xref: /linux/fs/dcache.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	hash = hash + (hash >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 /*
141  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142  * The strings are both count bytes long, and count is non-zero.
143  */
144 #ifdef CONFIG_DCACHE_WORD_ACCESS
145 
146 #include <asm/word-at-a-time.h>
147 /*
148  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149  * aligned allocation for this particular component. We don't
150  * strictly need the load_unaligned_zeropad() safety, but it
151  * doesn't hurt either.
152  *
153  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154  * need the careful unaligned handling.
155  */
156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
157 {
158 	unsigned long a,b,mask;
159 
160 	for (;;) {
161 		a = *(unsigned long *)cs;
162 		b = load_unaligned_zeropad(ct);
163 		if (tcount < sizeof(unsigned long))
164 			break;
165 		if (unlikely(a != b))
166 			return 1;
167 		cs += sizeof(unsigned long);
168 		ct += sizeof(unsigned long);
169 		tcount -= sizeof(unsigned long);
170 		if (!tcount)
171 			return 0;
172 	}
173 	mask = ~(~0ul << tcount*8);
174 	return unlikely(!!((a ^ b) & mask));
175 }
176 
177 #else
178 
179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
180 {
181 	do {
182 		if (*cs != *ct)
183 			return 1;
184 		cs++;
185 		ct++;
186 		tcount--;
187 	} while (tcount);
188 	return 0;
189 }
190 
191 #endif
192 
193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194 {
195 	const unsigned char *cs;
196 	/*
197 	 * Be careful about RCU walk racing with rename:
198 	 * use ACCESS_ONCE to fetch the name pointer.
199 	 *
200 	 * NOTE! Even if a rename will mean that the length
201 	 * was not loaded atomically, we don't care. The
202 	 * RCU walk will check the sequence count eventually,
203 	 * and catch it. And we won't overrun the buffer,
204 	 * because we're reading the name pointer atomically,
205 	 * and a dentry name is guaranteed to be properly
206 	 * terminated with a NUL byte.
207 	 *
208 	 * End result: even if 'len' is wrong, we'll exit
209 	 * early because the data cannot match (there can
210 	 * be no NUL in the ct/tcount data)
211 	 */
212 	cs = ACCESS_ONCE(dentry->d_name.name);
213 	smp_read_barrier_depends();
214 	return dentry_string_cmp(cs, ct, tcount);
215 }
216 
217 static void __d_free(struct rcu_head *head)
218 {
219 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220 
221 	WARN_ON(!list_empty(&dentry->d_alias));
222 	if (dname_external(dentry))
223 		kfree(dentry->d_name.name);
224 	kmem_cache_free(dentry_cache, dentry);
225 }
226 
227 /*
228  * no locks, please.
229  */
230 static void d_free(struct dentry *dentry)
231 {
232 	BUG_ON(dentry->d_count);
233 	this_cpu_dec(nr_dentry);
234 	if (dentry->d_op && dentry->d_op->d_release)
235 		dentry->d_op->d_release(dentry);
236 
237 	/* if dentry was never visible to RCU, immediate free is OK */
238 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
239 		__d_free(&dentry->d_u.d_rcu);
240 	else
241 		call_rcu(&dentry->d_u.d_rcu, __d_free);
242 }
243 
244 /**
245  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
246  * @dentry: the target dentry
247  * After this call, in-progress rcu-walk path lookup will fail. This
248  * should be called after unhashing, and after changing d_inode (if
249  * the dentry has not already been unhashed).
250  */
251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252 {
253 	assert_spin_locked(&dentry->d_lock);
254 	/* Go through a barrier */
255 	write_seqcount_barrier(&dentry->d_seq);
256 }
257 
258 /*
259  * Release the dentry's inode, using the filesystem
260  * d_iput() operation if defined. Dentry has no refcount
261  * and is unhashed.
262  */
263 static void dentry_iput(struct dentry * dentry)
264 	__releases(dentry->d_lock)
265 	__releases(dentry->d_inode->i_lock)
266 {
267 	struct inode *inode = dentry->d_inode;
268 	if (inode) {
269 		dentry->d_inode = NULL;
270 		list_del_init(&dentry->d_alias);
271 		spin_unlock(&dentry->d_lock);
272 		spin_unlock(&inode->i_lock);
273 		if (!inode->i_nlink)
274 			fsnotify_inoderemove(inode);
275 		if (dentry->d_op && dentry->d_op->d_iput)
276 			dentry->d_op->d_iput(dentry, inode);
277 		else
278 			iput(inode);
279 	} else {
280 		spin_unlock(&dentry->d_lock);
281 	}
282 }
283 
284 /*
285  * Release the dentry's inode, using the filesystem
286  * d_iput() operation if defined. dentry remains in-use.
287  */
288 static void dentry_unlink_inode(struct dentry * dentry)
289 	__releases(dentry->d_lock)
290 	__releases(dentry->d_inode->i_lock)
291 {
292 	struct inode *inode = dentry->d_inode;
293 	dentry->d_inode = NULL;
294 	list_del_init(&dentry->d_alias);
295 	dentry_rcuwalk_barrier(dentry);
296 	spin_unlock(&dentry->d_lock);
297 	spin_unlock(&inode->i_lock);
298 	if (!inode->i_nlink)
299 		fsnotify_inoderemove(inode);
300 	if (dentry->d_op && dentry->d_op->d_iput)
301 		dentry->d_op->d_iput(dentry, inode);
302 	else
303 		iput(inode);
304 }
305 
306 /*
307  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
308  */
309 static void dentry_lru_add(struct dentry *dentry)
310 {
311 	if (list_empty(&dentry->d_lru)) {
312 		spin_lock(&dcache_lru_lock);
313 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 		dentry->d_sb->s_nr_dentry_unused++;
315 		dentry_stat.nr_unused++;
316 		spin_unlock(&dcache_lru_lock);
317 	}
318 }
319 
320 static void __dentry_lru_del(struct dentry *dentry)
321 {
322 	list_del_init(&dentry->d_lru);
323 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
324 	dentry->d_sb->s_nr_dentry_unused--;
325 	dentry_stat.nr_unused--;
326 }
327 
328 /*
329  * Remove a dentry with references from the LRU.
330  */
331 static void dentry_lru_del(struct dentry *dentry)
332 {
333 	if (!list_empty(&dentry->d_lru)) {
334 		spin_lock(&dcache_lru_lock);
335 		__dentry_lru_del(dentry);
336 		spin_unlock(&dcache_lru_lock);
337 	}
338 }
339 
340 /*
341  * Remove a dentry that is unreferenced and about to be pruned
342  * (unhashed and destroyed) from the LRU, and inform the file system.
343  * This wrapper should be called _prior_ to unhashing a victim dentry.
344  */
345 static void dentry_lru_prune(struct dentry *dentry)
346 {
347 	if (!list_empty(&dentry->d_lru)) {
348 		if (dentry->d_flags & DCACHE_OP_PRUNE)
349 			dentry->d_op->d_prune(dentry);
350 
351 		spin_lock(&dcache_lru_lock);
352 		__dentry_lru_del(dentry);
353 		spin_unlock(&dcache_lru_lock);
354 	}
355 }
356 
357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
358 {
359 	spin_lock(&dcache_lru_lock);
360 	if (list_empty(&dentry->d_lru)) {
361 		list_add_tail(&dentry->d_lru, list);
362 		dentry->d_sb->s_nr_dentry_unused++;
363 		dentry_stat.nr_unused++;
364 	} else {
365 		list_move_tail(&dentry->d_lru, list);
366 	}
367 	spin_unlock(&dcache_lru_lock);
368 }
369 
370 /**
371  * d_kill - kill dentry and return parent
372  * @dentry: dentry to kill
373  * @parent: parent dentry
374  *
375  * The dentry must already be unhashed and removed from the LRU.
