xref: /linux/fs/dcache.c (revision 2d6ffcca623a9a16df6cdfbe8250b7a5904a5f5e)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fdtable.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat = {
67 	.age_limit = 45,
68 };
69 
70 static void __d_free(struct dentry *dentry)
71 {
72 	if (dname_external(dentry))
73 		kfree(dentry->d_name.name);
74 	kmem_cache_free(dentry_cache, dentry);
75 }
76 
77 static void d_callback(struct rcu_head *head)
78 {
79 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
80 	__d_free(dentry);
81 }
82 
83 /*
84  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
85  * inside dcache_lock.
86  */
87 static void d_free(struct dentry *dentry)
88 {
89 	if (dentry->d_op && dentry->d_op->d_release)
90 		dentry->d_op->d_release(dentry);
91 	/* if dentry was never inserted into hash, immediate free is OK */
92 	if (hlist_unhashed(&dentry->d_hash))
93 		__d_free(dentry);
94 	else
95 		call_rcu(&dentry->d_u.d_rcu, d_callback);
96 }
97 
98 /*
99  * Release the dentry's inode, using the filesystem
100  * d_iput() operation if defined.
101  */
102 static void dentry_iput(struct dentry * dentry)
103 	__releases(dentry->d_lock)
104 	__releases(dcache_lock)
105 {
106 	struct inode *inode = dentry->d_inode;
107 	if (inode) {
108 		dentry->d_inode = NULL;
109 		list_del_init(&dentry->d_alias);
110 		spin_unlock(&dentry->d_lock);
111 		spin_unlock(&dcache_lock);
112 		if (!inode->i_nlink)
113 			fsnotify_inoderemove(inode);
114 		if (dentry->d_op && dentry->d_op->d_iput)
115 			dentry->d_op->d_iput(dentry, inode);
116 		else
117 			iput(inode);
118 	} else {
119 		spin_unlock(&dentry->d_lock);
120 		spin_unlock(&dcache_lock);
121 	}
122 }
123 
124 /*
125  * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
126  */
127 static void dentry_lru_add(struct dentry *dentry)
128 {
129 	list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
130 	dentry->d_sb->s_nr_dentry_unused++;
131 	dentry_stat.nr_unused++;
132 }
133 
134 static void dentry_lru_add_tail(struct dentry *dentry)
135 {
136 	list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
137 	dentry->d_sb->s_nr_dentry_unused++;
138 	dentry_stat.nr_unused++;
139 }
140 
141 static void dentry_lru_del(struct dentry *dentry)
142 {
143 	if (!list_empty(&dentry->d_lru)) {
144 		list_del(&dentry->d_lru);
145 		dentry->d_sb->s_nr_dentry_unused--;
146 		dentry_stat.nr_unused--;
147 	}
148 }
149 
150 static void dentry_lru_del_init(struct dentry *dentry)
151 {
152 	if (likely(!list_empty(&dentry->d_lru))) {
153 		list_del_init(&dentry->d_lru);
154 		dentry->d_sb->s_nr_dentry_unused--;
155 		dentry_stat.nr_unused--;
156 	}
157 }
158 
159 /**
160  * d_kill - kill dentry and return parent
161  * @dentry: dentry to kill
162  *
163  * The dentry must already be unhashed and removed from the LRU.
164  *
165  * If this is the root of the dentry tree, return NULL.
166  */
167 static struct dentry *d_kill(struct dentry *dentry)
168 	__releases(dentry->d_lock)
169 	__releases(dcache_lock)
170 {
171 	struct dentry *parent;
172 
173 	list_del(&dentry->d_u.d_child);
174 	dentry_stat.nr_dentry--;	/* For d_free, below */
175 	/*drops the locks, at that point nobody can reach this dentry */
176 	dentry_iput(dentry);
177 	parent = dentry->d_parent;
178 	d_free(dentry);
179 	return dentry == parent ? NULL : parent;
180 }
181 
182 /*
183  * This is dput
184  *
185  * This is complicated by the fact that we do not want to put
186  * dentries that are no longer on any hash chain on the unused
187  * list: we'd much rather just get rid of them immediately.
188  *
189  * However, that implies that we have to traverse the dentry
190  * tree upwards to the parents which might _also_ now be
191  * scheduled for deletion (it may have been only waiting for
192  * its last child to go away).
193  *
194  * This tail recursion is done by hand as we don't want to depend
195  * on the compiler to always get this right (gcc generally doesn't).
196  * Real recursion would eat up our stack space.
197  */
198 
199 /*
200  * dput - release a dentry
201  * @dentry: dentry to release
202  *
203  * Release a dentry. This will drop the usage count and if appropriate
204  * call the dentry unlink method as well as removing it from the queues and
205  * releasing its resources. If the parent dentries were scheduled for release
206  * they too may now get deleted.
207  *
208  * no dcache lock, please.
209  */
210 
211 void dput(struct dentry *dentry)
212 {
213 	if (!dentry)
214 		return;
215 
216 repeat:
217 	if (atomic_read(&dentry->d_count) == 1)
218 		might_sleep();
219 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
220 		return;
221 
222 	spin_lock(&dentry->d_lock);
223 	if (atomic_read(&dentry->d_count)) {
224 		spin_unlock(&dentry->d_lock);
225 		spin_unlock(&dcache_lock);
226 		return;
227 	}
228 
229 	/*
230 	 * AV: ->d_delete() is _NOT_ allowed to block now.
231 	 */
232 	if (dentry->d_op && dentry->d_op->d_delete) {
233 		if (dentry->d_op->d_delete(dentry))
234 			goto unhash_it;
235 	}
236 	/* Unreachable? Get rid of it */
237  	if (d_unhashed(dentry))
238 		goto kill_it;
239   	if (list_empty(&dentry->d_lru)) {
240   		dentry->d_flags |= DCACHE_REFERENCED;
241 		dentry_lru_add(dentry);
242   	}
243  	spin_unlock(&dentry->d_lock);
244 	spin_unlock(&dcache_lock);
245 	return;
246 
247 unhash_it:
248 	__d_drop(dentry);
249 kill_it:
250 	/* if dentry was on the d_lru list delete it from there */
251 	dentry_lru_del(dentry);
252 	dentry = d_kill(dentry);
253 	if (dentry)
254 		goto repeat;
255 }
256 
257 /**
258  * d_invalidate - invalidate a dentry
259  * @dentry: dentry to invalidate
260  *
261  * Try to invalidate the dentry if it turns out to be
262  * possible. If there are other dentries that can be
263  * reached through this one we can't delete it and we
264  * return -EBUSY. On success we return 0.
265  *
266  * no dcache lock.
267  */
268 
269 int d_invalidate(struct dentry * dentry)
270 {
271 	/*
272 	 * If it's already been dropped, return OK.
273 	 */
274 	spin_lock(&dcache_lock);
275 	if (d_unhashed(dentry)) {
276 		spin_unlock(&dcache_lock);
277 		return 0;
278 	}
279 	/*
280 	 * Check whether to do a partial shrink_dcache
281 	 * to get rid of unused child entries.
282 	 */
283 	if (!list_empty(&dentry->d_subdirs)) {
284 		spin_unlock(&dcache_lock);
285 		shrink_dcache_parent(dentry);
286 		spin_lock(&dcache_lock);
287 	}
288 
289 	/*
290 	 * Somebody else still using it?
291 	 *
292 	 * If it's a directory, we can't drop it
293 	 * for fear of somebody re-populating it
294 	 * with children (even though dropping it
295 	 * would make it unreachable from the root,
296 	 * we might still populate it if it was a
297 	 * working directory or similar).
298 	 */
299 	spin_lock(&dentry->d_lock);
300 	if (atomic_read(&dentry->d_count) > 1) {
301 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
302 			spin_unlock(&dentry->d_lock);
303 			spin_unlock(&dcache_lock);
304 			return -EBUSY;
305 		}
306 	}
307 
308 	__d_drop(dentry);
309 	spin_unlock(&dentry->d_lock);
310 	spin_unlock(&dcache_lock);
311 	return 0;
312 }
313 
314 /* This should be called _only_ with dcache_lock held */
315 
316 static inline struct dentry * __dget_locked(struct dentry *dentry)
317 {
318 	atomic_inc(&dentry->d_count);
319 	dentry_lru_del_init(dentry);
320 	return dentry;
321 }
322 
323 struct dentry * dget_locked(struct dentry *dentry)
324 {
325 	return __dget_locked(dentry);
326 }
327 
328 /**
329  * d_find_alias - grab a hashed alias of inode
330  * @inode: inode in question
331  * @want_discon:  flag, used by d_splice_alias, to request
332  *          that only a DISCONNECTED alias be returned.
333  *
334  * If inode has a hashed alias, or is a directory and has any alias,
335  * acquire the reference to alias and return it. Otherwise return NULL.
336  * Notice that if inode is a directory there can be only one alias and
337  * it can be unhashed only if it has no children, or if it is the root
338  * of a filesystem.
