xref: /linux/fs/dcache.c (revision 3ff78451b8e446e9a548b98a0d4dd8d24dc5780b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_chilren
55  *   - childrens' d_sib and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __ro_after_init;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 const struct qstr dotdot_name = QSTR_INIT("..", 2);
88 EXPORT_SYMBOL(dotdot_name);
89 
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98 
99 static unsigned int d_hash_shift __ro_after_init;
100 
101 static struct hlist_bl_head *dentry_hashtable __ro_after_init;
102 
103 static inline struct hlist_bl_head *d_hash(unsigned int hash)
104 {
105 	return dentry_hashtable + (hash >> d_hash_shift);
106 }
107 
108 #define IN_LOOKUP_SHIFT 10
109 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
110 
111 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
112 					unsigned int hash)
113 {
114 	hash += (unsigned long) parent / L1_CACHE_BYTES;
115 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
116 }
117 
118 struct dentry_stat_t {
119 	long nr_dentry;
120 	long nr_unused;
121 	long age_limit;		/* age in seconds */
122 	long want_pages;	/* pages requested by system */
123 	long nr_negative;	/* # of unused negative dentries */
124 	long dummy;		/* Reserved for future use */
125 };
126 
127 static DEFINE_PER_CPU(long, nr_dentry);
128 static DEFINE_PER_CPU(long, nr_dentry_unused);
129 static DEFINE_PER_CPU(long, nr_dentry_negative);
130 
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
132 /* Statistics gathering. */
133 static struct dentry_stat_t dentry_stat = {
134 	.age_limit = 45,
135 };
136 
137 /*
138  * Here we resort to our own counters instead of using generic per-cpu counters
139  * for consistency with what the vfs inode code does. We are expected to harvest
140  * better code and performance by having our own specialized counters.
141  *
142  * Please note that the loop is done over all possible CPUs, not over all online
143  * CPUs. The reason for this is that we don't want to play games with CPUs going
144  * on and off. If one of them goes off, we will just keep their counters.
145  *
146  * glommer: See cffbc8a for details, and if you ever intend to change this,
147  * please update all vfs counters to match.
148  */
149 static long get_nr_dentry(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_unused(void)
159 {
160 	int i;
161 	long sum = 0;
162 	for_each_possible_cpu(i)
163 		sum += per_cpu(nr_dentry_unused, i);
164 	return sum < 0 ? 0 : sum;
165 }
166 
167 static long get_nr_dentry_negative(void)
168 {
169 	int i;
170 	long sum = 0;
171 
172 	for_each_possible_cpu(i)
173 		sum += per_cpu(nr_dentry_negative, i);
174 	return sum < 0 ? 0 : sum;
175 }
176 
177 static int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
178 			  size_t *lenp, loff_t *ppos)
179 {
180 	dentry_stat.nr_dentry = get_nr_dentry();
181 	dentry_stat.nr_unused = get_nr_dentry_unused();
182 	dentry_stat.nr_negative = get_nr_dentry_negative();
183 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
184 }
185 
186 static struct ctl_table fs_dcache_sysctls[] = {
187 	{
188 		.procname	= "dentry-state",
189 		.data		= &dentry_stat,
190 		.maxlen		= 6*sizeof(long),
191 		.mode		= 0444,
192 		.proc_handler	= proc_nr_dentry,
193 	},
194 };
195 
196 static int __init init_fs_dcache_sysctls(void)
197 {
198 	register_sysctl_init("fs", fs_dcache_sysctls);
199 	return 0;
200 }
201 fs_initcall(init_fs_dcache_sysctls);
202 #endif
203 
204 /*
205  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
206  * The strings are both count bytes long, and count is non-zero.
207  */
208 #ifdef CONFIG_DCACHE_WORD_ACCESS
209 
210 #include <asm/word-at-a-time.h>
211 /*
212  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
213  * aligned allocation for this particular component. We don't
214  * strictly need the load_unaligned_zeropad() safety, but it
215  * doesn't hurt either.
216  *
217  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
218  * need the careful unaligned handling.
219  */
220 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
221 {
222 	unsigned long a,b,mask;
223 
224 	for (;;) {
225 		a = read_word_at_a_time(cs);
226 		b = load_unaligned_zeropad(ct);
227 		if (tcount < sizeof(unsigned long))
228 			break;
229 		if (unlikely(a != b))
230 			return 1;
231 		cs += sizeof(unsigned long);
232 		ct += sizeof(unsigned long);
233 		tcount -= sizeof(unsigned long);
234 		if (!tcount)
235 			return 0;
236 	}
237 	mask = bytemask_from_count(tcount);
238 	return unlikely(!!((a ^ b) & mask));
239 }
240 
241 #else
242 
243 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
244 {
245 	do {
246 		if (*cs != *ct)
247 			return 1;
248 		cs++;
249 		ct++;
250 		tcount--;
251 	} while (tcount);
252 	return 0;
253 }
254 
255 #endif
256 
257 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
258 {
259 	/*
260 	 * Be careful about RCU walk racing with rename:
261 	 * use 'READ_ONCE' to fetch the name pointer.
262 	 *
263 	 * NOTE! Even if a rename will mean that the length
264 	 * was not loaded atomically, we don't care. The
265 	 * RCU walk will check the sequence count eventually,
266 	 * and catch it. And we won't overrun the buffer,
267 	 * because we're reading the name pointer atomically,
268 	 * and a dentry name is guaranteed to be properly
269 	 * terminated with a NUL byte.
270 	 *
271 	 * End result: even if 'len' is wrong, we'll exit
272 	 * early because the data cannot match (there can
273 	 * be no NUL in the ct/tcount data)
274 	 */
275 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
276 
277 	return dentry_string_cmp(cs, ct, tcount);
278 }
279 
280 struct external_name {
281 	union {
282 		atomic_t count;
283 		struct rcu_head head;
284 	} u;
285 	unsigned char name[];
286 };
287 
288 static inline struct external_name *external_name(struct dentry *dentry)
289 {
290 	return container_of(dentry->d_name.name, struct external_name, name[0]);
291 }
292 
293 static void __d_free(struct rcu_head *head)
294 {
295 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
296 
297 	kmem_cache_free(dentry_cache, dentry);
298 }
299 
300 static void __d_free_external(struct rcu_head *head)
301 {
302 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
303 	kfree(external_name(dentry));
304 	kmem_cache_free(dentry_cache, dentry);
305 }
306 
307 static inline int dname_external(const struct dentry *dentry)
308 {
309 	return dentry->d_name.name != dentry->d_iname;
310 }
311 
312 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
313 {
314 	spin_lock(&dentry->d_lock);
315 	name->name = dentry->d_name;
316 	if (unlikely(dname_external(dentry))) {
317 		atomic_inc(&external_name(dentry)->u.count);
318 	} else {
319 		memcpy(name->inline_name, dentry->d_iname,
320 		       dentry->d_name.len + 1);
321 		name->name.name = name->inline_name;
322 	}
323 	spin_unlock(&dentry->d_lock);
324 }
325 EXPORT_SYMBOL(take_dentry_name_snapshot);
326 
327 void release_dentry_name_snapshot(struct name_snapshot *name)
328 {
329 	if (unlikely(name->name.name != name->inline_name)) {
330 		struct external_name *p;
331 		p = container_of(name->name.name, struct external_name, name[0]);
332 		if (unlikely(atomic_dec_and_test(&p->u.count)))
333 			kfree_rcu(p, u.head);
334 	}
335 }
336 EXPORT_SYMBOL(release_dentry_name_snapshot);
337 
338 static inline void __d_set_inode_and_type(struct dentry *dentry,
339 					  struct inode *inode,
340 					  unsigned type_flags)
341 {
342 	unsigned flags;
343 
344 	dentry->d_inode = inode;
345 	flags = READ_ONCE(dentry->d_flags);
346 	flags &= ~DCACHE_ENTRY_TYPE;
347 	flags |= type_flags;
348 	smp_store_release(&dentry->d_flags, flags);
349 }
350 
351 static inline void __d_clear_type_and_inode(struct dentry *dentry)
352 {
353 	unsigned flags = READ_ONCE(dentry->d_flags);
354 
355 	flags &= ~DCACHE_ENTRY_TYPE;
356 	WRITE_ONCE(dentry->d_flags, flags);
357 	dentry->d_inode = NULL;
358 	if (flags & DCACHE_LRU_LIST)
359 		this_cpu_inc(nr_dentry_negative);
360 }
361 
362 static void dentry_free(struct dentry *dentry)
363 {
364 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
365 	if (unlikely(dname_external(dentry))) {
366 		struct external_name *p = external_name(dentry);
367 		if (likely(atomic_dec_and_test(&p->u.count))) {
368 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
369 			return;
370 		}
371 	}
372 	/* if dentry was never visible to RCU, immediate free is OK */
373 	if (dentry->d_flags & DCACHE_NORCU)
374 		__d_free(&dentry->d_u.d_rcu);
375 	else
376 		call_rcu(&dentry->d_u.d_rcu, __d_free);
377 }
378 
379 /*
380  * Release the dentry's inode, using the filesystem
381  * d_iput() operation if defined.
382  */
383 static void dentry_unlink_inode(struct dentry * dentry)
384 	__releases(dentry->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	struct inode *inode = dentry->d_inode;
388 
389 	raw_write_seqcount_begin(&dentry->d_seq);
390 	__d_clear_type_and_inode(dentry);
391 	hlist_del_init(&dentry->d_u.d_alias);
392 	raw_write_seqcount_end(&dentry->d_seq);
393 	spin_unlock(&dentry->d_lock);
394 	spin_unlock(&inode->i_lock);
395 	if (!inode->i_nlink)
396 		fsnotify_inoderemove(inode);
397 	if (dentry->d_op && dentry->d_op->d_iput)
398 		dentry->d_op->d_iput(dentry, inode);
399 	else
400 		iput(inode);
401 }
402 
403 /*
404  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
405  * is in use - which includes both the "real" per-superblock
406  * LRU list _and_ the DCACHE_SHRINK_LIST use.
407  *
408  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
409  * on the shrink list (ie not on the superblock LRU list).
410  *
411  * The per-cpu "nr_dentry_unused" counters are updated with
412  * the DCACHE_LRU_LIST bit.
413  *
414  * The per-cpu "nr_dentry_negative" counters are only updated
415  * when deleted from or added to the per-superblock LRU list, not
416  * from/to the shrink list. That is to avoid an unneeded dec/inc
417  * pair when moving from LRU to shrink list in select_collect().
418  *
419  * These helper functions make sure we always follow the
420  * rules. d_lock must be held by the caller.
421  */
422 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
423 static void d_lru_add(struct dentry *dentry)
424 {
425 	D_FLAG_VERIFY(dentry, 0);
426 	dentry->d_flags |= DCACHE_LRU_LIST;
427 	this_cpu_inc(nr_dentry_unused);
428 	if (d_is_negative(dentry))
429 		this_cpu_inc(nr_dentry_negative);
430 	WARN_ON_ONCE(!list_lru_add_obj(
431 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
432 }
433 
434 static void d_lru_del(struct dentry *dentry)
435 {
436 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
437 	dentry->d_flags &= ~DCACHE_LRU_LIST;
438 	this_cpu_dec(nr_dentry_unused);
439 	if (d_is_negative(dentry))
440 		this_cpu_dec(nr_dentry_negative);
441 	WARN_ON_ONCE(!list_lru_del_obj(
442 			&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
443 }
444 
445 static void d_shrink_del(struct dentry *dentry)
446 {
447 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
448 	list_del_init(&dentry->d_lru);
449 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
450 	this_cpu_dec(nr_dentry_unused);
451 }
452 
453 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
454 {
455 	D_FLAG_VERIFY(dentry, 0);
456 	list_add(&dentry->d_lru, list);
457 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
458 	this_cpu_inc(nr_dentry_unused);
459 }
460 
461 /*
462  * These can only be called under the global LRU lock, ie during the
463  * callback for freeing the LRU list. "isolate" removes it from the
464  * LRU lists entirely, while shrink_move moves it to the indicated
465  * private list.