376  *
377  * If this is the root of the dentry tree, return NULL.
378  *
379  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380  * d_kill.
381  */
382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
383 	__releases(dentry->d_lock)
384 	__releases(parent->d_lock)
385 	__releases(dentry->d_inode->i_lock)
386 {
387 	list_del(&dentry->d_u.d_child);
388 	/*
389 	 * Inform try_to_ascend() that we are no longer attached to the
390 	 * dentry tree
391 	 */
392 	dentry->d_flags |= DCACHE_DISCONNECTED;
393 	if (parent)
394 		spin_unlock(&parent->d_lock);
395 	dentry_iput(dentry);
396 	/*
397 	 * dentry_iput drops the locks, at which point nobody (except
398 	 * transient RCU lookups) can reach this dentry.
399 	 */
400 	d_free(dentry);
401 	return parent;
402 }
403 
404 /*
405  * Unhash a dentry without inserting an RCU walk barrier or checking that
406  * dentry->d_lock is locked.  The caller must take care of that, if
407  * appropriate.
408  */
409 static void __d_shrink(struct dentry *dentry)
410 {
411 	if (!d_unhashed(dentry)) {
412 		struct hlist_bl_head *b;
413 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 			b = &dentry->d_sb->s_anon;
415 		else
416 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
417 
418 		hlist_bl_lock(b);
419 		__hlist_bl_del(&dentry->d_hash);
420 		dentry->d_hash.pprev = NULL;
421 		hlist_bl_unlock(b);
422 	}
423 }
424 
425 /**
426  * d_drop - drop a dentry
427  * @dentry: dentry to drop
428  *
429  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430  * be found through a VFS lookup any more. Note that this is different from
431  * deleting the dentry - d_delete will try to mark the dentry negative if
432  * possible, giving a successful _negative_ lookup, while d_drop will
433  * just make the cache lookup fail.
434  *
435  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436  * reason (NFS timeouts or autofs deletes).
437  *
438  * __d_drop requires dentry->d_lock.
439  */
440 void __d_drop(struct dentry *dentry)
441 {
442 	if (!d_unhashed(dentry)) {
443 		__d_shrink(dentry);
444 		dentry_rcuwalk_barrier(dentry);
445 	}
446 }
447 EXPORT_SYMBOL(__d_drop);
448 
449 void d_drop(struct dentry *dentry)
450 {
451 	spin_lock(&dentry->d_lock);
452 	__d_drop(dentry);
453 	spin_unlock(&dentry->d_lock);
454 }
455 EXPORT_SYMBOL(d_drop);
456 
457 /*
458  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459  * @dentry: dentry to drop
460  *
461  * This is called when we do a lookup on a placeholder dentry that needed to be
462  * looked up.  The dentry should have been hashed in order for it to be found by
463  * the lookup code, but now needs to be unhashed while we do the actual lookup
464  * and clear the DCACHE_NEED_LOOKUP flag.
465  */
466 void d_clear_need_lookup(struct dentry *dentry)
467 {
468 	spin_lock(&dentry->d_lock);
469 	__d_drop(dentry);
470 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 	spin_unlock(&dentry->d_lock);
472 }
473 EXPORT_SYMBOL(d_clear_need_lookup);
474 
475 /*
476  * Finish off a dentry we've decided to kill.
477  * dentry->d_lock must be held, returns with it unlocked.
478  * If ref is non-zero, then decrement the refcount too.
479  * Returns dentry requiring refcount drop, or NULL if we're done.
480  */
481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 	__releases(dentry->d_lock)
483 {
484 	struct inode *inode;
485 	struct dentry *parent;
486 
487 	inode = dentry->d_inode;
488 	if (inode && !spin_trylock(&inode->i_lock)) {
489 relock:
490 		spin_unlock(&dentry->d_lock);
491 		cpu_relax();
492 		return dentry; /* try again with same dentry */
493 	}
494 	if (IS_ROOT(dentry))
495 		parent = NULL;
496 	else
497 		parent = dentry->d_parent;
498 	if (parent && !spin_trylock(&parent->d_lock)) {
499 		if (inode)
500 			spin_unlock(&inode->i_lock);
501 		goto relock;
502 	}
503 
504 	if (ref)
505 		dentry->d_count--;
506 	/*
507 	 * if dentry was on the d_lru list delete it from there.
508 	 * inform the fs via d_prune that this dentry is about to be
509 	 * unhashed and destroyed.
510 	 */
511 	dentry_lru_prune(dentry);
512 	/* if it was on the hash then remove it */
513 	__d_drop(dentry);
514 	return d_kill(dentry, parent);
515 }
516 
517 /*
518  * This is dput
519  *
520  * This is complicated by the fact that we do not want to put
521  * dentries that are no longer on any hash chain on the unused
522  * list: we'd much rather just get rid of them immediately.
523  *
524  * However, that implies that we have to traverse the dentry
525  * tree upwards to the parents which might _also_ now be
526  * scheduled for deletion (it may have been only waiting for
527  * its last child to go away).
528  *
529  * This tail recursion is done by hand as we don't want to depend
530  * on the compiler to always get this right (gcc generally doesn't).
531  * Real recursion would eat up our stack space.
532  */
533 
534 /*
535  * dput - release a dentry
536  * @dentry: dentry to release
537  *
538  * Release a dentry. This will drop the usage count and if appropriate
539  * call the dentry unlink method as well as removing it from the queues and
540  * releasing its resources. If the parent dentries were scheduled for release
541  * they too may now get deleted.
542  */
543 void dput(struct dentry *dentry)
544 {
545 	if (!dentry)
546 		return;
547 
548 repeat:
549 	if (dentry->d_count == 1)
550 		might_sleep();
551 	spin_lock(&dentry->d_lock);
552 	BUG_ON(!dentry->d_count);
553 	if (dentry->d_count > 1) {
554 		dentry->d_count--;
555 		spin_unlock(&dentry->d_lock);
556 		return;
557 	}
558 
559 	if (dentry->d_flags & DCACHE_OP_DELETE) {
560 		if (dentry->d_op->d_delete(dentry))
561 			goto kill_it;
562 	}
563 
564 	/* Unreachable? Get rid of it */
565  	if (d_unhashed(dentry))
566 		goto kill_it;
567 
568 	/*
569 	 * If this dentry needs lookup, don't set the referenced flag so that it
570 	 * is more likely to be cleaned up by the dcache shrinker in case of
571 	 * memory pressure.
572 	 */
573 	if (!d_need_lookup(dentry))
574 		dentry->d_flags |= DCACHE_REFERENCED;
575 	dentry_lru_add(dentry);
576 
577 	dentry->d_count--;
578 	spin_unlock(&dentry->d_lock);
579 	return;
580 
581 kill_it:
582 	dentry = dentry_kill(dentry, 1);
583 	if (dentry)
584 		goto repeat;
585 }
586 EXPORT_SYMBOL(dput);
587 
588 /**
589  * d_invalidate - invalidate a dentry
590  * @dentry: dentry to invalidate
591  *
592  * Try to invalidate the dentry if it turns out to be
593  * possible. If there are other dentries that can be
594  * reached through this one we can't delete it and we
595  * return -EBUSY. On success we return 0.
596  *
597  * no dcache lock.
598  */
599 
600 int d_invalidate(struct dentry * dentry)
601 {
602 	/*
603 	 * If it's already been dropped, return OK.
604 	 */
605 	spin_lock(&dentry->d_lock);
606 	if (d_unhashed(dentry)) {
607 		spin_unlock(&dentry->d_lock);
608 		return 0;
609 	}
610 	/*
611 	 * Check whether to do a partial shrink_dcache
612 	 * to get rid of unused child entries.
