1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 /* 39 * Usage: 40 * dcache->d_inode->i_lock protects: 41 * - i_dentry, d_u.d_alias, d_inode of aliases 42 * dcache_hash_bucket lock protects: 43 * - the dcache hash table 44 * s_roots bl list spinlock protects: 45 * - the s_roots list (see __d_drop) 46 * dentry->d_sb->s_dentry_lru_lock protects: 47 * - the dcache lru lists and counters 48 * d_lock protects: 49 * - d_flags 50 * - d_name 51 * - d_lru 52 * - d_count 53 * - d_unhashed() 54 * - d_parent and d_subdirs 55 * - childrens' d_child and d_parent 56 * - d_u.d_alias, d_inode 57 * 58 * Ordering: 59 * dentry->d_inode->i_lock 60 * dentry->d_lock 61 * dentry->d_sb->s_dentry_lru_lock 62 * dcache_hash_bucket lock 63 * s_roots lock 64 * 65 * If there is an ancestor relationship: 66 * dentry->d_parent->...->d_parent->d_lock 67 * ... 68 * dentry->d_parent->d_lock 69 * dentry->d_lock 70 * 71 * If no ancestor relationship: 72 * arbitrary, since it's serialized on rename_lock 73 */ 74 int sysctl_vfs_cache_pressure __read_mostly = 100; 75 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 76 77 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 78 79 EXPORT_SYMBOL(rename_lock); 80 81 static struct kmem_cache *dentry_cache __read_mostly; 82 83 const struct qstr empty_name = QSTR_INIT("", 0); 84 EXPORT_SYMBOL(empty_name); 85 const struct qstr slash_name = QSTR_INIT("/", 1); 86 EXPORT_SYMBOL(slash_name); 87 88 /* 89 * This is the single most critical data structure when it comes 90 * to the dcache: the hashtable for lookups. Somebody should try 91 * to make this good - I've just made it work. 92 * 93 * This hash-function tries to avoid losing too many bits of hash 94 * information, yet avoid using a prime hash-size or similar. 95 */ 96 97 static unsigned int d_hash_shift __read_mostly; 98 99 static struct hlist_bl_head *dentry_hashtable __read_mostly; 100 101 static inline struct hlist_bl_head *d_hash(unsigned int hash) 102 { 103 return dentry_hashtable + (hash >> d_hash_shift); 104 } 105 106 #define IN_LOOKUP_SHIFT 10 107 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 108 109 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 110 unsigned int hash) 111 { 112 hash += (unsigned long) parent / L1_CACHE_BYTES; 113 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 114 } 115 116 117 /* Statistics gathering. */ 118 struct dentry_stat_t dentry_stat = { 119 .age_limit = 45, 120 }; 121 122 static DEFINE_PER_CPU(long, nr_dentry); 123 static DEFINE_PER_CPU(long, nr_dentry_unused); 124 static DEFINE_PER_CPU(long, nr_dentry_negative); 125 126 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 127 128 /* 129 * Here we resort to our own counters instead of using generic per-cpu counters 130 * for consistency with what the vfs inode code does. We are expected to harvest 131 * better code and performance by having our own specialized counters. 132 * 133 * Please note that the loop is done over all possible CPUs, not over all online 134 * CPUs. The reason for this is that we don't want to play games with CPUs going 135 * on and off. If one of them goes off, we will just keep their counters. 136 * 137 * glommer: See cffbc8a for details, and if you ever intend to change this, 138 * please update all vfs counters to match. 139 */ 140 static long get_nr_dentry(void) 141 { 142 int i; 143 long sum = 0; 144 for_each_possible_cpu(i) 145 sum += per_cpu(nr_dentry, i); 146 return sum < 0 ? 0 : sum; 147 } 148 149 static long get_nr_dentry_unused(void) 150 { 151 int i; 152 long sum = 0; 153 for_each_possible_cpu(i) 154 sum += per_cpu(nr_dentry_unused, i); 155 return sum < 0 ? 0 : sum; 156 } 157 158 static long get_nr_dentry_negative(void) 159 { 160 int i; 161 long sum = 0; 162 163 for_each_possible_cpu(i) 164 sum += per_cpu(nr_dentry_negative, i); 165 return sum < 0 ? 0 : sum; 166 } 167 168 int proc_nr_dentry(struct ctl_table *table, int write, void *buffer, 169 size_t *lenp, loff_t *ppos) 170 { 171 dentry_stat.nr_dentry = get_nr_dentry(); 172 dentry_stat.nr_unused = get_nr_dentry_unused(); 173 dentry_stat.nr_negative = get_nr_dentry_negative(); 174 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 175 } 176 #endif 177 178 /* 179 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 180 * The strings are both count bytes long, and count is non-zero. 181 */ 182 #ifdef CONFIG_DCACHE_WORD_ACCESS 183 184 #include <asm/word-at-a-time.h> 185 /* 186 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 187 * aligned allocation for this particular component. We don't 188 * strictly need the load_unaligned_zeropad() safety, but it 189 * doesn't hurt either. 190 * 191 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 192 * need the careful unaligned handling. 193 */ 194 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 195 { 196 unsigned long a,b,mask; 197 198 for (;;) { 199 a = read_word_at_a_time(cs); 200 b = load_unaligned_zeropad(ct); 201 if (tcount < sizeof(unsigned long)) 202 break; 203 if (unlikely(a != b)) 204 return 1; 205 cs += sizeof(unsigned long); 206 ct += sizeof(unsigned long); 207 tcount -= sizeof(unsigned long); 208 if (!tcount) 209 return 0; 210 } 211 mask = bytemask_from_count(tcount); 212 return unlikely(!!((a ^ b) & mask)); 213 } 214 215 #else 216 217 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 218 { 219 do { 220 if (*cs != *ct) 221 return 1; 222 cs++; 223 ct++; 224 tcount--; 225 } while (tcount); 226 return 0; 227 } 228 229 #endif 230 231 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 232 { 233 /* 234 * Be careful about RCU walk racing with rename: 235 * use 'READ_ONCE' to fetch the name pointer. 236 * 237 * NOTE! Even if a rename will mean that the length 238 * was not loaded atomically, we don't care. The 239 * RCU walk will check the sequence count eventually, 240 * and catch it. And we won't overrun the buffer, 241 * because we're reading the name pointer atomically, 242 * and a dentry name is guaranteed to be properly 243 * terminated with a NUL byte. 244 * 245 * End result: even if 'len' is wrong, we'll exit 246 * early because the data cannot match (there can 247 * be no NUL in the ct/tcount data) 248 */ 249 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 250 251 return dentry_string_cmp(cs, ct, tcount); 252 } 253 254 struct external_name { 255 union { 256 atomic_t count; 257 struct rcu_head head; 258 } u; 259 unsigned char name[]; 260 }; 261 262 static inline struct external_name *external_name(struct dentry *dentry) 263 { 264 return container_of(dentry->d_name.name, struct external_name, name[0]); 265 } 266 267 static void __d_free(struct rcu_head *head) 268 { 269 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 270 271 kmem_cache_free(dentry_cache, dentry); 272 } 273 274 static void __d_free_external(struct rcu_head *head) 275 { 276 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 277 kfree(external_name(dentry)); 278 kmem_cache_free(dentry_cache, dentry); 279 } 280 281 static inline int dname_external(const struct dentry *dentry) 282 { 283 return dentry->d_name.name != dentry->d_iname; 284 } 285 286 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 287 { 288 spin_lock(&dentry->d_lock); 289 name->name = dentry->d_name; 290 if (unlikely(dname_external(dentry))) { 291 atomic_inc(&external_name(dentry)->u.count); 292 } else { 293 memcpy(name->inline_name, dentry->d_iname, 294 dentry->d_name.len + 1); 295 name->name.name = name->inline_name; 296 } 297 spin_unlock(&dentry->d_lock); 298 } 299 EXPORT_SYMBOL(take_dentry_name_snapshot); 300 301 void release_dentry_name_snapshot(struct name_snapshot *name) 302 { 303 if (unlikely(name->name.name != name->inline_name)) { 304 struct external_name *p; 305 p = container_of(name->name.name, struct external_name, name[0]); 306 if (unlikely(atomic_dec_and_test(&p->u.count))) 307 kfree_rcu(p, u.head); 308 } 309 } 310 EXPORT_SYMBOL(release_dentry_name_snapshot); 311 312 static inline void __d_set_inode_and_type(struct dentry *dentry, 313 struct inode *inode, 314 unsigned type_flags) 315 { 316 unsigned flags; 317 318 dentry->d_inode = inode; 319 flags = READ_ONCE(dentry->d_flags); 320 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 321 flags |= type_flags; 322 smp_store_release(&dentry->d_flags, flags); 323 } 324 325 static inline void __d_clear_type_and_inode(struct dentry *dentry) 326 { 327 unsigned flags = READ_ONCE(dentry->d_flags); 328 329 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 330 WRITE_ONCE(dentry->d_flags, flags); 331 dentry->d_inode = NULL; 332 if (dentry->d_flags & DCACHE_LRU_LIST) 333 this_cpu_inc(nr_dentry_negative); 334 } 335 336 static void dentry_free(struct dentry *dentry) 337 { 338 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 339 if (unlikely(dname_external(dentry))) { 340 struct external_name *p = external_name(dentry); 341 if (likely(atomic_dec_and_test(&p->u.count))) { 342 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 343 return; 344 } 345 } 346 /* if dentry was never visible to RCU, immediate free is OK */ 347 if (dentry->d_flags & DCACHE_NORCU) 348 __d_free(&dentry->d_u.d_rcu); 349 else 350 call_rcu(&dentry->d_u.d_rcu, __d_free); 351 } 352 353 /* 354 * Release the dentry's inode, using the filesystem 355 * d_iput() operation if defined. 356 */ 357 static void dentry_unlink_inode(struct dentry * dentry) 358 __releases(dentry->d_lock) 359 __releases(dentry->d_inode->i_lock) 360 { 361 struct inode *inode = dentry->d_inode; 362 363 raw_write_seqcount_begin(&dentry->d_seq); 364 __d_clear_type_and_inode(dentry); 365 hlist_del_init(&dentry->d_u.d_alias); 366 raw_write_seqcount_end(&dentry->d_seq); 367 spin_unlock(&dentry->d_lock); 368 spin_unlock(&inode->i_lock); 369 if (!inode->i_nlink) 370 fsnotify_inoderemove(inode); 371 if (dentry->d_op && dentry->d_op->d_iput) 372 dentry->d_op->d_iput(dentry, inode); 373 else 374 iput(inode); 375 } 376 377 /* 378 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 379 * is in use - which includes both the "real" per-superblock 380 * LRU list _and_ the DCACHE_SHRINK_LIST use. 381 * 382 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 383 * on the shrink list (ie not on the superblock LRU list). 384 * 385 * The per-cpu "nr_dentry_unused" counters are updated with 386 * the DCACHE_LRU_LIST bit. 387 * 388 * The per-cpu "nr_dentry_negative" counters are only updated 389 * when deleted from or added to the per-superblock LRU list, not 390 * from/to the shrink list. That is to avoid an unneeded dec/inc 391 * pair when moving from LRU to shrink list in select_collect(). 392 * 393 * These helper functions make sure we always follow the 394 * rules. d_lock must be held by the caller. 