466  */
467 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
468 {
469 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
470 	dentry->d_flags &= ~DCACHE_LRU_LIST;
471 	this_cpu_dec(nr_dentry_unused);
472 	if (d_is_negative(dentry))
473 		this_cpu_dec(nr_dentry_negative);
474 	list_lru_isolate(lru, &dentry->d_lru);
475 }
476 
477 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
478 			      struct list_head *list)
479 {
480 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
481 	dentry->d_flags |= DCACHE_SHRINK_LIST;
482 	if (d_is_negative(dentry))
483 		this_cpu_dec(nr_dentry_negative);
484 	list_lru_isolate_move(lru, &dentry->d_lru, list);
485 }
486 
487 static void ___d_drop(struct dentry *dentry)
488 {
489 	struct hlist_bl_head *b;
490 	/*
491 	 * Hashed dentries are normally on the dentry hashtable,
492 	 * with the exception of those newly allocated by
493 	 * d_obtain_root, which are always IS_ROOT:
494 	 */
495 	if (unlikely(IS_ROOT(dentry)))
496 		b = &dentry->d_sb->s_roots;
497 	else
498 		b = d_hash(dentry->d_name.hash);
499 
500 	hlist_bl_lock(b);
501 	__hlist_bl_del(&dentry->d_hash);
502 	hlist_bl_unlock(b);
503 }
504 
505 void __d_drop(struct dentry *dentry)
506 {
507 	if (!d_unhashed(dentry)) {
508 		___d_drop(dentry);
509 		dentry->d_hash.pprev = NULL;
510 		write_seqcount_invalidate(&dentry->d_seq);
511 	}
512 }
513 EXPORT_SYMBOL(__d_drop);
514 
515 /**
516  * d_drop - drop a dentry
517  * @dentry: dentry to drop
518  *
519  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
520  * be found through a VFS lookup any more. Note that this is different from
521  * deleting the dentry - d_delete will try to mark the dentry negative if
522  * possible, giving a successful _negative_ lookup, while d_drop will
523  * just make the cache lookup fail.
524  *
525  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
526  * reason (NFS timeouts or autofs deletes).
527  *
528  * __d_drop requires dentry->d_lock
529  *
530  * ___d_drop doesn't mark dentry as "unhashed"
531  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
532  */
533 void d_drop(struct dentry *dentry)
534 {
535 	spin_lock(&dentry->d_lock);
536 	__d_drop(dentry);
537 	spin_unlock(&dentry->d_lock);
538 }
539 EXPORT_SYMBOL(d_drop);
540 
541 static inline void dentry_unlist(struct dentry *dentry)
542 {
543 	struct dentry *next;
544 	/*
545 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
546 	 * attached to the dentry tree
547 	 */
548 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
549 	if (unlikely(hlist_unhashed(&dentry->d_sib)))
550 		return;
551 	__hlist_del(&dentry->d_sib);
552 	/*
553 	 * Cursors can move around the list of children.  While we'd been
554 	 * a normal list member, it didn't matter - ->d_sib.next would've
555 	 * been updated.  However, from now on it won't be and for the
556 	 * things like d_walk() it might end up with a nasty surprise.
557 	 * Normally d_walk() doesn't care about cursors moving around -
558 	 * ->d_lock on parent prevents that and since a cursor has no children
559 	 * of its own, we get through it without ever unlocking the parent.
560 	 * There is one exception, though - if we ascend from a child that
561 	 * gets killed as soon as we unlock it, the next sibling is found
562 	 * using the value left in its ->d_sib.next.  And if _that_
563 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
564 	 * before d_walk() regains parent->d_lock, we'll end up skipping
565 	 * everything the cursor had been moved past.
566 	 *
567 	 * Solution: make sure that the pointer left behind in ->d_sib.next
568 	 * points to something that won't be moving around.  I.e. skip the
569 	 * cursors.
570 	 */
571 	while (dentry->d_sib.next) {
572 		next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
573 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
574 			break;
575 		dentry->d_sib.next = next->d_sib.next;
576 	}
577 }
578 
579 static struct dentry *__dentry_kill(struct dentry *dentry)
580 {
581 	struct dentry *parent = NULL;
582 	bool can_free = true;
583 
584 	/*
585 	 * The dentry is now unrecoverably dead to the world.
586 	 */
587 	lockref_mark_dead(&dentry->d_lockref);
588 
589 	/*
590 	 * inform the fs via d_prune that this dentry is about to be
591 	 * unhashed and destroyed.
592 	 */
593 	if (dentry->d_flags & DCACHE_OP_PRUNE)
594 		dentry->d_op->d_prune(dentry);
595 
596 	if (dentry->d_flags & DCACHE_LRU_LIST) {
597 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
598 			d_lru_del(dentry);
599 	}
600 	/* if it was on the hash then remove it */
601 	__d_drop(dentry);
602 	if (dentry->d_inode)
603 		dentry_unlink_inode(dentry);
604 	else
605 		spin_unlock(&dentry->d_lock);
606 	this_cpu_dec(nr_dentry);
607 	if (dentry->d_op && dentry->d_op->d_release)
608 		dentry->d_op->d_release(dentry);
609 
610 	cond_resched();
611 	/* now that it's negative, ->d_parent is stable */
612 	if (!IS_ROOT(dentry)) {
613 		parent = dentry->d_parent;
614 		spin_lock(&parent->d_lock);
615 	}
616 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
617 	dentry_unlist(dentry);
618 	if (dentry->d_flags & DCACHE_SHRINK_LIST)
619 		can_free = false;
620 	spin_unlock(&dentry->d_lock);
621 	if (likely(can_free))
622 		dentry_free(dentry);
623 	if (parent && --parent->d_lockref.count) {
624 		spin_unlock(&parent->d_lock);
625 		return NULL;
626 	}
627 	return parent;
628 }
629 
630 /*
631  * Lock a dentry for feeding it to __dentry_kill().
632  * Called under rcu_read_lock() and dentry->d_lock; the former
633  * guarantees that nothing we access will be freed under us.
634  * Note that dentry is *not* protected from concurrent dentry_kill(),
635  * d_delete(), etc.
636  *
637  * Return false if dentry is busy.  Otherwise, return true and have
638  * that dentry's inode locked.
639  */
640 
641 static bool lock_for_kill(struct dentry *dentry)
642 {
643 	struct inode *inode = dentry->d_inode;
644 
645 	if (unlikely(dentry->d_lockref.count))
646 		return false;
647 
648 	if (!inode || likely(spin_trylock(&inode->i_lock)))
649 		return true;
650 
651 	do {
652 		spin_unlock(&dentry->d_lock);
653 		spin_lock(&inode->i_lock);
654 		spin_lock(&dentry->d_lock);
655 		if (likely(inode == dentry->d_inode))
656 			break;
657 		spin_unlock(&inode->i_lock);
658 		inode = dentry->d_inode;
659 	} while (inode);
660 	if (likely(!dentry->d_lockref.count))
661 		return true;
662 	if (inode)
663 		spin_unlock(&inode->i_lock);
664 	return false;
665 }
666 
667 /*
668  * Decide if dentry is worth retaining.  Usually this is called with dentry
669  * locked; if not locked, we are more limited and might not be able to tell
670  * without a lock.  False in this case means "punt to locked path and recheck".
671  *
672  * In case we aren't locked, these predicates are not "stable". However, it is
673  * sufficient that at some point after we dropped the reference the dentry was
674  * hashed and the flags had the proper value. Other dentry users may have
675  * re-gotten a reference to the dentry and change that, but our work is done -
676  * we can leave the dentry around with a zero refcount.
677  */
678 static inline bool retain_dentry(struct dentry *dentry, bool locked)
679 {
680 	unsigned int d_flags;
681 
682 	smp_rmb();
683 	d_flags = READ_ONCE(dentry->d_flags);
684 
685 	// Unreachable? Nobody would be able to look it up, no point retaining
686 	if (unlikely(d_unhashed(dentry)))
687 		return false;
688 
689 	// Same if it's disconnected
690 	if (unlikely(d_flags & DCACHE_DISCONNECTED))
691 		return false;
692 
693 	// ->d_delete() might tell us not to bother, but that requires
694 	// ->d_lock; can't decide without it
695 	if (unlikely(d_flags & DCACHE_OP_DELETE)) {
696 		if (!locked || dentry->d_op->d_delete(dentry))
697 			return false;
698 	}
699 
700 	// Explicitly told not to bother
701 	if (unlikely(d_flags & DCACHE_DONTCACHE))
702 		return false;
703 
704 	// At this point it looks like we ought to keep it.  We also might
705 	// need to do something - put it on LRU if it wasn't there already
706 	// and mark it referenced if it was on LRU, but not marked yet.
707 	// Unfortunately, both actions require ->d_lock, so in lockless
708 	// case we'd have to punt rather than doing those.
709 	if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
710 		if (!locked)
711 			return false;
712 		d_lru_add(dentry);
713 	} else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
714 		if (!locked)
715 			return false;
716 		dentry->d_flags |= DCACHE_REFERENCED;
717 	}
718 	return true;
719 }
720 
721 void d_mark_dontcache(struct inode *inode)
722 {
723 	struct dentry *de;
724 
725 	spin_lock(&inode->i_lock);
726 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
727 		spin_lock(&de->d_lock);
728 		de->d_flags |= DCACHE_DONTCACHE;
729 		spin_unlock(&de->d_lock);
730 	}
731 	inode->i_state |= I_DONTCACHE;
732 	spin_unlock(&inode->i_lock);
733 }
734 EXPORT_SYMBOL(d_mark_dontcache);
735 
736 /*
737  * Try to do a lockless dput(), and return whether that was successful.
738  *
739  * If unsuccessful, we return false, having already taken the dentry lock.
740  * In that case refcount is guaranteed to be zero and we have already
741  * decided that it's not worth keeping around.
742  *
743  * The caller needs to hold the RCU read lock, so that the dentry is
744  * guaranteed to stay around even if the refcount goes down to zero!
745  */
746 static inline bool fast_dput(struct dentry *dentry)
747 {
748 	int ret;
749 
750 	/*
751 	 * try to decrement the lockref optimistically.
752 	 */
753 	ret = lockref_put_return(&dentry->d_lockref);
754 
755 	/*
756 	 * If the lockref_put_return() failed due to the lock being held
757 	 * by somebody else, the fast path has failed. We will need to
758 	 * get the lock, and then check the count again.
759 	 */
760 	if (unlikely(ret < 0)) {
761 		spin_lock(&dentry->d_lock);
762 		if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
763 			spin_unlock(&dentry->d_lock);
764 			return true;
765 		}
766 		dentry->d_lockref.count--;
767 		goto locked;
768 	}
769 
770 	/*
771 	 * If we weren't the last ref, we're done.
772 	 */
773 	if (ret)
774 		return true;
775 
776 	/*
777 	 * Can we decide that decrement of refcount is all we needed without
778 	 * taking the lock?  There's a very common case when it's all we need -
779 	 * dentry looks like it ought to be retained and there's nothing else
780 	 * to do.
781 	 */
782 	if (retain_dentry(dentry, false))
783 		return true;
784 
785 	/*
786 	 * Either not worth retaining or we can't tell without the lock.
787 	 * Get the lock, then.  We've already decremented the refcount to 0,
788 	 * but we'll need to re-check the situation after getting the lock.
789 	 */
790 	spin_lock(&dentry->d_lock);
791 
792 	/*
793 	 * Did somebody else grab a reference to it in the meantime, and
794 	 * we're no longer the last user after all? Alternatively, somebody
795 	 * else could have killed it and marked it dead. Either way, we
796 	 * don't need to do anything else.
797 	 */
798 locked:
799 	if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
800 		spin_unlock(&dentry->d_lock);
801 		return true;
802 	}
803 	return false;
804 }
805 
806 
807 /*
808  * This is dput
809  *
810  * This is complicated by the fact that we do not want to put
811  * dentries that are no longer on any hash chain on the unused
812  * list: we'd much rather just get rid of them immediately.
813  *
814  * However, that implies that we have to traverse the dentry
815  * tree upwards to the parents which might _also_ now be
816  * scheduled for deletion (it may have been only waiting for
817  * its last child to go away).
818  *
819  * This tail recursion is done by hand as we don't want to depend
820  * on the compiler to always get this right (gcc generally doesn't).
821  * Real recursion would eat up our stack space.
822  */
823 
824 /*
825  * dput - release a dentry
826  * @dentry: dentry to release
827  *
828  * Release a dentry. This will drop the usage count and if appropriate
829  * call the dentry unlink method as well as removing it from the queues and
830  * releasing its resources. If the parent dentries were scheduled for release
831  * they too may now get deleted.
832  */
833 void dput(struct dentry *dentry)
834 {
835 	if (!dentry)
836 		return;
837 	might_sleep();
838 	rcu_read_lock();
839 	if (likely(fast_dput(dentry))) {
840 		rcu_read_unlock();
841 		return;
842 	}
843 	while (lock_for_kill(dentry)) {
844 		rcu_read_unlock();
845 		dentry = __dentry_kill(dentry);
846 		if (!dentry)
847 			return;
848 		if (retain_dentry(dentry, true)) {
849 			spin_unlock(&dentry->d_lock);
850 			return;
851 		}
852 		rcu_read_lock();
853 	}
854 	rcu_read_unlock();
855 	spin_unlock(&dentry->d_lock);
856 }
857 EXPORT_SYMBOL(dput);
858 
859 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
860 __must_hold(&dentry->d_lock)
861 {
862 	if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
863 		if (dentry->d_flags & DCACHE_LRU_LIST)
864 			d_lru_del(dentry);
865 		d_shrink_add(dentry, list);
866 	}
867 }
868 
869 void dput_to_list(struct dentry *dentry, struct list_head *list)
870 {
871 	rcu_read_lock();
872 	if (likely(fast_dput(dentry))) {
873 		rcu_read_unlock();
874 		return;
875 	}
876 	rcu_read_unlock();
877 	to_shrink_list(dentry, list);
878 	spin_unlock(&dentry->d_lock);
879 }
880 
881 struct dentry *dget_parent(struct dentry *dentry)
882 {
883 	int gotref;
884 	struct dentry *ret;
885 	unsigned seq;
886 
887 	/*
888 	 * Do optimistic parent lookup without any
889 	 * locking.
