xref: /linux/fs/dcache.c (revision 37cb8e1f8e10c6e9bd2a1b95cdda0620a21b0551)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <linux/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 const struct qstr empty_name = QSTR_INIT("", 0);
94 EXPORT_SYMBOL(empty_name);
95 const struct qstr slash_name = QSTR_INIT("/", 1);
96 EXPORT_SYMBOL(slash_name);
97 
98 /*
99  * This is the single most critical data structure when it comes
100  * to the dcache: the hashtable for lookups. Somebody should try
101  * to make this good - I've just made it work.
102  *
103  * This hash-function tries to avoid losing too many bits of hash
104  * information, yet avoid using a prime hash-size or similar.
105  */
106 
107 static unsigned int d_hash_mask __read_mostly;
108 static unsigned int d_hash_shift __read_mostly;
109 
110 static struct hlist_bl_head *dentry_hashtable __read_mostly;
111 
112 static inline struct hlist_bl_head *d_hash(unsigned int hash)
113 {
114 	return dentry_hashtable + (hash >> (32 - d_hash_shift));
115 }
116 
117 #define IN_LOOKUP_SHIFT 10
118 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
119 
120 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
121 					unsigned int hash)
122 {
123 	hash += (unsigned long) parent / L1_CACHE_BYTES;
124 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
125 }
126 
127 
128 /* Statistics gathering. */
129 struct dentry_stat_t dentry_stat = {
130 	.age_limit = 45,
131 };
132 
133 static DEFINE_PER_CPU(long, nr_dentry);
134 static DEFINE_PER_CPU(long, nr_dentry_unused);
135 
136 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
137 
138 /*
139  * Here we resort to our own counters instead of using generic per-cpu counters
140  * for consistency with what the vfs inode code does. We are expected to harvest
141  * better code and performance by having our own specialized counters.
142  *
143  * Please note that the loop is done over all possible CPUs, not over all online
144  * CPUs. The reason for this is that we don't want to play games with CPUs going
145  * on and off. If one of them goes off, we will just keep their counters.
146  *
147  * glommer: See cffbc8a for details, and if you ever intend to change this,
148  * please update all vfs counters to match.
149  */
150 static long get_nr_dentry(void)
151 {
152 	int i;
153 	long sum = 0;
154 	for_each_possible_cpu(i)
155 		sum += per_cpu(nr_dentry, i);
156 	return sum < 0 ? 0 : sum;
157 }
158 
159 static long get_nr_dentry_unused(void)
160 {
161 	int i;
162 	long sum = 0;
163 	for_each_possible_cpu(i)
164 		sum += per_cpu(nr_dentry_unused, i);
165 	return sum < 0 ? 0 : sum;
166 }
167 
168 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
169 		   size_t *lenp, loff_t *ppos)
170 {
171 	dentry_stat.nr_dentry = get_nr_dentry();
172 	dentry_stat.nr_unused = get_nr_dentry_unused();
173 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
174 }
175 #endif
176 
177 /*
178  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
179  * The strings are both count bytes long, and count is non-zero.
180  */
181 #ifdef CONFIG_DCACHE_WORD_ACCESS
182 
183 #include <asm/word-at-a-time.h>
184 /*
185  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
186  * aligned allocation for this particular component. We don't
187  * strictly need the load_unaligned_zeropad() safety, but it
188  * doesn't hurt either.
189  *
190  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
191  * need the careful unaligned handling.
192  */
193 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
194 {
195 	unsigned long a,b,mask;
196 
197 	for (;;) {
198 		a = *(unsigned long *)cs;
199 		b = load_unaligned_zeropad(ct);
200 		if (tcount < sizeof(unsigned long))
201 			break;
202 		if (unlikely(a != b))
203 			return 1;
204 		cs += sizeof(unsigned long);
205 		ct += sizeof(unsigned long);
206 		tcount -= sizeof(unsigned long);
207 		if (!tcount)
208 			return 0;
209 	}
210 	mask = bytemask_from_count(tcount);
211 	return unlikely(!!((a ^ b) & mask));
212 }
213 
214 #else
215 
216 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
217 {
218 	do {
219 		if (*cs != *ct)
220 			return 1;
221 		cs++;
222 		ct++;
223 		tcount--;
224 	} while (tcount);
225 	return 0;
226 }
227 
228 #endif
229 
230 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
231 {
232 	/*
233 	 * Be careful about RCU walk racing with rename:
234 	 * use 'READ_ONCE' to fetch the name pointer.
235 	 *
236 	 * NOTE! Even if a rename will mean that the length
237 	 * was not loaded atomically, we don't care. The
238 	 * RCU walk will check the sequence count eventually,
239 	 * and catch it. And we won't overrun the buffer,
240 	 * because we're reading the name pointer atomically,
241 	 * and a dentry name is guaranteed to be properly
242 	 * terminated with a NUL byte.
243 	 *
244 	 * End result: even if 'len' is wrong, we'll exit
245 	 * early because the data cannot match (there can
246 	 * be no NUL in the ct/tcount data)
247 	 */
248 	const unsigned char *cs = READ_ONCE(dentry->d_name.name);
249 
250 	return dentry_string_cmp(cs, ct, tcount);
251 }
252 
253 struct external_name {
254 	union {
255 		atomic_t count;
256 		struct rcu_head head;
257 	} u;
258 	unsigned char name[];
259 };
260 
261 static inline struct external_name *external_name(struct dentry *dentry)
262 {
263 	return container_of(dentry->d_name.name, struct external_name, name[0]);
264 }
265 
266 static void __d_free(struct rcu_head *head)
267 {
268 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
269 
270 	kmem_cache_free(dentry_cache, dentry);
271 }
272 
273 static void __d_free_external(struct rcu_head *head)
274 {
275 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
276 	kfree(external_name(dentry));
277 	kmem_cache_free(dentry_cache, dentry);
278 }
279 
280 static inline int dname_external(const struct dentry *dentry)
281 {
282 	return dentry->d_name.name != dentry->d_iname;
283 }
284 
285 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
286 {
287 	spin_lock(&dentry->d_lock);
288 	if (unlikely(dname_external(dentry))) {
289 		struct external_name *p = external_name(dentry);
290 		atomic_inc(&p->u.count);
291 		spin_unlock(&dentry->d_lock);
292 		name->name = p->name;
293 	} else {
294 		memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN);
295 		spin_unlock(&dentry->d_lock);
296 		name->name = name->inline_name;
297 	}
298 }
299 EXPORT_SYMBOL(take_dentry_name_snapshot);
300 
301 void release_dentry_name_snapshot(struct name_snapshot *name)
302 {
303 	if (unlikely(name->name != name->inline_name)) {
304 		struct external_name *p;
305 		p = container_of(name->name, struct external_name, name[0]);
306 		if (unlikely(atomic_dec_and_test(&p->u.count)))
307 			kfree_rcu(p, u.head);
308 	}
309 }
310 EXPORT_SYMBOL(release_dentry_name_snapshot);
311 
312 static inline void __d_set_inode_and_type(struct dentry *dentry,
313 					  struct inode *inode,
314 					  unsigned type_flags)
315 {
316 	unsigned flags;
317 
318 	dentry->d_inode = inode;
319 	flags = READ_ONCE(dentry->d_flags);
320 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
321 	flags |= type_flags;
322 	WRITE_ONCE(dentry->d_flags, flags);
323 }
324 
325 static inline void __d_clear_type_and_inode(struct dentry *dentry)
326 {
327 	unsigned flags = READ_ONCE(dentry->d_flags);
328 
329 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
330 	WRITE_ONCE(dentry->d_flags, flags);
331 	dentry->d_inode = NULL;
332 }
333 
334 static void dentry_free(struct dentry *dentry)
335 {
336 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
337 	if (unlikely(dname_external(dentry))) {
338 		struct external_name *p = external_name(dentry);
339 		if (likely(atomic_dec_and_test(&p->u.count))) {
340 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
341 			return;
342 		}
343 	}
344 	/* if dentry was never visible to RCU, immediate free is OK */
345 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
346 		__d_free(&dentry->d_u.d_rcu);
347 	else
348 		call_rcu(&dentry->d_u.d_rcu, __d_free);
349 }
350 
351 /*
352  * Release the dentry's inode, using the filesystem
353  * d_iput() operation if defined.
354  */
355 static void dentry_unlink_inode(struct dentry * dentry)
356 	__releases(dentry->d_lock)
357 	__releases(dentry->d_inode->i_lock)
358 {
359 	struct inode *inode = dentry->d_inode;
360 	bool hashed = !d_unhashed(dentry);
361 
362 	if (hashed)
363 		raw_write_seqcount_begin(&dentry->d_seq);
364 	__d_clear_type_and_inode(dentry);
365 	hlist_del_init(&dentry->d_u.d_alias);
366 	if (hashed)
367 		raw_write_seqcount_end(&dentry->d_seq);
368 	spin_unlock(&dentry->d_lock);
369 	spin_unlock(&inode->i_lock);
370 	if (!inode->i_nlink)
371 		fsnotify_inoderemove(inode);
372 	if (dentry->d_op && dentry->d_op->d_iput)
373 		dentry->d_op->d_iput(dentry, inode);
374 	else
375 		iput(inode);
376 }
377 
378 /*
379  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
380  * is in use - which includes both the "real" per-superblock
381  * LRU list _and_ the DCACHE_SHRINK_LIST use.
382  *
383  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
384  * on the shrink list (ie not on the superblock LRU list).
385  *
386  * The per-cpu "nr_dentry_unused" counters are updated with
387  * the DCACHE_LRU_LIST bit.
388  *
389  * These helper functions make sure we always follow the
390  * rules. d_lock must be held by the caller.
391  */
392 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
393 static void d_lru_add(struct dentry *dentry)
394 {
395 	D_FLAG_VERIFY(dentry, 0);
396 	dentry->d_flags |= DCACHE_LRU_LIST;
397 	this_cpu_inc(nr_dentry_unused);
398 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
399 }
400 
401 static void d_lru_del(struct dentry *dentry)
402 {
403 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
404 	dentry->d_flags &= ~DCACHE_LRU_LIST;
405 	this_cpu_dec(nr_dentry_unused);
406 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408 
409 static void d_shrink_del(struct dentry *dentry)
410 {
411 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
412 	list_del_init(&dentry->d_lru);
413 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
414 	this_cpu_dec(nr_dentry_unused);
415 }
416 
417 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
418 {
419 	D_FLAG_VERIFY(dentry, 0);
420 	list_add(&dentry->d_lru, list);
421 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
422 	this_cpu_inc(nr_dentry_unused);
423 }
424 
425 /*
426  * These can only be called under the global LRU lock, ie during the
427  * callback for freeing the LRU list. "isolate" removes it from the
428  * LRU lists entirely, while shrink_move moves it to the indicated
429  * private list.
430  */
431 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
432 {
433 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
434 	dentry->d_flags &= ~DCACHE_LRU_LIST;
435 	this_cpu_dec(nr_dentry_unused);
436 	list_lru_isolate(lru, &dentry->d_lru);
437 }
438 
439 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
440 			      struct list_head *list)
441 {
442 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
443 	dentry->d_flags |= DCACHE_SHRINK_LIST;
444 	list_lru_isolate_move(lru, &dentry->d_lru, list);
445 }
446 
447 /*
448  * dentry_lru_(add|del)_list) must be called with d_lock held.
449  */
450 static void dentry_lru_add(struct dentry *dentry)
451 {
452 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
453 		d_lru_add(dentry);
454 	else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED)))
455 		dentry->d_flags |= DCACHE_REFERENCED;
456 }
457 
458 /**
459  * d_drop - drop a dentry
460  * @dentry: dentry to drop
461  *
462  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
463  * be found through a VFS lookup any more. Note that this is different from
464  * deleting the dentry - d_delete will try to mark the dentry negative if
465  * possible, giving a successful _negative_ lookup, while d_drop will
466  * just make the cache lookup fail.
467  *
468  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
469  * reason (NFS timeouts or autofs deletes).
470  *
471  * __d_drop requires dentry->d_lock.
472  */
473 void __d_drop(struct dentry *dentry)
474 {
475 	if (!d_unhashed(dentry)) {
476 		struct hlist_bl_head *b;
477 		/*
478 		 * Hashed dentries are normally on the dentry hashtable,
479 		 * with the exception of those newly allocated by
480 		 * d_obtain_alias, which are always IS_ROOT:
481 		 */
482 		if (unlikely(IS_ROOT(dentry)))
483 			b = &dentry->d_sb->s_anon;
484 		else
485 			b = d_hash(dentry->d_name.hash);
486 
487 		hlist_bl_lock(b);
488 		__hlist_bl_del(&dentry->d_hash);
489 		dentry->d_hash.pprev = NULL;
490 		hlist_bl_unlock(b);
491 		/* After this call, in-progress rcu-walk path lookup will fail. */
492 		write_seqcount_invalidate(&dentry->d_seq);
493 	}
494 }
495 EXPORT_SYMBOL(__d_drop);
496 
497 void d_drop(struct dentry *dentry)
498 {
499 	spin_lock(&dentry->d_lock);
500 	__d_drop(dentry);
501 	spin_unlock(&dentry->d_lock);
502 }
503 EXPORT_SYMBOL(d_drop);
504 
505 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent)
506 {
507 	struct dentry *next;
508 	/*
509 	 * Inform d_walk() and shrink_dentry_list() that we are no longer
510 	 * attached to the dentry tree
511 	 */
512 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
513 	if (unlikely(list_empty(&dentry->d_child)))
514 		return;
515 	__list_del_entry(&dentry->d_child);
516 	/*
517 	 * Cursors can move around the list of children.  While we'd been
518 	 * a normal list member, it didn't matter - ->d_child.next would've
519 	 * been updated.  However, from now on it won't be and for the
520 	 * things like d_walk() it might end up with a nasty surprise.
521 	 * Normally d_walk() doesn't care about cursors moving around -
522 	 * ->d_lock on parent prevents that and since a cursor has no children
523 	 * of its own, we get through it without ever unlocking the parent.
524 	 * There is one exception, though - if we ascend from a child that
525 	 * gets killed as soon as we unlock it, the next sibling is found
526 	 * using the value left in its ->d_child.next.  And if _that_
527 	 * pointed to a cursor, and cursor got moved (e.g. by lseek())
528 	 * before d_walk() regains parent->d_lock, we'll end up skipping
529 	 * everything the cursor had been moved past.
530 	 *
531 	 * Solution: make sure that the pointer left behind in ->d_child.next
532 	 * points to something that won't be moving around.  I.e. skip the
533 	 * cursors.