339  *
340  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
341  * any other hashed alias over that one unless @want_discon is set,
342  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
343  */
344 
345 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
346 {
347 	struct list_head *head, *next, *tmp;
348 	struct dentry *alias, *discon_alias=NULL;
349 
350 	head = &inode->i_dentry;
351 	next = inode->i_dentry.next;
352 	while (next != head) {
353 		tmp = next;
354 		next = tmp->next;
355 		prefetch(next);
356 		alias = list_entry(tmp, struct dentry, d_alias);
357  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
358 			if (IS_ROOT(alias) &&
359 			    (alias->d_flags & DCACHE_DISCONNECTED))
360 				discon_alias = alias;
361 			else if (!want_discon) {
362 				__dget_locked(alias);
363 				return alias;
364 			}
365 		}
366 	}
367 	if (discon_alias)
368 		__dget_locked(discon_alias);
369 	return discon_alias;
370 }
371 
372 struct dentry * d_find_alias(struct inode *inode)
373 {
374 	struct dentry *de = NULL;
375 
376 	if (!list_empty(&inode->i_dentry)) {
377 		spin_lock(&dcache_lock);
378 		de = __d_find_alias(inode, 0);
379 		spin_unlock(&dcache_lock);
380 	}
381 	return de;
382 }
383 
384 /*
385  *	Try to kill dentries associated with this inode.
386  * WARNING: you must own a reference to inode.
387  */
388 void d_prune_aliases(struct inode *inode)
389 {
390 	struct dentry *dentry;
391 restart:
392 	spin_lock(&dcache_lock);
393 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
394 		spin_lock(&dentry->d_lock);
395 		if (!atomic_read(&dentry->d_count)) {
396 			__dget_locked(dentry);
397 			__d_drop(dentry);
398 			spin_unlock(&dentry->d_lock);
399 			spin_unlock(&dcache_lock);
400 			dput(dentry);
401 			goto restart;
402 		}
403 		spin_unlock(&dentry->d_lock);
404 	}
405 	spin_unlock(&dcache_lock);
406 }
407 
408 /*
409  * Throw away a dentry - free the inode, dput the parent.  This requires that
410  * the LRU list has already been removed.
411  *
412  * Try to prune ancestors as well.  This is necessary to prevent
413  * quadratic behavior of shrink_dcache_parent(), but is also expected
414  * to be beneficial in reducing dentry cache fragmentation.
415  */
416 static void prune_one_dentry(struct dentry * dentry)
417 	__releases(dentry->d_lock)
418 	__releases(dcache_lock)
419 	__acquires(dcache_lock)
420 {
421 	__d_drop(dentry);
422 	dentry = d_kill(dentry);
423 
424 	/*
425 	 * Prune ancestors.  Locking is simpler than in dput(),
426 	 * because dcache_lock needs to be taken anyway.
427 	 */
428 	spin_lock(&dcache_lock);
429 	while (dentry) {
430 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
431 			return;
432 
433 		if (dentry->d_op && dentry->d_op->d_delete)
434 			dentry->d_op->d_delete(dentry);
435 		dentry_lru_del_init(dentry);
436 		__d_drop(dentry);
437 		dentry = d_kill(dentry);
438 		spin_lock(&dcache_lock);
439 	}
440 }
441 
442 /*
443  * Shrink the dentry LRU on a given superblock.
444  * @sb   : superblock to shrink dentry LRU.
445  * @count: If count is NULL, we prune all dentries on superblock.
446  * @flags: If flags is non-zero, we need to do special processing based on
447  * which flags are set. This means we don't need to maintain multiple
448  * similar copies of this loop.
449  */
450 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
451 {
452 	LIST_HEAD(referenced);
453 	LIST_HEAD(tmp);
454 	struct dentry *dentry;
455 	int cnt = 0;
456 
457 	BUG_ON(!sb);
458 	BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
459 	spin_lock(&dcache_lock);
460 	if (count != NULL)
461 		/* called from prune_dcache() and shrink_dcache_parent() */
462 		cnt = *count;
463 restart:
464 	if (count == NULL)
465 		list_splice_init(&sb->s_dentry_lru, &tmp);
466 	else {
467 		while (!list_empty(&sb->s_dentry_lru)) {
468 			dentry = list_entry(sb->s_dentry_lru.prev,
469 					struct dentry, d_lru);
470 			BUG_ON(dentry->d_sb != sb);
471 
472 			spin_lock(&dentry->d_lock);
473 			/*
474 			 * If we are honouring the DCACHE_REFERENCED flag and
475 			 * the dentry has this flag set, don't free it. Clear
476 			 * the flag and put it back on the LRU.
477 			 */
478 			if ((flags & DCACHE_REFERENCED)
479 				&& (dentry->d_flags & DCACHE_REFERENCED)) {
480 				dentry->d_flags &= ~DCACHE_REFERENCED;
481 				list_move_tail(&dentry->d_lru, &referenced);
482 				spin_unlock(&dentry->d_lock);
483 			} else {
484 				list_move_tail(&dentry->d_lru, &tmp);
485 				spin_unlock(&dentry->d_lock);
486 				cnt--;
487 				if (!cnt)
488 					break;
489 			}
490 		}
491 	}
492 	while (!list_empty(&tmp)) {
493 		dentry = list_entry(tmp.prev, struct dentry, d_lru);
494 		dentry_lru_del_init(dentry);
495 		spin_lock(&dentry->d_lock);
496 		/*
497 		 * We found an inuse dentry which was not removed from
498 		 * the LRU because of laziness during lookup.  Do not free
499 		 * it - just keep it off the LRU list.
500 		 */
501 		if (atomic_read(&dentry->d_count)) {
502 			spin_unlock(&dentry->d_lock);
503 			continue;
504 		}
505 		prune_one_dentry(dentry);
506 		/* dentry->d_lock was dropped in prune_one_dentry() */
507 		cond_resched_lock(&dcache_lock);
508 	}
509 	if (count == NULL && !list_empty(&sb->s_dentry_lru))
510 		goto restart;
511 	if (count != NULL)
512 		*count = cnt;
513 	if (!list_empty(&referenced))
514 		list_splice(&referenced, &sb->s_dentry_lru);
515 	spin_unlock(&dcache_lock);
516 }
517 
518 /**
519  * prune_dcache - shrink the dcache
520  * @count: number of entries to try to free
521  *
522  * Shrink the dcache. This is done when we need more memory, or simply when we
523  * need to unmount something (at which point we need to unuse all dentries).
524  *
525  * This function may fail to free any resources if all the dentries are in use.
526  */
527 static void prune_dcache(int count)
528 {
529 	struct super_block *sb;
530 	int w_count;
531 	int unused = dentry_stat.nr_unused;
532 	int prune_ratio;
533 	int pruned;
534 
535 	if (unused == 0 || count == 0)
536 		return;
537 	spin_lock(&dcache_lock);
538 restart:
539 	if (count >= unused)
540 		prune_ratio = 1;
541 	else
542 		prune_ratio = unused / count;
543 	spin_lock(&sb_lock);
544 	list_for_each_entry(sb, &super_blocks, s_list) {
545 		if (sb->s_nr_dentry_unused == 0)
546 			continue;
547 		sb->s_count++;
548 		/* Now, we reclaim unused dentrins with fairness.
549 		 * We reclaim them same percentage from each superblock.
550 		 * We calculate number of dentries to scan on this sb
551 		 * as follows, but the implementation is arranged to avoid
552 		 * overflows:
553 		 * number of dentries to scan on this sb =
554 		 * count * (number of dentries on this sb /
555 		 * number of dentries in the machine)
556 		 */
557 		spin_unlock(&sb_lock);
558 		if (prune_ratio != 1)
559 			w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
560 		else
561 			w_count = sb->s_nr_dentry_unused;
562 		pruned = w_count;
563 		/*
564 		 * We need to be sure this filesystem isn't being unmounted,
565 		 * otherwise we could race with generic_shutdown_super(), and
566 		 * end up holding a reference to an inode while the filesystem
567 		 * is unmounted.  So we try to get s_umount, and make sure
568 		 * s_root isn't NULL.
569 		 */
570 		if (down_read_trylock(&sb->s_umount)) {
571 			if ((sb->s_root != NULL) &&
572 			    (!list_empty(&sb->s_dentry_lru))) {
573 				spin_unlock(&dcache_lock);
574 				__shrink_dcache_sb(sb, &w_count,
575 						DCACHE_REFERENCED);
576 				pruned -= w_count;
577 				spin_lock(&dcache_lock);
578 			}
579 			up_read(&sb->s_umount);
580 		}
581 		spin_lock(&sb_lock);
582 		count -= pruned;
583 		/*
584 		 * restart only when sb is no longer on the list and
585 		 * we have more work to do.