890 	 */
891 	rcu_read_lock();
892 	seq = raw_seqcount_begin(&dentry->d_seq);
893 	ret = READ_ONCE(dentry->d_parent);
894 	gotref = lockref_get_not_zero(&ret->d_lockref);
895 	rcu_read_unlock();
896 	if (likely(gotref)) {
897 		if (!read_seqcount_retry(&dentry->d_seq, seq))
898 			return ret;
899 		dput(ret);
900 	}
901 
902 repeat:
903 	/*
904 	 * Don't need rcu_dereference because we re-check it was correct under
905 	 * the lock.
906 	 */
907 	rcu_read_lock();
908 	ret = dentry->d_parent;
909 	spin_lock(&ret->d_lock);
910 	if (unlikely(ret != dentry->d_parent)) {
911 		spin_unlock(&ret->d_lock);
912 		rcu_read_unlock();
913 		goto repeat;
914 	}
915 	rcu_read_unlock();
916 	BUG_ON(!ret->d_lockref.count);
917 	ret->d_lockref.count++;
918 	spin_unlock(&ret->d_lock);
919 	return ret;
920 }
921 EXPORT_SYMBOL(dget_parent);
922 
923 static struct dentry * __d_find_any_alias(struct inode *inode)
924 {
925 	struct dentry *alias;
926 
927 	if (hlist_empty(&inode->i_dentry))
928 		return NULL;
929 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
930 	lockref_get(&alias->d_lockref);
931 	return alias;
932 }
933 
934 /**
935  * d_find_any_alias - find any alias for a given inode
936  * @inode: inode to find an alias for
937  *
938  * If any aliases exist for the given inode, take and return a
939  * reference for one of them.  If no aliases exist, return %NULL.
940  */
941 struct dentry *d_find_any_alias(struct inode *inode)
942 {
943 	struct dentry *de;
944 
945 	spin_lock(&inode->i_lock);
946 	de = __d_find_any_alias(inode);
947 	spin_unlock(&inode->i_lock);
948 	return de;
949 }
950 EXPORT_SYMBOL(d_find_any_alias);
951 
952 static struct dentry *__d_find_alias(struct inode *inode)
953 {
954 	struct dentry *alias;
955 
956 	if (S_ISDIR(inode->i_mode))
957 		return __d_find_any_alias(inode);
958 
959 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
960 		spin_lock(&alias->d_lock);
961  		if (!d_unhashed(alias)) {
962 			dget_dlock(alias);
963 			spin_unlock(&alias->d_lock);
964 			return alias;
965 		}
966 		spin_unlock(&alias->d_lock);
967 	}
968 	return NULL;
969 }
970 
971 /**
972  * d_find_alias - grab a hashed alias of inode
973  * @inode: inode in question
974  *
975  * If inode has a hashed alias, or is a directory and has any alias,
976  * acquire the reference to alias and return it. Otherwise return NULL.
977  * Notice that if inode is a directory there can be only one alias and
978  * it can be unhashed only if it has no children, or if it is the root
979  * of a filesystem, or if the directory was renamed and d_revalidate
980  * was the first vfs operation to notice.
981  *
982  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
983  * any other hashed alias over that one.
984  */
985 struct dentry *d_find_alias(struct inode *inode)
986 {
987 	struct dentry *de = NULL;
988 
989 	if (!hlist_empty(&inode->i_dentry)) {
990 		spin_lock(&inode->i_lock);
991 		de = __d_find_alias(inode);
992 		spin_unlock(&inode->i_lock);
993 	}
994 	return de;
995 }
996 EXPORT_SYMBOL(d_find_alias);
997 
998 /*
999  *  Caller MUST be holding rcu_read_lock() and be guaranteed
1000  *  that inode won't get freed until rcu_read_unlock().
1001  */
1002 struct dentry *d_find_alias_rcu(struct inode *inode)
1003 {
1004 	struct hlist_head *l = &inode->i_dentry;
1005 	struct dentry *de = NULL;
1006 
1007 	spin_lock(&inode->i_lock);
1008 	// ->i_dentry and ->i_rcu are colocated, but the latter won't be
1009 	// used without having I_FREEING set, which means no aliases left
1010 	if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) {
1011 		if (S_ISDIR(inode->i_mode)) {
1012 			de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1013 		} else {
1014 			hlist_for_each_entry(de, l, d_u.d_alias)
1015 				if (!d_unhashed(de))
1016 					break;
1017 		}
1018 	}
1019 	spin_unlock(&inode->i_lock);
1020 	return de;
1021 }
1022 
1023 /*
1024  *	Try to kill dentries associated with this inode.
1025  * WARNING: you must own a reference to inode.
1026  */
1027 void d_prune_aliases(struct inode *inode)
1028 {
1029 	LIST_HEAD(dispose);
1030 	struct dentry *dentry;
1031 
1032 	spin_lock(&inode->i_lock);
1033 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1034 		spin_lock(&dentry->d_lock);
1035 		if (!dentry->d_lockref.count)
1036 			to_shrink_list(dentry, &dispose);
1037 		spin_unlock(&dentry->d_lock);
1038 	}
1039 	spin_unlock(&inode->i_lock);
1040 	shrink_dentry_list(&dispose);
1041 }
1042 EXPORT_SYMBOL(d_prune_aliases);
1043 
1044 static inline void shrink_kill(struct dentry *victim)
1045 {
1046 	do {
1047 		rcu_read_unlock();
1048 		victim = __dentry_kill(victim);
1049 		rcu_read_lock();
1050 	} while (victim && lock_for_kill(victim));
1051 	rcu_read_unlock();
1052 	if (victim)
1053 		spin_unlock(&victim->d_lock);
1054 }
1055 
1056 void shrink_dentry_list(struct list_head *list)
1057 {
1058 	while (!list_empty(list)) {
1059 		struct dentry *dentry;
1060 
1061 		dentry = list_entry(list->prev, struct dentry, d_lru);
1062 		spin_lock(&dentry->d_lock);
1063 		rcu_read_lock();
1064 		if (!lock_for_kill(dentry)) {
1065 			bool can_free;
1066 			rcu_read_unlock();
1067 			d_shrink_del(dentry);
1068 			can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1069 			spin_unlock(&dentry->d_lock);
1070 			if (can_free)
1071 				dentry_free(dentry);
1072 			continue;
1073 		}
1074 		d_shrink_del(dentry);
1075 		shrink_kill(dentry);
1076 	}
1077 }
1078 
1079 static enum lru_status dentry_lru_isolate(struct list_head *item,
1080 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1081 {
1082 	struct list_head *freeable = arg;
1083 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1084 
1085 
1086 	/*
1087 	 * we are inverting the lru lock/dentry->d_lock here,
1088 	 * so use a trylock. If we fail to get the lock, just skip
1089 	 * it
1090 	 */
1091 	if (!spin_trylock(&dentry->d_lock))
1092 		return LRU_SKIP;
1093 
1094 	/*
1095 	 * Referenced dentries are still in use. If they have active
1096 	 * counts, just remove them from the LRU. Otherwise give them
1097 	 * another pass through the LRU.
1098 	 */
1099 	if (dentry->d_lockref.count) {
1100 		d_lru_isolate(lru, dentry);
1101 		spin_unlock(&dentry->d_lock);
1102 		return LRU_REMOVED;
1103 	}
1104 
1105 	if (dentry->d_flags & DCACHE_REFERENCED) {
1106 		dentry->d_flags &= ~DCACHE_REFERENCED;
1107 		spin_unlock(&dentry->d_lock);
1108 
1109 		/*
1110 		 * The list move itself will be made by the common LRU code. At
1111 		 * this point, we've dropped the dentry->d_lock but keep the
1112 		 * lru lock. This is safe to do, since every list movement is
1113 		 * protected by the lru lock even if both locks are held.
1114 		 *
1115 		 * This is guaranteed by the fact that all LRU management
1116 		 * functions are intermediated by the LRU API calls like
1117 		 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1118 		 * only ever occur through this functions or through callbacks
1119 		 * like this one, that are called from the LRU API.
1120 		 *
1121 		 * The only exceptions to this are functions like
1122 		 * shrink_dentry_list, and code that first checks for the
1123 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1124 		 * operating only with stack provided lists after they are
1125 		 * properly isolated from the main list.  It is thus, always a
1126 		 * local access.
1127 		 */
1128 		return LRU_ROTATE;
1129 	}
1130 
1131 	d_lru_shrink_move(lru, dentry, freeable);
1132 	spin_unlock(&dentry->d_lock);
1133 
1134 	return LRU_REMOVED;
1135 }
1136 
1137 /**
1138  * prune_dcache_sb - shrink the dcache
1139  * @sb: superblock
1140  * @sc: shrink control, passed to list_lru_shrink_walk()
1141  *
1142  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1143  * is done when we need more memory and called from the superblock shrinker
1144  * function.
1145  *
1146  * This function may fail to free any resources if all the dentries are in
1147  * use.
1148  */
1149 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1150 {
1151 	LIST_HEAD(dispose);
1152 	long freed;
1153 
1154 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1155 				     dentry_lru_isolate, &dispose);
1156 	shrink_dentry_list(&dispose);
1157 	return freed;
1158 }
1159 
1160 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1161 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1162 {
1163 	struct list_head *freeable = arg;
1164 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1165 
1166 	/*
1167 	 * we are inverting the lru lock/dentry->d_lock here,
1168 	 * so use a trylock. If we fail to get the lock, just skip
1169 	 * it
1170 	 */
1171 	if (!spin_trylock(&dentry->d_lock))
1172 		return LRU_SKIP;
1173 
1174 	d_lru_shrink_move(lru, dentry, freeable);
1175 	spin_unlock(&dentry->d_lock);
1176 
1177 	return LRU_REMOVED;
1178 }
1179 
1180 
1181 /**
1182  * shrink_dcache_sb - shrink dcache for a superblock
1183  * @sb: superblock
1184  *
1185  * Shrink the dcache for the specified super block. This is used to free
1186  * the dcache before unmounting a file system.
1187  */
1188 void shrink_dcache_sb(struct super_block *sb)
1189 {
1190 	do {
1191 		LIST_HEAD(dispose);
1192 
1193 		list_lru_walk(&sb->s_dentry_lru,
1194 			dentry_lru_isolate_shrink, &dispose, 1024);
1195 		shrink_dentry_list(&dispose);
1196 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1197 }
1198 EXPORT_SYMBOL(shrink_dcache_sb);
1199 
1200 /**
1201  * enum d_walk_ret - action to talke during tree walk
1202  * @D_WALK_CONTINUE:	contrinue walk
1203  * @D_WALK_QUIT:	quit walk
1204  * @D_WALK_NORETRY:	quit when retry is needed
1205  * @D_WALK_SKIP:	skip this dentry and its children
1206  */
1207 enum d_walk_ret {
1208 	D_WALK_CONTINUE,
1209 	D_WALK_QUIT,
1210 	D_WALK_NORETRY,
1211 	D_WALK_SKIP,
1212 };
1213 
1214 /**
1215  * d_walk - walk the dentry tree
1216  * @parent:	start of walk
1217  * @data:	data passed to @enter() and @finish()
1218  * @enter:	callback when first entering the dentry
1219  *
1220  * The @enter() callbacks are called with d_lock held.
1221  */
1222 static void d_walk(struct dentry *parent, void *data,
1223 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1224 {
1225 	struct dentry *this_parent, *dentry;
1226 	unsigned seq = 0;
1227 	enum d_walk_ret ret;
1228 	bool retry = true;
1229 
1230 again:
1231 	read_seqbegin_or_lock(&rename_lock, &seq);
1232 	this_parent = parent;
1233 	spin_lock(&this_parent->d_lock);
1234 
1235 	ret = enter(data, this_parent);
1236 	switch (ret) {
1237 	case D_WALK_CONTINUE:
1238 		break;
1239 	case D_WALK_QUIT:
1240 	case D_WALK_SKIP:
1241 		goto out_unlock;
1242 	case D_WALK_NORETRY:
1243 		retry = false;
1244 		break;
1245 	}
1246 repeat:
1247 	dentry = d_first_child(this_parent);
1248 resume:
1249 	hlist_for_each_entry_from(dentry, d_sib) {
1250 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1251 			continue;
1252 
1253 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1254 
1255 		ret = enter(data, dentry);
1256 		switch (ret) {
1257 		case D_WALK_CONTINUE:
1258 			break;
1259 		case D_WALK_QUIT:
1260 			spin_unlock(&dentry->d_lock);
1261 			goto out_unlock;
1262 		case D_WALK_NORETRY:
1263 			retry = false;
1264 			break;
1265 		case D_WALK_SKIP:
1266 			spin_unlock(&dentry->d_lock);
1267 			continue;
1268 		}
1269 
1270 		if (!hlist_empty(&dentry->d_children)) {
1271 			spin_unlock(&this_parent->d_lock);
1272 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1273 			this_parent = dentry;
1274 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1275 			goto repeat;
1276 		}
1277 		spin_unlock(&dentry->d_lock);
1278 	}
1279 	/*
1280 	 * All done at this level ... ascend and resume the search.
