hlist_bl_node *node;
2155 	struct dentry *dentry;
2156 
2157 	/*
2158 	 * Note: There is significant duplication with __d_lookup_rcu which is
2159 	 * required to prevent single threaded performance regressions
2160 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2161 	 * Keep the two functions in sync.
2162 	 */
2163 
2164 	/*
2165 	 * The hash list is protected using RCU.
2166 	 *
2167 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2168 	 * races with d_move().
2169 	 *
2170 	 * It is possible that concurrent renames can mess up our list
2171 	 * walk here and result in missing our dentry, resulting in the
2172 	 * false-negative result. d_lookup() protects against concurrent
2173 	 * renames using rename_lock seqlock.
2174 	 *
2175 	 * See Documentation/filesystems/path-lookup.txt for more details.
2176 	 */
2177 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2178 		unsigned seq;
2179 
2180 seqretry:
2181 		/*
2182 		 * The dentry sequence count protects us from concurrent
2183 		 * renames, and thus protects parent and name fields.
2184 		 *
2185 		 * The caller must perform a seqcount check in order
2186 		 * to do anything useful with the returned dentry.
2187 		 *
2188 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2189 		 * we don't wait for the sequence count to stabilize if it
2190 		 * is in the middle of a sequence change. If we do the slow
2191 		 * dentry compare, we will do seqretries until it is stable,
2192 		 * and if we end up with a successful lookup, we actually
2193 		 * want to exit RCU lookup anyway.
2194 		 */
2195 		seq = raw_seqcount_begin(&dentry->d_seq);
2196 		if (dentry->d_parent != parent)
2197 			continue;
2198 		if (d_unhashed(dentry))
2199 			continue;
2200 
2201 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2202 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2203 				continue;
2204 			*seqp = seq;
2205 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2206 			case D_COMP_OK:
2207 				return dentry;
2208 			case D_COMP_NOMATCH:
2209 				continue;
2210 			default:
2211 				goto seqretry;
2212 			}
2213 		}
2214 
2215 		if (dentry->d_name.hash_len != hashlen)
2216 			continue;
2217 		*seqp = seq;
2218 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2219 			return dentry;
2220 	}
2221 	return NULL;
2222 }
2223 
2224 /**
2225  * d_lookup - search for a dentry
2226  * @parent: parent dentry
2227  * @name: qstr of name we wish to find
2228  * Returns: dentry, or NULL
2229  *
2230  * d_lookup searches the children of the parent dentry for the name in
2231  * question. If the dentry is found its reference count is incremented and the
2232  * dentry is returned. The caller must use dput to free the entry when it has
2233  * finished using it. %NULL is returned if the dentry does not exist.
2234  */
2235 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2236 {
2237 	struct dentry *dentry;
2238 	unsigned seq;
2239 
2240         do {
2241                 seq = read_seqbegin(&rename_lock);
2242                 dentry = __d_lookup(parent, name);
2243                 if (dentry)
2244 			break;
2245 	} while (read_seqretry(&rename_lock, seq));
2246 	return dentry;
2247 }
2248 EXPORT_SYMBOL(d_lookup);
2249 
2250 /**
2251  * __d_lookup - search for a dentry (racy)
2252  * @parent: parent dentry
2253  * @name: qstr of name we wish to find
2254  * Returns: dentry, or NULL
2255  *
2256  * __d_lookup is like d_lookup, however it may (rarely) return a
2257  * false-negative result due to unrelated rename activity.
2258  *
2259  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2260  * however it must be used carefully, eg. with a following d_lookup in
2261  * the case of failure.
2262  *
2263  * __d_lookup callers must be commented.
2264  */
2265 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2266 {
2267 	unsigned int len = name->len;
2268 	unsigned int hash = name->hash;
2269 	const unsigned char *str = name->name;
2270 	struct hlist_bl_head *b = d_hash(parent, hash);
2271 	struct hlist_bl_node *node;
2272 	struct dentry *found = NULL;
2273 	struct dentry *dentry;
2274 
2275 	/*
2276 	 * Note: There is significant duplication with __d_lookup_rcu which is
2277 	 * required to prevent single threaded performance regressions
2278 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2279 	 * Keep the two functions in sync.
2280 	 */
2281 
2282 	/*
2283 	 * The hash list is protected using RCU.
2284 	 *
2285 	 * Take d_lock when comparing a candidate dentry, to avoid races
2286 	 * with d_move().
2287 	 *
2288 	 * It is possible that concurrent renames can mess up our list
2289 	 * walk here and result in missing our dentry, resulting in the
2290 	 * false-negative result. d_lookup() protects against concurrent
2291 	 * renames using rename_lock seqlock.
2292 	 *
2293 	 * See Documentation/filesystems/path-lookup.txt for more details.
2294 	 */
2295 	rcu_read_lock();
2296 
2297 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2298 
2299 		if (dentry->d_name.hash != hash)
2300 			continue;
2301 
2302 		spin_lock(&dentry->d_lock);
2303 		if (dentry->d_parent != parent)
2304 			goto next;
2305 		if (d_unhashed(dentry))
2306 			goto next;
2307 
2308 		/*
2309 		 * It is safe to compare names since d_move() cannot
2310 		 * change the qstr (protected by d_lock).