395 */ 396 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 397 static void d_lru_add(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, 0); 400 dentry->d_flags |= DCACHE_LRU_LIST; 401 this_cpu_inc(nr_dentry_unused); 402 if (d_is_negative(dentry)) 403 this_cpu_inc(nr_dentry_negative); 404 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 405 } 406 407 static void d_lru_del(struct dentry *dentry) 408 { 409 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 410 dentry->d_flags &= ~DCACHE_LRU_LIST; 411 this_cpu_dec(nr_dentry_unused); 412 if (d_is_negative(dentry)) 413 this_cpu_dec(nr_dentry_negative); 414 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 415 } 416 417 static void d_shrink_del(struct dentry *dentry) 418 { 419 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 420 list_del_init(&dentry->d_lru); 421 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 422 this_cpu_dec(nr_dentry_unused); 423 } 424 425 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 426 { 427 D_FLAG_VERIFY(dentry, 0); 428 list_add(&dentry->d_lru, list); 429 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 430 this_cpu_inc(nr_dentry_unused); 431 } 432 433 /* 434 * These can only be called under the global LRU lock, ie during the 435 * callback for freeing the LRU list. "isolate" removes it from the 436 * LRU lists entirely, while shrink_move moves it to the indicated 437 * private list. 438 */ 439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 440 { 441 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 442 dentry->d_flags &= ~DCACHE_LRU_LIST; 443 this_cpu_dec(nr_dentry_unused); 444 if (d_is_negative(dentry)) 445 this_cpu_dec(nr_dentry_negative); 446 list_lru_isolate(lru, &dentry->d_lru); 447 } 448 449 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 450 struct list_head *list) 451 { 452 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 453 dentry->d_flags |= DCACHE_SHRINK_LIST; 454 if (d_is_negative(dentry)) 455 this_cpu_dec(nr_dentry_negative); 456 list_lru_isolate_move(lru, &dentry->d_lru, list); 457 } 458 459 static void ___d_drop(struct dentry *dentry) 460 { 461 struct hlist_bl_head *b; 462 /* 463 * Hashed dentries are normally on the dentry hashtable, 464 * with the exception of those newly allocated by 465 * d_obtain_root, which are always IS_ROOT: 466 */ 467 if (unlikely(IS_ROOT(dentry))) 468 b = &dentry->d_sb->s_roots; 469 else 470 b = d_hash(dentry->d_name.hash); 471 472 hlist_bl_lock(b); 473 __hlist_bl_del(&dentry->d_hash); 474 hlist_bl_unlock(b); 475 } 476 477 void __d_drop(struct dentry *dentry) 478 { 479 if (!d_unhashed(dentry)) { 480 ___d_drop(dentry); 481 dentry->d_hash.pprev = NULL; 482 write_seqcount_invalidate(&dentry->d_seq); 483 } 484 } 485 EXPORT_SYMBOL(__d_drop); 486 487 /** 488 * d_drop - drop a dentry 489 * @dentry: dentry to drop 490 * 491 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 492 * be found through a VFS lookup any more. Note that this is different from 493 * deleting the dentry - d_delete will try to mark the dentry negative if 494 * possible, giving a successful _negative_ lookup, while d_drop will 495 * just make the cache lookup fail. 496 * 497 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 498 * reason (NFS timeouts or autofs deletes). 499 * 500 * __d_drop requires dentry->d_lock 501 * 502 * ___d_drop doesn't mark dentry as "unhashed" 503 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 504 */ 505 void d_drop(struct dentry *dentry) 506 { 507 spin_lock(&dentry->d_lock); 508 __d_drop(dentry); 509 spin_unlock(&dentry->d_lock); 510 } 511 EXPORT_SYMBOL(d_drop); 512 513 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 514 { 515 struct dentry *next; 516 /* 517 * Inform d_walk() and shrink_dentry_list() that we are no longer 518 * attached to the dentry tree 519 */ 520 dentry->d_flags |= DCACHE_DENTRY_KILLED; 521 if (unlikely(list_empty(&dentry->d_child))) 522 return; 523 __list_del_entry(&dentry->d_child); 524 /* 525 * Cursors can move around the list of children. While we'd been 526 * a normal list member, it didn't matter - ->d_child.next would've 527 * been updated. However, from now on it won't be and for the 528 * things like d_walk() it might end up with a nasty surprise. 529 * Normally d_walk() doesn't care about cursors moving around - 530 * ->d_lock on parent prevents that and since a cursor has no children 531 * of its own, we get through it without ever unlocking the parent. 532 * There is one exception, though - if we ascend from a child that 533 * gets killed as soon as we unlock it, the next sibling is found 534 * using the value left in its ->d_child.next. And if _that_ 535 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 536 * before d_walk() regains parent->d_lock, we'll end up skipping 537 * everything the cursor had been moved past. 538 * 539 * Solution: make sure that the pointer left behind in ->d_child.next 540 * points to something that won't be moving around. I.e. skip the 541 * cursors. 542 */ 543 while (dentry->d_child.next != &parent->d_subdirs) { 544 next = list_entry(dentry->d_child.next, struct dentry, d_child); 545 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 546 break; 547 dentry->d_child.next = next->d_child.next; 548 } 549 } 550 551 static void __dentry_kill(struct dentry *dentry) 552 { 553 struct dentry *parent = NULL; 554 bool can_free = true; 555 if (!IS_ROOT(dentry)) 556 parent = dentry->d_parent; 557 558 /* 559 * The dentry is now unrecoverably dead to the world. 560 */ 561 lockref_mark_dead(&dentry->d_lockref); 562 563 /* 564 * inform the fs via d_prune that this dentry is about to be 565 * unhashed and destroyed. 566 */ 567 if (dentry->d_flags & DCACHE_OP_PRUNE) 568 dentry->d_op->d_prune(dentry); 569 570 if (dentry->d_flags & DCACHE_LRU_LIST) { 571 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 572 d_lru_del(dentry); 573 } 574 /* if it was on the hash then remove it */ 575 __d_drop(dentry); 576 dentry_unlist(dentry, parent); 577 if (parent) 578 spin_unlock(&parent->d_lock); 579 if (dentry->d_inode) 580 dentry_unlink_inode(dentry); 581 else 582 spin_unlock(&dentry->d_lock); 583 this_cpu_dec(nr_dentry); 584 if (dentry->d_op && dentry->d_op->d_release) 585 dentry->d_op->d_release(dentry); 586 587 spin_lock(&dentry->d_lock); 588 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 589 dentry->d_flags |= DCACHE_MAY_FREE; 590 can_free = false; 591 } 592 spin_unlock(&dentry->d_lock); 593 if (likely(can_free)) 594 dentry_free(dentry); 595 cond_resched(); 596 } 597 598 static struct dentry *__lock_parent(struct dentry *dentry) 599 { 600 struct dentry *parent; 601 rcu_read_lock(); 602 spin_unlock(&dentry->d_lock); 603 again: 604 parent = READ_ONCE(dentry->d_parent); 605 spin_lock(&parent->d_lock); 606 /* 607 * We can't blindly lock dentry until we are sure 608 * that we won't violate the locking order. 609 * Any changes of dentry->d_parent must have 610 * been done with parent->d_lock held, so 611 * spin_lock() above is enough of a barrier 612 * for checking if it's still our child. 613 */ 614 if (unlikely(parent != dentry->d_parent)) { 615 spin_unlock(&parent->d_lock); 616 goto again; 617 } 618 rcu_read_unlock(); 619 if (parent != dentry) 620 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 621 else 622 parent = NULL; 623 return parent; 624 } 625 626 static inline struct dentry *lock_parent(struct dentry *dentry) 627 { 628 struct dentry *parent = dentry->d_parent; 629 if (IS_ROOT(dentry)) 630 return NULL; 631 if (likely(spin_trylock(&parent->d_lock))) 632 return parent; 633 return __lock_parent(dentry); 634 } 635 636 static inline bool retain_dentry(struct dentry *dentry) 637 { 638 WARN_ON(d_in_lookup(dentry)); 639 640 /* Unreachable? Get rid of it */ 641 if (unlikely(d_unhashed(dentry))) 642 return false; 643 644 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 645 return false; 646 647 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 648 if (dentry->d_op->d_delete(dentry)) 649 return false; 650 } 651 652 if (unlikely(dentry->d_flags & DCACHE_DONTCACHE)) 653 return false; 654 655 /* retain; LRU fodder */ 656 dentry->d_lockref.count--; 657 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 658 d_lru_add(dentry); 659 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 660 dentry->d_flags |= DCACHE_REFERENCED; 661 return true; 662 } 663 664 void d_mark_dontcache(struct inode *inode) 665 { 666 struct dentry *de; 667 668 spin_lock(&inode->i_lock); 669 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 670 spin_lock(&de->d_lock); 671 de->d_flags |= DCACHE_DONTCACHE; 672 spin_unlock(&de->d_lock); 673 } 674 inode->i_state |= I_DONTCACHE; 675 spin_unlock(&inode->i_lock); 676 } 677 EXPORT_SYMBOL(d_mark_dontcache); 678 679 /* 680 * Finish off a dentry we've decided to kill. 681 * dentry->d_lock must be held, returns with it unlocked. 682 * Returns dentry requiring refcount drop, or NULL if we're done. 683 */ 684 static struct dentry *dentry_kill(struct dentry *dentry) 685 __releases(dentry->d_lock) 686 { 687 struct inode *inode = dentry->d_inode; 688 struct dentry *parent = NULL; 689 690 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 691 goto slow_positive; 692 693 if (!IS_ROOT(dentry)) { 694 parent = dentry->d_parent; 695 if (unlikely(!spin_trylock(&parent->d_lock))) { 696 parent = __lock_parent(dentry); 697 if (likely(inode || !dentry->d_inode)) 698 goto got_locks; 699 /* negative that became positive */ 700 if (parent) 701 spin_unlock(&parent->d_lock); 702 inode = dentry->d_inode; 703 goto slow_positive; 704 } 705 } 706 __dentry_kill(dentry); 707 return parent; 708 709 slow_positive: 710 spin_unlock(&dentry->d_lock); 711 spin_lock(&inode->i_lock); 712 spin_lock(&dentry->d_lock); 713 parent = lock_parent(dentry); 714 got_locks: 715 if (unlikely(dentry->d_lockref.count != 1)) { 716 dentry->d_lockref.count--; 717 } else if (likely(!retain_dentry(dentry))) { 718 __dentry_kill(dentry); 719 return parent; 720 } 721 /* we are keeping it, after all */ 722 if (inode) 723 spin_unlock(&inode->i_lock); 724 if (parent) 725 spin_unlock(&parent->d_lock); 726 spin_unlock(&dentry->d_lock); 727 return NULL; 728 } 729 730 /* 731 * Try to do a lockless dput(), and return whether that was successful. 732 * 733 * If unsuccessful, we return false, having already taken the dentry lock. 734 * 735 * The caller needs to hold the RCU read lock, so that the dentry is 736 * guaranteed to stay around even if the refcount goes down to zero! 737 */ 738 static inline bool fast_dput(struct dentry *dentry) 739 { 740 int ret; 741 unsigned int d_flags; 742 743 /* 744 * If we have a d_op->d_delete() operation, we sould not 745 * let the dentry count go to zero, so use "put_or_lock". 746 */ 747 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 748 return lockref_put_or_lock(&dentry->d_lockref); 749 750 /* 751 * .. otherwise, we can try to just decrement the 752 * lockref optimistically. 753 */ 754 ret = lockref_put_return(&dentry->d_lockref); 755 756 /* 757 * If the lockref_put_return() failed due to the lock being held 758 * by somebody else, the fast path has failed. We will need to 759 * get the lock, and then check the count again. 760 */ 761 if (unlikely(ret < 0)) { 762 spin_lock(&dentry->d_lock); 763 if (dentry->d_lockref.count > 1) { 764 dentry->d_lockref.count--; 765 spin_unlock(&dentry->d_lock); 766 return true; 767 } 768 return false; 769 } 770 771 /* 772 * If we weren't the last ref, we're done. 773 */ 774 if (ret) 775 return true; 776 777 /* 778 * Careful, careful. The reference count went down 779 * to zero, but we don't hold the dentry lock, so 780 * somebody else could get it again, and do another 781 * dput(), and we need to not race with that. 782 * 783 * However, there is a very special and common case 784 * where we don't care, because there is nothing to 785 * do: the dentry is still hashed, it does not have 786 * a 'delete' op, and it's referenced and already on 787 * the LRU list. 788 * 789 * NOTE! Since we aren't locked, these values are 790 * not "stable". However, it is sufficient that at 791 * some point after we dropped the reference the 792 * dentry was hashed and the flags had the proper 793 * value. Other dentry users may have re-gotten 794 * a reference to the dentry and change that, but 795 * our work is done - we can leave the dentry 796 * around with a zero refcount. 797 * 798 * Nevertheless, there are two cases that we should kill 799 * the dentry anyway. 800 * 1. free disconnected dentries as soon as their refcount 801 * reached zero. 802 * 2. free dentries if they should not be cached. 