1281 	 */
1282 	rcu_read_lock();
1283 ascend:
1284 	if (this_parent != parent) {
1285 		dentry = this_parent;
1286 		this_parent = dentry->d_parent;
1287 
1288 		spin_unlock(&dentry->d_lock);
1289 		spin_lock(&this_parent->d_lock);
1290 
1291 		/* might go back up the wrong parent if we have had a rename. */
1292 		if (need_seqretry(&rename_lock, seq))
1293 			goto rename_retry;
1294 		/* go into the first sibling still alive */
1295 		hlist_for_each_entry_continue(dentry, d_sib) {
1296 			if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1297 				rcu_read_unlock();
1298 				goto resume;
1299 			}
1300 		}
1301 		goto ascend;
1302 	}
1303 	if (need_seqretry(&rename_lock, seq))
1304 		goto rename_retry;
1305 	rcu_read_unlock();
1306 
1307 out_unlock:
1308 	spin_unlock(&this_parent->d_lock);
1309 	done_seqretry(&rename_lock, seq);
1310 	return;
1311 
1312 rename_retry:
1313 	spin_unlock(&this_parent->d_lock);
1314 	rcu_read_unlock();
1315 	BUG_ON(seq & 1);
1316 	if (!retry)
1317 		return;
1318 	seq = 1;
1319 	goto again;
1320 }
1321 
1322 struct check_mount {
1323 	struct vfsmount *mnt;
1324 	unsigned int mounted;
1325 };
1326 
1327 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1328 {
1329 	struct check_mount *info = data;
1330 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1331 
1332 	if (likely(!d_mountpoint(dentry)))
1333 		return D_WALK_CONTINUE;
1334 	if (__path_is_mountpoint(&path)) {
1335 		info->mounted = 1;
1336 		return D_WALK_QUIT;
1337 	}
1338 	return D_WALK_CONTINUE;
1339 }
1340 
1341 /**
1342  * path_has_submounts - check for mounts over a dentry in the
1343  *                      current namespace.
1344  * @parent: path to check.
1345  *
1346  * Return true if the parent or its subdirectories contain
1347  * a mount point in the current namespace.
1348  */
1349 int path_has_submounts(const struct path *parent)
1350 {
1351 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1352 
1353 	read_seqlock_excl(&mount_lock);
1354 	d_walk(parent->dentry, &data, path_check_mount);
1355 	read_sequnlock_excl(&mount_lock);
1356 
1357 	return data.mounted;
1358 }
1359 EXPORT_SYMBOL(path_has_submounts);
1360 
1361 /*
1362  * Called by mount code to set a mountpoint and check if the mountpoint is
1363  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1364  * subtree can become unreachable).
1365  *
1366  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1367  * this reason take rename_lock and d_lock on dentry and ancestors.
1368  */
1369 int d_set_mounted(struct dentry *dentry)
1370 {
1371 	struct dentry *p;
1372 	int ret = -ENOENT;
1373 	write_seqlock(&rename_lock);
1374 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1375 		/* Need exclusion wrt. d_invalidate() */
1376 		spin_lock(&p->d_lock);
1377 		if (unlikely(d_unhashed(p))) {
1378 			spin_unlock(&p->d_lock);
1379 			goto out;
1380 		}
1381 		spin_unlock(&p->d_lock);
1382 	}
1383 	spin_lock(&dentry->d_lock);
1384 	if (!d_unlinked(dentry)) {
1385 		ret = -EBUSY;
1386 		if (!d_mountpoint(dentry)) {
1387 			dentry->d_flags |= DCACHE_MOUNTED;
1388 			ret = 0;
1389 		}
1390 	}
1391  	spin_unlock(&dentry->d_lock);
1392 out:
1393 	write_sequnlock(&rename_lock);
1394 	return ret;
1395 }
1396 
1397 /*
1398  * Search the dentry child list of the specified parent,
1399  * and move any unused dentries to the end of the unused
1400  * list for prune_dcache(). We descend to the next level
1401  * whenever the d_children list is non-empty and continue
1402  * searching.
1403  *
1404  * It returns zero iff there are no unused children,
1405  * otherwise  it returns the number of children moved to
1406  * the end of the unused list. This may not be the total
1407  * number of unused children, because select_parent can
1408  * drop the lock and return early due to latency
1409  * constraints.
1410  */
1411 
1412 struct select_data {
1413 	struct dentry *start;
1414 	union {
1415 		long found;
1416 		struct dentry *victim;
1417 	};
1418 	struct list_head dispose;
1419 };
1420 
1421 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1422 {
1423 	struct select_data *data = _data;
1424 	enum d_walk_ret ret = D_WALK_CONTINUE;
1425 
1426 	if (data->start == dentry)
1427 		goto out;
1428 
1429 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1430 		data->found++;
1431 	} else if (!dentry->d_lockref.count) {
1432 		to_shrink_list(dentry, &data->dispose);
1433 		data->found++;
1434 	} else if (dentry->d_lockref.count < 0) {
1435 		data->found++;
1436 	}
1437 	/*
1438 	 * We can return to the caller if we have found some (this
1439 	 * ensures forward progress). We'll be coming back to find
1440 	 * the rest.
1441 	 */
1442 	if (!list_empty(&data->dispose))
1443 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1444 out:
1445 	return ret;
1446 }
1447 
1448 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1449 {
1450 	struct select_data *data = _data;
1451 	enum d_walk_ret ret = D_WALK_CONTINUE;
1452 
1453 	if (data->start == dentry)
1454 		goto out;
1455 
1456 	if (!dentry->d_lockref.count) {
1457 		if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1458 			rcu_read_lock();
1459 			data->victim = dentry;
1460 			return D_WALK_QUIT;
1461 		}
1462 		to_shrink_list(dentry, &data->dispose);
1463 	}
1464 	/*
1465 	 * We can return to the caller if we have found some (this
1466 	 * ensures forward progress). We'll be coming back to find
1467 	 * the rest.
1468 	 */
1469 	if (!list_empty(&data->dispose))
1470 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1471 out:
1472 	return ret;
1473 }
1474 
1475 /**
1476  * shrink_dcache_parent - prune dcache
1477  * @parent: parent of entries to prune
1478  *
1479  * Prune the dcache to remove unused children of the parent dentry.
1480  */
1481 void shrink_dcache_parent(struct dentry *parent)
1482 {
1483 	for (;;) {
1484 		struct select_data data = {.start = parent};
1485 
1486 		INIT_LIST_HEAD(&data.dispose);
1487 		d_walk(parent, &data, select_collect);
1488 
1489 		if (!list_empty(&data.dispose)) {
1490 			shrink_dentry_list(&data.dispose);
1491 			continue;
1492 		}
1493 
1494 		cond_resched();
1495 		if (!data.found)
1496 			break;
1497 		data.victim = NULL;
1498 		d_walk(parent, &data, select_collect2);
1499 		if (data.victim) {
1500 			spin_lock(&data.victim->d_lock);
1501 			if (!lock_for_kill(data.victim)) {
1502 				spin_unlock(&data.victim->d_lock);
1503 				rcu_read_unlock();
1504 			} else {
1505 				shrink_kill(data.victim);
1506 			}
1507 		}
1508 		if (!list_empty(&data.dispose))
1509 			shrink_dentry_list(&data.dispose);
1510 	}
1511 }
1512 EXPORT_SYMBOL(shrink_dcache_parent);
1513 
1514 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1515 {
1516 	/* it has busy descendents; complain about those instead */
1517 	if (!hlist_empty(&dentry->d_children))
1518 		return D_WALK_CONTINUE;
1519 
1520 	/* root with refcount 1 is fine */
1521 	if (dentry == _data && dentry->d_lockref.count == 1)
1522 		return D_WALK_CONTINUE;
1523 
1524 	WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1525 			" still in use (%d) [unmount of %s %s]\n",
1526 		       dentry,
1527 		       dentry->d_inode ?
1528 		       dentry->d_inode->i_ino : 0UL,
1529 		       dentry,
1530 		       dentry->d_lockref.count,
1531 		       dentry->d_sb->s_type->name,
1532 		       dentry->d_sb->s_id);
1533 	return D_WALK_CONTINUE;
1534 }
1535 
1536 static void do_one_tree(struct dentry *dentry)
1537 {
1538 	shrink_dcache_parent(dentry);
1539 	d_walk(dentry, dentry, umount_check);
1540 	d_drop(dentry);
1541 	dput(dentry);
1542 }
1543 
1544 /*
1545  * destroy the dentries attached to a superblock on unmounting
1546  */
1547 void shrink_dcache_for_umount(struct super_block *sb)
1548 {
1549 	struct dentry *dentry;
1550 
1551 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1552 
1553 	dentry = sb->s_root;
1554 	sb->s_root = NULL;
1555 	do_one_tree(dentry);
1556 
1557 	while (!hlist_bl_empty(&sb->s_roots)) {
1558 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1559 		do_one_tree(dentry);
1560 	}
1561 }
1562 
1563 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1564 {
1565 	struct dentry **victim = _data;
1566 	if (d_mountpoint(dentry)) {
1567 		*victim = dget_dlock(dentry);
1568 		return D_WALK_QUIT;
1569 	}
1570 	return D_WALK_CONTINUE;
1571 }
1572 
1573 /**
1574  * d_invalidate - detach submounts, prune dcache, and drop
1575  * @dentry: dentry to invalidate (aka detach, prune and drop)
1576  */
1577 void d_invalidate(struct dentry *dentry)
1578 {
1579 	bool had_submounts = false;
1580 	spin_lock(&dentry->d_lock);
1581 	if (d_unhashed(dentry)) {
1582 		spin_unlock(&dentry->d_lock);
1583 		return;
1584 	}
1585 	__d_drop(dentry);
1586 	spin_unlock(&dentry->d_lock);
1587 
1588 	/* Negative dentries can be dropped without further checks */
1589 	if (!dentry->d_inode)
1590 		return;
1591 
1592 	shrink_dcache_parent(dentry);
1593 	for (;;) {
1594 		struct dentry *victim = NULL;
1595 		d_walk(dentry, &victim, find_submount);
1596 		if (!victim) {
1597 			if (had_submounts)
1598 				shrink_dcache_parent(dentry);
1599 			return;
1600 		}
1601 		had_submounts = true;
1602 		detach_mounts(victim);
1603 		dput(victim);
1604 	}
1605 }
1606 EXPORT_SYMBOL(d_invalidate);
1607 
1608 /**
1609  * __d_alloc	-	allocate a dcache entry
1610  * @sb: filesystem it will belong to
1611  * @name: qstr of the name
1612  *
1613  * Allocates a dentry. It returns %NULL if there is insufficient memory
1614  * available. On a success the dentry is returned. The name passed in is
1615  * copied and the copy passed in may be reused after this call.
1616  */
1617 
1618 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1619 {
1620 	struct dentry *dentry;
1621 	char *dname;
1622 	int err;
1623 
1624 	dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1625 				      GFP_KERNEL);
1626 	if (!dentry)
1627 		return NULL;
1628 
1629 	/*
1630 	 * We guarantee that the inline name is always NUL-terminated.