586 		 */
587 		if (__put_super_and_need_restart(sb) && count > 0) {
588 			spin_unlock(&sb_lock);
589 			goto restart;
590 		}
591 	}
592 	spin_unlock(&sb_lock);
593 	spin_unlock(&dcache_lock);
594 }
595 
596 /**
597  * shrink_dcache_sb - shrink dcache for a superblock
598  * @sb: superblock
599  *
600  * Shrink the dcache for the specified super block. This
601  * is used to free the dcache before unmounting a file
602  * system
603  */
604 void shrink_dcache_sb(struct super_block * sb)
605 {
606 	__shrink_dcache_sb(sb, NULL, 0);
607 }
608 
609 /*
610  * destroy a single subtree of dentries for unmount
611  * - see the comments on shrink_dcache_for_umount() for a description of the
612  *   locking
613  */
614 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
615 {
616 	struct dentry *parent;
617 	unsigned detached = 0;
618 
619 	BUG_ON(!IS_ROOT(dentry));
620 
621 	/* detach this root from the system */
622 	spin_lock(&dcache_lock);
623 	dentry_lru_del_init(dentry);
624 	__d_drop(dentry);
625 	spin_unlock(&dcache_lock);
626 
627 	for (;;) {
628 		/* descend to the first leaf in the current subtree */
629 		while (!list_empty(&dentry->d_subdirs)) {
630 			struct dentry *loop;
631 
632 			/* this is a branch with children - detach all of them
633 			 * from the system in one go */
634 			spin_lock(&dcache_lock);
635 			list_for_each_entry(loop, &dentry->d_subdirs,
636 					    d_u.d_child) {
637 				dentry_lru_del_init(loop);
638 				__d_drop(loop);
639 				cond_resched_lock(&dcache_lock);
640 			}
641 			spin_unlock(&dcache_lock);
642 
643 			/* move to the first child */
644 			dentry = list_entry(dentry->d_subdirs.next,
645 					    struct dentry, d_u.d_child);
646 		}
647 
648 		/* consume the dentries from this leaf up through its parents
649 		 * until we find one with children or run out altogether */
650 		do {
651 			struct inode *inode;
652 
653 			if (atomic_read(&dentry->d_count) != 0) {
654 				printk(KERN_ERR
655 				       "BUG: Dentry %p{i=%lx,n=%s}"
656 				       " still in use (%d)"
657 				       " [unmount of %s %s]\n",
658 				       dentry,
659 				       dentry->d_inode ?
660 				       dentry->d_inode->i_ino : 0UL,
661 				       dentry->d_name.name,
662 				       atomic_read(&dentry->d_count),
663 				       dentry->d_sb->s_type->name,
664 				       dentry->d_sb->s_id);
665 				BUG();
666 			}
667 
668 			parent = dentry->d_parent;
669 			if (parent == dentry)
670 				parent = NULL;
671 			else
672 				atomic_dec(&parent->d_count);
673 
674 			list_del(&dentry->d_u.d_child);
675 			detached++;
676 
677 			inode = dentry->d_inode;
678 			if (inode) {
679 				dentry->d_inode = NULL;
680 				list_del_init(&dentry->d_alias);
681 				if (dentry->d_op && dentry->d_op->d_iput)
682 					dentry->d_op->d_iput(dentry, inode);
683 				else
684 					iput(inode);
685 			}
686 
687 			d_free(dentry);
688 
689 			/* finished when we fall off the top of the tree,
690 			 * otherwise we ascend to the parent and move to the
691 			 * next sibling if there is one */
692 			if (!parent)
693 				goto out;
694 
695 			dentry = parent;
696 
697 		} while (list_empty(&dentry->d_subdirs));
698 
699 		dentry = list_entry(dentry->d_subdirs.next,
700 				    struct dentry, d_u.d_child);
701 	}
702 out:
703 	/* several dentries were freed, need to correct nr_dentry */
704 	spin_lock(&dcache_lock);
705 	dentry_stat.nr_dentry -= detached;
706 	spin_unlock(&dcache_lock);
707 }
708 
709 /*
710  * destroy the dentries attached to a superblock on unmounting
711  * - we don't need to use dentry->d_lock, and only need dcache_lock when
712  *   removing the dentry from the system lists and hashes because:
713  *   - the superblock is detached from all mountings and open files, so the
714  *     dentry trees will not be rearranged by the VFS
715  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
716  *     any dentries belonging to this superblock that it comes across
717  *   - the filesystem itself is no longer permitted to rearrange the dentries
718  *     in this superblock
719  */
720 void shrink_dcache_for_umount(struct super_block *sb)
721 {
722 	struct dentry *dentry;
723 
724 	if (down_read_trylock(&sb->s_umount))
725 		BUG();
726 
727 	dentry = sb->s_root;
728 	sb->s_root = NULL;
729 	atomic_dec(&dentry->d_count);
730 	shrink_dcache_for_umount_subtree(dentry);
731 
732 	while (!hlist_empty(&sb->s_anon)) {
733 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
734 		shrink_dcache_for_umount_subtree(dentry);
735 	}
736 }
737 
738 /*
739  * Search for at least 1 mount point in the dentry's subdirs.
740  * We descend to the next level whenever the d_subdirs
741  * list is non-empty and continue searching.
742  */
743 
744 /**
745  * have_submounts - check for mounts over a dentry
746  * @parent: dentry to check.
747  *
748  * Return true if the parent or its subdirectories contain
749  * a mount point
750  */
751 
752 int have_submounts(struct dentry *parent)
753 {
754 	struct dentry *this_parent = parent;
755 	struct list_head *next;
756 
757 	spin_lock(&dcache_lock);
758 	if (d_mountpoint(parent))
759 		goto positive;
760 repeat:
761 	next = this_parent->d_subdirs.next;
762 resume:
763 	while (next != &this_parent->d_subdirs) {
764 		struct list_head *tmp = next;
765 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
766 		next = tmp->next;
767 		/* Have we found a mount point ? */
768 		if (d_mountpoint(dentry))
769 			goto positive;
770 		if (!list_empty(&dentry->d_subdirs)) {
771 			this_parent = dentry;
772 			goto repeat;
773 		}
774 	}
775 	/*
776 	 * All done at this level ... ascend and resume the search.
777 	 */
778 	if (this_parent != parent) {
779 		next = this_parent->d_u.d_child.next;
780 		this_parent = this_parent->d_parent;
781 		goto resume;
782 	}
783 	spin_unlock(&dcache_lock);
784 	return 0; /* No mount points found in tree */
785 positive:
786 	spin_unlock(&dcache_lock);
787 	return 1;
788 }
789 
790 /*
791  * Search the dentry child list for the specified parent,
792  * and move any unused dentries to the end of the unused
793  * list for prune_dcache(). We descend to the next level
794  * whenever the d_subdirs list is non-empty and continue
795  * searching.
796  *
797  * It returns zero iff there are no unused children,
798  * otherwise  it returns the number of children moved to
799  * the end of the unused list. This may not be the total
800  * number of unused children, because select_parent can
801  * drop the lock and return early due to latency
802  * constraints.
803  */
804 static int select_parent(struct dentry * parent)
805 {
806 	struct dentry *this_parent = parent;
807 	struct list_head *next;
808 	int found = 0;
809 
810 	spin_lock(&dcache_lock);
811 repeat:
812 	next = this_parent->d_subdirs.next;
813 resume:
814 	while (next != &this_parent->d_subdirs) {
815 		struct list_head *tmp = next;
816 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
817 		next = tmp->next;
818 
819 		dentry_lru_del_init(dentry);
820 		/*
821 		 * move only zero ref count dentries to the end
822 		 * of the unused list for prune_dcache
823 		 */
824 		if (!atomic_read(&dentry->d_count)) {
825 			dentry_lru_add_tail(dentry);
826 			found++;
827 		}
828 
829 		/*
830 		 * We can return to the caller if we have found some (this
831 		 * ensures forward progress). We'll be coming back to find
832 		 * the rest.
833 		 */
834 		if (found && need_resched())
835 			goto out;
836 
837 		/*
838 		 * Descend a level if the d_subdirs list is non-empty.
839 		 */
840 		if (!list_empty(&dentry->d_subdirs)) {
841 			this_parent = dentry;
842 			goto repeat;
843 		}
844 	}
845 	/*
846 	 * All done at this level ... ascend and resume the search.
847 	 */
848 	if (this_parent != parent) {
849 		next = this_parent->d_u.d_child.next;
850 		this_parent = this_parent->d_parent;
851 		goto resume;
852 	}
853 out:
854 	spin_unlock(&dcache_lock);
855 	return found;
856 }
857 
858 /**
859  * shrink_dcache_parent - prune dcache
860  * @parent: parent of entries to prune
861  *
862  * Prune the dcache to remove unused children of the parent dentry.
863  */
864 
865 void shrink_dcache_parent(struct dentry * parent)
866 {
867 	struct super_block *sb = parent->d_sb;
868 	int found;
869 
870 	while ((found = select_parent(parent)) != 0)
871 		__shrink_dcache_sb(sb, &found, 0);
872 }
873 
874 /*
875  * Scan `nr' dentries and return the number which remain.