803 */ 804 smp_rmb(); 805 d_flags = READ_ONCE(dentry->d_flags); 806 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | 807 DCACHE_DISCONNECTED | DCACHE_DONTCACHE; 808 809 /* Nothing to do? Dropping the reference was all we needed? */ 810 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 811 return true; 812 813 /* 814 * Not the fast normal case? Get the lock. We've already decremented 815 * the refcount, but we'll need to re-check the situation after 816 * getting the lock. 817 */ 818 spin_lock(&dentry->d_lock); 819 820 /* 821 * Did somebody else grab a reference to it in the meantime, and 822 * we're no longer the last user after all? Alternatively, somebody 823 * else could have killed it and marked it dead. Either way, we 824 * don't need to do anything else. 825 */ 826 if (dentry->d_lockref.count) { 827 spin_unlock(&dentry->d_lock); 828 return true; 829 } 830 831 /* 832 * Re-get the reference we optimistically dropped. We hold the 833 * lock, and we just tested that it was zero, so we can just 834 * set it to 1. 835 */ 836 dentry->d_lockref.count = 1; 837 return false; 838 } 839 840 841 /* 842 * This is dput 843 * 844 * This is complicated by the fact that we do not want to put 845 * dentries that are no longer on any hash chain on the unused 846 * list: we'd much rather just get rid of them immediately. 847 * 848 * However, that implies that we have to traverse the dentry 849 * tree upwards to the parents which might _also_ now be 850 * scheduled for deletion (it may have been only waiting for 851 * its last child to go away). 852 * 853 * This tail recursion is done by hand as we don't want to depend 854 * on the compiler to always get this right (gcc generally doesn't). 855 * Real recursion would eat up our stack space. 856 */ 857 858 /* 859 * dput - release a dentry 860 * @dentry: dentry to release 861 * 862 * Release a dentry. This will drop the usage count and if appropriate 863 * call the dentry unlink method as well as removing it from the queues and 864 * releasing its resources. If the parent dentries were scheduled for release 865 * they too may now get deleted. 866 */ 867 void dput(struct dentry *dentry) 868 { 869 while (dentry) { 870 might_sleep(); 871 872 rcu_read_lock(); 873 if (likely(fast_dput(dentry))) { 874 rcu_read_unlock(); 875 return; 876 } 877 878 /* Slow case: now with the dentry lock held */ 879 rcu_read_unlock(); 880 881 if (likely(retain_dentry(dentry))) { 882 spin_unlock(&dentry->d_lock); 883 return; 884 } 885 886 dentry = dentry_kill(dentry); 887 } 888 } 889 EXPORT_SYMBOL(dput); 890 891 static void __dput_to_list(struct dentry *dentry, struct list_head *list) 892 __must_hold(&dentry->d_lock) 893 { 894 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 895 /* let the owner of the list it's on deal with it */ 896 --dentry->d_lockref.count; 897 } else { 898 if (dentry->d_flags & DCACHE_LRU_LIST) 899 d_lru_del(dentry); 900 if (!--dentry->d_lockref.count) 901 d_shrink_add(dentry, list); 902 } 903 } 904 905 void dput_to_list(struct dentry *dentry, struct list_head *list) 906 { 907 rcu_read_lock(); 908 if (likely(fast_dput(dentry))) { 909 rcu_read_unlock(); 910 return; 911 } 912 rcu_read_unlock(); 913 if (!retain_dentry(dentry)) 914 __dput_to_list(dentry, list); 915 spin_unlock(&dentry->d_lock); 916 } 917 918 /* This must be called with d_lock held */ 919 static inline void __dget_dlock(struct dentry *dentry) 920 { 921 dentry->d_lockref.count++; 922 } 923 924 static inline void __dget(struct dentry *dentry) 925 { 926 lockref_get(&dentry->d_lockref); 927 } 928 929 struct dentry *dget_parent(struct dentry *dentry) 930 { 931 int gotref; 932 struct dentry *ret; 933 unsigned seq; 934 935 /* 936 * Do optimistic parent lookup without any 937 * locking. 938 */ 939 rcu_read_lock(); 940 seq = raw_seqcount_begin(&dentry->d_seq); 941 ret = READ_ONCE(dentry->d_parent); 942 gotref = lockref_get_not_zero(&ret->d_lockref); 943 rcu_read_unlock(); 944 if (likely(gotref)) { 945 if (!read_seqcount_retry(&dentry->d_seq, seq)) 946 return ret; 947 dput(ret); 948 } 949 950 repeat: 951 /* 952 * Don't need rcu_dereference because we re-check it was correct under 953 * the lock. 954 */ 955 rcu_read_lock(); 956 ret = dentry->d_parent; 957 spin_lock(&ret->d_lock); 958 if (unlikely(ret != dentry->d_parent)) { 959 spin_unlock(&ret->d_lock); 960 rcu_read_unlock(); 961 goto repeat; 962 } 963 rcu_read_unlock(); 964 BUG_ON(!ret->d_lockref.count); 965 ret->d_lockref.count++; 966 spin_unlock(&ret->d_lock); 967 return ret; 968 } 969 EXPORT_SYMBOL(dget_parent); 970 971 static struct dentry * __d_find_any_alias(struct inode *inode) 972 { 973 struct dentry *alias; 974 975 if (hlist_empty(&inode->i_dentry)) 976 return NULL; 977 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 978 __dget(alias); 979 return alias; 980 } 981 982 /** 983 * d_find_any_alias - find any alias for a given inode 984 * @inode: inode to find an alias for 985 * 986 * If any aliases exist for the given inode, take and return a 987 * reference for one of them. If no aliases exist, return %NULL. 988 */ 989 struct dentry *d_find_any_alias(struct inode *inode) 990 { 991 struct dentry *de; 992 993 spin_lock(&inode->i_lock); 994 de = __d_find_any_alias(inode); 995 spin_unlock(&inode->i_lock); 996 return de; 997 } 998 EXPORT_SYMBOL(d_find_any_alias); 999 1000 static struct dentry *__d_find_alias(struct inode *inode) 1001 { 1002 struct dentry *alias; 1003 1004 if (S_ISDIR(inode->i_mode)) 1005 return __d_find_any_alias(inode); 1006 1007 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1008 spin_lock(&alias->d_lock); 1009 if (!d_unhashed(alias)) { 1010 __dget_dlock(alias); 1011 spin_unlock(&alias->d_lock); 1012 return alias; 1013 } 1014 spin_unlock(&alias->d_lock); 1015 } 1016 return NULL; 1017 } 1018 1019 /** 1020 * d_find_alias - grab a hashed alias of inode 1021 * @inode: inode in question 1022 * 1023 * If inode has a hashed alias, or is a directory and has any alias, 1024 * acquire the reference to alias and return it. Otherwise return NULL. 1025 * Notice that if inode is a directory there can be only one alias and 1026 * it can be unhashed only if it has no children, or if it is the root 1027 * of a filesystem, or if the directory was renamed and d_revalidate 1028 * was the first vfs operation to notice. 1029 * 1030 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1031 * any other hashed alias over that one. 1032 */ 1033 struct dentry *d_find_alias(struct inode *inode) 1034 { 1035 struct dentry *de = NULL; 1036 1037 if (!hlist_empty(&inode->i_dentry)) { 1038 spin_lock(&inode->i_lock); 1039 de = __d_find_alias(inode); 1040 spin_unlock(&inode->i_lock); 1041 } 1042 return de; 1043 } 1044 EXPORT_SYMBOL(d_find_alias); 1045 1046 /* 1047 * Try to kill dentries associated with this inode. 1048 * WARNING: you must own a reference to inode. 1049 */ 1050 void d_prune_aliases(struct inode *inode) 1051 { 1052 struct dentry *dentry; 1053 restart: 1054 spin_lock(&inode->i_lock); 1055 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1056 spin_lock(&dentry->d_lock); 1057 if (!dentry->d_lockref.count) { 1058 struct dentry *parent = lock_parent(dentry); 1059 if (likely(!dentry->d_lockref.count)) { 1060 __dentry_kill(dentry); 1061 dput(parent); 1062 goto restart; 1063 } 1064 if (parent) 1065 spin_unlock(&parent->d_lock); 1066 } 1067 spin_unlock(&dentry->d_lock); 1068 } 1069 spin_unlock(&inode->i_lock); 1070 } 1071 EXPORT_SYMBOL(d_prune_aliases); 1072 1073 /* 1074 * Lock a dentry from shrink list. 1075 * Called under rcu_read_lock() and dentry->d_lock; the former 1076 * guarantees that nothing we access will be freed under us. 1077 * Note that dentry is *not* protected from concurrent dentry_kill(), 1078 * d_delete(), etc. 1079 * 1080 * Return false if dentry has been disrupted or grabbed, leaving 1081 * the caller to kick it off-list. Otherwise, return true and have 1082 * that dentry's inode and parent both locked. 1083 */ 1084 static bool shrink_lock_dentry(struct dentry *dentry) 1085 { 1086 struct inode *inode; 1087 struct dentry *parent; 1088 1089 if (dentry->d_lockref.count) 1090 return false; 1091 1092 inode = dentry->d_inode; 1093 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1094 spin_unlock(&dentry->d_lock); 1095 spin_lock(&inode->i_lock); 1096 spin_lock(&dentry->d_lock); 1097 if (unlikely(dentry->d_lockref.count)) 1098 goto out; 1099 /* changed inode means that somebody had grabbed it */ 1100 if (unlikely(inode != dentry->d_inode)) 1101 goto out; 1102 } 1103 1104 parent = dentry->d_parent; 1105 if (IS_ROOT(dentry) || likely(spin_trylock(&parent->d_lock))) 1106 return true; 1107 1108 spin_unlock(&dentry->d_lock); 1109 spin_lock(&parent->d_lock); 1110 if (unlikely(parent != dentry->d_parent)) { 1111 spin_unlock(&parent->d_lock); 1112 spin_lock(&dentry->d_lock); 1113 goto out; 1114 } 1115 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1116 if (likely(!dentry->d_lockref.count)) 1117 return true; 1118 spin_unlock(&parent->d_lock); 1119 out: 1120 if (inode) 1121 spin_unlock(&inode->i_lock); 1122 return false; 1123 } 1124 1125 void shrink_dentry_list(struct list_head *list) 1126 { 1127 while (!list_empty(list)) { 1128 struct dentry *dentry, *parent; 1129 1130 dentry = list_entry(list->prev, struct dentry, d_lru); 1131 spin_lock(&dentry->d_lock); 1132 rcu_read_lock(); 1133 if (!shrink_lock_dentry(dentry)) { 1134 bool can_free = false; 1135 rcu_read_unlock(); 1136 d_shrink_del(dentry); 1137 if (dentry->d_lockref.count < 0) 1138 can_free = dentry->d_flags & DCACHE_MAY_FREE; 1139 spin_unlock(&dentry->d_lock); 1140 if (can_free) 1141 dentry_free(dentry); 1142 continue; 1143 } 1144 rcu_read_unlock(); 1145 d_shrink_del(dentry); 1146 parent = dentry->d_parent; 1147 if (parent != dentry) 1148 __dput_to_list(parent, list); 1149 __dentry_kill(dentry); 1150 } 1151 } 1152 1153 static enum lru_status dentry_lru_isolate(struct list_head *item, 1154 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1155 { 1156 struct list_head *freeable = arg; 1157 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1158 1159 1160 /* 1161 * we are inverting the lru lock/dentry->d_lock here, 1162 * so use a trylock. If we fail to get the lock, just skip 1163 * it 1164 */ 1165 if (!spin_trylock(&dentry->d_lock)) 1166 return LRU_SKIP; 1167 1168 /* 1169 * Referenced dentries are still in use. If they have active 1170 * counts, just remove them from the LRU. Otherwise give them 1171 * another pass through the LRU. 1172 */ 1173 if (dentry->d_lockref.count) { 1174 d_lru_isolate(lru, dentry); 1175 spin_unlock(&dentry->d_lock); 1176 return LRU_REMOVED; 1177 } 1178 1179 if (dentry->d_flags & DCACHE_REFERENCED) { 1180 dentry->d_flags &= ~DCACHE_REFERENCED; 1181 spin_unlock(&dentry->d_lock); 1182 1183 /* 1184 * The list move itself will be made by the common LRU code. At 1185 * this point, we've dropped the dentry->d_lock but keep the 1186 * lru lock. This is safe to do, since every list movement is 1187 * protected by the lru lock even if both locks are held. 1188 * 1189 * This is guaranteed by the fact that all LRU management 1190 * functions are intermediated by the LRU API calls like 1191 * list_lru_add and list_lru_del. List movement in this file 1192 * only ever occur through this functions or through callbacks 1193 * like this one, that are called from the LRU API. 1194 * 1195 * The only exceptions to this are functions like 1196 * shrink_dentry_list, and code that first checks for the 1197 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1198 * operating only with stack provided lists after they are 1199 * properly isolated from the main list. It is thus, always a 1200 * local access. 1201 */ 1202 return LRU_ROTATE; 1203 } 1204 1205 d_lru_shrink_move(lru, dentry, freeable); 1206 spin_unlock(&dentry->d_lock); 1207 1208 return LRU_REMOVED; 1209 } 1210 1211 /** 1212 * prune_dcache_sb - shrink the dcache 1213 * @sb: superblock 1214 * @sc: shrink control, passed to list_lru_shrink_walk() 1215 * 1216 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1217 * is done when we need more memory and called from the superblock shrinker 1218 * function. 