1631 	 * This way the memcpy() done by the name switching in rename
1632 	 * will still always have a NUL at the end, even if we might
1633 	 * be overwriting an internal NUL character
1634 	 */
1635 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1636 	if (unlikely(!name)) {
1637 		name = &slash_name;
1638 		dname = dentry->d_iname;
1639 	} else if (name->len > DNAME_INLINE_LEN-1) {
1640 		size_t size = offsetof(struct external_name, name[1]);
1641 		struct external_name *p = kmalloc(size + name->len,
1642 						  GFP_KERNEL_ACCOUNT |
1643 						  __GFP_RECLAIMABLE);
1644 		if (!p) {
1645 			kmem_cache_free(dentry_cache, dentry);
1646 			return NULL;
1647 		}
1648 		atomic_set(&p->u.count, 1);
1649 		dname = p->name;
1650 	} else  {
1651 		dname = dentry->d_iname;
1652 	}
1653 
1654 	dentry->d_name.len = name->len;
1655 	dentry->d_name.hash = name->hash;
1656 	memcpy(dname, name->name, name->len);
1657 	dname[name->len] = 0;
1658 
1659 	/* Make sure we always see the terminating NUL character */
1660 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1661 
1662 	dentry->d_lockref.count = 1;
1663 	dentry->d_flags = 0;
1664 	spin_lock_init(&dentry->d_lock);
1665 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1666 	dentry->d_inode = NULL;
1667 	dentry->d_parent = dentry;
1668 	dentry->d_sb = sb;
1669 	dentry->d_op = NULL;
1670 	dentry->d_fsdata = NULL;
1671 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1672 	INIT_LIST_HEAD(&dentry->d_lru);
1673 	INIT_HLIST_HEAD(&dentry->d_children);
1674 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1675 	INIT_HLIST_NODE(&dentry->d_sib);
1676 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1677 
1678 	if (dentry->d_op && dentry->d_op->d_init) {
1679 		err = dentry->d_op->d_init(dentry);
1680 		if (err) {
1681 			if (dname_external(dentry))
1682 				kfree(external_name(dentry));
1683 			kmem_cache_free(dentry_cache, dentry);
1684 			return NULL;
1685 		}
1686 	}
1687 
1688 	this_cpu_inc(nr_dentry);
1689 
1690 	return dentry;
1691 }
1692 
1693 /**
1694  * d_alloc	-	allocate a dcache entry
1695  * @parent: parent of entry to allocate
1696  * @name: qstr of the name
1697  *
1698  * Allocates a dentry. It returns %NULL if there is insufficient memory
1699  * available. On a success the dentry is returned. The name passed in is
1700  * copied and the copy passed in may be reused after this call.
1701  */
1702 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1703 {
1704 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1705 	if (!dentry)
1706 		return NULL;
1707 	spin_lock(&parent->d_lock);
1708 	/*
1709 	 * don't need child lock because it is not subject
1710 	 * to concurrency here
1711 	 */
1712 	dentry->d_parent = dget_dlock(parent);
1713 	hlist_add_head(&dentry->d_sib, &parent->d_children);
1714 	spin_unlock(&parent->d_lock);
1715 
1716 	return dentry;
1717 }
1718 EXPORT_SYMBOL(d_alloc);
1719 
1720 struct dentry *d_alloc_anon(struct super_block *sb)
1721 {
1722 	return __d_alloc(sb, NULL);
1723 }
1724 EXPORT_SYMBOL(d_alloc_anon);
1725 
1726 struct dentry *d_alloc_cursor(struct dentry * parent)
1727 {
1728 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1729 	if (dentry) {
1730 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1731 		dentry->d_parent = dget(parent);
1732 	}
1733 	return dentry;
1734 }
1735 
1736 /**
1737  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1738  * @sb: the superblock
1739  * @name: qstr of the name
1740  *
1741  * For a filesystem that just pins its dentries in memory and never
1742  * performs lookups at all, return an unhashed IS_ROOT dentry.
1743  * This is used for pipes, sockets et.al. - the stuff that should
1744  * never be anyone's children or parents.  Unlike all other
1745  * dentries, these will not have RCU delay between dropping the
1746  * last reference and freeing them.
1747  *
1748  * The only user is alloc_file_pseudo() and that's what should
1749  * be considered a public interface.  Don't use directly.
1750  */
1751 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1752 {
1753 	static const struct dentry_operations anon_ops = {
1754 		.d_dname = simple_dname
1755 	};
1756 	struct dentry *dentry = __d_alloc(sb, name);
1757 	if (likely(dentry)) {
1758 		dentry->d_flags |= DCACHE_NORCU;
1759 		if (!sb->s_d_op)
1760 			d_set_d_op(dentry, &anon_ops);
1761 	}
1762 	return dentry;
1763 }
1764 
1765 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1766 {
1767 	struct qstr q;
1768 
1769 	q.name = name;
1770 	q.hash_len = hashlen_string(parent, name);
1771 	return d_alloc(parent, &q);
1772 }
1773 EXPORT_SYMBOL(d_alloc_name);
1774 
1775 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1776 {
1777 	WARN_ON_ONCE(dentry->d_op);
1778 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1779 				DCACHE_OP_COMPARE	|
1780 				DCACHE_OP_REVALIDATE	|
1781 				DCACHE_OP_WEAK_REVALIDATE	|
1782 				DCACHE_OP_DELETE	|
1783 				DCACHE_OP_REAL));
1784 	dentry->d_op = op;
1785 	if (!op)
1786 		return;
1787 	if (op->d_hash)
1788 		dentry->d_flags |= DCACHE_OP_HASH;
1789 	if (op->d_compare)
1790 		dentry->d_flags |= DCACHE_OP_COMPARE;
1791 	if (op->d_revalidate)
1792 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1793 	if (op->d_weak_revalidate)
1794 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1795 	if (op->d_delete)
1796 		dentry->d_flags |= DCACHE_OP_DELETE;
1797 	if (op->d_prune)
1798 		dentry->d_flags |= DCACHE_OP_PRUNE;
1799 	if (op->d_real)
1800 		dentry->d_flags |= DCACHE_OP_REAL;
1801 
1802 }
1803 EXPORT_SYMBOL(d_set_d_op);
1804 
1805 static unsigned d_flags_for_inode(struct inode *inode)
1806 {
1807 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1808 
1809 	if (!inode)
1810 		return DCACHE_MISS_TYPE;
1811 
1812 	if (S_ISDIR(inode->i_mode)) {
1813 		add_flags = DCACHE_DIRECTORY_TYPE;
1814 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1815 			if (unlikely(!inode->i_op->lookup))
1816 				add_flags = DCACHE_AUTODIR_TYPE;
1817 			else
1818 				inode->i_opflags |= IOP_LOOKUP;
1819 		}
1820 		goto type_determined;
1821 	}
1822 
1823 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1824 		if (unlikely(inode->i_op->get_link)) {
1825 			add_flags = DCACHE_SYMLINK_TYPE;
1826 			goto type_determined;
1827 		}
1828 		inode->i_opflags |= IOP_NOFOLLOW;
1829 	}
1830 
1831 	if (unlikely(!S_ISREG(inode->i_mode)))
1832 		add_flags = DCACHE_SPECIAL_TYPE;
1833 
1834 type_determined:
1835 	if (unlikely(IS_AUTOMOUNT(inode)))
1836 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1837 	return add_flags;
1838 }
1839 
1840 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1841 {
1842 	unsigned add_flags = d_flags_for_inode(inode);
1843 	WARN_ON(d_in_lookup(dentry));
1844 
1845 	spin_lock(&dentry->d_lock);
1846 	/*
1847 	 * Decrement negative dentry count if it was in the LRU list.
1848 	 */
1849 	if (dentry->d_flags & DCACHE_LRU_LIST)
1850 		this_cpu_dec(nr_dentry_negative);
1851 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1852 	raw_write_seqcount_begin(&dentry->d_seq);
1853 	__d_set_inode_and_type(dentry, inode, add_flags);
1854 	raw_write_seqcount_end(&dentry->d_seq);
1855 	fsnotify_update_flags(dentry);
1856 	spin_unlock(&dentry->d_lock);
1857 }
1858 
1859 /**
1860  * d_instantiate - fill in inode information for a dentry
1861  * @entry: dentry to complete
1862  * @inode: inode to attach to this dentry
1863  *
1864  * Fill in inode information in the entry.
1865  *
1866  * This turns negative dentries into productive full members
1867  * of society.
1868  *
1869  * NOTE! This assumes that the inode count has been incremented
1870  * (or otherwise set) by the caller to indicate that it is now
1871  * in use by the dcache.
1872  */
1873 
1874 void d_instantiate(struct dentry *entry, struct inode * inode)
1875 {
1876 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1877 	if (inode) {
1878 		security_d_instantiate(entry, inode);
1879 		spin_lock(&inode->i_lock);
1880 		__d_instantiate(entry, inode);
1881 		spin_unlock(&inode->i_lock);
1882 	}
1883 }
1884 EXPORT_SYMBOL(d_instantiate);
1885 
1886 /*
1887  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1888  * with lockdep-related part of unlock_new_inode() done before
1889  * anything else.  Use that instead of open-coding d_instantiate()/
1890  * unlock_new_inode() combinations.
1891  */
1892 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1893 {
1894 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1895 	BUG_ON(!inode);
1896 	lockdep_annotate_inode_mutex_key(inode);
1897 	security_d_instantiate(entry, inode);
1898 	spin_lock(&inode->i_lock);
1899 	__d_instantiate(entry, inode);
1900 	WARN_ON(!(inode->i_state & I_NEW));
1901 	inode->i_state &= ~I_NEW & ~I_CREATING;
1902 	smp_mb();
1903 	wake_up_bit(&inode->i_state, __I_NEW);
1904 	spin_unlock(&inode->i_lock);
1905 }
1906 EXPORT_SYMBOL(d_instantiate_new);
1907 
1908 struct dentry *d_make_root(struct inode *root_inode)
1909 {
1910 	struct dentry *res = NULL;
1911 
1912 	if (root_inode) {
1913 		res = d_alloc_anon(root_inode->i_sb);
1914 		if (res)
1915 			d_instantiate(res, root_inode);
1916 		else
1917 			iput(root_inode);
1918 	}
1919 	return res;
1920 }
1921 EXPORT_SYMBOL(d_make_root);
1922 
1923 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
1924 {
1925 	struct super_block *sb;
1926 	struct dentry *new, *res;
1927 
1928 	if (!inode)
1929 		return ERR_PTR(-ESTALE);
1930 	if (IS_ERR(inode))
1931 		return ERR_CAST(inode);
1932 
1933 	sb = inode->i_sb;
1934 
1935 	res = d_find_any_alias(inode); /* existing alias? */
1936 	if (res)
1937 		goto out;
1938 
1939 	new = d_alloc_anon(sb);
1940 	if (!new) {
1941 		res = ERR_PTR(-ENOMEM);
1942 		goto out;
1943 	}
1944 
1945 	security_d_instantiate(new, inode);
1946 	spin_lock(&inode->i_lock);
1947 	res = __d_find_any_alias(inode); /* recheck under lock */
1948 	if (likely(!res)) { /* still no alias, attach a disconnected dentry */
1949 		unsigned add_flags = d_flags_for_inode(inode);
1950 
1951 		if (disconnected)
1952 			add_flags |= DCACHE_DISCONNECTED;
1953 
1954 		spin_lock(&new->d_lock);
1955 		__d_set_inode_and_type(new, inode, add_flags);
1956 		hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
1957 		if (!disconnected) {
1958 			hlist_bl_lock(&sb->s_roots);
1959 			hlist_bl_add_head(&new->d_hash, &sb->s_roots);
1960 			hlist_bl_unlock(&sb->s_roots);
1961 		}
1962 		spin_unlock(&new->d_lock);
1963 		spin_unlock(&inode->i_lock);
1964 		inode = NULL; /* consumed by new->d_inode */
1965 		res = new;
1966 	} else {
1967 		spin_unlock(&inode->i_lock);
1968 		dput(new);
1969 	}
1970 
1971  out:
1972 	iput(inode);
1973 	return res;
1974 }
1975 
1976 /**
1977  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1978  * @inode: inode to allocate the dentry for
1979  *
1980  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1981  * similar open by handle operations.  The returned dentry may be anonymous,
1982  * or may have a full name (if the inode was already in the cache).
1983  *
1984  * When called on a directory inode, we must ensure that the inode only ever
1985  * has one dentry.  If a dentry is found, that is returned instead of
1986  * allocating a new one.
1987  *
1988  * On successful return, the reference to the inode has been transferred
1989  * to the dentry.  In case of an error the reference on the inode is released.
1990  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1991  * be passed in and the error will be propagated to the return value,
1992  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1993  */
1994 struct dentry *d_obtain_alias(struct inode *inode)
1995 {
1996 	return __d_obtain_alias(inode, true);
1997 }
1998 EXPORT_SYMBOL(d_obtain_alias);
1999 
2000 /**
2001  * d_obtain_root - find or allocate a dentry for a given inode
2002  * @inode: inode to allocate the dentry for
2003  *
2004  * Obtain an IS_ROOT dentry for the root of a filesystem.
2005  *
2006  * We must ensure that directory inodes only ever have one dentry.  If a
2007  * dentry is found, that is returned instead of allocating a new one.
2008  *
2009  * On successful return, the reference to the inode has been transferred
2010  * to the dentry.  In case of an error the reference on the inode is
2011  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2012  * error will be propagate to the return value, with a %NULL @inode
2013  * replaced by ERR_PTR(-ESTALE).
2014  */
2015 struct dentry *d_obtain_root(struct inode *inode)
2016 {
2017 	return __d_obtain_alias(inode, false);
2018 }
2019 EXPORT_SYMBOL(d_obtain_root);
2020 
2021 /**
2022  * d_add_ci - lookup or allocate new dentry with case-exact name
2023  * @inode:  the inode case-insensitive lookup has found
2024  * @dentry: the negative dentry that was passed to the parent's lookup func
2025  * @name:   the case-exact name to be associated with the returned dentry
2026  *
2027  * This is to avoid filling the dcache with case-insensitive names to the
2028  * same inode, only the actual correct case is stored in the dcache for
2029  * case-insensitive filesystems.
