xref: /linux/fs/dcache.c (revision 3c2e0a489da6a7c48ad67a246c7a287fcb4a4607)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dcache.c
4  *
5  * Complete reimplementation
6  * (C) 1997 Thomas Schoebel-Theuer,
7  * with heavy changes by Linus Torvalds
8  */
9 
10 /*
11  * Notes on the allocation strategy:
12  *
13  * The dcache is a master of the icache - whenever a dcache entry
14  * exists, the inode will always exist. "iput()" is done either when
15  * the dcache entry is deleted or garbage collected.
16  */
17 
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37 
38 /*
39  * Usage:
40  * dcache->d_inode->i_lock protects:
41  *   - i_dentry, d_u.d_alias, d_inode of aliases
42  * dcache_hash_bucket lock protects:
43  *   - the dcache hash table
44  * s_roots bl list spinlock protects:
45  *   - the s_roots list (see __d_drop)
46  * dentry->d_sb->s_dentry_lru_lock protects:
47  *   - the dcache lru lists and counters
48  * d_lock protects:
49  *   - d_flags
50  *   - d_name
51  *   - d_lru
52  *   - d_count
53  *   - d_unhashed()
54  *   - d_parent and d_subdirs
55  *   - childrens' d_child and d_parent
56  *   - d_u.d_alias, d_inode
57  *
58  * Ordering:
59  * dentry->d_inode->i_lock
60  *   dentry->d_lock
61  *     dentry->d_sb->s_dentry_lru_lock
62  *     dcache_hash_bucket lock
63  *     s_roots lock
64  *
65  * If there is an ancestor relationship:
66  * dentry->d_parent->...->d_parent->d_lock
67  *   ...
68  *     dentry->d_parent->d_lock
69  *       dentry->d_lock
70  *
71  * If no ancestor relationship:
72  * arbitrary, since it's serialized on rename_lock
73  */
74 int sysctl_vfs_cache_pressure __read_mostly = 100;
75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
76 
77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
78 
79 EXPORT_SYMBOL(rename_lock);
80 
81 static struct kmem_cache *dentry_cache __read_mostly;
82 
83 const struct qstr empty_name = QSTR_INIT("", 0);
84 EXPORT_SYMBOL(empty_name);
85 const struct qstr slash_name = QSTR_INIT("/", 1);
86 EXPORT_SYMBOL(slash_name);
87 
88 /*
89  * This is the single most critical data structure when it comes
90  * to the dcache: the hashtable for lookups. Somebody should try
91  * to make this good - I've just made it work.
92  *
93  * This hash-function tries to avoid losing too many bits of hash
94  * information, yet avoid using a prime hash-size or similar.
95  */
96 
97 static unsigned int d_hash_shift __read_mostly;
98 
99 static struct hlist_bl_head *dentry_hashtable __read_mostly;
100 
101 static inline struct hlist_bl_head *d_hash(unsigned int hash)
102 {
103 	return dentry_hashtable + (hash >> d_hash_shift);
104 }
105 
106 #define IN_LOOKUP_SHIFT 10
107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
108 
109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
110 					unsigned int hash)
111 {
112 	hash += (unsigned long) parent / L1_CACHE_BYTES;
113 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
114 }
115 
116 
117 /* Statistics gathering. */
118 struct dentry_stat_t dentry_stat = {
119 	.age_limit = 45,
120 };
121 
122 static DEFINE_PER_CPU(long, nr_dentry);
123 static DEFINE_PER_CPU(long, nr_dentry_unused);
124 static DEFINE_PER_CPU(long, nr_dentry_negative);
125 
126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
127 
128 /*
129  * Here we resort to our own counters instead of using generic per-cpu counters
130  * for consistency with what the vfs inode code does. We are expected to harvest
131  * better code and performance by having our own specialized counters.
132  *
133  * Please note that the loop is done over all possible CPUs, not over all online
134  * CPUs. The reason for this is that we don't want to play games with CPUs going
135  * on and off. If one of them goes off, we will just keep their counters.
136  *
137  * glommer: See cffbc8a for details, and if you ever intend to change this,
138  * please update all vfs counters to match.
139  */
140 static long get_nr_dentry(void)
141 {
142 	int i;
143 	long sum = 0;
144 	for_each_possible_cpu(i)
145 		sum += per_cpu(nr_dentry, i);
146 	return sum < 0 ? 0 : sum;
147 }
148 
149 static long get_nr_dentry_unused(void)
150 {
151 	int i;
152 	long sum = 0;
153 	for_each_possible_cpu(i)
154 		sum += per_cpu(nr_dentry_unused, i);
155 	return sum < 0 ? 0 : sum;
156 }
157 
158 static long get_nr_dentry_negative(void)
159 {
160 	int i;
161 	long sum = 0;
162 
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_negative, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	dentry_stat.nr_negative = get_nr_dentry_negative();
174 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
175 }
176 #endif
177 
178 /*
179  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
180  * The strings are both count bytes long, and count is non-zero.
181  */
182 #ifdef CONFIG_DCACHE_WORD_ACCESS
183 
184 #include <asm/word-at-a-time.h>
185 /*
186  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
187  * aligned allocation for this particular component. We don't
188  * strictly need the load_unaligned_zeropad() safety, but it
189  * doesn't hurt either.
190  *
191  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
192  * need the careful unaligned handling.
193  */
194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
195 {
196 	unsigned long a,b,mask;
197 
198 	for (;;) {
199 		a = read_word_at_a_time(cs);
200 		b = load_unaligned_zeropad(ct);
201 		if (tcount < sizeof(unsigned long))
202 			break;
203 		if (unlikely(a != b))
204 			return 1;
205 		cs += sizeof(unsigned long);
206 		ct += sizeof(unsigned long);
207 		tcount -= sizeof(unsigned long);
208 		if (!tcount)
209 			return 0;
210 	}
211 	mask = bytemask_from_count(tcount);
212 	return unlikely(!!((a ^ b) & mask));
213 }
214 
215 #else
216 
217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
218 {
219 	do {
220 		if (*cs != *ct)
221 			return 1;
222 		cs++;
223 		ct++;
224 		tcount--;
225 	} while (tcount);
226 	return 0;
227 }
228 
229 #endif
230 
231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
232 {
233 	/*
234 	 * Be careful about RCU walk racing with rename:
235 	 * use 'READ_ONCE' to fetch the name pointer.
236 	 *
237 	 * NOTE! Even if a rename will mean that the length
238 	 * was not loaded atomically, we don't care. The
239 	 * RCU walk will check the sequence count eventually,
240 	 * and catch it. And we won't overrun the buffer,
241 	 * because we're reading the name pointer atomically,
242 	 * and a dentry name is guaranteed to be properly
243 	 * terminated with a NUL byte.
244 	 *
245 	 * End result: even if 'len' is wrong, we'll exit
246 	 * early because the data cannot match (there can
247 	 * be no NUL in the ct/tcount data)
248 	 */
249 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
250 
251 	return dentry_string_cmp(cs, ct, tcount);
252 }
253 
254 struct external_name {
255 	union {
256 		atomic_t count;
257 		struct rcu_head head;
258 	} u;
259 	unsigned char name[];
260 };
261 
262 static inline struct external_name *external_name(struct dentry *dentry)
263 {
264 	return container_of(dentry->d_name.name, struct external_name, name[0]);
265 }
266 
267 static void __d_free(struct rcu_head *head)
268 {
269 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
270 
271 	kmem_cache_free(dentry_cache, dentry);
272 }
273 
274 static void __d_free_external(struct rcu_head *head)
275 {
276 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
277 	kfree(external_name(dentry));
278 	kmem_cache_free(dentry_cache, dentry);
279 }
280 
281 static inline int dname_external(const struct dentry *dentry)
282 {
283 	return dentry->d_name.name != dentry->d_iname;
284 }
285 
286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
287 {
288 	spin_lock(&dentry->d_lock);
289 	name->name = dentry->d_name;
290 	if (unlikely(dname_external(dentry))) {
291 		atomic_inc(&external_name(dentry)->u.count);
292 	} else {
293 		memcpy(name->inline_name, dentry->d_iname,
294 		       dentry->d_name.len + 1);
295 		name->name.name = name->inline_name;
296 	}
297 	spin_unlock(&dentry->d_lock);
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name.name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name.name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	smp_store_release(&dentry->d_flags, flags);
323 }
324 
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 	if (dentry->d_flags & DCACHE_LRU_LIST)
333 		this_cpu_inc(nr_dentry_negative);
334 }
335 
336 static void dentry_free(struct dentry *dentry)
337 {
338 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
339 	if (unlikely(dname_external(dentry))) {
340 		struct external_name *p = external_name(dentry);
341 		if (likely(atomic_dec_and_test(&p->u.count))) {
342 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
343 			return;
344 		}
345 	}
346 	/* if dentry was never visible to RCU, immediate free is OK */
347 	if (dentry->d_flags & DCACHE_NORCU)
348 		__d_free(&dentry->d_u.d_rcu);
349 	else
350 		call_rcu(&dentry->d_u.d_rcu, __d_free);
351 }
352 
353 /*
354  * Release the dentry's inode, using the filesystem
355  * d_iput() operation if defined.
356  */
357 static void dentry_unlink_inode(struct dentry * dentry)
358 	__releases(dentry->d_lock)
359 	__releases(dentry->d_inode->i_lock)
360 {
361 	struct inode *inode = dentry->d_inode;
362 
363 	raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	raw_write_seqcount_end(&dentry->d_seq);
367 	spin_unlock(&dentry->d_lock);
368 	spin_unlock(&inode->i_lock);
369 	if (!inode->i_nlink)
370 		fsnotify_inoderemove(inode);
371 	if (dentry->d_op && dentry->d_op->d_iput)
372 		dentry->d_op->d_iput(dentry, inode);
373 	else
374 		iput(inode);
375 }
376 
377 /*
378  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
379  * is in use - which includes both the "real" per-superblock
380  * LRU list _and_ the DCACHE_SHRINK_LIST use.
381  *
382  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
383  * on the shrink list (ie not on the superblock LRU list).
384  *
385  * The per-cpu "nr_dentry_unused" counters are updated with
386  * the DCACHE_LRU_LIST bit.
387  *
388  * The per-cpu "nr_dentry_negative" counters are only updated
389  * when deleted from or added to the per-superblock LRU list, not
390  * from/to the shrink list. That is to avoid an unneeded dec/inc
391  * pair when moving from LRU to shrink list in select_collect().
392  *
393  * These helper functions make sure we always follow the
394  * rules. d_lock must be held by the caller.
395  */
396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
397 static void d_lru_add(struct dentry *dentry)
398 {
399 	D_FLAG_VERIFY(dentry, 0);
400 	dentry->d_flags |= DCACHE_LRU_LIST;
401 	this_cpu_inc(nr_dentry_unused);
402 	if (d_is_negative(dentry))
403 		this_cpu_inc(nr_dentry_negative);
404 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
405 }
406 
407 static void d_lru_del(struct dentry *dentry)
408 {
409 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
410 	dentry->d_flags &= ~DCACHE_LRU_LIST;
411 	this_cpu_dec(nr_dentry_unused);
412 	if (d_is_negative(dentry))
413 		this_cpu_dec(nr_dentry_negative);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	if (d_is_negative(dentry))
445 		this_cpu_dec(nr_dentry_negative);
446 	list_lru_isolate(lru, &dentry->d_lru);
447 }
448 
449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
450 			      struct list_head *list)
451 {
452 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
453 	dentry->d_flags |= DCACHE_SHRINK_LIST;
454 	if (d_is_negative(dentry))
455 		this_cpu_dec(nr_dentry_negative);
456 	list_lru_isolate_move(lru, &dentry->d_lru, list);
457 }
458 
459 static void ___d_drop(struct dentry *dentry)
460 {
461 	struct hlist_bl_head *b;
462 	/*
463 	 * Hashed dentries are normally on the dentry hashtable,
464 	 * with the exception of those newly allocated by
465 	 * d_obtain_root, which are always IS_ROOT:
466 	 */
467 	if (unlikely(IS_ROOT(dentry)))
468 		b = &dentry->d_sb->s_roots;
469 	else
470 		b = d_hash(dentry->d_name.hash);
471 
472 	hlist_bl_lock(b);
473 	__hlist_bl_del(&dentry->d_hash);
474 	hlist_bl_unlock(b);
475 }
476 
477 void __d_drop(struct dentry *dentry)
478 {
479 	if (!d_unhashed(dentry)) {
480 		___d_drop(dentry);
481 		dentry->d_hash.pprev = NULL;
482 		write_seqcount_invalidate(&dentry->d_seq);
483 	}
484 }
485 EXPORT_SYMBOL(__d_drop);
486 
487 /**
488  * d_drop - drop a dentry
489  * @dentry: dentry to drop
490  *
491  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
492  * be found through a VFS lookup any more. Note that this is different from
493  * deleting the dentry - d_delete will try to mark the dentry negative if
494  * possible, giving a successful _negative_ lookup, while d_drop will
495  * just make the cache lookup fail.
496  *
497  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
498  * reason (NFS timeouts or autofs deletes).
