1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include "internal.h" 41 #include "mount.h" 42 43 /* 44 * Usage: 45 * dcache->d_inode->i_lock protects: 46 * - i_dentry, d_alias, d_inode of aliases 47 * dcache_hash_bucket lock protects: 48 * - the dcache hash table 49 * s_anon bl list spinlock protects: 50 * - the s_anon list (see __d_drop) 51 * dcache_lru_lock protects: 52 * - the dcache lru lists and counters 53 * d_lock protects: 54 * - d_flags 55 * - d_name 56 * - d_lru 57 * - d_count 58 * - d_unhashed() 59 * - d_parent and d_subdirs 60 * - childrens' d_child and d_parent 61 * - d_alias, d_inode 62 * 63 * Ordering: 64 * dentry->d_inode->i_lock 65 * dentry->d_lock 66 * dcache_lru_lock 67 * dcache_hash_bucket lock 68 * s_anon lock 69 * 70 * If there is an ancestor relationship: 71 * dentry->d_parent->...->d_parent->d_lock 72 * ... 73 * dentry->d_parent->d_lock 74 * dentry->d_lock 75 * 76 * If no ancestor relationship: 77 * if (dentry1 < dentry2) 78 * dentry1->d_lock 79 * dentry2->d_lock 80 */ 81 int sysctl_vfs_cache_pressure __read_mostly = 100; 82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 83 84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock); 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 #define D_HASHBITS d_hash_shift 100 #define D_HASHMASK d_hash_mask 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 hash = hash + (hash >> D_HASHBITS); 112 return dentry_hashtable + (hash & D_HASHMASK); 113 } 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(unsigned int, nr_dentry); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 static int get_nr_dentry(void) 124 { 125 int i; 126 int sum = 0; 127 for_each_possible_cpu(i) 128 sum += per_cpu(nr_dentry, i); 129 return sum < 0 ? 0 : sum; 130 } 131 132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 133 size_t *lenp, loff_t *ppos) 134 { 135 dentry_stat.nr_dentry = get_nr_dentry(); 136 return proc_dointvec(table, write, buffer, lenp, ppos); 137 } 138 #endif 139 140 /* 141 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 142 * The strings are both count bytes long, and count is non-zero. 143 */ 144 static inline int dentry_cmp(const unsigned char *cs, size_t scount, 145 const unsigned char *ct, size_t tcount) 146 { 147 #ifdef CONFIG_DCACHE_WORD_ACCESS 148 unsigned long a,b,mask; 149 150 if (unlikely(scount != tcount)) 151 return 1; 152 153 for (;;) { 154 a = *(unsigned long *)cs; 155 b = *(unsigned long *)ct; 156 if (tcount < sizeof(unsigned long)) 157 break; 158 if (unlikely(a != b)) 159 return 1; 160 cs += sizeof(unsigned long); 161 ct += sizeof(unsigned long); 162 tcount -= sizeof(unsigned long); 163 if (!tcount) 164 return 0; 165 } 166 mask = ~(~0ul << tcount*8); 167 return unlikely(!!((a ^ b) & mask)); 168 #else 169 if (scount != tcount) 170 return 1; 171 172 do { 173 if (*cs != *ct) 174 return 1; 175 cs++; 176 ct++; 177 tcount--; 178 } while (tcount); 179 return 0; 180 #endif 181 } 182 183 static void __d_free(struct rcu_head *head) 184 { 185 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 186 187 WARN_ON(!list_empty(&dentry->d_alias)); 188 if (dname_external(dentry)) 189 kfree(dentry->d_name.name); 190 kmem_cache_free(dentry_cache, dentry); 191 } 192 193 /* 194 * no locks, please. 195 */ 196 static void d_free(struct dentry *dentry) 197 { 198 BUG_ON(dentry->d_count); 199 this_cpu_dec(nr_dentry); 200 if (dentry->d_op && dentry->d_op->d_release) 201 dentry->d_op->d_release(dentry); 202 203 /* if dentry was never visible to RCU, immediate free is OK */ 204 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 205 __d_free(&dentry->d_u.d_rcu); 206 else 207 call_rcu(&dentry->d_u.d_rcu, __d_free); 208 } 209 210 /** 211 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 212 * @dentry: the target dentry 213 * After this call, in-progress rcu-walk path lookup will fail. This 214 * should be called after unhashing, and after changing d_inode (if 215 * the dentry has not already been unhashed). 216 */ 217 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 218 { 219 assert_spin_locked(&dentry->d_lock); 220 /* Go through a barrier */ 221 write_seqcount_barrier(&dentry->d_seq); 222 } 223 224 /* 225 * Release the dentry's inode, using the filesystem 226 * d_iput() operation if defined. Dentry has no refcount 227 * and is unhashed. 228 */ 229 static void dentry_iput(struct dentry * dentry) 230 __releases(dentry->d_lock) 231 __releases(dentry->d_inode->i_lock) 232 { 233 struct inode *inode = dentry->d_inode; 234 if (inode) { 235 dentry->d_inode = NULL; 236 list_del_init(&dentry->d_alias); 237 spin_unlock(&dentry->d_lock); 238 spin_unlock(&inode->i_lock); 239 if (!inode->i_nlink) 240 fsnotify_inoderemove(inode); 241 if (dentry->d_op && dentry->d_op->d_iput) 242 dentry->d_op->d_iput(dentry, inode); 243 else 244 iput(inode); 245 } else { 246 spin_unlock(&dentry->d_lock); 247 } 248 } 249 250 /* 251 * Release the dentry's inode, using the filesystem 252 * d_iput() operation if defined. dentry remains in-use. 253 */ 254 static void dentry_unlink_inode(struct dentry * dentry) 255 __releases(dentry->d_lock) 256 __releases(dentry->d_inode->i_lock) 257 { 258 struct inode *inode = dentry->d_inode; 259 dentry->d_inode = NULL; 260 list_del_init(&dentry->d_alias); 261 dentry_rcuwalk_barrier(dentry); 262 spin_unlock(&dentry->d_lock); 263 spin_unlock(&inode->i_lock); 264 if (!inode->i_nlink) 265 fsnotify_inoderemove(inode); 266 if (dentry->d_op && dentry->d_op->d_iput) 267 dentry->d_op->d_iput(dentry, inode); 268 else 269 iput(inode); 270 } 271 272 /* 273 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held. 274 */ 275 static void dentry_lru_add(struct dentry *dentry) 276 { 277 if (list_empty(&dentry->d_lru)) { 278 spin_lock(&dcache_lru_lock); 279 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 280 dentry->d_sb->s_nr_dentry_unused++; 281 dentry_stat.nr_unused++; 282 spin_unlock(&dcache_lru_lock); 283 } 284 } 285 286 static void __dentry_lru_del(struct dentry *dentry) 287 { 288 list_del_init(&dentry->d_lru); 289 dentry->d_flags &= ~DCACHE_SHRINK_LIST; 290 dentry->d_sb->s_nr_dentry_unused--; 291 dentry_stat.nr_unused--; 292 } 293 294 /* 295 * Remove a dentry with references from the LRU. 296 */ 297 static void dentry_lru_del(struct dentry *dentry) 298 { 299 if (!list_empty(&dentry->d_lru)) { 300 spin_lock(&dcache_lru_lock); 301 __dentry_lru_del(dentry); 302 spin_unlock(&dcache_lru_lock); 303 } 304 } 305 306 /* 307 * Remove a dentry that is unreferenced and about to be pruned 308 * (unhashed and destroyed) from the LRU, and inform the file system. 309 * This wrapper should be called _prior_ to unhashing a victim dentry. 310 */ 311 static void dentry_lru_prune(struct dentry *dentry) 312 { 313 if (!list_empty(&dentry->d_lru)) { 314 if (dentry->d_flags & DCACHE_OP_PRUNE) 315 dentry->d_op->d_prune(dentry); 316 317 spin_lock(&dcache_lru_lock); 318 __dentry_lru_del(dentry); 319 spin_unlock(&dcache_lru_lock); 320 } 321 } 322 323 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list) 324 { 325 spin_lock(&dcache_lru_lock); 326 if (list_empty(&dentry->d_lru)) { 327 list_add_tail(&dentry->d_lru, list); 328 dentry->d_sb->s_nr_dentry_unused++; 329 dentry_stat.nr_unused++; 330 } else { 331 list_move_tail(&dentry->d_lru, list); 332 } 333 spin_unlock(&dcache_lru_lock); 334 } 335 336 /** 337 * d_kill - kill dentry and return parent 338 * @dentry: dentry to kill 339 * @parent: parent dentry 340 * 341 * The dentry must already be unhashed and removed from the LRU. 342 * 343 * If this is the root of the dentry tree, return NULL. 344 * 345 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 346 * d_kill. 347 */ 348 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 349 __releases(dentry->d_lock) 350 __releases(parent->d_lock) 351 __releases(dentry->d_inode->i_lock) 352 { 353 list_del(&dentry->d_u.d_child); 354 /* 355 * Inform try_to_ascend() that we are no longer attached to the 356 * dentry tree 357 */ 358 dentry->d_flags |= DCACHE_DISCONNECTED; 359 if (parent) 360 spin_unlock(&parent->d_lock); 361 dentry_iput(dentry); 362 /* 363 * dentry_iput drops the locks, at which point nobody (except 364 * transient RCU lookups) can reach this dentry. 365 */ 366 d_free(dentry); 367 return parent; 368 } 369 370 /* 371 * Unhash a dentry without inserting an RCU walk barrier or checking that 372 * dentry->d_lock is locked. The caller must take care of that, if 373 * appropriate. 374 */ 375 static void __d_shrink(struct dentry *dentry) 376 { 377 if (!d_unhashed(dentry)) { 378 struct hlist_bl_head *b; 379 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 380 b = &dentry->d_sb->s_anon; 381 else 382 b = d_hash(dentry->d_parent, dentry->d_name.hash); 383 384 hlist_bl_lock(b); 385 __hlist_bl_del(&dentry->d_hash); 386 dentry->d_hash.pprev = NULL; 387 hlist_bl_unlock(b); 388 } 389 } 390 391 /** 392 * d_drop - drop a dentry 393 * @dentry: dentry to drop 394 * 395 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 396 * be found through a VFS lookup any more. Note that this is different from 397 * deleting the dentry - d_delete will try to mark the dentry negative if 398 * possible, giving a successful _negative_ lookup, while d_drop will 399 * just make the cache lookup fail. 400 * 401 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 402 * reason (NFS timeouts or autofs deletes). 403 * 404 * __d_drop requires dentry->d_lock. 405 */ 406 void __d_drop(struct dentry *dentry) 407 { 408 if (!d_unhashed(dentry)) { 409 __d_shrink(dentry); 410 dentry_rcuwalk_barrier(dentry); 411 } 412 } 413 EXPORT_SYMBOL(__d_drop); 414 415 void d_drop(struct dentry *dentry) 416 { 417 spin_lock(&dentry->d_lock); 418 __d_drop(dentry); 419 spin_unlock(&dentry->d_lock); 420 } 421 EXPORT_SYMBOL(d_drop); 422 423 /* 424 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag 425 * @dentry: dentry to drop 426 * 427 * This is called when we do a lookup on a placeholder dentry that needed to be 428 * looked up. The dentry should have been hashed in order for it to be found by 429 * the lookup code, but now needs to be unhashed while we do the actual lookup 430 * and clear the DCACHE_NEED_LOOKUP flag. 431 */ 432 void d_clear_need_lookup(struct dentry *dentry) 433 { 434 spin_lock(&dentry->d_lock); 435 __d_drop(dentry); 436 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 437 spin_unlock(&dentry->d_lock); 438 } 439 EXPORT_SYMBOL(d_clear_need_lookup); 440 441 /* 442 * Finish off a dentry we've decided to kill. 443 * dentry->d_lock must be held, returns with it unlocked. 