2030  *
2031  * For a case-insensitive lookup match and if the case-exact dentry
2032  * already exists in the dcache, use it and return it.
2033  *
2034  * If no entry exists with the exact case name, allocate new dentry with
2035  * the exact case, and return the spliced entry.
2036  */
2037 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2038 			struct qstr *name)
2039 {
2040 	struct dentry *found, *res;
2041 
2042 	/*
2043 	 * First check if a dentry matching the name already exists,
2044 	 * if not go ahead and create it now.
2045 	 */
2046 	found = d_hash_and_lookup(dentry->d_parent, name);
2047 	if (found) {
2048 		iput(inode);
2049 		return found;
2050 	}
2051 	if (d_in_lookup(dentry)) {
2052 		found = d_alloc_parallel(dentry->d_parent, name,
2053 					dentry->d_wait);
2054 		if (IS_ERR(found) || !d_in_lookup(found)) {
2055 			iput(inode);
2056 			return found;
2057 		}
2058 	} else {
2059 		found = d_alloc(dentry->d_parent, name);
2060 		if (!found) {
2061 			iput(inode);
2062 			return ERR_PTR(-ENOMEM);
2063 		}
2064 	}
2065 	res = d_splice_alias(inode, found);
2066 	if (res) {
2067 		d_lookup_done(found);
2068 		dput(found);
2069 		return res;
2070 	}
2071 	return found;
2072 }
2073 EXPORT_SYMBOL(d_add_ci);
2074 
2075 /**
2076  * d_same_name - compare dentry name with case-exact name
2077  * @parent: parent dentry
2078  * @dentry: the negative dentry that was passed to the parent's lookup func
2079  * @name:   the case-exact name to be associated with the returned dentry
2080  *
2081  * Return: true if names are same, or false
2082  */
2083 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2084 		 const struct qstr *name)
2085 {
2086 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2087 		if (dentry->d_name.len != name->len)
2088 			return false;
2089 		return dentry_cmp(dentry, name->name, name->len) == 0;
2090 	}
2091 	return parent->d_op->d_compare(dentry,
2092 				       dentry->d_name.len, dentry->d_name.name,
2093 				       name) == 0;
2094 }
2095 EXPORT_SYMBOL_GPL(d_same_name);
2096 
2097 /*
2098  * This is __d_lookup_rcu() when the parent dentry has
2099  * DCACHE_OP_COMPARE, which makes things much nastier.
2100  */
2101 static noinline struct dentry *__d_lookup_rcu_op_compare(
2102 	const struct dentry *parent,
2103 	const struct qstr *name,
2104 	unsigned *seqp)
2105 {
2106 	u64 hashlen = name->hash_len;
2107 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2108 	struct hlist_bl_node *node;
2109 	struct dentry *dentry;
2110 
2111 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2112 		int tlen;
2113 		const char *tname;
2114 		unsigned seq;
2115 
2116 seqretry:
2117 		seq = raw_seqcount_begin(&dentry->d_seq);
2118 		if (dentry->d_parent != parent)
2119 			continue;
2120 		if (d_unhashed(dentry))
2121 			continue;
2122 		if (dentry->d_name.hash != hashlen_hash(hashlen))
2123 			continue;
2124 		tlen = dentry->d_name.len;
2125 		tname = dentry->d_name.name;
2126 		/* we want a consistent (name,len) pair */
2127 		if (read_seqcount_retry(&dentry->d_seq, seq)) {
2128 			cpu_relax();
2129 			goto seqretry;
2130 		}
2131 		if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2132 			continue;
2133 		*seqp = seq;
2134 		return dentry;
2135 	}
2136 	return NULL;
2137 }
2138 
2139 /**
2140  * __d_lookup_rcu - search for a dentry (racy, store-free)
2141  * @parent: parent dentry
2142  * @name: qstr of name we wish to find
2143  * @seqp: returns d_seq value at the point where the dentry was found
2144  * Returns: dentry, or NULL
2145  *
2146  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2147  * resolution (store-free path walking) design described in
2148  * Documentation/filesystems/path-lookup.txt.
2149  *
2150  * This is not to be used outside core vfs.
2151  *
2152  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2153  * held, and rcu_read_lock held. The returned dentry must not be stored into
2154  * without taking d_lock and checking d_seq sequence count against @seq
2155  * returned here.
2156  *
2157  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2158  * function.
2159  *
2160  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2161  * the returned dentry, so long as its parent's seqlock is checked after the
2162  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2163  * is formed, giving integrity down the path walk.
2164  *
2165  * NOTE! The caller *has* to check the resulting dentry against the sequence
2166  * number we've returned before using any of the resulting dentry state!
2167  */
2168 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2169 				const struct qstr *name,
2170 				unsigned *seqp)
2171 {
2172 	u64 hashlen = name->hash_len;
2173 	const unsigned char *str = name->name;
2174 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2175 	struct hlist_bl_node *node;
2176 	struct dentry *dentry;
2177 
2178 	/*
2179 	 * Note: There is significant duplication with __d_lookup_rcu which is
2180 	 * required to prevent single threaded performance regressions
2181 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2182 	 * Keep the two functions in sync.
2183 	 */
2184 
2185 	if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2186 		return __d_lookup_rcu_op_compare(parent, name, seqp);
2187 
2188 	/*
2189 	 * The hash list is protected using RCU.
2190 	 *
2191 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2192 	 * races with d_move().
2193 	 *
2194 	 * It is possible that concurrent renames can mess up our list
2195 	 * walk here and result in missing our dentry, resulting in the
2196 	 * false-negative result. d_lookup() protects against concurrent
2197 	 * renames using rename_lock seqlock.
2198 	 *
2199 	 * See Documentation/filesystems/path-lookup.txt for more details.
2200 	 */
2201 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2202 		unsigned seq;
2203 
2204 		/*
2205 		 * The dentry sequence count protects us from concurrent
2206 		 * renames, and thus protects parent and name fields.
2207 		 *
2208 		 * The caller must perform a seqcount check in order
2209 		 * to do anything useful with the returned dentry.
2210 		 *
2211 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2212 		 * we don't wait for the sequence count to stabilize if it
2213 		 * is in the middle of a sequence change. If we do the slow
2214 		 * dentry compare, we will do seqretries until it is stable,
2215 		 * and if we end up with a successful lookup, we actually
2216 		 * want to exit RCU lookup anyway.
2217 		 *
2218 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2219 		 * we are still guaranteed NUL-termination of ->d_name.name.
2220 		 */
2221 		seq = raw_seqcount_begin(&dentry->d_seq);
2222 		if (dentry->d_parent != parent)
2223 			continue;
2224 		if (d_unhashed(dentry))
2225 			continue;
2226 		if (dentry->d_name.hash_len != hashlen)
2227 			continue;
2228 		if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2229 			continue;
2230 		*seqp = seq;
2231 		return dentry;
2232 	}
2233 	return NULL;
2234 }
2235 
2236 /**
2237  * d_lookup - search for a dentry
2238  * @parent: parent dentry
2239  * @name: qstr of name we wish to find
2240  * Returns: dentry, or NULL
2241  *
2242  * d_lookup searches the children of the parent dentry for the name in
2243  * question. If the dentry is found its reference count is incremented and the
2244  * dentry is returned. The caller must use dput to free the entry when it has
2245  * finished using it. %NULL is returned if the dentry does not exist.
2246  */
2247 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2248 {
2249 	struct dentry *dentry;
2250 	unsigned seq;
2251 
2252 	do {
2253 		seq = read_seqbegin(&rename_lock);
2254 		dentry = __d_lookup(parent, name);
2255 		if (dentry)
2256 			break;
2257 	} while (read_seqretry(&rename_lock, seq));
2258 	return dentry;
2259 }
2260 EXPORT_SYMBOL(d_lookup);
2261 
2262 /**
2263  * __d_lookup - search for a dentry (racy)
2264  * @parent: parent dentry
2265  * @name: qstr of name we wish to find
2266  * Returns: dentry, or NULL
2267  *
2268  * __d_lookup is like d_lookup, however it may (rarely) return a
2269  * false-negative result due to unrelated rename activity.
2270  *
2271  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2272  * however it must be used carefully, eg. with a following d_lookup in
2273  * the case of failure.
2274  *
2275  * __d_lookup callers must be commented.
2276  */
2277 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2278 {
2279 	unsigned int hash = name->hash;
2280 	struct hlist_bl_head *b = d_hash(hash);
2281 	struct hlist_bl_node *node;
2282 	struct dentry *found = NULL;
2283 	struct dentry *dentry;
2284 
2285 	/*
2286 	 * Note: There is significant duplication with __d_lookup_rcu which is
2287 	 * required to prevent single threaded performance regressions
2288 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2289 	 * Keep the two functions in sync.
2290 	 */
2291 
2292 	/*
2293 	 * The hash list is protected using RCU.
2294 	 *
2295 	 * Take d_lock when comparing a candidate dentry, to avoid races
2296 	 * with d_move().
2297 	 *
2298 	 * It is possible that concurrent renames can mess up our list
2299 	 * walk here and result in missing our dentry, resulting in the
2300 	 * false-negative result. d_lookup() protects against concurrent
2301 	 * renames using rename_lock seqlock.
2302 	 *
2303 	 * See Documentation/filesystems/path-lookup.txt for more details.
2304 	 */
2305 	rcu_read_lock();
2306 
2307 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2308 
2309 		if (dentry->d_name.hash != hash)
2310 			continue;
2311 
2312 		spin_lock(&dentry->d_lock);
2313 		if (dentry->d_parent != parent)
2314 			goto next;
2315 		if (d_unhashed(dentry))
2316 			goto next;
2317 
2318 		if (!d_same_name(dentry, parent, name))
2319 			goto next;
2320 
2321 		dentry->d_lockref.count++;
2322 		found = dentry;
2323 		spin_unlock(&dentry->d_lock);
2324 		break;
2325 next:
2326 		spin_unlock(&dentry->d_lock);
2327  	}
2328  	rcu_read_unlock();
2329 
2330  	return found;
2331 }
2332 
2333 /**
2334  * d_hash_and_lookup - hash the qstr then search for a dentry
2335  * @dir: Directory to search in
2336  * @name: qstr of name we wish to find
2337  *
2338  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2339  */
2340 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2341 {
2342 	/*
2343 	 * Check for a fs-specific hash function. Note that we must
2344 	 * calculate the standard hash first, as the d_op->d_hash()
2345 	 * routine may choose to leave the hash value unchanged.
2346 	 */
2347 	name->hash = full_name_hash(dir, name->name, name->len);
2348 	if (dir->d_flags & DCACHE_OP_HASH) {
2349 		int err = dir->d_op->d_hash(dir, name);
2350 		if (unlikely(err < 0))
2351 			return ERR_PTR(err);
2352 	}
2353 	return d_lookup(dir, name);
2354 }
2355 EXPORT_SYMBOL(d_hash_and_lookup);
2356 
2357 /*
2358  * When a file is deleted, we have two options:
2359  * - turn this dentry into a negative dentry
2360  * - unhash this dentry and free it.
2361  *
2362  * Usually, we want to just turn this into
2363  * a negative dentry, but certain workloads can
2364  * generate a large number of negative dentries.
2365  * Therefore, it would be better to simply
2366  * unhash it.
2367  */
2368 
2369 /**
2370  * d_delete - delete a dentry
2371  * @dentry: The dentry to delete
2372  *
2373  * Remove the dentry from the hash queues so it can be deleted later.
2374  */
2375 
2376 void d_delete(struct dentry * dentry)
2377 {
2378 	struct inode *inode = dentry->d_inode;
2379 
2380 	spin_lock(&inode->i_lock);
2381 	spin_lock(&dentry->d_lock);
2382 	__d_drop(dentry);
2383 
2384 	/*
2385 	 * Are we the only user?
2386 	 */
2387 	if (dentry->d_lockref.count == 1) {
2388 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2389 		dentry_unlink_inode(dentry);
2390 	} else {
2391 		spin_unlock(&dentry->d_lock);
2392 		spin_unlock(&inode->i_lock);
2393 	}
2394 }
2395 EXPORT_SYMBOL(d_delete);
2396 
2397 static void __d_rehash(struct dentry *entry)
2398 {
2399 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2400 
2401 	hlist_bl_lock(b);
2402 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2403 	hlist_bl_unlock(b);
2404 }
2405 
2406 /**
2407  * d_rehash	- add an entry back to the hash
2408  * @entry: dentry to add to the hash
2409  *
2410  * Adds a dentry to the hash according to its name.