534 	 */
535 	while (dentry->d_child.next != &parent->d_subdirs) {
536 		next = list_entry(dentry->d_child.next, struct dentry, d_child);
537 		if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
538 			break;
539 		dentry->d_child.next = next->d_child.next;
540 	}
541 }
542 
543 static void __dentry_kill(struct dentry *dentry)
544 {
545 	struct dentry *parent = NULL;
546 	bool can_free = true;
547 	if (!IS_ROOT(dentry))
548 		parent = dentry->d_parent;
549 
550 	/*
551 	 * The dentry is now unrecoverably dead to the world.
552 	 */
553 	lockref_mark_dead(&dentry->d_lockref);
554 
555 	/*
556 	 * inform the fs via d_prune that this dentry is about to be
557 	 * unhashed and destroyed.
558 	 */
559 	if (dentry->d_flags & DCACHE_OP_PRUNE)
560 		dentry->d_op->d_prune(dentry);
561 
562 	if (dentry->d_flags & DCACHE_LRU_LIST) {
563 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
564 			d_lru_del(dentry);
565 	}
566 	/* if it was on the hash then remove it */
567 	__d_drop(dentry);
568 	dentry_unlist(dentry, parent);
569 	if (parent)
570 		spin_unlock(&parent->d_lock);
571 	if (dentry->d_inode)
572 		dentry_unlink_inode(dentry);
573 	else
574 		spin_unlock(&dentry->d_lock);
575 	this_cpu_dec(nr_dentry);
576 	if (dentry->d_op && dentry->d_op->d_release)
577 		dentry->d_op->d_release(dentry);
578 
579 	spin_lock(&dentry->d_lock);
580 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
581 		dentry->d_flags |= DCACHE_MAY_FREE;
582 		can_free = false;
583 	}
584 	spin_unlock(&dentry->d_lock);
585 	if (likely(can_free))
586 		dentry_free(dentry);
587 }
588 
589 /*
590  * Finish off a dentry we've decided to kill.
591  * dentry->d_lock must be held, returns with it unlocked.
592  * If ref is non-zero, then decrement the refcount too.
593  * Returns dentry requiring refcount drop, or NULL if we're done.
594  */
595 static struct dentry *dentry_kill(struct dentry *dentry)
596 	__releases(dentry->d_lock)
597 {
598 	struct inode *inode = dentry->d_inode;
599 	struct dentry *parent = NULL;
600 
601 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
602 		goto failed;
603 
604 	if (!IS_ROOT(dentry)) {
605 		parent = dentry->d_parent;
606 		if (unlikely(!spin_trylock(&parent->d_lock))) {
607 			if (inode)
608 				spin_unlock(&inode->i_lock);
609 			goto failed;
610 		}
611 	}
612 
613 	__dentry_kill(dentry);
614 	return parent;
615 
616 failed:
617 	spin_unlock(&dentry->d_lock);
618 	return dentry; /* try again with same dentry */
619 }
620 
621 static inline struct dentry *lock_parent(struct dentry *dentry)
622 {
623 	struct dentry *parent = dentry->d_parent;
624 	if (IS_ROOT(dentry))
625 		return NULL;
626 	if (unlikely(dentry->d_lockref.count < 0))
627 		return NULL;
628 	if (likely(spin_trylock(&parent->d_lock)))
629 		return parent;
630 	rcu_read_lock();
631 	spin_unlock(&dentry->d_lock);
632 again:
633 	parent = READ_ONCE(dentry->d_parent);
634 	spin_lock(&parent->d_lock);
635 	/*
636 	 * We can't blindly lock dentry until we are sure
637 	 * that we won't violate the locking order.
638 	 * Any changes of dentry->d_parent must have
639 	 * been done with parent->d_lock held, so
640 	 * spin_lock() above is enough of a barrier
641 	 * for checking if it's still our child.
642 	 */
643 	if (unlikely(parent != dentry->d_parent)) {
644 		spin_unlock(&parent->d_lock);
645 		goto again;
646 	}
647 	rcu_read_unlock();
648 	if (parent != dentry)
649 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
650 	else
651 		parent = NULL;
652 	return parent;
653 }
654 
655 /*
656  * Try to do a lockless dput(), and return whether that was successful.
657  *
658  * If unsuccessful, we return false, having already taken the dentry lock.
659  *
660  * The caller needs to hold the RCU read lock, so that the dentry is
661  * guaranteed to stay around even if the refcount goes down to zero!
662  */
663 static inline bool fast_dput(struct dentry *dentry)
664 {
665 	int ret;
666 	unsigned int d_flags;
667 
668 	/*
669 	 * If we have a d_op->d_delete() operation, we sould not
670 	 * let the dentry count go to zero, so use "put_or_lock".
671 	 */
672 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
673 		return lockref_put_or_lock(&dentry->d_lockref);
674 
675 	/*
676 	 * .. otherwise, we can try to just decrement the
677 	 * lockref optimistically.
678 	 */
679 	ret = lockref_put_return(&dentry->d_lockref);
680 
681 	/*
682 	 * If the lockref_put_return() failed due to the lock being held
683 	 * by somebody else, the fast path has failed. We will need to
684 	 * get the lock, and then check the count again.
685 	 */
686 	if (unlikely(ret < 0)) {
687 		spin_lock(&dentry->d_lock);
688 		if (dentry->d_lockref.count > 1) {
689 			dentry->d_lockref.count--;
690 			spin_unlock(&dentry->d_lock);
691 			return 1;
692 		}
693 		return 0;
694 	}
695 
696 	/*
697 	 * If we weren't the last ref, we're done.
698 	 */
699 	if (ret)
700 		return 1;
701 
702 	/*
703 	 * Careful, careful. The reference count went down
704 	 * to zero, but we don't hold the dentry lock, so
705 	 * somebody else could get it again, and do another
706 	 * dput(), and we need to not race with that.
707 	 *
708 	 * However, there is a very special and common case
709 	 * where we don't care, because there is nothing to
710 	 * do: the dentry is still hashed, it does not have
711 	 * a 'delete' op, and it's referenced and already on
712 	 * the LRU list.
713 	 *
714 	 * NOTE! Since we aren't locked, these values are
715 	 * not "stable". However, it is sufficient that at
716 	 * some point after we dropped the reference the
717 	 * dentry was hashed and the flags had the proper
718 	 * value. Other dentry users may have re-gotten
719 	 * a reference to the dentry and change that, but
720 	 * our work is done - we can leave the dentry
721 	 * around with a zero refcount.
722 	 */
723 	smp_rmb();
724 	d_flags = READ_ONCE(dentry->d_flags);
725 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
726 
727 	/* Nothing to do? Dropping the reference was all we needed? */
728 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
729 		return 1;
730 
731 	/*
732 	 * Not the fast normal case? Get the lock. We've already decremented
733 	 * the refcount, but we'll need to re-check the situation after
734 	 * getting the lock.
735 	 */
736 	spin_lock(&dentry->d_lock);
737 
738 	/*
739 	 * Did somebody else grab a reference to it in the meantime, and
740 	 * we're no longer the last user after all? Alternatively, somebody
741 	 * else could have killed it and marked it dead. Either way, we
742 	 * don't need to do anything else.
743 	 */
744 	if (dentry->d_lockref.count) {
745 		spin_unlock(&dentry->d_lock);
746 		return 1;
747 	}
748 
749 	/*
750 	 * Re-get the reference we optimistically dropped. We hold the
751 	 * lock, and we just tested that it was zero, so we can just
752 	 * set it to 1.
753 	 */
754 	dentry->d_lockref.count = 1;
755 	return 0;
756 }
757 
758 
759 /*
760  * This is dput
761  *
762  * This is complicated by the fact that we do not want to put
763  * dentries that are no longer on any hash chain on the unused
764  * list: we'd much rather just get rid of them immediately.
765  *
766  * However, that implies that we have to traverse the dentry
767  * tree upwards to the parents which might _also_ now be
768  * scheduled for deletion (it may have been only waiting for
769  * its last child to go away).
770  *
771  * This tail recursion is done by hand as we don't want to depend
772  * on the compiler to always get this right (gcc generally doesn't).
773  * Real recursion would eat up our stack space.
774  */
775 
776 /*
777  * dput - release a dentry
778  * @dentry: dentry to release
779  *
780  * Release a dentry. This will drop the usage count and if appropriate
781  * call the dentry unlink method as well as removing it from the queues and
782  * releasing its resources. If the parent dentries were scheduled for release
783  * they too may now get deleted.
784  */
785 void dput(struct dentry *dentry)
786 {
787 	if (unlikely(!dentry))
788 		return;
789 
790 repeat:
791 	might_sleep();
792 
793 	rcu_read_lock();
794 	if (likely(fast_dput(dentry))) {
795 		rcu_read_unlock();
796 		return;
797 	}
798 
799 	/* Slow case: now with the dentry lock held */
800 	rcu_read_unlock();
801 
802 	WARN_ON(d_in_lookup(dentry));
803 
804 	/* Unreachable? Get rid of it */
805 	if (unlikely(d_unhashed(dentry)))
806 		goto kill_it;
807 
808 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
809 		goto kill_it;
810 
811 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
812 		if (dentry->d_op->d_delete(dentry))
813 			goto kill_it;
814 	}
815 
816 	dentry_lru_add(dentry);
817 
818 	dentry->d_lockref.count--;
819 	spin_unlock(&dentry->d_lock);
820 	return;
821 
822 kill_it:
823 	dentry = dentry_kill(dentry);
824 	if (dentry) {
825 		cond_resched();
826 		goto repeat;
827 	}
828 }
829 EXPORT_SYMBOL(dput);
830 
831 
832 /* This must be called with d_lock held */
833 static inline void __dget_dlock(struct dentry *dentry)
834 {
835 	dentry->d_lockref.count++;
836 }
837 
838 static inline void __dget(struct dentry *dentry)
839 {
840 	lockref_get(&dentry->d_lockref);
841 }
842 
843 struct dentry *dget_parent(struct dentry *dentry)
844 {
845 	int gotref;
846 	struct dentry *ret;
847 
848 	/*
849 	 * Do optimistic parent lookup without any
850 	 * locking.
851 	 */
852 	rcu_read_lock();
853 	ret = READ_ONCE(dentry->d_parent);
854 	gotref = lockref_get_not_zero(&ret->d_lockref);
855 	rcu_read_unlock();
856 	if (likely(gotref)) {
857 		if (likely(ret == READ_ONCE(dentry->d_parent)))
858 			return ret;
859 		dput(ret);
860 	}
861 
862 repeat:
863 	/*
864 	 * Don't need rcu_dereference because we re-check it was correct under
865 	 * the lock.
866 	 */
867 	rcu_read_lock();
868 	ret = dentry->d_parent;
869 	spin_lock(&ret->d_lock);
870 	if (unlikely(ret != dentry->d_parent)) {
871 		spin_unlock(&ret->d_lock);
872 		rcu_read_unlock();
873 		goto repeat;
874 	}
875 	rcu_read_unlock();
876 	BUG_ON(!ret->d_lockref.count);
877 	ret->d_lockref.count++;
878 	spin_unlock(&ret->d_lock);
879 	return ret;
880 }
881 EXPORT_SYMBOL(dget_parent);
882 
883 /**
884  * d_find_alias - grab a hashed alias of inode
885  * @inode: inode in question
886  *
887  * If inode has a hashed alias, or is a directory and has any alias,
888  * acquire the reference to alias and return it. Otherwise return NULL.
889  * Notice that if inode is a directory there can be only one alias and
890  * it can be unhashed only if it has no children, or if it is the root
891  * of a filesystem, or if the directory was renamed and d_revalidate
892  * was the first vfs operation to notice.
893  *
894  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
895  * any other hashed alias over that one.
896  */
897 static struct dentry *__d_find_alias(struct inode *inode)
898 {
899 	struct dentry *alias, *discon_alias;
900 
901 again:
902 	discon_alias = NULL;
903 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
904 		spin_lock(&alias->d_lock);
905  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
906 			if (IS_ROOT(alias) &&
907 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
908 				discon_alias = alias;
909 			} else {
910 				__dget_dlock(alias);
911 				spin_unlock(&alias->d_lock);
912 				return alias;
913 			}
914 		}
915 		spin_unlock(&alias->d_lock);
916 	}
917 	if (discon_alias) {
918 		alias = discon_alias;
919 		spin_lock(&alias->d_lock);
920 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
921 			__dget_dlock(alias);
922 			spin_unlock(&alias->d_lock);
923 			return alias;
924 		}
925 		spin_unlock(&alias->d_lock);
926 		goto again;
927 	}
928 	return NULL;
929 }
930 
931 struct dentry *d_find_alias(struct inode *inode)
932 {
933 	struct dentry *de = NULL;
934 
935 	if (!hlist_empty(&inode->i_dentry)) {
936 		spin_lock(&inode->i_lock);
937 		de = __d_find_alias(inode);
938 		spin_unlock(&inode->i_lock);
939 	}
940 	return de;
941 }
942 EXPORT_SYMBOL(d_find_alias);
943 
944 /*
945  *	Try to kill dentries associated with this inode.
946  * WARNING: you must own a reference to inode.
947  */
948 void d_prune_aliases(struct inode *inode)
949 {
950 	struct dentry *dentry;
951 restart:
952 	spin_lock(&inode->i_lock);
953 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
954 		spin_lock(&dentry->d_lock);
955 		if (!dentry->d_lockref.count) {
956 			struct dentry *parent = lock_parent(dentry);
957 			if (likely(!dentry->d_lockref.count)) {
958 				__dentry_kill(dentry);
959 				dput(parent);
960 				goto restart;
961 			}
962 			if (parent)
963 				spin_unlock(&parent->d_lock);
964 		}
965 		spin_unlock(&dentry->d_lock);
966 	}
967 	spin_unlock(&inode->i_lock);
968 }
969 EXPORT_SYMBOL(d_prune_aliases);
970 
971 static void shrink_dentry_list(struct list_head *list)
972 {
973 	struct dentry *dentry, *parent;
974 
975 	while (!list_empty(list)) {
976 		struct inode *inode;
977 		dentry = list_entry(list->prev, struct dentry, d_lru);
978 		spin_lock(&dentry->d_lock);
979 		parent = lock_parent(dentry);
980 
981 		/*
982 		 * The dispose list is isolated and dentries are not accounted
983 		 * to the LRU here, so we can simply remove it from the list
984 		 * here regardless of whether it is referenced or not.
985 		 */
986 		d_shrink_del(dentry);
987 
988 		/*
989 		 * We found an inuse dentry which was not removed from
990 		 * the LRU because of laziness during lookup. Do not free it.