444 * If ref is non-zero, then decrement the refcount too. 445 * Returns dentry requiring refcount drop, or NULL if we're done. 446 */ 447 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref) 448 __releases(dentry->d_lock) 449 { 450 struct inode *inode; 451 struct dentry *parent; 452 453 inode = dentry->d_inode; 454 if (inode && !spin_trylock(&inode->i_lock)) { 455 relock: 456 spin_unlock(&dentry->d_lock); 457 cpu_relax(); 458 return dentry; /* try again with same dentry */ 459 } 460 if (IS_ROOT(dentry)) 461 parent = NULL; 462 else 463 parent = dentry->d_parent; 464 if (parent && !spin_trylock(&parent->d_lock)) { 465 if (inode) 466 spin_unlock(&inode->i_lock); 467 goto relock; 468 } 469 470 if (ref) 471 dentry->d_count--; 472 /* 473 * if dentry was on the d_lru list delete it from there. 474 * inform the fs via d_prune that this dentry is about to be 475 * unhashed and destroyed. 476 */ 477 dentry_lru_prune(dentry); 478 /* if it was on the hash then remove it */ 479 __d_drop(dentry); 480 return d_kill(dentry, parent); 481 } 482 483 /* 484 * This is dput 485 * 486 * This is complicated by the fact that we do not want to put 487 * dentries that are no longer on any hash chain on the unused 488 * list: we'd much rather just get rid of them immediately. 489 * 490 * However, that implies that we have to traverse the dentry 491 * tree upwards to the parents which might _also_ now be 492 * scheduled for deletion (it may have been only waiting for 493 * its last child to go away). 494 * 495 * This tail recursion is done by hand as we don't want to depend 496 * on the compiler to always get this right (gcc generally doesn't). 497 * Real recursion would eat up our stack space. 498 */ 499 500 /* 501 * dput - release a dentry 502 * @dentry: dentry to release 503 * 504 * Release a dentry. This will drop the usage count and if appropriate 505 * call the dentry unlink method as well as removing it from the queues and 506 * releasing its resources. If the parent dentries were scheduled for release 507 * they too may now get deleted. 508 */ 509 void dput(struct dentry *dentry) 510 { 511 if (!dentry) 512 return; 513 514 repeat: 515 if (dentry->d_count == 1) 516 might_sleep(); 517 spin_lock(&dentry->d_lock); 518 BUG_ON(!dentry->d_count); 519 if (dentry->d_count > 1) { 520 dentry->d_count--; 521 spin_unlock(&dentry->d_lock); 522 return; 523 } 524 525 if (dentry->d_flags & DCACHE_OP_DELETE) { 526 if (dentry->d_op->d_delete(dentry)) 527 goto kill_it; 528 } 529 530 /* Unreachable? Get rid of it */ 531 if (d_unhashed(dentry)) 532 goto kill_it; 533 534 /* 535 * If this dentry needs lookup, don't set the referenced flag so that it 536 * is more likely to be cleaned up by the dcache shrinker in case of 537 * memory pressure. 538 */ 539 if (!d_need_lookup(dentry)) 540 dentry->d_flags |= DCACHE_REFERENCED; 541 dentry_lru_add(dentry); 542 543 dentry->d_count--; 544 spin_unlock(&dentry->d_lock); 545 return; 546 547 kill_it: 548 dentry = dentry_kill(dentry, 1); 549 if (dentry) 550 goto repeat; 551 } 552 EXPORT_SYMBOL(dput); 553 554 /** 555 * d_invalidate - invalidate a dentry 556 * @dentry: dentry to invalidate 557 * 558 * Try to invalidate the dentry if it turns out to be 559 * possible. If there are other dentries that can be 560 * reached through this one we can't delete it and we 561 * return -EBUSY. On success we return 0. 562 * 563 * no dcache lock. 564 */ 565 566 int d_invalidate(struct dentry * dentry) 567 { 568 /* 569 * If it's already been dropped, return OK. 570 */ 571 spin_lock(&dentry->d_lock); 572 if (d_unhashed(dentry)) { 573 spin_unlock(&dentry->d_lock); 574 return 0; 575 } 576 /* 577 * Check whether to do a partial shrink_dcache 578 * to get rid of unused child entries. 579 */ 580 if (!list_empty(&dentry->d_subdirs)) { 581 spin_unlock(&dentry->d_lock); 582 shrink_dcache_parent(dentry); 583 spin_lock(&dentry->d_lock); 584 } 585 586 /* 587 * Somebody else still using it? 588 * 589 * If it's a directory, we can't drop it 590 * for fear of somebody re-populating it 591 * with children (even though dropping it 592 * would make it unreachable from the root, 593 * we might still populate it if it was a 594 * working directory or similar). 595 * We also need to leave mountpoints alone, 596 * directory or not. 597 */ 598 if (dentry->d_count > 1 && dentry->d_inode) { 599 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 600 spin_unlock(&dentry->d_lock); 601 return -EBUSY; 602 } 603 } 604 605 __d_drop(dentry); 606 spin_unlock(&dentry->d_lock); 607 return 0; 608 } 609 EXPORT_SYMBOL(d_invalidate); 610 611 /* This must be called with d_lock held */ 612 static inline void __dget_dlock(struct dentry *dentry) 613 { 614 dentry->d_count++; 615 } 616 617 static inline void __dget(struct dentry *dentry) 618 { 619 spin_lock(&dentry->d_lock); 620 __dget_dlock(dentry); 621 spin_unlock(&dentry->d_lock); 622 } 623 624 struct dentry *dget_parent(struct dentry *dentry) 625 { 626 struct dentry *ret; 627 628 repeat: 629 /* 630 * Don't need rcu_dereference because we re-check it was correct under 631 * the lock. 632 */ 633 rcu_read_lock(); 634 ret = dentry->d_parent; 635 spin_lock(&ret->d_lock); 636 if (unlikely(ret != dentry->d_parent)) { 637 spin_unlock(&ret->d_lock); 638 rcu_read_unlock(); 639 goto repeat; 640 } 641 rcu_read_unlock(); 642 BUG_ON(!ret->d_count); 643 ret->d_count++; 644 spin_unlock(&ret->d_lock); 645 return ret; 646 } 647 EXPORT_SYMBOL(dget_parent); 648 649 /** 650 * d_find_alias - grab a hashed alias of inode 651 * @inode: inode in question 652 * @want_discon: flag, used by d_splice_alias, to request 653 * that only a DISCONNECTED alias be returned. 654 * 655 * If inode has a hashed alias, or is a directory and has any alias, 656 * acquire the reference to alias and return it. Otherwise return NULL. 657 * Notice that if inode is a directory there can be only one alias and 658 * it can be unhashed only if it has no children, or if it is the root 659 * of a filesystem. 660 * 661 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 662 * any other hashed alias over that one unless @want_discon is set, 663 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 664 */ 665 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 666 { 667 struct dentry *alias, *discon_alias; 668 669 again: 670 discon_alias = NULL; 671 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 672 spin_lock(&alias->d_lock); 673 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 674 if (IS_ROOT(alias) && 675 (alias->d_flags & DCACHE_DISCONNECTED)) { 676 discon_alias = alias; 677 } else if (!want_discon) { 678 __dget_dlock(alias); 679 spin_unlock(&alias->d_lock); 680 return alias; 681 } 682 } 683 spin_unlock(&alias->d_lock); 684 } 685 if (discon_alias) { 686 alias = discon_alias; 687 spin_lock(&alias->d_lock); 688 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 689 if (IS_ROOT(alias) && 690 (alias->d_flags & DCACHE_DISCONNECTED)) { 691 __dget_dlock(alias); 692 spin_unlock(&alias->d_lock); 693 return alias; 694 } 695 } 696 spin_unlock(&alias->d_lock); 697 goto again; 698 } 699 return NULL; 700 } 701 702 struct dentry *d_find_alias(struct inode *inode) 703 { 704 struct dentry *de = NULL; 705 706 if (!list_empty(&inode->i_dentry)) { 707 spin_lock(&inode->i_lock); 708 de = __d_find_alias(inode, 0); 709 spin_unlock(&inode->i_lock); 710 } 711 return de; 712 } 713 EXPORT_SYMBOL(d_find_alias); 714 715 /* 716 * Try to kill dentries associated with this inode. 717 * WARNING: you must own a reference to inode. 718 */ 719 void d_prune_aliases(struct inode *inode) 720 { 721 struct dentry *dentry; 722 restart: 723 spin_lock(&inode->i_lock); 724 list_for_each_entry(dentry, &inode->i_dentry, d_alias) { 725 spin_lock(&dentry->d_lock); 726 if (!dentry->d_count) { 727 __dget_dlock(dentry); 728 __d_drop(dentry); 729 spin_unlock(&dentry->d_lock); 730 spin_unlock(&inode->i_lock); 731 dput(dentry); 732 goto restart; 733 } 734 spin_unlock(&dentry->d_lock); 735 } 736 spin_unlock(&inode->i_lock); 737 } 738 EXPORT_SYMBOL(d_prune_aliases); 739 740 /* 741 * Try to throw away a dentry - free the inode, dput the parent. 742 * Requires dentry->d_lock is held, and dentry->d_count == 0. 743 * Releases dentry->d_lock. 744 * 745 * This may fail if locks cannot be acquired no problem, just try again. 746 */ 747 static void try_prune_one_dentry(struct dentry *dentry) 748 __releases(dentry->d_lock) 749 { 750 struct dentry *parent; 751 752 parent = dentry_kill(dentry, 0); 753 /* 754 * If dentry_kill returns NULL, we have nothing more to do. 755 * if it returns the same dentry, trylocks failed. In either 756 * case, just loop again. 757 * 758 * Otherwise, we need to prune ancestors too. This is necessary 759 * to prevent quadratic behavior of shrink_dcache_parent(), but 760 * is also expected to be beneficial in reducing dentry cache 761 * fragmentation. 762 */ 763 if (!parent) 764 return; 765 if (parent == dentry) 766 return; 767 768 /* Prune ancestors. */ 769 dentry = parent; 770 while (dentry) { 771 spin_lock(&dentry->d_lock); 772 if (dentry->d_count > 1) { 773 dentry->d_count--; 774 spin_unlock(&dentry->d_lock); 775 return; 776 } 777 dentry = dentry_kill(dentry, 1); 778 } 779 } 780 781 static void shrink_dentry_list(struct list_head *list) 782 { 783 struct dentry *dentry; 784 785 rcu_read_lock(); 786 for (;;) { 787 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 788 if (&dentry->d_lru == list) 789 break; /* empty */ 790 spin_lock(&dentry->d_lock); 791 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 792 spin_unlock(&dentry->d_lock); 793 continue; 794 } 795 796 /* 797 * We found an inuse dentry which was not removed from 798 * the LRU because of laziness during lookup. Do not free 799 * it - just keep it off the LRU list. 800 */ 801 if (dentry->d_count) { 802 dentry_lru_del(dentry); 803 spin_unlock(&dentry->d_lock); 804 continue; 805 } 806 807 rcu_read_unlock(); 808 809 try_prune_one_dentry(dentry); 810 811 rcu_read_lock(); 812 } 813 rcu_read_unlock(); 814 } 815 816 /** 817 * prune_dcache_sb - shrink the dcache 818 * @sb: superblock 819 * @count: number of entries to try to free 820 * 821 * Attempt to shrink the superblock dcache LRU by @count entries. This is 822 * done when we need more memory an called from the superblock shrinker 823 * function. 824 * 825 * This function may fail to free any resources if all the dentries are in 826 * use. 827 */ 828 void prune_dcache_sb(struct super_block *sb, int count) 829 { 830 struct dentry *dentry; 831 LIST_HEAD(referenced); 832 LIST_HEAD(tmp); 833 834 relock: 835 spin_lock(&dcache_lru_lock); 836 while (!list_empty(&sb->s_dentry_lru)) { 837 dentry = list_entry(sb->s_dentry_lru.prev, 838 struct dentry, d_lru); 839 BUG_ON(dentry->d_sb != sb); 840 841 if (!spin_trylock(&dentry->d_lock)) { 842 spin_unlock(&dcache_lru_lock); 843 cpu_relax(); 844 goto relock; 845 } 846 847 if (dentry->d_flags & DCACHE_REFERENCED) { 848 dentry->d_flags &= ~DCACHE_REFERENCED; 849 list_move(&dentry->d_lru, &referenced); 850 spin_unlock(&dentry->d_lock); 851 } else { 852 list_move_tail(&dentry->d_lru, &tmp); 853 dentry->d_flags |= DCACHE_SHRINK_LIST; 854 spin_unlock(&dentry->d_lock); 855 if (!