2411  */
2412 
2413 void d_rehash(struct dentry * entry)
2414 {
2415 	spin_lock(&entry->d_lock);
2416 	__d_rehash(entry);
2417 	spin_unlock(&entry->d_lock);
2418 }
2419 EXPORT_SYMBOL(d_rehash);
2420 
2421 static inline unsigned start_dir_add(struct inode *dir)
2422 {
2423 	preempt_disable_nested();
2424 	for (;;) {
2425 		unsigned n = dir->i_dir_seq;
2426 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2427 			return n;
2428 		cpu_relax();
2429 	}
2430 }
2431 
2432 static inline void end_dir_add(struct inode *dir, unsigned int n,
2433 			       wait_queue_head_t *d_wait)
2434 {
2435 	smp_store_release(&dir->i_dir_seq, n + 2);
2436 	preempt_enable_nested();
2437 	wake_up_all(d_wait);
2438 }
2439 
2440 static void d_wait_lookup(struct dentry *dentry)
2441 {
2442 	if (d_in_lookup(dentry)) {
2443 		DECLARE_WAITQUEUE(wait, current);
2444 		add_wait_queue(dentry->d_wait, &wait);
2445 		do {
2446 			set_current_state(TASK_UNINTERRUPTIBLE);
2447 			spin_unlock(&dentry->d_lock);
2448 			schedule();
2449 			spin_lock(&dentry->d_lock);
2450 		} while (d_in_lookup(dentry));
2451 	}
2452 }
2453 
2454 struct dentry *d_alloc_parallel(struct dentry *parent,
2455 				const struct qstr *name,
2456 				wait_queue_head_t *wq)
2457 {
2458 	unsigned int hash = name->hash;
2459 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2460 	struct hlist_bl_node *node;
2461 	struct dentry *new = d_alloc(parent, name);
2462 	struct dentry *dentry;
2463 	unsigned seq, r_seq, d_seq;
2464 
2465 	if (unlikely(!new))
2466 		return ERR_PTR(-ENOMEM);
2467 
2468 retry:
2469 	rcu_read_lock();
2470 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2471 	r_seq = read_seqbegin(&rename_lock);
2472 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2473 	if (unlikely(dentry)) {
2474 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2475 			rcu_read_unlock();
2476 			goto retry;
2477 		}
2478 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2479 			rcu_read_unlock();
2480 			dput(dentry);
2481 			goto retry;
2482 		}
2483 		rcu_read_unlock();
2484 		dput(new);
2485 		return dentry;
2486 	}
2487 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2488 		rcu_read_unlock();
2489 		goto retry;
2490 	}
2491 
2492 	if (unlikely(seq & 1)) {
2493 		rcu_read_unlock();
2494 		goto retry;
2495 	}
2496 
2497 	hlist_bl_lock(b);
2498 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2499 		hlist_bl_unlock(b);
2500 		rcu_read_unlock();
2501 		goto retry;
2502 	}
2503 	/*
2504 	 * No changes for the parent since the beginning of d_lookup().
2505 	 * Since all removals from the chain happen with hlist_bl_lock(),
2506 	 * any potential in-lookup matches are going to stay here until
2507 	 * we unlock the chain.  All fields are stable in everything
2508 	 * we encounter.
2509 	 */
2510 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2511 		if (dentry->d_name.hash != hash)
2512 			continue;
2513 		if (dentry->d_parent != parent)
2514 			continue;
2515 		if (!d_same_name(dentry, parent, name))
2516 			continue;
2517 		hlist_bl_unlock(b);
2518 		/* now we can try to grab a reference */
2519 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2520 			rcu_read_unlock();
2521 			goto retry;
2522 		}
2523 
2524 		rcu_read_unlock();
2525 		/*
2526 		 * somebody is likely to be still doing lookup for it;
2527 		 * wait for them to finish
2528 		 */
2529 		spin_lock(&dentry->d_lock);
2530 		d_wait_lookup(dentry);
2531 		/*
2532 		 * it's not in-lookup anymore; in principle we should repeat
2533 		 * everything from dcache lookup, but it's likely to be what
2534 		 * d_lookup() would've found anyway.  If it is, just return it;
2535 		 * otherwise we really have to repeat the whole thing.
2536 		 */
2537 		if (unlikely(dentry->d_name.hash != hash))
2538 			goto mismatch;
2539 		if (unlikely(dentry->d_parent != parent))
2540 			goto mismatch;
2541 		if (unlikely(d_unhashed(dentry)))
2542 			goto mismatch;
2543 		if (unlikely(!d_same_name(dentry, parent, name)))
2544 			goto mismatch;
2545 		/* OK, it *is* a hashed match; return it */
2546 		spin_unlock(&dentry->d_lock);
2547 		dput(new);
2548 		return dentry;
2549 	}
2550 	rcu_read_unlock();
2551 	/* we can't take ->d_lock here; it's OK, though. */
2552 	new->d_flags |= DCACHE_PAR_LOOKUP;
2553 	new->d_wait = wq;
2554 	hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2555 	hlist_bl_unlock(b);
2556 	return new;
2557 mismatch:
2558 	spin_unlock(&dentry->d_lock);
2559 	dput(dentry);
2560 	goto retry;
2561 }
2562 EXPORT_SYMBOL(d_alloc_parallel);
2563 
2564 /*
2565  * - Unhash the dentry
2566  * - Retrieve and clear the waitqueue head in dentry
2567  * - Return the waitqueue head
2568  */
2569 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2570 {
2571 	wait_queue_head_t *d_wait;
2572 	struct hlist_bl_head *b;
2573 
2574 	lockdep_assert_held(&dentry->d_lock);
2575 
2576 	b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2577 	hlist_bl_lock(b);
2578 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2579 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2580 	d_wait = dentry->d_wait;
2581 	dentry->d_wait = NULL;
2582 	hlist_bl_unlock(b);
2583 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2584 	INIT_LIST_HEAD(&dentry->d_lru);
2585 	return d_wait;
2586 }
2587 
2588 void __d_lookup_unhash_wake(struct dentry *dentry)
2589 {
2590 	spin_lock(&dentry->d_lock);
2591 	wake_up_all(__d_lookup_unhash(dentry));
2592 	spin_unlock(&dentry->d_lock);
2593 }
2594 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2595 
2596 /* inode->i_lock held if inode is non-NULL */
2597 
2598 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2599 {
2600 	wait_queue_head_t *d_wait;
2601 	struct inode *dir = NULL;
2602 	unsigned n;
2603 	spin_lock(&dentry->d_lock);
2604 	if (unlikely(d_in_lookup(dentry))) {
2605 		dir = dentry->d_parent->d_inode;
2606 		n = start_dir_add(dir);
2607 		d_wait = __d_lookup_unhash(dentry);
2608 	}
2609 	if (inode) {
2610 		unsigned add_flags = d_flags_for_inode(inode);
2611 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2612 		raw_write_seqcount_begin(&dentry->d_seq);
2613 		__d_set_inode_and_type(dentry, inode, add_flags);
2614 		raw_write_seqcount_end(&dentry->d_seq);
2615 		fsnotify_update_flags(dentry);
2616 	}
2617 	__d_rehash(dentry);
2618 	if (dir)
2619 		end_dir_add(dir, n, d_wait);
2620 	spin_unlock(&dentry->d_lock);
2621 	if (inode)
2622 		spin_unlock(&inode->i_lock);
2623 }
2624 
2625 /**
2626  * d_add - add dentry to hash queues
2627  * @entry: dentry to add
2628  * @inode: The inode to attach to this dentry
2629  *
2630  * This adds the entry to the hash queues and initializes @inode.
2631  * The entry was actually filled in earlier during d_alloc().
2632  */
2633 
2634 void d_add(struct dentry *entry, struct inode *inode)
2635 {
2636 	if (inode) {
2637 		security_d_instantiate(entry, inode);
2638 		spin_lock(&inode->i_lock);
2639 	}
2640 	__d_add(entry, inode);
2641 }
2642 EXPORT_SYMBOL(d_add);
2643 
2644 /**
2645  * d_exact_alias - find and hash an exact unhashed alias
2646  * @entry: dentry to add
2647  * @inode: The inode to go with this dentry
2648  *
2649  * If an unhashed dentry with the same name/parent and desired
2650  * inode already exists, hash and return it.  Otherwise, return
2651  * NULL.
2652  *
2653  * Parent directory should be locked.
2654  */
2655 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2656 {
2657 	struct dentry *alias;
2658 	unsigned int hash = entry->d_name.hash;
2659 
2660 	spin_lock(&inode->i_lock);
2661 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2662 		/*
2663 		 * Don't need alias->d_lock here, because aliases with
2664 		 * d_parent == entry->d_parent are not subject to name or
2665 		 * parent changes, because the parent inode i_mutex is held.
2666 		 */
2667 		if (alias->d_name.hash != hash)
2668 			continue;
2669 		if (alias->d_parent != entry->d_parent)
2670 			continue;
2671 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2672 			continue;
2673 		spin_lock(&alias->d_lock);
2674 		if (!d_unhashed(alias)) {
2675 			spin_unlock(&alias->d_lock);
2676 			alias = NULL;
2677 		} else {
2678 			dget_dlock(alias);
2679 			__d_rehash(alias);
2680 			spin_unlock(&alias->d_lock);
2681 		}
2682 		spin_unlock(&inode->i_lock);
2683 		return alias;
2684 	}
2685 	spin_unlock(&inode->i_lock);
2686 	return NULL;
2687 }
2688 EXPORT_SYMBOL(d_exact_alias);
2689 
2690 static void swap_names(struct dentry *dentry, struct dentry *target)
2691 {
2692 	if (unlikely(dname_external(target))) {
2693 		if (unlikely(dname_external(dentry))) {
2694 			/*
2695 			 * Both external: swap the pointers
2696 			 */
2697 			swap(target->d_name.name, dentry->d_name.name);
2698 		} else {
2699 			/*
2700 			 * dentry:internal, target:external.  Steal target's
2701 			 * storage and make target internal.
2702 			 */
2703 			memcpy(target->d_iname, dentry->d_name.name,
2704 					dentry->d_name.len + 1);
2705 			dentry->d_name.name = target->d_name.name;
2706 			target->d_name.name = target->d_iname;
2707 		}
2708 	} else {
2709 		if (unlikely(dname_external(dentry))) {
2710 			/*
2711 			 * dentry:external, target:internal.  Give dentry's
2712 			 * storage to target and make dentry internal
2713 			 */
2714 			memcpy(dentry->d_iname, target->d_name.name,
2715 					target->d_name.len + 1);
2716 			target->d_name.name = dentry->d_name.name;
2717 			dentry->d_name.name = dentry->d_iname;
2718 		} else {
2719 			/*
2720 			 * Both are internal.