499  *
500  * __d_drop requires dentry->d_lock
501  *
502  * ___d_drop doesn't mark dentry as "unhashed"
503  * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
504  */
505 void d_drop(struct dentry *dentry)
506 {
507 	spin_lock(&dentry->d_lock);
508 	__d_drop(dentry);
509 	spin_unlock(&dentry->d_lock);
510 }
511 EXPORT_SYMBOL(d_drop);
512 
513 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
514 {
515 	struct dentry *next;
516 	/*
517 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
518 	 * attached to the dentry tree
519 	 */
520 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
521 	if (unlikely(list_empty(&dentry->d_child)))
522 		return;
523 	__list_del_entry(&dentry->d_child);
524 	/*
525 	 * Cursors can move around the list of children.  While we'd been
526 	 * a normal list member, it didn't matter - ->d_child.next would've
527 	 * been updated.  However, from now on it won't be and for the
528 	 * things like d_walk() it might end up with a nasty surprise.
529 	 * Normally d_walk() doesn't care about cursors moving around -
530 	 * ->d_lock on parent prevents that and since a cursor has no children
531 	 * of its own, we get through it without ever unlocking the parent.
532 	 * There is one exception, though - if we ascend from a child that
533 	 * gets killed as soon as we unlock it, the next sibling is found
534 	 * using the value left in its ->d_child.next.  And if _that_
535 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
536 	 * before d_walk() regains parent->d_lock, we'll end up skipping
537 	 * everything the cursor had been moved past.
538 	 *
539 	 * Solution: make sure that the pointer left behind in ->d_child.next
540 	 * points to something that won't be moving around.  I.e. skip the
541 	 * cursors.
542 	 */
543 	while (dentry->d_child.next != &parent->d_subdirs) {
544 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
545 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
546 			break;
547 		dentry->d_child.next = next->d_child.next;
548 	}
549 }
550 
551 static void __dentry_kill(struct dentry *dentry)
552 {
553 	struct dentry *parent = NULL;
554 	bool can_free = true;
555 	if (!IS_ROOT(dentry))
556 		parent = dentry->d_parent;
557 
558 	/*
559 	 * The dentry is now unrecoverably dead to the world.
560 	 */
561 	lockref_mark_dead(&dentry->d_lockref);
562 
563 	/*
564 	 * inform the fs via d_prune that this dentry is about to be
565 	 * unhashed and destroyed.
566 	 */
567 	if (dentry->d_flags & DCACHE_OP_PRUNE)
568 		dentry->d_op->d_prune(dentry);
569 
570 	if (dentry->d_flags & DCACHE_LRU_LIST) {
571 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
572 			d_lru_del(dentry);
573 	}
574 	/* if it was on the hash then remove it */
575 	__d_drop(dentry);
576 	dentry_unlist(dentry, parent);
577 	if (parent)
578 		spin_unlock(&parent->d_lock);
579 	if (dentry->d_inode)
580 		dentry_unlink_inode(dentry);
581 	else
582 		spin_unlock(&dentry->d_lock);
583 	this_cpu_dec(nr_dentry);
584 	if (dentry->d_op && dentry->d_op->d_release)
585 		dentry->d_op->d_release(dentry);
586 
587 	spin_lock(&dentry->d_lock);
588 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
589 		dentry->d_flags |= DCACHE_MAY_FREE;
590 		can_free = false;
591 	}
592 	spin_unlock(&dentry->d_lock);
593 	if (likely(can_free))
594 		dentry_free(dentry);
595 	cond_resched();
596 }
597 
598 static struct dentry *__lock_parent(struct dentry *dentry)
599 {
600 	struct dentry *parent;
601 	rcu_read_lock();
602 	spin_unlock(&dentry->d_lock);
603 again:
604 	parent = READ_ONCE(dentry->d_parent);
605 	spin_lock(&parent->d_lock);
606 	/*
607 	 * We can't blindly lock dentry until we are sure
608 	 * that we won't violate the locking order.
609 	 * Any changes of dentry->d_parent must have
610 	 * been done with parent->d_lock held, so
611 	 * spin_lock() above is enough of a barrier
612 	 * for checking if it's still our child.
613 	 */
614 	if (unlikely(parent != dentry->d_parent)) {
615 		spin_unlock(&parent->d_lock);
616 		goto again;
617 	}
618 	rcu_read_unlock();
619 	if (parent != dentry)
620 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
621 	else
622 		parent = NULL;
623 	return parent;
624 }
625 
626 static inline struct dentry *lock_parent(struct dentry *dentry)
627 {
628 	struct dentry *parent = dentry->d_parent;
629 	if (IS_ROOT(dentry))
630 		return NULL;
631 	if (likely(spin_trylock(&parent->d_lock)))
632 		return parent;
633 	return __lock_parent(dentry);
634 }
635 
636 static inline bool retain_dentry(struct dentry *dentry)
637 {
638 	WARN_ON(d_in_lookup(dentry));
639 
640 	/* Unreachable? Get rid of it */
641 	if (unlikely(d_unhashed(dentry)))
642 		return false;
643 
644 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
645 		return false;
646 
647 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
648 		if (dentry->d_op->d_delete(dentry))
649 			return false;
650 	}
651 
652 	if (unlikely(dentry->d_flags & DCACHE_DONTCACHE))
653 		return false;
654 
655 	/* retain; LRU fodder */
656 	dentry->d_lockref.count--;
657 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
658 		d_lru_add(dentry);
659 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
660 		dentry->d_flags |= DCACHE_REFERENCED;
661 	return true;
662 }
663 
664 void d_mark_dontcache(struct inode *inode)
665 {
666 	struct dentry *de;
667 
668 	spin_lock(&inode->i_lock);
669 	hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
670 		spin_lock(&de->d_lock);
671 		de->d_flags |= DCACHE_DONTCACHE;
672 		spin_unlock(&de->d_lock);
673 	}
674 	inode->i_state |= I_DONTCACHE;
675 	spin_unlock(&inode->i_lock);
676 }
677 EXPORT_SYMBOL(d_mark_dontcache);
678 
679 /*
680  * Finish off a dentry we've decided to kill.
681  * dentry->d_lock must be held, returns with it unlocked.
682  * Returns dentry requiring refcount drop, or NULL if we're done.
683  */
684 static struct dentry *dentry_kill(struct dentry *dentry)
685 	__releases(dentry->d_lock)
686 {
687 	struct inode *inode = dentry->d_inode;
688 	struct dentry *parent = NULL;
689 
690 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
691 		goto slow_positive;
692 
693 	if (!IS_ROOT(dentry)) {
694 		parent = dentry->d_parent;
695 		if (unlikely(!spin_trylock(&parent->d_lock))) {
696 			parent = __lock_parent(dentry);
697 			if (likely(inode || !dentry->d_inode))
698 				goto got_locks;
699 			/* negative that became positive */
700 			if (parent)
701 				spin_unlock(&parent->d_lock);
702 			inode = dentry->d_inode;
703 			goto slow_positive;
704 		}
705 	}
706 	__dentry_kill(dentry);
707 	return parent;
708 
709 slow_positive:
710 	spin_unlock(&dentry->d_lock);
711 	spin_lock(&inode->i_lock);
712 	spin_lock(&dentry->d_lock);
713 	parent = lock_parent(dentry);
714 got_locks:
715 	if (unlikely(dentry->d_lockref.count != 1)) {
716 		dentry->d_lockref.count--;
717 	} else if (likely(!retain_dentry(dentry))) {
718 		__dentry_kill(dentry);
719 		return parent;
720 	}
721 	/* we are keeping it, after all */
722 	if (inode)
723 		spin_unlock(&inode->i_lock);
724 	if (parent)
725 		spin_unlock(&parent->d_lock);
726 	spin_unlock(&dentry->d_lock);
727 	return NULL;
728 }
729 
730 /*
731  * Try to do a lockless dput(), and return whether that was successful.
732  *
733  * If unsuccessful, we return false, having already taken the dentry lock.
734  *
735  * The caller needs to hold the RCU read lock, so that the dentry is
736  * guaranteed to stay around even if the refcount goes down to zero!
737  */
738 static inline bool fast_dput(struct dentry *dentry)
739 {
740 	int ret;
741 	unsigned int d_flags;
742 
743 	/*
744 	 * If we have a d_op->d_delete() operation, we sould not
745 	 * let the dentry count go to zero, so use "put_or_lock".
746 	 */
747 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
748 		return lockref_put_or_lock(&dentry->d_lockref);
749 
750 	/*
751 	 * .. otherwise, we can try to just decrement the
752 	 * lockref optimistically.
753 	 */
754 	ret = lockref_put_return(&dentry->d_lockref);
755 
756 	/*
757 	 * If the lockref_put_return() failed due to the lock being held
758 	 * by somebody else, the fast path has failed. We will need to
759 	 * get the lock, and then check the count again.
760 	 */
761 	if (unlikely(ret < 0)) {
762 		spin_lock(&dentry->d_lock);
763 		if (dentry->d_lockref.count > 1) {
764 			dentry->d_lockref.count--;
765 			spin_unlock(&dentry->d_lock);
766 			return true;
767 		}
768 		return false;
769 	}
770 
771 	/*
772 	 * If we weren't the last ref, we're done.
773 	 */
774 	if (ret)
775 		return true;
776 
777 	/*
778 	 * Careful, careful. The reference count went down
779 	 * to zero, but we don't hold the dentry lock, so
780 	 * somebody else could get it again, and do another
781 	 * dput(), and we need to not race with that.
782 	 *
783 	 * However, there is a very special and common case
784 	 * where we don't care, because there is nothing to
785 	 * do: the dentry is still hashed, it does not have
786 	 * a 'delete' op, and it's referenced and already on
787 	 * the LRU list.
788 	 *
789 	 * NOTE! Since we aren't locked, these values are
790 	 * not "stable". However, it is sufficient that at
791 	 * some point after we dropped the reference the
792 	 * dentry was hashed and the flags had the proper
793 	 * value. Other dentry users may have re-gotten
794 	 * a reference to the dentry and change that, but
795 	 * our work is done - we can leave the dentry
796 	 * around with a zero refcount.
797 	 *
798 	 * Nevertheless, there are two cases that we should kill
799 	 * the dentry anyway.
800 	 * 1. free disconnected dentries as soon as their refcount
801 	 *    reached zero.
802 	 * 2. free dentries if they should not be cached.
803 	 */
804 	smp_rmb();
805 	d_flags = READ_ONCE(dentry->d_flags);
806 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST |
807 			DCACHE_DISCONNECTED | DCACHE_DONTCACHE;
808 
809 	/* Nothing to do? Dropping the reference was all we needed? */
810 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
811 		return true;
812 
813 	/*
814 	 * Not the fast normal case? Get the lock. We've already decremented
815 	 * the refcount, but we'll need to re-check the situation after
816 	 * getting the lock.
817 	 */
818 	spin_lock(&dentry->d_lock);
819 
820 	/*
821 	 * Did somebody else grab a reference to it in the meantime, and
822 	 * we're no longer the last user after all? Alternatively, somebody
823 	 * else could have killed it and marked it dead. Either way, we
824 	 * don't need to do anything else.
825 	 */
826 	if (dentry->d_lockref.count) {
827 		spin_unlock(&dentry->d_lock);
828 		return true;
829 	}
830 
831 	/*
832 	 * Re-get the reference we optimistically dropped. We hold the
833 	 * lock, and we just tested that it was zero, so we can just
834 	 * set it to 1.
835 	 */
836 	dentry->d_lockref.count = 1;
837 	return false;
838 }
839 
840 
841 /*
842  * This is dput
843  *
844  * This is complicated by the fact that we do not want to put
845  * dentries that are no longer on any hash chain on the unused
846  * list: we'd much rather just get rid of them immediately.
847  *
848  * However, that implies that we have to traverse the dentry
849  * tree upwards to the parents which might _also_ now be
850  * scheduled for deletion (it may have been only waiting for
851  * its last child to go away).
852  *
853  * This tail recursion is done by hand as we don't want to depend
854  * on the compiler to always get this right (gcc generally doesn't).
855  * Real recursion would eat up our stack space.
856  */
857 
858 /*
859  * dput - release a dentry
860  * @dentry: dentry to release
861  *
862  * Release a dentry. This will drop the usage count and if appropriate
863  * call the dentry unlink method as well as removing it from the queues and
864  * releasing its resources. If the parent dentries were scheduled for release
865  * they too may now get deleted.