--count) 856 break; 857 } 858 cond_resched_lock(&dcache_lru_lock); 859 } 860 if (!list_empty(&referenced)) 861 list_splice(&referenced, &sb->s_dentry_lru); 862 spin_unlock(&dcache_lru_lock); 863 864 shrink_dentry_list(&tmp); 865 } 866 867 /** 868 * shrink_dcache_sb - shrink dcache for a superblock 869 * @sb: superblock 870 * 871 * Shrink the dcache for the specified super block. This is used to free 872 * the dcache before unmounting a file system. 873 */ 874 void shrink_dcache_sb(struct super_block *sb) 875 { 876 LIST_HEAD(tmp); 877 878 spin_lock(&dcache_lru_lock); 879 while (!list_empty(&sb->s_dentry_lru)) { 880 list_splice_init(&sb->s_dentry_lru, &tmp); 881 spin_unlock(&dcache_lru_lock); 882 shrink_dentry_list(&tmp); 883 spin_lock(&dcache_lru_lock); 884 } 885 spin_unlock(&dcache_lru_lock); 886 } 887 EXPORT_SYMBOL(shrink_dcache_sb); 888 889 /* 890 * destroy a single subtree of dentries for unmount 891 * - see the comments on shrink_dcache_for_umount() for a description of the 892 * locking 893 */ 894 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 895 { 896 struct dentry *parent; 897 898 BUG_ON(!IS_ROOT(dentry)); 899 900 for (;;) { 901 /* descend to the first leaf in the current subtree */ 902 while (!list_empty(&dentry->d_subdirs)) 903 dentry = list_entry(dentry->d_subdirs.next, 904 struct dentry, d_u.d_child); 905 906 /* consume the dentries from this leaf up through its parents 907 * until we find one with children or run out altogether */ 908 do { 909 struct inode *inode; 910 911 /* 912 * remove the dentry from the lru, and inform 913 * the fs that this dentry is about to be 914 * unhashed and destroyed. 915 */ 916 dentry_lru_prune(dentry); 917 __d_shrink(dentry); 918 919 if (dentry->d_count != 0) { 920 printk(KERN_ERR 921 "BUG: Dentry %p{i=%lx,n=%s}" 922 " still in use (%d)" 923 " [unmount of %s %s]\n", 924 dentry, 925 dentry->d_inode ? 926 dentry->d_inode->i_ino : 0UL, 927 dentry->d_name.name, 928 dentry->d_count, 929 dentry->d_sb->s_type->name, 930 dentry->d_sb->s_id); 931 BUG(); 932 } 933 934 if (IS_ROOT(dentry)) { 935 parent = NULL; 936 list_del(&dentry->d_u.d_child); 937 } else { 938 parent = dentry->d_parent; 939 parent->d_count--; 940 list_del(&dentry->d_u.d_child); 941 } 942 943 inode = dentry->d_inode; 944 if (inode) { 945 dentry->d_inode = NULL; 946 list_del_init(&dentry->d_alias); 947 if (dentry->d_op && dentry->d_op->d_iput) 948 dentry->d_op->d_iput(dentry, inode); 949 else 950 iput(inode); 951 } 952 953 d_free(dentry); 954 955 /* finished when we fall off the top of the tree, 956 * otherwise we ascend to the parent and move to the 957 * next sibling if there is one */ 958 if (!parent) 959 return; 960 dentry = parent; 961 } while (list_empty(&dentry->d_subdirs)); 962 963 dentry = list_entry(dentry->d_subdirs.next, 964 struct dentry, d_u.d_child); 965 } 966 } 967 968 /* 969 * destroy the dentries attached to a superblock on unmounting 970 * - we don't need to use dentry->d_lock because: 971 * - the superblock is detached from all mountings and open files, so the 972 * dentry trees will not be rearranged by the VFS 973 * - s_umount is write-locked, so the memory pressure shrinker will ignore 974 * any dentries belonging to this superblock that it comes across 975 * - the filesystem itself is no longer permitted to rearrange the dentries 976 * in this superblock 977 */ 978 void shrink_dcache_for_umount(struct super_block *sb) 979 { 980 struct dentry *dentry; 981 982 if (down_read_trylock(&sb->s_umount)) 983 BUG(); 984 985 dentry = sb->s_root; 986 sb->s_root = NULL; 987 dentry->d_count--; 988 shrink_dcache_for_umount_subtree(dentry); 989 990 while (!hlist_bl_empty(&sb->s_anon)) { 991 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 992 shrink_dcache_for_umount_subtree(dentry); 993 } 994 } 995 996 /* 997 * This tries to ascend one level of parenthood, but 998 * we can race with renaming, so we need to re-check 999 * the parenthood after dropping the lock and check 1000 * that the sequence number still matches. 1001 */ 1002 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq) 1003 { 1004 struct dentry *new = old->d_parent; 1005 1006 rcu_read_lock(); 1007 spin_unlock(&old->d_lock); 1008 spin_lock(&new->d_lock); 1009 1010 /* 1011 * might go back up the wrong parent if we have had a rename 1012 * or deletion 1013 */ 1014 if (new != old->d_parent || 1015 (old->d_flags & DCACHE_DISCONNECTED) || 1016 (!locked && read_seqretry(&rename_lock, seq))) { 1017 spin_unlock(&new->d_lock); 1018 new = NULL; 1019 } 1020 rcu_read_unlock(); 1021 return new; 1022 } 1023 1024 1025 /* 1026 * Search for at least 1 mount point in the dentry's subdirs. 1027 * We descend to the next level whenever the d_subdirs 1028 * list is non-empty and continue searching. 1029 */ 1030 1031 /** 1032 * have_submounts - check for mounts over a dentry 1033 * @parent: dentry to check. 1034 * 1035 * Return true if the parent or its subdirectories contain 1036 * a mount point 1037 */ 1038 int have_submounts(struct dentry *parent) 1039 { 1040 struct dentry *this_parent; 1041 struct list_head *next; 1042 unsigned seq; 1043 int locked = 0; 1044 1045 seq = read_seqbegin(&rename_lock); 1046 again: 1047 this_parent = parent; 1048 1049 if (d_mountpoint(parent)) 1050 goto positive; 1051 spin_lock(&this_parent->d_lock); 1052 repeat: 1053 next = this_parent->d_subdirs.next; 1054 resume: 1055 while (next != &this_parent->d_subdirs) { 1056 struct list_head *tmp = next; 1057 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1058 next = tmp->next; 1059 1060 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1061 /* Have we found a mount point ? */ 1062 if (d_mountpoint(dentry)) { 1063 spin_unlock(&dentry->d_lock); 1064 spin_unlock(&this_parent->d_lock); 1065 goto positive; 1066 } 1067 if (!list_empty(&dentry->d_subdirs)) { 1068 spin_unlock(&this_parent->d_lock); 1069 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1070 this_parent = dentry; 1071 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1072 goto repeat; 1073 } 1074 spin_unlock(&dentry->d_lock); 1075 } 1076 /* 1077 * All done at this level ... ascend and resume the search. 1078 */ 1079 if (this_parent != parent) { 1080 struct dentry *child = this_parent; 1081 this_parent = try_to_ascend(this_parent, locked, seq); 1082 if (!this_parent) 1083 goto rename_retry; 1084 next = child->d_u.d_child.next; 1085 goto resume; 1086 } 1087 spin_unlock(&this_parent->d_lock); 1088 if (!locked && read_seqretry(&rename_lock, seq)) 1089 goto rename_retry; 1090 if (locked) 1091 write_sequnlock(&rename_lock); 1092 return 0; /* No mount points found in tree */ 1093 positive: 1094 if (!locked && read_seqretry(&rename_lock, seq)) 1095 goto rename_retry; 1096 if (locked) 1097 write_sequnlock(&rename_lock); 1098 return 1; 1099 1100 rename_retry: 1101 locked = 1; 1102 write_seqlock(&rename_lock); 1103 goto again; 1104 } 1105 EXPORT_SYMBOL(have_submounts); 1106 1107 /* 1108 * Search the dentry child list for the specified parent, 1109 * and move any unused dentries to the end of the unused 1110 * list for prune_dcache(). We descend to the next level 1111 * whenever the d_subdirs list is non-empty and continue 1112 * searching. 1113 * 1114 * It returns zero iff there are no unused children, 1115 * otherwise it returns the number of children moved to 1116 * the end of the unused list. This may not be the total 1117 * number of unused children, because select_parent can 1118 * drop the lock and return early due to latency 1119 * constraints. 1120 */ 1121 static int select_parent(struct dentry *parent, struct list_head *dispose) 1122 { 1123 struct dentry *this_parent; 1124 struct list_head *next; 1125 unsigned seq; 1126 int found = 0; 1127 int locked = 0; 1128 1129 seq = read_seqbegin(&rename_lock); 1130 again: 1131 this_parent = parent; 1132 spin_lock(&this_parent->d_lock); 1133 repeat: 1134 next = this_parent->d_subdirs.next; 1135 resume: 1136 while (next != &this_parent->d_subdirs) { 1137 struct list_head *tmp = next; 1138 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1139 next = tmp->next; 1140 1141 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1142 1143 /* 1144 * move only zero ref count dentries to the dispose list. 1145 * 1146 * Those which are presently on the shrink list, being processed 1147 * by shrink_dentry_list(), shouldn't be moved. Otherwise the 1148 * loop in shrink_dcache_parent() might not make any progress 1149 * and loop forever. 1150 */ 1151 if (dentry->d_count) { 1152 dentry_lru_del(dentry); 1153 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1154 dentry_lru_move_list(dentry, dispose); 1155 dentry->d_flags |= DCACHE_SHRINK_LIST; 1156 found++; 1157 } 1158 /* 1159 * We can return to the caller if we have found some (this 1160 * ensures forward progress). We'll be coming back to find 1161 * the rest. 1162 */ 1163 if (found && need_resched()) { 1164 spin_unlock(&dentry->d_lock); 1165 goto out; 1166 } 1167 1168 /* 1169 * Descend a level if the d_subdirs list is non-empty. 1170 */ 1171 if (!list_empty(&dentry->d_subdirs)) { 1172 spin_unlock(&this_parent->d_lock); 1173 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1174 this_parent = dentry; 1175 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1176 goto repeat; 1177 } 1178 1179 spin_unlock(&dentry->d_lock); 1180 } 1181 /* 1182 * All done at this level ... ascend and resume the search. 1183 */ 1184 if (this_parent != parent) { 1185 struct dentry *child = this_parent; 1186 this_parent = try_to_ascend(this_parent, locked, seq); 1187 if (!this_parent) 1188 goto rename_retry; 1189 next = child->d_u.d_child.next; 1190 goto resume; 1191 } 1192 out: 1193 spin_unlock(&this_parent->d_lock); 1194 if (!locked && read_seqretry(&rename_lock, seq)) 1195 goto rename_retry; 1196 if (locked) 1197 write_sequnlock(&rename_lock); 1198 return found; 1199 1200 rename_retry: 1201 if (found) 1202 return found; 1203 locked = 1; 1204 write_seqlock(&rename_lock); 1205 goto again; 1206 } 1207 1208 /** 1209 * shrink_dcache_parent - prune dcache 1210 * @parent: parent of entries to prune 1211 * 1212 * Prune the dcache to remove unused children of the parent dentry. 