2311 		 */
2312 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2313 			int tlen = dentry->d_name.len;
2314 			const char *tname = dentry->d_name.name;
2315 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2316 				goto next;
2317 		} else {
2318 			if (dentry->d_name.len != len)
2319 				goto next;
2320 			if (dentry_cmp(dentry, str, len))
2321 				goto next;
2322 		}
2323 
2324 		dentry->d_lockref.count++;
2325 		found = dentry;
2326 		spin_unlock(&dentry->d_lock);
2327 		break;
2328 next:
2329 		spin_unlock(&dentry->d_lock);
2330  	}
2331  	rcu_read_unlock();
2332 
2333  	return found;
2334 }
2335 
2336 /**
2337  * d_hash_and_lookup - hash the qstr then search for a dentry
2338  * @dir: Directory to search in
2339  * @name: qstr of name we wish to find
2340  *
2341  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2342  */
2343 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2344 {
2345 	/*
2346 	 * Check for a fs-specific hash function. Note that we must
2347 	 * calculate the standard hash first, as the d_op->d_hash()
2348 	 * routine may choose to leave the hash value unchanged.
2349 	 */
2350 	name->hash = full_name_hash(name->name, name->len);
2351 	if (dir->d_flags & DCACHE_OP_HASH) {
2352 		int err = dir->d_op->d_hash(dir, name);
2353 		if (unlikely(err < 0))
2354 			return ERR_PTR(err);
2355 	}
2356 	return d_lookup(dir, name);
2357 }
2358 EXPORT_SYMBOL(d_hash_and_lookup);
2359 
2360 /**
2361  * d_validate - verify dentry provided from insecure source (deprecated)
2362  * @dentry: The dentry alleged to be valid child of @dparent
2363  * @dparent: The parent dentry (known to be valid)
2364  *
2365  * An insecure source has sent us a dentry, here we verify it and dget() it.
2366  * This is used by ncpfs in its readdir implementation.
2367  * Zero is returned in the dentry is invalid.
2368  *
2369  * This function is slow for big directories, and deprecated, do not use it.
2370  */
2371 int d_validate(struct dentry *dentry, struct dentry *dparent)
2372 {
2373 	struct dentry *child;
2374 
2375 	spin_lock(&dparent->d_lock);
2376 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2377 		if (dentry == child) {
2378 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2379 			__dget_dlock(dentry);
2380 			spin_unlock(&dentry->d_lock);
2381 			spin_unlock(&dparent->d_lock);
2382 			return 1;
2383 		}
2384 	}
2385 	spin_unlock(&dparent->d_lock);
2386 
2387 	return 0;
2388 }
2389 EXPORT_SYMBOL(d_validate);
2390 
2391 /*
2392  * When a file is deleted, we have two options:
2393  * - turn this dentry into a negative dentry
2394  * - unhash this dentry and free it.
2395  *
2396  * Usually, we want to just turn this into
2397  * a negative dentry, but if anybody else is
2398  * currently using the dentry or the inode
2399  * we can't do that and we fall back on removing
2400  * it from the hash queues and waiting for
2401  * it to be deleted later when it has no users
2402  */
2403 
2404 /**
2405  * d_delete - delete a dentry
2406  * @dentry: The dentry to delete
2407  *
2408  * Turn the dentry into a negative dentry if possible, otherwise
2409  * remove it from the hash queues so it can be deleted later
2410  */
2411 
2412 void d_delete(struct dentry * dentry)
2413 {
2414 	struct inode *inode;
2415 	int isdir = 0;
2416 	/*
2417 	 * Are we the only user?
2418 	 */
2419 again:
2420 	spin_lock(&dentry->d_lock);
2421 	inode = dentry->d_inode;
2422 	isdir = S_ISDIR(inode->i_mode);
2423 	if (dentry->d_lockref.count == 1) {
2424 		if (!spin_trylock(&inode->i_lock)) {
2425 			spin_unlock(&dentry->d_lock);
2426 			cpu_relax();
2427 			goto again;
2428 		}
2429 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2430 		dentry_unlink_inode(dentry);
2431 		fsnotify_nameremove(dentry, isdir);
2432 		return;
2433 	}
2434 
2435 	if (!d_unhashed(dentry))
2436 		__d_drop(dentry);
2437 
2438 	spin_unlock(&dentry->d_lock);
2439 
2440 	fsnotify_nameremove(dentry, isdir);
2441 }
2442 EXPORT_SYMBOL(d_delete);
2443 
2444 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2445 {
2446 	BUG_ON(!d_unhashed(entry));
2447 	hlist_bl_lock(b);
2448 	entry->d_flags |= DCACHE_RCUACCESS;
2449 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2450 	hlist_bl_unlock(b);
2451 }
2452 
2453 static void _d_rehash(struct dentry * entry)
2454 {
2455 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2456 }
2457 
2458 /**
2459  * d_rehash	- add an entry back to the hash
2460  * @entry: dentry to add to the hash
2461  *
2462  * Adds a dentry to the hash according to its name.
2463  */
2464 
2465 void d_rehash(struct dentry * entry)
2466 {
2467 	spin_lock(&entry->d_lock);
2468 	_d_rehash(entry);
2469 	spin_unlock(&entry->d_lock);
2470 }
2471 EXPORT_SYMBOL(d_rehash);
2472 
2473 /**
2474  * dentry_update_name_case - update case insensitive dentry with a new name
2475  * @dentry: dentry to be updated
2476  * @name: new name
2477  *
2478  * Update a case insensitive dentry with new case of name.
2479  *
2480  * dentry must have been returned by d_lookup with name @name. Old and new
2481  * name lengths must match (ie. no d_compare which allows mismatched name
2482  * lengths).