866  */
867 void dput(struct dentry *dentry)
868 {
869 	while (dentry) {
870 		might_sleep();
871 
872 		rcu_read_lock();
873 		if (likely(fast_dput(dentry))) {
874 			rcu_read_unlock();
875 			return;
876 		}
877 
878 		/* Slow case: now with the dentry lock held */
879 		rcu_read_unlock();
880 
881 		if (likely(retain_dentry(dentry))) {
882 			spin_unlock(&dentry->d_lock);
883 			return;
884 		}
885 
886 		dentry = dentry_kill(dentry);
887 	}
888 }
889 EXPORT_SYMBOL(dput);
890 
891 static void __dput_to_list(struct dentry *dentry, struct list_head *list)
892 __must_hold(&dentry->d_lock)
893 {
894 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
895 		/* let the owner of the list it's on deal with it */
896 		--dentry->d_lockref.count;
897 	} else {
898 		if (dentry->d_flags & DCACHE_LRU_LIST)
899 			d_lru_del(dentry);
900 		if (!--dentry->d_lockref.count)
901 			d_shrink_add(dentry, list);
902 	}
903 }
904 
905 void dput_to_list(struct dentry *dentry, struct list_head *list)
906 {
907 	rcu_read_lock();
908 	if (likely(fast_dput(dentry))) {
909 		rcu_read_unlock();
910 		return;
911 	}
912 	rcu_read_unlock();
913 	if (!retain_dentry(dentry))
914 		__dput_to_list(dentry, list);
915 	spin_unlock(&dentry->d_lock);
916 }
917 
918 /* This must be called with d_lock held */
919 static inline void __dget_dlock(struct dentry *dentry)
920 {
921 	dentry->d_lockref.count++;
922 }
923 
924 static inline void __dget(struct dentry *dentry)
925 {
926 	lockref_get(&dentry->d_lockref);
927 }
928 
929 struct dentry *dget_parent(struct dentry *dentry)
930 {
931 	int gotref;
932 	struct dentry *ret;
933 	unsigned seq;
934 
935 	/*
936 	 * Do optimistic parent lookup without any
937 	 * locking.
938 	 */
939 	rcu_read_lock();
940 	seq = raw_seqcount_begin(&dentry->d_seq);
941 	ret = READ_ONCE(dentry->d_parent);
942 	gotref = lockref_get_not_zero(&ret->d_lockref);
943 	rcu_read_unlock();
944 	if (likely(gotref)) {
945 		if (!read_seqcount_retry(&dentry->d_seq, seq))
946 			return ret;
947 		dput(ret);
948 	}
949 
950 repeat:
951 	/*
952 	 * Don't need rcu_dereference because we re-check it was correct under
953 	 * the lock.
954 	 */
955 	rcu_read_lock();
956 	ret = dentry->d_parent;
957 	spin_lock(&ret->d_lock);
958 	if (unlikely(ret != dentry->d_parent)) {
959 		spin_unlock(&ret->d_lock);
960 		rcu_read_unlock();
961 		goto repeat;
962 	}
963 	rcu_read_unlock();
964 	BUG_ON(!ret->d_lockref.count);
965 	ret->d_lockref.count++;
966 	spin_unlock(&ret->d_lock);
967 	return ret;
968 }
969 EXPORT_SYMBOL(dget_parent);
970 
971 static struct dentry * __d_find_any_alias(struct inode *inode)
972 {
973 	struct dentry *alias;
974 
975 	if (hlist_empty(&inode->i_dentry))
976 		return NULL;
977 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
978 	__dget(alias);
979 	return alias;
980 }
981 
982 /**
983  * d_find_any_alias - find any alias for a given inode
984  * @inode: inode to find an alias for
985  *
986  * If any aliases exist for the given inode, take and return a
987  * reference for one of them.  If no aliases exist, return %NULL.
988  */
989 struct dentry *d_find_any_alias(struct inode *inode)
990 {
991 	struct dentry *de;
992 
993 	spin_lock(&inode->i_lock);
994 	de = __d_find_any_alias(inode);
995 	spin_unlock(&inode->i_lock);
996 	return de;
997 }
998 EXPORT_SYMBOL(d_find_any_alias);
999 
1000 static struct dentry *__d_find_alias(struct inode *inode)
1001 {
1002 	struct dentry *alias;
1003 
1004 	if (S_ISDIR(inode->i_mode))
1005 		return __d_find_any_alias(inode);
1006 
1007 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1008 		spin_lock(&alias->d_lock);
1009  		if (!d_unhashed(alias)) {
1010 			__dget_dlock(alias);
1011 			spin_unlock(&alias->d_lock);
1012 			return alias;
1013 		}
1014 		spin_unlock(&alias->d_lock);
1015 	}
1016 	return NULL;
1017 }
1018 
1019 /**
1020  * d_find_alias - grab a hashed alias of inode
1021  * @inode: inode in question
1022  *
1023  * If inode has a hashed alias, or is a directory and has any alias,
1024  * acquire the reference to alias and return it. Otherwise return NULL.
1025  * Notice that if inode is a directory there can be only one alias and
1026  * it can be unhashed only if it has no children, or if it is the root
1027  * of a filesystem, or if the directory was renamed and d_revalidate
1028  * was the first vfs operation to notice.
1029  *
1030  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1031  * any other hashed alias over that one.
1032  */
1033 struct dentry *d_find_alias(struct inode *inode)
1034 {
1035 	struct dentry *de = NULL;
1036 
1037 	if (!hlist_empty(&inode->i_dentry)) {
1038 		spin_lock(&inode->i_lock);
1039 		de = __d_find_alias(inode);
1040 		spin_unlock(&inode->i_lock);
1041 	}
1042 	return de;
1043 }
1044 EXPORT_SYMBOL(d_find_alias);
1045 
1046 /*
1047  *	Try to kill dentries associated with this inode.
1048  * WARNING: you must own a reference to inode.
1049  */
1050 void d_prune_aliases(struct inode *inode)
1051 {
1052 	struct dentry *dentry;
1053 restart:
1054 	spin_lock(&inode->i_lock);
1055 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
1056 		spin_lock(&dentry->d_lock);
1057 		if (!dentry->d_lockref.count) {
1058 			struct dentry *parent = lock_parent(dentry);
1059 			if (likely(!dentry->d_lockref.count)) {
1060 				__dentry_kill(dentry);
1061 				dput(parent);
1062 				goto restart;
1063 			}
1064 			if (parent)
1065 				spin_unlock(&parent->d_lock);
1066 		}
1067 		spin_unlock(&dentry->d_lock);
1068 	}
1069 	spin_unlock(&inode->i_lock);
1070 }
1071 EXPORT_SYMBOL(d_prune_aliases);
1072 
1073 /*
1074  * Lock a dentry from shrink list.
1075  * Called under rcu_read_lock() and dentry->d_lock; the former
1076  * guarantees that nothing we access will be freed under us.
1077  * Note that dentry is *not* protected from concurrent dentry_kill(),
1078  * d_delete(), etc.
1079  *
1080  * Return false if dentry has been disrupted or grabbed, leaving
1081  * the caller to kick it off-list.  Otherwise, return true and have
1082  * that dentry's inode and parent both locked.
1083  */
1084 static bool shrink_lock_dentry(struct dentry *dentry)
1085 {
1086 	struct inode *inode;
1087 	struct dentry *parent;
1088 
1089 	if (dentry->d_lockref.count)
1090 		return false;
1091 
1092 	inode = dentry->d_inode;
1093 	if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1094 		spin_unlock(&dentry->d_lock);
1095 		spin_lock(&inode->i_lock);
1096 		spin_lock(&dentry->d_lock);
1097 		if (unlikely(dentry->d_lockref.count))
1098 			goto out;
1099 		/* changed inode means that somebody had grabbed it */
1100 		if (unlikely(inode != dentry->d_inode))
1101 			goto out;
1102 	}
1103 
1104 	parent = dentry->d_parent;
1105 	if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock)))
1106 		return true;
1107 
1108 	spin_unlock(&dentry->d_lock);
1109 	spin_lock(&parent->d_lock);
1110 	if (unlikely(parent != dentry->d_parent)) {
1111 		spin_unlock(&parent->d_lock);
1112 		spin_lock(&dentry->d_lock);
1113 		goto out;
1114 	}
1115 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1116 	if (likely(!dentry->d_lockref.count))
1117 		return true;
1118 	spin_unlock(&parent->d_lock);
1119 out:
1120 	if (inode)
1121 		spin_unlock(&inode->i_lock);
1122 	return false;
1123 }
1124 
1125 void shrink_dentry_list(struct list_head *list)
1126 {
1127 	while (!list_empty(list)) {
1128 		struct dentry *dentry, *parent;
1129 
1130 		dentry = list_entry(list->prev, struct dentry, d_lru);
1131 		spin_lock(&dentry->d_lock);
1132 		rcu_read_lock();
1133 		if (!shrink_lock_dentry(dentry)) {
1134 			bool can_free = false;
1135 			rcu_read_unlock();
1136 			d_shrink_del(dentry);
1137 			if (dentry->d_lockref.count < 0)
1138 				can_free = dentry->d_flags & DCACHE_MAY_FREE;
1139 			spin_unlock(&dentry->d_lock);
1140 			if (can_free)
1141 				dentry_free(dentry);
1142 			continue;
1143 		}
1144 		rcu_read_unlock();
1145 		d_shrink_del(dentry);
1146 		parent = dentry->d_parent;
1147 		if (parent != dentry)
1148 			__dput_to_list(parent, list);
1149 		__dentry_kill(dentry);
1150 	}
1151 }
1152 
1153 static enum lru_status dentry_lru_isolate(struct list_head *item,
1154 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1155 {
1156 	struct list_head *freeable = arg;
1157 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1158 
1159 
1160 	/*
1161 	 * we are inverting the lru lock/dentry->d_lock here,
1162 	 * so use a trylock. If we fail to get the lock, just skip
1163 	 * it
1164 	 */
1165 	if (!spin_trylock(&dentry->d_lock))
1166 		return LRU_SKIP;
1167 
1168 	/*
1169 	 * Referenced dentries are still in use. If they have active
1170 	 * counts, just remove them from the LRU. Otherwise give them
1171 	 * another pass through the LRU.
1172 	 */
1173 	if (dentry->d_lockref.count) {
1174 		d_lru_isolate(lru, dentry);
1175 		spin_unlock(&dentry->d_lock);
1176 		return LRU_REMOVED;
1177 	}
1178 
1179 	if (dentry->d_flags & DCACHE_REFERENCED) {
1180 		dentry->d_flags &= ~DCACHE_REFERENCED;
1181 		spin_unlock(&dentry->d_lock);
1182 
1183 		/*
1184 		 * The list move itself will be made by the common LRU code. At
1185 		 * this point, we've dropped the dentry->d_lock but keep the
1186 		 * lru lock. This is safe to do, since every list movement is
1187 		 * protected by the lru lock even if both locks are held.
1188 		 *
1189 		 * This is guaranteed by the fact that all LRU management
1190 		 * functions are intermediated by the LRU API calls like
1191 		 * list_lru_add and list_lru_del. List movement in this file
1192 		 * only ever occur through this functions or through callbacks
1193 		 * like this one, that are called from the LRU API.
1194 		 *
1195 		 * The only exceptions to this are functions like
1196 		 * shrink_dentry_list, and code that first checks for the
1197 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1198 		 * operating only with stack provided lists after they are
1199 		 * properly isolated from the main list.  It is thus, always a
1200 		 * local access.
1201 		 */
1202 		return LRU_ROTATE;
1203 	}
1204 
1205 	d_lru_shrink_move(lru, dentry, freeable);
1206 	spin_unlock(&dentry->d_lock);
1207 
1208 	return LRU_REMOVED;
1209 }
1210 
1211 /**
1212  * prune_dcache_sb - shrink the dcache
1213  * @sb: superblock
1214  * @sc: shrink control, passed to list_lru_shrink_walk()
1215  *
1216  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1217  * is done when we need more memory and called from the superblock shrinker
1218  * function.
1219  *
1220  * This function may fail to free any resources if all the dentries are in
1221  * use.
1222  */
1223 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1224 {
1225 	LIST_HEAD(dispose);
1226 	long freed;
1227 
1228 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1229 				     dentry_lru_isolate, &dispose);
1230 	shrink_dentry_list(&dispose);
1231 	return freed;
1232 }
1233 
1234 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1235 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1236 {
1237 	struct list_head *freeable = arg;
1238 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1239 
1240 	/*
1241 	 * we are inverting the lru lock/dentry->d_lock here,
1242 	 * so use a trylock. If we fail to get the lock, just skip
1243 	 * it
1244 	 */
1245 	if (!spin_trylock(&dentry->d_lock))
1246 		return LRU_SKIP;
1247 
1248 	d_lru_shrink_move(lru, dentry, freeable);
1249 	spin_unlock(&dentry->d_lock);
1250 
1251 	return LRU_REMOVED;
1252 }
1253 
1254 
1255 /**
1256  * shrink_dcache_sb - shrink dcache for a superblock
1257  * @sb: superblock
1258  *
1259  * Shrink the dcache for the specified super block. This is used to free
1260  * the dcache before unmounting a file system.
1261  */
1262 void shrink_dcache_sb(struct super_block *sb)
1263 {
1264 	do {
1265 		LIST_HEAD(dispose);
1266 
1267 		list_lru_walk(&sb->s_dentry_lru,
1268 			dentry_lru_isolate_shrink, &dispose, 1024);
1269 		shrink_dentry_list(&dispose);
1270 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1271 }
1272 EXPORT_SYMBOL(shrink_dcache_sb);
1273 
1274 /**
1275  * enum d_walk_ret - action to talke during tree walk
1276  * @D_WALK_CONTINUE:	contrinue walk
1277  * @D_WALK_QUIT:	quit walk
1278  * @D_WALK_NORETRY:	quit when retry is needed
1279  * @D_WALK_SKIP:	skip this dentry and its children
1280  */
1281 enum d_walk_ret {
1282 	D_WALK_CONTINUE,
1283 	D_WALK_QUIT,
1284 	D_WALK_NORETRY,
1285 	D_WALK_SKIP,
1286 };
1287 
1288 /**
1289  * d_walk - walk the dentry tree
1290  * @parent:	start of walk
1291  * @data:	data passed to @enter() and @finish()
1292  * @enter:	callback when first entering the dentry
1293  *
1294  * The @enter() callbacks are called with d_lock held.