1219 * 1220 * This function may fail to free any resources if all the dentries are in 1221 * use. 1222 */ 1223 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1224 { 1225 LIST_HEAD(dispose); 1226 long freed; 1227 1228 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1229 dentry_lru_isolate, &dispose); 1230 shrink_dentry_list(&dispose); 1231 return freed; 1232 } 1233 1234 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1235 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1236 { 1237 struct list_head *freeable = arg; 1238 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1239 1240 /* 1241 * we are inverting the lru lock/dentry->d_lock here, 1242 * so use a trylock. If we fail to get the lock, just skip 1243 * it 1244 */ 1245 if (!spin_trylock(&dentry->d_lock)) 1246 return LRU_SKIP; 1247 1248 d_lru_shrink_move(lru, dentry, freeable); 1249 spin_unlock(&dentry->d_lock); 1250 1251 return LRU_REMOVED; 1252 } 1253 1254 1255 /** 1256 * shrink_dcache_sb - shrink dcache for a superblock 1257 * @sb: superblock 1258 * 1259 * Shrink the dcache for the specified super block. This is used to free 1260 * the dcache before unmounting a file system. 1261 */ 1262 void shrink_dcache_sb(struct super_block *sb) 1263 { 1264 do { 1265 LIST_HEAD(dispose); 1266 1267 list_lru_walk(&sb->s_dentry_lru, 1268 dentry_lru_isolate_shrink, &dispose, 1024); 1269 shrink_dentry_list(&dispose); 1270 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1271 } 1272 EXPORT_SYMBOL(shrink_dcache_sb); 1273 1274 /** 1275 * enum d_walk_ret - action to talke during tree walk 1276 * @D_WALK_CONTINUE: contrinue walk 1277 * @D_WALK_QUIT: quit walk 1278 * @D_WALK_NORETRY: quit when retry is needed 1279 * @D_WALK_SKIP: skip this dentry and its children 1280 */ 1281 enum d_walk_ret { 1282 D_WALK_CONTINUE, 1283 D_WALK_QUIT, 1284 D_WALK_NORETRY, 1285 D_WALK_SKIP, 1286 }; 1287 1288 /** 1289 * d_walk - walk the dentry tree 1290 * @parent: start of walk 1291 * @data: data passed to @enter() and @finish() 1292 * @enter: callback when first entering the dentry 1293 * 1294 * The @enter() callbacks are called with d_lock held. 1295 */ 1296 static void d_walk(struct dentry *parent, void *data, 1297 enum d_walk_ret (*enter)(void *, struct dentry *)) 1298 { 1299 struct dentry *this_parent; 1300 struct list_head *next; 1301 unsigned seq = 0; 1302 enum d_walk_ret ret; 1303 bool retry = true; 1304 1305 again: 1306 read_seqbegin_or_lock(&rename_lock, &seq); 1307 this_parent = parent; 1308 spin_lock(&this_parent->d_lock); 1309 1310 ret = enter(data, this_parent); 1311 switch (ret) { 1312 case D_WALK_CONTINUE: 1313 break; 1314 case D_WALK_QUIT: 1315 case D_WALK_SKIP: 1316 goto out_unlock; 1317 case D_WALK_NORETRY: 1318 retry = false; 1319 break; 1320 } 1321 repeat: 1322 next = this_parent->d_subdirs.next; 1323 resume: 1324 while (next != &this_parent->d_subdirs) { 1325 struct list_head *tmp = next; 1326 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1327 next = tmp->next; 1328 1329 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1330 continue; 1331 1332 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1333 1334 ret = enter(data, dentry); 1335 switch (ret) { 1336 case D_WALK_CONTINUE: 1337 break; 1338 case D_WALK_QUIT: 1339 spin_unlock(&dentry->d_lock); 1340 goto out_unlock; 1341 case D_WALK_NORETRY: 1342 retry = false; 1343 break; 1344 case D_WALK_SKIP: 1345 spin_unlock(&dentry->d_lock); 1346 continue; 1347 } 1348 1349 if (!list_empty(&dentry->d_subdirs)) { 1350 spin_unlock(&this_parent->d_lock); 1351 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1352 this_parent = dentry; 1353 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1354 goto repeat; 1355 } 1356 spin_unlock(&dentry->d_lock); 1357 } 1358 /* 1359 * All done at this level ... ascend and resume the search. 1360 */ 1361 rcu_read_lock(); 1362 ascend: 1363 if (this_parent != parent) { 1364 struct dentry *child = this_parent; 1365 this_parent = child->d_parent; 1366 1367 spin_unlock(&child->d_lock); 1368 spin_lock(&this_parent->d_lock); 1369 1370 /* might go back up the wrong parent if we have had a rename. */ 1371 if (need_seqretry(&rename_lock, seq)) 1372 goto rename_retry; 1373 /* go into the first sibling still alive */ 1374 do { 1375 next = child->d_child.next; 1376 if (next == &this_parent->d_subdirs) 1377 goto ascend; 1378 child = list_entry(next, struct dentry, d_child); 1379 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1380 rcu_read_unlock(); 1381 goto resume; 1382 } 1383 if (need_seqretry(&rename_lock, seq)) 1384 goto rename_retry; 1385 rcu_read_unlock(); 1386 1387 out_unlock: 1388 spin_unlock(&this_parent->d_lock); 1389 done_seqretry(&rename_lock, seq); 1390 return; 1391 1392 rename_retry: 1393 spin_unlock(&this_parent->d_lock); 1394 rcu_read_unlock(); 1395 BUG_ON(seq & 1); 1396 if (!retry) 1397 return; 1398 seq = 1; 1399 goto again; 1400 } 1401 1402 struct check_mount { 1403 struct vfsmount *mnt; 1404 unsigned int mounted; 1405 }; 1406 1407 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1408 { 1409 struct check_mount *info = data; 1410 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1411 1412 if (likely(!d_mountpoint(dentry))) 1413 return D_WALK_CONTINUE; 1414 if (__path_is_mountpoint(&path)) { 1415 info->mounted = 1; 1416 return D_WALK_QUIT; 1417 } 1418 return D_WALK_CONTINUE; 1419 } 1420 1421 /** 1422 * path_has_submounts - check for mounts over a dentry in the 1423 * current namespace. 1424 * @parent: path to check. 1425 * 1426 * Return true if the parent or its subdirectories contain 1427 * a mount point in the current namespace. 1428 */ 1429 int path_has_submounts(const struct path *parent) 1430 { 1431 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1432 1433 read_seqlock_excl(&mount_lock); 1434 d_walk(parent->dentry, &data, path_check_mount); 1435 read_sequnlock_excl(&mount_lock); 1436 1437 return data.mounted; 1438 } 1439 EXPORT_SYMBOL(path_has_submounts); 1440 1441 /* 1442 * Called by mount code to set a mountpoint and check if the mountpoint is 1443 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1444 * subtree can become unreachable). 1445 * 1446 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1447 * this reason take rename_lock and d_lock on dentry and ancestors. 1448 */ 1449 int d_set_mounted(struct dentry *dentry) 1450 { 1451 struct dentry *p; 1452 int ret = -ENOENT; 1453 write_seqlock(&rename_lock); 1454 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1455 /* Need exclusion wrt. d_invalidate() */ 1456 spin_lock(&p->d_lock); 1457 if (unlikely(d_unhashed(p))) { 1458 spin_unlock(&p->d_lock); 1459 goto out; 1460 } 1461 spin_unlock(&p->d_lock); 1462 } 1463 spin_lock(&dentry->d_lock); 1464 if (!d_unlinked(dentry)) { 1465 ret = -EBUSY; 1466 if (!d_mountpoint(dentry)) { 1467 dentry->d_flags |= DCACHE_MOUNTED; 1468 ret = 0; 1469 } 1470 } 1471 spin_unlock(&dentry->d_lock); 1472 out: 1473 write_sequnlock(&rename_lock); 1474 return ret; 1475 } 1476 1477 /* 1478 * Search the dentry child list of the specified parent, 1479 * and move any unused dentries to the end of the unused 1480 * list for prune_dcache(). We descend to the next level 1481 * whenever the d_subdirs list is non-empty and continue 1482 * searching. 1483 * 1484 * It returns zero iff there are no unused children, 1485 * otherwise it returns the number of children moved to 1486 * the end of the unused list. This may not be the total 1487 * number of unused children, because select_parent can 1488 * drop the lock and return early due to latency 1489 * constraints. 1490 */ 1491 1492 struct select_data { 1493 struct dentry *start; 1494 union { 1495 long found; 1496 struct dentry *victim; 1497 }; 1498 struct list_head dispose; 1499 }; 1500 1501 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1502 { 1503 struct select_data *data = _data; 1504 enum d_walk_ret ret = D_WALK_CONTINUE; 1505 1506 if (data->start == dentry) 1507 goto out; 1508 1509 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1510 data->found++; 1511 } else { 1512 if (dentry->d_flags & DCACHE_LRU_LIST) 1513 d_lru_del(dentry); 1514 if (!dentry->d_lockref.count) { 1515 d_shrink_add(dentry, &data->dispose); 1516 data->found++; 1517 } 1518 } 1519 /* 1520 * We can return to the caller if we have found some (this 1521 * ensures forward progress). We'll be coming back to find 1522 * the rest. 1523 */ 1524 if (!list_empty(&data->dispose)) 1525 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1526 out: 1527 return ret; 1528 } 1529 1530 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1531 { 1532 struct select_data *data = _data; 1533 enum d_walk_ret ret = D_WALK_CONTINUE; 1534 1535 if (data->start == dentry) 1536 goto out; 1537 1538 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1539 if (!dentry->d_lockref.count) { 1540 rcu_read_lock(); 1541 data->victim = dentry; 1542 return D_WALK_QUIT; 1543 } 1544 } else { 1545 if (dentry->d_flags & DCACHE_LRU_LIST) 1546 d_lru_del(dentry); 1547 if (!dentry->d_lockref.count) 1548 d_shrink_add(dentry, &data->dispose); 1549 } 1550 /* 1551 * We can return to the caller if we have found some (this 1552 * ensures forward progress). We'll be coming back to find 1553 * the rest. 1554 */ 1555 if (!list_empty(&data->dispose)) 1556 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1557 out: 1558 return ret; 1559 } 1560 1561 /** 1562 * shrink_dcache_parent - prune dcache 1563 * @parent: parent of entries to prune 1564 * 1565 * Prune the dcache to remove unused children of the parent dentry. 1566 */ 1567 void shrink_dcache_parent(struct dentry *parent) 1568 { 1569 for (;;) { 1570 struct select_data data = {.start = parent}; 1571 1572 INIT_LIST_HEAD(&data.dispose); 1573 d_walk(parent, &data, select_collect); 1574 1575 if (!list_empty(&data.dispose)) { 1576 shrink_dentry_list(&data.dispose); 1577 continue; 1578 } 1579 1580 cond_resched(); 1581 if (!data.found) 1582 break; 1583 data.victim = NULL; 1584 d_walk(parent, &data, select_collect2); 1585 if (data.victim) { 1586 struct dentry *parent; 1587 spin_lock(&data.victim->d_lock); 1588 if (!shrink_lock_dentry(data.victim)) { 1589 spin_unlock(&data.victim->d_lock); 1590 rcu_read_unlock(); 1591 } else { 1592 rcu_read_unlock(); 1593 parent = data.victim->d_parent; 1594 if (parent != data.victim) 1595 __dput_to_list(parent, &data.dispose); 1596 __dentry_kill(data.victim); 1597 } 1598 } 1599 if (!list_empty(&data.dispose)) 1600 shrink_dentry_list(&data.dispose); 1601 } 1602 } 1603 EXPORT_SYMBOL(shrink_dcache_parent); 1604 1605 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1606 { 1607 /* it has busy descendents; complain about those instead */ 1608 if (!list_empty(&dentry->d_subdirs)) 1609 return D_WALK_CONTINUE; 1610 1611 /* root with refcount 1 is fine */ 1612 if (dentry == _data && dentry->d_lockref.count == 1) 1613 return D_WALK_CONTINUE; 1614 1615 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1616 " still in use (%d) [unmount of %s %s]\n", 1617 dentry, 1618 dentry->d_inode ? 