613 	 */
614 	if (!list_empty(&dentry->d_subdirs)) {
615 		spin_unlock(&dentry->d_lock);
616 		shrink_dcache_parent(dentry);
617 		spin_lock(&dentry->d_lock);
618 	}
619 
620 	/*
621 	 * Somebody else still using it?
622 	 *
623 	 * If it's a directory, we can't drop it
624 	 * for fear of somebody re-populating it
625 	 * with children (even though dropping it
626 	 * would make it unreachable from the root,
627 	 * we might still populate it if it was a
628 	 * working directory or similar).
629 	 * We also need to leave mountpoints alone,
630 	 * directory or not.
631 	 */
632 	if (dentry->d_count > 1 && dentry->d_inode) {
633 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
634 			spin_unlock(&dentry->d_lock);
635 			return -EBUSY;
636 		}
637 	}
638 
639 	__d_drop(dentry);
640 	spin_unlock(&dentry->d_lock);
641 	return 0;
642 }
643 EXPORT_SYMBOL(d_invalidate);
644 
645 /* This must be called with d_lock held */
646 static inline void __dget_dlock(struct dentry *dentry)
647 {
648 	dentry->d_count++;
649 }
650 
651 static inline void __dget(struct dentry *dentry)
652 {
653 	spin_lock(&dentry->d_lock);
654 	__dget_dlock(dentry);
655 	spin_unlock(&dentry->d_lock);
656 }
657 
658 struct dentry *dget_parent(struct dentry *dentry)
659 {
660 	struct dentry *ret;
661 
662 repeat:
663 	/*
664 	 * Don't need rcu_dereference because we re-check it was correct under
665 	 * the lock.
666 	 */
667 	rcu_read_lock();
668 	ret = dentry->d_parent;
669 	spin_lock(&ret->d_lock);
670 	if (unlikely(ret != dentry->d_parent)) {
671 		spin_unlock(&ret->d_lock);
672 		rcu_read_unlock();
673 		goto repeat;
674 	}
675 	rcu_read_unlock();
676 	BUG_ON(!ret->d_count);
677 	ret->d_count++;
678 	spin_unlock(&ret->d_lock);
679 	return ret;
680 }
681 EXPORT_SYMBOL(dget_parent);
682 
683 /**
684  * d_find_alias - grab a hashed alias of inode
685  * @inode: inode in question
686  * @want_discon:  flag, used by d_splice_alias, to request
687  *          that only a DISCONNECTED alias be returned.
688  *
689  * If inode has a hashed alias, or is a directory and has any alias,
690  * acquire the reference to alias and return it. Otherwise return NULL.
691  * Notice that if inode is a directory there can be only one alias and
692  * it can be unhashed only if it has no children, or if it is the root
693  * of a filesystem.
694  *
695  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
696  * any other hashed alias over that one unless @want_discon is set,
697  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
698  */
699 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
700 {
701 	struct dentry *alias, *discon_alias;
702 
703 again:
704 	discon_alias = NULL;
705 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
706 		spin_lock(&alias->d_lock);
707  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
708 			if (IS_ROOT(alias) &&
709 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
710 				discon_alias = alias;
711 			} else if (!want_discon) {
712 				__dget_dlock(alias);
713 				spin_unlock(&alias->d_lock);
714 				return alias;
715 			}
716 		}
717 		spin_unlock(&alias->d_lock);
718 	}
719 	if (discon_alias) {
720 		alias = discon_alias;
721 		spin_lock(&alias->d_lock);
722 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
723 			if (IS_ROOT(alias) &&
724 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
725 				__dget_dlock(alias);
726 				spin_unlock(&alias->d_lock);
727 				return alias;
728 			}
729 		}
730 		spin_unlock(&alias->d_lock);
731 		goto again;
732 	}
733 	return NULL;
734 }
735 
736 struct dentry *d_find_alias(struct inode *inode)
737 {
738 	struct dentry *de = NULL;
739 
740 	if (!list_empty(&inode->i_dentry)) {
741 		spin_lock(&inode->i_lock);
742 		de = __d_find_alias(inode, 0);
743 		spin_unlock(&inode->i_lock);
744 	}
745 	return de;
746 }
747 EXPORT_SYMBOL(d_find_alias);
748 
749 /*
750  *	Try to kill dentries associated with this inode.
751  * WARNING: you must own a reference to inode.
752  */
753 void d_prune_aliases(struct inode *inode)
754 {
755 	struct dentry *dentry;
756 restart:
757 	spin_lock(&inode->i_lock);
758 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
759 		spin_lock(&dentry->d_lock);
760 		if (!dentry->d_count) {
761 			__dget_dlock(dentry);
762 			__d_drop(dentry);
763 			spin_unlock(&dentry->d_lock);
764 			spin_unlock(&inode->i_lock);
765 			dput(dentry);
766 			goto restart;
767 		}
768 		spin_unlock(&dentry->d_lock);
769 	}
770 	spin_unlock(&inode->i_lock);
771 }
772 EXPORT_SYMBOL(d_prune_aliases);
773 
774 /*
775  * Try to throw away a dentry - free the inode, dput the parent.
776  * Requires dentry->d_lock is held, and dentry->d_count == 0.
777  * Releases dentry->d_lock.
778  *
779  * This may fail if locks cannot be acquired no problem, just try again.
780  */
781 static void try_prune_one_dentry(struct dentry *dentry)
782 	__releases(dentry->d_lock)
783 {
784 	struct dentry *parent;
785 
786 	parent = dentry_kill(dentry, 0);
787 	/*
788 	 * If dentry_kill returns NULL, we have nothing more to do.
789 	 * if it returns the same dentry, trylocks failed. In either
790 	 * case, just loop again.
791 	 *
792 	 * Otherwise, we need to prune ancestors too. This is necessary
793 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
794 	 * is also expected to be beneficial in reducing dentry cache
795 	 * fragmentation.
796 	 */
797 	if (!parent)
798 		return;
799 	if (parent == dentry)
800 		return;
801 
802 	/* Prune ancestors. */
803 	dentry = parent;
804 	while (dentry) {
805 		spin_lock(&dentry->d_lock);
806 		if (dentry->d_count > 1) {
807 			dentry->d_count--;
808 			spin_unlock(&dentry->d_lock);
809 			return;
810 		}
811 		dentry = dentry_kill(dentry, 1);
812 	}
813 }
814 
815 static void shrink_dentry_list(struct list_head *list)
816 {
817 	struct dentry *dentry;
818 
819 	rcu_read_lock();
820 	for (;;) {
821 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
822 		if (&dentry->d_lru == list)
823 			break; /* empty */
824 		spin_lock(&dentry->d_lock);
825 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
826 			spin_unlock(&dentry->d_lock);
827 			continue;
828 		}
829 
830 		/*
831 		 * We found an inuse dentry which was not removed from
832 		 * the LRU because of laziness during lookup.  Do not free
833 		 * it - just keep it off the LRU list.
834 		 */
835 		if (dentry->d_count) {
836 			dentry_lru_del(dentry);
837 			spin_unlock(&dentry->d_lock);
838 			continue;
839 		}
840 
841 		rcu_read_unlock();
842 
843 		try_prune_one_dentry(dentry);
844 
845 		rcu_read_lock();
846 	}
847 	rcu_read_unlock();
848 }
849 
850 /**
851  * prune_dcache_sb - shrink the dcache
852  * @sb: superblock
853  * @count: number of entries to try to free
854  *
855  * Attempt to shrink the superblock dcache LRU by @count entries. This is
856  * done when we need more memory an called from the superblock shrinker
857  * function.
858  *
859  * This function may fail to free any resources if all the dentries are in
860  * use.