1295  */
1296 static void d_walk(struct dentry *parent, void *data,
1297 		   enum d_walk_ret (*enter)(void *, struct dentry *))
1298 {
1299 	struct dentry *this_parent;
1300 	struct list_head *next;
1301 	unsigned seq = 0;
1302 	enum d_walk_ret ret;
1303 	bool retry = true;
1304 
1305 again:
1306 	read_seqbegin_or_lock(&rename_lock, &seq);
1307 	this_parent = parent;
1308 	spin_lock(&this_parent->d_lock);
1309 
1310 	ret = enter(data, this_parent);
1311 	switch (ret) {
1312 	case D_WALK_CONTINUE:
1313 		break;
1314 	case D_WALK_QUIT:
1315 	case D_WALK_SKIP:
1316 		goto out_unlock;
1317 	case D_WALK_NORETRY:
1318 		retry = false;
1319 		break;
1320 	}
1321 repeat:
1322 	next = this_parent->d_subdirs.next;
1323 resume:
1324 	while (next != &this_parent->d_subdirs) {
1325 		struct list_head *tmp = next;
1326 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1327 		next = tmp->next;
1328 
1329 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1330 			continue;
1331 
1332 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1333 
1334 		ret = enter(data, dentry);
1335 		switch (ret) {
1336 		case D_WALK_CONTINUE:
1337 			break;
1338 		case D_WALK_QUIT:
1339 			spin_unlock(&dentry->d_lock);
1340 			goto out_unlock;
1341 		case D_WALK_NORETRY:
1342 			retry = false;
1343 			break;
1344 		case D_WALK_SKIP:
1345 			spin_unlock(&dentry->d_lock);
1346 			continue;
1347 		}
1348 
1349 		if (!list_empty(&dentry->d_subdirs)) {
1350 			spin_unlock(&this_parent->d_lock);
1351 			spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1352 			this_parent = dentry;
1353 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1354 			goto repeat;
1355 		}
1356 		spin_unlock(&dentry->d_lock);
1357 	}
1358 	/*
1359 	 * All done at this level ... ascend and resume the search.
1360 	 */
1361 	rcu_read_lock();
1362 ascend:
1363 	if (this_parent != parent) {
1364 		struct dentry *child = this_parent;
1365 		this_parent = child->d_parent;
1366 
1367 		spin_unlock(&child->d_lock);
1368 		spin_lock(&this_parent->d_lock);
1369 
1370 		/* might go back up the wrong parent if we have had a rename. */
1371 		if (need_seqretry(&rename_lock, seq))
1372 			goto rename_retry;
1373 		/* go into the first sibling still alive */
1374 		do {
1375 			next = child->d_child.next;
1376 			if (next == &this_parent->d_subdirs)
1377 				goto ascend;
1378 			child = list_entry(next, struct dentry, d_child);
1379 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1380 		rcu_read_unlock();
1381 		goto resume;
1382 	}
1383 	if (need_seqretry(&rename_lock, seq))
1384 		goto rename_retry;
1385 	rcu_read_unlock();
1386 
1387 out_unlock:
1388 	spin_unlock(&this_parent->d_lock);
1389 	done_seqretry(&rename_lock, seq);
1390 	return;
1391 
1392 rename_retry:
1393 	spin_unlock(&this_parent->d_lock);
1394 	rcu_read_unlock();
1395 	BUG_ON(seq & 1);
1396 	if (!retry)
1397 		return;
1398 	seq = 1;
1399 	goto again;
1400 }
1401 
1402 struct check_mount {
1403 	struct vfsmount *mnt;
1404 	unsigned int mounted;
1405 };
1406 
1407 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1408 {
1409 	struct check_mount *info = data;
1410 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1411 
1412 	if (likely(!d_mountpoint(dentry)))
1413 		return D_WALK_CONTINUE;
1414 	if (__path_is_mountpoint(&path)) {
1415 		info->mounted = 1;
1416 		return D_WALK_QUIT;
1417 	}
1418 	return D_WALK_CONTINUE;
1419 }
1420 
1421 /**
1422  * path_has_submounts - check for mounts over a dentry in the
1423  *                      current namespace.
1424  * @parent: path to check.
1425  *
1426  * Return true if the parent or its subdirectories contain
1427  * a mount point in the current namespace.
1428  */
1429 int path_has_submounts(const struct path *parent)
1430 {
1431 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1432 
1433 	read_seqlock_excl(&mount_lock);
1434 	d_walk(parent->dentry, &data, path_check_mount);
1435 	read_sequnlock_excl(&mount_lock);
1436 
1437 	return data.mounted;
1438 }
1439 EXPORT_SYMBOL(path_has_submounts);
1440 
1441 /*
1442  * Called by mount code to set a mountpoint and check if the mountpoint is
1443  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1444  * subtree can become unreachable).
1445  *
1446  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1447  * this reason take rename_lock and d_lock on dentry and ancestors.
1448  */
1449 int d_set_mounted(struct dentry *dentry)
1450 {
1451 	struct dentry *p;
1452 	int ret = -ENOENT;
1453 	write_seqlock(&rename_lock);
1454 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1455 		/* Need exclusion wrt. d_invalidate() */
1456 		spin_lock(&p->d_lock);
1457 		if (unlikely(d_unhashed(p))) {
1458 			spin_unlock(&p->d_lock);
1459 			goto out;
1460 		}
1461 		spin_unlock(&p->d_lock);
1462 	}
1463 	spin_lock(&dentry->d_lock);
1464 	if (!d_unlinked(dentry)) {
1465 		ret = -EBUSY;
1466 		if (!d_mountpoint(dentry)) {
1467 			dentry->d_flags |= DCACHE_MOUNTED;
1468 			ret = 0;
1469 		}
1470 	}
1471  	spin_unlock(&dentry->d_lock);
1472 out:
1473 	write_sequnlock(&rename_lock);
1474 	return ret;
1475 }
1476 
1477 /*
1478  * Search the dentry child list of the specified parent,
1479  * and move any unused dentries to the end of the unused
1480  * list for prune_dcache(). We descend to the next level
1481  * whenever the d_subdirs list is non-empty and continue
1482  * searching.
1483  *
1484  * It returns zero iff there are no unused children,
1485  * otherwise  it returns the number of children moved to
1486  * the end of the unused list. This may not be the total
1487  * number of unused children, because select_parent can
1488  * drop the lock and return early due to latency
1489  * constraints.
1490  */
1491 
1492 struct select_data {
1493 	struct dentry *start;
1494 	union {
1495 		long found;
1496 		struct dentry *victim;
1497 	};
1498 	struct list_head dispose;
1499 };
1500 
1501 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1502 {
1503 	struct select_data *data = _data;
1504 	enum d_walk_ret ret = D_WALK_CONTINUE;
1505 
1506 	if (data->start == dentry)
1507 		goto out;
1508 
1509 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1510 		data->found++;
1511 	} else {
1512 		if (dentry->d_flags & DCACHE_LRU_LIST)
1513 			d_lru_del(dentry);
1514 		if (!dentry->d_lockref.count) {
1515 			d_shrink_add(dentry, &data->dispose);
1516 			data->found++;
1517 		}
1518 	}
1519 	/*
1520 	 * We can return to the caller if we have found some (this
1521 	 * ensures forward progress). We'll be coming back to find
1522 	 * the rest.
1523 	 */
1524 	if (!list_empty(&data->dispose))
1525 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1526 out:
1527 	return ret;
1528 }
1529 
1530 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1531 {
1532 	struct select_data *data = _data;
1533 	enum d_walk_ret ret = D_WALK_CONTINUE;
1534 
1535 	if (data->start == dentry)
1536 		goto out;
1537 
1538 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1539 		if (!dentry->d_lockref.count) {
1540 			rcu_read_lock();
1541 			data->victim = dentry;
1542 			return D_WALK_QUIT;
1543 		}
1544 	} else {
1545 		if (dentry->d_flags & DCACHE_LRU_LIST)
1546 			d_lru_del(dentry);
1547 		if (!dentry->d_lockref.count)
1548 			d_shrink_add(dentry, &data->dispose);
1549 	}
1550 	/*
1551 	 * We can return to the caller if we have found some (this
1552 	 * ensures forward progress). We'll be coming back to find
1553 	 * the rest.
1554 	 */
1555 	if (!list_empty(&data->dispose))
1556 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1557 out:
1558 	return ret;
1559 }
1560 
1561 /**
1562  * shrink_dcache_parent - prune dcache
1563  * @parent: parent of entries to prune
1564  *
1565  * Prune the dcache to remove unused children of the parent dentry.
1566  */
1567 void shrink_dcache_parent(struct dentry *parent)
1568 {
1569 	for (;;) {
1570 		struct select_data data = {.start = parent};
1571 
1572 		INIT_LIST_HEAD(&data.dispose);
1573 		d_walk(parent, &data, select_collect);
1574 
1575 		if (!list_empty(&data.dispose)) {
1576 			shrink_dentry_list(&data.dispose);
1577 			continue;
1578 		}
1579 
1580 		cond_resched();
1581 		if (!data.found)
1582 			break;
1583 		data.victim = NULL;
1584 		d_walk(parent, &data, select_collect2);
1585 		if (data.victim) {
1586 			struct dentry *parent;
1587 			spin_lock(&data.victim->d_lock);
1588 			if (!shrink_lock_dentry(data.victim)) {
1589 				spin_unlock(&data.victim->d_lock);
1590 				rcu_read_unlock();
1591 			} else {
1592 				rcu_read_unlock();
1593 				parent = data.victim->d_parent;
1594 				if (parent != data.victim)
1595 					__dput_to_list(parent, &data.dispose);
1596 				__dentry_kill(data.victim);
1597 			}
1598 		}
1599 		if (!list_empty(&data.dispose))
1600 			shrink_dentry_list(&data.dispose);
1601 	}
1602 }
1603 EXPORT_SYMBOL(shrink_dcache_parent);
1604 
1605 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1606 {
1607 	/* it has busy descendents; complain about those instead */
1608 	if (!list_empty(&dentry->d_subdirs))
1609 		return D_WALK_CONTINUE;
1610 
1611 	/* root with refcount 1 is fine */
1612 	if (dentry == _data && dentry->d_lockref.count == 1)
1613 		return D_WALK_CONTINUE;
1614 
1615 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1616 			" still in use (%d) [unmount of %s %s]\n",
1617 		       dentry,
1618 		       dentry->d_inode ?
1619 		       dentry->d_inode->i_ino : 0UL,
1620 		       dentry,
1621 		       dentry->d_lockref.count,
1622 		       dentry->d_sb->s_type->name,
1623 		       dentry->d_sb->s_id);
1624 	WARN_ON(1);
1625 	return D_WALK_CONTINUE;
1626 }
1627 
1628 static void do_one_tree(struct dentry *dentry)
1629 {
1630 	shrink_dcache_parent(dentry);
1631 	d_walk(dentry, dentry, umount_check);
1632 	d_drop(dentry);
1633 	dput(dentry);
1634 }
1635 
1636 /*
1637  * destroy the dentries attached to a superblock on unmounting
1638  */
1639 void shrink_dcache_for_umount(struct super_block *sb)
1640 {
1641 	struct dentry *dentry;
1642 
1643 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1644 
1645 	dentry = sb->s_root;
1646 	sb->s_root = NULL;
1647 	do_one_tree(dentry);
1648 
1649 	while (!hlist_bl_empty(&sb->s_roots)) {
1650 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1651 		do_one_tree(dentry);
1652 	}
1653 }
1654 
1655 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1656 {
1657 	struct dentry **victim = _data;
1658 	if (d_mountpoint(dentry)) {
1659 		__dget_dlock(dentry);
1660 		*victim = dentry;
1661 		return D_WALK_QUIT;
1662 	}
1663 	return D_WALK_CONTINUE;
1664 }
1665 
1666 /**
1667  * d_invalidate - detach submounts, prune dcache, and drop
1668  * @dentry: dentry to invalidate (aka detach, prune and drop)
1669  */
1670 void d_invalidate(struct dentry *dentry)
1671 {
1672 	bool had_submounts = false;
1673 	spin_lock(&dentry->d_lock);
1674 	if (d_unhashed(dentry)) {
1675 		spin_unlock(&dentry->d_lock);
1676 		return;
1677 	}
1678 	__d_drop(dentry);
1679 	spin_unlock(&dentry->d_lock);
1680 
1681 	/* Negative dentries can be dropped without further checks */
1682 	if (!dentry->d_inode)
1683 		return;
1684 
1685 	shrink_dcache_parent(dentry);
1686 	for (;;) {
1687 		struct dentry *victim = NULL;
1688 		d_walk(dentry, &victim, find_submount);
1689 		if (!victim) {
1690 			if (had_submounts)
1691 				shrink_dcache_parent(dentry);
1692 			return;
1693 		}
1694 		had_submounts = true;
1695 		detach_mounts(victim);
1696 		dput(victim);
1697 	}
1698 }
1699 EXPORT_SYMBOL(d_invalidate);
1700 
1701 /**
1702  * __d_alloc	-	allocate a dcache entry
1703  * @sb: filesystem it will belong to
1704  * @name: qstr of the name
1705  *
1706  * Allocates a dentry. It returns %NULL if there is insufficient memory
1707  * available. On a success the dentry is returned. The name passed in is
1708  * copied and the copy passed in may be reused after this call.