2483  *
2484  * Parent inode i_mutex must be held over d_lookup and into this call (to
2485  * keep renames and concurrent inserts, and readdir(2) away).
2486  */
2487 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2488 {
2489 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2490 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2491 
2492 	spin_lock(&dentry->d_lock);
2493 	write_seqcount_begin(&dentry->d_seq);
2494 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2495 	write_seqcount_end(&dentry->d_seq);
2496 	spin_unlock(&dentry->d_lock);
2497 }
2498 EXPORT_SYMBOL(dentry_update_name_case);
2499 
2500 static void switch_names(struct dentry *dentry, struct dentry *target)
2501 {
2502 	if (dname_external(target)) {
2503 		if (dname_external(dentry)) {
2504 			/*
2505 			 * Both external: swap the pointers
2506 			 */
2507 			swap(target->d_name.name, dentry->d_name.name);
2508 		} else {
2509 			/*
2510 			 * dentry:internal, target:external.  Steal target's
2511 			 * storage and make target internal.
2512 			 */
2513 			memcpy(target->d_iname, dentry->d_name.name,
2514 					dentry->d_name.len + 1);
2515 			dentry->d_name.name = target->d_name.name;
2516 			target->d_name.name = target->d_iname;
2517 		}
2518 	} else {
2519 		if (dname_external(dentry)) {
2520 			/*
2521 			 * dentry:external, target:internal.  Give dentry's
2522 			 * storage to target and make dentry internal
2523 			 */
2524 			memcpy(dentry->d_iname, target->d_name.name,
2525 					target->d_name.len + 1);
2526 			target->d_name.name = dentry->d_name.name;
2527 			dentry->d_name.name = dentry->d_iname;
2528 		} else {
2529 			/*
2530 			 * Both are internal.  Just copy target to dentry
2531 			 */
2532 			memcpy(dentry->d_iname, target->d_name.name,
2533 					target->d_name.len + 1);
2534 			dentry->d_name.len = target->d_name.len;
2535 			return;
2536 		}
2537 	}
2538 	swap(dentry->d_name.len, target->d_name.len);
2539 }
2540 
2541 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2542 {
2543 	/*
2544 	 * XXXX: do we really need to take target->d_lock?
2545 	 */
2546 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2547 		spin_lock(&target->d_parent->d_lock);
2548 	else {
2549 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2550 			spin_lock(&dentry->d_parent->d_lock);
2551 			spin_lock_nested(&target->d_parent->d_lock,
2552 						DENTRY_D_LOCK_NESTED);
2553 		} else {
2554 			spin_lock(&target->d_parent->d_lock);
2555 			spin_lock_nested(&dentry->d_parent->d_lock,
2556 						DENTRY_D_LOCK_NESTED);
2557 		}
2558 	}
2559 	if (target < dentry) {
2560 		spin_lock_nested(&target->d_lock, 2);
2561 		spin_lock_nested(&dentry->d_lock, 3);
2562 	} else {
2563 		spin_lock_nested(&dentry->d_lock, 2);
2564 		spin_lock_nested(&target->d_lock, 3);
2565 	}
2566 }
2567 
2568 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2569 					struct dentry *target)
2570 {
2571 	if (target->d_parent != dentry->d_parent)
2572 		spin_unlock(&dentry->d_parent->d_lock);
2573 	if (target->d_parent != target)
2574 		spin_unlock(&target->d_parent->d_lock);
2575 }
2576 
2577 /*
2578  * When switching names, the actual string doesn't strictly have to
2579  * be preserved in the target - because we're dropping the target
2580  * anyway. As such, we can just do a simple memcpy() to copy over
2581  * the new name before we switch.
2582  *
2583  * Note that we have to be a lot more careful about getting the hash
2584  * switched - we have to switch the hash value properly even if it
2585  * then no longer matches the actual (corrupted) string of the target.
2586  * The hash value has to match the hash queue that the dentry is on..
2587  */
2588 /*
2589  * __d_move - move a dentry
2590  * @dentry: entry to move
2591  * @target: new dentry
2592  *
2593  * Update the dcache to reflect the move of a file name. Negative
2594  * dcache entries should not be moved in this way. Caller must hold
2595  * rename_lock, the i_mutex of the source and target directories,
2596  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2597  */
2598 static void __d_move(struct dentry * dentry, struct dentry * target)
2599 {
2600 	if (!dentry->d_inode)
2601 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2602 
2603 	BUG_ON(d_ancestor(dentry, target));
2604 	BUG_ON(d_ancestor(target, dentry));
2605 
2606 	dentry_lock_for_move(dentry, target);
2607 
2608 	write_seqcount_begin(&dentry->d_seq);
2609 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2610 
2611 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2612 
2613 	/*
2614 	 * Move the dentry to the target hash queue. Don't bother checking
2615 	 * for the same hash queue because of how unlikely it is.