861  */
862 void prune_dcache_sb(struct super_block *sb, int count)
863 {
864 	struct dentry *dentry;
865 	LIST_HEAD(referenced);
866 	LIST_HEAD(tmp);
867 
868 relock:
869 	spin_lock(&dcache_lru_lock);
870 	while (!list_empty(&sb->s_dentry_lru)) {
871 		dentry = list_entry(sb->s_dentry_lru.prev,
872 				struct dentry, d_lru);
873 		BUG_ON(dentry->d_sb != sb);
874 
875 		if (!spin_trylock(&dentry->d_lock)) {
876 			spin_unlock(&dcache_lru_lock);
877 			cpu_relax();
878 			goto relock;
879 		}
880 
881 		if (dentry->d_flags & DCACHE_REFERENCED) {
882 			dentry->d_flags &= ~DCACHE_REFERENCED;
883 			list_move(&dentry->d_lru, &referenced);
884 			spin_unlock(&dentry->d_lock);
885 		} else {
886 			list_move_tail(&dentry->d_lru, &tmp);
887 			dentry->d_flags |= DCACHE_SHRINK_LIST;
888 			spin_unlock(&dentry->d_lock);
889 			if (!--count)
890 				break;
891 		}
892 		cond_resched_lock(&dcache_lru_lock);
893 	}
894 	if (!list_empty(&referenced))
895 		list_splice(&referenced, &sb->s_dentry_lru);
896 	spin_unlock(&dcache_lru_lock);
897 
898 	shrink_dentry_list(&tmp);
899 }
900 
901 /**
902  * shrink_dcache_sb - shrink dcache for a superblock
903  * @sb: superblock
904  *
905  * Shrink the dcache for the specified super block. This is used to free
906  * the dcache before unmounting a file system.
907  */
908 void shrink_dcache_sb(struct super_block *sb)
909 {
910 	LIST_HEAD(tmp);
911 
912 	spin_lock(&dcache_lru_lock);
913 	while (!list_empty(&sb->s_dentry_lru)) {
914 		list_splice_init(&sb->s_dentry_lru, &tmp);
915 		spin_unlock(&dcache_lru_lock);
916 		shrink_dentry_list(&tmp);
917 		spin_lock(&dcache_lru_lock);
918 	}
919 	spin_unlock(&dcache_lru_lock);
920 }
921 EXPORT_SYMBOL(shrink_dcache_sb);
922 
923 /*
924  * destroy a single subtree of dentries for unmount
925  * - see the comments on shrink_dcache_for_umount() for a description of the
926  *   locking
927  */
928 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
929 {
930 	struct dentry *parent;
931 
932 	BUG_ON(!IS_ROOT(dentry));
933 
934 	for (;;) {
935 		/* descend to the first leaf in the current subtree */
936 		while (!list_empty(&dentry->d_subdirs))
937 			dentry = list_entry(dentry->d_subdirs.next,
938 					    struct dentry, d_u.d_child);
939 
940 		/* consume the dentries from this leaf up through its parents
941 		 * until we find one with children or run out altogether */
942 		do {
943 			struct inode *inode;
944 
945 			/*
946 			 * remove the dentry from the lru, and inform
947 			 * the fs that this dentry is about to be
948 			 * unhashed and destroyed.
949 			 */
950 			dentry_lru_prune(dentry);
951 			__d_shrink(dentry);
952 
953 			if (dentry->d_count != 0) {
954 				printk(KERN_ERR
955 				       "BUG: Dentry %p{i=%lx,n=%s}"
956 				       " still in use (%d)"
957 				       " [unmount of %s %s]\n",
958 				       dentry,
959 				       dentry->d_inode ?
960 				       dentry->d_inode->i_ino : 0UL,
961 				       dentry->d_name.name,
962 				       dentry->d_count,
963 				       dentry->d_sb->s_type->name,
964 				       dentry->d_sb->s_id);
965 				BUG();
966 			}
967 
968 			if (IS_ROOT(dentry)) {
969 				parent = NULL;
970 				list_del(&dentry->d_u.d_child);
971 			} else {
972 				parent = dentry->d_parent;
973 				parent->d_count--;
974 				list_del(&dentry->d_u.d_child);
975 			}
976 
977 			inode = dentry->d_inode;
978 			if (inode) {
979 				dentry->d_inode = NULL;
980 				list_del_init(&dentry->d_alias);
981 				if (dentry->d_op && dentry->d_op->d_iput)
982 					dentry->d_op->d_iput(dentry, inode);
983 				else
984 					iput(inode);
985 			}
986 
987 			d_free(dentry);
988 
989 			/* finished when we fall off the top of the tree,
990 			 * otherwise we ascend to the parent and move to the
991 			 * next sibling if there is one */
992 			if (!parent)
993 				return;
994 			dentry = parent;
995 		} while (list_empty(&dentry->d_subdirs));
996 
997 		dentry = list_entry(dentry->d_subdirs.next,
998 				    struct dentry, d_u.d_child);
999 	}
1000 }
1001 
1002 /*
1003  * destroy the dentries attached to a superblock on unmounting
1004  * - we don't need to use dentry->d_lock because:
1005  *   - the superblock is detached from all mountings and open files, so the
1006  *     dentry trees will not be rearranged by the VFS
1007  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
1008  *     any dentries belonging to this superblock that it comes across
1009  *   - the filesystem itself is no longer permitted to rearrange the dentries
1010  *     in this superblock
1011  */
1012 void shrink_dcache_for_umount(struct super_block *sb)
1013 {
1014 	struct dentry *dentry;
1015 
1016 	if (down_read_trylock(&sb->s_umount))
1017 		BUG();
1018 
1019 	dentry = sb->s_root;
1020 	sb->s_root = NULL;
1021 	dentry->d_count--;
1022 	shrink_dcache_for_umount_subtree(dentry);
1023 
1024 	while (!hlist_bl_empty(&sb->s_anon)) {
1025 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
1026 		shrink_dcache_for_umount_subtree(dentry);
1027 	}
1028 }
1029 
1030 /*
1031  * This tries to ascend one level of parenthood, but
1032  * we can race with renaming, so we need to re-check
1033  * the parenthood after dropping the lock and check
1034  * that the sequence number still matches.
1035  */
1036 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1037 {
1038 	struct dentry *new = old->d_parent;
1039 
1040 	rcu_read_lock();
1041 	spin_unlock(&old->d_lock);
1042 	spin_lock(&new->d_lock);
1043 
1044 	/*
1045 	 * might go back up the wrong parent if we have had a rename
1046 	 * or deletion
1047 	 */
1048 	if (new != old->d_parent ||
1049 		 (old->d_flags & DCACHE_DISCONNECTED) ||
1050 		 (!locked && read_seqretry(&rename_lock, seq))) {
1051 		spin_unlock(&new->d_lock);
1052 		new = NULL;
1053 	}
1054 	rcu_read_unlock();
1055 	return new;
1056 }
1057 
1058 
1059 /*
1060  * Search for at least 1 mount point in the dentry's subdirs.
1061  * We descend to the next level whenever the d_subdirs
1062  * list is non-empty and continue searching.
1063  */
1064 
1065 /**
1066  * have_submounts - check for mounts over a dentry
1067  * @parent: dentry to check.