991 		 */
992 		if (dentry->d_lockref.count > 0) {
993 			spin_unlock(&dentry->d_lock);
994 			if (parent)
995 				spin_unlock(&parent->d_lock);
996 			continue;
997 		}
998 
999 
1000 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
1001 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
1002 			spin_unlock(&dentry->d_lock);
1003 			if (parent)
1004 				spin_unlock(&parent->d_lock);
1005 			if (can_free)
1006 				dentry_free(dentry);
1007 			continue;
1008 		}
1009 
1010 		inode = dentry->d_inode;
1011 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
1012 			d_shrink_add(dentry, list);
1013 			spin_unlock(&dentry->d_lock);
1014 			if (parent)
1015 				spin_unlock(&parent->d_lock);
1016 			continue;
1017 		}
1018 
1019 		__dentry_kill(dentry);
1020 
1021 		/*
1022 		 * We need to prune ancestors too. This is necessary to prevent
1023 		 * quadratic behavior of shrink_dcache_parent(), but is also
1024 		 * expected to be beneficial in reducing dentry cache
1025 		 * fragmentation.
1026 		 */
1027 		dentry = parent;
1028 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1029 			parent = lock_parent(dentry);
1030 			if (dentry->d_lockref.count != 1) {
1031 				dentry->d_lockref.count--;
1032 				spin_unlock(&dentry->d_lock);
1033 				if (parent)
1034 					spin_unlock(&parent->d_lock);
1035 				break;
1036 			}
1037 			inode = dentry->d_inode;	/* can't be NULL */
1038 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1039 				spin_unlock(&dentry->d_lock);
1040 				if (parent)
1041 					spin_unlock(&parent->d_lock);
1042 				cpu_relax();
1043 				continue;
1044 			}
1045 			__dentry_kill(dentry);
1046 			dentry = parent;
1047 		}
1048 	}
1049 }
1050 
1051 static enum lru_status dentry_lru_isolate(struct list_head *item,
1052 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1053 {
1054 	struct list_head *freeable = arg;
1055 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1056 
1057 
1058 	/*
1059 	 * we are inverting the lru lock/dentry->d_lock here,
1060 	 * so use a trylock. If we fail to get the lock, just skip
1061 	 * it
1062 	 */
1063 	if (!spin_trylock(&dentry->d_lock))
1064 		return LRU_SKIP;
1065 
1066 	/*
1067 	 * Referenced dentries are still in use. If they have active
1068 	 * counts, just remove them from the LRU. Otherwise give them
1069 	 * another pass through the LRU.
1070 	 */
1071 	if (dentry->d_lockref.count) {
1072 		d_lru_isolate(lru, dentry);
1073 		spin_unlock(&dentry->d_lock);
1074 		return LRU_REMOVED;
1075 	}
1076 
1077 	if (dentry->d_flags & DCACHE_REFERENCED) {
1078 		dentry->d_flags &= ~DCACHE_REFERENCED;
1079 		spin_unlock(&dentry->d_lock);
1080 
1081 		/*
1082 		 * The list move itself will be made by the common LRU code. At
1083 		 * this point, we've dropped the dentry->d_lock but keep the
1084 		 * lru lock. This is safe to do, since every list movement is
1085 		 * protected by the lru lock even if both locks are held.
1086 		 *
1087 		 * This is guaranteed by the fact that all LRU management
1088 		 * functions are intermediated by the LRU API calls like
1089 		 * list_lru_add and list_lru_del. List movement in this file
1090 		 * only ever occur through this functions or through callbacks
1091 		 * like this one, that are called from the LRU API.
1092 		 *
1093 		 * The only exceptions to this are functions like
1094 		 * shrink_dentry_list, and code that first checks for the
1095 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1096 		 * operating only with stack provided lists after they are
1097 		 * properly isolated from the main list.  It is thus, always a
1098 		 * local access.
1099 		 */
1100 		return LRU_ROTATE;
1101 	}
1102 
1103 	d_lru_shrink_move(lru, dentry, freeable);
1104 	spin_unlock(&dentry->d_lock);
1105 
1106 	return LRU_REMOVED;
1107 }
1108 
1109 /**
1110  * prune_dcache_sb - shrink the dcache
1111  * @sb: superblock
1112  * @sc: shrink control, passed to list_lru_shrink_walk()
1113  *
1114  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1115  * is done when we need more memory and called from the superblock shrinker
1116  * function.
1117  *
1118  * This function may fail to free any resources if all the dentries are in
1119  * use.
1120  */
1121 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1122 {
1123 	LIST_HEAD(dispose);
1124 	long freed;
1125 
1126 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1127 				     dentry_lru_isolate, &dispose);
1128 	shrink_dentry_list(&dispose);
1129 	return freed;
1130 }
1131 
1132 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1133 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1134 {
1135 	struct list_head *freeable = arg;
1136 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1137 
1138 	/*
1139 	 * we are inverting the lru lock/dentry->d_lock here,
1140 	 * so use a trylock. If we fail to get the lock, just skip
1141 	 * it
1142 	 */
1143 	if (!spin_trylock(&dentry->d_lock))
1144 		return LRU_SKIP;
1145 
1146 	d_lru_shrink_move(lru, dentry, freeable);
1147 	spin_unlock(&dentry->d_lock);
1148 
1149 	return LRU_REMOVED;
1150 }
1151 
1152 
1153 /**
1154  * shrink_dcache_sb - shrink dcache for a superblock
1155  * @sb: superblock
1156  *
1157  * Shrink the dcache for the specified super block. This is used to free
1158  * the dcache before unmounting a file system.
1159  */
1160 void shrink_dcache_sb(struct super_block *sb)
1161 {
1162 	long freed;
1163 
1164 	do {
1165 		LIST_HEAD(dispose);
1166 
1167 		freed = list_lru_walk(&sb->s_dentry_lru,
1168 			dentry_lru_isolate_shrink, &dispose, 1024);
1169 
1170 		this_cpu_sub(nr_dentry_unused, freed);
1171 		shrink_dentry_list(&dispose);
1172 		cond_resched();
1173 	} while (list_lru_count(&sb->s_dentry_lru) > 0);
1174 }
1175 EXPORT_SYMBOL(shrink_dcache_sb);
1176 
1177 /**
1178  * enum d_walk_ret - action to talke during tree walk
1179  * @D_WALK_CONTINUE:	contrinue walk
1180  * @D_WALK_QUIT:	quit walk
1181  * @D_WALK_NORETRY:	quit when retry is needed
1182  * @D_WALK_SKIP:	skip this dentry and its children
1183  */
1184 enum d_walk_ret {
1185 	D_WALK_CONTINUE,
1186 	D_WALK_QUIT,
1187 	D_WALK_NORETRY,
1188 	D_WALK_SKIP,
1189 };
1190 
1191 /**
1192  * d_walk - walk the dentry tree
1193  * @parent:	start of walk
1194  * @data:	data passed to @enter() and @finish()
1195  * @enter:	callback when first entering the dentry
1196  * @finish:	callback when successfully finished the walk
1197  *
1198  * The @enter() and @finish() callbacks are called with d_lock held.
1199  */
1200 static void d_walk(struct dentry *parent, void *data,
1201 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1202 		   void (*finish)(void *))
1203 {
1204 	struct dentry *this_parent;
1205 	struct list_head *next;
1206 	unsigned seq = 0;
1207 	enum d_walk_ret ret;
1208 	bool retry = true;
1209 
1210 again:
1211 	read_seqbegin_or_lock(&rename_lock, &seq);
1212 	this_parent = parent;
1213 	spin_lock(&this_parent->d_lock);
1214 
1215 	ret = enter(data, this_parent);
1216 	switch (ret) {
1217 	case D_WALK_CONTINUE:
1218 		break;
1219 	case D_WALK_QUIT:
1220 	case D_WALK_SKIP:
1221 		goto out_unlock;
1222 	case D_WALK_NORETRY:
1223 		retry = false;
1224 		break;
1225 	}
1226 repeat:
1227 	next = this_parent->d_subdirs.next;
1228 resume:
1229 	while (next != &this_parent->d_subdirs) {
1230 		struct list_head *tmp = next;
1231 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1232 		next = tmp->next;
1233 
1234 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1235 			continue;
1236 
1237 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1238 
1239 		ret = enter(data, dentry);
1240 		switch (ret) {
1241 		case D_WALK_CONTINUE:
1242 			break;
1243 		case D_WALK_QUIT:
1244 			spin_unlock(&dentry->d_lock);
1245 			goto out_unlock;
1246 		case D_WALK_NORETRY:
1247 			retry = false;
1248 			break;
1249 		case D_WALK_SKIP:
1250 			spin_unlock(&dentry->d_lock);
1251 			continue;
1252 		}
1253 
1254 		if (!list_empty(&dentry->d_subdirs)) {
1255 			spin_unlock(&this_parent->d_lock);
1256 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1257 			this_parent = dentry;
1258 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1259 			goto repeat;
1260 		}
1261 		spin_unlock(&dentry->d_lock);
1262 	}
1263 	/*
1264 	 * All done at this level ... ascend and resume the search.
1265 	 */
1266 	rcu_read_lock();
1267 ascend:
1268 	if (this_parent != parent) {
1269 		struct dentry *child = this_parent;
1270 		this_parent = child->d_parent;
1271 
1272 		spin_unlock(&child->d_lock);
1273 		spin_lock(&this_parent->d_lock);
1274 
1275 		/* might go back up the wrong parent if we have had a rename. */
1276 		if (need_seqretry(&rename_lock, seq))
1277 			goto rename_retry;
1278 		/* go into the first sibling still alive */
1279 		do {
1280 			next = child->d_child.next;
1281 			if (next == &this_parent->d_subdirs)
1282 				goto ascend;
1283 			child = list_entry(next, struct dentry, d_child);
1284 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1285 		rcu_read_unlock();
1286 		goto resume;
1287 	}
1288 	if (need_seqretry(&rename_lock, seq))
1289 		goto rename_retry;
1290 	rcu_read_unlock();
1291 	if (finish)
1292 		finish(data);
1293 
1294 out_unlock:
1295 	spin_unlock(&this_parent->d_lock);
1296 	done_seqretry(&rename_lock, seq);
1297 	return;
1298 
1299 rename_retry:
1300 	spin_unlock(&this_parent->d_lock);
1301 	rcu_read_unlock();
1302 	BUG_ON(seq & 1);
1303 	if (!retry)
1304 		return;
1305 	seq = 1;
1306 	goto again;
1307 }
1308 
1309 struct check_mount {
1310 	struct vfsmount *mnt;
1311 	unsigned int mounted;
1312 };
1313 
1314 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1315 {
1316 	struct check_mount *info = data;
1317 	struct path path = { .mnt = info->mnt, .dentry = dentry };
1318 
1319 	if (likely(!d_mountpoint(dentry)))
1320 		return D_WALK_CONTINUE;
1321 	if (__path_is_mountpoint(&path)) {
1322 		info->mounted = 1;
1323 		return D_WALK_QUIT;
1324 	}
1325 	return D_WALK_CONTINUE;
1326 }
1327 
1328 /**
1329  * path_has_submounts - check for mounts over a dentry in the
1330  *                      current namespace.
1331  * @parent: path to check.
1332  *
1333  * Return true if the parent or its subdirectories contain
1334  * a mount point in the current namespace.
1335  */
1336 int path_has_submounts(const struct path *parent)
1337 {
1338 	struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1339 
1340 	read_seqlock_excl(&mount_lock);
1341 	d_walk(parent->dentry, &data, path_check_mount, NULL);
1342 	read_sequnlock_excl(&mount_lock);
1343 
1344 	return data.mounted;
1345 }
1346 EXPORT_SYMBOL(path_has_submounts);
1347 
1348 /*
1349  * Called by mount code to set a mountpoint and check if the mountpoint is
1350  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1351  * subtree can become unreachable).
1352  *
1353  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1354  * this reason take rename_lock and d_lock on dentry and ancestors.
1355  */
1356 int d_set_mounted(struct dentry *dentry)
1357 {
1358 	struct dentry *p;
1359 	int ret = -ENOENT;
1360 	write_seqlock(&rename_lock);
1361 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1362 		/* Need exclusion wrt. d_invalidate() */
1363 		spin_lock(&p->d_lock);
1364 		if (unlikely(d_unhashed(p))) {
1365 			spin_unlock(&p->d_lock);
1366 			goto out;
1367 		}
1368 		spin_unlock(&p->d_lock);
1369 	}
1370 	spin_lock(&dentry->d_lock);
1371 	if (!d_unlinked(dentry)) {
1372 		ret = -EBUSY;
1373 		if (!d_mountpoint(dentry)) {
1374 			dentry->d_flags |= DCACHE_MOUNTED;
1375 			ret = 0;
1376 		}
1377 	}
1378  	spin_unlock(&dentry->d_lock);
1379 out:
1380 	write_sequnlock(&rename_lock);
1381 	return ret;
1382 }
1383 
1384 /*
1385  * Search the dentry child list of the specified parent,
1386  * and move any unused dentries to the end of the unused
1387  * list for prune_dcache(). We descend to the next level
1388  * whenever the d_subdirs list is non-empty and continue
1389  * searching.
1390  *
1391  * It returns zero iff there are no unused children,
1392  * otherwise  it returns the number of children moved to
1393  * the end of the unused list. This may not be the total
1394  * number of unused children, because select_parent can
1395  * drop the lock and return early due to latency
1396  * constraints.
1397  */
1398 
1399 struct select_data {
1400 	struct dentry *start;
1401 	struct list_head dispose;
1402 	int found;
1403 };
1404 
1405 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1406 {
1407 	struct select_data *data = _data;
1408 	enum d_walk_ret ret = D_WALK_CONTINUE;
1409 
1410 	if (data->start == dentry)
1411 		goto out;
1412 
1413 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1414 		data->found++;
1415 	} else {
1416 		if (dentry->d_flags & DCACHE_LRU_LIST)
1417 			d_lru_del(dentry);
1418 		if (!dentry->d_lockref.count) {
1419 			d_shrink_add(dentry, &data->dispose);
1420 			data->found++;
1421 		}
1422 	}
1423 	/*
1424 	 * We can return to the caller if we have found some (this
1425 	 * ensures forward progress). We'll be coming back to find
1426 	 * the rest.
1427 	 */
1428 	if (!list_empty(&data->dispose))
1429 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1430 out:
1431 	return ret;
1432 }
1433 
1434 /**
1435  * shrink_dcache_parent - prune dcache
1436  * @parent: parent of entries to prune
1437  *
1438  * Prune the dcache to remove unused children of the parent dentry.