1709  */
1710 
1711 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1712 {
1713 	struct dentry *dentry;
1714 	char *dname;
1715 	int err;
1716 
1717 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1718 	if (!dentry)
1719 		return NULL;
1720 
1721 	/*
1722 	 * We guarantee that the inline name is always NUL-terminated.
1723 	 * This way the memcpy() done by the name switching in rename
1724 	 * will still always have a NUL at the end, even if we might
1725 	 * be overwriting an internal NUL character
1726 	 */
1727 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1728 	if (unlikely(!name)) {
1729 		name = &slash_name;
1730 		dname = dentry->d_iname;
1731 	} else if (name->len > DNAME_INLINE_LEN-1) {
1732 		size_t size = offsetof(struct external_name, name[1]);
1733 		struct external_name *p = kmalloc(size + name->len,
1734 						  GFP_KERNEL_ACCOUNT |
1735 						  __GFP_RECLAIMABLE);
1736 		if (!p) {
1737 			kmem_cache_free(dentry_cache, dentry);
1738 			return NULL;
1739 		}
1740 		atomic_set(&p->u.count, 1);
1741 		dname = p->name;
1742 	} else  {
1743 		dname = dentry->d_iname;
1744 	}
1745 
1746 	dentry->d_name.len = name->len;
1747 	dentry->d_name.hash = name->hash;
1748 	memcpy(dname, name->name, name->len);
1749 	dname[name->len] = 0;
1750 
1751 	/* Make sure we always see the terminating NUL character */
1752 	smp_store_release(&dentry->d_name.name, dname); /* ^^^ */
1753 
1754 	dentry->d_lockref.count = 1;
1755 	dentry->d_flags = 0;
1756 	spin_lock_init(&dentry->d_lock);
1757 	seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1758 	dentry->d_inode = NULL;
1759 	dentry->d_parent = dentry;
1760 	dentry->d_sb = sb;
1761 	dentry->d_op = NULL;
1762 	dentry->d_fsdata = NULL;
1763 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1764 	INIT_LIST_HEAD(&dentry->d_lru);
1765 	INIT_LIST_HEAD(&dentry->d_subdirs);
1766 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1767 	INIT_LIST_HEAD(&dentry->d_child);
1768 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1769 
1770 	if (dentry->d_op && dentry->d_op->d_init) {
1771 		err = dentry->d_op->d_init(dentry);
1772 		if (err) {
1773 			if (dname_external(dentry))
1774 				kfree(external_name(dentry));
1775 			kmem_cache_free(dentry_cache, dentry);
1776 			return NULL;
1777 		}
1778 	}
1779 
1780 	this_cpu_inc(nr_dentry);
1781 
1782 	return dentry;
1783 }
1784 
1785 /**
1786  * d_alloc	-	allocate a dcache entry
1787  * @parent: parent of entry to allocate
1788  * @name: qstr of the name
1789  *
1790  * Allocates a dentry. It returns %NULL if there is insufficient memory
1791  * available. On a success the dentry is returned. The name passed in is
1792  * copied and the copy passed in may be reused after this call.
1793  */
1794 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1795 {
1796 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1797 	if (!dentry)
1798 		return NULL;
1799 	spin_lock(&parent->d_lock);
1800 	/*
1801 	 * don't need child lock because it is not subject
1802 	 * to concurrency here
1803 	 */
1804 	__dget_dlock(parent);
1805 	dentry->d_parent = parent;
1806 	list_add(&dentry->d_child, &parent->d_subdirs);
1807 	spin_unlock(&parent->d_lock);
1808 
1809 	return dentry;
1810 }
1811 EXPORT_SYMBOL(d_alloc);
1812 
1813 struct dentry *d_alloc_anon(struct super_block *sb)
1814 {
1815 	return __d_alloc(sb, NULL);
1816 }
1817 EXPORT_SYMBOL(d_alloc_anon);
1818 
1819 struct dentry *d_alloc_cursor(struct dentry * parent)
1820 {
1821 	struct dentry *dentry = d_alloc_anon(parent->d_sb);
1822 	if (dentry) {
1823 		dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1824 		dentry->d_parent = dget(parent);
1825 	}
1826 	return dentry;
1827 }
1828 
1829 /**
1830  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1831  * @sb: the superblock
1832  * @name: qstr of the name
1833  *
1834  * For a filesystem that just pins its dentries in memory and never
1835  * performs lookups at all, return an unhashed IS_ROOT dentry.
1836  * This is used for pipes, sockets et.al. - the stuff that should
1837  * never be anyone's children or parents.  Unlike all other
1838  * dentries, these will not have RCU delay between dropping the
1839  * last reference and freeing them.
1840  *
1841  * The only user is alloc_file_pseudo() and that's what should
1842  * be considered a public interface.  Don't use directly.
1843  */
1844 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1845 {
1846 	struct dentry *dentry = __d_alloc(sb, name);
1847 	if (likely(dentry))
1848 		dentry->d_flags |= DCACHE_NORCU;
1849 	return dentry;
1850 }
1851 
1852 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1853 {
1854 	struct qstr q;
1855 
1856 	q.name = name;
1857 	q.hash_len = hashlen_string(parent, name);
1858 	return d_alloc(parent, &q);
1859 }
1860 EXPORT_SYMBOL(d_alloc_name);
1861 
1862 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1863 {
1864 	WARN_ON_ONCE(dentry->d_op);
1865 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1866 				DCACHE_OP_COMPARE	|
1867 				DCACHE_OP_REVALIDATE	|
1868 				DCACHE_OP_WEAK_REVALIDATE	|
1869 				DCACHE_OP_DELETE	|
1870 				DCACHE_OP_REAL));
1871 	dentry->d_op = op;
1872 	if (!op)
1873 		return;
1874 	if (op->d_hash)
1875 		dentry->d_flags |= DCACHE_OP_HASH;
1876 	if (op->d_compare)
1877 		dentry->d_flags |= DCACHE_OP_COMPARE;
1878 	if (op->d_revalidate)
1879 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1880 	if (op->d_weak_revalidate)
1881 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1882 	if (op->d_delete)
1883 		dentry->d_flags |= DCACHE_OP_DELETE;
1884 	if (op->d_prune)
1885 		dentry->d_flags |= DCACHE_OP_PRUNE;
1886 	if (op->d_real)
1887 		dentry->d_flags |= DCACHE_OP_REAL;
1888 
1889 }
1890 EXPORT_SYMBOL(d_set_d_op);
1891 
1892 
1893 /*
1894  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1895  * @dentry - The dentry to mark
1896  *
1897  * Mark a dentry as falling through to the lower layer (as set with
1898  * d_pin_lower()).  This flag may be recorded on the medium.
1899  */
1900 void d_set_fallthru(struct dentry *dentry)
1901 {
1902 	spin_lock(&dentry->d_lock);
1903 	dentry->d_flags |= DCACHE_FALLTHRU;
1904 	spin_unlock(&dentry->d_lock);
1905 }
1906 EXPORT_SYMBOL(d_set_fallthru);
1907 
1908 static unsigned d_flags_for_inode(struct inode *inode)
1909 {
1910 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1911 
1912 	if (!inode)
1913 		return DCACHE_MISS_TYPE;
1914 
1915 	if (S_ISDIR(inode->i_mode)) {
1916 		add_flags = DCACHE_DIRECTORY_TYPE;
1917 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1918 			if (unlikely(!inode->i_op->lookup))
1919 				add_flags = DCACHE_AUTODIR_TYPE;
1920 			else
1921 				inode->i_opflags |= IOP_LOOKUP;
1922 		}
1923 		goto type_determined;
1924 	}
1925 
1926 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1927 		if (unlikely(inode->i_op->get_link)) {
1928 			add_flags = DCACHE_SYMLINK_TYPE;
1929 			goto type_determined;
1930 		}
1931 		inode->i_opflags |= IOP_NOFOLLOW;
1932 	}
1933 
1934 	if (unlikely(!S_ISREG(inode->i_mode)))
1935 		add_flags = DCACHE_SPECIAL_TYPE;
1936 
1937 type_determined:
1938 	if (unlikely(IS_AUTOMOUNT(inode)))
1939 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1940 	return add_flags;
1941 }
1942 
1943 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1944 {
1945 	unsigned add_flags = d_flags_for_inode(inode);
1946 	WARN_ON(d_in_lookup(dentry));
1947 
1948 	spin_lock(&dentry->d_lock);
1949 	/*
1950 	 * Decrement negative dentry count if it was in the LRU list.
1951 	 */
1952 	if (dentry->d_flags & DCACHE_LRU_LIST)
1953 		this_cpu_dec(nr_dentry_negative);
1954 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1955 	raw_write_seqcount_begin(&dentry->d_seq);
1956 	__d_set_inode_and_type(dentry, inode, add_flags);
1957 	raw_write_seqcount_end(&dentry->d_seq);
1958 	fsnotify_update_flags(dentry);
1959 	spin_unlock(&dentry->d_lock);
1960 }
1961 
1962 /**
1963  * d_instantiate - fill in inode information for a dentry
1964  * @entry: dentry to complete
1965  * @inode: inode to attach to this dentry
1966  *
1967  * Fill in inode information in the entry.
1968  *
1969  * This turns negative dentries into productive full members
1970  * of society.
1971  *
1972  * NOTE! This assumes that the inode count has been incremented
1973  * (or otherwise set) by the caller to indicate that it is now
1974  * in use by the dcache.
1975  */
1976 
1977 void d_instantiate(struct dentry *entry, struct inode * inode)
1978 {
1979 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1980 	if (inode) {
1981 		security_d_instantiate(entry, inode);
1982 		spin_lock(&inode->i_lock);
1983 		__d_instantiate(entry, inode);
1984 		spin_unlock(&inode->i_lock);
1985 	}
1986 }
1987 EXPORT_SYMBOL(d_instantiate);
1988 
1989 /*
1990  * This should be equivalent to d_instantiate() + unlock_new_inode(),
1991  * with lockdep-related part of unlock_new_inode() done before
1992  * anything else.  Use that instead of open-coding d_instantiate()/
1993  * unlock_new_inode() combinations.
1994  */
1995 void d_instantiate_new(struct dentry *entry, struct inode *inode)
1996 {
1997 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1998 	BUG_ON(!inode);
1999 	lockdep_annotate_inode_mutex_key(inode);
2000 	security_d_instantiate(entry, inode);
2001 	spin_lock(&inode->i_lock);
2002 	__d_instantiate(entry, inode);
2003 	WARN_ON(!(inode->i_state & I_NEW));
2004 	inode->i_state &= ~I_NEW & ~I_CREATING;
2005 	smp_mb();
2006 	wake_up_bit(&inode->i_state, __I_NEW);
2007 	spin_unlock(&inode->i_lock);
2008 }
2009 EXPORT_SYMBOL(d_instantiate_new);
2010 
2011 struct dentry *d_make_root(struct inode *root_inode)
2012 {
2013 	struct dentry *res = NULL;
2014 
2015 	if (root_inode) {
2016 		res = d_alloc_anon(root_inode->i_sb);
2017 		if (res)
2018 			d_instantiate(res, root_inode);
2019 		else
2020 			iput(root_inode);
2021 	}
2022 	return res;
2023 }
2024 EXPORT_SYMBOL(d_make_root);
2025 
2026 static struct dentry *__d_instantiate_anon(struct dentry *dentry,
2027 					   struct inode *inode,
2028 					   bool disconnected)
2029 {
2030 	struct dentry *res;
2031 	unsigned add_flags;
2032 
2033 	security_d_instantiate(dentry, inode);
2034 	spin_lock(&inode->i_lock);
2035 	res = __d_find_any_alias(inode);
2036 	if (res) {
2037 		spin_unlock(&inode->i_lock);
2038 		dput(dentry);
2039 		goto out_iput;
2040 	}
2041 
2042 	/* attach a disconnected dentry */
2043 	add_flags = d_flags_for_inode(inode);
2044 
2045 	if (disconnected)
2046 		add_flags |= DCACHE_DISCONNECTED;
2047 
2048 	spin_lock(&dentry->d_lock);
2049 	__d_set_inode_and_type(dentry, inode, add_flags);
2050 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2051 	if (!disconnected) {
2052 		hlist_bl_lock(&dentry->d_sb->s_roots);
2053 		hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots);
2054 		hlist_bl_unlock(&dentry->d_sb->s_roots);
2055 	}
2056 	spin_unlock(&dentry->d_lock);
2057 	spin_unlock(&inode->i_lock);
2058 
2059 	return dentry;
2060 
2061  out_iput:
2062 	iput(inode);
2063 	return res;
2064 }
2065 
2066 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode)
2067 {
2068 	return __d_instantiate_anon(dentry, inode, true);
2069 }
2070 EXPORT_SYMBOL(d_instantiate_anon);
2071 
2072 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2073 {
2074 	struct dentry *tmp;
2075 	struct dentry *res;
2076 
2077 	if (!inode)
2078 		return ERR_PTR(-ESTALE);
2079 	if (IS_ERR(inode))
2080 		return ERR_CAST(inode);
2081 
2082 	res = d_find_any_alias(inode);
2083 	if (res)
2084 		goto out_iput;
2085 
2086 	tmp = d_alloc_anon(inode->i_sb);
2087 	if (!tmp) {
2088 		res = ERR_PTR(-ENOMEM);
2089 		goto out_iput;
2090 	}
2091 
2092 	return __d_instantiate_anon(tmp, inode, disconnected);
2093 
2094 out_iput:
2095 	iput(inode);
2096 	return res;
2097 }
2098 
2099 /**
2100  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2101  * @inode: inode to allocate the dentry for
2102  *
2103  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2104  * similar open by handle operations.  The returned dentry may be anonymous,
2105  * or may have a full name (if the inode was already in the cache).