1068  *
1069  * Return true if the parent or its subdirectories contain
1070  * a mount point
1071  */
1072 int have_submounts(struct dentry *parent)
1073 {
1074 	struct dentry *this_parent;
1075 	struct list_head *next;
1076 	unsigned seq;
1077 	int locked = 0;
1078 
1079 	seq = read_seqbegin(&rename_lock);
1080 again:
1081 	this_parent = parent;
1082 
1083 	if (d_mountpoint(parent))
1084 		goto positive;
1085 	spin_lock(&this_parent->d_lock);
1086 repeat:
1087 	next = this_parent->d_subdirs.next;
1088 resume:
1089 	while (next != &this_parent->d_subdirs) {
1090 		struct list_head *tmp = next;
1091 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1092 		next = tmp->next;
1093 
1094 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1095 		/* Have we found a mount point ? */
1096 		if (d_mountpoint(dentry)) {
1097 			spin_unlock(&dentry->d_lock);
1098 			spin_unlock(&this_parent->d_lock);
1099 			goto positive;
1100 		}
1101 		if (!list_empty(&dentry->d_subdirs)) {
1102 			spin_unlock(&this_parent->d_lock);
1103 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1104 			this_parent = dentry;
1105 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1106 			goto repeat;
1107 		}
1108 		spin_unlock(&dentry->d_lock);
1109 	}
1110 	/*
1111 	 * All done at this level ... ascend and resume the search.
1112 	 */
1113 	if (this_parent != parent) {
1114 		struct dentry *child = this_parent;
1115 		this_parent = try_to_ascend(this_parent, locked, seq);
1116 		if (!this_parent)
1117 			goto rename_retry;
1118 		next = child->d_u.d_child.next;
1119 		goto resume;
1120 	}
1121 	spin_unlock(&this_parent->d_lock);
1122 	if (!locked && read_seqretry(&rename_lock, seq))
1123 		goto rename_retry;
1124 	if (locked)
1125 		write_sequnlock(&rename_lock);
1126 	return 0; /* No mount points found in tree */
1127 positive:
1128 	if (!locked && read_seqretry(&rename_lock, seq))
1129 		goto rename_retry;
1130 	if (locked)
1131 		write_sequnlock(&rename_lock);
1132 	return 1;
1133 
1134 rename_retry:
1135 	locked = 1;
1136 	write_seqlock(&rename_lock);
1137 	goto again;
1138 }
1139 EXPORT_SYMBOL(have_submounts);
1140 
1141 /*
1142  * Search the dentry child list for the specified parent,
1143  * and move any unused dentries to the end of the unused
1144  * list for prune_dcache(). We descend to the next level
1145  * whenever the d_subdirs list is non-empty and continue
1146  * searching.
1147  *
1148  * It returns zero iff there are no unused children,
1149  * otherwise  it returns the number of children moved to
1150  * the end of the unused list. This may not be the total
1151  * number of unused children, because select_parent can
1152  * drop the lock and return early due to latency
1153  * constraints.
1154  */
1155 static int select_parent(struct dentry *parent, struct list_head *dispose)
1156 {
1157 	struct dentry *this_parent;
1158 	struct list_head *next;
1159 	unsigned seq;
1160 	int found = 0;
1161 	int locked = 0;
1162 
1163 	seq = read_seqbegin(&rename_lock);
1164 again:
1165 	this_parent = parent;
1166 	spin_lock(&this_parent->d_lock);
1167 repeat:
1168 	next = this_parent->d_subdirs.next;
1169 resume:
1170 	while (next != &this_parent->d_subdirs) {
1171 		struct list_head *tmp = next;
1172 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1173 		next = tmp->next;
1174 
1175 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1176 
1177 		/*
1178 		 * move only zero ref count dentries to the dispose list.
1179 		 *
1180 		 * Those which are presently on the shrink list, being processed
1181 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1182 		 * loop in shrink_dcache_parent() might not make any progress
1183 		 * and loop forever.
1184 		 */
1185 		if (dentry->d_count) {
1186 			dentry_lru_del(dentry);
1187 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1188 			dentry_lru_move_list(dentry, dispose);
1189 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1190 			found++;
1191 		}
1192 		/*
1193 		 * We can return to the caller if we have found some (this
1194 		 * ensures forward progress). We'll be coming back to find
1195 		 * the rest.
1196 		 */
1197 		if (found && need_resched()) {
1198 			spin_unlock(&dentry->d_lock);
1199 			goto out;
1200 		}
1201 
1202 		/*
1203 		 * Descend a level if the d_subdirs list is non-empty.
1204 		 */
1205 		if (!list_empty(&dentry->d_subdirs)) {
1206 			spin_unlock(&this_parent->d_lock);
1207 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1208 			this_parent = dentry;
1209 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1210 			goto repeat;
1211 		}
1212 
1213 		spin_unlock(&dentry->d_lock);
1214 	}
1215 	/*
1216 	 * All done at this level ... ascend and resume the search.
1217 	 */
1218 	if (this_parent != parent) {
1219 		struct dentry *child = this_parent;
1220 		this_parent = try_to_ascend(this_parent, locked, seq);
1221 		if (!this_parent)
1222 			goto rename_retry;
1223 		next = child->d_u.d_child.next;
1224 		goto resume;
1225 	}
1226 out:
1227 	spin_unlock(&this_parent->d_lock);
1228 	if (!locked && read_seqretry(&rename_lock, seq))
1229 		goto rename_retry;
1230 	if (locked)
1231 		write_sequnlock(&rename_lock);
1232 	return found;
1233 
1234 rename_retry:
1235 	if (found)
1236 		return found;
1237 	locked = 1;
1238 	write_seqlock(&rename_lock);
1239 	goto again;
1240 }
1241 
1242 /**
1243  * shrink_dcache_parent - prune dcache
1244  * @parent: parent of entries to prune
1245  *
1246  * Prune the dcache to remove unused children of the parent dentry.
1247  */
1248 void shrink_dcache_parent(struct dentry * parent)
1249 {
1250 	LIST_HEAD(dispose);
1251 	int found;
1252 
1253 	while ((found = select_parent(parent, &dispose)) != 0)
1254 		shrink_dentry_list(&dispose);
1255 }
1256 EXPORT_SYMBOL(shrink_dcache_parent);
1257 
1258 /**
1259  * __d_alloc	-	allocate a dcache entry
1260  * @sb: filesystem it will belong to
1261  * @name: qstr of the name
1262  *
1263  * Allocates a dentry. It returns %NULL if there is insufficient memory
1264  * available. On a success the dentry is returned. The name passed in is
1265  * copied and the copy passed in may be reused after this call.
1266  */
1267 
1268 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1269 {
1270 	struct dentry *dentry;
1271 	char *dname;
1272 
1273 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1274 	if (!dentry)
1275 		return NULL;
1276 
1277 	/*
1278 	 * We guarantee that the inline name is always NUL-terminated.
1279 	 * This way the memcpy() done by the name switching in rename
1280 	 * will still always have a NUL at the end, even if we might
1281 	 * be overwriting an internal NUL character
1282 	 */
1283 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1284 	if (name->len > DNAME_INLINE_LEN-1) {
1285 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1286 		if (!dname) {
1287 			kmem_cache_free(dentry_cache, dentry);
1288 			return NULL;
1289 		}
1290 	} else  {
1291 		dname = dentry->d_iname;
1292 	}
1293 
1294 	dentry->d_name.len = name->len;
1295 	dentry->d_name.hash = name->hash;
1296 	memcpy(dname, name->name, name->len);
1297 	dname[name->len] = 0;
1298 
1299 	/* Make sure we always see the terminating NUL character */
1300 	smp_wmb();
1301 	dentry->d_name.name = dname;
1302 
1303 	dentry->d_count = 1;
1304 	dentry->d_flags = 0;
1305 	spin_lock_init(&dentry->d_lock);
1306 	seqcount_init(&dentry->d_seq);
1307 	dentry->d_inode = NULL;
1308 	dentry->d_parent = dentry;
1309 	dentry->d_sb = sb;
1310 	dentry->d_op = NULL;
1311 	dentry->d_fsdata = NULL;
1312 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1313 	INIT_LIST_HEAD(&dentry->d_lru);
1314 	INIT_LIST_HEAD(&dentry->d_subdirs);
1315 	INIT_LIST_HEAD(&dentry->d_alias);
1316 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1317 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1318 
1319 	this_cpu_inc(nr_dentry);
1320 
1321 	return dentry;
1322 }
1323 
1324 /**
1325  * d_alloc	-	allocate a dcache entry
1326  * @parent: parent of entry to allocate
1327  * @name: qstr of the name
1328  *
1329  * Allocates a dentry. It returns %NULL if there is insufficient memory
1330  * available. On a success the dentry is returned. The name passed in is
1331  * copied and the copy passed in may be reused after this call.