1439  */
1440 void shrink_dcache_parent(struct dentry *parent)
1441 {
1442 	for (;;) {
1443 		struct select_data data;
1444 
1445 		INIT_LIST_HEAD(&data.dispose);
1446 		data.start = parent;
1447 		data.found = 0;
1448 
1449 		d_walk(parent, &data, select_collect, NULL);
1450 		if (!data.found)
1451 			break;
1452 
1453 		shrink_dentry_list(&data.dispose);
1454 		cond_resched();
1455 	}
1456 }
1457 EXPORT_SYMBOL(shrink_dcache_parent);
1458 
1459 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1460 {
1461 	/* it has busy descendents; complain about those instead */
1462 	if (!list_empty(&dentry->d_subdirs))
1463 		return D_WALK_CONTINUE;
1464 
1465 	/* root with refcount 1 is fine */
1466 	if (dentry == _data && dentry->d_lockref.count == 1)
1467 		return D_WALK_CONTINUE;
1468 
1469 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1470 			" still in use (%d) [unmount of %s %s]\n",
1471 		       dentry,
1472 		       dentry->d_inode ?
1473 		       dentry->d_inode->i_ino : 0UL,
1474 		       dentry,
1475 		       dentry->d_lockref.count,
1476 		       dentry->d_sb->s_type->name,
1477 		       dentry->d_sb->s_id);
1478 	WARN_ON(1);
1479 	return D_WALK_CONTINUE;
1480 }
1481 
1482 static void do_one_tree(struct dentry *dentry)
1483 {
1484 	shrink_dcache_parent(dentry);
1485 	d_walk(dentry, dentry, umount_check, NULL);
1486 	d_drop(dentry);
1487 	dput(dentry);
1488 }
1489 
1490 /*
1491  * destroy the dentries attached to a superblock on unmounting
1492  */
1493 void shrink_dcache_for_umount(struct super_block *sb)
1494 {
1495 	struct dentry *dentry;
1496 
1497 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1498 
1499 	dentry = sb->s_root;
1500 	sb->s_root = NULL;
1501 	do_one_tree(dentry);
1502 
1503 	while (!hlist_bl_empty(&sb->s_anon)) {
1504 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1505 		do_one_tree(dentry);
1506 	}
1507 }
1508 
1509 struct detach_data {
1510 	struct select_data select;
1511 	struct dentry *mountpoint;
1512 };
1513 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1514 {
1515 	struct detach_data *data = _data;
1516 
1517 	if (d_mountpoint(dentry)) {
1518 		__dget_dlock(dentry);
1519 		data->mountpoint = dentry;
1520 		return D_WALK_QUIT;
1521 	}
1522 
1523 	return select_collect(&data->select, dentry);
1524 }
1525 
1526 static void check_and_drop(void *_data)
1527 {
1528 	struct detach_data *data = _data;
1529 
1530 	if (!data->mountpoint && list_empty(&data->select.dispose))
1531 		__d_drop(data->select.start);
1532 }
1533 
1534 /**
1535  * d_invalidate - detach submounts, prune dcache, and drop
1536  * @dentry: dentry to invalidate (aka detach, prune and drop)
1537  *
1538  * no dcache lock.
1539  *
1540  * The final d_drop is done as an atomic operation relative to
1541  * rename_lock ensuring there are no races with d_set_mounted.  This
1542  * ensures there are no unhashed dentries on the path to a mountpoint.
1543  */
1544 void d_invalidate(struct dentry *dentry)
1545 {
1546 	/*
1547 	 * If it's already been dropped, return OK.
1548 	 */
1549 	spin_lock(&dentry->d_lock);
1550 	if (d_unhashed(dentry)) {
1551 		spin_unlock(&dentry->d_lock);
1552 		return;
1553 	}
1554 	spin_unlock(&dentry->d_lock);
1555 
1556 	/* Negative dentries can be dropped without further checks */
1557 	if (!dentry->d_inode) {
1558 		d_drop(dentry);
1559 		return;
1560 	}
1561 
1562 	for (;;) {
1563 		struct detach_data data;
1564 
1565 		data.mountpoint = NULL;
1566 		INIT_LIST_HEAD(&data.select.dispose);
1567 		data.select.start = dentry;
1568 		data.select.found = 0;
1569 
1570 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1571 
1572 		if (!list_empty(&data.select.dispose))
1573 			shrink_dentry_list(&data.select.dispose);
1574 		else if (!data.mountpoint)
1575 			return;
1576 
1577 		if (data.mountpoint) {
1578 			detach_mounts(data.mountpoint);
1579 			dput(data.mountpoint);
1580 		}
1581 		cond_resched();
1582 	}
1583 }
1584 EXPORT_SYMBOL(d_invalidate);
1585 
1586 /**
1587  * __d_alloc	-	allocate a dcache entry
1588  * @sb: filesystem it will belong to
1589  * @name: qstr of the name
1590  *
1591  * Allocates a dentry. It returns %NULL if there is insufficient memory
1592  * available. On a success the dentry is returned. The name passed in is
1593  * copied and the copy passed in may be reused after this call.
1594  */
1595 
1596 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1597 {
1598 	struct dentry *dentry;
1599 	char *dname;
1600 	int err;
1601 
1602 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1603 	if (!dentry)
1604 		return NULL;
1605 
1606 	/*
1607 	 * We guarantee that the inline name is always NUL-terminated.
1608 	 * This way the memcpy() done by the name switching in rename
1609 	 * will still always have a NUL at the end, even if we might
1610 	 * be overwriting an internal NUL character
1611 	 */
1612 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1613 	if (unlikely(!name)) {
1614 		name = &slash_name;
1615 		dname = dentry->d_iname;
1616 	} else if (name->len > DNAME_INLINE_LEN-1) {
1617 		size_t size = offsetof(struct external_name, name[1]);
1618 		struct external_name *p = kmalloc(size + name->len,
1619 						  GFP_KERNEL_ACCOUNT);
1620 		if (!p) {
1621 			kmem_cache_free(dentry_cache, dentry);
1622 			return NULL;
1623 		}
1624 		atomic_set(&p->u.count, 1);
1625 		dname = p->name;
1626 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1627 			kasan_unpoison_shadow(dname,
1628 				round_up(name->len + 1,	sizeof(unsigned long)));
1629 	} else  {
1630 		dname = dentry->d_iname;
1631 	}
1632 
1633 	dentry->d_name.len = name->len;
1634 	dentry->d_name.hash = name->hash;
1635 	memcpy(dname, name->name, name->len);
1636 	dname[name->len] = 0;
1637 
1638 	/* Make sure we always see the terminating NUL character */
1639 	smp_wmb();
1640 	dentry->d_name.name = dname;
1641 
1642 	dentry->d_lockref.count = 1;
1643 	dentry->d_flags = 0;
1644 	spin_lock_init(&dentry->d_lock);
1645 	seqcount_init(&dentry->d_seq);
1646 	dentry->d_inode = NULL;
1647 	dentry->d_parent = dentry;
1648 	dentry->d_sb = sb;
1649 	dentry->d_op = NULL;
1650 	dentry->d_fsdata = NULL;
1651 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1652 	INIT_LIST_HEAD(&dentry->d_lru);
1653 	INIT_LIST_HEAD(&dentry->d_subdirs);
1654 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1655 	INIT_LIST_HEAD(&dentry->d_child);
1656 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1657 
1658 	if (dentry->d_op && dentry->d_op->d_init) {
1659 		err = dentry->d_op->d_init(dentry);
1660 		if (err) {
1661 			if (dname_external(dentry))
1662 				kfree(external_name(dentry));
1663 			kmem_cache_free(dentry_cache, dentry);
1664 			return NULL;
1665 		}
1666 	}
1667 
1668 	this_cpu_inc(nr_dentry);
1669 
1670 	return dentry;
1671 }
1672 
1673 /**
1674  * d_alloc	-	allocate a dcache entry
1675  * @parent: parent of entry to allocate
1676  * @name: qstr of the name
1677  *
1678  * Allocates a dentry. It returns %NULL if there is insufficient memory
1679  * available. On a success the dentry is returned. The name passed in is
1680  * copied and the copy passed in may be reused after this call.
1681  */
1682 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1683 {
1684 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1685 	if (!dentry)
1686 		return NULL;
1687 	dentry->d_flags |= DCACHE_RCUACCESS;
1688 	spin_lock(&parent->d_lock);
1689 	/*
1690 	 * don't need child lock because it is not subject
1691 	 * to concurrency here
1692 	 */
1693 	__dget_dlock(parent);
1694 	dentry->d_parent = parent;
1695 	list_add(&dentry->d_child, &parent->d_subdirs);
1696 	spin_unlock(&parent->d_lock);
1697 
1698 	return dentry;
1699 }
1700 EXPORT_SYMBOL(d_alloc);
1701 
1702 struct dentry *d_alloc_cursor(struct dentry * parent)
1703 {
1704 	struct dentry *dentry = __d_alloc(parent->d_sb, NULL);
1705 	if (dentry) {
1706 		dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR;
1707 		dentry->d_parent = dget(parent);
1708 	}
1709 	return dentry;
1710 }
1711 
1712 /**
1713  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1714  * @sb: the superblock
1715  * @name: qstr of the name
1716  *
1717  * For a filesystem that just pins its dentries in memory and never
1718  * performs lookups at all, return an unhashed IS_ROOT dentry.
1719  */
1720 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1721 {
1722 	return __d_alloc(sb, name);
1723 }
1724 EXPORT_SYMBOL(d_alloc_pseudo);
1725 
1726 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1727 {
1728 	struct qstr q;
1729 
1730 	q.name = name;
1731 	q.hash_len = hashlen_string(parent, name);
1732 	return d_alloc(parent, &q);
1733 }
1734 EXPORT_SYMBOL(d_alloc_name);
1735 
1736 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1737 {
1738 	WARN_ON_ONCE(dentry->d_op);
1739 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1740 				DCACHE_OP_COMPARE	|
1741 				DCACHE_OP_REVALIDATE	|
1742 				DCACHE_OP_WEAK_REVALIDATE	|
1743 				DCACHE_OP_DELETE	|
1744 				DCACHE_OP_REAL));
1745 	dentry->d_op = op;
1746 	if (!op)
1747 		return;
1748 	if (op->d_hash)
1749 		dentry->d_flags |= DCACHE_OP_HASH;
1750 	if (op->d_compare)
1751 		dentry->d_flags |= DCACHE_OP_COMPARE;
1752 	if (op->d_revalidate)
1753 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1754 	if (op->d_weak_revalidate)
1755 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1756 	if (op->d_delete)
1757 		dentry->d_flags |= DCACHE_OP_DELETE;
1758 	if (op->d_prune)
1759 		dentry->d_flags |= DCACHE_OP_PRUNE;
1760 	if (op->d_real)
1761 		dentry->d_flags |= DCACHE_OP_REAL;
1762 
1763 }
1764 EXPORT_SYMBOL(d_set_d_op);
1765 
1766 
1767 /*
1768  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1769  * @dentry - The dentry to mark
1770  *
1771  * Mark a dentry as falling through to the lower layer (as set with
1772  * d_pin_lower()).  This flag may be recorded on the medium.
1773  */
1774 void d_set_fallthru(struct dentry *dentry)
1775 {
1776 	spin_lock(&dentry->d_lock);
1777 	dentry->d_flags |= DCACHE_FALLTHRU;
1778 	spin_unlock(&dentry->d_lock);
1779 }
1780 EXPORT_SYMBOL(d_set_fallthru);
1781 
1782 static unsigned d_flags_for_inode(struct inode *inode)
1783 {
1784 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1785 
1786 	if (!inode)
1787 		return DCACHE_MISS_TYPE;
1788 
1789 	if (S_ISDIR(inode->i_mode)) {
1790 		add_flags = DCACHE_DIRECTORY_TYPE;
1791 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1792 			if (unlikely(!inode->i_op->lookup))
1793 				add_flags = DCACHE_AUTODIR_TYPE;
1794 			else
1795 				inode->i_opflags |= IOP_LOOKUP;
1796 		}
1797 		goto type_determined;
1798 	}
1799 
1800 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1801 		if (unlikely(inode->i_op->get_link)) {
1802 			add_flags = DCACHE_SYMLINK_TYPE;
1803 			goto type_determined;
1804 		}
1805 		inode->i_opflags |= IOP_NOFOLLOW;
1806 	}
1807 
1808 	if (unlikely(!S_ISREG(inode->i_mode)))
1809 		add_flags = DCACHE_SPECIAL_TYPE;
1810 
1811 type_determined:
1812 	if (unlikely(IS_AUTOMOUNT(inode)))
1813 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1814 	return add_flags;
1815 }
1816 
1817 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1818 {
1819 	unsigned add_flags = d_flags_for_inode(inode);
1820 	WARN_ON(d_in_lookup(dentry));
1821 
1822 	spin_lock(&dentry->d_lock);
1823 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1824 	raw_write_seqcount_begin(&dentry->d_seq);
1825 	__d_set_inode_and_type(dentry, inode, add_flags);
1826 	raw_write_seqcount_end(&dentry->d_seq);
1827 	fsnotify_update_flags(dentry);
1828 	spin_unlock(&dentry->d_lock);
1829 }
1830 
1831 /**
1832  * d_instantiate - fill in inode information for a dentry
1833  * @entry: dentry to complete
1834  * @inode: inode to attach to this dentry
1835  *
1836  * Fill in inode information in the entry.
1837  *
1838  * This turns negative dentries into productive full members
1839  * of society.
1840  *
1841  * NOTE! This assumes that the inode count has been incremented
1842  * (or otherwise set) by the caller to indicate that it is now
1843  * in use by the dcache.
1844  */
1845 
1846 void d_instantiate(struct dentry *entry, struct inode * inode)
1847 {
1848 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1849 	if (inode) {
1850 		security_d_instantiate(entry, inode);
1851 		spin_lock(&inode->i_lock);
1852 		__d_instantiate(entry, inode);
1853 		spin_unlock(&inode->i_lock);
1854 	}
1855 }
1856 EXPORT_SYMBOL(d_instantiate);
1857 
1858 /**
1859  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1860  * @entry: dentry to complete
1861  * @inode: inode to attach to this dentry
1862  *
1863  * Fill in inode information in the entry.  If a directory alias is found, then
1864  * return an error (and drop inode).  Together with d_materialise_unique() this
1865  * guarantees that a directory inode may never have more than one alias.