2616 	 */
2617 	__d_drop(dentry);
2618 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2619 
2620 	/* Unhash the target: dput() will then get rid of it */
2621 	__d_drop(target);
2622 
2623 	list_del(&dentry->d_u.d_child);
2624 	list_del(&target->d_u.d_child);
2625 
2626 	/* Switch the names.. */
2627 	switch_names(dentry, target);
2628 	swap(dentry->d_name.hash, target->d_name.hash);
2629 
2630 	/* ... and switch the parents */
2631 	if (IS_ROOT(dentry)) {
2632 		dentry->d_parent = target->d_parent;
2633 		target->d_parent = target;
2634 		INIT_LIST_HEAD(&target->d_u.d_child);
2635 	} else {
2636 		swap(dentry->d_parent, target->d_parent);
2637 
2638 		/* And add them back to the (new) parent lists */
2639 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2640 	}
2641 
2642 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2643 
2644 	write_seqcount_end(&target->d_seq);
2645 	write_seqcount_end(&dentry->d_seq);
2646 
2647 	dentry_unlock_parents_for_move(dentry, target);
2648 	spin_unlock(&target->d_lock);
2649 	fsnotify_d_move(dentry);
2650 	spin_unlock(&dentry->d_lock);
2651 }
2652 
2653 /*
2654  * d_move - move a dentry
2655  * @dentry: entry to move
2656  * @target: new dentry
2657  *
2658  * Update the dcache to reflect the move of a file name. Negative
2659  * dcache entries should not be moved in this way. See the locking
2660  * requirements for __d_move.
2661  */
2662 void d_move(struct dentry *dentry, struct dentry *target)
2663 {
2664 	write_seqlock(&rename_lock);
2665 	__d_move(dentry, target);
2666 	write_sequnlock(&rename_lock);
2667 }
2668 EXPORT_SYMBOL(d_move);
2669 
2670 /**
2671  * d_ancestor - search for an ancestor
2672  * @p1: ancestor dentry
2673  * @p2: child dentry
2674  *
2675  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2676  * an ancestor of p2, else NULL.
2677  */
2678 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2679 {
2680 	struct dentry *p;
2681 
2682 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2683 		if (p->d_parent == p1)
2684 			return p;
2685 	}
2686 	return NULL;
2687 }
2688 
2689 /*
2690  * This helper attempts to cope with remotely renamed directories
2691  *
2692  * It assumes that the caller is already holding
2693  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2694  *
2695  * Note: If ever the locking in lock_rename() changes, then please
2696  * remember to update this too...
2697  */
2698 static struct dentry *__d_unalias(struct inode *inode,
2699 		struct dentry *dentry, struct dentry *alias)
2700 {
2701 	struct mutex *m1 = NULL, *m2 = NULL;
2702 	struct dentry *ret = ERR_PTR(-EBUSY);
2703 
2704 	/* If alias and dentry share a parent, then no extra locks required */
2705 	if (alias->d_parent == dentry->d_parent)
2706 		goto out_unalias;
2707 
2708 	/* See lock_rename() */
2709 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2710 		goto out_err;
2711 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2712 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2713 		goto out_err;
2714 	m2 = &alias->d_parent->d_inode->i_mutex;
2715 out_unalias:
2716 	if (likely(!d_mountpoint(alias))) {
2717 		__d_move(alias, dentry);
2718 		ret = alias;
2719 	}
2720 out_err:
2721 	spin_unlock(&inode->i_lock);
2722 	if (m2)
2723 		mutex_unlock(m2);
2724 	if (m1)
2725 		mutex_unlock(m1);
2726 	return ret;
2727 }
2728 
2729 /*
2730  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2731  * named dentry in place of the dentry to be replaced.
2732  * returns with anon->d_lock held!
2733  */
2734 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2735 {
2736 	struct dentry *dparent;
2737 
2738 	dentry_lock_for_move(anon, dentry);
2739 
2740 	write_seqcount_begin(&dentry->d_seq);
2741 	write_seqcount_begin_nested(&anon->d_seq, DENTRY_D_LOCK_NESTED);
2742 
2743 	dparent = dentry->d_parent;
2744 
2745 	switch_names(dentry, anon);
2746 	swap(dentry->d_name.hash, anon->d_name.hash);
2747 
2748 	dentry->d_parent = dentry;
2749 	list_del_init(&dentry->d_u.d_child);
2750 	anon->d_parent = dparent;
2751 	list_move(&anon->d_u.d_child, &dparent->d_subdirs);
2752 
2753 	write_seqcount_end(&dentry->d_seq);
2754 	write_seqcount_end(&anon->d_seq);
2755 
2756 	dentry_unlock_parents_for_move(anon, dentry);
2757 	spin_unlock(&dentry->d_lock);
2758 
2759 	/* anon->d_lock still locked, returns locked */
2760 }
2761 
2762 /**
2763  * d_materialise_unique - introduce an inode into the tree
2764  * @dentry: candidate dentry
2765  * @inode: inode to bind to the dentry, to which aliases may be attached
2766  *
2767  * Introduces an dentry into the tree, substituting an extant disconnected
2768  * root directory alias in its place if there is one. Caller must hold the
2769  * i_mutex of the parent directory.