876  *
877  * We need to avoid reentering the filesystem if the caller is performing a
878  * GFP_NOFS allocation attempt.  One example deadlock is:
879  *
880  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
881  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
882  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
883  *
884  * In this case we return -1 to tell the caller that we baled.
885  */
886 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
887 {
888 	if (nr) {
889 		if (!(gfp_mask & __GFP_FS))
890 			return -1;
891 		prune_dcache(nr);
892 	}
893 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
894 }
895 
896 static struct shrinker dcache_shrinker = {
897 	.shrink = shrink_dcache_memory,
898 	.seeks = DEFAULT_SEEKS,
899 };
900 
901 /**
902  * d_alloc	-	allocate a dcache entry
903  * @parent: parent of entry to allocate
904  * @name: qstr of the name
905  *
906  * Allocates a dentry. It returns %NULL if there is insufficient memory
907  * available. On a success the dentry is returned. The name passed in is
908  * copied and the copy passed in may be reused after this call.
909  */
910 
911 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
912 {
913 	struct dentry *dentry;
914 	char *dname;
915 
916 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
917 	if (!dentry)
918 		return NULL;
919 
920 	if (name->len > DNAME_INLINE_LEN-1) {
921 		dname = kmalloc(name->len + 1, GFP_KERNEL);
922 		if (!dname) {
923 			kmem_cache_free(dentry_cache, dentry);
924 			return NULL;
925 		}
926 	} else  {
927 		dname = dentry->d_iname;
928 	}
929 	dentry->d_name.name = dname;
930 
931 	dentry->d_name.len = name->len;
932 	dentry->d_name.hash = name->hash;
933 	memcpy(dname, name->name, name->len);
934 	dname[name->len] = 0;
935 
936 	atomic_set(&dentry->d_count, 1);
937 	dentry->d_flags = DCACHE_UNHASHED;
938 	spin_lock_init(&dentry->d_lock);
939 	dentry->d_inode = NULL;
940 	dentry->d_parent = NULL;
941 	dentry->d_sb = NULL;
942 	dentry->d_op = NULL;
943 	dentry->d_fsdata = NULL;
944 	dentry->d_mounted = 0;
945 #ifdef CONFIG_PROFILING
946 	dentry->d_cookie = NULL;
947 #endif
948 	INIT_HLIST_NODE(&dentry->d_hash);
949 	INIT_LIST_HEAD(&dentry->d_lru);
950 	INIT_LIST_HEAD(&dentry->d_subdirs);
951 	INIT_LIST_HEAD(&dentry->d_alias);
952 
953 	if (parent) {
954 		dentry->d_parent = dget(parent);
955 		dentry->d_sb = parent->d_sb;
956 	} else {
957 		INIT_LIST_HEAD(&dentry->d_u.d_child);
958 	}
959 
960 	spin_lock(&dcache_lock);
961 	if (parent)
962 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
963 	dentry_stat.nr_dentry++;
964 	spin_unlock(&dcache_lock);
965 
966 	return dentry;
967 }
968 
969 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
970 {
971 	struct qstr q;
972 
973 	q.name = name;
974 	q.len = strlen(name);
975 	q.hash = full_name_hash(q.name, q.len);
976 	return d_alloc(parent, &q);
977 }
978 
979 /**
980  * d_instantiate - fill in inode information for a dentry
981  * @entry: dentry to complete
982  * @inode: inode to attach to this dentry
983  *
984  * Fill in inode information in the entry.
985  *
986  * This turns negative dentries into productive full members
987  * of society.
988  *
989  * NOTE! This assumes that the inode count has been incremented
990  * (or otherwise set) by the caller to indicate that it is now
991  * in use by the dcache.
992  */
993 
994 void d_instantiate(struct dentry *entry, struct inode * inode)
995 {
996 	BUG_ON(!list_empty(&entry->d_alias));
997 	spin_lock(&dcache_lock);
998 	if (inode)
999 		list_add(&entry->d_alias, &inode->i_dentry);
1000 	entry->d_inode = inode;
1001 	fsnotify_d_instantiate(entry, inode);
1002 	spin_unlock(&dcache_lock);
1003 	security_d_instantiate(entry, inode);
1004 }
1005 
1006 /**
1007  * d_instantiate_unique - instantiate a non-aliased dentry
1008  * @entry: dentry to instantiate
1009  * @inode: inode to attach to this dentry
1010  *
1011  * Fill in inode information in the entry. On success, it returns NULL.
1012  * If an unhashed alias of "entry" already exists, then we return the
1013  * aliased dentry instead and drop one reference to inode.
1014  *
1015  * Note that in order to avoid conflicts with rename() etc, the caller
1016  * had better be holding the parent directory semaphore.
1017  *
1018  * This also assumes that the inode count has been incremented
1019  * (or otherwise set) by the caller to indicate that it is now
1020  * in use by the dcache.
1021  */
1022 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1023 					     struct inode *inode)
1024 {
1025 	struct dentry *alias;
1026 	int len = entry->d_name.len;
1027 	const char *name = entry->d_name.name;
1028 	unsigned int hash = entry->d_name.hash;
1029 
1030 	if (!inode) {
1031 		entry->d_inode = NULL;
1032 		return NULL;
1033 	}
1034 
1035 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1036 		struct qstr *qstr = &alias->d_name;
1037 
1038 		if (qstr->hash != hash)
1039 			continue;
1040 		if (alias->d_parent != entry->d_parent)
1041 			continue;
1042 		if (qstr->len != len)
1043 			continue;
1044 		if (memcmp(qstr->name, name, len))
1045 			continue;
1046 		dget_locked(alias);
1047 		return alias;
1048 	}
1049 
1050 	list_add(&entry->d_alias, &inode->i_dentry);
1051 	entry->d_inode = inode;
1052 	fsnotify_d_instantiate(entry, inode);
1053 	return NULL;
1054 }
1055 
1056 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1057 {
1058 	struct dentry *result;
1059 
1060 	BUG_ON(!list_empty(&entry->d_alias));
1061 
1062 	spin_lock(&dcache_lock);
1063 	result = __d_instantiate_unique(entry, inode);
1064 	spin_unlock(&dcache_lock);
1065 
1066 	if (!result) {
1067 		security_d_instantiate(entry, inode);
1068 		return NULL;
1069 	}
1070 
1071 	BUG_ON(!d_unhashed(result));
1072 	iput(inode);
1073 	return result;
1074 }
1075 
1076 EXPORT_SYMBOL(d_instantiate_unique);
1077 
1078 /**
1079  * d_alloc_root - allocate root dentry
1080  * @root_inode: inode to allocate the root for
1081  *
1082  * Allocate a root ("/") dentry for the inode given. The inode is
1083  * instantiated and returned. %NULL is returned if there is insufficient
1084  * memory or the inode passed is %NULL.
1085  */
1086 
1087 struct dentry * d_alloc_root(struct inode * root_inode)
1088 {
1089 	struct dentry *res = NULL;
1090 
1091 	if (root_inode) {
1092 		static const struct qstr name = { .name = "/", .len = 1 };
1093 
1094 		res = d_alloc(NULL, &name);
1095 		if (res) {
1096 			res->d_sb = root_inode->i_sb;
1097 			res->d_parent = res;
1098 			d_instantiate(res, root_inode);
1099 		}
1100 	}
1101 	return res;
1102 }
1103 
1104 static inline struct hlist_head *d_hash(struct dentry *parent,
1105 					unsigned long hash)
1106 {
1107 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1108 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1109 	return dentry_hashtable + (hash & D_HASHMASK);
1110 }
1111 
1112 /**
1113  * d_alloc_anon - allocate an anonymous dentry
1114  * @inode: inode to allocate the dentry for
1115  *
1116  * This is similar to d_alloc_root.  It is used by filesystems when
1117  * creating a dentry for a given inode, often in the process of
1118  * mapping a filehandle to a dentry.  The returned dentry may be
1119  * anonymous, or may have a full name (if the inode was already
1120  * in the cache).  The file system may need to make further
1121  * efforts to connect this dentry into the dcache properly.
1122  *
1123  * When called on a directory inode, we must ensure that
1124  * the inode only ever has one dentry.  If a dentry is
1125  * found, that is returned instead of allocating a new one.
1126  *
1127  * On successful return, the reference to the inode has been transferred
1128  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
1129  * the reference on the inode has not been released.