1866  */
1867 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1868 {
1869 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1870 
1871 	security_d_instantiate(entry, inode);
1872 	spin_lock(&inode->i_lock);
1873 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1874 		spin_unlock(&inode->i_lock);
1875 		iput(inode);
1876 		return -EBUSY;
1877 	}
1878 	__d_instantiate(entry, inode);
1879 	spin_unlock(&inode->i_lock);
1880 
1881 	return 0;
1882 }
1883 EXPORT_SYMBOL(d_instantiate_no_diralias);
1884 
1885 struct dentry *d_make_root(struct inode *root_inode)
1886 {
1887 	struct dentry *res = NULL;
1888 
1889 	if (root_inode) {
1890 		res = __d_alloc(root_inode->i_sb, NULL);
1891 		if (res)
1892 			d_instantiate(res, root_inode);
1893 		else
1894 			iput(root_inode);
1895 	}
1896 	return res;
1897 }
1898 EXPORT_SYMBOL(d_make_root);
1899 
1900 static struct dentry * __d_find_any_alias(struct inode *inode)
1901 {
1902 	struct dentry *alias;
1903 
1904 	if (hlist_empty(&inode->i_dentry))
1905 		return NULL;
1906 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1907 	__dget(alias);
1908 	return alias;
1909 }
1910 
1911 /**
1912  * d_find_any_alias - find any alias for a given inode
1913  * @inode: inode to find an alias for
1914  *
1915  * If any aliases exist for the given inode, take and return a
1916  * reference for one of them.  If no aliases exist, return %NULL.
1917  */
1918 struct dentry *d_find_any_alias(struct inode *inode)
1919 {
1920 	struct dentry *de;
1921 
1922 	spin_lock(&inode->i_lock);
1923 	de = __d_find_any_alias(inode);
1924 	spin_unlock(&inode->i_lock);
1925 	return de;
1926 }
1927 EXPORT_SYMBOL(d_find_any_alias);
1928 
1929 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1930 {
1931 	struct dentry *tmp;
1932 	struct dentry *res;
1933 	unsigned add_flags;
1934 
1935 	if (!inode)
1936 		return ERR_PTR(-ESTALE);
1937 	if (IS_ERR(inode))
1938 		return ERR_CAST(inode);
1939 
1940 	res = d_find_any_alias(inode);
1941 	if (res)
1942 		goto out_iput;
1943 
1944 	tmp = __d_alloc(inode->i_sb, NULL);
1945 	if (!tmp) {
1946 		res = ERR_PTR(-ENOMEM);
1947 		goto out_iput;
1948 	}
1949 
1950 	security_d_instantiate(tmp, inode);
1951 	spin_lock(&inode->i_lock);
1952 	res = __d_find_any_alias(inode);
1953 	if (res) {
1954 		spin_unlock(&inode->i_lock);
1955 		dput(tmp);
1956 		goto out_iput;
1957 	}
1958 
1959 	/* attach a disconnected dentry */
1960 	add_flags = d_flags_for_inode(inode);
1961 
1962 	if (disconnected)
1963 		add_flags |= DCACHE_DISCONNECTED;
1964 
1965 	spin_lock(&tmp->d_lock);
1966 	__d_set_inode_and_type(tmp, inode, add_flags);
1967 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1968 	hlist_bl_lock(&tmp->d_sb->s_anon);
1969 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1970 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1971 	spin_unlock(&tmp->d_lock);
1972 	spin_unlock(&inode->i_lock);
1973 
1974 	return tmp;
1975 
1976  out_iput:
1977 	iput(inode);
1978 	return res;
1979 }
1980 
1981 /**
1982  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1983  * @inode: inode to allocate the dentry for
1984  *
1985  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1986  * similar open by handle operations.  The returned dentry may be anonymous,
1987  * or may have a full name (if the inode was already in the cache).
1988  *
1989  * When called on a directory inode, we must ensure that the inode only ever
1990  * has one dentry.  If a dentry is found, that is returned instead of
1991  * allocating a new one.
1992  *
1993  * On successful return, the reference to the inode has been transferred
1994  * to the dentry.  In case of an error the reference on the inode is released.
1995  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1996  * be passed in and the error will be propagated to the return value,
1997  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1998  */
1999 struct dentry *d_obtain_alias(struct inode *inode)
2000 {
2001 	return __d_obtain_alias(inode, 1);
2002 }
2003 EXPORT_SYMBOL(d_obtain_alias);
2004 
2005 /**
2006  * d_obtain_root - find or allocate a dentry for a given inode
2007  * @inode: inode to allocate the dentry for
2008  *
2009  * Obtain an IS_ROOT dentry for the root of a filesystem.
2010  *
2011  * We must ensure that directory inodes only ever have one dentry.  If a
2012  * dentry is found, that is returned instead of allocating a new one.
2013  *
2014  * On successful return, the reference to the inode has been transferred
2015  * to the dentry.  In case of an error the reference on the inode is
2016  * released.  A %NULL or IS_ERR inode may be passed in and will be the
2017  * error will be propagate to the return value, with a %NULL @inode
2018  * replaced by ERR_PTR(-ESTALE).
2019  */
2020 struct dentry *d_obtain_root(struct inode *inode)
2021 {
2022 	return __d_obtain_alias(inode, 0);
2023 }
2024 EXPORT_SYMBOL(d_obtain_root);
2025 
2026 /**
2027  * d_add_ci - lookup or allocate new dentry with case-exact name
2028  * @inode:  the inode case-insensitive lookup has found
2029  * @dentry: the negative dentry that was passed to the parent's lookup func
2030  * @name:   the case-exact name to be associated with the returned dentry
2031  *
2032  * This is to avoid filling the dcache with case-insensitive names to the
2033  * same inode, only the actual correct case is stored in the dcache for
2034  * case-insensitive filesystems.
2035  *
2036  * For a case-insensitive lookup match and if the the case-exact dentry
2037  * already exists in in the dcache, use it and return it.
2038  *
2039  * If no entry exists with the exact case name, allocate new dentry with
2040  * the exact case, and return the spliced entry.
2041  */
2042 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2043 			struct qstr *name)
2044 {
2045 	struct dentry *found, *res;
2046 
2047 	/*
2048 	 * First check if a dentry matching the name already exists,
2049 	 * if not go ahead and create it now.
2050 	 */
2051 	found = d_hash_and_lookup(dentry->d_parent, name);
2052 	if (found) {
2053 		iput(inode);
2054 		return found;
2055 	}
2056 	if (d_in_lookup(dentry)) {
2057 		found = d_alloc_parallel(dentry->d_parent, name,
2058 					dentry->d_wait);
2059 		if (IS_ERR(found) || !d_in_lookup(found)) {
2060 			iput(inode);
2061 			return found;
2062 		}
2063 	} else {
2064 		found = d_alloc(dentry->d_parent, name);
2065 		if (!found) {
2066 			iput(inode);
2067 			return ERR_PTR(-ENOMEM);
2068 		}
2069 	}
2070 	res = d_splice_alias(inode, found);
2071 	if (res) {
2072 		dput(found);
2073 		return res;
2074 	}
2075 	return found;
2076 }
2077 EXPORT_SYMBOL(d_add_ci);
2078 
2079 
2080 static inline bool d_same_name(const struct dentry *dentry,
2081 				const struct dentry *parent,
2082 				const struct qstr *name)
2083 {
2084 	if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2085 		if (dentry->d_name.len != name->len)
2086 			return false;
2087 		return dentry_cmp(dentry, name->name, name->len) == 0;
2088 	}
2089 	return parent->d_op->d_compare(dentry,
2090 				       dentry->d_name.len, dentry->d_name.name,
2091 				       name) == 0;
2092 }
2093 
2094 /**
2095  * __d_lookup_rcu - search for a dentry (racy, store-free)
2096  * @parent: parent dentry
2097  * @name: qstr of name we wish to find
2098  * @seqp: returns d_seq value at the point where the dentry was found
2099  * Returns: dentry, or NULL
2100  *
2101  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2102  * resolution (store-free path walking) design described in
2103  * Documentation/filesystems/path-lookup.txt.
2104  *
2105  * This is not to be used outside core vfs.
2106  *
2107  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2108  * held, and rcu_read_lock held. The returned dentry must not be stored into
2109  * without taking d_lock and checking d_seq sequence count against @seq
2110  * returned here.
2111  *
2112  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2113  * function.
2114  *
2115  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2116  * the returned dentry, so long as its parent's seqlock is checked after the
2117  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2118  * is formed, giving integrity down the path walk.
2119  *
2120  * NOTE! The caller *has* to check the resulting dentry against the sequence
2121  * number we've returned before using any of the resulting dentry state!
2122  */
2123 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2124 				const struct qstr *name,
2125 				unsigned *seqp)
2126 {
2127 	u64 hashlen = name->hash_len;
2128 	const unsigned char *str = name->name;
2129 	struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen));
2130 	struct hlist_bl_node *node;
2131 	struct dentry *dentry;
2132 
2133 	/*
2134 	 * Note: There is significant duplication with __d_lookup_rcu which is
2135 	 * required to prevent single threaded performance regressions
2136 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2137 	 * Keep the two functions in sync.
2138 	 */
2139 
2140 	/*
2141 	 * The hash list is protected using RCU.
2142 	 *
2143 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2144 	 * races with d_move().
2145 	 *
2146 	 * It is possible that concurrent renames can mess up our list
2147 	 * walk here and result in missing our dentry, resulting in the
2148 	 * false-negative result. d_lookup() protects against concurrent
2149 	 * renames using rename_lock seqlock.
2150 	 *
2151 	 * See Documentation/filesystems/path-lookup.txt for more details.
2152 	 */
2153 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2154 		unsigned seq;
2155 
2156 seqretry:
2157 		/*
2158 		 * The dentry sequence count protects us from concurrent
2159 		 * renames, and thus protects parent and name fields.
2160 		 *
2161 		 * The caller must perform a seqcount check in order
2162 		 * to do anything useful with the returned dentry.
2163 		 *
2164 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2165 		 * we don't wait for the sequence count to stabilize if it
2166 		 * is in the middle of a sequence change. If we do the slow
2167 		 * dentry compare, we will do seqretries until it is stable,
2168 		 * and if we end up with a successful lookup, we actually
2169 		 * want to exit RCU lookup anyway.
2170 		 *
2171 		 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2172 		 * we are still guaranteed NUL-termination of ->d_name.name.
2173 		 */
2174 		seq = raw_seqcount_begin(&dentry->d_seq);
2175 		if (dentry->d_parent != parent)
2176 			continue;
2177 		if (d_unhashed(dentry))
2178 			continue;
2179 
2180 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2181 			int tlen;
2182 			const char *tname;
2183 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2184 				continue;
2185 			tlen = dentry->d_name.len;
2186 			tname = dentry->d_name.name;
2187 			/* we want a consistent (name,len) pair */
2188 			if (read_seqcount_retry(&dentry->d_seq, seq)) {
2189 				cpu_relax();
2190 				goto seqretry;
2191 			}
2192 			if (parent->d_op->d_compare(dentry,
2193 						    tlen, tname, name) != 0)
2194 				continue;
2195 		} else {
2196 			if (dentry->d_name.hash_len != hashlen)
2197 				continue;
2198 			if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0)
2199 				continue;
2200 		}
2201 		*seqp = seq;
2202 		return dentry;
2203 	}
2204 	return NULL;
2205 }
2206 
2207 /**
2208  * d_lookup - search for a dentry
2209  * @parent: parent dentry
2210  * @name: qstr of name we wish to find
2211  * Returns: dentry, or NULL
2212  *
2213  * d_lookup searches the children of the parent dentry for the name in
2214  * question. If the dentry is found its reference count is incremented and the
2215  * dentry is returned. The caller must use dput to free the entry when it has
2216  * finished using it. %NULL is returned if the dentry does not exist.
2217  */
2218 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2219 {
2220 	struct dentry *dentry;
2221 	unsigned seq;
2222 
2223 	do {
2224 		seq = read_seqbegin(&rename_lock);
2225 		dentry = __d_lookup(parent, name);
2226 		if (dentry)
2227 			break;
2228 	} while (read_seqretry(&rename_lock, seq));
2229 	return dentry;
2230 }
2231 EXPORT_SYMBOL(d_lookup);
2232 
2233 /**
2234  * __d_lookup - search for a dentry (racy)
2235  * @parent: parent dentry
2236  * @name: qstr of name we wish to find
2237  * Returns: dentry, or NULL
2238  *
2239  * __d_lookup is like d_lookup, however it may (rarely) return a
2240  * false-negative result due to unrelated rename activity.
2241  *
2242  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2243  * however it must be used carefully, eg. with a following d_lookup in
2244  * the case of failure.
2245  *
2246  * __d_lookup callers must be commented.
2247  */
2248 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2249 {
2250 	unsigned int hash = name->hash;
2251 	struct hlist_bl_head *b = d_hash(hash);
2252 	struct hlist_bl_node *node;
2253 	struct dentry *found = NULL;
2254 	struct dentry *dentry;
2255 
2256 	/*
2257 	 * Note: There is significant duplication with __d_lookup_rcu which is
2258 	 * required to prevent single threaded performance regressions
2259 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2260 	 * Keep the two functions in sync.
2261 	 */
2262 
2263 	/*
2264 	 * The hash list is protected using RCU.
2265 	 *
2266 	 * Take d_lock when comparing a candidate dentry, to avoid races
2267 	 * with d_move().
2268 	 *
2269 	 * It is possible that concurrent renames can mess up our list
2270 	 * walk here and result in missing our dentry, resulting in the
2271 	 * false-negative result. d_lookup() protects against concurrent
2272 	 * renames using rename_lock seqlock.
2273 	 *
2274 	 * See Documentation/filesystems/path-lookup.txt for more details.
2275 	 */
2276 	rcu_read_lock();
2277 
2278 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2279 
2280 		if (dentry->d_name.hash != hash)
2281 			continue;
2282 
2283 		spin_lock(&dentry->d_lock);
2284 		if (dentry->d_parent != parent)
2285 			goto next;
2286 		if (d_unhashed(dentry))
2287 			goto next;
2288 
2289 		if (!d_same_name(dentry, parent, name))
2290 			goto next;
2291 
2292 		dentry->d_lockref.count++;
2293 		found = dentry;
2294 		spin_unlock(&dentry->d_lock);
2295 		break;
2296 next:
2297 		spin_unlock(&dentry->d_lock);
2298  	}
2299  	rcu_read_unlock();
2300 
2301  	return found;
2302 }
2303 
2304 /**
2305  * d_hash_and_lookup - hash the qstr then search for a dentry
2306  * @dir: Directory to search in
2307  * @name: qstr of name we wish to find
2308  *
2309  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2310  */
2311 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2312 {
2313 	/*
2314 	 * Check for a fs-specific hash function. Note that we must
2315 	 * calculate the standard hash first, as the d_op->d_hash()
2316 	 * routine may choose to leave the hash value unchanged.