2721 			 */
2722 			unsigned int i;
2723 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2724 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2725 				swap(((long *) &dentry->d_iname)[i],
2726 				     ((long *) &target->d_iname)[i]);
2727 			}
2728 		}
2729 	}
2730 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2731 }
2732 
2733 static void copy_name(struct dentry *dentry, struct dentry *target)
2734 {
2735 	struct external_name *old_name = NULL;
2736 	if (unlikely(dname_external(dentry)))
2737 		old_name = external_name(dentry);
2738 	if (unlikely(dname_external(target))) {
2739 		atomic_inc(&external_name(target)->u.count);
2740 		dentry->d_name = target->d_name;
2741 	} else {
2742 		memcpy(dentry->d_iname, target->d_name.name,
2743 				target->d_name.len + 1);
2744 		dentry->d_name.name = dentry->d_iname;
2745 		dentry->d_name.hash_len = target->d_name.hash_len;
2746 	}
2747 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2748 		kfree_rcu(old_name, u.head);
2749 }
2750 
2751 /*
2752  * __d_move - move a dentry
2753  * @dentry: entry to move
2754  * @target: new dentry
2755  * @exchange: exchange the two dentries
2756  *
2757  * Update the dcache to reflect the move of a file name. Negative
2758  * dcache entries should not be moved in this way. Caller must hold
2759  * rename_lock, the i_mutex of the source and target directories,
2760  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2761  */
2762 static void __d_move(struct dentry *dentry, struct dentry *target,
2763 		     bool exchange)
2764 {
2765 	struct dentry *old_parent, *p;
2766 	wait_queue_head_t *d_wait;
2767 	struct inode *dir = NULL;
2768 	unsigned n;
2769 
2770 	WARN_ON(!dentry->d_inode);
2771 	if (WARN_ON(dentry == target))
2772 		return;
2773 
2774 	BUG_ON(d_ancestor(target, dentry));
2775 	old_parent = dentry->d_parent;
2776 	p = d_ancestor(old_parent, target);
2777 	if (IS_ROOT(dentry)) {
2778 		BUG_ON(p);
2779 		spin_lock(&target->d_parent->d_lock);
2780 	} else if (!p) {
2781 		/* target is not a descendent of dentry->d_parent */
2782 		spin_lock(&target->d_parent->d_lock);
2783 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2784 	} else {
2785 		BUG_ON(p == dentry);
2786 		spin_lock(&old_parent->d_lock);
2787 		if (p != target)
2788 			spin_lock_nested(&target->d_parent->d_lock,
2789 					DENTRY_D_LOCK_NESTED);
2790 	}
2791 	spin_lock_nested(&dentry->d_lock, 2);
2792 	spin_lock_nested(&target->d_lock, 3);
2793 
2794 	if (unlikely(d_in_lookup(target))) {
2795 		dir = target->d_parent->d_inode;
2796 		n = start_dir_add(dir);
2797 		d_wait = __d_lookup_unhash(target);
2798 	}
2799 
2800 	write_seqcount_begin(&dentry->d_seq);
2801 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2802 
2803 	/* unhash both */
2804 	if (!d_unhashed(dentry))
2805 		___d_drop(dentry);
2806 	if (!d_unhashed(target))
2807 		___d_drop(target);
2808 
2809 	/* ... and switch them in the tree */
2810 	dentry->d_parent = target->d_parent;
2811 	if (!exchange) {
2812 		copy_name(dentry, target);
2813 		target->d_hash.pprev = NULL;
2814 		dentry->d_parent->d_lockref.count++;
2815 		if (dentry != old_parent) /* wasn't IS_ROOT */
2816 			WARN_ON(!--old_parent->d_lockref.count);
2817 	} else {
2818 		target->d_parent = old_parent;
2819 		swap_names(dentry, target);
2820 		if (!hlist_unhashed(&target->d_sib))
2821 			__hlist_del(&target->d_sib);
2822 		hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2823 		__d_rehash(target);
2824 		fsnotify_update_flags(target);
2825 	}
2826 	if (!hlist_unhashed(&dentry->d_sib))
2827 		__hlist_del(&dentry->d_sib);
2828 	hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2829 	__d_rehash(dentry);
2830 	fsnotify_update_flags(dentry);
2831 	fscrypt_handle_d_move(dentry);
2832 
2833 	write_seqcount_end(&target->d_seq);
2834 	write_seqcount_end(&dentry->d_seq);
2835 
2836 	if (dir)
2837 		end_dir_add(dir, n, d_wait);
2838 
2839 	if (dentry->d_parent != old_parent)
2840 		spin_unlock(&dentry->d_parent->d_lock);
2841 	if (dentry != old_parent)
2842 		spin_unlock(&old_parent->d_lock);
2843 	spin_unlock(&target->d_lock);
2844 	spin_unlock(&dentry->d_lock);
2845 }
2846 
2847 /*
2848  * d_move - move a dentry
2849  * @dentry: entry to move
2850  * @target: new dentry
2851  *
2852  * Update the dcache to reflect the move of a file name. Negative
2853  * dcache entries should not be moved in this way. See the locking
2854  * requirements for __d_move.
2855  */
2856 void d_move(struct dentry *dentry, struct dentry *target)
2857 {
2858 	write_seqlock(&rename_lock);
2859 	__d_move(dentry, target, false);
2860 	write_sequnlock(&rename_lock);
2861 }
2862 EXPORT_SYMBOL(d_move);
2863 
2864 /*
2865  * d_exchange - exchange two dentries
2866  * @dentry1: first dentry
2867  * @dentry2: second dentry
2868  */
2869 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2870 {
2871 	write_seqlock(&rename_lock);
2872 
2873 	WARN_ON(!dentry1->d_inode);
2874 	WARN_ON(!dentry2->d_inode);
2875 	WARN_ON(IS_ROOT(dentry1));
2876 	WARN_ON(IS_ROOT(dentry2));
2877 
2878 	__d_move(dentry1, dentry2, true);
2879 
2880 	write_sequnlock(&rename_lock);
2881 }
2882 
2883 /**
2884  * d_ancestor - search for an ancestor
2885  * @p1: ancestor dentry
2886  * @p2: child dentry
2887  *
2888  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2889  * an ancestor of p2, else NULL.
2890  */
2891 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2892 {
2893 	struct dentry *p;
2894 
2895 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2896 		if (p->d_parent == p1)
2897 			return p;
2898 	}
2899 	return NULL;
2900 }
2901 
2902 /*
2903  * This helper attempts to cope with remotely renamed directories
2904  *
2905  * It assumes that the caller is already holding
2906  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2907  *
2908  * Note: If ever the locking in lock_rename() changes, then please
2909  * remember to update this too...
2910  */
2911 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
2912 {
2913 	struct mutex *m1 = NULL;
2914 	struct rw_semaphore *m2 = NULL;
2915 	int ret = -ESTALE;
2916 
2917 	/* If alias and dentry share a parent, then no extra locks required */
2918 	if (alias->d_parent == dentry->d_parent)
2919 		goto out_unalias;
2920 
2921 	/* See lock_rename() */
2922 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2923 		goto out_err;
2924 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2925 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2926 		goto out_err;
2927 	m2 = &alias->d_parent->d_inode->i_rwsem;
2928 out_unalias:
2929 	__d_move(alias, dentry, false);
2930 	ret = 0;
2931 out_err:
2932 	if (m2)
2933 		up_read(m2);
2934 	if (m1)
2935 		mutex_unlock(m1);
2936 	return ret;
2937 }
2938 
2939 /**
2940  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2941  * @inode:  the inode which may have a disconnected dentry
2942  * @dentry: a negative dentry which we want to point to the inode.
2943  *
2944  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2945  * place of the given dentry and return it, else simply d_add the inode
2946  * to the dentry and return NULL.
2947  *
2948  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2949  * we should error out: directories can't have multiple aliases.
2950  *
2951  * This is needed in the lookup routine of any filesystem that is exportable
2952  * (via knfsd) so that we can build dcache paths to directories effectively.
2953  *
2954  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2955  * is returned.  This matches the expected return value of ->lookup.
2956  *
2957  * Cluster filesystems may call this function with a negative, hashed dentry.
2958  * In that case, we know that the inode will be a regular file, and also this
2959  * will only occur during atomic_open. So we need to check for the dentry
2960  * being already hashed only in the final case.
2961  */
2962 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2963 {
2964 	if (IS_ERR(inode))
2965 		return ERR_CAST(inode);
2966 
2967 	BUG_ON(!d_unhashed(dentry));
2968 
2969 	if (!inode)
2970 		goto out;
2971 
2972 	security_d_instantiate(dentry, inode);
2973 	spin_lock(&inode->i_lock);
2974 	if (S_ISDIR(inode->i_mode)) {
2975 		struct dentry *new = __d_find_any_alias(inode);
2976 		if (unlikely(new)) {
2977 			/* The reference to new ensures it remains an alias */
2978 			spin_unlock(&inode->i_lock);
2979 			write_seqlock(&rename_lock);
2980 			if (unlikely(d_ancestor(new, dentry))) {
2981 				write_sequnlock(&rename_lock);
2982 				dput(new);
2983 				new = ERR_PTR(-ELOOP);
2984 				pr_warn_ratelimited(
2985 					"VFS: Lookup of '%s' in %s %s"
2986 					" would have caused loop\n",
2987 					dentry->d_name.name,
2988 					inode->i_sb->s_type->name,
2989 					inode->i_sb->s_id);
2990 			} else if (!IS_ROOT(new)) {
2991 				struct dentry *old_parent = dget(new->d_parent);
2992 				int err = __d_unalias(dentry, new);
2993 				write_sequnlock(&rename_lock);
2994 				if (err) {
2995 					dput(new);
2996 					new = ERR_PTR(err);
2997 				}
2998 				dput(old_parent);
2999 			} else {
3000 				__d_move(new, dentry, false);
3001 				write_sequnlock(&rename_lock);
3002 			}
3003 			iput(inode);
3004 			return new;
3005 		}
3006 	}
3007 out:
3008 	__d_add(dentry, inode);
3009 	return NULL;
3010 }
3011 EXPORT_SYMBOL(d_splice_alias);
3012 
3013 /*
3014  * Test whether new_dentry is a subdirectory of old_dentry.
3015  *
3016  * Trivially implemented using the dcache structure
3017  */
3018 
3019 /**
3020  * is_subdir - is new dentry a subdirectory of old_dentry
3021  * @new_dentry: new dentry
3022  * @old_dentry: old dentry
3023  *
3024  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3025  * Returns false otherwise.
3026  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3027  */
3028 
3029 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3030 {
3031 	bool result;
3032 	unsigned seq;
3033 
3034 	if (new_dentry == old_dentry)
3035 		return true;
3036 
3037 	do {
3038 		/* for restarting inner loop in case of seq retry */
3039 		seq = read_seqbegin(&rename_lock);
3040 		/*
3041 		 * Need rcu_readlock to protect against the d_parent trashing
3042 		 * due to d_move
3043 		 */
3044 		rcu_read_lock();
3045 		if (d_ancestor(old_dentry, new_dentry))
3046 			result = true;
3047 		else
3048 			result = false;
3049 		rcu_read_unlock();
3050 	} while (read_seqretry(&rename_lock, seq));
3051 
3052 	return result;
3053 }
3054 EXPORT_SYMBOL(is_subdir);
3055 
3056 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3057 {
3058 	struct dentry *root = data;
3059 	if (dentry != root) {
3060 		if (d_unhashed(dentry) || !dentry->d_inode)
3061 			return D_WALK_SKIP;
3062 
3063 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3064 			dentry->d_flags |= DCACHE_GENOCIDE;
3065 			dentry->d_lockref.count--;
3066 		}
3067 	}
3068 	return D_WALK_CONTINUE;
3069 }
3070 
3071 void d_genocide(struct dentry *parent)
3072 {
3073 	d_walk(parent, parent, d_genocide_kill);
3074 }
3075 
3076 void d_mark_tmpfile(struct file *file, struct inode *inode)
3077 {
3078 	struct dentry *dentry = file->f_path.dentry;
3079 
3080 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3081 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3082 		!d_unlinked(dentry));
3083 	spin_lock(&dentry->d_parent->d_lock);
3084 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3085 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3086 				(unsigned long long)inode->i_ino);
3087 	spin_unlock(&dentry->d_lock);
3088 	spin_unlock(&dentry->d_parent->d_lock);
3089 }
3090 EXPORT_SYMBOL(d_mark_tmpfile);
3091 
3092 void d_tmpfile(struct file *file, struct inode *inode)
3093 {
3094 	struct dentry *dentry = file->f_path.dentry;
3095 
3096 	inode_dec_link_count(inode);
3097 	d_mark_tmpfile(file, inode);
3098 	d_instantiate(dentry, inode);
3099 }
3100 EXPORT_SYMBOL(d_tmpfile);
3101 
3102 static __initdata unsigned long dhash_entries;
3103 static int __init set_dhash_entries(char *str)
3104 {
3105 	if (!str)
3106 		return 0;
3107 	dhash_entries = simple_strtoul(str, &str, 0);
3108 	return 1;
3109 }
3110 __setup("dhash_entries=", set_dhash_entries);
3111 
3112 static void __init dcache_init_early(void)
3113 {
3114 	/* If hashes are distributed across NUMA nodes, defer
3115 	 * hash allocation until vmalloc space is available.
3116 	 */
3117 	if (hashdist)
3118 		return;
3119 
3120 	dentry_hashtable =
3121 		alloc_large_system_hash("Dentry cache",
3122 					sizeof(struct hlist_bl_head),
3123 					dhash_entries,
3124 					13,
3125 					HASH_EARLY | HASH_ZERO,
3126 					&d_hash_shift,
3127 					NULL,
3128 					0,
3129 					0);
3130 	d_hash_shift = 32 - d_hash_shift;
3131 }
3132 
3133 static void __init dcache_init(void)
3134 {
3135 	/*
3136 	 * A constructor could be added for stable state like the lists,
3137 	 * but it is probably not worth it because of the cache nature
3138 	 * of the dcache.
3139 	 */
3140 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3141 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3142 		d_iname);
3143 
3144 	/* Hash may have been set up in dcache_init_early */
3145 	if (!hashdist)
3146 		return;
3147 
3148 	dentry_hashtable =
3149 		alloc_large_system_hash("Dentry cache",
3150 					sizeof(struct hlist_bl_head),
3151 					dhash_entries,
3152 					13,
3153 					HASH_ZERO,
3154 					&d_hash_shift,
3155 					NULL,
3156 					0,
3157 					0);
3158 	d_hash_shift = 32 - d_hash_shift;
3159 }
3160 
3161 /* SLAB cache for __getname() consumers */
3162 struct kmem_cache *names_cachep __ro_after_init;
3163 EXPORT_SYMBOL(names_cachep);
3164 
3165 void __init vfs_caches_init_early(void)
3166 {
3167 	int i;
3168 
3169 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3170 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3171 
3172 	dcache_init_early();
3173 	inode_init_early();
3174 }
3175 
3176 void __init vfs_caches_init(void)
3177 {
3178 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3179 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3180 
3181 	dcache_init();
3182 	inode_init();
3183 	files_init();
3184 	files_maxfiles_init();
3185 	mnt_init();
3186 	bdev_cache_init();
3187 	chrdev_init();
3188 }
3189