2770  */
2771 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2772 {
2773 	struct dentry *actual;
2774 
2775 	BUG_ON(!d_unhashed(dentry));
2776 
2777 	if (!inode) {
2778 		actual = dentry;
2779 		__d_instantiate(dentry, NULL);
2780 		d_rehash(actual);
2781 		goto out_nolock;
2782 	}
2783 
2784 	spin_lock(&inode->i_lock);
2785 
2786 	if (S_ISDIR(inode->i_mode)) {
2787 		struct dentry *alias;
2788 
2789 		/* Does an aliased dentry already exist? */
2790 		alias = __d_find_alias(inode, 0);
2791 		if (alias) {
2792 			actual = alias;
2793 			write_seqlock(&rename_lock);
2794 
2795 			if (d_ancestor(alias, dentry)) {
2796 				/* Check for loops */
2797 				actual = ERR_PTR(-ELOOP);
2798 				spin_unlock(&inode->i_lock);
2799 			} else if (IS_ROOT(alias)) {
2800 				/* Is this an anonymous mountpoint that we
2801 				 * could splice into our tree? */
2802 				__d_materialise_dentry(dentry, alias);
2803 				write_sequnlock(&rename_lock);
2804 				__d_drop(alias);
2805 				goto found;
2806 			} else {
2807 				/* Nope, but we must(!) avoid directory
2808 				 * aliasing. This drops inode->i_lock */
2809 				actual = __d_unalias(inode, dentry, alias);
2810 			}
2811 			write_sequnlock(&rename_lock);
2812 			if (IS_ERR(actual)) {
2813 				if (PTR_ERR(actual) == -ELOOP)
2814 					pr_warn_ratelimited(
2815 						"VFS: Lookup of '%s' in %s %s"
2816 						" would have caused loop\n",
2817 						dentry->d_name.name,
2818 						inode->i_sb->s_type->name,
2819 						inode->i_sb->s_id);
2820 				dput(alias);
2821 			}
2822 			goto out_nolock;
2823 		}
2824 	}
2825 
2826 	/* Add a unique reference */
2827 	actual = __d_instantiate_unique(dentry, inode);
2828 	if (!actual)
2829 		actual = dentry;
2830 	else
2831 		BUG_ON(!d_unhashed(actual));
2832 
2833 	spin_lock(&actual->d_lock);
2834 found:
2835 	_d_rehash(actual);
2836 	spin_unlock(&actual->d_lock);
2837 	spin_unlock(&inode->i_lock);
2838 out_nolock:
2839 	if (actual == dentry) {
2840 		security_d_instantiate(dentry, inode);
2841 		return NULL;
2842 	}
2843 
2844 	iput(inode);
2845 	return actual;
2846 }
2847 EXPORT_SYMBOL_GPL(d_materialise_unique);
2848 
2849 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2850 {
2851 	*buflen -= namelen;
2852 	if (*buflen < 0)
2853 		return -ENAMETOOLONG;
2854 	*buffer -= namelen;
2855 	memcpy(*buffer, str, namelen);
2856 	return 0;
2857 }
2858 
2859 /**
2860  * prepend_name - prepend a pathname in front of current buffer pointer
2861  * @buffer: buffer pointer
2862  * @buflen: allocated length of the buffer
2863  * @name:   name string and length qstr structure
2864  *
2865  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2866  * make sure that either the old or the new name pointer and length are
2867  * fetched. However, there may be mismatch between length and pointer.
2868  * The length cannot be trusted, we need to copy it byte-by-byte until
2869  * the length is reached or a null byte is found. It also prepends "/" at
2870  * the beginning of the name. The sequence number check at the caller will
2871  * retry it again when a d_move() does happen. So any garbage in the buffer
2872  * due to mismatched pointer and length will be discarded.
2873  */
2874 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2875 {
2876 	const char *dname = ACCESS_ONCE(name->name);
2877 	u32 dlen = ACCESS_ONCE(name->len);
2878 	char *p;
2879 
2880 	if (*buflen < dlen + 1)
2881 		return -ENAMETOOLONG;
2882 	*buflen -= dlen + 1;
2883 	p = *buffer -= dlen + 1;
2884 	*p++ = '/';
2885 	while (dlen--) {
2886 		char c = *dname++;
2887 		if (!c)
2888 			break;
2889 		*p++ = c;
2890 	}
2891 	return 0;
2892 }
2893 
2894 /**
2895  * prepend_path - Prepend path string to a buffer
2896  * @path: the dentry/vfsmount to report
2897  * @root: root vfsmnt/dentry
2898  * @buffer: pointer to the end of the buffer
2899  * @buflen: pointer to buffer length
2900  *
2901  * The function will first try to write out the pathname without taking any
2902  * lock other than the RCU read lock to make sure that dentries won't go away.
2903  * It only checks the sequence number of the global rename_lock as any change
2904  * in the dentry's d_seq will be preceded by changes in the rename_lock
2905  * sequence number. If the sequence number had been changed, it will restart
2906  * the whole pathname back-tracing sequence again by taking the rename_lock.
2907  * In this case, there is no need to take the RCU read lock as the recursive
2908  * parent pointer references will keep the dentry chain alive as long as no
2909  * rename operation is performed.