1332  */
1333 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1334 {
1335 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1336 	if (!dentry)
1337 		return NULL;
1338 
1339 	spin_lock(&parent->d_lock);
1340 	/*
1341 	 * don't need child lock because it is not subject
1342 	 * to concurrency here
1343 	 */
1344 	__dget_dlock(parent);
1345 	dentry->d_parent = parent;
1346 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1347 	spin_unlock(&parent->d_lock);
1348 
1349 	return dentry;
1350 }
1351 EXPORT_SYMBOL(d_alloc);
1352 
1353 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1354 {
1355 	struct dentry *dentry = __d_alloc(sb, name);
1356 	if (dentry)
1357 		dentry->d_flags |= DCACHE_DISCONNECTED;
1358 	return dentry;
1359 }
1360 EXPORT_SYMBOL(d_alloc_pseudo);
1361 
1362 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1363 {
1364 	struct qstr q;
1365 
1366 	q.name = name;
1367 	q.len = strlen(name);
1368 	q.hash = full_name_hash(q.name, q.len);
1369 	return d_alloc(parent, &q);
1370 }
1371 EXPORT_SYMBOL(d_alloc_name);
1372 
1373 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1374 {
1375 	WARN_ON_ONCE(dentry->d_op);
1376 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1377 				DCACHE_OP_COMPARE	|
1378 				DCACHE_OP_REVALIDATE	|
1379 				DCACHE_OP_DELETE ));
1380 	dentry->d_op = op;
1381 	if (!op)
1382 		return;
1383 	if (op->d_hash)
1384 		dentry->d_flags |= DCACHE_OP_HASH;
1385 	if (op->d_compare)
1386 		dentry->d_flags |= DCACHE_OP_COMPARE;
1387 	if (op->d_revalidate)
1388 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1389 	if (op->d_delete)
1390 		dentry->d_flags |= DCACHE_OP_DELETE;
1391 	if (op->d_prune)
1392 		dentry->d_flags |= DCACHE_OP_PRUNE;
1393 
1394 }
1395 EXPORT_SYMBOL(d_set_d_op);
1396 
1397 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1398 {
1399 	spin_lock(&dentry->d_lock);
1400 	if (inode) {
1401 		if (unlikely(IS_AUTOMOUNT(inode)))
1402 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1403 		list_add(&dentry->d_alias, &inode->i_dentry);
1404 	}
1405 	dentry->d_inode = inode;
1406 	dentry_rcuwalk_barrier(dentry);
1407 	spin_unlock(&dentry->d_lock);
1408 	fsnotify_d_instantiate(dentry, inode);
1409 }
1410 
1411 /**
1412  * d_instantiate - fill in inode information for a dentry
1413  * @entry: dentry to complete
1414  * @inode: inode to attach to this dentry
1415  *
1416  * Fill in inode information in the entry.
1417  *
1418  * This turns negative dentries into productive full members
1419  * of society.
1420  *
1421  * NOTE! This assumes that the inode count has been incremented
1422  * (or otherwise set) by the caller to indicate that it is now
1423  * in use by the dcache.
1424  */
1425 
1426 void d_instantiate(struct dentry *entry, struct inode * inode)
1427 {
1428 	BUG_ON(!list_empty(&entry->d_alias));
1429 	if (inode)
1430 		spin_lock(&inode->i_lock);
1431 	__d_instantiate(entry, inode);
1432 	if (inode)
1433 		spin_unlock(&inode->i_lock);
1434 	security_d_instantiate(entry, inode);
1435 }
1436 EXPORT_SYMBOL(d_instantiate);
1437 
1438 /**
1439  * d_instantiate_unique - instantiate a non-aliased dentry
1440  * @entry: dentry to instantiate
1441  * @inode: inode to attach to this dentry
1442  *
1443  * Fill in inode information in the entry. On success, it returns NULL.
1444  * If an unhashed alias of "entry" already exists, then we return the
1445  * aliased dentry instead and drop one reference to inode.
1446  *
1447  * Note that in order to avoid conflicts with rename() etc, the caller
1448  * had better be holding the parent directory semaphore.
1449  *
1450  * This also assumes that the inode count has been incremented
1451  * (or otherwise set) by the caller to indicate that it is now
1452  * in use by the dcache.
1453  */
1454 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1455 					     struct inode *inode)
1456 {
1457 	struct dentry *alias;
1458 	int len = entry->d_name.len;
1459 	const char *name = entry->d_name.name;
1460 	unsigned int hash = entry->d_name.hash;
1461 
1462 	if (!inode) {
1463 		__d_instantiate(entry, NULL);
1464 		return NULL;
1465 	}
1466 
1467 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1468 		/*
1469 		 * Don't need alias->d_lock here, because aliases with
1470 		 * d_parent == entry->d_parent are not subject to name or
1471 		 * parent changes, because the parent inode i_mutex is held.
1472 		 */
1473 		if (alias->d_name.hash != hash)
1474 			continue;
1475 		if (alias->d_parent != entry->d_parent)
1476 			continue;
1477 		if (alias->d_name.len != len)
1478 			continue;
1479 		if (dentry_cmp(alias, name, len))
1480 			continue;
1481 		__dget(alias);
1482 		return alias;
1483 	}
1484 
1485 	__d_instantiate(entry, inode);
1486 	return NULL;
1487 }
1488 
1489 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1490 {
1491 	struct dentry *result;
1492 
1493 	BUG_ON(!list_empty(&entry->d_alias));
1494 
1495 	if (inode)
1496 		spin_lock(&inode->i_lock);
1497 	result = __d_instantiate_unique(entry, inode);
1498 	if (inode)
1499 		spin_unlock(&inode->i_lock);
1500 
1501 	if (!result) {
1502 		security_d_instantiate(entry, inode);
1503 		return NULL;
1504 	}
1505 
1506 	BUG_ON(!d_unhashed(result));
1507 	iput(inode);
1508 	return result;
1509 }
1510 
1511 EXPORT_SYMBOL(d_instantiate_unique);
1512 
1513 struct dentry *d_make_root(struct inode *root_inode)
1514 {
1515 	struct dentry *res = NULL;
1516 
1517 	if (root_inode) {
1518 		static const struct qstr name = QSTR_INIT("/", 1);
1519 
1520 		res = __d_alloc(root_inode->i_sb, &name);
1521 		if (res)
1522 			d_instantiate(res, root_inode);
1523 		else
1524 			iput(root_inode);
1525 	}
1526 	return res;
1527 }
1528 EXPORT_SYMBOL(d_make_root);
1529 
1530 static struct dentry * __d_find_any_alias(struct inode *inode)
1531 {
1532 	struct dentry *alias;
1533 
1534 	if (list_empty(&inode->i_dentry))
1535 		return NULL;
1536 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1537 	__dget(alias);
1538 	return alias;
1539 }
1540 
1541 /**
1542  * d_find_any_alias - find any alias for a given inode
1543  * @inode: inode to find an alias for
1544  *
1545  * If any aliases exist for the given inode, take and return a
1546  * reference for one of them.  If no aliases exist, return %NULL.