2106  *
2107  * When called on a directory inode, we must ensure that the inode only ever
2108  * has one dentry.  If a dentry is found, that is returned instead of
2109  * allocating a new one.
2110  *
2111  * On successful return, the reference to the inode has been transferred
2112  * to the dentry.  In case of an error the reference on the inode is released.
2113  * To make it easier to use in export operations a %NULL or IS_ERR inode may
2114  * be passed in and the error will be propagated to the return value,
2115  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2116  */
2117 struct dentry *d_obtain_alias(struct inode *inode)
2118 {
2119 	return __d_obtain_alias(inode, true);
2120 }
2121 EXPORT_SYMBOL(d_obtain_alias);
2122 
2123 /**
2124  * d_obtain_root - find or allocate a dentry for a given inode
2125  * @inode: inode to allocate the dentry for
2126  *
2127  * Obtain an IS_ROOT dentry for the root of a filesystem.
2128  *
2129  * We must ensure that directory inodes only ever have one dentry.  If a
2130  * dentry is found, that is returned instead of allocating a new one.
2131  *
2132  * On successful return, the reference to the inode has been transferred
2133  * to the dentry.  In case of an error the reference on the inode is
2134  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2135  * error will be propagate to the return value, with a %NULL @inode
2136  * replaced by ERR_PTR(-ESTALE).
2137  */
2138 struct dentry *d_obtain_root(struct inode *inode)
2139 {
2140 	return __d_obtain_alias(inode, false);
2141 }
2142 EXPORT_SYMBOL(d_obtain_root);
2143 
2144 /**
2145  * d_add_ci - lookup or allocate new dentry with case-exact name
2146  * @inode:  the inode case-insensitive lookup has found
2147  * @dentry: the negative dentry that was passed to the parent's lookup func
2148  * @name:   the case-exact name to be associated with the returned dentry
2149  *
2150  * This is to avoid filling the dcache with case-insensitive names to the
2151  * same inode, only the actual correct case is stored in the dcache for
2152  * case-insensitive filesystems.
2153  *
2154  * For a case-insensitive lookup match and if the the case-exact dentry
2155  * already exists in in the dcache, use it and return it.
2156  *
2157  * If no entry exists with the exact case name, allocate new dentry with
2158  * the exact case, and return the spliced entry.
2159  */
2160 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2161 			struct qstr *name)
2162 {
2163 	struct dentry *found, *res;
2164 
2165 	/*
2166 	 * First check if a dentry matching the name already exists,
2167 	 * if not go ahead and create it now.
2168 	 */
2169 	found = d_hash_and_lookup(dentry->d_parent, name);
2170 	if (found) {
2171 		iput(inode);
2172 		return found;
2173 	}
2174 	if (d_in_lookup(dentry)) {
2175 		found = d_alloc_parallel(dentry->d_parent, name,
2176 					dentry->d_wait);
2177 		if (IS_ERR(found) || !d_in_lookup(found)) {
2178 			iput(inode);
2179 			return found;
2180 		}
2181 	} else {
2182 		found = d_alloc(dentry->d_parent, name);
2183 		if (!found) {
2184 			iput(inode);
2185 			return ERR_PTR(-ENOMEM);
2186 		}
2187 	}
2188 	res = d_splice_alias(inode, found);
2189 	if (res) {
2190 		dput(found);
2191 		return res;
2192 	}
2193 	return found;
2194 }
2195 EXPORT_SYMBOL(d_add_ci);
2196 
2197 
2198 static inline bool d_same_name(const struct dentry *dentry,
2199 				const struct dentry *parent,
2200 				const struct qstr *name)
2201 {
2202 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2203 		if (dentry->d_name.len != name->len)
2204 			return false;
2205 		return dentry_cmp(dentry, name->name, name->len) == 0;
2206 	}
2207 	return parent->d_op->d_compare(dentry,
2208 				       dentry->d_name.len, dentry->d_name.name,
2209 				       name) == 0;
2210 }
2211 
2212 /**
2213  * __d_lookup_rcu - search for a dentry (racy, store-free)
2214  * @parent: parent dentry
2215  * @name: qstr of name we wish to find
2216  * @seqp: returns d_seq value at the point where the dentry was found
2217  * Returns: dentry, or NULL
2218  *
2219  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2220  * resolution (store-free path walking) design described in
2221  * Documentation/filesystems/path-lookup.txt.
2222  *
2223  * This is not to be used outside core vfs.
2224  *
2225  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2226  * held, and rcu_read_lock held. The returned dentry must not be stored into
2227  * without taking d_lock and checking d_seq sequence count against @seq
2228  * returned here.
2229  *
2230  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2231  * function.
2232  *
2233  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2234  * the returned dentry, so long as its parent's seqlock is checked after the
2235  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2236  * is formed, giving integrity down the path walk.
2237  *
2238  * NOTE! The caller *has* to check the resulting dentry against the sequence
2239  * number we've returned before using any of the resulting dentry state!
2240  */
2241 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2242 				const struct qstr *name,
2243 				unsigned *seqp)
2244 {
2245 	u64 hashlen = name->hash_len;
2246 	const unsigned char *str = name->name;
2247 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2248 	struct hlist_bl_node *node;
2249 	struct dentry *dentry;
2250 
2251 	/*
2252 	 * Note: There is significant duplication with __d_lookup_rcu which is
2253 	 * required to prevent single threaded performance regressions
2254 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2255 	 * Keep the two functions in sync.
2256 	 */
2257 
2258 	/*
2259 	 * The hash list is protected using RCU.
2260 	 *
2261 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2262 	 * races with d_move().
2263 	 *
2264 	 * It is possible that concurrent renames can mess up our list
2265 	 * walk here and result in missing our dentry, resulting in the
2266 	 * false-negative result. d_lookup() protects against concurrent
2267 	 * renames using rename_lock seqlock.
2268 	 *
2269 	 * See Documentation/filesystems/path-lookup.txt for more details.
2270 	 */
2271 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2272 		unsigned seq;
2273 
2274 seqretry:
2275 		/*
2276 		 * The dentry sequence count protects us from concurrent
2277 		 * renames, and thus protects parent and name fields.
2278 		 *
2279 		 * The caller must perform a seqcount check in order
2280 		 * to do anything useful with the returned dentry.
2281 		 *
2282 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2283 		 * we don't wait for the sequence count to stabilize if it
2284 		 * is in the middle of a sequence change. If we do the slow
2285 		 * dentry compare, we will do seqretries until it is stable,
2286 		 * and if we end up with a successful lookup, we actually
2287 		 * want to exit RCU lookup anyway.
2288 		 *
2289 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2290 		 * we are still guaranteed NUL-termination of ->d_name.name.
2291 		 */
2292 		seq = raw_seqcount_begin(&dentry->d_seq);
2293 		if (dentry->d_parent != parent)
2294 			continue;
2295 		if (d_unhashed(dentry))
2296 			continue;
2297 
2298 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2299 			int tlen;
2300 			const char *tname;
2301 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2302 				continue;
2303 			tlen = dentry->d_name.len;
2304 			tname = dentry->d_name.name;
2305 			/* we want a consistent (name,len) pair */
2306 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2307 				cpu_relax();
2308 				goto seqretry;
2309 			}
2310 			if (parent->d_op->d_compare(dentry,
2311 						    tlen, tname, name) != 0)
2312 				continue;
2313 		} else {
2314 			if (dentry->d_name.hash_len != hashlen)
2315 				continue;
2316 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2317 				continue;
2318 		}
2319 		*seqp = seq;
2320 		return dentry;
2321 	}
2322 	return NULL;
2323 }
2324 
2325 /**
2326  * d_lookup - search for a dentry
2327  * @parent: parent dentry
2328  * @name: qstr of name we wish to find
2329  * Returns: dentry, or NULL
2330  *
2331  * d_lookup searches the children of the parent dentry for the name in
2332  * question. If the dentry is found its reference count is incremented and the
2333  * dentry is returned. The caller must use dput to free the entry when it has
2334  * finished using it. %NULL is returned if the dentry does not exist.
2335  */
2336 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2337 {
2338 	struct dentry *dentry;
2339 	unsigned seq;
2340 
2341 	do {
2342 		seq = read_seqbegin(&rename_lock);
2343 		dentry = __d_lookup(parent, name);
2344 		if (dentry)
2345 			break;
2346 	} while (read_seqretry(&rename_lock, seq));
2347 	return dentry;
2348 }
2349 EXPORT_SYMBOL(d_lookup);
2350 
2351 /**
2352  * __d_lookup - search for a dentry (racy)
2353  * @parent: parent dentry
2354  * @name: qstr of name we wish to find
2355  * Returns: dentry, or NULL
2356  *
2357  * __d_lookup is like d_lookup, however it may (rarely) return a
2358  * false-negative result due to unrelated rename activity.
2359  *
2360  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2361  * however it must be used carefully, eg. with a following d_lookup in
2362  * the case of failure.
2363  *
2364  * __d_lookup callers must be commented.
2365  */
2366 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2367 {
2368 	unsigned int hash = name->hash;
2369 	struct hlist_bl_head *b = d_hash(hash);
2370 	struct hlist_bl_node *node;
2371 	struct dentry *found = NULL;
2372 	struct dentry *dentry;
2373 
2374 	/*
2375 	 * Note: There is significant duplication with __d_lookup_rcu which is
2376 	 * required to prevent single threaded performance regressions
2377 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2378 	 * Keep the two functions in sync.
2379 	 */
2380 
2381 	/*
2382 	 * The hash list is protected using RCU.
2383 	 *
2384 	 * Take d_lock when comparing a candidate dentry, to avoid races
2385 	 * with d_move().
2386 	 *
2387 	 * It is possible that concurrent renames can mess up our list
2388 	 * walk here and result in missing our dentry, resulting in the
2389 	 * false-negative result. d_lookup() protects against concurrent
2390 	 * renames using rename_lock seqlock.
2391 	 *
2392 	 * See Documentation/filesystems/path-lookup.txt for more details.
2393 	 */
2394 	rcu_read_lock();
2395 
2396 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2397 
2398 		if (dentry->d_name.hash != hash)
2399 			continue;
2400 
2401 		spin_lock(&dentry->d_lock);
2402 		if (dentry->d_parent != parent)
2403 			goto next;
2404 		if (d_unhashed(dentry))
2405 			goto next;
2406 
2407 		if (!d_same_name(dentry, parent, name))
2408 			goto next;
2409 
2410 		dentry->d_lockref.count++;
2411 		found = dentry;
2412 		spin_unlock(&dentry->d_lock);
2413 		break;
2414 next:
2415 		spin_unlock(&dentry->d_lock);
2416  	}
2417  	rcu_read_unlock();
2418 
2419  	return found;
2420 }
2421 
2422 /**
2423  * d_hash_and_lookup - hash the qstr then search for a dentry
2424  * @dir: Directory to search in
2425  * @name: qstr of name we wish to find
2426  *
2427  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2428  */
2429 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2430 {
2431 	/*
2432 	 * Check for a fs-specific hash function. Note that we must
2433 	 * calculate the standard hash first, as the d_op->d_hash()
2434 	 * routine may choose to leave the hash value unchanged.
2435 	 */
2436 	name->hash = full_name_hash(dir, name->name, name->len);
2437 	if (dir->d_flags & DCACHE_OP_HASH) {
2438 		int err = dir->d_op->d_hash(dir, name);
2439 		if (unlikely(err < 0))
2440 			return ERR_PTR(err);
2441 	}
2442 	return d_lookup(dir, name);
2443 }
2444 EXPORT_SYMBOL(d_hash_and_lookup);
2445 
2446 /*
2447  * When a file is deleted, we have two options:
2448  * - turn this dentry into a negative dentry
2449  * - unhash this dentry and free it.