1619 dentry->d_inode->i_ino : 0UL, 1620 dentry, 1621 dentry->d_lockref.count, 1622 dentry->d_sb->s_type->name, 1623 dentry->d_sb->s_id); 1624 WARN_ON(1); 1625 return D_WALK_CONTINUE; 1626 } 1627 1628 static void do_one_tree(struct dentry *dentry) 1629 { 1630 shrink_dcache_parent(dentry); 1631 d_walk(dentry, dentry, umount_check); 1632 d_drop(dentry); 1633 dput(dentry); 1634 } 1635 1636 /* 1637 * destroy the dentries attached to a superblock on unmounting 1638 */ 1639 void shrink_dcache_for_umount(struct super_block *sb) 1640 { 1641 struct dentry *dentry; 1642 1643 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1644 1645 dentry = sb->s_root; 1646 sb->s_root = NULL; 1647 do_one_tree(dentry); 1648 1649 while (!hlist_bl_empty(&sb->s_roots)) { 1650 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1651 do_one_tree(dentry); 1652 } 1653 } 1654 1655 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1656 { 1657 struct dentry **victim = _data; 1658 if (d_mountpoint(dentry)) { 1659 __dget_dlock(dentry); 1660 *victim = dentry; 1661 return D_WALK_QUIT; 1662 } 1663 return D_WALK_CONTINUE; 1664 } 1665 1666 /** 1667 * d_invalidate - detach submounts, prune dcache, and drop 1668 * @dentry: dentry to invalidate (aka detach, prune and drop) 1669 */ 1670 void d_invalidate(struct dentry *dentry) 1671 { 1672 bool had_submounts = false; 1673 spin_lock(&dentry->d_lock); 1674 if (d_unhashed(dentry)) { 1675 spin_unlock(&dentry->d_lock); 1676 return; 1677 } 1678 __d_drop(dentry); 1679 spin_unlock(&dentry->d_lock); 1680 1681 /* Negative dentries can be dropped without further checks */ 1682 if (!dentry->d_inode) 1683 return; 1684 1685 shrink_dcache_parent(dentry); 1686 for (;;) { 1687 struct dentry *victim = NULL; 1688 d_walk(dentry, &victim, find_submount); 1689 if (!victim) { 1690 if (had_submounts) 1691 shrink_dcache_parent(dentry); 1692 return; 1693 } 1694 had_submounts = true; 1695 detach_mounts(victim); 1696 dput(victim); 1697 } 1698 } 1699 EXPORT_SYMBOL(d_invalidate); 1700 1701 /** 1702 * __d_alloc - allocate a dcache entry 1703 * @sb: filesystem it will belong to 1704 * @name: qstr of the name 1705 * 1706 * Allocates a dentry. It returns %NULL if there is insufficient memory 1707 * available. On a success the dentry is returned. The name passed in is 1708 * copied and the copy passed in may be reused after this call. 1709 */ 1710 1711 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1712 { 1713 struct dentry *dentry; 1714 char *dname; 1715 int err; 1716 1717 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1718 if (!dentry) 1719 return NULL; 1720 1721 /* 1722 * We guarantee that the inline name is always NUL-terminated. 1723 * This way the memcpy() done by the name switching in rename 1724 * will still always have a NUL at the end, even if we might 1725 * be overwriting an internal NUL character 1726 */ 1727 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1728 if (unlikely(!name)) { 1729 name = &slash_name; 1730 dname = dentry->d_iname; 1731 } else if (name->len > DNAME_INLINE_LEN-1) { 1732 size_t size = offsetof(struct external_name, name[1]); 1733 struct external_name *p = kmalloc(size + name->len, 1734 GFP_KERNEL_ACCOUNT | 1735 __GFP_RECLAIMABLE); 1736 if (!p) { 1737 kmem_cache_free(dentry_cache, dentry); 1738 return NULL; 1739 } 1740 atomic_set(&p->u.count, 1); 1741 dname = p->name; 1742 } else { 1743 dname = dentry->d_iname; 1744 } 1745 1746 dentry->d_name.len = name->len; 1747 dentry->d_name.hash = name->hash; 1748 memcpy(dname, name->name, name->len); 1749 dname[name->len] = 0; 1750 1751 /* Make sure we always see the terminating NUL character */ 1752 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1753 1754 dentry->d_lockref.count = 1; 1755 dentry->d_flags = 0; 1756 spin_lock_init(&dentry->d_lock); 1757 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1758 dentry->d_inode = NULL; 1759 dentry->d_parent = dentry; 1760 dentry->d_sb = sb; 1761 dentry->d_op = NULL; 1762 dentry->d_fsdata = NULL; 1763 INIT_HLIST_BL_NODE(&dentry->d_hash); 1764 INIT_LIST_HEAD(&dentry->d_lru); 1765 INIT_LIST_HEAD(&dentry->d_subdirs); 1766 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1767 INIT_LIST_HEAD(&dentry->d_child); 1768 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1769 1770 if (dentry->d_op && dentry->d_op->d_init) { 1771 err = dentry->d_op->d_init(dentry); 1772 if (err) { 1773 if (dname_external(dentry)) 1774 kfree(external_name(dentry)); 1775 kmem_cache_free(dentry_cache, dentry); 1776 return NULL; 1777 } 1778 } 1779 1780 this_cpu_inc(nr_dentry); 1781 1782 return dentry; 1783 } 1784 1785 /** 1786 * d_alloc - allocate a dcache entry 1787 * @parent: parent of entry to allocate 1788 * @name: qstr of the name 1789 * 1790 * Allocates a dentry. It returns %NULL if there is insufficient memory 1791 * available. On a success the dentry is returned. The name passed in is 1792 * copied and the copy passed in may be reused after this call. 1793 */ 1794 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1795 { 1796 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1797 if (!dentry) 1798 return NULL; 1799 spin_lock(&parent->d_lock); 1800 /* 1801 * don't need child lock because it is not subject 1802 * to concurrency here 1803 */ 1804 __dget_dlock(parent); 1805 dentry->d_parent = parent; 1806 list_add(&dentry->d_child, &parent->d_subdirs); 1807 spin_unlock(&parent->d_lock); 1808 1809 return dentry; 1810 } 1811 EXPORT_SYMBOL(d_alloc); 1812 1813 struct dentry *d_alloc_anon(struct super_block *sb) 1814 { 1815 return __d_alloc(sb, NULL); 1816 } 1817 EXPORT_SYMBOL(d_alloc_anon); 1818 1819 struct dentry *d_alloc_cursor(struct dentry * parent) 1820 { 1821 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1822 if (dentry) { 1823 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1824 dentry->d_parent = dget(parent); 1825 } 1826 return dentry; 1827 } 1828 1829 /** 1830 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1831 * @sb: the superblock 1832 * @name: qstr of the name 1833 * 1834 * For a filesystem that just pins its dentries in memory and never 1835 * performs lookups at all, return an unhashed IS_ROOT dentry. 1836 * This is used for pipes, sockets et.al. - the stuff that should 1837 * never be anyone's children or parents. Unlike all other 1838 * dentries, these will not have RCU delay between dropping the 1839 * last reference and freeing them. 1840 * 1841 * The only user is alloc_file_pseudo() and that's what should 1842 * be considered a public interface. Don't use directly. 1843 */ 1844 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1845 { 1846 struct dentry *dentry = __d_alloc(sb, name); 1847 if (likely(dentry)) 1848 dentry->d_flags |= DCACHE_NORCU; 1849 return dentry; 1850 } 1851 1852 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1853 { 1854 struct qstr q; 1855 1856 q.name = name; 1857 q.hash_len = hashlen_string(parent, name); 1858 return d_alloc(parent, &q); 1859 } 1860 EXPORT_SYMBOL(d_alloc_name); 1861 1862 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1863 { 1864 WARN_ON_ONCE(dentry->d_op); 1865 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1866 DCACHE_OP_COMPARE | 1867 DCACHE_OP_REVALIDATE | 1868 DCACHE_OP_WEAK_REVALIDATE | 1869 DCACHE_OP_DELETE | 1870 DCACHE_OP_REAL)); 1871 dentry->d_op = op; 1872 if (!op) 1873 return; 1874 if (op->d_hash) 1875 dentry->d_flags |= DCACHE_OP_HASH; 1876 if (op->d_compare) 1877 dentry->d_flags |= DCACHE_OP_COMPARE; 1878 if (op->d_revalidate) 1879 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1880 if (op->d_weak_revalidate) 1881 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1882 if (op->d_delete) 1883 dentry->d_flags |= DCACHE_OP_DELETE; 1884 if (op->d_prune) 1885 dentry->d_flags |= DCACHE_OP_PRUNE; 1886 if (op->d_real) 1887 dentry->d_flags |= DCACHE_OP_REAL; 1888 1889 } 1890 EXPORT_SYMBOL(d_set_d_op); 1891 1892 1893 /* 1894 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1895 * @dentry - The dentry to mark 1896 * 1897 * Mark a dentry as falling through to the lower layer (as set with 1898 * d_pin_lower()). This flag may be recorded on the medium. 1899 */ 1900 void d_set_fallthru(struct dentry *dentry) 1901 { 1902 spin_lock(&dentry->d_lock); 1903 dentry->d_flags |= DCACHE_FALLTHRU; 1904 spin_unlock(&dentry->d_lock); 1905 } 1906 EXPORT_SYMBOL(d_set_fallthru); 1907 1908 static unsigned d_flags_for_inode(struct inode *inode) 1909 { 1910 unsigned add_flags = DCACHE_REGULAR_TYPE; 1911 1912 if (!inode) 1913 return DCACHE_MISS_TYPE; 1914 1915 if (S_ISDIR(inode->i_mode)) { 1916 add_flags = DCACHE_DIRECTORY_TYPE; 1917 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1918 if (unlikely(!inode->i_op->lookup)) 1919 add_flags = DCACHE_AUTODIR_TYPE; 1920 else 1921 inode->i_opflags |= IOP_LOOKUP; 1922 } 1923 goto type_determined; 1924 } 1925 1926 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1927 if (unlikely(inode->i_op->get_link)) { 1928 add_flags = DCACHE_SYMLINK_TYPE; 1929 goto type_determined; 1930 } 1931 inode->i_opflags |= IOP_NOFOLLOW; 1932 } 1933 1934 if (unlikely(!S_ISREG(inode->i_mode))) 1935 add_flags = DCACHE_SPECIAL_TYPE; 1936 1937 type_determined: 1938 if (unlikely(IS_AUTOMOUNT(inode))) 1939 add_flags |= DCACHE_NEED_AUTOMOUNT; 1940 return add_flags; 1941 } 1942 1943 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1944 { 1945 unsigned add_flags = d_flags_for_inode(inode); 1946 WARN_ON(d_in_lookup(dentry)); 1947 1948 spin_lock(&dentry->d_lock); 1949 /* 1950 * Decrement negative dentry count if it was in the LRU list. 1951 */ 1952 if (dentry->d_flags & DCACHE_LRU_LIST) 1953 this_cpu_dec(nr_dentry_negative); 1954 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1955 raw_write_seqcount_begin(&dentry->d_seq); 1956 __d_set_inode_and_type(dentry, inode, add_flags); 1957 raw_write_seqcount_end(&dentry->d_seq); 1958 fsnotify_update_flags(dentry); 1959 spin_unlock(&dentry->d_lock); 1960 } 1961 1962 /** 1963 * d_instantiate - fill in inode information for a dentry 1964 * @entry: dentry to complete 1965 * @inode: inode to attach to this dentry 1966 * 1967 * Fill in inode information in the entry. 1968 * 1969 * This turns negative dentries into productive full members 1970 * of society. 1971 * 1972 * NOTE! This assumes that the inode count has been incremented 1973 * (or otherwise set) by the caller to indicate that it is now 1974 * in use by the dcache. 1975 */ 1976 1977 void d_instantiate(struct dentry *entry, struct inode * inode) 1978 { 1979 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1980 if (inode) { 1981 security_d_instantiate(entry, inode); 1982 spin_lock(&inode->i_lock); 1983 __d_instantiate(entry, inode); 1984 spin_unlock(&inode->i_lock); 1985 } 1986 } 1987 EXPORT_SYMBOL(d_instantiate); 1988 1989 /* 1990 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1991 * with lockdep-related part of unlock_new_inode() done before 1992 * anything else. Use that instead of open-coding d_instantiate()/ 1993 * unlock_new_inode() combinations. 1994 */ 1995 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1996 { 1997 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1998 BUG_ON(!inode); 1999 lockdep_annotate_inode_mutex_key(inode); 2000 security_d_instantiate(entry, inode); 2001 spin_lock(&inode->i_lock); 2002 __d_instantiate(entry, inode); 2003 WARN_ON(!(inode->i_state & I_NEW)); 2004 inode->i_state &= ~I_NEW & ~I_CREATING; 2005 smp_mb(); 2006 wake_up_bit(&inode->i_state, __I_NEW); 2007 spin_unlock(&inode->i_lock); 2008 } 2009 EXPORT_SYMBOL(d_instantiate_new); 2010 2011 struct dentry *d_make_root(struct inode *root_inode) 2012 { 2013 struct dentry *res = NULL; 2014 2015 if (root_inode) { 2016 res = d_alloc_anon(root_inode->i_sb); 2017 if (res) 2018 d_instantiate(res, root_inode); 2019 else 2020 iput(root_inode); 2021 } 2022 return res; 2023 } 2024 EXPORT_SYMBOL(d_make_root); 2025 2026 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 2027 struct inode *inode, 2028 bool disconnected) 2029 { 2030 struct dentry *res; 2031 unsigned add_flags; 2032 2033 security_d_instantiate(dentry, inode); 2034 spin_lock(&inode->i_lock); 2035 res = __d_find_any_alias(inode); 2036 if (res) { 2037 spin_unlock(&inode->i_lock); 2038 dput(dentry); 2039 goto out_iput; 2040 } 2041 2042 /* attach a disconnected dentry */ 2043 add_flags = d_flags_for_inode(inode); 2044 2045 if (disconnected) 2046 add_flags |= DCACHE_DISCONNECTED; 2047 2048 spin_lock(&dentry->d_lock); 2049 __d_set_inode_and_type(dentry, inode, add_flags); 2050 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2051 if (!disconnected) { 2052 hlist_bl_lock(&dentry->d_sb->s_roots); 2053 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 2054 hlist_bl_unlock(&dentry->d_sb->s_roots); 2055 } 2056 spin_unlock(&dentry->d_lock); 2057 spin_unlock(&inode->i_lock); 2058 2059 return dentry; 2060 2061 out_iput: 2062 iput(inode); 2063 return res; 2064 } 2065 2066 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 2067 { 2068 return __d_instantiate_anon(dentry, inode, true); 2069 } 2070 EXPORT_SYMBOL(d_instantiate_anon); 2071 2072 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 2073 { 2074 struct dentry *tmp; 2075 struct dentry *res; 2076 2077 if (!inode) 2078 return ERR_PTR(-ESTALE); 2079 if (IS_ERR(inode)) 2080 return ERR_CAST(inode); 2081 2082 res = d_find_any_alias(inode); 2083 if (res) 2084 goto out_iput; 2085 2086 tmp = d_alloc_anon(inode->i_sb); 2087 if (!tmp) { 2088 res = ERR_PTR(-ENOMEM); 2089 goto out_iput; 2090 } 2091 2092 return __d_instantiate_anon(tmp, inode, disconnected); 2093 2094 out_iput: 2095 iput(inode); 2096 return res; 2097 } 2098 2099 /** 2100 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2101 * @inode: inode to allocate the dentry for 2102 * 2103 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2104 * similar open by handle operations. The returned dentry may be anonymous, 2105 * or may have a full name (if the inode was already in the cache). 