2317 	 */
2318 	name->hash = full_name_hash(dir, name->name, name->len);
2319 	if (dir->d_flags & DCACHE_OP_HASH) {
2320 		int err = dir->d_op->d_hash(dir, name);
2321 		if (unlikely(err < 0))
2322 			return ERR_PTR(err);
2323 	}
2324 	return d_lookup(dir, name);
2325 }
2326 EXPORT_SYMBOL(d_hash_and_lookup);
2327 
2328 /*
2329  * When a file is deleted, we have two options:
2330  * - turn this dentry into a negative dentry
2331  * - unhash this dentry and free it.
2332  *
2333  * Usually, we want to just turn this into
2334  * a negative dentry, but if anybody else is
2335  * currently using the dentry or the inode
2336  * we can't do that and we fall back on removing
2337  * it from the hash queues and waiting for
2338  * it to be deleted later when it has no users
2339  */
2340 
2341 /**
2342  * d_delete - delete a dentry
2343  * @dentry: The dentry to delete
2344  *
2345  * Turn the dentry into a negative dentry if possible, otherwise
2346  * remove it from the hash queues so it can be deleted later
2347  */
2348 
2349 void d_delete(struct dentry * dentry)
2350 {
2351 	struct inode *inode;
2352 	int isdir = 0;
2353 	/*
2354 	 * Are we the only user?
2355 	 */
2356 again:
2357 	spin_lock(&dentry->d_lock);
2358 	inode = dentry->d_inode;
2359 	isdir = S_ISDIR(inode->i_mode);
2360 	if (dentry->d_lockref.count == 1) {
2361 		if (!spin_trylock(&inode->i_lock)) {
2362 			spin_unlock(&dentry->d_lock);
2363 			cpu_relax();
2364 			goto again;
2365 		}
2366 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2367 		dentry_unlink_inode(dentry);
2368 		fsnotify_nameremove(dentry, isdir);
2369 		return;
2370 	}
2371 
2372 	if (!d_unhashed(dentry))
2373 		__d_drop(dentry);
2374 
2375 	spin_unlock(&dentry->d_lock);
2376 
2377 	fsnotify_nameremove(dentry, isdir);
2378 }
2379 EXPORT_SYMBOL(d_delete);
2380 
2381 static void __d_rehash(struct dentry *entry)
2382 {
2383 	struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2384 	BUG_ON(!d_unhashed(entry));
2385 	hlist_bl_lock(b);
2386 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2387 	hlist_bl_unlock(b);
2388 }
2389 
2390 /**
2391  * d_rehash	- add an entry back to the hash
2392  * @entry: dentry to add to the hash
2393  *
2394  * Adds a dentry to the hash according to its name.
2395  */
2396 
2397 void d_rehash(struct dentry * entry)
2398 {
2399 	spin_lock(&entry->d_lock);
2400 	__d_rehash(entry);
2401 	spin_unlock(&entry->d_lock);
2402 }
2403 EXPORT_SYMBOL(d_rehash);
2404 
2405 static inline unsigned start_dir_add(struct inode *dir)
2406 {
2407 
2408 	for (;;) {
2409 		unsigned n = dir->i_dir_seq;
2410 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2411 			return n;
2412 		cpu_relax();
2413 	}
2414 }
2415 
2416 static inline void end_dir_add(struct inode *dir, unsigned n)
2417 {
2418 	smp_store_release(&dir->i_dir_seq, n + 2);
2419 }
2420 
2421 static void d_wait_lookup(struct dentry *dentry)
2422 {
2423 	if (d_in_lookup(dentry)) {
2424 		DECLARE_WAITQUEUE(wait, current);
2425 		add_wait_queue(dentry->d_wait, &wait);
2426 		do {
2427 			set_current_state(TASK_UNINTERRUPTIBLE);
2428 			spin_unlock(&dentry->d_lock);
2429 			schedule();
2430 			spin_lock(&dentry->d_lock);
2431 		} while (d_in_lookup(dentry));
2432 	}
2433 }
2434 
2435 struct dentry *d_alloc_parallel(struct dentry *parent,
2436 				const struct qstr *name,
2437 				wait_queue_head_t *wq)
2438 {
2439 	unsigned int hash = name->hash;
2440 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2441 	struct hlist_bl_node *node;
2442 	struct dentry *new = d_alloc(parent, name);
2443 	struct dentry *dentry;
2444 	unsigned seq, r_seq, d_seq;
2445 
2446 	if (unlikely(!new))
2447 		return ERR_PTR(-ENOMEM);
2448 
2449 retry:
2450 	rcu_read_lock();
2451 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2452 	r_seq = read_seqbegin(&rename_lock);
2453 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2454 	if (unlikely(dentry)) {
2455 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2456 			rcu_read_unlock();
2457 			goto retry;
2458 		}
2459 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2460 			rcu_read_unlock();
2461 			dput(dentry);
2462 			goto retry;
2463 		}
2464 		rcu_read_unlock();
2465 		dput(new);
2466 		return dentry;
2467 	}
2468 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2469 		rcu_read_unlock();
2470 		goto retry;
2471 	}
2472 	hlist_bl_lock(b);
2473 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2474 		hlist_bl_unlock(b);
2475 		rcu_read_unlock();
2476 		goto retry;
2477 	}
2478 	/*
2479 	 * No changes for the parent since the beginning of d_lookup().
2480 	 * Since all removals from the chain happen with hlist_bl_lock(),
2481 	 * any potential in-lookup matches are going to stay here until
2482 	 * we unlock the chain.  All fields are stable in everything
2483 	 * we encounter.
2484 	 */
2485 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2486 		if (dentry->d_name.hash != hash)
2487 			continue;
2488 		if (dentry->d_parent != parent)
2489 			continue;
2490 		if (!d_same_name(dentry, parent, name))
2491 			continue;
2492 		hlist_bl_unlock(b);
2493 		/* now we can try to grab a reference */
2494 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2495 			rcu_read_unlock();
2496 			goto retry;
2497 		}
2498 
2499 		rcu_read_unlock();
2500 		/*
2501 		 * somebody is likely to be still doing lookup for it;
2502 		 * wait for them to finish
2503 		 */
2504 		spin_lock(&dentry->d_lock);
2505 		d_wait_lookup(dentry);
2506 		/*
2507 		 * it's not in-lookup anymore; in principle we should repeat
2508 		 * everything from dcache lookup, but it's likely to be what
2509 		 * d_lookup() would've found anyway.  If it is, just return it;
2510 		 * otherwise we really have to repeat the whole thing.
2511 		 */
2512 		if (unlikely(dentry->d_name.hash != hash))
2513 			goto mismatch;
2514 		if (unlikely(dentry->d_parent != parent))
2515 			goto mismatch;
2516 		if (unlikely(d_unhashed(dentry)))
2517 			goto mismatch;
2518 		if (unlikely(!d_same_name(dentry, parent, name)))
2519 			goto mismatch;
2520 		/* OK, it *is* a hashed match; return it */
2521 		spin_unlock(&dentry->d_lock);
2522 		dput(new);
2523 		return dentry;
2524 	}
2525 	rcu_read_unlock();
2526 	/* we can't take ->d_lock here; it's OK, though. */
2527 	new->d_flags |= DCACHE_PAR_LOOKUP;
2528 	new->d_wait = wq;
2529 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2530 	hlist_bl_unlock(b);
2531 	return new;
2532 mismatch:
2533 	spin_unlock(&dentry->d_lock);
2534 	dput(dentry);
2535 	goto retry;
2536 }
2537 EXPORT_SYMBOL(d_alloc_parallel);
2538 
2539 void __d_lookup_done(struct dentry *dentry)
2540 {
2541 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2542 						 dentry->d_name.hash);
2543 	hlist_bl_lock(b);
2544 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2545 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2546 	wake_up_all(dentry->d_wait);
2547 	dentry->d_wait = NULL;
2548 	hlist_bl_unlock(b);
2549 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2550 	INIT_LIST_HEAD(&dentry->d_lru);
2551 }
2552 EXPORT_SYMBOL(__d_lookup_done);
2553 
2554 /* inode->i_lock held if inode is non-NULL */
2555 
2556 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2557 {
2558 	struct inode *dir = NULL;
2559 	unsigned n;
2560 	spin_lock(&dentry->d_lock);
2561 	if (unlikely(d_in_lookup(dentry))) {
2562 		dir = dentry->d_parent->d_inode;
2563 		n = start_dir_add(dir);
2564 		__d_lookup_done(dentry);
2565 	}
2566 	if (inode) {
2567 		unsigned add_flags = d_flags_for_inode(inode);
2568 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2569 		raw_write_seqcount_begin(&dentry->d_seq);
2570 		__d_set_inode_and_type(dentry, inode, add_flags);
2571 		raw_write_seqcount_end(&dentry->d_seq);
2572 		fsnotify_update_flags(dentry);
2573 	}
2574 	__d_rehash(dentry);
2575 	if (dir)
2576 		end_dir_add(dir, n);
2577 	spin_unlock(&dentry->d_lock);
2578 	if (inode)
2579 		spin_unlock(&inode->i_lock);
2580 }
2581 
2582 /**
2583  * d_add - add dentry to hash queues
2584  * @entry: dentry to add
2585  * @inode: The inode to attach to this dentry
2586  *
2587  * This adds the entry to the hash queues and initializes @inode.
2588  * The entry was actually filled in earlier during d_alloc().
2589  */
2590 
2591 void d_add(struct dentry *entry, struct inode *inode)
2592 {
2593 	if (inode) {
2594 		security_d_instantiate(entry, inode);
2595 		spin_lock(&inode->i_lock);
2596 	}
2597 	__d_add(entry, inode);
2598 }
2599 EXPORT_SYMBOL(d_add);
2600 
2601 /**
2602  * d_exact_alias - find and hash an exact unhashed alias
2603  * @entry: dentry to add
2604  * @inode: The inode to go with this dentry
2605  *
2606  * If an unhashed dentry with the same name/parent and desired
2607  * inode already exists, hash and return it.  Otherwise, return
2608  * NULL.
2609  *
2610  * Parent directory should be locked.
2611  */
2612 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2613 {
2614 	struct dentry *alias;
2615 	unsigned int hash = entry->d_name.hash;
2616 
2617 	spin_lock(&inode->i_lock);
2618 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2619 		/*
2620 		 * Don't need alias->d_lock here, because aliases with
2621 		 * d_parent == entry->d_parent are not subject to name or
2622 		 * parent changes, because the parent inode i_mutex is held.
2623 		 */
2624 		if (alias->d_name.hash != hash)
2625 			continue;
2626 		if (alias->d_parent != entry->d_parent)
2627 			continue;
2628 		if (!d_same_name(alias, entry->d_parent, &entry->d_name))
2629 			continue;
2630 		spin_lock(&alias->d_lock);
2631 		if (!d_unhashed(alias)) {
2632 			spin_unlock(&alias->d_lock);
2633 			alias = NULL;
2634 		} else {
2635 			__dget_dlock(alias);
2636 			__d_rehash(alias);
2637 			spin_unlock(&alias->d_lock);
2638 		}
2639 		spin_unlock(&inode->i_lock);
2640 		return alias;
2641 	}
2642 	spin_unlock(&inode->i_lock);
2643 	return NULL;
2644 }
2645 EXPORT_SYMBOL(d_exact_alias);
2646 
2647 /**
2648  * dentry_update_name_case - update case insensitive dentry with a new name
2649  * @dentry: dentry to be updated
2650  * @name: new name
2651  *
2652  * Update a case insensitive dentry with new case of name.
2653  *
2654  * dentry must have been returned by d_lookup with name @name. Old and new
2655  * name lengths must match (ie. no d_compare which allows mismatched name
2656  * lengths).
2657  *
2658  * Parent inode i_mutex must be held over d_lookup and into this call (to
2659  * keep renames and concurrent inserts, and readdir(2) away).
2660  */
2661 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name)
2662 {
2663 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2664 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2665 
2666 	spin_lock(&dentry->d_lock);
2667 	write_seqcount_begin(&dentry->d_seq);
2668 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2669 	write_seqcount_end(&dentry->d_seq);
2670 	spin_unlock(&dentry->d_lock);
2671 }
2672 EXPORT_SYMBOL(dentry_update_name_case);
2673 
2674 static void swap_names(struct dentry *dentry, struct dentry *target)
2675 {
2676 	if (unlikely(dname_external(target))) {
2677 		if (unlikely(dname_external(dentry))) {
2678 			/*
2679 			 * Both external: swap the pointers
2680 			 */
2681 			swap(target->d_name.name, dentry->d_name.name);
2682 		} else {
2683 			/*
2684 			 * dentry:internal, target:external.  Steal target's
2685 			 * storage and make target internal.
2686 			 */
2687 			memcpy(target->d_iname, dentry->d_name.name,
2688 					dentry->d_name.len + 1);
2689 			dentry->d_name.name = target->d_name.name;
2690 			target->d_name.name = target->d_iname;
2691 		}
2692 	} else {
2693 		if (unlikely(dname_external(dentry))) {
2694 			/*
2695 			 * dentry:external, target:internal.  Give dentry's
2696 			 * storage to target and make dentry internal
2697 			 */
2698 			memcpy(dentry->d_iname, target->d_name.name,
2699 					target->d_name.len + 1);
2700 			target->d_name.name = dentry->d_name.name;
2701 			dentry->d_name.name = dentry->d_iname;
2702 		} else {
2703 			/*
2704 			 * Both are internal.
2705 			 */
2706 			unsigned int i;
2707 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2708 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2709 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2710 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2711 				swap(((long *) &dentry->d_iname)[i],
2712 				     ((long *) &target->d_iname)[i]);
2713 			}
2714 		}
2715 	}
2716 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2717 }
2718 
2719 static void copy_name(struct dentry *dentry, struct dentry *target)
2720 {
2721 	struct external_name *old_name = NULL;
2722 	if (unlikely(dname_external(dentry)))
2723 		old_name = external_name(dentry);
2724 	if (unlikely(dname_external(target))) {
2725 		atomic_inc(&external_name(target)->u.count);
2726 		dentry->d_name = target->d_name;
2727 	} else {
2728 		memcpy(dentry->d_iname, target->d_name.name,
2729 				target->d_name.len + 1);
2730 		dentry->d_name.name = dentry->d_iname;
2731 		dentry->d_name.hash_len = target->d_name.hash_len;
2732 	}
2733 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2734 		kfree_rcu(old_name, u.head);
2735 }
2736 
2737 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2738 {
2739 	/*
2740 	 * XXXX: do we really need to take target->d_lock?