2450  *
2451  * Usually, we want to just turn this into
2452  * a negative dentry, but if anybody else is
2453  * currently using the dentry or the inode
2454  * we can't do that and we fall back on removing
2455  * it from the hash queues and waiting for
2456  * it to be deleted later when it has no users
2457  */
2458 
2459 /**
2460  * d_delete - delete a dentry
2461  * @dentry: The dentry to delete
2462  *
2463  * Turn the dentry into a negative dentry if possible, otherwise
2464  * remove it from the hash queues so it can be deleted later
2465  */
2466 
2467 void d_delete(struct dentry * dentry)
2468 {
2469 	struct inode *inode = dentry->d_inode;
2470 
2471 	spin_lock(&inode->i_lock);
2472 	spin_lock(&dentry->d_lock);
2473 	/*
2474 	 * Are we the only user?
2475 	 */
2476 	if (dentry->d_lockref.count == 1) {
2477 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2478 		dentry_unlink_inode(dentry);
2479 	} else {
2480 		__d_drop(dentry);
2481 		spin_unlock(&dentry->d_lock);
2482 		spin_unlock(&inode->i_lock);
2483 	}
2484 }
2485 EXPORT_SYMBOL(d_delete);
2486 
2487 static void __d_rehash(struct dentry *entry)
2488 {
2489 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2490 
2491 	hlist_bl_lock(b);
2492 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2493 	hlist_bl_unlock(b);
2494 }
2495 
2496 /**
2497  * d_rehash	- add an entry back to the hash
2498  * @entry: dentry to add to the hash
2499  *
2500  * Adds a dentry to the hash according to its name.
2501  */
2502 
2503 void d_rehash(struct dentry * entry)
2504 {
2505 	spin_lock(&entry->d_lock);
2506 	__d_rehash(entry);
2507 	spin_unlock(&entry->d_lock);
2508 }
2509 EXPORT_SYMBOL(d_rehash);
2510 
2511 static inline unsigned start_dir_add(struct inode *dir)
2512 {
2513 
2514 	for (;;) {
2515 		unsigned n = dir->i_dir_seq;
2516 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2517 			return n;
2518 		cpu_relax();
2519 	}
2520 }
2521 
2522 static inline void end_dir_add(struct inode *dir, unsigned n)
2523 {
2524 	smp_store_release(&dir->i_dir_seq, n + 2);
2525 }
2526 
2527 static void d_wait_lookup(struct dentry *dentry)
2528 {
2529 	if (d_in_lookup(dentry)) {
2530 		DECLARE_WAITQUEUE(wait, current);
2531 		add_wait_queue(dentry->d_wait, &wait);
2532 		do {
2533 			set_current_state(TASK_UNINTERRUPTIBLE);
2534 			spin_unlock(&dentry->d_lock);
2535 			schedule();
2536 			spin_lock(&dentry->d_lock);
2537 		} while (d_in_lookup(dentry));
2538 	}
2539 }
2540 
2541 struct dentry *d_alloc_parallel(struct dentry *parent,
2542 				const struct qstr *name,
2543 				wait_queue_head_t *wq)
2544 {
2545 	unsigned int hash = name->hash;
2546 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2547 	struct hlist_bl_node *node;
2548 	struct dentry *new = d_alloc(parent, name);
2549 	struct dentry *dentry;
2550 	unsigned seq, r_seq, d_seq;
2551 
2552 	if (unlikely(!new))
2553 		return ERR_PTR(-ENOMEM);
2554 
2555 retry:
2556 	rcu_read_lock();
2557 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2558 	r_seq = read_seqbegin(&rename_lock);
2559 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2560 	if (unlikely(dentry)) {
2561 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2562 			rcu_read_unlock();
2563 			goto retry;
2564 		}
2565 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2566 			rcu_read_unlock();
2567 			dput(dentry);
2568 			goto retry;
2569 		}
2570 		rcu_read_unlock();
2571 		dput(new);
2572 		return dentry;
2573 	}
2574 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2575 		rcu_read_unlock();
2576 		goto retry;
2577 	}
2578 
2579 	if (unlikely(seq & 1)) {
2580 		rcu_read_unlock();
2581 		goto retry;
2582 	}
2583 
2584 	hlist_bl_lock(b);
2585 	if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2586 		hlist_bl_unlock(b);
2587 		rcu_read_unlock();
2588 		goto retry;
2589 	}
2590 	/*
2591 	 * No changes for the parent since the beginning of d_lookup().
2592 	 * Since all removals from the chain happen with hlist_bl_lock(),
2593 	 * any potential in-lookup matches are going to stay here until
2594 	 * we unlock the chain.  All fields are stable in everything
2595 	 * we encounter.
2596 	 */
2597 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2598 		if (dentry->d_name.hash != hash)
2599 			continue;
2600 		if (dentry->d_parent != parent)
2601 			continue;
2602 		if (!d_same_name(dentry, parent, name))
2603 			continue;
2604 		hlist_bl_unlock(b);
2605 		/* now we can try to grab a reference */
2606 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2607 			rcu_read_unlock();
2608 			goto retry;
2609 		}
2610 
2611 		rcu_read_unlock();
2612 		/*
2613 		 * somebody is likely to be still doing lookup for it;
2614 		 * wait for them to finish
2615 		 */
2616 		spin_lock(&dentry->d_lock);
2617 		d_wait_lookup(dentry);
2618 		/*
2619 		 * it's not in-lookup anymore; in principle we should repeat
2620 		 * everything from dcache lookup, but it's likely to be what
2621 		 * d_lookup() would've found anyway.  If it is, just return it;
2622 		 * otherwise we really have to repeat the whole thing.
2623 		 */
2624 		if (unlikely(dentry->d_name.hash != hash))
2625 			goto mismatch;
2626 		if (unlikely(dentry->d_parent != parent))
2627 			goto mismatch;
2628 		if (unlikely(d_unhashed(dentry)))
2629 			goto mismatch;
2630 		if (unlikely(!d_same_name(dentry, parent, name)))
2631 			goto mismatch;
2632 		/* OK, it *is* a hashed match; return it */
2633 		spin_unlock(&dentry->d_lock);
2634 		dput(new);
2635 		return dentry;
2636 	}
2637 	rcu_read_unlock();
2638 	/* we can't take ->d_lock here; it's OK, though. */
2639 	new->d_flags |= DCACHE_PAR_LOOKUP;
2640 	new->d_wait = wq;
2641 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2642 	hlist_bl_unlock(b);
2643 	return new;
2644 mismatch:
2645 	spin_unlock(&dentry->d_lock);
2646 	dput(dentry);
2647 	goto retry;
2648 }
2649 EXPORT_SYMBOL(d_alloc_parallel);
2650 
2651 void __d_lookup_done(struct dentry *dentry)
2652 {
2653 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2654 						 dentry->d_name.hash);
2655 	hlist_bl_lock(b);
2656 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2657 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2658 	wake_up_all(dentry->d_wait);
2659 	dentry->d_wait = NULL;
2660 	hlist_bl_unlock(b);
2661 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2662 	INIT_LIST_HEAD(&dentry->d_lru);
2663 }
2664 EXPORT_SYMBOL(__d_lookup_done);
2665 
2666 /* inode->i_lock held if inode is non-NULL */
2667 
2668 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2669 {
2670 	struct inode *dir = NULL;
2671 	unsigned n;
2672 	spin_lock(&dentry->d_lock);
2673 	if (unlikely(d_in_lookup(dentry))) {
2674 		dir = dentry->d_parent->d_inode;
2675 		n = start_dir_add(dir);
2676 		__d_lookup_done(dentry);
2677 	}
2678 	if (inode) {
2679 		unsigned add_flags = d_flags_for_inode(inode);
2680 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2681 		raw_write_seqcount_begin(&dentry->d_seq);
2682 		__d_set_inode_and_type(dentry, inode, add_flags);
2683 		raw_write_seqcount_end(&dentry->d_seq);
2684 		fsnotify_update_flags(dentry);
2685 	}
2686 	__d_rehash(dentry);
2687 	if (dir)
2688 		end_dir_add(dir, n);
2689 	spin_unlock(&dentry->d_lock);
2690 	if (inode)
2691 		spin_unlock(&inode->i_lock);
2692 }
2693 
2694 /**
2695  * d_add - add dentry to hash queues
2696  * @entry: dentry to add
2697  * @inode: The inode to attach to this dentry
2698  *
2699  * This adds the entry to the hash queues and initializes @inode.
2700  * The entry was actually filled in earlier during d_alloc().
2701  */
2702 
2703 void d_add(struct dentry *entry, struct inode *inode)
2704 {
2705 	if (inode) {
2706 		security_d_instantiate(entry, inode);
2707 		spin_lock(&inode->i_lock);
2708 	}
2709 	__d_add(entry, inode);
2710 }
2711 EXPORT_SYMBOL(d_add);
2712 
2713 /**
2714  * d_exact_alias - find and hash an exact unhashed alias
2715  * @entry: dentry to add
2716  * @inode: The inode to go with this dentry
2717  *
2718  * If an unhashed dentry with the same name/parent and desired
2719  * inode already exists, hash and return it.  Otherwise, return
2720  * NULL.
2721  *
2722  * Parent directory should be locked.
2723  */
2724 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2725 {
2726 	struct dentry *alias;
2727 	unsigned int hash = entry->d_name.hash;
2728 
2729 	spin_lock(&inode->i_lock);
2730 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2731 		/*
2732 		 * Don't need alias->d_lock here, because aliases with
2733 		 * d_parent == entry->d_parent are not subject to name or
2734 		 * parent changes, because the parent inode i_mutex is held.
2735 		 */
2736 		if (alias->d_name.hash != hash)
2737 			continue;
2738 		if (alias->d_parent != entry->d_parent)
2739 			continue;
2740 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2741 			continue;
2742 		spin_lock(&alias->d_lock);
2743 		if (!d_unhashed(alias)) {
2744 			spin_unlock(&alias->d_lock);
2745 			alias = NULL;
2746 		} else {
2747 			__dget_dlock(alias);
2748 			__d_rehash(alias);
2749 			spin_unlock(&alias->d_lock);
2750 		}
2751 		spin_unlock(&inode->i_lock);
2752 		return alias;
2753 	}
2754 	spin_unlock(&inode->i_lock);
2755 	return NULL;
2756 }
2757 EXPORT_SYMBOL(d_exact_alias);
2758 
2759 static void swap_names(struct dentry *dentry, struct dentry *target)
2760 {
2761 	if (unlikely(dname_external(target))) {
2762 		if (unlikely(dname_external(dentry))) {
2763 			/*
2764 			 * Both external: swap the pointers
2765 			 */
2766 			swap(target->d_name.name, dentry->d_name.name);
2767 		} else {
2768 			/*
2769 			 * dentry:internal, target:external.  Steal target's
2770 			 * storage and make target internal.
2771 			 */
2772 			memcpy(target->d_iname, dentry->d_name.name,
2773 					dentry->d_name.len + 1);
2774 			dentry->d_name.name = target->d_name.name;
2775 			target->d_name.name = target->d_iname;
2776 		}
2777 	} else {
2778 		if (unlikely(dname_external(dentry))) {
2779 			/*
2780 			 * dentry:external, target:internal.  Give dentry's
2781 			 * storage to target and make dentry internal
2782 			 */
2783 			memcpy(dentry->d_iname, target->d_name.name,
2784 					target->d_name.len + 1);
2785 			target->d_name.name = dentry->d_name.name;
2786 			dentry->d_name.name = dentry->d_iname;
2787 		} else {
2788 			/*
2789 			 * Both are internal.