2910  */
2911 static int prepend_path(const struct path *path,
2912 			const struct path *root,
2913 			char **buffer, int *buflen)
2914 {
2915 	struct dentry *dentry;
2916 	struct vfsmount *vfsmnt;
2917 	struct mount *mnt;
2918 	int error = 0;
2919 	unsigned seq, m_seq = 0;
2920 	char *bptr;
2921 	int blen;
2922 
2923 	rcu_read_lock();
2924 restart_mnt:
2925 	read_seqbegin_or_lock(&mount_lock, &m_seq);
2926 	seq = 0;
2927 	rcu_read_lock();
2928 restart:
2929 	bptr = *buffer;
2930 	blen = *buflen;
2931 	error = 0;
2932 	dentry = path->dentry;
2933 	vfsmnt = path->mnt;
2934 	mnt = real_mount(vfsmnt);
2935 	read_seqbegin_or_lock(&rename_lock, &seq);
2936 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2937 		struct dentry * parent;
2938 
2939 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2940 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
2941 			/* Global root? */
2942 			if (mnt != parent) {
2943 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
2944 				mnt = parent;
2945 				vfsmnt = &mnt->mnt;
2946 				continue;
2947 			}
2948 			/*
2949 			 * Filesystems needing to implement special "root names"
2950 			 * should do so with ->d_dname()
2951 			 */
2952 			if (IS_ROOT(dentry) &&
2953 			   (dentry->d_name.len != 1 ||
2954 			    dentry->d_name.name[0] != '/')) {
2955 				WARN(1, "Root dentry has weird name <%.*s>\n",
2956 				     (int) dentry->d_name.len,
2957 				     dentry->d_name.name);
2958 			}
2959 			if (!error)
2960 				error = is_mounted(vfsmnt) ? 1 : 2;
2961 			break;
2962 		}
2963 		parent = dentry->d_parent;
2964 		prefetch(parent);
2965 		error = prepend_name(&bptr, &blen, &dentry->d_name);
2966 		if (error)
2967 			break;
2968 
2969 		dentry = parent;
2970 	}
2971 	if (!(seq & 1))
2972 		rcu_read_unlock();
2973 	if (need_seqretry(&rename_lock, seq)) {
2974 		seq = 1;
2975 		goto restart;
2976 	}
2977 	done_seqretry(&rename_lock, seq);
2978 
2979 	if (!(m_seq & 1))
2980 		rcu_read_unlock();
2981 	if (need_seqretry(&mount_lock, m_seq)) {
2982 		m_seq = 1;
2983 		goto restart_mnt;
2984 	}
2985 	done_seqretry(&mount_lock, m_seq);
2986 
2987 	if (error >= 0 && bptr == *buffer) {
2988 		if (--blen < 0)
2989 			error = -ENAMETOOLONG;
2990 		else
2991 			*--bptr = '/';
2992 	}
2993 	*buffer = bptr;
2994 	*buflen = blen;
2995 	return error;
2996 }
2997 
2998 /**
2999  * __d_path - return the path of a dentry
3000  * @path: the dentry/vfsmount to report
3001  * @root: root vfsmnt/dentry
3002  * @buf: buffer to return value in
3003  * @buflen: buffer length
3004  *
3005  * Convert a dentry into an ASCII path name.
3006  *
3007  * Returns a pointer into the buffer or an error code if the
3008  * path was too long.
3009  *
3010  * "buflen" should be positive.
3011  *
3012  * If the path is not reachable from the supplied root, return %NULL.
3013  */
3014 char *__d_path(const struct path *path,
3015 	       const struct path *root,
3016 	       char *buf, int buflen)
3017 {
3018 	char *res = buf + buflen;
3019 	int error;
3020 
3021 	prepend(&res, &buflen, "\0", 1);
3022 	error = prepend_path(path, root, &res, &buflen);
3023 
3024 	if (error < 0)
3025 		return ERR_PTR(error);
3026 	if (error > 0)
3027 		return NULL;
3028 	return res;
3029 }
3030 
3031 char *d_absolute_path(const struct path *path,
3032 	       char *buf, int buflen)
3033 {
3034 	struct path root = {};
3035 	char *res = buf + buflen;
3036 	int error;
3037 
3038 	prepend(&res, &buflen, "\0", 1);
3039 	error = prepend_path(path, &root, &res, &buflen);
3040 
3041 	if (error > 1)
3042 		error = -EINVAL;
3043 	if (error < 0)
3044 		return ERR_PTR(error);
3045 	return res;
3046 }
3047 
3048 /*
3049  * same as __d_path but appends "(deleted)" for unlinked files.
3050  */
3051 static int path_with_deleted(const struct path *path,
3052 			     const struct path *root,
3053 			     char **buf, int *buflen)
3054 {
3055 	prepend(buf, buflen, "\0", 1);
3056 	if (d_unlinked(path->dentry)) {
3057 		int error = prepend(buf, buflen, " (deleted)", 10);
3058 		if (error)
3059 			return error;
3060 	}
3061 
3062 	return prepend_path(path, root, buf, buflen);
3063 }
3064 
3065 static int prepend_unreachable(char **buffer, int *buflen)
3066 {
3067 	return prepend(buffer, buflen, "(unreachable)", 13);
3068 }
3069 
3070 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3071 {
3072 	unsigned seq;
3073 
3074 	do {
3075 		seq = read_seqcount_begin(&fs->seq);
3076 		*root = fs->root;
3077 	} while (read_seqcount_retry(&fs->seq, seq));
3078 }
3079 
3080 /**
3081  * d_path - return the path of a dentry
3082  * @path: path to report
3083  * @buf: buffer to return value in
3084  * @buflen: buffer length
3085  *
3086  * Convert a dentry into an ASCII path name. If the entry has been deleted
3087  * the string " (deleted)" is appended. Note that this is ambiguous.
3088  *
3089  * Returns a pointer into the buffer or an error code if the path was
3090  * too long. Note: Callers should use the returned pointer, not the passed
3091  * in buffer, to use the name! The implementation often starts at an offset
3092  * into the buffer, and may leave 0 bytes at the start.
3093  *
3094  * "buflen" should be positive.