2741 	 */
2742 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2743 		spin_lock(&target->d_parent->d_lock);
2744 	else {
2745 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2746 			spin_lock(&dentry->d_parent->d_lock);
2747 			spin_lock_nested(&target->d_parent->d_lock,
2748 						DENTRY_D_LOCK_NESTED);
2749 		} else {
2750 			spin_lock(&target->d_parent->d_lock);
2751 			spin_lock_nested(&dentry->d_parent->d_lock,
2752 						DENTRY_D_LOCK_NESTED);
2753 		}
2754 	}
2755 	if (target < dentry) {
2756 		spin_lock_nested(&target->d_lock, 2);
2757 		spin_lock_nested(&dentry->d_lock, 3);
2758 	} else {
2759 		spin_lock_nested(&dentry->d_lock, 2);
2760 		spin_lock_nested(&target->d_lock, 3);
2761 	}
2762 }
2763 
2764 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2765 {
2766 	if (target->d_parent != dentry->d_parent)
2767 		spin_unlock(&dentry->d_parent->d_lock);
2768 	if (target->d_parent != target)
2769 		spin_unlock(&target->d_parent->d_lock);
2770 	spin_unlock(&target->d_lock);
2771 	spin_unlock(&dentry->d_lock);
2772 }
2773 
2774 /*
2775  * When switching names, the actual string doesn't strictly have to
2776  * be preserved in the target - because we're dropping the target
2777  * anyway. As such, we can just do a simple memcpy() to copy over
2778  * the new name before we switch, unless we are going to rehash
2779  * it.  Note that if we *do* unhash the target, we are not allowed
2780  * to rehash it without giving it a new name/hash key - whether
2781  * we swap or overwrite the names here, resulting name won't match
2782  * the reality in filesystem; it's only there for d_path() purposes.
2783  * Note that all of this is happening under rename_lock, so the
2784  * any hash lookup seeing it in the middle of manipulations will
2785  * be discarded anyway.  So we do not care what happens to the hash
2786  * key in that case.
2787  */
2788 /*
2789  * __d_move - move a dentry
2790  * @dentry: entry to move
2791  * @target: new dentry
2792  * @exchange: exchange the two dentries
2793  *
2794  * Update the dcache to reflect the move of a file name. Negative
2795  * dcache entries should not be moved in this way. Caller must hold
2796  * rename_lock, the i_mutex of the source and target directories,
2797  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2798  */
2799 static void __d_move(struct dentry *dentry, struct dentry *target,
2800 		     bool exchange)
2801 {
2802 	struct inode *dir = NULL;
2803 	unsigned n;
2804 	if (!dentry->d_inode)
2805 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2806 
2807 	BUG_ON(d_ancestor(dentry, target));
2808 	BUG_ON(d_ancestor(target, dentry));
2809 
2810 	dentry_lock_for_move(dentry, target);
2811 	if (unlikely(d_in_lookup(target))) {
2812 		dir = target->d_parent->d_inode;
2813 		n = start_dir_add(dir);
2814 		__d_lookup_done(target);
2815 	}
2816 
2817 	write_seqcount_begin(&dentry->d_seq);
2818 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2819 
2820 	/* unhash both */
2821 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2822 	__d_drop(dentry);
2823 	__d_drop(target);
2824 
2825 	/* Switch the names.. */
2826 	if (exchange)
2827 		swap_names(dentry, target);
2828 	else
2829 		copy_name(dentry, target);
2830 
2831 	/* rehash in new place(s) */
2832 	__d_rehash(dentry);
2833 	if (exchange)
2834 		__d_rehash(target);
2835 
2836 	/* ... and switch them in the tree */
2837 	if (IS_ROOT(dentry)) {
2838 		/* splicing a tree */
2839 		dentry->d_flags |= DCACHE_RCUACCESS;
2840 		dentry->d_parent = target->d_parent;
2841 		target->d_parent = target;
2842 		list_del_init(&target->d_child);
2843 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2844 	} else {
2845 		/* swapping two dentries */
2846 		swap(dentry->d_parent, target->d_parent);
2847 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2848 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2849 		if (exchange)
2850 			fsnotify_update_flags(target);
2851 		fsnotify_update_flags(dentry);
2852 	}
2853 
2854 	write_seqcount_end(&target->d_seq);
2855 	write_seqcount_end(&dentry->d_seq);
2856 
2857 	if (dir)
2858 		end_dir_add(dir, n);
2859 	dentry_unlock_for_move(dentry, target);
2860 }
2861 
2862 /*
2863  * d_move - move a dentry
2864  * @dentry: entry to move
2865  * @target: new dentry
2866  *
2867  * Update the dcache to reflect the move of a file name. Negative
2868  * dcache entries should not be moved in this way. See the locking
2869  * requirements for __d_move.
2870  */
2871 void d_move(struct dentry *dentry, struct dentry *target)
2872 {
2873 	write_seqlock(&rename_lock);
2874 	__d_move(dentry, target, false);
2875 	write_sequnlock(&rename_lock);
2876 }
2877 EXPORT_SYMBOL(d_move);
2878 
2879 /*
2880  * d_exchange - exchange two dentries
2881  * @dentry1: first dentry
2882  * @dentry2: second dentry
2883  */
2884 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2885 {
2886 	write_seqlock(&rename_lock);
2887 
2888 	WARN_ON(!dentry1->d_inode);
2889 	WARN_ON(!dentry2->d_inode);
2890 	WARN_ON(IS_ROOT(dentry1));
2891 	WARN_ON(IS_ROOT(dentry2));
2892 
2893 	__d_move(dentry1, dentry2, true);
2894 
2895 	write_sequnlock(&rename_lock);
2896 }
2897 
2898 /**
2899  * d_ancestor - search for an ancestor
2900  * @p1: ancestor dentry
2901  * @p2: child dentry
2902  *
2903  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2904  * an ancestor of p2, else NULL.
2905  */
2906 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2907 {
2908 	struct dentry *p;
2909 
2910 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2911 		if (p->d_parent == p1)
2912 			return p;
2913 	}
2914 	return NULL;
2915 }
2916 
2917 /*
2918  * This helper attempts to cope with remotely renamed directories
2919  *
2920  * It assumes that the caller is already holding
2921  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2922  *
2923  * Note: If ever the locking in lock_rename() changes, then please
2924  * remember to update this too...
2925  */
2926 static int __d_unalias(struct inode *inode,
2927 		struct dentry *dentry, struct dentry *alias)
2928 {
2929 	struct mutex *m1 = NULL;
2930 	struct rw_semaphore *m2 = NULL;
2931 	int ret = -ESTALE;
2932 
2933 	/* If alias and dentry share a parent, then no extra locks required */
2934 	if (alias->d_parent == dentry->d_parent)
2935 		goto out_unalias;
2936 
2937 	/* See lock_rename() */
2938 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2939 		goto out_err;
2940 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2941 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2942 		goto out_err;
2943 	m2 = &alias->d_parent->d_inode->i_rwsem;
2944 out_unalias:
2945 	__d_move(alias, dentry, false);
2946 	ret = 0;
2947 out_err:
2948 	if (m2)
2949 		up_read(m2);
2950 	if (m1)
2951 		mutex_unlock(m1);
2952 	return ret;
2953 }
2954 
2955 /**
2956  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2957  * @inode:  the inode which may have a disconnected dentry
2958  * @dentry: a negative dentry which we want to point to the inode.
2959  *
2960  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2961  * place of the given dentry and return it, else simply d_add the inode
2962  * to the dentry and return NULL.
2963  *
2964  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2965  * we should error out: directories can't have multiple aliases.
2966  *
2967  * This is needed in the lookup routine of any filesystem that is exportable
2968  * (via knfsd) so that we can build dcache paths to directories effectively.
2969  *
2970  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2971  * is returned.  This matches the expected return value of ->lookup.
2972  *
2973  * Cluster filesystems may call this function with a negative, hashed dentry.
2974  * In that case, we know that the inode will be a regular file, and also this
2975  * will only occur during atomic_open. So we need to check for the dentry
2976  * being already hashed only in the final case.
2977  */
2978 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2979 {
2980 	if (IS_ERR(inode))
2981 		return ERR_CAST(inode);
2982 
2983 	BUG_ON(!d_unhashed(dentry));
2984 
2985 	if (!inode)
2986 		goto out;
2987 
2988 	security_d_instantiate(dentry, inode);
2989 	spin_lock(&inode->i_lock);
2990 	if (S_ISDIR(inode->i_mode)) {
2991 		struct dentry *new = __d_find_any_alias(inode);
2992 		if (unlikely(new)) {
2993 			/* The reference to new ensures it remains an alias */
2994 			spin_unlock(&inode->i_lock);
2995 			write_seqlock(&rename_lock);
2996 			if (unlikely(d_ancestor(new, dentry))) {
2997 				write_sequnlock(&rename_lock);
2998 				dput(new);
2999 				new = ERR_PTR(-ELOOP);
3000 				pr_warn_ratelimited(
3001 					"VFS: Lookup of '%s' in %s %s"
3002 					" would have caused loop\n",
3003 					dentry->d_name.name,
3004 					inode->i_sb->s_type->name,
3005 					inode->i_sb->s_id);
3006 			} else if (!IS_ROOT(new)) {
3007 				int err = __d_unalias(inode, dentry, new);
3008 				write_sequnlock(&rename_lock);
3009 				if (err) {
3010 					dput(new);
3011 					new = ERR_PTR(err);
3012 				}
3013 			} else {
3014 				__d_move(new, dentry, false);
3015 				write_sequnlock(&rename_lock);
3016 			}
3017 			iput(inode);
3018 			return new;
3019 		}
3020 	}
3021 out:
3022 	__d_add(dentry, inode);
3023 	return NULL;
3024 }
3025 EXPORT_SYMBOL(d_splice_alias);
3026 
3027 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3028 {
3029 	*buflen -= namelen;
3030 	if (*buflen < 0)
3031 		return -ENAMETOOLONG;
3032 	*buffer -= namelen;
3033 	memcpy(*buffer, str, namelen);
3034 	return 0;
3035 }
3036 
3037 /**
3038  * prepend_name - prepend a pathname in front of current buffer pointer
3039  * @buffer: buffer pointer
3040  * @buflen: allocated length of the buffer
3041  * @name:   name string and length qstr structure
3042  *
3043  * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to
3044  * make sure that either the old or the new name pointer and length are
3045  * fetched. However, there may be mismatch between length and pointer.
3046  * The length cannot be trusted, we need to copy it byte-by-byte until
3047  * the length is reached or a null byte is found. It also prepends "/" at
3048  * the beginning of the name. The sequence number check at the caller will
3049  * retry it again when a d_move() does happen. So any garbage in the buffer
3050  * due to mismatched pointer and length will be discarded.
3051  *
3052  * Data dependency barrier is needed to make sure that we see that terminating
3053  * NUL.  Alpha strikes again, film at 11...
3054  */
3055 static int prepend_name(char **buffer, int *buflen, const struct qstr *name)
3056 {
3057 	const char *dname = READ_ONCE(name->name);
3058 	u32 dlen = READ_ONCE(name->len);
3059 	char *p;
3060 
3061 	smp_read_barrier_depends();
3062 
3063 	*buflen -= dlen + 1;
3064 	if (*buflen < 0)
3065 		return -ENAMETOOLONG;
3066 	p = *buffer -= dlen + 1;
3067 	*p++ = '/';
3068 	while (dlen--) {
3069 		char c = *dname++;
3070 		if (!c)
3071 			break;
3072 		*p++ = c;
3073 	}
3074 	return 0;
3075 }
3076 
3077 /**
3078  * prepend_path - Prepend path string to a buffer
3079  * @path: the dentry/vfsmount to report
3080  * @root: root vfsmnt/dentry
3081  * @buffer: pointer to the end of the buffer
3082  * @buflen: pointer to buffer length
3083  *
3084  * The function will first try to write out the pathname without taking any
3085  * lock other than the RCU read lock to make sure that dentries won't go away.
3086  * It only checks the sequence number of the global rename_lock as any change
3087  * in the dentry's d_seq will be preceded by changes in the rename_lock
3088  * sequence number. If the sequence number had been changed, it will restart
3089  * the whole pathname back-tracing sequence again by taking the rename_lock.
3090  * In this case, there is no need to take the RCU read lock as the recursive
3091  * parent pointer references will keep the dentry chain alive as long as no
3092  * rename operation is performed.
3093  */
3094 static int prepend_path(const struct path *path,
3095 			const struct path *root,
3096 			char **buffer, int *buflen)
3097 {
3098 	struct dentry *dentry;
3099 	struct vfsmount *vfsmnt;
3100 	struct mount *mnt;
3101 	int error = 0;
3102 	unsigned seq, m_seq = 0;
3103 	char *bptr;
3104 	int blen;
3105 
3106 	rcu_read_lock();
3107 restart_mnt:
3108 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3109 	seq = 0;
3110 	rcu_read_lock();
3111 restart:
3112 	bptr = *buffer;
3113 	blen = *buflen;
3114 	error = 0;
3115 	dentry = path->dentry;
3116 	vfsmnt = path->mnt;
3117 	mnt = real_mount(vfsmnt);
3118 	read_seqbegin_or_lock(&rename_lock, &seq);
3119 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3120 		struct dentry * parent;
3121 
3122 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3123 			struct mount *parent = READ_ONCE(mnt->mnt_parent);
3124 			/* Escaped? */
3125 			if (dentry != vfsmnt->mnt_root) {
3126 				bptr = *buffer;
3127 				blen = *buflen;
3128 				error = 3;
3129 				break;
3130 			}
3131 			/* Global root? */
3132 			if (mnt != parent) {
3133 				dentry = READ_ONCE(mnt->mnt_mountpoint);
3134 				mnt = parent;
3135 				vfsmnt = &mnt->mnt;
3136 				continue;
3137 			}
3138 			if (!error)
3139 				error = is_mounted(vfsmnt) ? 1 : 2;
3140 			break;
3141 		}
3142 		parent = dentry->d_parent;
3143 		prefetch(parent);
3144 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3145 		if (error)
3146 			break;
3147 
3148 		dentry = parent;
3149 	}
3150 	if (!(seq & 1))
3151 		rcu_read_unlock();
3152 	if (need_seqretry(&rename_lock, seq)) {
3153 		seq = 1;
3154 		goto restart;
3155 	}
3156 	done_seqretry(&rename_lock, seq);
3157 
3158 	if (!(m_seq & 1))
3159 		rcu_read_unlock();
3160 	if (need_seqretry(&mount_lock, m_seq)) {
3161 		m_seq = 1;
3162 		goto restart_mnt;
3163 	}
3164 	done_seqretry(&mount_lock, m_seq);
3165 
3166 	if (error >= 0 && bptr == *buffer) {
3167 		if (--blen < 0)
3168 			error = -ENAMETOOLONG;
3169 		else
3170 			*--bptr = '/';
3171 	}
3172 	*buffer = bptr;
3173 	*buflen = blen;
3174 	return error;
3175 }
3176 
3177 /**
3178  * __d_path - return the path of a dentry
3179  * @path: the dentry/vfsmount to report
3180  * @root: root vfsmnt/dentry
3181  * @buf: buffer to return value in
3182  * @buflen: buffer length
3183  *
3184  * Convert a dentry into an ASCII path name.