2790 			 */
2791 			unsigned int i;
2792 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2793 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2794 				swap(((long *) &dentry->d_iname)[i],
2795 				     ((long *) &target->d_iname)[i]);
2796 			}
2797 		}
2798 	}
2799 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2800 }
2801 
2802 static void copy_name(struct dentry *dentry, struct dentry *target)
2803 {
2804 	struct external_name *old_name = NULL;
2805 	if (unlikely(dname_external(dentry)))
2806 		old_name = external_name(dentry);
2807 	if (unlikely(dname_external(target))) {
2808 		atomic_inc(&external_name(target)->u.count);
2809 		dentry->d_name = target->d_name;
2810 	} else {
2811 		memcpy(dentry->d_iname, target->d_name.name,
2812 				target->d_name.len + 1);
2813 		dentry->d_name.name = dentry->d_iname;
2814 		dentry->d_name.hash_len = target->d_name.hash_len;
2815 	}
2816 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2817 		kfree_rcu(old_name, u.head);
2818 }
2819 
2820 /*
2821  * __d_move - move a dentry
2822  * @dentry: entry to move
2823  * @target: new dentry
2824  * @exchange: exchange the two dentries
2825  *
2826  * Update the dcache to reflect the move of a file name. Negative
2827  * dcache entries should not be moved in this way. Caller must hold
2828  * rename_lock, the i_mutex of the source and target directories,
2829  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2830  */
2831 static void __d_move(struct dentry *dentry, struct dentry *target,
2832 		     bool exchange)
2833 {
2834 	struct dentry *old_parent, *p;
2835 	struct inode *dir = NULL;
2836 	unsigned n;
2837 
2838 	WARN_ON(!dentry->d_inode);
2839 	if (WARN_ON(dentry == target))
2840 		return;
2841 
2842 	BUG_ON(d_ancestor(target, dentry));
2843 	old_parent = dentry->d_parent;
2844 	p = d_ancestor(old_parent, target);
2845 	if (IS_ROOT(dentry)) {
2846 		BUG_ON(p);
2847 		spin_lock(&target->d_parent->d_lock);
2848 	} else if (!p) {
2849 		/* target is not a descendent of dentry->d_parent */
2850 		spin_lock(&target->d_parent->d_lock);
2851 		spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2852 	} else {
2853 		BUG_ON(p == dentry);
2854 		spin_lock(&old_parent->d_lock);
2855 		if (p != target)
2856 			spin_lock_nested(&target->d_parent->d_lock,
2857 					DENTRY_D_LOCK_NESTED);
2858 	}
2859 	spin_lock_nested(&dentry->d_lock, 2);
2860 	spin_lock_nested(&target->d_lock, 3);
2861 
2862 	if (unlikely(d_in_lookup(target))) {
2863 		dir = target->d_parent->d_inode;
2864 		n = start_dir_add(dir);
2865 		__d_lookup_done(target);
2866 	}
2867 
2868 	write_seqcount_begin(&dentry->d_seq);
2869 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2870 
2871 	/* unhash both */
2872 	if (!d_unhashed(dentry))
2873 		___d_drop(dentry);
2874 	if (!d_unhashed(target))
2875 		___d_drop(target);
2876 
2877 	/* ... and switch them in the tree */
2878 	dentry->d_parent = target->d_parent;
2879 	if (!exchange) {
2880 		copy_name(dentry, target);
2881 		target->d_hash.pprev = NULL;
2882 		dentry->d_parent->d_lockref.count++;
2883 		if (dentry != old_parent) /* wasn't IS_ROOT */
2884 			WARN_ON(!--old_parent->d_lockref.count);
2885 	} else {
2886 		target->d_parent = old_parent;
2887 		swap_names(dentry, target);
2888 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2889 		__d_rehash(target);
2890 		fsnotify_update_flags(target);
2891 	}
2892 	list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2893 	__d_rehash(dentry);
2894 	fsnotify_update_flags(dentry);
2895 	fscrypt_handle_d_move(dentry);
2896 
2897 	write_seqcount_end(&target->d_seq);
2898 	write_seqcount_end(&dentry->d_seq);
2899 
2900 	if (dir)
2901 		end_dir_add(dir, n);
2902 
2903 	if (dentry->d_parent != old_parent)
2904 		spin_unlock(&dentry->d_parent->d_lock);
2905 	if (dentry != old_parent)
2906 		spin_unlock(&old_parent->d_lock);
2907 	spin_unlock(&target->d_lock);
2908 	spin_unlock(&dentry->d_lock);
2909 }
2910 
2911 /*
2912  * d_move - move a dentry
2913  * @dentry: entry to move
2914  * @target: new dentry
2915  *
2916  * Update the dcache to reflect the move of a file name. Negative
2917  * dcache entries should not be moved in this way. See the locking
2918  * requirements for __d_move.
2919  */
2920 void d_move(struct dentry *dentry, struct dentry *target)
2921 {
2922 	write_seqlock(&rename_lock);
2923 	__d_move(dentry, target, false);
2924 	write_sequnlock(&rename_lock);
2925 }
2926 EXPORT_SYMBOL(d_move);
2927 
2928 /*
2929  * d_exchange - exchange two dentries
2930  * @dentry1: first dentry
2931  * @dentry2: second dentry
2932  */
2933 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2934 {
2935 	write_seqlock(&rename_lock);
2936 
2937 	WARN_ON(!dentry1->d_inode);
2938 	WARN_ON(!dentry2->d_inode);
2939 	WARN_ON(IS_ROOT(dentry1));
2940 	WARN_ON(IS_ROOT(dentry2));
2941 
2942 	__d_move(dentry1, dentry2, true);
2943 
2944 	write_sequnlock(&rename_lock);
2945 }
2946 
2947 /**
2948  * d_ancestor - search for an ancestor
2949  * @p1: ancestor dentry
2950  * @p2: child dentry
2951  *
2952  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2953  * an ancestor of p2, else NULL.
2954  */
2955 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2956 {
2957 	struct dentry *p;
2958 
2959 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2960 		if (p->d_parent == p1)
2961 			return p;
2962 	}
2963 	return NULL;
2964 }
2965 
2966 /*
2967  * This helper attempts to cope with remotely renamed directories
2968  *
2969  * It assumes that the caller is already holding
2970  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2971  *
2972  * Note: If ever the locking in lock_rename() changes, then please
2973  * remember to update this too...
2974  */
2975 static int __d_unalias(struct inode *inode,
2976 		struct dentry *dentry, struct dentry *alias)
2977 {
2978 	struct mutex *m1 = NULL;
2979 	struct rw_semaphore *m2 = NULL;
2980 	int ret = -ESTALE;
2981 
2982 	/* If alias and dentry share a parent, then no extra locks required */
2983 	if (alias->d_parent == dentry->d_parent)
2984 		goto out_unalias;
2985 
2986 	/* See lock_rename() */
2987 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2988 		goto out_err;
2989 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2990 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2991 		goto out_err;
2992 	m2 = &alias->d_parent->d_inode->i_rwsem;
2993 out_unalias:
2994 	__d_move(alias, dentry, false);
2995 	ret = 0;
2996 out_err:
2997 	if (m2)
2998 		up_read(m2);
2999 	if (m1)
3000 		mutex_unlock(m1);
3001 	return ret;
3002 }
3003 
3004 /**
3005  * d_splice_alias - splice a disconnected dentry into the tree if one exists
3006  * @inode:  the inode which may have a disconnected dentry
3007  * @dentry: a negative dentry which we want to point to the inode.
3008  *
3009  * If inode is a directory and has an IS_ROOT alias, then d_move that in
3010  * place of the given dentry and return it, else simply d_add the inode
3011  * to the dentry and return NULL.
3012  *
3013  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3014  * we should error out: directories can't have multiple aliases.
3015  *
3016  * This is needed in the lookup routine of any filesystem that is exportable
3017  * (via knfsd) so that we can build dcache paths to directories effectively.
3018  *
3019  * If a dentry was found and moved, then it is returned.  Otherwise NULL
3020  * is returned.  This matches the expected return value of ->lookup.
3021  *
3022  * Cluster filesystems may call this function with a negative, hashed dentry.
3023  * In that case, we know that the inode will be a regular file, and also this
3024  * will only occur during atomic_open. So we need to check for the dentry
3025  * being already hashed only in the final case.
3026  */
3027 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3028 {
3029 	if (IS_ERR(inode))
3030 		return ERR_CAST(inode);
3031 
3032 	BUG_ON(!d_unhashed(dentry));
3033 
3034 	if (!inode)
3035 		goto out;
3036 
3037 	security_d_instantiate(dentry, inode);
3038 	spin_lock(&inode->i_lock);
3039 	if (S_ISDIR(inode->i_mode)) {
3040 		struct dentry *new = __d_find_any_alias(inode);
3041 		if (unlikely(new)) {
3042 			/* The reference to new ensures it remains an alias */
3043 			spin_unlock(&inode->i_lock);
3044 			write_seqlock(&rename_lock);
3045 			if (unlikely(d_ancestor(new, dentry))) {
3046 				write_sequnlock(&rename_lock);
3047 				dput(new);
3048 				new = ERR_PTR(-ELOOP);
3049 				pr_warn_ratelimited(
3050 					"VFS: Lookup of '%s' in %s %s"
3051 					" would have caused loop\n",
3052 					dentry->d_name.name,
3053 					inode->i_sb->s_type->name,
3054 					inode->i_sb->s_id);
3055 			} else if (!IS_ROOT(new)) {
3056 				struct dentry *old_parent = dget(new->d_parent);
3057 				int err = __d_unalias(inode, dentry, new);
3058 				write_sequnlock(&rename_lock);
3059 				if (err) {
3060 					dput(new);
3061 					new = ERR_PTR(err);
3062 				}
3063 				dput(old_parent);
3064 			} else {
3065 				__d_move(new, dentry, false);
3066 				write_sequnlock(&rename_lock);
3067 			}
3068 			iput(inode);
3069 			return new;
3070 		}
3071 	}
3072 out:
3073 	__d_add(dentry, inode);
3074 	return NULL;
3075 }
3076 EXPORT_SYMBOL(d_splice_alias);
3077 
3078 /*
3079  * Test whether new_dentry is a subdirectory of old_dentry.
3080  *
3081  * Trivially implemented using the dcache structure
3082  */
3083 
3084 /**
3085  * is_subdir - is new dentry a subdirectory of old_dentry
3086  * @new_dentry: new dentry
3087  * @old_dentry: old dentry
3088  *
3089  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3090  * Returns false otherwise.
3091  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3092  */
3093 
3094 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3095 {
3096 	bool result;
3097 	unsigned seq;
3098 
3099 	if (new_dentry == old_dentry)
3100 		return true;
3101 
3102 	do {
3103 		/* for restarting inner loop in case of seq retry */
3104 		seq = read_seqbegin(&rename_lock);
3105 		/*
3106 		 * Need rcu_readlock to protect against the d_parent trashing
3107 		 * due to d_move
3108 		 */
3109 		rcu_read_lock();
3110 		if (d_ancestor(old_dentry, new_dentry))
3111 			result = true;
3112 		else
3113 			result = false;
3114 		rcu_read_unlock();
3115 	} while (read_seqretry(&rename_lock, seq));
3116 
3117 	return result;
3118 }
3119 EXPORT_SYMBOL(is_subdir);
3120 
3121 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3122 {
3123 	struct dentry *root = data;
3124 	if (dentry != root) {
3125 		if (d_unhashed(dentry) || !dentry->d_inode)
3126 			return D_WALK_SKIP;
3127 
3128 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3129 			dentry->d_flags |= DCACHE_GENOCIDE;
3130 			dentry->d_lockref.count--;
3131 		}
3132 	}
3133 	return D_WALK_CONTINUE;
3134 }
3135 
3136 void d_genocide(struct dentry *parent)
3137 {
3138 	d_walk(parent, parent, d_genocide_kill);
3139 }
3140 
3141 EXPORT_SYMBOL(d_genocide);
3142 
3143 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3144 {
3145 	inode_dec_link_count(inode);
3146 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3147 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3148 		!d_unlinked(dentry));
3149 	spin_lock(&dentry->d_parent->d_lock);
3150 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3151 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3152 				(unsigned long long)inode->i_ino);
3153 	spin_unlock(&dentry->d_lock);
3154 	spin_unlock(&dentry->d_parent->d_lock);
3155 	d_instantiate(dentry, inode);
3156 }
3157 EXPORT_SYMBOL(d_tmpfile);
3158 
3159 static __initdata unsigned long dhash_entries;
3160 static int __init set_dhash_entries(char *str)
3161 {
3162 	if (!str)
3163 		return 0;
3164 	dhash_entries = simple_strtoul(str, &str, 0);
3165 	return 1;
3166 }
3167 __setup("dhash_entries=", set_dhash_entries);
3168 
3169 static void __init dcache_init_early(void)
3170 {
3171 	/* If hashes are distributed across NUMA nodes, defer
3172 	 * hash allocation until vmalloc space is available.
3173 	 */
3174 	if (hashdist)
3175 		return;
3176 
3177 	dentry_hashtable =
3178 		alloc_large_system_hash("Dentry cache",
3179 					sizeof(struct hlist_bl_head),
3180 					dhash_entries,
3181 					13,
3182 					HASH_EARLY | HASH_ZERO,
3183 					&d_hash_shift,
3184 					NULL,
3185 					0,
3186 					0);
3187 	d_hash_shift = 32 - d_hash_shift;
3188 }
3189 
3190 static void __init dcache_init(void)
3191 {
3192 	/*
3193 	 * A constructor could be added for stable state like the lists,
3194 	 * but it is probably not worth it because of the cache nature
3195 	 * of the dcache.
3196 	 */
3197 	dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3198 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT,
3199 		d_iname);
3200 
3201 	/* Hash may have been set up in dcache_init_early */
3202 	if (!hashdist)
3203 		return;
3204 
3205 	dentry_hashtable =
3206 		alloc_large_system_hash("Dentry cache",
3207 					sizeof(struct hlist_bl_head),
3208 					dhash_entries,
3209 					13,
3210 					HASH_ZERO,
3211 					&d_hash_shift,
3212 					NULL,
3213 					0,
3214 					0);
3215 	d_hash_shift = 32 - d_hash_shift;
3216 }
3217 
3218 /* SLAB cache for __getname() consumers */
3219 struct kmem_cache *names_cachep __read_mostly;
3220 EXPORT_SYMBOL(names_cachep);
3221 
3222 void __init vfs_caches_init_early(void)
3223 {
3224 	int i;
3225 
3226 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3227 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3228 
3229 	dcache_init_early();
3230 	inode_init_early();
3231 }
3232 
3233 void __init vfs_caches_init(void)
3234 {
3235 	names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3236 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3237 
3238 	dcache_init();
3239 	inode_init();
3240 	files_init();
3241 	files_maxfiles_init();
3242 	mnt_init();
3243 	bdev_cache_init();
3244 	chrdev_init();
3245 }
3246