3095  */
3096 char *d_path(const struct path *path, char *buf, int buflen)
3097 {
3098 	char *res = buf + buflen;
3099 	struct path root;
3100 	int error;
3101 
3102 	/*
3103 	 * We have various synthetic filesystems that never get mounted.  On
3104 	 * these filesystems dentries are never used for lookup purposes, and
3105 	 * thus don't need to be hashed.  They also don't need a name until a
3106 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3107 	 * below allows us to generate a name for these objects on demand:
3108 	 */
3109 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
3110 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3111 
3112 	rcu_read_lock();
3113 	get_fs_root_rcu(current->fs, &root);
3114 	error = path_with_deleted(path, &root, &res, &buflen);
3115 	rcu_read_unlock();
3116 
3117 	if (error < 0)
3118 		res = ERR_PTR(error);
3119 	return res;
3120 }
3121 EXPORT_SYMBOL(d_path);
3122 
3123 /*
3124  * Helper function for dentry_operations.d_dname() members
3125  */
3126 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3127 			const char *fmt, ...)
3128 {
3129 	va_list args;
3130 	char temp[64];
3131 	int sz;
3132 
3133 	va_start(args, fmt);
3134 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3135 	va_end(args);
3136 
3137 	if (sz > sizeof(temp) || sz > buflen)
3138 		return ERR_PTR(-ENAMETOOLONG);
3139 
3140 	buffer += buflen - sz;
3141 	return memcpy(buffer, temp, sz);
3142 }
3143 
3144 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3145 {
3146 	char *end = buffer + buflen;
3147 	/* these dentries are never renamed, so d_lock is not needed */
3148 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3149 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3150 	    prepend(&end, &buflen, "/", 1))
3151 		end = ERR_PTR(-ENAMETOOLONG);
3152 	return end;
3153 }
3154 
3155 /*
3156  * Write full pathname from the root of the filesystem into the buffer.
3157  */
3158 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
3159 {
3160 	char *end, *retval;
3161 	int len, seq = 0;
3162 	int error = 0;
3163 
3164 	rcu_read_lock();
3165 restart:
3166 	end = buf + buflen;
3167 	len = buflen;
3168 	prepend(&end, &len, "\0", 1);
3169 	if (buflen < 1)
3170 		goto Elong;
3171 	/* Get '/' right */
3172 	retval = end-1;
3173 	*retval = '/';
3174 	read_seqbegin_or_lock(&rename_lock, &seq);
3175 	while (!IS_ROOT(dentry)) {
3176 		struct dentry *parent = dentry->d_parent;
3177 		int error;
3178 
3179 		prefetch(parent);
3180 		error = prepend_name(&end, &len, &dentry->d_name);
3181 		if (error)
3182 			break;
3183 
3184 		retval = end;
3185 		dentry = parent;
3186 	}
3187 	if (!(seq & 1))
3188 		rcu_read_unlock();
3189 	if (need_seqretry(&rename_lock, seq)) {
3190 		seq = 1;
3191 		goto restart;
3192 	}
3193 	done_seqretry(&rename_lock, seq);
3194 	if (error)
3195 		goto Elong;
3196 	return retval;
3197 Elong:
3198 	return ERR_PTR(-ENAMETOOLONG);
3199 }
3200 
3201 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3202 {
3203 	return __dentry_path(dentry, buf, buflen);
3204 }
3205 EXPORT_SYMBOL(dentry_path_raw);
3206 
3207 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3208 {
3209 	char *p = NULL;
3210 	char *retval;
3211 
3212 	if (d_unlinked(dentry)) {
3213 		p = buf + buflen;
3214 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3215 			goto Elong;
3216 		buflen++;
3217 	}
3218 	retval = __dentry_path(dentry, buf, buflen);
3219 	if (!IS_ERR(retval) && p)
3220 		*p = '/';	/* restore '/' overriden with '\0' */
3221 	return retval;
3222 Elong:
3223 	return ERR_PTR(-ENAMETOOLONG);
3224 }
3225 
3226 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3227 				    struct path *pwd)
3228 {
3229 	unsigned seq;
3230 
3231 	do {
3232 		seq = read_seqcount_begin(&fs->seq);
3233 		*root = fs->root;
3234 		*pwd = fs->pwd;
3235 	} while (read_seqcount_retry(&fs->seq, seq));
3236 }
3237 
3238 /*
3239  * NOTE! The user-level library version returns a
3240  * character pointer. The kernel system call just
3241  * returns the length of the buffer filled (which
3242  * includes the ending '\0' character), or a negative
3243  * error value. So libc would do something like
3244  *
3245  *	char *getcwd(char * buf, size_t size)
3246  *	{
3247  *		int retval;
3248  *
3249  *		retval = sys_getcwd(buf, size);
3250  *		if (retval >= 0)
3251  *			return buf;
3252  *		errno = -retval;
3253  *		return NULL;
3254  *	}
3255  */
3256 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3257 {
3258 	int error;
3259 	struct path pwd, root;
3260 	char *page = __getname();
3261 
3262 	if (!page)
3263 		return -ENOMEM;
3264 
3265 	rcu_read_lock();
3266 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3267 
3268 	error = -ENOENT;
3269 	if (!d_unlinked(pwd.dentry)) {
3270 		unsigned long len;
3271 		char *cwd = page + PATH_MAX;
3272 		int buflen = PATH_MAX;
3273 
3274 		prepend(&cwd, &buflen, "\0", 1);
3275 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3276 		rcu_read_unlock();
3277 
3278 		if (error < 0)
3279 			goto out;
3280 
3281 		/* Unreachable from current root */
3282 		if (error > 0) {
3283 			error = prepend_unreachable(&cwd, &buflen);
3284 			if (error)
3285 				goto out;
3286 		}
3287 
3288 		error = -ERANGE;
3289 		len = PATH_MAX + page - cwd;
3290 		if (len <= size) {
3291 			error = len;
3292 			if (copy_to_user(buf, cwd, len))
3293 				error = -EFAULT;
3294 		}
3295 	} else {
3296 		rcu_read_unlock();
3297 	}
3298 
3299 out:
3300 	__putname(page);
3301 	return error;
3302 }
3303 
3304 /*
3305  * Test whether new_dentry is a subdirectory of old_dentry.