2106 * 2107 * When called on a directory inode, we must ensure that the inode only ever 2108 * has one dentry. If a dentry is found, that is returned instead of 2109 * allocating a new one. 2110 * 2111 * On successful return, the reference to the inode has been transferred 2112 * to the dentry. In case of an error the reference on the inode is released. 2113 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2114 * be passed in and the error will be propagated to the return value, 2115 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2116 */ 2117 struct dentry *d_obtain_alias(struct inode *inode) 2118 { 2119 return __d_obtain_alias(inode, true); 2120 } 2121 EXPORT_SYMBOL(d_obtain_alias); 2122 2123 /** 2124 * d_obtain_root - find or allocate a dentry for a given inode 2125 * @inode: inode to allocate the dentry for 2126 * 2127 * Obtain an IS_ROOT dentry for the root of a filesystem. 2128 * 2129 * We must ensure that directory inodes only ever have one dentry. If a 2130 * dentry is found, that is returned instead of allocating a new one. 2131 * 2132 * On successful return, the reference to the inode has been transferred 2133 * to the dentry. In case of an error the reference on the inode is 2134 * released. A %NULL or IS_ERR inode may be passed in and will be the 2135 * error will be propagate to the return value, with a %NULL @inode 2136 * replaced by ERR_PTR(-ESTALE). 2137 */ 2138 struct dentry *d_obtain_root(struct inode *inode) 2139 { 2140 return __d_obtain_alias(inode, false); 2141 } 2142 EXPORT_SYMBOL(d_obtain_root); 2143 2144 /** 2145 * d_add_ci - lookup or allocate new dentry with case-exact name 2146 * @inode: the inode case-insensitive lookup has found 2147 * @dentry: the negative dentry that was passed to the parent's lookup func 2148 * @name: the case-exact name to be associated with the returned dentry 2149 * 2150 * This is to avoid filling the dcache with case-insensitive names to the 2151 * same inode, only the actual correct case is stored in the dcache for 2152 * case-insensitive filesystems. 2153 * 2154 * For a case-insensitive lookup match and if the the case-exact dentry 2155 * already exists in in the dcache, use it and return it. 2156 * 2157 * If no entry exists with the exact case name, allocate new dentry with 2158 * the exact case, and return the spliced entry. 2159 */ 2160 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2161 struct qstr *name) 2162 { 2163 struct dentry *found, *res; 2164 2165 /* 2166 * First check if a dentry matching the name already exists, 2167 * if not go ahead and create it now. 2168 */ 2169 found = d_hash_and_lookup(dentry->d_parent, name); 2170 if (found) { 2171 iput(inode); 2172 return found; 2173 } 2174 if (d_in_lookup(dentry)) { 2175 found = d_alloc_parallel(dentry->d_parent, name, 2176 dentry->d_wait); 2177 if (IS_ERR(found) || !d_in_lookup(found)) { 2178 iput(inode); 2179 return found; 2180 } 2181 } else { 2182 found = d_alloc(dentry->d_parent, name); 2183 if (!found) { 2184 iput(inode); 2185 return ERR_PTR(-ENOMEM); 2186 } 2187 } 2188 res = d_splice_alias(inode, found); 2189 if (res) { 2190 dput(found); 2191 return res; 2192 } 2193 return found; 2194 } 2195 EXPORT_SYMBOL(d_add_ci); 2196 2197 2198 static inline bool d_same_name(const struct dentry *dentry, 2199 const struct dentry *parent, 2200 const struct qstr *name) 2201 { 2202 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2203 if (dentry->d_name.len != name->len) 2204 return false; 2205 return dentry_cmp(dentry, name->name, name->len) == 0; 2206 } 2207 return parent->d_op->d_compare(dentry, 2208 dentry->d_name.len, dentry->d_name.name, 2209 name) == 0; 2210 } 2211 2212 /** 2213 * __d_lookup_rcu - search for a dentry (racy, store-free) 2214 * @parent: parent dentry 2215 * @name: qstr of name we wish to find 2216 * @seqp: returns d_seq value at the point where the dentry was found 2217 * Returns: dentry, or NULL 2218 * 2219 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2220 * resolution (store-free path walking) design described in 2221 * Documentation/filesystems/path-lookup.txt. 2222 * 2223 * This is not to be used outside core vfs. 2224 * 2225 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2226 * held, and rcu_read_lock held. The returned dentry must not be stored into 2227 * without taking d_lock and checking d_seq sequence count against @seq 2228 * returned here. 2229 * 2230 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2231 * function. 2232 * 2233 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2234 * the returned dentry, so long as its parent's seqlock is checked after the 2235 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2236 * is formed, giving integrity down the path walk. 2237 * 2238 * NOTE! The caller *has* to check the resulting dentry against the sequence 2239 * number we've returned before using any of the resulting dentry state! 2240 */ 2241 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2242 const struct qstr *name, 2243 unsigned *seqp) 2244 { 2245 u64 hashlen = name->hash_len; 2246 const unsigned char *str = name->name; 2247 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2248 struct hlist_bl_node *node; 2249 struct dentry *dentry; 2250 2251 /* 2252 * Note: There is significant duplication with __d_lookup_rcu which is 2253 * required to prevent single threaded performance regressions 2254 * especially on architectures where smp_rmb (in seqcounts) are costly. 2255 * Keep the two functions in sync. 2256 */ 2257 2258 /* 2259 * The hash list is protected using RCU. 2260 * 2261 * Carefully use d_seq when comparing a candidate dentry, to avoid 2262 * races with d_move(). 2263 * 2264 * It is possible that concurrent renames can mess up our list 2265 * walk here and result in missing our dentry, resulting in the 2266 * false-negative result. d_lookup() protects against concurrent 2267 * renames using rename_lock seqlock. 2268 * 2269 * See Documentation/filesystems/path-lookup.txt for more details. 2270 */ 2271 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2272 unsigned seq; 2273 2274 seqretry: 2275 /* 2276 * The dentry sequence count protects us from concurrent 2277 * renames, and thus protects parent and name fields. 2278 * 2279 * The caller must perform a seqcount check in order 2280 * to do anything useful with the returned dentry. 2281 * 2282 * NOTE! We do a "raw" seqcount_begin here. That means that 2283 * we don't wait for the sequence count to stabilize if it 2284 * is in the middle of a sequence change. If we do the slow 2285 * dentry compare, we will do seqretries until it is stable, 2286 * and if we end up with a successful lookup, we actually 2287 * want to exit RCU lookup anyway. 2288 * 2289 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2290 * we are still guaranteed NUL-termination of ->d_name.name. 2291 */ 2292 seq = raw_seqcount_begin(&dentry->d_seq); 2293 if (dentry->d_parent != parent) 2294 continue; 2295 if (d_unhashed(dentry)) 2296 continue; 2297 2298 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2299 int tlen; 2300 const char *tname; 2301 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2302 continue; 2303 tlen = dentry->d_name.len; 2304 tname = dentry->d_name.name; 2305 /* we want a consistent (name,len) pair */ 2306 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2307 cpu_relax(); 2308 goto seqretry; 2309 } 2310 if (parent->d_op->d_compare(dentry, 2311 tlen, tname, name) != 0) 2312 continue; 2313 } else { 2314 if (dentry->d_name.hash_len != hashlen) 2315 continue; 2316 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2317 continue; 2318 } 2319 *seqp = seq; 2320 return dentry; 2321 } 2322 return NULL; 2323 } 2324 2325 /** 2326 * d_lookup - search for a dentry 2327 * @parent: parent dentry 2328 * @name: qstr of name we wish to find 2329 * Returns: dentry, or NULL 2330 * 2331 * d_lookup searches the children of the parent dentry for the name in 2332 * question. If the dentry is found its reference count is incremented and the 2333 * dentry is returned. The caller must use dput to free the entry when it has 2334 * finished using it. %NULL is returned if the dentry does not exist. 2335 */ 2336 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2337 { 2338 struct dentry *dentry; 2339 unsigned seq; 2340 2341 do { 2342 seq = read_seqbegin(&rename_lock); 2343 dentry = __d_lookup(parent, name); 2344 if (dentry) 2345 break; 2346 } while (read_seqretry(&rename_lock, seq)); 2347 return dentry; 2348 } 2349 EXPORT_SYMBOL(d_lookup); 2350 2351 /** 2352 * __d_lookup - search for a dentry (racy) 2353 * @parent: parent dentry 2354 * @name: qstr of name we wish to find 2355 * Returns: dentry, or NULL 2356 * 2357 * __d_lookup is like d_lookup, however it may (rarely) return a 2358 * false-negative result due to unrelated rename activity. 2359 * 2360 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2361 * however it must be used carefully, eg. with a following d_lookup in 2362 * the case of failure. 2363 * 2364 * __d_lookup callers must be commented. 2365 */ 2366 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2367 { 2368 unsigned int hash = name->hash; 2369 struct hlist_bl_head *b = d_hash(hash); 2370 struct hlist_bl_node *node; 2371 struct dentry *found = NULL; 2372 struct dentry *dentry; 2373 2374 /* 2375 * Note: There is significant duplication with __d_lookup_rcu which is 2376 * required to prevent single threaded performance regressions 2377 * especially on architectures where smp_rmb (in seqcounts) are costly. 2378 * Keep the two functions in sync. 2379 */ 2380 2381 /* 2382 * The hash list is protected using RCU. 2383 * 2384 * Take d_lock when comparing a candidate dentry, to avoid races 2385 * with d_move(). 2386 * 2387 * It is possible that concurrent renames can mess up our list 2388 * walk here and result in missing our dentry, resulting in the 2389 * false-negative result. d_lookup() protects against concurrent 2390 * renames using rename_lock seqlock. 2391 * 2392 * See Documentation/filesystems/path-lookup.txt for more details. 2393 */ 2394 rcu_read_lock(); 2395 2396 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2397 2398 if (dentry->d_name.hash != hash) 2399 continue; 2400 2401 spin_lock(&dentry->d_lock); 2402 if (dentry->d_parent != parent) 2403 goto next; 2404 if (d_unhashed(dentry)) 2405 goto next; 2406 2407 if (!d_same_name(dentry, parent, name)) 2408 goto next; 2409 2410 dentry->d_lockref.count++; 2411 found = dentry; 2412 spin_unlock(&dentry->d_lock); 2413 break; 2414 next: 2415 spin_unlock(&dentry->d_lock); 2416 } 2417 rcu_read_unlock(); 2418 2419 return found; 2420 } 2421 2422 /** 2423 * d_hash_and_lookup - hash the qstr then search for a dentry 2424 * @dir: Directory to search in 2425 * @name: qstr of name we wish to find 2426 * 2427 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2428 */ 2429 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2430 { 2431 /* 2432 * Check for a fs-specific hash function. Note that we must 2433 * calculate the standard hash first, as the d_op->d_hash() 2434 * routine may choose to leave the hash value unchanged. 