1213 */ 1214 void shrink_dcache_parent(struct dentry * parent) 1215 { 1216 LIST_HEAD(dispose); 1217 int found; 1218 1219 while ((found = select_parent(parent, &dispose)) != 0) 1220 shrink_dentry_list(&dispose); 1221 } 1222 EXPORT_SYMBOL(shrink_dcache_parent); 1223 1224 /** 1225 * __d_alloc - allocate a dcache entry 1226 * @sb: filesystem it will belong to 1227 * @name: qstr of the name 1228 * 1229 * Allocates a dentry. It returns %NULL if there is insufficient memory 1230 * available. On a success the dentry is returned. The name passed in is 1231 * copied and the copy passed in may be reused after this call. 1232 */ 1233 1234 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1235 { 1236 struct dentry *dentry; 1237 char *dname; 1238 1239 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1240 if (!dentry) 1241 return NULL; 1242 1243 if (name->len > DNAME_INLINE_LEN-1) { 1244 dname = kmalloc(name->len + 1, GFP_KERNEL); 1245 if (!dname) { 1246 kmem_cache_free(dentry_cache, dentry); 1247 return NULL; 1248 } 1249 } else { 1250 dname = dentry->d_iname; 1251 } 1252 dentry->d_name.name = dname; 1253 1254 dentry->d_name.len = name->len; 1255 dentry->d_name.hash = name->hash; 1256 memcpy(dname, name->name, name->len); 1257 dname[name->len] = 0; 1258 1259 dentry->d_count = 1; 1260 dentry->d_flags = 0; 1261 spin_lock_init(&dentry->d_lock); 1262 seqcount_init(&dentry->d_seq); 1263 dentry->d_inode = NULL; 1264 dentry->d_parent = dentry; 1265 dentry->d_sb = sb; 1266 dentry->d_op = NULL; 1267 dentry->d_fsdata = NULL; 1268 INIT_HLIST_BL_NODE(&dentry->d_hash); 1269 INIT_LIST_HEAD(&dentry->d_lru); 1270 INIT_LIST_HEAD(&dentry->d_subdirs); 1271 INIT_LIST_HEAD(&dentry->d_alias); 1272 INIT_LIST_HEAD(&dentry->d_u.d_child); 1273 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1274 1275 this_cpu_inc(nr_dentry); 1276 1277 return dentry; 1278 } 1279 1280 /** 1281 * d_alloc - allocate a dcache entry 1282 * @parent: parent of entry to allocate 1283 * @name: qstr of the name 1284 * 1285 * Allocates a dentry. It returns %NULL if there is insufficient memory 1286 * available. On a success the dentry is returned. The name passed in is 1287 * copied and the copy passed in may be reused after this call. 1288 */ 1289 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1290 { 1291 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1292 if (!dentry) 1293 return NULL; 1294 1295 spin_lock(&parent->d_lock); 1296 /* 1297 * don't need child lock because it is not subject 1298 * to concurrency here 1299 */ 1300 __dget_dlock(parent); 1301 dentry->d_parent = parent; 1302 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1303 spin_unlock(&parent->d_lock); 1304 1305 return dentry; 1306 } 1307 EXPORT_SYMBOL(d_alloc); 1308 1309 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1310 { 1311 struct dentry *dentry = __d_alloc(sb, name); 1312 if (dentry) 1313 dentry->d_flags |= DCACHE_DISCONNECTED; 1314 return dentry; 1315 } 1316 EXPORT_SYMBOL(d_alloc_pseudo); 1317 1318 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1319 { 1320 struct qstr q; 1321 1322 q.name = name; 1323 q.len = strlen(name); 1324 q.hash = full_name_hash(q.name, q.len); 1325 return d_alloc(parent, &q); 1326 } 1327 EXPORT_SYMBOL(d_alloc_name); 1328 1329 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1330 { 1331 WARN_ON_ONCE(dentry->d_op); 1332 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1333 DCACHE_OP_COMPARE | 1334 DCACHE_OP_REVALIDATE | 1335 DCACHE_OP_DELETE )); 1336 dentry->d_op = op; 1337 if (!op) 1338 return; 1339 if (op->d_hash) 1340 dentry->d_flags |= DCACHE_OP_HASH; 1341 if (op->d_compare) 1342 dentry->d_flags |= DCACHE_OP_COMPARE; 1343 if (op->d_revalidate) 1344 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1345 if (op->d_delete) 1346 dentry->d_flags |= DCACHE_OP_DELETE; 1347 if (op->d_prune) 1348 dentry->d_flags |= DCACHE_OP_PRUNE; 1349 1350 } 1351 EXPORT_SYMBOL(d_set_d_op); 1352 1353 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1354 { 1355 spin_lock(&dentry->d_lock); 1356 if (inode) { 1357 if (unlikely(IS_AUTOMOUNT(inode))) 1358 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT; 1359 list_add(&dentry->d_alias, &inode->i_dentry); 1360 } 1361 dentry->d_inode = inode; 1362 dentry_rcuwalk_barrier(dentry); 1363 spin_unlock(&dentry->d_lock); 1364 fsnotify_d_instantiate(dentry, inode); 1365 } 1366 1367 /** 1368 * d_instantiate - fill in inode information for a dentry 1369 * @entry: dentry to complete 1370 * @inode: inode to attach to this dentry 1371 * 1372 * Fill in inode information in the entry. 1373 * 1374 * This turns negative dentries into productive full members 1375 * of society. 1376 * 1377 * NOTE! This assumes that the inode count has been incremented 1378 * (or otherwise set) by the caller to indicate that it is now 1379 * in use by the dcache. 1380 */ 1381 1382 void d_instantiate(struct dentry *entry, struct inode * inode) 1383 { 1384 BUG_ON(!list_empty(&entry->d_alias)); 1385 if (inode) 1386 spin_lock(&inode->i_lock); 1387 __d_instantiate(entry, inode); 1388 if (inode) 1389 spin_unlock(&inode->i_lock); 1390 security_d_instantiate(entry, inode); 1391 } 1392 EXPORT_SYMBOL(d_instantiate); 1393 1394 /** 1395 * d_instantiate_unique - instantiate a non-aliased dentry 1396 * @entry: dentry to instantiate 1397 * @inode: inode to attach to this dentry 1398 * 1399 * Fill in inode information in the entry. On success, it returns NULL. 1400 * If an unhashed alias of "entry" already exists, then we return the 1401 * aliased dentry instead and drop one reference to inode. 1402 * 1403 * Note that in order to avoid conflicts with rename() etc, the caller 1404 * had better be holding the parent directory semaphore. 1405 * 1406 * This also assumes that the inode count has been incremented 1407 * (or otherwise set) by the caller to indicate that it is now 1408 * in use by the dcache. 1409 */ 1410 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1411 struct inode *inode) 1412 { 1413 struct dentry *alias; 1414 int len = entry->d_name.len; 1415 const char *name = entry->d_name.name; 1416 unsigned int hash = entry->d_name.hash; 1417 1418 if (!inode) { 1419 __d_instantiate(entry, NULL); 1420 return NULL; 1421 } 1422 1423 list_for_each_entry(alias, &inode->i_dentry, d_alias) { 1424 struct qstr *qstr = &alias->d_name; 1425 1426 /* 1427 * Don't need alias->d_lock here, because aliases with 1428 * d_parent == entry->d_parent are not subject to name or 1429 * parent changes, because the parent inode i_mutex is held. 1430 */ 1431 if (qstr->hash != hash) 1432 continue; 1433 if (alias->d_parent != entry->d_parent) 1434 continue; 1435 if (dentry_cmp(qstr->name, qstr->len, name, len)) 1436 continue; 1437 __dget(alias); 1438 return alias; 1439 } 1440 1441 __d_instantiate(entry, inode); 1442 return NULL; 1443 } 1444 1445 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1446 { 1447 struct dentry *result; 1448 1449 BUG_ON(!list_empty(&entry->d_alias)); 1450 1451 if (inode) 1452 spin_lock(&inode->i_lock); 1453 result = __d_instantiate_unique(entry, inode); 1454 if (inode) 1455 spin_unlock(&inode->i_lock); 1456 1457 if (!result) { 1458 security_d_instantiate(entry, inode); 1459 return NULL; 1460 } 1461 1462 BUG_ON(!d_unhashed(result)); 1463 iput(inode); 1464 return result; 1465 } 1466 1467 EXPORT_SYMBOL(d_instantiate_unique); 1468 1469 struct dentry *d_make_root(struct inode *root_inode) 1470 { 1471 struct dentry *res = NULL; 1472 1473 if (root_inode) { 1474 static const struct qstr name = { .name = "/", .len = 1 }; 1475 1476 res = __d_alloc(root_inode->i_sb, &name); 1477 if (res) 1478 d_instantiate(res, root_inode); 1479 else 1480 iput(root_inode); 1481 } 1482 return res; 1483 } 1484 EXPORT_SYMBOL(d_make_root); 1485 1486 static struct dentry * __d_find_any_alias(struct inode *inode) 1487 { 1488 struct dentry *alias; 1489 1490 if (list_empty(&inode->i_dentry)) 1491 return NULL; 1492 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias); 1493 __dget(alias); 1494 return alias; 1495 } 1496 1497 /** 1498 * d_find_any_alias - find any alias for a given inode 1499 * @inode: inode to find an alias for 1500 * 1501 * If any aliases exist for the given inode, take and return a 1502 * reference for one of them. If no aliases exist, return %NULL. 1503 */ 1504 struct dentry *d_find_any_alias(struct inode *inode) 1505 { 1506 struct dentry *de; 1507 1508 spin_lock(&inode->i_lock); 1509 de = __d_find_any_alias(inode); 1510 spin_unlock(&inode->i_lock); 1511 return de; 1512 } 1513 EXPORT_SYMBOL(d_find_any_alias); 1514 1515 /** 1516 * d_obtain_alias - find or allocate a dentry for a given inode 1517 * @inode: inode to allocate the dentry for 1518 * 1519 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1520 * similar open by handle operations. The returned dentry may be anonymous, 1521 * or may have a full name (if the inode was already in the cache). 1522 * 1523 * When called on a directory inode, we must ensure that the inode only ever 1524 * has one dentry. If a dentry is found, that is returned instead of 1525 * allocating a new one. 1526 * 1527 * On successful return, the reference to the inode has been transferred 1528 * to the dentry. In case of an error the reference on the inode is released. 1529 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1530 * be passed in and will be the error will be propagate to the return value, 1531 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1532 */ 1533 struct dentry *d_obtain_alias(struct inode *inode) 1534 { 1535 static const struct qstr anonstring = { .name = "" }; 1536 struct dentry *tmp; 1537 struct dentry *res; 1538 1539 if (!inode) 1540 return ERR_PTR(-ESTALE); 1541 if (IS_ERR(inode)) 1542 return ERR_CAST(inode); 1543 1544 res = d_find_any_alias(inode); 1545 if (res) 1546 goto out_iput; 1547 1548 tmp = __d_alloc(inode->i_sb, &anonstring); 1549 if (!tmp) { 1550 res = ERR_PTR(-ENOMEM); 1551 goto out_iput; 1552 } 1553 1554 spin_lock(&inode->i_lock); 1555 res = __d_find_any_alias(inode); 1556 if (res) { 1557 spin_unlock(&inode->i_lock); 1558 dput(tmp); 1559 goto out_iput; 1560 } 1561 1562 /* attach a disconnected dentry */ 1563 spin_lock(&tmp->d_lock); 1564 tmp->d_inode = inode; 1565 tmp->d_flags |= DCACHE_DISCONNECTED; 1566 list_add(&tmp->d_alias, &inode->i_dentry); 1567 hlist_bl_lock(&tmp->d_sb->s_anon); 1568 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1569 hlist_bl_unlock(&tmp->d_sb->s_anon); 1570 spin_unlock(&tmp->d_lock); 1571 spin_unlock(&inode->i_lock); 1572 security_d_instantiate(tmp, inode); 1573 1574 return tmp; 1575 1576 out_iput: 1577 if (res && !IS_ERR(res)) 1578 security_d_instantiate(res, inode); 1579 iput(inode); 1580 return res; 1581 } 1582 EXPORT_SYMBOL(d_obtain_alias); 1583 1584 /** 1585 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1586 * @inode: the inode which may have a disconnected dentry 1587 * @dentry: a negative dentry which we want to point to the inode. 1588 * 1589 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1590 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1591 * and return it, else simply d_add the inode to the dentry and return NULL. 1592 * 1593 * This is needed in the lookup routine of any filesystem that is exportable 1594 * (via knfsd) so that we can build dcache paths to directories effectively. 