3185  *
3186  * Returns a pointer into the buffer or an error code if the
3187  * path was too long.
3188  *
3189  * "buflen" should be positive.
3190  *
3191  * If the path is not reachable from the supplied root, return %NULL.
3192  */
3193 char *__d_path(const struct path *path,
3194 	       const struct path *root,
3195 	       char *buf, int buflen)
3196 {
3197 	char *res = buf + buflen;
3198 	int error;
3199 
3200 	prepend(&res, &buflen, "\0", 1);
3201 	error = prepend_path(path, root, &res, &buflen);
3202 
3203 	if (error < 0)
3204 		return ERR_PTR(error);
3205 	if (error > 0)
3206 		return NULL;
3207 	return res;
3208 }
3209 
3210 char *d_absolute_path(const struct path *path,
3211 	       char *buf, int buflen)
3212 {
3213 	struct path root = {};
3214 	char *res = buf + buflen;
3215 	int error;
3216 
3217 	prepend(&res, &buflen, "\0", 1);
3218 	error = prepend_path(path, &root, &res, &buflen);
3219 
3220 	if (error > 1)
3221 		error = -EINVAL;
3222 	if (error < 0)
3223 		return ERR_PTR(error);
3224 	return res;
3225 }
3226 
3227 /*
3228  * same as __d_path but appends "(deleted)" for unlinked files.
3229  */
3230 static int path_with_deleted(const struct path *path,
3231 			     const struct path *root,
3232 			     char **buf, int *buflen)
3233 {
3234 	prepend(buf, buflen, "\0", 1);
3235 	if (d_unlinked(path->dentry)) {
3236 		int error = prepend(buf, buflen, " (deleted)", 10);
3237 		if (error)
3238 			return error;
3239 	}
3240 
3241 	return prepend_path(path, root, buf, buflen);
3242 }
3243 
3244 static int prepend_unreachable(char **buffer, int *buflen)
3245 {
3246 	return prepend(buffer, buflen, "(unreachable)", 13);
3247 }
3248 
3249 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3250 {
3251 	unsigned seq;
3252 
3253 	do {
3254 		seq = read_seqcount_begin(&fs->seq);
3255 		*root = fs->root;
3256 	} while (read_seqcount_retry(&fs->seq, seq));
3257 }
3258 
3259 /**
3260  * d_path - return the path of a dentry
3261  * @path: path to report
3262  * @buf: buffer to return value in
3263  * @buflen: buffer length
3264  *
3265  * Convert a dentry into an ASCII path name. If the entry has been deleted
3266  * the string " (deleted)" is appended. Note that this is ambiguous.
3267  *
3268  * Returns a pointer into the buffer or an error code if the path was
3269  * too long. Note: Callers should use the returned pointer, not the passed
3270  * in buffer, to use the name! The implementation often starts at an offset
3271  * into the buffer, and may leave 0 bytes at the start.
3272  *
3273  * "buflen" should be positive.
3274  */
3275 char *d_path(const struct path *path, char *buf, int buflen)
3276 {
3277 	char *res = buf + buflen;
3278 	struct path root;
3279 	int error;
3280 
3281 	/*
3282 	 * We have various synthetic filesystems that never get mounted.  On
3283 	 * these filesystems dentries are never used for lookup purposes, and
3284 	 * thus don't need to be hashed.  They also don't need a name until a
3285 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3286 	 * below allows us to generate a name for these objects on demand:
3287 	 *
3288 	 * Some pseudo inodes are mountable.  When they are mounted
3289 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3290 	 * and instead have d_path return the mounted path.
3291 	 */
3292 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3293 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3294 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3295 
3296 	rcu_read_lock();
3297 	get_fs_root_rcu(current->fs, &root);
3298 	error = path_with_deleted(path, &root, &res, &buflen);
3299 	rcu_read_unlock();
3300 
3301 	if (error < 0)
3302 		res = ERR_PTR(error);
3303 	return res;
3304 }
3305 EXPORT_SYMBOL(d_path);
3306 
3307 /*
3308  * Helper function for dentry_operations.d_dname() members
3309  */
3310 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3311 			const char *fmt, ...)
3312 {
3313 	va_list args;
3314 	char temp[64];
3315 	int sz;
3316 
3317 	va_start(args, fmt);
3318 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3319 	va_end(args);
3320 
3321 	if (sz > sizeof(temp) || sz > buflen)
3322 		return ERR_PTR(-ENAMETOOLONG);
3323 
3324 	buffer += buflen - sz;
3325 	return memcpy(buffer, temp, sz);
3326 }
3327 
3328 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3329 {
3330 	char *end = buffer + buflen;
3331 	/* these dentries are never renamed, so d_lock is not needed */
3332 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3333 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3334 	    prepend(&end, &buflen, "/", 1))
3335 		end = ERR_PTR(-ENAMETOOLONG);
3336 	return end;
3337 }
3338 EXPORT_SYMBOL(simple_dname);
3339 
3340 /*
3341  * Write full pathname from the root of the filesystem into the buffer.
3342  */
3343 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3344 {
3345 	struct dentry *dentry;
3346 	char *end, *retval;
3347 	int len, seq = 0;
3348 	int error = 0;
3349 
3350 	if (buflen < 2)
3351 		goto Elong;
3352 
3353 	rcu_read_lock();
3354 restart:
3355 	dentry = d;
3356 	end = buf + buflen;
3357 	len = buflen;
3358 	prepend(&end, &len, "\0", 1);
3359 	/* Get '/' right */
3360 	retval = end-1;
3361 	*retval = '/';
3362 	read_seqbegin_or_lock(&rename_lock, &seq);
3363 	while (!IS_ROOT(dentry)) {
3364 		struct dentry *parent = dentry->d_parent;
3365 
3366 		prefetch(parent);
3367 		error = prepend_name(&end, &len, &dentry->d_name);
3368 		if (error)
3369 			break;
3370 
3371 		retval = end;
3372 		dentry = parent;
3373 	}
3374 	if (!(seq & 1))
3375 		rcu_read_unlock();
3376 	if (need_seqretry(&rename_lock, seq)) {
3377 		seq = 1;
3378 		goto restart;
3379 	}
3380 	done_seqretry(&rename_lock, seq);
3381 	if (error)
3382 		goto Elong;
3383 	return retval;
3384 Elong:
3385 	return ERR_PTR(-ENAMETOOLONG);
3386 }
3387 
3388 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3389 {
3390 	return __dentry_path(dentry, buf, buflen);
3391 }
3392 EXPORT_SYMBOL(dentry_path_raw);
3393 
3394 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3395 {
3396 	char *p = NULL;
3397 	char *retval;
3398 
3399 	if (d_unlinked(dentry)) {
3400 		p = buf + buflen;
3401 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3402 			goto Elong;
3403 		buflen++;
3404 	}
3405 	retval = __dentry_path(dentry, buf, buflen);
3406 	if (!IS_ERR(retval) && p)
3407 		*p = '/';	/* restore '/' overriden with '\0' */
3408 	return retval;
3409 Elong:
3410 	return ERR_PTR(-ENAMETOOLONG);
3411 }
3412 
3413 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3414 				    struct path *pwd)
3415 {
3416 	unsigned seq;
3417 
3418 	do {
3419 		seq = read_seqcount_begin(&fs->seq);
3420 		*root = fs->root;
3421 		*pwd = fs->pwd;
3422 	} while (read_seqcount_retry(&fs->seq, seq));
3423 }
3424 
3425 /*
3426  * NOTE! The user-level library version returns a
3427  * character pointer. The kernel system call just
3428  * returns the length of the buffer filled (which
3429  * includes the ending '\0' character), or a negative
3430  * error value. So libc would do something like
3431  *
3432  *	char *getcwd(char * buf, size_t size)
3433  *	{
3434  *		int retval;
3435  *
3436  *		retval = sys_getcwd(buf, size);
3437  *		if (retval >= 0)
3438  *			return buf;
3439  *		errno = -retval;
3440  *		return NULL;
3441  *	}
3442  */
3443 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3444 {
3445 	int error;
3446 	struct path pwd, root;
3447 	char *page = __getname();
3448 
3449 	if (!page)
3450 		return -ENOMEM;
3451 
3452 	rcu_read_lock();
3453 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3454 
3455 	error = -ENOENT;
3456 	if (!d_unlinked(pwd.dentry)) {
3457 		unsigned long len;
3458 		char *cwd = page + PATH_MAX;
3459 		int buflen = PATH_MAX;
3460 
3461 		prepend(&cwd, &buflen, "\0", 1);
3462 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3463 		rcu_read_unlock();
3464 
3465 		if (error < 0)
3466 			goto out;
3467 
3468 		/* Unreachable from current root */
3469 		if (error > 0) {
3470 			error = prepend_unreachable(&cwd, &buflen);
3471 			if (error)
3472 				goto out;
3473 		}
3474 
3475 		error = -ERANGE;
3476 		len = PATH_MAX + page - cwd;
3477 		if (len <= size) {
3478 			error = len;
3479 			if (copy_to_user(buf, cwd, len))
3480 				error = -EFAULT;
3481 		}
3482 	} else {
3483 		rcu_read_unlock();
3484 	}
3485 
3486 out:
3487 	__putname(page);
3488 	return error;
3489 }
3490 
3491 /*
3492  * Test whether new_dentry is a subdirectory of old_dentry.
3493  *
3494  * Trivially implemented using the dcache structure
3495  */
3496 
3497 /**
3498  * is_subdir - is new dentry a subdirectory of old_dentry
3499  * @new_dentry: new dentry
3500  * @old_dentry: old dentry
3501  *
3502  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3503  * Returns false otherwise.
3504  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3505  */
3506 
3507 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3508 {
3509 	bool result;
3510 	unsigned seq;
3511 
3512 	if (new_dentry == old_dentry)
3513 		return true;
3514 
3515 	do {
3516 		/* for restarting inner loop in case of seq retry */
3517 		seq = read_seqbegin(&rename_lock);
3518 		/*
3519 		 * Need rcu_readlock to protect against the d_parent trashing
3520 		 * due to d_move
3521 		 */
3522 		rcu_read_lock();
3523 		if (d_ancestor(old_dentry, new_dentry))
3524 			result = true;
3525 		else
3526 			result = false;
3527 		rcu_read_unlock();
3528 	} while (read_seqretry(&rename_lock, seq));
3529 
3530 	return result;
3531 }
3532 
3533 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3534 {
3535 	struct dentry *root = data;
3536 	if (dentry != root) {
3537 		if (d_unhashed(dentry) || !dentry->d_inode)
3538 			return D_WALK_SKIP;
3539 
3540 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3541 			dentry->d_flags |= DCACHE_GENOCIDE;
3542 			dentry->d_lockref.count--;
3543 		}
3544 	}
3545 	return D_WALK_CONTINUE;
3546 }
3547 
3548 void d_genocide(struct dentry *parent)
3549 {
3550 	d_walk(parent, parent, d_genocide_kill, NULL);
3551 }
3552 
3553 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3554 {
3555 	inode_dec_link_count(inode);
3556 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3557 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3558 		!d_unlinked(dentry));
3559 	spin_lock(&dentry->d_parent->d_lock);
3560 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3561 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3562 				(unsigned long long)inode->i_ino);
3563 	spin_unlock(&dentry->d_lock);
3564 	spin_unlock(&dentry->d_parent->d_lock);
3565 	d_instantiate(dentry, inode);
3566 }
3567 EXPORT_SYMBOL(d_tmpfile);
3568 
3569 static __initdata unsigned long dhash_entries;
3570 static int __init set_dhash_entries(char *str)
3571 {
3572 	if (!str)
3573 		return 0;
3574 	dhash_entries = simple_strtoul(str, &str, 0);
3575 	return 1;
3576 }
3577 __setup("dhash_entries=", set_dhash_entries);
3578 
3579 static void __init dcache_init_early(void)
3580 {
3581 	/* If hashes are distributed across NUMA nodes, defer
3582 	 * hash allocation until vmalloc space is available.
3583 	 */
3584 	if (hashdist)
3585 		return;
3586 
3587 	dentry_hashtable =
3588 		alloc_large_system_hash("Dentry cache",
3589 					sizeof(struct hlist_bl_head),
3590 					dhash_entries,
3591 					13,
3592 					HASH_EARLY | HASH_ZERO,
3593 					&d_hash_shift,
3594 					&d_hash_mask,
3595 					0,
3596 					0);
3597 }
3598 
3599 static void __init dcache_init(void)
3600 {
3601 	/*
3602 	 * A constructor could be added for stable state like the lists,
3603 	 * but it is probably not worth it because of the cache nature
3604 	 * of the dcache.
3605 	 */
3606 	dentry_cache = KMEM_CACHE(dentry,
3607 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3608 
3609 	/* Hash may have been set up in dcache_init_early */
3610 	if (!hashdist)
3611 		return;
3612 
3613 	dentry_hashtable =
3614 		alloc_large_system_hash("Dentry cache",
3615 					sizeof(struct hlist_bl_head),
3616 					dhash_entries,
3617 					13,
3618 					HASH_ZERO,
3619 					&d_hash_shift,
3620 					&d_hash_mask,
3621 					0,
3622 					0);
3623 }
3624 
3625 /* SLAB cache for __getname() consumers */
3626 struct kmem_cache *names_cachep __read_mostly;
3627 EXPORT_SYMBOL(names_cachep);
3628 
3629 EXPORT_SYMBOL(d_genocide);
3630 
3631 void __init vfs_caches_init_early(void)
3632 {
3633 	int i;
3634 
3635 	for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3636 		INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3637 
3638 	dcache_init_early();
3639 	inode_init_early();
3640 }
3641 
3642 void __init vfs_caches_init(void)
3643 {
3644 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3645 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3646 
3647 	dcache_init();
3648 	inode_init();
3649 	files_init();
3650 	files_maxfiles_init();
3651 	mnt_init();
3652 	bdev_cache_init();
3653 	chrdev_init();
3654 }
3655