2435 */ 2436 name->hash = full_name_hash(dir, name->name, name->len); 2437 if (dir->d_flags & DCACHE_OP_HASH) { 2438 int err = dir->d_op->d_hash(dir, name); 2439 if (unlikely(err < 0)) 2440 return ERR_PTR(err); 2441 } 2442 return d_lookup(dir, name); 2443 } 2444 EXPORT_SYMBOL(d_hash_and_lookup); 2445 2446 /* 2447 * When a file is deleted, we have two options: 2448 * - turn this dentry into a negative dentry 2449 * - unhash this dentry and free it. 2450 * 2451 * Usually, we want to just turn this into 2452 * a negative dentry, but if anybody else is 2453 * currently using the dentry or the inode 2454 * we can't do that and we fall back on removing 2455 * it from the hash queues and waiting for 2456 * it to be deleted later when it has no users 2457 */ 2458 2459 /** 2460 * d_delete - delete a dentry 2461 * @dentry: The dentry to delete 2462 * 2463 * Turn the dentry into a negative dentry if possible, otherwise 2464 * remove it from the hash queues so it can be deleted later 2465 */ 2466 2467 void d_delete(struct dentry * dentry) 2468 { 2469 struct inode *inode = dentry->d_inode; 2470 2471 spin_lock(&inode->i_lock); 2472 spin_lock(&dentry->d_lock); 2473 /* 2474 * Are we the only user? 2475 */ 2476 if (dentry->d_lockref.count == 1) { 2477 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2478 dentry_unlink_inode(dentry); 2479 } else { 2480 __d_drop(dentry); 2481 spin_unlock(&dentry->d_lock); 2482 spin_unlock(&inode->i_lock); 2483 } 2484 } 2485 EXPORT_SYMBOL(d_delete); 2486 2487 static void __d_rehash(struct dentry *entry) 2488 { 2489 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2490 2491 hlist_bl_lock(b); 2492 hlist_bl_add_head_rcu(&entry->d_hash, b); 2493 hlist_bl_unlock(b); 2494 } 2495 2496 /** 2497 * d_rehash - add an entry back to the hash 2498 * @entry: dentry to add to the hash 2499 * 2500 * Adds a dentry to the hash according to its name. 2501 */ 2502 2503 void d_rehash(struct dentry * entry) 2504 { 2505 spin_lock(&entry->d_lock); 2506 __d_rehash(entry); 2507 spin_unlock(&entry->d_lock); 2508 } 2509 EXPORT_SYMBOL(d_rehash); 2510 2511 static inline unsigned start_dir_add(struct inode *dir) 2512 { 2513 2514 for (;;) { 2515 unsigned n = dir->i_dir_seq; 2516 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2517 return n; 2518 cpu_relax(); 2519 } 2520 } 2521 2522 static inline void end_dir_add(struct inode *dir, unsigned n) 2523 { 2524 smp_store_release(&dir->i_dir_seq, n + 2); 2525 } 2526 2527 static void d_wait_lookup(struct dentry *dentry) 2528 { 2529 if (d_in_lookup(dentry)) { 2530 DECLARE_WAITQUEUE(wait, current); 2531 add_wait_queue(dentry->d_wait, &wait); 2532 do { 2533 set_current_state(TASK_UNINTERRUPTIBLE); 2534 spin_unlock(&dentry->d_lock); 2535 schedule(); 2536 spin_lock(&dentry->d_lock); 2537 } while (d_in_lookup(dentry)); 2538 } 2539 } 2540 2541 struct dentry *d_alloc_parallel(struct dentry *parent, 2542 const struct qstr *name, 2543 wait_queue_head_t *wq) 2544 { 2545 unsigned int hash = name->hash; 2546 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2547 struct hlist_bl_node *node; 2548 struct dentry *new = d_alloc(parent, name); 2549 struct dentry *dentry; 2550 unsigned seq, r_seq, d_seq; 2551 2552 if (unlikely(!new)) 2553 return ERR_PTR(-ENOMEM); 2554 2555 retry: 2556 rcu_read_lock(); 2557 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2558 r_seq = read_seqbegin(&rename_lock); 2559 dentry = __d_lookup_rcu(parent, name, &d_seq); 2560 if (unlikely(dentry)) { 2561 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2562 rcu_read_unlock(); 2563 goto retry; 2564 } 2565 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2566 rcu_read_unlock(); 2567 dput(dentry); 2568 goto retry; 2569 } 2570 rcu_read_unlock(); 2571 dput(new); 2572 return dentry; 2573 } 2574 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2575 rcu_read_unlock(); 2576 goto retry; 2577 } 2578 2579 if (unlikely(seq & 1)) { 2580 rcu_read_unlock(); 2581 goto retry; 2582 } 2583 2584 hlist_bl_lock(b); 2585 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2586 hlist_bl_unlock(b); 2587 rcu_read_unlock(); 2588 goto retry; 2589 } 2590 /* 2591 * No changes for the parent since the beginning of d_lookup(). 2592 * Since all removals from the chain happen with hlist_bl_lock(), 2593 * any potential in-lookup matches are going to stay here until 2594 * we unlock the chain. All fields are stable in everything 2595 * we encounter. 2596 */ 2597 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2598 if (dentry->d_name.hash != hash) 2599 continue; 2600 if (dentry->d_parent != parent) 2601 continue; 2602 if (!d_same_name(dentry, parent, name)) 2603 continue; 2604 hlist_bl_unlock(b); 2605 /* now we can try to grab a reference */ 2606 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2607 rcu_read_unlock(); 2608 goto retry; 2609 } 2610 2611 rcu_read_unlock(); 2612 /* 2613 * somebody is likely to be still doing lookup for it; 2614 * wait for them to finish 2615 */ 2616 spin_lock(&dentry->d_lock); 2617 d_wait_lookup(dentry); 2618 /* 2619 * it's not in-lookup anymore; in principle we should repeat 2620 * everything from dcache lookup, but it's likely to be what 2621 * d_lookup() would've found anyway. If it is, just return it; 2622 * otherwise we really have to repeat the whole thing. 2623 */ 2624 if (unlikely(dentry->d_name.hash != hash)) 2625 goto mismatch; 2626 if (unlikely(dentry->d_parent != parent)) 2627 goto mismatch; 2628 if (unlikely(d_unhashed(dentry))) 2629 goto mismatch; 2630 if (unlikely(!d_same_name(dentry, parent, name))) 2631 goto mismatch; 2632 /* OK, it *is* a hashed match; return it */ 2633 spin_unlock(&dentry->d_lock); 2634 dput(new); 2635 return dentry; 2636 } 2637 rcu_read_unlock(); 2638 /* we can't take ->d_lock here; it's OK, though. */ 2639 new->d_flags |= DCACHE_PAR_LOOKUP; 2640 new->d_wait = wq; 2641 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2642 hlist_bl_unlock(b); 2643 return new; 2644 mismatch: 2645 spin_unlock(&dentry->d_lock); 2646 dput(dentry); 2647 goto retry; 2648 } 2649 EXPORT_SYMBOL(d_alloc_parallel); 2650 2651 void __d_lookup_done(struct dentry *dentry) 2652 { 2653 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2654 dentry->d_name.hash); 2655 hlist_bl_lock(b); 2656 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2657 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2658 wake_up_all(dentry->d_wait); 2659 dentry->d_wait = NULL; 2660 hlist_bl_unlock(b); 2661 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2662 INIT_LIST_HEAD(&dentry->d_lru); 2663 } 2664 EXPORT_SYMBOL(__d_lookup_done); 2665 2666 /* inode->i_lock held if inode is non-NULL */ 2667 2668 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2669 { 2670 struct inode *dir = NULL; 2671 unsigned n; 2672 spin_lock(&dentry->d_lock); 2673 if (unlikely(d_in_lookup(dentry))) { 2674 dir = dentry->d_parent->d_inode; 2675 n = start_dir_add(dir); 2676 __d_lookup_done(dentry); 2677 } 2678 if (inode) { 2679 unsigned add_flags = d_flags_for_inode(inode); 2680 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2681 raw_write_seqcount_begin(&dentry->d_seq); 2682 __d_set_inode_and_type(dentry, inode, add_flags); 2683 raw_write_seqcount_end(&dentry->d_seq); 2684 fsnotify_update_flags(dentry); 2685 } 2686 __d_rehash(dentry); 2687 if (dir) 2688 end_dir_add(dir, n); 2689 spin_unlock(&dentry->d_lock); 2690 if (inode) 2691 spin_unlock(&inode->i_lock); 2692 } 2693 2694 /** 2695 * d_add - add dentry to hash queues 2696 * @entry: dentry to add 2697 * @inode: The inode to attach to this dentry 2698 * 2699 * This adds the entry to the hash queues and initializes @inode. 2700 * The entry was actually filled in earlier during d_alloc(). 2701 */ 2702 2703 void d_add(struct dentry *entry, struct inode *inode) 2704 { 2705 if (inode) { 2706 security_d_instantiate(entry, inode); 2707 spin_lock(&inode->i_lock); 2708 } 2709 __d_add(entry, inode); 2710 } 2711 EXPORT_SYMBOL(d_add); 2712 2713 /** 2714 * d_exact_alias - find and hash an exact unhashed alias 2715 * @entry: dentry to add 2716 * @inode: The inode to go with this dentry 2717 * 2718 * If an unhashed dentry with the same name/parent and desired 2719 * inode already exists, hash and return it. Otherwise, return 2720 * NULL. 2721 * 2722 * Parent directory should be locked. 2723 */ 2724 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2725 { 2726 struct dentry *alias; 2727 unsigned int hash = entry->d_name.hash; 2728 2729 spin_lock(&inode->i_lock); 2730 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2731 /* 2732 * Don't need alias->d_lock here, because aliases with 2733 * d_parent == entry->d_parent are not subject to name or 2734 * parent changes, because the parent inode i_mutex is held. 2735 */ 2736 if (alias->d_name.hash != hash) 2737 continue; 2738 if (alias->d_parent != entry->d_parent) 2739 continue; 2740 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2741 continue; 2742 spin_lock(&alias->d_lock); 2743 if (!d_unhashed(alias)) { 2744 spin_unlock(&alias->d_lock); 2745 alias = NULL; 2746 } else { 2747 __dget_dlock(alias); 2748 __d_rehash(alias); 2749 spin_unlock(&alias->d_lock); 2750 } 2751 spin_unlock(&inode->i_lock); 2752 return alias; 2753 } 2754 spin_unlock(&inode->i_lock); 2755 return NULL; 2756 } 2757 EXPORT_SYMBOL(d_exact_alias); 2758 2759 static void swap_names(struct dentry *dentry, struct dentry *target) 2760 { 2761 if (unlikely(dname_external(target))) { 2762 if (unlikely(dname_external(dentry))) { 2763 /* 2764 * Both external: swap the pointers 2765 */ 2766 swap(target->d_name.name, dentry->d_name.name); 2767 } else { 2768 /* 2769 * dentry:internal, target:external. Steal target's 2770 * storage and make target internal. 2771 */ 2772 memcpy(target->d_iname, dentry->d_name.name, 2773 dentry->d_name.len + 1); 2774 dentry->d_name.name = target->d_name.name; 2775 target->d_name.name = target->d_iname; 2776 } 2777 } else { 2778 if (unlikely(dname_external(dentry))) { 2779 /* 2780 * dentry:external, target:internal. Give dentry's 2781 * storage to target and make dentry internal 2782 */ 2783 memcpy(dentry->d_iname, target->d_name.name, 2784 target->d_name.len + 1); 2785 target->d_name.name = dentry->d_name.name; 2786 dentry->d_name.name = dentry->d_iname; 2787 } else { 2788 /* 2789 * Both are internal. 