1595 * 1596 * If a dentry was found and moved, then it is returned. Otherwise NULL 1597 * is returned. This matches the expected return value of ->lookup. 1598 * 1599 */ 1600 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1601 { 1602 struct dentry *new = NULL; 1603 1604 if (IS_ERR(inode)) 1605 return ERR_CAST(inode); 1606 1607 if (inode && S_ISDIR(inode->i_mode)) { 1608 spin_lock(&inode->i_lock); 1609 new = __d_find_alias(inode, 1); 1610 if (new) { 1611 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1612 spin_unlock(&inode->i_lock); 1613 security_d_instantiate(new, inode); 1614 d_move(new, dentry); 1615 iput(inode); 1616 } else { 1617 /* already taking inode->i_lock, so d_add() by hand */ 1618 __d_instantiate(dentry, inode); 1619 spin_unlock(&inode->i_lock); 1620 security_d_instantiate(dentry, inode); 1621 d_rehash(dentry); 1622 } 1623 } else 1624 d_add(dentry, inode); 1625 return new; 1626 } 1627 EXPORT_SYMBOL(d_splice_alias); 1628 1629 /** 1630 * d_add_ci - lookup or allocate new dentry with case-exact name 1631 * @inode: the inode case-insensitive lookup has found 1632 * @dentry: the negative dentry that was passed to the parent's lookup func 1633 * @name: the case-exact name to be associated with the returned dentry 1634 * 1635 * This is to avoid filling the dcache with case-insensitive names to the 1636 * same inode, only the actual correct case is stored in the dcache for 1637 * case-insensitive filesystems. 1638 * 1639 * For a case-insensitive lookup match and if the the case-exact dentry 1640 * already exists in in the dcache, use it and return it. 1641 * 1642 * If no entry exists with the exact case name, allocate new dentry with 1643 * the exact case, and return the spliced entry. 1644 */ 1645 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1646 struct qstr *name) 1647 { 1648 int error; 1649 struct dentry *found; 1650 struct dentry *new; 1651 1652 /* 1653 * First check if a dentry matching the name already exists, 1654 * if not go ahead and create it now. 1655 */ 1656 found = d_hash_and_lookup(dentry->d_parent, name); 1657 if (!found) { 1658 new = d_alloc(dentry->d_parent, name); 1659 if (!new) { 1660 error = -ENOMEM; 1661 goto err_out; 1662 } 1663 1664 found = d_splice_alias(inode, new); 1665 if (found) { 1666 dput(new); 1667 return found; 1668 } 1669 return new; 1670 } 1671 1672 /* 1673 * If a matching dentry exists, and it's not negative use it. 1674 * 1675 * Decrement the reference count to balance the iget() done 1676 * earlier on. 1677 */ 1678 if (found->d_inode) { 1679 if (unlikely(found->d_inode != inode)) { 1680 /* This can't happen because bad inodes are unhashed. */ 1681 BUG_ON(!is_bad_inode(inode)); 1682 BUG_ON(!is_bad_inode(found->d_inode)); 1683 } 1684 iput(inode); 1685 return found; 1686 } 1687 1688 /* 1689 * We are going to instantiate this dentry, unhash it and clear the 1690 * lookup flag so we can do that. 1691 */ 1692 if (unlikely(d_need_lookup(found))) 1693 d_clear_need_lookup(found); 1694 1695 /* 1696 * Negative dentry: instantiate it unless the inode is a directory and 1697 * already has a dentry. 1698 */ 1699 new = d_splice_alias(inode, found); 1700 if (new) { 1701 dput(found); 1702 found = new; 1703 } 1704 return found; 1705 1706 err_out: 1707 iput(inode); 1708 return ERR_PTR(error); 1709 } 1710 EXPORT_SYMBOL(d_add_ci); 1711 1712 /** 1713 * __d_lookup_rcu - search for a dentry (racy, store-free) 1714 * @parent: parent dentry 1715 * @name: qstr of name we wish to find 1716 * @seqp: returns d_seq value at the point where the dentry was found 1717 * @inode: returns dentry->d_inode when the inode was found valid. 1718 * Returns: dentry, or NULL 1719 * 1720 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 1721 * resolution (store-free path walking) design described in 1722 * Documentation/filesystems/path-lookup.txt. 1723 * 1724 * This is not to be used outside core vfs. 1725 * 1726 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 1727 * held, and rcu_read_lock held. The returned dentry must not be stored into 1728 * without taking d_lock and checking d_seq sequence count against @seq 1729 * returned here. 1730 * 1731 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount 1732 * function. 1733 * 1734 * Alternatively, __d_lookup_rcu may be called again to look up the child of 1735 * the returned dentry, so long as its parent's seqlock is checked after the 1736 * child is looked up. Thus, an interlocking stepping of sequence lock checks 1737 * is formed, giving integrity down the path walk. 1738 */ 1739 struct dentry *__d_lookup_rcu(const struct dentry *parent, 1740 const struct qstr *name, 1741 unsigned *seqp, struct inode **inode) 1742 { 1743 unsigned int len = name->len; 1744 unsigned int hash = name->hash; 1745 const unsigned char *str = name->name; 1746 struct hlist_bl_head *b = d_hash(parent, hash); 1747 struct hlist_bl_node *node; 1748 struct dentry *dentry; 1749 1750 /* 1751 * Note: There is significant duplication with __d_lookup_rcu which is 1752 * required to prevent single threaded performance regressions 1753 * especially on architectures where smp_rmb (in seqcounts) are costly. 1754 * Keep the two functions in sync. 1755 */ 1756 1757 /* 1758 * The hash list is protected using RCU. 1759 * 1760 * Carefully use d_seq when comparing a candidate dentry, to avoid 1761 * races with d_move(). 1762 * 1763 * It is possible that concurrent renames can mess up our list 1764 * walk here and result in missing our dentry, resulting in the 1765 * false-negative result. d_lookup() protects against concurrent 1766 * renames using rename_lock seqlock. 1767 * 1768 * See Documentation/filesystems/path-lookup.txt for more details. 1769 */ 1770 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1771 unsigned seq; 1772 struct inode *i; 1773 const char *tname; 1774 int tlen; 1775 1776 if (dentry->d_name.hash != hash) 1777 continue; 1778 1779 seqretry: 1780 seq = read_seqcount_begin(&dentry->d_seq); 1781 if (dentry->d_parent != parent) 1782 continue; 1783 if (d_unhashed(dentry)) 1784 continue; 1785 tlen = dentry->d_name.len; 1786 tname = dentry->d_name.name; 1787 i = dentry->d_inode; 1788 prefetch(tname); 1789 /* 1790 * This seqcount check is required to ensure name and 1791 * len are loaded atomically, so as not to walk off the 1792 * edge of memory when walking. If we could load this 1793 * atomically some other way, we could drop this check. 1794 */ 1795 if (read_seqcount_retry(&dentry->d_seq, seq)) 1796 goto seqretry; 1797 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 1798 if (parent->d_op->d_compare(parent, *inode, 1799 dentry, i, 1800 tlen, tname, name)) 1801 continue; 1802 } else { 1803 if (dentry_cmp(tname, tlen, str, len)) 1804 continue; 1805 } 1806 /* 1807 * No extra seqcount check is required after the name 1808 * compare. The caller must perform a seqcount check in 1809 * order to do anything useful with the returned dentry 1810 * anyway. 1811 */ 1812 *seqp = seq; 1813 *inode = i; 1814 return dentry; 1815 } 1816 return NULL; 1817 } 1818 1819 /** 1820 * d_lookup - search for a dentry 1821 * @parent: parent dentry 1822 * @name: qstr of name we wish to find 1823 * Returns: dentry, or NULL 1824 * 1825 * d_lookup searches the children of the parent dentry for the name in 1826 * question. If the dentry is found its reference count is incremented and the 1827 * dentry is returned. The caller must use dput to free the entry when it has 1828 * finished using it. %NULL is returned if the dentry does not exist. 1829 */ 1830 struct dentry *d_lookup(struct dentry *parent, struct qstr *name) 1831 { 1832 struct dentry *dentry; 1833 unsigned seq; 1834 1835 do { 1836 seq = read_seqbegin(&rename_lock); 1837 dentry = __d_lookup(parent, name); 1838 if (dentry) 1839 break; 1840 } while (read_seqretry(&rename_lock, seq)); 1841 return dentry; 1842 } 1843 EXPORT_SYMBOL(d_lookup); 1844 1845 /** 1846 * __d_lookup - search for a dentry (racy) 1847 * @parent: parent dentry 1848 * @name: qstr of name we wish to find 1849 * Returns: dentry, or NULL 1850 * 1851 * __d_lookup is like d_lookup, however it may (rarely) return a 1852 * false-negative result due to unrelated rename activity. 1853 * 1854 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 1855 * however it must be used carefully, eg. with a following d_lookup in 1856 * the case of failure. 1857 * 1858 * __d_lookup callers must be commented. 1859 */ 1860 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name) 1861 { 1862 unsigned int len = name->len; 1863 unsigned int hash = name->hash; 1864 const unsigned char *str = name->name; 1865 struct hlist_bl_head *b = d_hash(parent, hash); 1866 struct hlist_bl_node *node; 1867 struct dentry *found = NULL; 1868 struct dentry *dentry; 1869 1870 /* 1871 * Note: There is significant duplication with __d_lookup_rcu which is 1872 * required to prevent single threaded performance regressions 1873 * especially on architectures where smp_rmb (in seqcounts) are costly. 1874 * Keep the two functions in sync. 1875 */ 1876 1877 /* 1878 * The hash list is protected using RCU. 1879 * 1880 * Take d_lock when comparing a candidate dentry, to avoid races 1881 * with d_move(). 1882 * 1883 * It is possible that concurrent renames can mess up our list 1884 * walk here and result in missing our dentry, resulting in the 1885 * false-negative result. d_lookup() protects against concurrent 1886 * renames using rename_lock seqlock. 1887 * 1888 * See Documentation/filesystems/path-lookup.txt for more details. 1889 */ 1890 rcu_read_lock(); 1891 1892 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1893 const char *tname; 1894 int tlen; 1895 1896 if (dentry->d_name.hash != hash) 1897 continue; 1898 1899 spin_lock(&dentry->d_lock); 1900 if (dentry->d_parent != parent) 1901 goto next; 1902 if (d_unhashed(dentry)) 1903 goto next; 1904 1905 /* 1906 * It is safe to compare names since d_move() cannot 1907 * change the qstr (protected by d_lock). 1908 */ 1909 tlen = dentry->d_name.len; 1910 tname = dentry->d_name.name; 1911 if (parent->d_flags & DCACHE_OP_COMPARE) { 1912 if (parent->d_op->d_compare(parent, parent->d_inode, 1913 dentry, dentry->d_inode, 1914 tlen, tname, name)) 1915 goto next; 1916 } else { 1917 if (dentry_cmp(tname, tlen, str, len)) 1918 goto next; 1919 } 1920 1921 dentry->d_count++; 1922 found = dentry; 1923 spin_unlock(&dentry->d_lock); 1924 break; 1925 next: 1926 spin_unlock(&dentry->d_lock); 1927 } 1928 rcu_read_unlock(); 1929 1930 return found; 1931 } 1932 1933 /** 1934 * d_hash_and_lookup - hash the qstr then search for a dentry 1935 * @dir: Directory to search in 1936 * @name: qstr of name we wish to find 1937 * 1938 * On hash failure or on lookup failure NULL is returned. 