1130  */
1131 
1132 struct dentry * d_alloc_anon(struct inode *inode)
1133 {
1134 	static const struct qstr anonstring = { .name = "" };
1135 	struct dentry *tmp;
1136 	struct dentry *res;
1137 
1138 	if ((res = d_find_alias(inode))) {
1139 		iput(inode);
1140 		return res;
1141 	}
1142 
1143 	tmp = d_alloc(NULL, &anonstring);
1144 	if (!tmp)
1145 		return NULL;
1146 
1147 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1148 
1149 	spin_lock(&dcache_lock);
1150 	res = __d_find_alias(inode, 0);
1151 	if (!res) {
1152 		/* attach a disconnected dentry */
1153 		res = tmp;
1154 		tmp = NULL;
1155 		spin_lock(&res->d_lock);
1156 		res->d_sb = inode->i_sb;
1157 		res->d_parent = res;
1158 		res->d_inode = inode;
1159 		res->d_flags |= DCACHE_DISCONNECTED;
1160 		res->d_flags &= ~DCACHE_UNHASHED;
1161 		list_add(&res->d_alias, &inode->i_dentry);
1162 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1163 		spin_unlock(&res->d_lock);
1164 
1165 		inode = NULL; /* don't drop reference */
1166 	}
1167 	spin_unlock(&dcache_lock);
1168 
1169 	if (inode)
1170 		iput(inode);
1171 	if (tmp)
1172 		dput(tmp);
1173 	return res;
1174 }
1175 
1176 
1177 /**
1178  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1179  * @inode:  the inode which may have a disconnected dentry
1180  * @dentry: a negative dentry which we want to point to the inode.
1181  *
1182  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1183  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1184  * and return it, else simply d_add the inode to the dentry and return NULL.
1185  *
1186  * This is needed in the lookup routine of any filesystem that is exportable
1187  * (via knfsd) so that we can build dcache paths to directories effectively.
1188  *
1189  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1190  * is returned.  This matches the expected return value of ->lookup.
1191  *
1192  */
1193 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1194 {
1195 	struct dentry *new = NULL;
1196 
1197 	if (inode && S_ISDIR(inode->i_mode)) {
1198 		spin_lock(&dcache_lock);
1199 		new = __d_find_alias(inode, 1);
1200 		if (new) {
1201 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1202 			fsnotify_d_instantiate(new, inode);
1203 			spin_unlock(&dcache_lock);
1204 			security_d_instantiate(new, inode);
1205 			d_rehash(dentry);
1206 			d_move(new, dentry);
1207 			iput(inode);
1208 		} else {
1209 			/* d_instantiate takes dcache_lock, so we do it by hand */
1210 			list_add(&dentry->d_alias, &inode->i_dentry);
1211 			dentry->d_inode = inode;
1212 			fsnotify_d_instantiate(dentry, inode);
1213 			spin_unlock(&dcache_lock);
1214 			security_d_instantiate(dentry, inode);
1215 			d_rehash(dentry);
1216 		}
1217 	} else
1218 		d_add(dentry, inode);
1219 	return new;
1220 }
1221 
1222 
1223 /**
1224  * d_lookup - search for a dentry
1225  * @parent: parent dentry
1226  * @name: qstr of name we wish to find
1227  *
1228  * Searches the children of the parent dentry for the name in question. If
1229  * the dentry is found its reference count is incremented and the dentry
1230  * is returned. The caller must use d_put to free the entry when it has
1231  * finished using it. %NULL is returned on failure.
1232  *
1233  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1234  * Memory barriers are used while updating and doing lockless traversal.
1235  * To avoid races with d_move while rename is happening, d_lock is used.
1236  *
1237  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1238  * and name pointer in one structure pointed by d_qstr.
1239  *
1240  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1241  * lookup is going on.
1242  *
1243  * The dentry unused LRU is not updated even if lookup finds the required dentry
1244  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1245  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1246  * acquisition.
1247  *
1248  * d_lookup() is protected against the concurrent renames in some unrelated
1249  * directory using the seqlockt_t rename_lock.
1250  */
1251 
1252 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1253 {
1254 	struct dentry * dentry = NULL;
1255 	unsigned long seq;
1256 
1257         do {
1258                 seq = read_seqbegin(&rename_lock);
1259                 dentry = __d_lookup(parent, name);
1260                 if (dentry)
1261 			break;
1262 	} while (read_seqretry(&rename_lock, seq));
1263 	return dentry;
1264 }
1265 
1266 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1267 {
1268 	unsigned int len = name->len;
1269 	unsigned int hash = name->hash;
1270 	const unsigned char *str = name->name;
1271 	struct hlist_head *head = d_hash(parent,hash);
1272 	struct dentry *found = NULL;
1273 	struct hlist_node *node;
1274 	struct dentry *dentry;
1275 
1276 	rcu_read_lock();
1277 
1278 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1279 		struct qstr *qstr;
1280 
1281 		if (dentry->d_name.hash != hash)
1282 			continue;
1283 		if (dentry->d_parent != parent)
1284 			continue;
1285 
1286 		spin_lock(&dentry->d_lock);
1287 
1288 		/*
1289 		 * Recheck the dentry after taking the lock - d_move may have
1290 		 * changed things.  Don't bother checking the hash because we're
1291 		 * about to compare the whole name anyway.
1292 		 */
1293 		if (dentry->d_parent != parent)
1294 			goto next;
1295 
1296 		/*
1297 		 * It is safe to compare names since d_move() cannot
1298 		 * change the qstr (protected by d_lock).
1299 		 */
1300 		qstr = &dentry->d_name;
1301 		if (parent->d_op && parent->d_op->d_compare) {
1302 			if (parent->d_op->d_compare(parent, qstr, name))
1303 				goto next;
1304 		} else {
1305 			if (qstr->len != len)
1306 				goto next;
1307 			if (memcmp(qstr->name, str, len))
1308 				goto next;
1309 		}
1310 
1311 		if (!d_unhashed(dentry)) {
1312 			atomic_inc(&dentry->d_count);
1313 			found = dentry;
1314 		}
1315 		spin_unlock(&dentry->d_lock);
1316 		break;
1317 next:
1318 		spin_unlock(&dentry->d_lock);
1319  	}
1320  	rcu_read_unlock();
1321 
1322  	return found;
1323 }
1324 
1325 /**
1326  * d_hash_and_lookup - hash the qstr then search for a dentry
1327  * @dir: Directory to search in
1328  * @name: qstr of name we wish to find
1329  *
1330  * On hash failure or on lookup failure NULL is returned.
1331  */
1332 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1333 {
1334 	struct dentry *dentry = NULL;
1335 
1336 	/*
1337 	 * Check for a fs-specific hash function. Note that we must
1338 	 * calculate the standard hash first, as the d_op->d_hash()
1339 	 * routine may choose to leave the hash value unchanged.
1340 	 */
1341 	name->hash = full_name_hash(name->name, name->len);
1342 	if (dir->d_op && dir->d_op->d_hash) {
1343 		if (dir->d_op->d_hash(dir, name) < 0)
1344 			goto out;
1345 	}
1346 	dentry = d_lookup(dir, name);
1347 out:
1348 	return dentry;
1349 }
1350 
1351 /**
1352  * d_validate - verify dentry provided from insecure source
1353  * @dentry: The dentry alleged to be valid child of @dparent
1354  * @dparent: The parent dentry (known to be valid)
1355  * @hash: Hash of the dentry
1356  * @len: Length of the name
1357  *
1358  * An insecure source has sent us a dentry, here we verify it and dget() it.
1359  * This is used by ncpfs in its readdir implementation.
1360  * Zero is returned in the dentry is invalid.
1361  */
1362 
1363 int d_validate(struct dentry *dentry, struct dentry *dparent)
1364 {
1365 	struct hlist_head *base;
1366 	struct hlist_node *lhp;
1367 
1368 	/* Check whether the ptr might be valid at all.. */
1369 	if (!kmem_ptr_validate(dentry_cache, dentry))
1370 		goto out;
1371 
1372 	if (dentry->d_parent != dparent)
1373 		goto out;
1374 
1375 	spin_lock(&dcache_lock);
1376 	base = d_hash(dparent, dentry->d_name.hash);
1377 	hlist_for_each(lhp,base) {
1378 		/* hlist_for_each_entry_rcu() not required for d_hash list
1379 		 * as it is parsed under dcache_lock
1380 		 */
1381 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1382 			__dget_locked(dentry);
1383 			spin_unlock(&dcache_lock);
1384 			return 1;
1385 		}
1386 	}
1387 	spin_unlock(&dcache_lock);
1388 out:
1389 	return 0;
1390 }
1391 
1392 /*
1393  * When a file is deleted, we have two options:
1394  * - turn this dentry into a negative dentry
1395  * - unhash this dentry and free it.
1396  *
1397  * Usually, we want to just turn this into
1398  * a negative dentry, but if anybody else is
1399  * currently using the dentry or the inode
1400  * we can't do that and we fall back on removing
1401  * it from the hash queues and waiting for
1402  * it to be deleted later when it has no users
1403  */
1404 
1405 /**
1406  * d_delete - delete a dentry
1407  * @dentry: The dentry to delete
1408  *
1409  * Turn the dentry into a negative dentry if possible, otherwise
1410  * remove it from the hash queues so it can be deleted later
1411  */
1412 
1413 void d_delete(struct dentry * dentry)
1414 {
1415 	int isdir = 0;
1416 	/*
1417 	 * Are we the only user?