3306  *
3307  * Trivially implemented using the dcache structure
3308  */
3309 
3310 /**
3311  * is_subdir - is new dentry a subdirectory of old_dentry
3312  * @new_dentry: new dentry
3313  * @old_dentry: old dentry
3314  *
3315  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3316  * Returns 0 otherwise.
3317  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3318  */
3319 
3320 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3321 {
3322 	int result;
3323 	unsigned seq;
3324 
3325 	if (new_dentry == old_dentry)
3326 		return 1;
3327 
3328 	do {
3329 		/* for restarting inner loop in case of seq retry */
3330 		seq = read_seqbegin(&rename_lock);
3331 		/*
3332 		 * Need rcu_readlock to protect against the d_parent trashing
3333 		 * due to d_move
3334 		 */
3335 		rcu_read_lock();
3336 		if (d_ancestor(old_dentry, new_dentry))
3337 			result = 1;
3338 		else
3339 			result = 0;
3340 		rcu_read_unlock();
3341 	} while (read_seqretry(&rename_lock, seq));
3342 
3343 	return result;
3344 }
3345 
3346 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3347 {
3348 	struct dentry *root = data;
3349 	if (dentry != root) {
3350 		if (d_unhashed(dentry) || !dentry->d_inode)
3351 			return D_WALK_SKIP;
3352 
3353 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3354 			dentry->d_flags |= DCACHE_GENOCIDE;
3355 			dentry->d_lockref.count--;
3356 		}
3357 	}
3358 	return D_WALK_CONTINUE;
3359 }
3360 
3361 void d_genocide(struct dentry *parent)
3362 {
3363 	d_walk(parent, parent, d_genocide_kill, NULL);
3364 }
3365 
3366 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3367 {
3368 	inode_dec_link_count(inode);
3369 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3370 		!hlist_unhashed(&dentry->d_alias) ||
3371 		!d_unlinked(dentry));
3372 	spin_lock(&dentry->d_parent->d_lock);
3373 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3374 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3375 				(unsigned long long)inode->i_ino);
3376 	spin_unlock(&dentry->d_lock);
3377 	spin_unlock(&dentry->d_parent->d_lock);
3378 	d_instantiate(dentry, inode);
3379 }
3380 EXPORT_SYMBOL(d_tmpfile);
3381 
3382 static __initdata unsigned long dhash_entries;
3383 static int __init set_dhash_entries(char *str)
3384 {
3385 	if (!str)
3386 		return 0;
3387 	dhash_entries = simple_strtoul(str, &str, 0);
3388 	return 1;
3389 }
3390 __setup("dhash_entries=", set_dhash_entries);
3391 
3392 static void __init dcache_init_early(void)
3393 {
3394 	unsigned int loop;
3395 
3396 	/* If hashes are distributed across NUMA nodes, defer
3397 	 * hash allocation until vmalloc space is available.
3398 	 */
3399 	if (hashdist)
3400 		return;
3401 
3402 	dentry_hashtable =
3403 		alloc_large_system_hash("Dentry cache",
3404 					sizeof(struct hlist_bl_head),
3405 					dhash_entries,
3406 					13,
3407 					HASH_EARLY,
3408 					&d_hash_shift,
3409 					&d_hash_mask,
3410 					0,
3411 					0);
3412 
3413 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3414 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3415 }
3416 
3417 static void __init dcache_init(void)
3418 {
3419 	unsigned int loop;
3420 
3421 	/*
3422 	 * A constructor could be added for stable state like the lists,
3423 	 * but it is probably not worth it because of the cache nature
3424 	 * of the dcache.
3425 	 */
3426 	dentry_cache = KMEM_CACHE(dentry,
3427 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3428 
3429 	/* Hash may have been set up in dcache_init_early */
3430 	if (!hashdist)
3431 		return;
3432 
3433 	dentry_hashtable =
3434 		alloc_large_system_hash("Dentry cache",
3435 					sizeof(struct hlist_bl_head),
3436 					dhash_entries,
3437 					13,
3438 					0,
3439 					&d_hash_shift,
3440 					&d_hash_mask,
3441 					0,
3442 					0);
3443 
3444 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3445 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3446 }
3447 
3448 /* SLAB cache for __getname() consumers */
3449 struct kmem_cache *names_cachep __read_mostly;
3450 EXPORT_SYMBOL(names_cachep);
3451 
3452 EXPORT_SYMBOL(d_genocide);
3453 
3454 void __init vfs_caches_init_early(void)
3455 {
3456 	dcache_init_early();
3457 	inode_init_early();
3458 }
3459 
3460 void __init vfs_caches_init(unsigned long mempages)
3461 {
3462 	unsigned long reserve;
3463 
3464 	/* Base hash sizes on available memory, with a reserve equal to
3465            150% of current kernel size */
3466 
3467 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3468 	mempages -= reserve;
3469 
3470 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3471 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3472 
3473 	dcache_init();
3474 	inode_init();
3475 	files_init(mempages);
3476 	mnt_init();
3477 	bdev_cache_init();
3478 	chrdev_init();
3479 }
3480