1939 */ 1940 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 1941 { 1942 struct dentry *dentry = NULL; 1943 1944 /* 1945 * Check for a fs-specific hash function. Note that we must 1946 * calculate the standard hash first, as the d_op->d_hash() 1947 * routine may choose to leave the hash value unchanged. 1948 */ 1949 name->hash = full_name_hash(name->name, name->len); 1950 if (dir->d_flags & DCACHE_OP_HASH) { 1951 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0) 1952 goto out; 1953 } 1954 dentry = d_lookup(dir, name); 1955 out: 1956 return dentry; 1957 } 1958 1959 /** 1960 * d_validate - verify dentry provided from insecure source (deprecated) 1961 * @dentry: The dentry alleged to be valid child of @dparent 1962 * @dparent: The parent dentry (known to be valid) 1963 * 1964 * An insecure source has sent us a dentry, here we verify it and dget() it. 1965 * This is used by ncpfs in its readdir implementation. 1966 * Zero is returned in the dentry is invalid. 1967 * 1968 * This function is slow for big directories, and deprecated, do not use it. 1969 */ 1970 int d_validate(struct dentry *dentry, struct dentry *dparent) 1971 { 1972 struct dentry *child; 1973 1974 spin_lock(&dparent->d_lock); 1975 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 1976 if (dentry == child) { 1977 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1978 __dget_dlock(dentry); 1979 spin_unlock(&dentry->d_lock); 1980 spin_unlock(&dparent->d_lock); 1981 return 1; 1982 } 1983 } 1984 spin_unlock(&dparent->d_lock); 1985 1986 return 0; 1987 } 1988 EXPORT_SYMBOL(d_validate); 1989 1990 /* 1991 * When a file is deleted, we have two options: 1992 * - turn this dentry into a negative dentry 1993 * - unhash this dentry and free it. 1994 * 1995 * Usually, we want to just turn this into 1996 * a negative dentry, but if anybody else is 1997 * currently using the dentry or the inode 1998 * we can't do that and we fall back on removing 1999 * it from the hash queues and waiting for 2000 * it to be deleted later when it has no users 2001 */ 2002 2003 /** 2004 * d_delete - delete a dentry 2005 * @dentry: The dentry to delete 2006 * 2007 * Turn the dentry into a negative dentry if possible, otherwise 2008 * remove it from the hash queues so it can be deleted later 2009 */ 2010 2011 void d_delete(struct dentry * dentry) 2012 { 2013 struct inode *inode; 2014 int isdir = 0; 2015 /* 2016 * Are we the only user? 2017 */ 2018 again: 2019 spin_lock(&dentry->d_lock); 2020 inode = dentry->d_inode; 2021 isdir = S_ISDIR(inode->i_mode); 2022 if (dentry->d_count == 1) { 2023 if (inode && !spin_trylock(&inode->i_lock)) { 2024 spin_unlock(&dentry->d_lock); 2025 cpu_relax(); 2026 goto again; 2027 } 2028 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2029 dentry_unlink_inode(dentry); 2030 fsnotify_nameremove(dentry, isdir); 2031 return; 2032 } 2033 2034 if (!d_unhashed(dentry)) 2035 __d_drop(dentry); 2036 2037 spin_unlock(&dentry->d_lock); 2038 2039 fsnotify_nameremove(dentry, isdir); 2040 } 2041 EXPORT_SYMBOL(d_delete); 2042 2043 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2044 { 2045 BUG_ON(!d_unhashed(entry)); 2046 hlist_bl_lock(b); 2047 entry->d_flags |= DCACHE_RCUACCESS; 2048 hlist_bl_add_head_rcu(&entry->d_hash, b); 2049 hlist_bl_unlock(b); 2050 } 2051 2052 static void _d_rehash(struct dentry * entry) 2053 { 2054 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2055 } 2056 2057 /** 2058 * d_rehash - add an entry back to the hash 2059 * @entry: dentry to add to the hash 2060 * 2061 * Adds a dentry to the hash according to its name. 2062 */ 2063 2064 void d_rehash(struct dentry * entry) 2065 { 2066 spin_lock(&entry->d_lock); 2067 _d_rehash(entry); 2068 spin_unlock(&entry->d_lock); 2069 } 2070 EXPORT_SYMBOL(d_rehash); 2071 2072 /** 2073 * dentry_update_name_case - update case insensitive dentry with a new name 2074 * @dentry: dentry to be updated 2075 * @name: new name 2076 * 2077 * Update a case insensitive dentry with new case of name. 2078 * 2079 * dentry must have been returned by d_lookup with name @name. Old and new 2080 * name lengths must match (ie. no d_compare which allows mismatched name 2081 * lengths). 2082 * 2083 * Parent inode i_mutex must be held over d_lookup and into this call (to 2084 * keep renames and concurrent inserts, and readdir(2) away). 2085 */ 2086 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2087 { 2088 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2089 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2090 2091 spin_lock(&dentry->d_lock); 2092 write_seqcount_begin(&dentry->d_seq); 2093 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2094 write_seqcount_end(&dentry->d_seq); 2095 spin_unlock(&dentry->d_lock); 2096 } 2097 EXPORT_SYMBOL(dentry_update_name_case); 2098 2099 static void switch_names(struct dentry *dentry, struct dentry *target) 2100 { 2101 if (dname_external(target)) { 2102 if (dname_external(dentry)) { 2103 /* 2104 * Both external: swap the pointers 2105 */ 2106 swap(target->d_name.name, dentry->d_name.name); 2107 } else { 2108 /* 2109 * dentry:internal, target:external. Steal target's 2110 * storage and make target internal. 2111 */ 2112 memcpy(target->d_iname, dentry->d_name.name, 2113 dentry->d_name.len + 1); 2114 dentry->d_name.name = target->d_name.name; 2115 target->d_name.name = target->d_iname; 2116 } 2117 } else { 2118 if (dname_external(dentry)) { 2119 /* 2120 * dentry:external, target:internal. Give dentry's 2121 * storage to target and make dentry internal 2122 */ 2123 memcpy(dentry->d_iname, target->d_name.name, 2124 target->d_name.len + 1); 2125 target->d_name.name = dentry->d_name.name; 2126 dentry->d_name.name = dentry->d_iname; 2127 } else { 2128 /* 2129 * Both are internal. Just copy target to dentry 2130 */ 2131 memcpy(dentry->d_iname, target->d_name.name, 2132 target->d_name.len + 1); 2133 dentry->d_name.len = target->d_name.len; 2134 return; 2135 } 2136 } 2137 swap(dentry->d_name.len, target->d_name.len); 2138 } 2139 2140 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2141 { 2142 /* 2143 * XXXX: do we really need to take target->d_lock? 2144 */ 2145 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2146 spin_lock(&target->d_parent->d_lock); 2147 else { 2148 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2149 spin_lock(&dentry->d_parent->d_lock); 2150 spin_lock_nested(&target->d_parent->d_lock, 2151 DENTRY_D_LOCK_NESTED); 2152 } else { 2153 spin_lock(&target->d_parent->d_lock); 2154 spin_lock_nested(&dentry->d_parent->d_lock, 2155 DENTRY_D_LOCK_NESTED); 2156 } 2157 } 2158 if (target < dentry) { 2159 spin_lock_nested(&target->d_lock, 2); 2160 spin_lock_nested(&dentry->d_lock, 3); 2161 } else { 2162 spin_lock_nested(&dentry->d_lock, 2); 2163 spin_lock_nested(&target->d_lock, 3); 2164 } 2165 } 2166 2167 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2168 struct dentry *target) 2169 { 2170 if (target->d_parent != dentry->d_parent) 2171 spin_unlock(&dentry->d_parent->d_lock); 2172 if (target->d_parent != target) 2173 spin_unlock(&target->d_parent->d_lock); 2174 } 2175 2176 /* 2177 * When switching names, the actual string doesn't strictly have to 2178 * be preserved in the target - because we're dropping the target 2179 * anyway. As such, we can just do a simple memcpy() to copy over 2180 * the new name before we switch. 2181 * 2182 * Note that we have to be a lot more careful about getting the hash 2183 * switched - we have to switch the hash value properly even if it 2184 * then no longer matches the actual (corrupted) string of the target. 2185 * The hash value has to match the hash queue that the dentry is on.. 2186 */ 2187 /* 2188 * __d_move - move a dentry 2189 * @dentry: entry to move 2190 * @target: new dentry 2191 * 2192 * Update the dcache to reflect the move of a file name. Negative 2193 * dcache entries should not be moved in this way. Caller must hold 2194 * rename_lock, the i_mutex of the source and target directories, 2195 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2196 */ 2197 static void __d_move(struct dentry * dentry, struct dentry * target) 2198 { 2199 if (!dentry->d_inode) 2200 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2201 2202 BUG_ON(d_ancestor(dentry, target)); 2203 BUG_ON(d_ancestor(target, dentry)); 2204 2205 dentry_lock_for_move(dentry, target); 2206 2207 write_seqcount_begin(&dentry->d_seq); 2208 write_seqcount_begin(&target->d_seq); 2209 2210 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2211 2212 /* 2213 * Move the dentry to the target hash queue. Don't bother checking 2214 * for the same hash queue because of how unlikely it is. 2215 */ 2216 __d_drop(dentry); 2217 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2218 2219 /* Unhash the target: dput() will then get rid of it */ 2220 __d_drop(target); 2221 2222 list_del(&dentry->d_u.d_child); 2223 list_del(&target->d_u.d_child); 2224 2225 /* Switch the names.. */ 2226 switch_names(dentry, target); 2227 swap(dentry->d_name.hash, target->d_name.hash); 2228 2229 /* ... and switch the parents */ 2230 if (IS_ROOT(dentry)) { 2231 dentry->d_parent = target->d_parent; 2232 target->d_parent = target; 2233 INIT_LIST_HEAD(&target->d_u.d_child); 2234 } else { 2235 swap(dentry->d_parent, target->d_parent); 2236 2237 /* And add them back to the (new) parent lists */ 2238 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2239 } 2240 2241 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2242 2243 write_seqcount_end(&target->d_seq); 2244 write_seqcount_end(&dentry->d_seq); 2245 2246 dentry_unlock_parents_for_move(dentry, target); 2247 spin_unlock(&target->d_lock); 2248 fsnotify_d_move(dentry); 2249 spin_unlock(&dentry->d_lock); 2250 } 2251 2252 /* 2253 * d_move - move a dentry 2254 * @dentry: entry to move 2255 * @target: new dentry 2256 * 2257 * Update the dcache to reflect the move of a file name. Negative 2258 * dcache entries should not be moved in this way. See the locking 2259 * requirements for __d_move. 2260 */ 2261 void d_move(struct dentry *dentry, struct dentry *target) 2262 { 2263 write_seqlock(&rename_lock); 2264 __d_move(dentry, target); 2265 write_sequnlock(&rename_lock); 2266 } 2267 EXPORT_SYMBOL(d_move); 2268 2269 /** 2270 * d_ancestor - search for an ancestor 2271 * @p1: ancestor dentry 2272 * @p2: child dentry 2273 * 2274 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2275 * an ancestor of p2, else NULL. 2276 */ 2277 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2278 { 2279 struct dentry *p; 2280 2281 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2282 if (p->d_parent == p1) 2283 return p; 2284 } 2285 return NULL; 2286 } 2287 2288 /* 2289 * This helper attempts to cope with remotely renamed directories 2290 * 2291 * It assumes that the caller is already holding 2292 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2293 * 2294 * Note: If ever the locking in lock_rename() changes, then please 2295 * remember to update this too... 2296 */ 2297 static struct dentry *__d_unalias(struct inode *inode, 2298 struct dentry *dentry, struct dentry *alias) 2299 { 2300 struct mutex *m1 = NULL, *m2 = NULL; 2301 struct dentry *ret; 2302 2303 /* If alias and dentry share a parent, then no extra locks required */ 2304 if (alias->d_parent == dentry->d_parent) 2305 goto out_unalias; 2306 2307 /* See lock_rename() */ 2308 ret = ERR_PTR(-EBUSY); 2309 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2310 goto out_err; 2311 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2312 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2313 goto out_err; 2314 m2 = &alias->d_parent->d_inode->i_mutex; 2315 out_unalias: 2316 __d_move(alias, dentry); 2317 ret = alias; 2318 out_err: 2319 spin_unlock(&inode->i_lock); 2320 if (m2) 2321 mutex_unlock(m2); 2322 if (m1) 2323 mutex_unlock(m1); 2324 return ret; 2325 } 2326 2327 /* 2328 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2329 * named dentry in place of the dentry to be replaced. 