1418 	 */
1419 	spin_lock(&dcache_lock);
1420 	spin_lock(&dentry->d_lock);
1421 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1422 	if (atomic_read(&dentry->d_count) == 1) {
1423 		dentry_iput(dentry);
1424 		fsnotify_nameremove(dentry, isdir);
1425 		return;
1426 	}
1427 
1428 	if (!d_unhashed(dentry))
1429 		__d_drop(dentry);
1430 
1431 	spin_unlock(&dentry->d_lock);
1432 	spin_unlock(&dcache_lock);
1433 
1434 	fsnotify_nameremove(dentry, isdir);
1435 }
1436 
1437 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1438 {
1439 
1440  	entry->d_flags &= ~DCACHE_UNHASHED;
1441  	hlist_add_head_rcu(&entry->d_hash, list);
1442 }
1443 
1444 static void _d_rehash(struct dentry * entry)
1445 {
1446 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1447 }
1448 
1449 /**
1450  * d_rehash	- add an entry back to the hash
1451  * @entry: dentry to add to the hash
1452  *
1453  * Adds a dentry to the hash according to its name.
1454  */
1455 
1456 void d_rehash(struct dentry * entry)
1457 {
1458 	spin_lock(&dcache_lock);
1459 	spin_lock(&entry->d_lock);
1460 	_d_rehash(entry);
1461 	spin_unlock(&entry->d_lock);
1462 	spin_unlock(&dcache_lock);
1463 }
1464 
1465 #define do_switch(x,y) do { \
1466 	__typeof__ (x) __tmp = x; \
1467 	x = y; y = __tmp; } while (0)
1468 
1469 /*
1470  * When switching names, the actual string doesn't strictly have to
1471  * be preserved in the target - because we're dropping the target
1472  * anyway. As such, we can just do a simple memcpy() to copy over
1473  * the new name before we switch.
1474  *
1475  * Note that we have to be a lot more careful about getting the hash
1476  * switched - we have to switch the hash value properly even if it
1477  * then no longer matches the actual (corrupted) string of the target.
1478  * The hash value has to match the hash queue that the dentry is on..
1479  */
1480 static void switch_names(struct dentry *dentry, struct dentry *target)
1481 {
1482 	if (dname_external(target)) {
1483 		if (dname_external(dentry)) {
1484 			/*
1485 			 * Both external: swap the pointers
1486 			 */
1487 			do_switch(target->d_name.name, dentry->d_name.name);
1488 		} else {
1489 			/*
1490 			 * dentry:internal, target:external.  Steal target's
1491 			 * storage and make target internal.
1492 			 */
1493 			memcpy(target->d_iname, dentry->d_name.name,
1494 					dentry->d_name.len + 1);
1495 			dentry->d_name.name = target->d_name.name;
1496 			target->d_name.name = target->d_iname;
1497 		}
1498 	} else {
1499 		if (dname_external(dentry)) {
1500 			/*
1501 			 * dentry:external, target:internal.  Give dentry's
1502 			 * storage to target and make dentry internal
1503 			 */
1504 			memcpy(dentry->d_iname, target->d_name.name,
1505 					target->d_name.len + 1);
1506 			target->d_name.name = dentry->d_name.name;
1507 			dentry->d_name.name = dentry->d_iname;
1508 		} else {
1509 			/*
1510 			 * Both are internal.  Just copy target to dentry
1511 			 */
1512 			memcpy(dentry->d_iname, target->d_name.name,
1513 					target->d_name.len + 1);
1514 		}
1515 	}
1516 }
1517 
1518 /*
1519  * We cannibalize "target" when moving dentry on top of it,
1520  * because it's going to be thrown away anyway. We could be more
1521  * polite about it, though.
1522  *
1523  * This forceful removal will result in ugly /proc output if
1524  * somebody holds a file open that got deleted due to a rename.
1525  * We could be nicer about the deleted file, and let it show
1526  * up under the name it had before it was deleted rather than
1527  * under the original name of the file that was moved on top of it.
1528  */
1529 
1530 /*
1531  * d_move_locked - move a dentry
1532  * @dentry: entry to move
1533  * @target: new dentry
1534  *
1535  * Update the dcache to reflect the move of a file name. Negative
1536  * dcache entries should not be moved in this way.
1537  */
1538 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1539 {
1540 	struct hlist_head *list;
1541 
1542 	if (!dentry->d_inode)
1543 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1544 
1545 	write_seqlock(&rename_lock);
1546 	/*
1547 	 * XXXX: do we really need to take target->d_lock?
1548 	 */
1549 	if (target < dentry) {
1550 		spin_lock(&target->d_lock);
1551 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1552 	} else {
1553 		spin_lock(&dentry->d_lock);
1554 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1555 	}
1556 
1557 	/* Move the dentry to the target hash queue, if on different bucket */
1558 	if (d_unhashed(dentry))
1559 		goto already_unhashed;
1560 
1561 	hlist_del_rcu(&dentry->d_hash);
1562 
1563 already_unhashed:
1564 	list = d_hash(target->d_parent, target->d_name.hash);
1565 	__d_rehash(dentry, list);
1566 
1567 	/* Unhash the target: dput() will then get rid of it */
1568 	__d_drop(target);
1569 
1570 	list_del(&dentry->d_u.d_child);
1571 	list_del(&target->d_u.d_child);
1572 
1573 	/* Switch the names.. */
1574 	switch_names(dentry, target);
1575 	do_switch(dentry->d_name.len, target->d_name.len);
1576 	do_switch(dentry->d_name.hash, target->d_name.hash);
1577 
1578 	/* ... and switch the parents */
1579 	if (IS_ROOT(dentry)) {
1580 		dentry->d_parent = target->d_parent;
1581 		target->d_parent = target;
1582 		INIT_LIST_HEAD(&target->d_u.d_child);
1583 	} else {
1584 		do_switch(dentry->d_parent, target->d_parent);
1585 
1586 		/* And add them back to the (new) parent lists */
1587 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1588 	}
1589 
1590 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1591 	spin_unlock(&target->d_lock);
1592 	fsnotify_d_move(dentry);
1593 	spin_unlock(&dentry->d_lock);
1594 	write_sequnlock(&rename_lock);
1595 }
1596 
1597 /**
1598  * d_move - move a dentry
1599  * @dentry: entry to move
1600  * @target: new dentry
1601  *
1602  * Update the dcache to reflect the move of a file name. Negative
1603  * dcache entries should not be moved in this way.
1604  */
1605 
1606 void d_move(struct dentry * dentry, struct dentry * target)
1607 {
1608 	spin_lock(&dcache_lock);
1609 	d_move_locked(dentry, target);
1610 	spin_unlock(&dcache_lock);
1611 }
1612 
1613 /*
1614  * Helper that returns 1 if p1 is a parent of p2, else 0
1615  */
1616 static int d_isparent(struct dentry *p1, struct dentry *p2)
1617 {
1618 	struct dentry *p;
1619 
1620 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1621 		if (p->d_parent == p1)
1622 			return 1;
1623 	}
1624 	return 0;
1625 }
1626 
1627 /*
1628  * This helper attempts to cope with remotely renamed directories
1629  *
1630  * It assumes that the caller is already holding
1631  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1632  *
1633  * Note: If ever the locking in lock_rename() changes, then please
1634  * remember to update this too...
1635  */
1636 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1637 	__releases(dcache_lock)
1638 {
1639 	struct mutex *m1 = NULL, *m2 = NULL;
1640 	struct dentry *ret;
1641 
1642 	/* If alias and dentry share a parent, then no extra locks required */
1643 	if (alias->d_parent == dentry->d_parent)
1644 		goto out_unalias;
1645 
1646 	/* Check for loops */
1647 	ret = ERR_PTR(-ELOOP);
1648 	if (d_isparent(alias, dentry))
1649 		goto out_err;
1650 
1651 	/* See lock_rename() */
1652 	ret = ERR_PTR(-EBUSY);
1653 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1654 		goto out_err;
1655 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1656 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1657 		goto out_err;
1658 	m2 = &alias->d_parent->d_inode->i_mutex;
1659 out_unalias:
1660 	d_move_locked(alias, dentry);
1661 	ret = alias;
1662 out_err:
1663 	spin_unlock(&dcache_lock);
1664 	if (m2)
1665 		mutex_unlock(m2);
1666 	if (m1)
1667 		mutex_unlock(m1);
1668 	return ret;
1669 }
1670 
1671 /*
1672  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1673  * named dentry in place of the dentry to be replaced.