1547  */
1548 struct dentry *d_find_any_alias(struct inode *inode)
1549 {
1550 	struct dentry *de;
1551 
1552 	spin_lock(&inode->i_lock);
1553 	de = __d_find_any_alias(inode);
1554 	spin_unlock(&inode->i_lock);
1555 	return de;
1556 }
1557 EXPORT_SYMBOL(d_find_any_alias);
1558 
1559 /**
1560  * d_obtain_alias - find or allocate a dentry for a given inode
1561  * @inode: inode to allocate the dentry for
1562  *
1563  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1564  * similar open by handle operations.  The returned dentry may be anonymous,
1565  * or may have a full name (if the inode was already in the cache).
1566  *
1567  * When called on a directory inode, we must ensure that the inode only ever
1568  * has one dentry.  If a dentry is found, that is returned instead of
1569  * allocating a new one.
1570  *
1571  * On successful return, the reference to the inode has been transferred
1572  * to the dentry.  In case of an error the reference on the inode is released.
1573  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1574  * be passed in and will be the error will be propagate to the return value,
1575  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1576  */
1577 struct dentry *d_obtain_alias(struct inode *inode)
1578 {
1579 	static const struct qstr anonstring = { .name = "" };
1580 	struct dentry *tmp;
1581 	struct dentry *res;
1582 
1583 	if (!inode)
1584 		return ERR_PTR(-ESTALE);
1585 	if (IS_ERR(inode))
1586 		return ERR_CAST(inode);
1587 
1588 	res = d_find_any_alias(inode);
1589 	if (res)
1590 		goto out_iput;
1591 
1592 	tmp = __d_alloc(inode->i_sb, &anonstring);
1593 	if (!tmp) {
1594 		res = ERR_PTR(-ENOMEM);
1595 		goto out_iput;
1596 	}
1597 
1598 	spin_lock(&inode->i_lock);
1599 	res = __d_find_any_alias(inode);
1600 	if (res) {
1601 		spin_unlock(&inode->i_lock);
1602 		dput(tmp);
1603 		goto out_iput;
1604 	}
1605 
1606 	/* attach a disconnected dentry */
1607 	spin_lock(&tmp->d_lock);
1608 	tmp->d_inode = inode;
1609 	tmp->d_flags |= DCACHE_DISCONNECTED;
1610 	list_add(&tmp->d_alias, &inode->i_dentry);
1611 	hlist_bl_lock(&tmp->d_sb->s_anon);
1612 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1613 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1614 	spin_unlock(&tmp->d_lock);
1615 	spin_unlock(&inode->i_lock);
1616 	security_d_instantiate(tmp, inode);
1617 
1618 	return tmp;
1619 
1620  out_iput:
1621 	if (res && !IS_ERR(res))
1622 		security_d_instantiate(res, inode);
1623 	iput(inode);
1624 	return res;
1625 }
1626 EXPORT_SYMBOL(d_obtain_alias);
1627 
1628 /**
1629  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1630  * @inode:  the inode which may have a disconnected dentry
1631  * @dentry: a negative dentry which we want to point to the inode.
1632  *
1633  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1634  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1635  * and return it, else simply d_add the inode to the dentry and return NULL.
1636  *
1637  * This is needed in the lookup routine of any filesystem that is exportable
1638  * (via knfsd) so that we can build dcache paths to directories effectively.
1639  *
1640  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1641  * is returned.  This matches the expected return value of ->lookup.
1642  *
1643  */
1644 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1645 {
1646 	struct dentry *new = NULL;
1647 
1648 	if (IS_ERR(inode))
1649 		return ERR_CAST(inode);
1650 
1651 	if (inode && S_ISDIR(inode->i_mode)) {
1652 		spin_lock(&inode->i_lock);
1653 		new = __d_find_alias(inode, 1);
1654 		if (new) {
1655 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1656 			spin_unlock(&inode->i_lock);
1657 			security_d_instantiate(new, inode);
1658 			d_move(new, dentry);
1659 			iput(inode);
1660 		} else {
1661 			/* already taking inode->i_lock, so d_add() by hand */
1662 			__d_instantiate(dentry, inode);
1663 			spin_unlock(&inode->i_lock);
1664 			security_d_instantiate(dentry, inode);
1665 			d_rehash(dentry);
1666 		}
1667 	} else
1668 		d_add(dentry, inode);
1669 	return new;
1670 }
1671 EXPORT_SYMBOL(d_splice_alias);
1672 
1673 /**
1674  * d_add_ci - lookup or allocate new dentry with case-exact name
1675  * @inode:  the inode case-insensitive lookup has found
1676  * @dentry: the negative dentry that was passed to the parent's lookup func
1677  * @name:   the case-exact name to be associated with the returned dentry
1678  *
1679  * This is to avoid filling the dcache with case-insensitive names to the
1680  * same inode, only the actual correct case is stored in the dcache for
1681  * case-insensitive filesystems.
1682  *
1683  * For a case-insensitive lookup match and if the the case-exact dentry
1684  * already exists in in the dcache, use it and return it.
1685  *
1686  * If no entry exists with the exact case name, allocate new dentry with
1687  * the exact case, and return the spliced entry.
1688  */
1689 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1690 			struct qstr *name)
1691 {
1692 	int error;
1693 	struct dentry *found;
1694 	struct dentry *new;
1695 
1696 	/*
1697 	 * First check if a dentry matching the name already exists,
1698 	 * if not go ahead and create it now.
1699 	 */
1700 	found = d_hash_and_lookup(dentry->d_parent, name);
1701 	if (!found) {
1702 		new = d_alloc(dentry->d_parent, name);
1703 		if (!new) {
1704 			error = -ENOMEM;
1705 			goto err_out;
1706 		}
1707 
1708 		found = d_splice_alias(inode, new);
1709 		if (found) {
1710 			dput(new);
1711 			return found;
1712 		}
1713 		return new;
1714 	}
1715 
1716 	/*
1717 	 * If a matching dentry exists, and it's not negative use it.
1718 	 *
1719 	 * Decrement the reference count to balance the iget() done
1720 	 * earlier on.
1721 	 */
1722 	if (found->d_inode) {
1723 		if (unlikely(found->d_inode != inode)) {
1724 			/* This can't happen because bad inodes are unhashed. */
1725 			BUG_ON(!is_bad_inode(inode));
1726 			BUG_ON(!is_bad_inode(found->d_inode));
1727 		}
1728 		iput(inode);
1729 		return found;
1730 	}
1731 
1732 	/*
1733 	 * We are going to instantiate this dentry, unhash it and clear the
1734 	 * lookup flag so we can do that.
1735 	 */
1736 	if (unlikely(d_need_lookup(found)))
1737 		d_clear_need_lookup(found);
1738 
1739 	/*
1740 	 * Negative dentry: instantiate it unless the inode is a directory and
1741 	 * already has a dentry.
1742 	 */
1743 	new = d_splice_alias(inode, found);
1744 	if (new) {
1745 		dput(found);
1746 		found = new;
1747 	}
1748 	return found;
1749 
1750 err_out:
1751 	iput(inode);
1752 	return ERR_PTR(error);
1753 }
1754 EXPORT_SYMBOL(d_add_ci);
1755 
1756 /*
1757  * Do the slow-case of the dentry name compare.
1758  *
1759  * Unlike the dentry_cmp() function, we need to atomically
1760  * load the name, length and inode information, so that the
1761  * filesystem can rely on them, and can use the 'name' and
1762  * 'len' information without worrying about walking off the
1763  * end of memory etc.
1764  *
1765  * Thus the read_seqcount_retry() and the "duplicate" info
1766  * in arguments (the low-level filesystem should not look
1767  * at the dentry inode or name contents directly, since
1768  * rename can change them while we're in RCU mode).