2330 * returns with anon->d_lock held! 2331 */ 2332 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2333 { 2334 struct dentry *dparent, *aparent; 2335 2336 dentry_lock_for_move(anon, dentry); 2337 2338 write_seqcount_begin(&dentry->d_seq); 2339 write_seqcount_begin(&anon->d_seq); 2340 2341 dparent = dentry->d_parent; 2342 aparent = anon->d_parent; 2343 2344 switch_names(dentry, anon); 2345 swap(dentry->d_name.hash, anon->d_name.hash); 2346 2347 dentry->d_parent = (aparent == anon) ? dentry : aparent; 2348 list_del(&dentry->d_u.d_child); 2349 if (!IS_ROOT(dentry)) 2350 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2351 else 2352 INIT_LIST_HEAD(&dentry->d_u.d_child); 2353 2354 anon->d_parent = (dparent == dentry) ? anon : dparent; 2355 list_del(&anon->d_u.d_child); 2356 if (!IS_ROOT(anon)) 2357 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); 2358 else 2359 INIT_LIST_HEAD(&anon->d_u.d_child); 2360 2361 write_seqcount_end(&dentry->d_seq); 2362 write_seqcount_end(&anon->d_seq); 2363 2364 dentry_unlock_parents_for_move(anon, dentry); 2365 spin_unlock(&dentry->d_lock); 2366 2367 /* anon->d_lock still locked, returns locked */ 2368 anon->d_flags &= ~DCACHE_DISCONNECTED; 2369 } 2370 2371 /** 2372 * d_materialise_unique - introduce an inode into the tree 2373 * @dentry: candidate dentry 2374 * @inode: inode to bind to the dentry, to which aliases may be attached 2375 * 2376 * Introduces an dentry into the tree, substituting an extant disconnected 2377 * root directory alias in its place if there is one. Caller must hold the 2378 * i_mutex of the parent directory. 2379 */ 2380 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2381 { 2382 struct dentry *actual; 2383 2384 BUG_ON(!d_unhashed(dentry)); 2385 2386 if (!inode) { 2387 actual = dentry; 2388 __d_instantiate(dentry, NULL); 2389 d_rehash(actual); 2390 goto out_nolock; 2391 } 2392 2393 spin_lock(&inode->i_lock); 2394 2395 if (S_ISDIR(inode->i_mode)) { 2396 struct dentry *alias; 2397 2398 /* Does an aliased dentry already exist? */ 2399 alias = __d_find_alias(inode, 0); 2400 if (alias) { 2401 actual = alias; 2402 write_seqlock(&rename_lock); 2403 2404 if (d_ancestor(alias, dentry)) { 2405 /* Check for loops */ 2406 actual = ERR_PTR(-ELOOP); 2407 spin_unlock(&inode->i_lock); 2408 } else if (IS_ROOT(alias)) { 2409 /* Is this an anonymous mountpoint that we 2410 * could splice into our tree? */ 2411 __d_materialise_dentry(dentry, alias); 2412 write_sequnlock(&rename_lock); 2413 __d_drop(alias); 2414 goto found; 2415 } else { 2416 /* Nope, but we must(!) avoid directory 2417 * aliasing. This drops inode->i_lock */ 2418 actual = __d_unalias(inode, dentry, alias); 2419 } 2420 write_sequnlock(&rename_lock); 2421 if (IS_ERR(actual)) { 2422 if (PTR_ERR(actual) == -ELOOP) 2423 pr_warn_ratelimited( 2424 "VFS: Lookup of '%s' in %s %s" 2425 " would have caused loop\n", 2426 dentry->d_name.name, 2427 inode->i_sb->s_type->name, 2428 inode->i_sb->s_id); 2429 dput(alias); 2430 } 2431 goto out_nolock; 2432 } 2433 } 2434 2435 /* Add a unique reference */ 2436 actual = __d_instantiate_unique(dentry, inode); 2437 if (!actual) 2438 actual = dentry; 2439 else 2440 BUG_ON(!d_unhashed(actual)); 2441 2442 spin_lock(&actual->d_lock); 2443 found: 2444 _d_rehash(actual); 2445 spin_unlock(&actual->d_lock); 2446 spin_unlock(&inode->i_lock); 2447 out_nolock: 2448 if (actual == dentry) { 2449 security_d_instantiate(dentry, inode); 2450 return NULL; 2451 } 2452 2453 iput(inode); 2454 return actual; 2455 } 2456 EXPORT_SYMBOL_GPL(d_materialise_unique); 2457 2458 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2459 { 2460 *buflen -= namelen; 2461 if (*buflen < 0) 2462 return -ENAMETOOLONG; 2463 *buffer -= namelen; 2464 memcpy(*buffer, str, namelen); 2465 return 0; 2466 } 2467 2468 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2469 { 2470 return prepend(buffer, buflen, name->name, name->len); 2471 } 2472 2473 /** 2474 * prepend_path - Prepend path string to a buffer 2475 * @path: the dentry/vfsmount to report 2476 * @root: root vfsmnt/dentry 2477 * @buffer: pointer to the end of the buffer 2478 * @buflen: pointer to buffer length 2479 * 2480 * Caller holds the rename_lock. 2481 */ 2482 static int prepend_path(const struct path *path, 2483 const struct path *root, 2484 char **buffer, int *buflen) 2485 { 2486 struct dentry *dentry = path->dentry; 2487 struct vfsmount *vfsmnt = path->mnt; 2488 struct mount *mnt = real_mount(vfsmnt); 2489 bool slash = false; 2490 int error = 0; 2491 2492 br_read_lock(vfsmount_lock); 2493 while (dentry != root->dentry || vfsmnt != root->mnt) { 2494 struct dentry * parent; 2495 2496 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2497 /* Global root? */ 2498 if (!mnt_has_parent(mnt)) 2499 goto global_root; 2500 dentry = mnt->mnt_mountpoint; 2501 mnt = mnt->mnt_parent; 2502 vfsmnt = &mnt->mnt; 2503 continue; 2504 } 2505 parent = dentry->d_parent; 2506 prefetch(parent); 2507 spin_lock(&dentry->d_lock); 2508 error = prepend_name(buffer, buflen, &dentry->d_name); 2509 spin_unlock(&dentry->d_lock); 2510 if (!error) 2511 error = prepend(buffer, buflen, "/", 1); 2512 if (error) 2513 break; 2514 2515 slash = true; 2516 dentry = parent; 2517 } 2518 2519 if (!error && !slash) 2520 error = prepend(buffer, buflen, "/", 1); 2521 2522 out: 2523 br_read_unlock(vfsmount_lock); 2524 return error; 2525 2526 global_root: 2527 /* 2528 * Filesystems needing to implement special "root names" 2529 * should do so with ->d_dname() 2530 */ 2531 if (IS_ROOT(dentry) && 2532 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) { 2533 WARN(1, "Root dentry has weird name <%.*s>\n", 2534 (int) dentry->d_name.len, dentry->d_name.name); 2535 } 2536 if (!slash) 2537 error = prepend(buffer, buflen, "/", 1); 2538 if (!error) 2539 error = real_mount(vfsmnt)->mnt_ns ? 1 : 2; 2540 goto out; 2541 } 2542 2543 /** 2544 * __d_path - return the path of a dentry 2545 * @path: the dentry/vfsmount to report 2546 * @root: root vfsmnt/dentry 2547 * @buf: buffer to return value in 2548 * @buflen: buffer length 2549 * 2550 * Convert a dentry into an ASCII path name. 2551 * 2552 * Returns a pointer into the buffer or an error code if the 2553 * path was too long. 2554 * 2555 * "buflen" should be positive. 2556 * 2557 * If the path is not reachable from the supplied root, return %NULL. 2558 */ 2559 char *__d_path(const struct path *path, 2560 const struct path *root, 2561 char *buf, int buflen) 2562 { 2563 char *res = buf + buflen; 2564 int error; 2565 2566 prepend(&res, &buflen, "\0", 1); 2567 write_seqlock(&rename_lock); 2568 error = prepend_path(path, root, &res, &buflen); 2569 write_sequnlock(&rename_lock); 2570 2571 if (error < 0) 2572 return ERR_PTR(error); 2573 if (error > 0) 2574 return NULL; 2575 return res; 2576 } 2577 2578 char *d_absolute_path(const struct path *path, 2579 char *buf, int buflen) 2580 { 2581 struct path root = {}; 2582 char *res = buf + buflen; 2583 int error; 2584 2585 prepend(&res, &buflen, "\0", 1); 2586 write_seqlock(&rename_lock); 2587 error = prepend_path(path, &root, &res, &buflen); 2588 write_sequnlock(&rename_lock); 2589 2590 if (error > 1) 2591 error = -EINVAL; 2592 if (error < 0) 2593 return ERR_PTR(error); 2594 return res; 2595 } 2596 2597 /* 2598 * same as __d_path but appends "(deleted)" for unlinked files. 2599 */ 2600 static int path_with_deleted(const struct path *path, 2601 const struct path *root, 2602 char **buf, int *buflen) 2603 { 2604 prepend(buf, buflen, "\0", 1); 2605 if (d_unlinked(path->dentry)) { 2606 int error = prepend(buf, buflen, " (deleted)", 10); 2607 if (error) 2608 return error; 2609 } 2610 2611 return prepend_path(path, root, buf, buflen); 2612 } 2613 2614 static int prepend_unreachable(char **buffer, int *buflen) 2615 { 2616 return prepend(buffer, buflen, "(unreachable)", 13); 2617 } 2618 2619 /** 2620 * d_path - return the path of a dentry 2621 * @path: path to report 2622 * @buf: buffer to return value in 2623 * @buflen: buffer length 2624 * 2625 * Convert a dentry into an ASCII path name. If the entry has been deleted 2626 * the string " (deleted)" is appended. Note that this is ambiguous. 2627 * 2628 * Returns a pointer into the buffer or an error code if the path was 2629 * too long. Note: Callers should use the returned pointer, not the passed 2630 * in buffer, to use the name! The implementation often starts at an offset 2631 * into the buffer, and may leave 0 bytes at the start. 2632 * 2633 * "buflen" should be positive. 