1674  */
1675 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1676 {
1677 	struct dentry *dparent, *aparent;
1678 
1679 	switch_names(dentry, anon);
1680 	do_switch(dentry->d_name.len, anon->d_name.len);
1681 	do_switch(dentry->d_name.hash, anon->d_name.hash);
1682 
1683 	dparent = dentry->d_parent;
1684 	aparent = anon->d_parent;
1685 
1686 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1687 	list_del(&dentry->d_u.d_child);
1688 	if (!IS_ROOT(dentry))
1689 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1690 	else
1691 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1692 
1693 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1694 	list_del(&anon->d_u.d_child);
1695 	if (!IS_ROOT(anon))
1696 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1697 	else
1698 		INIT_LIST_HEAD(&anon->d_u.d_child);
1699 
1700 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1701 }
1702 
1703 /**
1704  * d_materialise_unique - introduce an inode into the tree
1705  * @dentry: candidate dentry
1706  * @inode: inode to bind to the dentry, to which aliases may be attached
1707  *
1708  * Introduces an dentry into the tree, substituting an extant disconnected
1709  * root directory alias in its place if there is one
1710  */
1711 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1712 {
1713 	struct dentry *actual;
1714 
1715 	BUG_ON(!d_unhashed(dentry));
1716 
1717 	spin_lock(&dcache_lock);
1718 
1719 	if (!inode) {
1720 		actual = dentry;
1721 		dentry->d_inode = NULL;
1722 		goto found_lock;
1723 	}
1724 
1725 	if (S_ISDIR(inode->i_mode)) {
1726 		struct dentry *alias;
1727 
1728 		/* Does an aliased dentry already exist? */
1729 		alias = __d_find_alias(inode, 0);
1730 		if (alias) {
1731 			actual = alias;
1732 			/* Is this an anonymous mountpoint that we could splice
1733 			 * into our tree? */
1734 			if (IS_ROOT(alias)) {
1735 				spin_lock(&alias->d_lock);
1736 				__d_materialise_dentry(dentry, alias);
1737 				__d_drop(alias);
1738 				goto found;
1739 			}
1740 			/* Nope, but we must(!) avoid directory aliasing */
1741 			actual = __d_unalias(dentry, alias);
1742 			if (IS_ERR(actual))
1743 				dput(alias);
1744 			goto out_nolock;
1745 		}
1746 	}
1747 
1748 	/* Add a unique reference */
1749 	actual = __d_instantiate_unique(dentry, inode);
1750 	if (!actual)
1751 		actual = dentry;
1752 	else if (unlikely(!d_unhashed(actual)))
1753 		goto shouldnt_be_hashed;
1754 
1755 found_lock:
1756 	spin_lock(&actual->d_lock);
1757 found:
1758 	_d_rehash(actual);
1759 	spin_unlock(&actual->d_lock);
1760 	spin_unlock(&dcache_lock);
1761 out_nolock:
1762 	if (actual == dentry) {
1763 		security_d_instantiate(dentry, inode);
1764 		return NULL;
1765 	}
1766 
1767 	iput(inode);
1768 	return actual;
1769 
1770 shouldnt_be_hashed:
1771 	spin_unlock(&dcache_lock);
1772 	BUG();
1773 }
1774 
1775 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1776 {
1777 	*buflen -= namelen;
1778 	if (*buflen < 0)
1779 		return -ENAMETOOLONG;
1780 	*buffer -= namelen;
1781 	memcpy(*buffer, str, namelen);
1782 	return 0;
1783 }
1784 
1785 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1786 {
1787 	return prepend(buffer, buflen, name->name, name->len);
1788 }
1789 
1790 /**
1791  * __d_path - return the path of a dentry
1792  * @path: the dentry/vfsmount to report
1793  * @root: root vfsmnt/dentry (may be modified by this function)
1794  * @buffer: buffer to return value in
1795  * @buflen: buffer length
1796  *
1797  * Convert a dentry into an ASCII path name. If the entry has been deleted
1798  * the string " (deleted)" is appended. Note that this is ambiguous.
1799  *
1800  * Returns the buffer or an error code if the path was too long.
1801  *
1802  * "buflen" should be positive. Caller holds the dcache_lock.
1803  *
1804  * If path is not reachable from the supplied root, then the value of
1805  * root is changed (without modifying refcounts).
1806  */
1807 char *__d_path(const struct path *path, struct path *root,
1808 	       char *buffer, int buflen)
1809 {
1810 	struct dentry *dentry = path->dentry;
1811 	struct vfsmount *vfsmnt = path->mnt;
1812 	char *end = buffer + buflen;
1813 	char *retval;
1814 
1815 	spin_lock(&vfsmount_lock);
1816 	prepend(&end, &buflen, "\0", 1);
1817 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1818 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1819 			goto Elong;
1820 
1821 	if (buflen < 1)
1822 		goto Elong;
1823 	/* Get '/' right */
1824 	retval = end-1;
1825 	*retval = '/';
1826 
1827 	for (;;) {
1828 		struct dentry * parent;
1829 
1830 		if (dentry == root->dentry && vfsmnt == root->mnt)
1831 			break;
1832 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1833 			/* Global root? */
1834 			if (vfsmnt->mnt_parent == vfsmnt) {
1835 				goto global_root;
1836 			}
1837 			dentry = vfsmnt->mnt_mountpoint;
1838 			vfsmnt = vfsmnt->mnt_parent;
1839 			continue;
1840 		}
1841 		parent = dentry->d_parent;
1842 		prefetch(parent);
1843 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1844 		    (prepend(&end, &buflen, "/", 1) != 0))
1845 			goto Elong;
1846 		retval = end;
1847 		dentry = parent;
1848 	}
1849 
1850 out:
1851 	spin_unlock(&vfsmount_lock);
1852 	return retval;
1853 
1854 global_root:
1855 	retval += 1;	/* hit the slash */
1856 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1857 		goto Elong;
1858 	root->mnt = vfsmnt;
1859 	root->dentry = dentry;
1860 	goto out;
1861 
1862 Elong:
1863 	retval = ERR_PTR(-ENAMETOOLONG);
1864 	goto out;
1865 }
1866 
1867 /**
1868  * d_path - return the path of a dentry
1869  * @path: path to report
1870  * @buf: buffer to return value in
1871  * @buflen: buffer length
1872  *
1873  * Convert a dentry into an ASCII path name. If the entry has been deleted
1874  * the string " (deleted)" is appended. Note that this is ambiguous.
1875  *
1876  * Returns the buffer or an error code if the path was too long.
1877  *
1878  * "buflen" should be positive.
1879  */
1880 char *d_path(const struct path *path, char *buf, int buflen)
1881 {
1882 	char *res;
1883 	struct path root;
1884 	struct path tmp;
1885 
1886 	/*
1887 	 * We have various synthetic filesystems that never get mounted.  On
1888 	 * these filesystems dentries are never used for lookup purposes, and
1889 	 * thus don't need to be hashed.  They also don't need a name until a
1890 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
1891 	 * below allows us to generate a name for these objects on demand:
1892 	 */
1893 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
1894 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1895 
1896 	read_lock(&current->fs->lock);
1897 	root = current->fs->root;
1898 	path_get(&root);
1899 	read_unlock(&current->fs->lock);
1900 	spin_lock(&dcache_lock);
1901 	tmp = root;
1902 	res = __d_path(path, &tmp, buf, buflen);
1903 	spin_unlock(&dcache_lock);
1904 	path_put(&root);
1905 	return res;
1906 }
1907 
1908 /*
1909  * Helper function for dentry_operations.d_dname() members
1910  */
1911 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
1912 			const char *fmt, ...)
1913 {
1914 	va_list args;
1915 	char temp[64];
1916 	int sz;
1917 
1918 	va_start(args, fmt);
1919 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
1920 	va_end(args);
1921 
1922 	if (sz > sizeof(temp) || sz > buflen)
1923 		return ERR_PTR(-ENAMETOOLONG);
1924 
1925 	buffer += buflen - sz;
1926 	return memcpy(buffer, temp, sz);
1927 }
1928 
1929 /*
1930  * Write full pathname from the root of the filesystem into the buffer.