2790 */ 2791 unsigned int i; 2792 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2793 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2794 swap(((long *) &dentry->d_iname)[i], 2795 ((long *) &target->d_iname)[i]); 2796 } 2797 } 2798 } 2799 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2800 } 2801 2802 static void copy_name(struct dentry *dentry, struct dentry *target) 2803 { 2804 struct external_name *old_name = NULL; 2805 if (unlikely(dname_external(dentry))) 2806 old_name = external_name(dentry); 2807 if (unlikely(dname_external(target))) { 2808 atomic_inc(&external_name(target)->u.count); 2809 dentry->d_name = target->d_name; 2810 } else { 2811 memcpy(dentry->d_iname, target->d_name.name, 2812 target->d_name.len + 1); 2813 dentry->d_name.name = dentry->d_iname; 2814 dentry->d_name.hash_len = target->d_name.hash_len; 2815 } 2816 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2817 kfree_rcu(old_name, u.head); 2818 } 2819 2820 /* 2821 * __d_move - move a dentry 2822 * @dentry: entry to move 2823 * @target: new dentry 2824 * @exchange: exchange the two dentries 2825 * 2826 * Update the dcache to reflect the move of a file name. Negative 2827 * dcache entries should not be moved in this way. Caller must hold 2828 * rename_lock, the i_mutex of the source and target directories, 2829 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2830 */ 2831 static void __d_move(struct dentry *dentry, struct dentry *target, 2832 bool exchange) 2833 { 2834 struct dentry *old_parent, *p; 2835 struct inode *dir = NULL; 2836 unsigned n; 2837 2838 WARN_ON(!dentry->d_inode); 2839 if (WARN_ON(dentry == target)) 2840 return; 2841 2842 BUG_ON(d_ancestor(target, dentry)); 2843 old_parent = dentry->d_parent; 2844 p = d_ancestor(old_parent, target); 2845 if (IS_ROOT(dentry)) { 2846 BUG_ON(p); 2847 spin_lock(&target->d_parent->d_lock); 2848 } else if (!p) { 2849 /* target is not a descendent of dentry->d_parent */ 2850 spin_lock(&target->d_parent->d_lock); 2851 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2852 } else { 2853 BUG_ON(p == dentry); 2854 spin_lock(&old_parent->d_lock); 2855 if (p != target) 2856 spin_lock_nested(&target->d_parent->d_lock, 2857 DENTRY_D_LOCK_NESTED); 2858 } 2859 spin_lock_nested(&dentry->d_lock, 2); 2860 spin_lock_nested(&target->d_lock, 3); 2861 2862 if (unlikely(d_in_lookup(target))) { 2863 dir = target->d_parent->d_inode; 2864 n = start_dir_add(dir); 2865 __d_lookup_done(target); 2866 } 2867 2868 write_seqcount_begin(&dentry->d_seq); 2869 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2870 2871 /* unhash both */ 2872 if (!d_unhashed(dentry)) 2873 ___d_drop(dentry); 2874 if (!d_unhashed(target)) 2875 ___d_drop(target); 2876 2877 /* ... and switch them in the tree */ 2878 dentry->d_parent = target->d_parent; 2879 if (!exchange) { 2880 copy_name(dentry, target); 2881 target->d_hash.pprev = NULL; 2882 dentry->d_parent->d_lockref.count++; 2883 if (dentry != old_parent) /* wasn't IS_ROOT */ 2884 WARN_ON(!--old_parent->d_lockref.count); 2885 } else { 2886 target->d_parent = old_parent; 2887 swap_names(dentry, target); 2888 list_move(&target->d_child, &target->d_parent->d_subdirs); 2889 __d_rehash(target); 2890 fsnotify_update_flags(target); 2891 } 2892 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2893 __d_rehash(dentry); 2894 fsnotify_update_flags(dentry); 2895 fscrypt_handle_d_move(dentry); 2896 2897 write_seqcount_end(&target->d_seq); 2898 write_seqcount_end(&dentry->d_seq); 2899 2900 if (dir) 2901 end_dir_add(dir, n); 2902 2903 if (dentry->d_parent != old_parent) 2904 spin_unlock(&dentry->d_parent->d_lock); 2905 if (dentry != old_parent) 2906 spin_unlock(&old_parent->d_lock); 2907 spin_unlock(&target->d_lock); 2908 spin_unlock(&dentry->d_lock); 2909 } 2910 2911 /* 2912 * d_move - move a dentry 2913 * @dentry: entry to move 2914 * @target: new dentry 2915 * 2916 * Update the dcache to reflect the move of a file name. Negative 2917 * dcache entries should not be moved in this way. See the locking 2918 * requirements for __d_move. 2919 */ 2920 void d_move(struct dentry *dentry, struct dentry *target) 2921 { 2922 write_seqlock(&rename_lock); 2923 __d_move(dentry, target, false); 2924 write_sequnlock(&rename_lock); 2925 } 2926 EXPORT_SYMBOL(d_move); 2927 2928 /* 2929 * d_exchange - exchange two dentries 2930 * @dentry1: first dentry 2931 * @dentry2: second dentry 2932 */ 2933 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2934 { 2935 write_seqlock(&rename_lock); 2936 2937 WARN_ON(!dentry1->d_inode); 2938 WARN_ON(!dentry2->d_inode); 2939 WARN_ON(IS_ROOT(dentry1)); 2940 WARN_ON(IS_ROOT(dentry2)); 2941 2942 __d_move(dentry1, dentry2, true); 2943 2944 write_sequnlock(&rename_lock); 2945 } 2946 2947 /** 2948 * d_ancestor - search for an ancestor 2949 * @p1: ancestor dentry 2950 * @p2: child dentry 2951 * 2952 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2953 * an ancestor of p2, else NULL. 2954 */ 2955 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2956 { 2957 struct dentry *p; 2958 2959 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2960 if (p->d_parent == p1) 2961 return p; 2962 } 2963 return NULL; 2964 } 2965 2966 /* 2967 * This helper attempts to cope with remotely renamed directories 2968 * 2969 * It assumes that the caller is already holding 2970 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2971 * 2972 * Note: If ever the locking in lock_rename() changes, then please 2973 * remember to update this too... 2974 */ 2975 static int __d_unalias(struct inode *inode, 2976 struct dentry *dentry, struct dentry *alias) 2977 { 2978 struct mutex *m1 = NULL; 2979 struct rw_semaphore *m2 = NULL; 2980 int ret = -ESTALE; 2981 2982 /* If alias and dentry share a parent, then no extra locks required */ 2983 if (alias->d_parent == dentry->d_parent) 2984 goto out_unalias; 2985 2986 /* See lock_rename() */ 2987 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2988 goto out_err; 2989 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2990 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2991 goto out_err; 2992 m2 = &alias->d_parent->d_inode->i_rwsem; 2993 out_unalias: 2994 __d_move(alias, dentry, false); 2995 ret = 0; 2996 out_err: 2997 if (m2) 2998 up_read(m2); 2999 if (m1) 3000 mutex_unlock(m1); 3001 return ret; 3002 } 3003 3004 /** 3005 * d_splice_alias - splice a disconnected dentry into the tree if one exists 3006 * @inode: the inode which may have a disconnected dentry 3007 * @dentry: a negative dentry which we want to point to the inode. 3008 * 3009 * If inode is a directory and has an IS_ROOT alias, then d_move that in 3010 * place of the given dentry and return it, else simply d_add the inode 3011 * to the dentry and return NULL. 3012 * 3013 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3014 * we should error out: directories can't have multiple aliases. 3015 * 3016 * This is needed in the lookup routine of any filesystem that is exportable 3017 * (via knfsd) so that we can build dcache paths to directories effectively. 3018 * 3019 * If a dentry was found and moved, then it is returned. Otherwise NULL 3020 * is returned. This matches the expected return value of ->lookup. 3021 * 3022 * Cluster filesystems may call this function with a negative, hashed dentry. 3023 * In that case, we know that the inode will be a regular file, and also this 3024 * will only occur during atomic_open. So we need to check for the dentry 3025 * being already hashed only in the final case. 3026 */ 3027 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3028 { 3029 if (IS_ERR(inode)) 3030 return ERR_CAST(inode); 3031 3032 BUG_ON(!d_unhashed(dentry)); 3033 3034 if (!inode) 3035 goto out; 3036 3037 security_d_instantiate(dentry, inode); 3038 spin_lock(&inode->i_lock); 3039 if (S_ISDIR(inode->i_mode)) { 3040 struct dentry *new = __d_find_any_alias(inode); 3041 if (unlikely(new)) { 3042 /* The reference to new ensures it remains an alias */ 3043 spin_unlock(&inode->i_lock); 3044 write_seqlock(&rename_lock); 3045 if (unlikely(d_ancestor(new, dentry))) { 3046 write_sequnlock(&rename_lock); 3047 dput(new); 3048 new = ERR_PTR(-ELOOP); 3049 pr_warn_ratelimited( 3050 "VFS: Lookup of '%s' in %s %s" 3051 " would have caused loop\n", 3052 dentry->d_name.name, 3053 inode->i_sb->s_type->name, 3054 inode->i_sb->s_id); 3055 } else if (!IS_ROOT(new)) { 3056 struct dentry *old_parent = dget(new->d_parent); 3057 int err = __d_unalias(inode, dentry, new); 3058 write_sequnlock(&rename_lock); 3059 if (err) { 3060 dput(new); 3061 new = ERR_PTR(err); 3062 } 3063 dput(old_parent); 3064 } else { 3065 __d_move(new, dentry, false); 3066 write_sequnlock(&rename_lock); 3067 } 3068 iput(inode); 3069 return new; 3070 } 3071 } 3072 out: 3073 __d_add(dentry, inode); 3074 return NULL; 3075 } 3076 EXPORT_SYMBOL(d_splice_alias); 3077 3078 /* 3079 * Test whether new_dentry is a subdirectory of old_dentry. 3080 * 3081 * Trivially implemented using the dcache structure 3082 */ 3083 3084 /** 3085 * is_subdir - is new dentry a subdirectory of old_dentry 3086 * @new_dentry: new dentry 3087 * @old_dentry: old dentry 3088 * 3089 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3090 * Returns false otherwise. 3091 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3092 */ 3093 3094 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3095 { 3096 bool result; 3097 unsigned seq; 3098 3099 if (new_dentry == old_dentry) 3100 return true; 3101 3102 do { 3103 /* for restarting inner loop in case of seq retry */ 3104 seq = read_seqbegin(&rename_lock); 3105 /* 3106 * Need rcu_readlock to protect against the d_parent trashing 3107 * due to d_move 3108 */ 3109 rcu_read_lock(); 3110 if (d_ancestor(old_dentry, new_dentry)) 3111 result = true; 3112 else 3113 result = false; 3114 rcu_read_unlock(); 3115 } while (read_seqretry(&rename_lock, seq)); 3116 3117 return result; 3118 } 3119 EXPORT_SYMBOL(is_subdir); 3120 3121 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3122 { 3123 struct dentry *root = data; 3124 if (dentry != root) { 3125 if (d_unhashed(dentry) || !dentry->d_inode) 3126 return D_WALK_SKIP; 3127 3128 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3129 dentry->d_flags |= DCACHE_GENOCIDE; 3130 dentry->d_lockref.count--; 3131 } 3132 } 3133 return D_WALK_CONTINUE; 3134 } 3135 3136 void d_genocide(struct dentry *parent) 3137 { 3138 d_walk(parent, parent, d_genocide_kill); 3139 } 3140 3141 EXPORT_SYMBOL(d_genocide); 3142 3143 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3144 { 3145 inode_dec_link_count(inode); 3146 BUG_ON(dentry->d_name.name != dentry->d_iname || 3147 !hlist_unhashed(&dentry->d_u.d_alias) || 3148 !d_unlinked(dentry)); 3149 spin_lock(&dentry->d_parent->d_lock); 3150 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3151 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3152 (unsigned long long)inode->i_ino); 3153 spin_unlock(&dentry->d_lock); 3154 spin_unlock(&dentry->d_parent->d_lock); 3155 d_instantiate(dentry, inode); 3156 } 3157 EXPORT_SYMBOL(d_tmpfile); 3158 3159 static __initdata unsigned long dhash_entries; 3160 static int __init set_dhash_entries(char *str) 3161 { 3162 if (!str) 3163 return 0; 3164 dhash_entries = simple_strtoul(str, &str, 0); 3165 return 1; 3166 } 3167 __setup("dhash_entries=", set_dhash_entries); 3168 3169 static void __init dcache_init_early(void) 3170 { 3171 /* If hashes are distributed across NUMA nodes, defer 3172 * hash allocation until vmalloc space is available. 3173 */ 3174 if (hashdist) 3175 return; 3176 3177 dentry_hashtable = 3178 alloc_large_system_hash("Dentry cache", 3179 sizeof(struct hlist_bl_head), 3180 dhash_entries, 3181 13, 3182 HASH_EARLY | HASH_ZERO, 3183 &d_hash_shift, 3184 NULL, 3185 0, 3186 0); 3187 d_hash_shift = 32 - d_hash_shift; 3188 } 3189 3190 static void __init dcache_init(void) 3191 { 3192 /* 3193 * A constructor could be added for stable state like the lists, 3194 * but it is probably not worth it because of the cache nature 3195 * of the dcache. 3196 */ 3197 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3198 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3199 d_iname); 3200 3201 /* Hash may have been set up in dcache_init_early */ 3202 if (!hashdist) 3203 return; 3204 3205 dentry_hashtable = 3206 alloc_large_system_hash("Dentry cache", 3207 sizeof(struct hlist_bl_head), 3208 dhash_entries, 3209 13, 3210 HASH_ZERO, 3211 &d_hash_shift, 3212 NULL, 3213 0, 3214 0); 3215 d_hash_shift = 32 - d_hash_shift; 3216 } 3217 3218 /* SLAB cache for __getname() consumers */ 3219 struct kmem_cache *names_cachep __read_mostly; 3220 EXPORT_SYMBOL(names_cachep); 3221 3222 void __init vfs_caches_init_early(void) 3223 { 3224 int i; 3225 3226 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3227 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3228 3229 dcache_init_early(); 3230 inode_init_early(); 3231 } 3232 3233 void __init vfs_caches_init(void) 3234 { 3235 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3236 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3237 3238 dcache_init(); 3239 inode_init(); 3240 files_init(); 3241 files_maxfiles_init(); 3242 mnt_init(); 3243 bdev_cache_init(); 3244 chrdev_init(); 3245 } 3246