2634 */ 2635 char *d_path(const struct path *path, char *buf, int buflen) 2636 { 2637 char *res = buf + buflen; 2638 struct path root; 2639 int error; 2640 2641 /* 2642 * We have various synthetic filesystems that never get mounted. On 2643 * these filesystems dentries are never used for lookup purposes, and 2644 * thus don't need to be hashed. They also don't need a name until a 2645 * user wants to identify the object in /proc/pid/fd/. The little hack 2646 * below allows us to generate a name for these objects on demand: 2647 */ 2648 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2649 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2650 2651 get_fs_root(current->fs, &root); 2652 write_seqlock(&rename_lock); 2653 error = path_with_deleted(path, &root, &res, &buflen); 2654 if (error < 0) 2655 res = ERR_PTR(error); 2656 write_sequnlock(&rename_lock); 2657 path_put(&root); 2658 return res; 2659 } 2660 EXPORT_SYMBOL(d_path); 2661 2662 /** 2663 * d_path_with_unreachable - return the path of a dentry 2664 * @path: path to report 2665 * @buf: buffer to return value in 2666 * @buflen: buffer length 2667 * 2668 * The difference from d_path() is that this prepends "(unreachable)" 2669 * to paths which are unreachable from the current process' root. 2670 */ 2671 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen) 2672 { 2673 char *res = buf + buflen; 2674 struct path root; 2675 int error; 2676 2677 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2678 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2679 2680 get_fs_root(current->fs, &root); 2681 write_seqlock(&rename_lock); 2682 error = path_with_deleted(path, &root, &res, &buflen); 2683 if (error > 0) 2684 error = prepend_unreachable(&res, &buflen); 2685 write_sequnlock(&rename_lock); 2686 path_put(&root); 2687 if (error) 2688 res = ERR_PTR(error); 2689 2690 return res; 2691 } 2692 2693 /* 2694 * Helper function for dentry_operations.d_dname() members 2695 */ 2696 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2697 const char *fmt, ...) 2698 { 2699 va_list args; 2700 char temp[64]; 2701 int sz; 2702 2703 va_start(args, fmt); 2704 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2705 va_end(args); 2706 2707 if (sz > sizeof(temp) || sz > buflen) 2708 return ERR_PTR(-ENAMETOOLONG); 2709 2710 buffer += buflen - sz; 2711 return memcpy(buffer, temp, sz); 2712 } 2713 2714 /* 2715 * Write full pathname from the root of the filesystem into the buffer. 2716 */ 2717 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 2718 { 2719 char *end = buf + buflen; 2720 char *retval; 2721 2722 prepend(&end, &buflen, "\0", 1); 2723 if (buflen < 1) 2724 goto Elong; 2725 /* Get '/' right */ 2726 retval = end-1; 2727 *retval = '/'; 2728 2729 while (!IS_ROOT(dentry)) { 2730 struct dentry *parent = dentry->d_parent; 2731 int error; 2732 2733 prefetch(parent); 2734 spin_lock(&dentry->d_lock); 2735 error = prepend_name(&end, &buflen, &dentry->d_name); 2736 spin_unlock(&dentry->d_lock); 2737 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0) 2738 goto Elong; 2739 2740 retval = end; 2741 dentry = parent; 2742 } 2743 return retval; 2744 Elong: 2745 return ERR_PTR(-ENAMETOOLONG); 2746 } 2747 2748 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 2749 { 2750 char *retval; 2751 2752 write_seqlock(&rename_lock); 2753 retval = __dentry_path(dentry, buf, buflen); 2754 write_sequnlock(&rename_lock); 2755 2756 return retval; 2757 } 2758 EXPORT_SYMBOL(dentry_path_raw); 2759 2760 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2761 { 2762 char *p = NULL; 2763 char *retval; 2764 2765 write_seqlock(&rename_lock); 2766 if (d_unlinked(dentry)) { 2767 p = buf + buflen; 2768 if (prepend(&p, &buflen, "//deleted", 10) != 0) 2769 goto Elong; 2770 buflen++; 2771 } 2772 retval = __dentry_path(dentry, buf, buflen); 2773 write_sequnlock(&rename_lock); 2774 if (!IS_ERR(retval) && p) 2775 *p = '/'; /* restore '/' overriden with '\0' */ 2776 return retval; 2777 Elong: 2778 return ERR_PTR(-ENAMETOOLONG); 2779 } 2780 2781 /* 2782 * NOTE! The user-level library version returns a 2783 * character pointer. The kernel system call just 2784 * returns the length of the buffer filled (which 2785 * includes the ending '\0' character), or a negative 2786 * error value. So libc would do something like 2787 * 2788 * char *getcwd(char * buf, size_t size) 2789 * { 2790 * int retval; 2791 * 2792 * retval = sys_getcwd(buf, size); 2793 * if (retval >= 0) 2794 * return buf; 2795 * errno = -retval; 2796 * return NULL; 2797 * } 2798 */ 2799 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2800 { 2801 int error; 2802 struct path pwd, root; 2803 char *page = (char *) __get_free_page(GFP_USER); 2804 2805 if (!page) 2806 return -ENOMEM; 2807 2808 get_fs_root_and_pwd(current->fs, &root, &pwd); 2809 2810 error = -ENOENT; 2811 write_seqlock(&rename_lock); 2812 if (!d_unlinked(pwd.dentry)) { 2813 unsigned long len; 2814 char *cwd = page + PAGE_SIZE; 2815 int buflen = PAGE_SIZE; 2816 2817 prepend(&cwd, &buflen, "\0", 1); 2818 error = prepend_path(&pwd, &root, &cwd, &buflen); 2819 write_sequnlock(&rename_lock); 2820 2821 if (error < 0) 2822 goto out; 2823 2824 /* Unreachable from current root */ 2825 if (error > 0) { 2826 error = prepend_unreachable(&cwd, &buflen); 2827 if (error) 2828 goto out; 2829 } 2830 2831 error = -ERANGE; 2832 len = PAGE_SIZE + page - cwd; 2833 if (len <= size) { 2834 error = len; 2835 if (copy_to_user(buf, cwd, len)) 2836 error = -EFAULT; 2837 } 2838 } else { 2839 write_sequnlock(&rename_lock); 2840 } 2841 2842 out: 2843 path_put(&pwd); 2844 path_put(&root); 2845 free_page((unsigned long) page); 2846 return error; 2847 } 2848 2849 /* 2850 * Test whether new_dentry is a subdirectory of old_dentry. 2851 * 2852 * Trivially implemented using the dcache structure 2853 */ 2854 2855 /** 2856 * is_subdir - is new dentry a subdirectory of old_dentry 2857 * @new_dentry: new dentry 2858 * @old_dentry: old dentry 2859 * 2860 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2861 * Returns 0 otherwise. 2862 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2863 */ 2864 2865 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2866 { 2867 int result; 2868 unsigned seq; 2869 2870 if (new_dentry == old_dentry) 2871 return 1; 2872 2873 do { 2874 /* for restarting inner loop in case of seq retry */ 2875 seq = read_seqbegin(&rename_lock); 2876 /* 2877 * Need rcu_readlock to protect against the d_parent trashing 2878 * due to d_move 2879 */ 2880 rcu_read_lock(); 2881 if (d_ancestor(old_dentry, new_dentry)) 2882 result = 1; 2883 else 2884 result = 0; 2885 rcu_read_unlock(); 2886 } while (read_seqretry(&rename_lock, seq)); 2887 2888 return result; 2889 } 2890 2891 void d_genocide(struct dentry *root) 2892 { 2893 struct dentry *this_parent; 2894 struct list_head *next; 2895 unsigned seq; 2896 int locked = 0; 2897 2898 seq = read_seqbegin(&rename_lock); 2899 again: 2900 this_parent = root; 2901 spin_lock(&this_parent->d_lock); 2902 repeat: 2903 next = this_parent->d_subdirs.next; 2904 resume: 2905 while (next != &this_parent->d_subdirs) { 2906 struct list_head *tmp = next; 2907 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 2908 next = tmp->next; 2909 2910 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2911 if (d_unhashed(dentry) || !dentry->d_inode) { 2912 spin_unlock(&dentry->d_lock); 2913 continue; 2914 } 2915 if (!list_empty(&dentry->d_subdirs)) { 2916 spin_unlock(&this_parent->d_lock); 2917 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 2918 this_parent = dentry; 2919 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 2920 goto repeat; 2921 } 2922 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 2923 dentry->d_flags |= DCACHE_GENOCIDE; 2924 dentry->d_count--; 2925 } 2926 spin_unlock(&dentry->d_lock); 2927 } 2928 if (this_parent != root) { 2929 struct dentry *child = this_parent; 2930 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) { 2931 this_parent->d_flags |= DCACHE_GENOCIDE; 2932 this_parent->d_count--; 2933 } 2934 this_parent = try_to_ascend(this_parent, locked, seq); 2935 if (!this_parent) 2936 goto rename_retry; 2937 next = child->d_u.d_child.next; 2938 goto resume; 2939 } 2940 spin_unlock(&this_parent->d_lock); 2941 if (!locked && read_seqretry(&rename_lock, seq)) 2942 goto rename_retry; 2943 if (locked) 2944 write_sequnlock(&rename_lock); 2945 return; 2946 2947 rename_retry: 2948 locked = 1; 2949 write_seqlock(&rename_lock); 2950 goto again; 2951 } 2952 2953 /** 2954 * find_inode_number - check for dentry with name 2955 * @dir: directory to check 2956 * @name: Name to find. 2957 * 2958 * Check whether a dentry already exists for the given name, 2959 * and return the inode number if it has an inode. Otherwise 2960 * 0 is returned. 2961 * 2962 * This routine is used to post-process directory listings for 2963 * filesystems using synthetic inode numbers, and is necessary 2964 * to keep getcwd() working. 2965 */ 2966 2967 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 2968 { 2969 struct dentry * dentry; 2970 ino_t ino = 0; 2971 2972 dentry = d_hash_and_lookup(dir, name); 2973 if (dentry) { 2974 if (dentry->d_inode) 2975 ino = dentry->d_inode->i_ino; 2976 dput(dentry); 2977 } 2978 return ino; 2979 } 2980 EXPORT_SYMBOL(find_inode_number); 2981 2982 static __initdata unsigned long dhash_entries; 2983 static int __init set_dhash_entries(char *str) 2984 { 2985 if (!str) 2986 return 0; 2987 dhash_entries = simple_strtoul(str, &str, 0); 2988 return 1; 2989 } 2990 __setup("dhash_entries=", set_dhash_entries); 2991 2992 static void __init dcache_init_early(void) 2993 { 2994 unsigned int loop; 2995 2996 /* If hashes are distributed across NUMA nodes, defer 2997 * hash allocation until vmalloc space is available. 2998 */ 2999 if (hashdist) 3000 return; 3001 3002 dentry_hashtable = 3003 alloc_large_system_hash("Dentry cache", 3004 sizeof(struct hlist_bl_head), 3005 dhash_entries, 3006 13, 3007 HASH_EARLY, 3008 &d_hash_shift, 3009 &d_hash_mask, 3010 0); 3011 3012 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3013 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3014 } 3015 3016 static void __init dcache_init(void) 3017 { 3018 unsigned int loop; 3019 3020 /* 3021 * A constructor could be added for stable state like the lists, 3022 * but it is probably not worth it because of the cache nature 3023 * of the dcache. 3024 */ 3025 dentry_cache = KMEM_CACHE(dentry, 3026 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3027 3028 /* Hash may have been set up in dcache_init_early */ 3029 if (!hashdist) 3030 return; 3031 3032 dentry_hashtable = 3033 alloc_large_system_hash("Dentry cache", 3034 sizeof(struct hlist_bl_head), 3035 dhash_entries, 3036 13, 3037 0, 3038 &d_hash_shift, 3039 &d_hash_mask, 3040 0); 3041 3042 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3043 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3044 } 3045 3046 /* SLAB cache for __getname() consumers */ 3047 struct kmem_cache *names_cachep __read_mostly; 3048 EXPORT_SYMBOL(names_cachep); 3049 3050 EXPORT_SYMBOL(d_genocide); 3051 3052 void __init vfs_caches_init_early(void) 3053 { 3054 dcache_init_early(); 3055 inode_init_early(); 3056 } 3057 3058 void __init vfs_caches_init(unsigned long mempages) 3059 { 3060 unsigned long reserve; 3061 3062 /* Base hash sizes on available memory, with a reserve equal to 3063 150% of current kernel size */ 3064 3065 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3066 mempages -= reserve; 3067 3068 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3069 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3070 3071 dcache_init(); 3072 inode_init(); 3073 files_init(mempages); 3074 mnt_init(); 3075 bdev_cache_init(); 3076 chrdev_init(); 3077 } 3078