1931  */
1932 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
1933 {
1934 	char *end = buf + buflen;
1935 	char *retval;
1936 
1937 	spin_lock(&dcache_lock);
1938 	prepend(&end, &buflen, "\0", 1);
1939 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1940 		(prepend(&end, &buflen, "//deleted", 9) != 0))
1941 			goto Elong;
1942 	if (buflen < 1)
1943 		goto Elong;
1944 	/* Get '/' right */
1945 	retval = end-1;
1946 	*retval = '/';
1947 
1948 	while (!IS_ROOT(dentry)) {
1949 		struct dentry *parent = dentry->d_parent;
1950 
1951 		prefetch(parent);
1952 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1953 		    (prepend(&end, &buflen, "/", 1) != 0))
1954 			goto Elong;
1955 
1956 		retval = end;
1957 		dentry = parent;
1958 	}
1959 	spin_unlock(&dcache_lock);
1960 	return retval;
1961 Elong:
1962 	spin_unlock(&dcache_lock);
1963 	return ERR_PTR(-ENAMETOOLONG);
1964 }
1965 
1966 /*
1967  * NOTE! The user-level library version returns a
1968  * character pointer. The kernel system call just
1969  * returns the length of the buffer filled (which
1970  * includes the ending '\0' character), or a negative
1971  * error value. So libc would do something like
1972  *
1973  *	char *getcwd(char * buf, size_t size)
1974  *	{
1975  *		int retval;
1976  *
1977  *		retval = sys_getcwd(buf, size);
1978  *		if (retval >= 0)
1979  *			return buf;
1980  *		errno = -retval;
1981  *		return NULL;
1982  *	}
1983  */
1984 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1985 {
1986 	int error;
1987 	struct path pwd, root;
1988 	char *page = (char *) __get_free_page(GFP_USER);
1989 
1990 	if (!page)
1991 		return -ENOMEM;
1992 
1993 	read_lock(&current->fs->lock);
1994 	pwd = current->fs->pwd;
1995 	path_get(&pwd);
1996 	root = current->fs->root;
1997 	path_get(&root);
1998 	read_unlock(&current->fs->lock);
1999 
2000 	error = -ENOENT;
2001 	/* Has the current directory has been unlinked? */
2002 	spin_lock(&dcache_lock);
2003 	if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
2004 		unsigned long len;
2005 		struct path tmp = root;
2006 		char * cwd;
2007 
2008 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
2009 		spin_unlock(&dcache_lock);
2010 
2011 		error = PTR_ERR(cwd);
2012 		if (IS_ERR(cwd))
2013 			goto out;
2014 
2015 		error = -ERANGE;
2016 		len = PAGE_SIZE + page - cwd;
2017 		if (len <= size) {
2018 			error = len;
2019 			if (copy_to_user(buf, cwd, len))
2020 				error = -EFAULT;
2021 		}
2022 	} else
2023 		spin_unlock(&dcache_lock);
2024 
2025 out:
2026 	path_put(&pwd);
2027 	path_put(&root);
2028 	free_page((unsigned long) page);
2029 	return error;
2030 }
2031 
2032 /*
2033  * Test whether new_dentry is a subdirectory of old_dentry.
2034  *
2035  * Trivially implemented using the dcache structure
2036  */
2037 
2038 /**
2039  * is_subdir - is new dentry a subdirectory of old_dentry
2040  * @new_dentry: new dentry
2041  * @old_dentry: old dentry
2042  *
2043  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2044  * Returns 0 otherwise.
2045  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2046  */
2047 
2048 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
2049 {
2050 	int result;
2051 	struct dentry * saved = new_dentry;
2052 	unsigned long seq;
2053 
2054 	/* need rcu_readlock to protect against the d_parent trashing due to
2055 	 * d_move
2056 	 */
2057 	rcu_read_lock();
2058         do {
2059 		/* for restarting inner loop in case of seq retry */
2060 		new_dentry = saved;
2061 		result = 0;
2062 		seq = read_seqbegin(&rename_lock);
2063 		for (;;) {
2064 			if (new_dentry != old_dentry) {
2065 				struct dentry * parent = new_dentry->d_parent;
2066 				if (parent == new_dentry)
2067 					break;
2068 				new_dentry = parent;
2069 				continue;
2070 			}
2071 			result = 1;
2072 			break;
2073 		}
2074 	} while (read_seqretry(&rename_lock, seq));
2075 	rcu_read_unlock();
2076 
2077 	return result;
2078 }
2079 
2080 void d_genocide(struct dentry *root)
2081 {
2082 	struct dentry *this_parent = root;
2083 	struct list_head *next;
2084 
2085 	spin_lock(&dcache_lock);
2086 repeat:
2087 	next = this_parent->d_subdirs.next;
2088 resume:
2089 	while (next != &this_parent->d_subdirs) {
2090 		struct list_head *tmp = next;
2091 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2092 		next = tmp->next;
2093 		if (d_unhashed(dentry)||!dentry->d_inode)
2094 			continue;
2095 		if (!list_empty(&dentry->d_subdirs)) {
2096 			this_parent = dentry;
2097 			goto repeat;
2098 		}
2099 		atomic_dec(&dentry->d_count);
2100 	}
2101 	if (this_parent != root) {
2102 		next = this_parent->d_u.d_child.next;
2103 		atomic_dec(&this_parent->d_count);
2104 		this_parent = this_parent->d_parent;
2105 		goto resume;
2106 	}
2107 	spin_unlock(&dcache_lock);
2108 }
2109 
2110 /**
2111  * find_inode_number - check for dentry with name
2112  * @dir: directory to check
2113  * @name: Name to find.
2114  *
2115  * Check whether a dentry already exists for the given name,
2116  * and return the inode number if it has an inode. Otherwise
2117  * 0 is returned.
2118  *
2119  * This routine is used to post-process directory listings for
2120  * filesystems using synthetic inode numbers, and is necessary
2121  * to keep getcwd() working.
2122  */
2123 
2124 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2125 {
2126 	struct dentry * dentry;
2127 	ino_t ino = 0;
2128 
2129 	dentry = d_hash_and_lookup(dir, name);
2130 	if (dentry) {
2131 		if (dentry->d_inode)
2132 			ino = dentry->d_inode->i_ino;
2133 		dput(dentry);
2134 	}
2135 	return ino;
2136 }
2137 
2138 static __initdata unsigned long dhash_entries;
2139 static int __init set_dhash_entries(char *str)
2140 {
2141 	if (!str)
2142 		return 0;
2143 	dhash_entries = simple_strtoul(str, &str, 0);
2144 	return 1;
2145 }
2146 __setup("dhash_entries=", set_dhash_entries);
2147 
2148 static void __init dcache_init_early(void)
2149 {
2150 	int loop;
2151 
2152 	/* If hashes are distributed across NUMA nodes, defer
2153 	 * hash allocation until vmalloc space is available.
2154 	 */
2155 	if (hashdist)
2156 		return;
2157 
2158 	dentry_hashtable =
2159 		alloc_large_system_hash("Dentry cache",
2160 					sizeof(struct hlist_head),
2161 					dhash_entries,
2162 					13,
2163 					HASH_EARLY,
2164 					&d_hash_shift,
2165 					&d_hash_mask,
2166 					0);
2167 
2168 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2169 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2170 }
2171 
2172 static void __init dcache_init(void)
2173 {
2174 	int loop;
2175 
2176 	/*
2177 	 * A constructor could be added for stable state like the lists,
2178 	 * but it is probably not worth it because of the cache nature
2179 	 * of the dcache.
2180 	 */
2181 	dentry_cache = KMEM_CACHE(dentry,
2182 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2183 
2184 	register_shrinker(&dcache_shrinker);
2185 
2186 	/* Hash may have been set up in dcache_init_early */
2187 	if (!hashdist)
2188 		return;
2189 
2190 	dentry_hashtable =
2191 		alloc_large_system_hash("Dentry cache",
2192 					sizeof(struct hlist_head),
2193 					dhash_entries,
2194 					13,
2195 					0,
2196 					&d_hash_shift,
2197 					&d_hash_mask,
2198 					0);
2199 
2200 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2201 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2202 }
2203 
2204 /* SLAB cache for __getname() consumers */
2205 struct kmem_cache *names_cachep __read_mostly;
2206 
2207 /* SLAB cache for file structures */
2208 struct kmem_cache *filp_cachep __read_mostly;
2209 
2210 EXPORT_SYMBOL(d_genocide);
2211 
2212 void __init vfs_caches_init_early(void)
2213 {
2214 	dcache_init_early();
2215 	inode_init_early();
2216 }
2217 
2218 void __init vfs_caches_init(unsigned long mempages)
2219 {
2220 	unsigned long reserve;
2221 
2222 	/* Base hash sizes on available memory, with a reserve equal to
2223            150% of current kernel size */
2224 
2225 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2226 	mempages -= reserve;
2227 
2228 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2229 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2230 
2231 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2232 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2233 
2234 	dcache_init();
2235 	inode_init();
2236 	files_init(mempages);
2237 	mnt_init();
2238 	bdev_cache_init();
2239 	chrdev_init();
2240 }
2241 
2242 EXPORT_SYMBOL(d_alloc);
2243 EXPORT_SYMBOL(d_alloc_anon);
2244 EXPORT_SYMBOL(d_alloc_root);
2245 EXPORT_SYMBOL(d_delete);
2246 EXPORT_SYMBOL(d_find_alias);
2247 EXPORT_SYMBOL(d_instantiate);
2248 EXPORT_SYMBOL(d_invalidate);
2249 EXPORT_SYMBOL(d_lookup);
2250 EXPORT_SYMBOL(d_move);
2251 EXPORT_SYMBOL_GPL(d_materialise_unique);
2252 EXPORT_SYMBOL(d_path);
2253 EXPORT_SYMBOL(d_prune_aliases);
2254 EXPORT_SYMBOL(d_rehash);
2255 EXPORT_SYMBOL(d_splice_alias);
2256 EXPORT_SYMBOL(d_validate);
2257 EXPORT_SYMBOL(dget_locked);
2258 EXPORT_SYMBOL(dput);
2259 EXPORT_SYMBOL(find_inode_number);
2260 EXPORT_SYMBOL(have_submounts);
2261 EXPORT_SYMBOL(names_cachep);
2262 EXPORT_SYMBOL(shrink_dcache_parent);
2263 EXPORT_SYMBOL(shrink_dcache_sb);
2264