1769  */
1770 enum slow_d_compare {
1771 	D_COMP_OK,
1772 	D_COMP_NOMATCH,
1773 	D_COMP_SEQRETRY,
1774 };
1775 
1776 static noinline enum slow_d_compare slow_dentry_cmp(
1777 		const struct dentry *parent,
1778 		struct inode *inode,
1779 		struct dentry *dentry,
1780 		unsigned int seq,
1781 		const struct qstr *name)
1782 {
1783 	int tlen = dentry->d_name.len;
1784 	const char *tname = dentry->d_name.name;
1785 	struct inode *i = dentry->d_inode;
1786 
1787 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
1788 		cpu_relax();
1789 		return D_COMP_SEQRETRY;
1790 	}
1791 	if (parent->d_op->d_compare(parent, inode,
1792 				dentry, i,
1793 				tlen, tname, name))
1794 		return D_COMP_NOMATCH;
1795 	return D_COMP_OK;
1796 }
1797 
1798 /**
1799  * __d_lookup_rcu - search for a dentry (racy, store-free)
1800  * @parent: parent dentry
1801  * @name: qstr of name we wish to find
1802  * @seqp: returns d_seq value at the point where the dentry was found
1803  * @inode: returns dentry->d_inode when the inode was found valid.
1804  * Returns: dentry, or NULL
1805  *
1806  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1807  * resolution (store-free path walking) design described in
1808  * Documentation/filesystems/path-lookup.txt.
1809  *
1810  * This is not to be used outside core vfs.
1811  *
1812  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1813  * held, and rcu_read_lock held. The returned dentry must not be stored into
1814  * without taking d_lock and checking d_seq sequence count against @seq
1815  * returned here.
1816  *
1817  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1818  * function.
1819  *
1820  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1821  * the returned dentry, so long as its parent's seqlock is checked after the
1822  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1823  * is formed, giving integrity down the path walk.
1824  *
1825  * NOTE! The caller *has* to check the resulting dentry against the sequence
1826  * number we've returned before using any of the resulting dentry state!
1827  */
1828 struct dentry *__d_lookup_rcu(const struct dentry *parent,
1829 				const struct qstr *name,
1830 				unsigned *seqp, struct inode *inode)
1831 {
1832 	u64 hashlen = name->hash_len;
1833 	const unsigned char *str = name->name;
1834 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
1835 	struct hlist_bl_node *node;
1836 	struct dentry *dentry;
1837 
1838 	/*
1839 	 * Note: There is significant duplication with __d_lookup_rcu which is
1840 	 * required to prevent single threaded performance regressions
1841 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1842 	 * Keep the two functions in sync.
1843 	 */
1844 
1845 	/*
1846 	 * The hash list is protected using RCU.
1847 	 *
1848 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1849 	 * races with d_move().
1850 	 *
1851 	 * It is possible that concurrent renames can mess up our list
1852 	 * walk here and result in missing our dentry, resulting in the
1853 	 * false-negative result. d_lookup() protects against concurrent
1854 	 * renames using rename_lock seqlock.
1855 	 *
1856 	 * See Documentation/filesystems/path-lookup.txt for more details.
1857 	 */
1858 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1859 		unsigned seq;
1860 
1861 seqretry:
1862 		/*
1863 		 * The dentry sequence count protects us from concurrent
1864 		 * renames, and thus protects inode, parent and name fields.
1865 		 *
1866 		 * The caller must perform a seqcount check in order
1867 		 * to do anything useful with the returned dentry,
1868 		 * including using the 'd_inode' pointer.
1869 		 *
1870 		 * NOTE! We do a "raw" seqcount_begin here. That means that
1871 		 * we don't wait for the sequence count to stabilize if it
1872 		 * is in the middle of a sequence change. If we do the slow
1873 		 * dentry compare, we will do seqretries until it is stable,
1874 		 * and if we end up with a successful lookup, we actually
1875 		 * want to exit RCU lookup anyway.
1876 		 */
1877 		seq = raw_seqcount_begin(&dentry->d_seq);
1878 		if (dentry->d_parent != parent)
1879 			continue;
1880 		if (d_unhashed(dentry))
1881 			continue;
1882 		*seqp = seq;
1883 
1884 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1885 			if (dentry->d_name.hash != hashlen_hash(hashlen))
1886 				continue;
1887 			switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1888 			case D_COMP_OK:
1889 				return dentry;
1890 			case D_COMP_NOMATCH:
1891 				continue;
1892 			default:
1893 				goto seqretry;
1894 			}
1895 		}
1896 
1897 		if (dentry->d_name.hash_len != hashlen)
1898 			continue;
1899 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
1900 			return dentry;
1901 	}
1902 	return NULL;
1903 }
1904 
1905 /**
1906  * d_lookup - search for a dentry
1907  * @parent: parent dentry
1908  * @name: qstr of name we wish to find
1909  * Returns: dentry, or NULL
1910  *
1911  * d_lookup searches the children of the parent dentry for the name in
1912  * question. If the dentry is found its reference count is incremented and the
1913  * dentry is returned. The caller must use dput to free the entry when it has
1914  * finished using it. %NULL is returned if the dentry does not exist.
1915  */
1916 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1917 {
1918 	struct dentry *dentry;
1919 	unsigned seq;
1920 
1921         do {
1922                 seq = read_seqbegin(&rename_lock);
1923                 dentry = __d_lookup(parent, name);
1924                 if (dentry)
1925 			break;
1926 	} while (read_seqretry(&rename_lock, seq));
1927 	return dentry;
1928 }
1929 EXPORT_SYMBOL(d_lookup);
1930 
1931 /**
1932  * __d_lookup - search for a dentry (racy)
1933  * @parent: parent dentry
1934  * @name: qstr of name we wish to find
1935  * Returns: dentry, or NULL
1936  *
1937  * __d_lookup is like d_lookup, however it may (rarely) return a
1938  * false-negative result due to unrelated rename activity.
1939  *
1940  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1941  * however it must be used carefully, eg. with a following d_lookup in
1942  * the case of failure.
1943  *
1944  * __d_lookup callers must be commented.
1945  */
1946 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1947 {
1948 	unsigned int len = name->len;
1949 	unsigned int hash = name->hash;
1950 	const unsigned char *str = name->name;
1951 	struct hlist_bl_head *b = d_hash(parent, hash);
1952 	struct hlist_bl_node *node;
1953 	struct dentry *found = NULL;
1954 	struct dentry *dentry;
1955 
1956 	/*
1957 	 * Note: There is significant duplication with __d_lookup_rcu which is
1958 	 * required to prevent single threaded performance regressions
1959 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1960 	 * Keep the two functions in sync.
1961 	 */
1962 
1963 	/*
1964 	 * The hash list is protected using RCU.
1965 	 *
1966 	 * Take d_lock when comparing a candidate dentry, to avoid races
1967 	 * with d_move().
1968 	 *
1969 	 * It is possible that concurrent renames can mess up our list
1970 	 * walk here and result in missing our dentry, resulting in the
1971 	 * false-negative result. d_lookup() protects against concurrent
1972 	 * renames using rename_lock seqlock.
1973 	 *
1974 	 * See Documentation/filesystems/path-lookup.txt for more details.
1975 	 */
1976 	rcu_read_lock();
1977 
1978 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1979 
1980 		if (dentry->d_name.hash != hash)
1981 			continue;
1982 
1983 		spin_lock(&dentry->d_lock);
1984 		if (dentry->d_parent != parent)
1985 			goto next;
1986 		if (d_unhashed(dentry))
1987 			goto next;
1988 
1989 		/*
1990 		 * It is safe to compare names since d_move() cannot
1991 		 * change the qstr (protected by d_lock).
1992 		 */
1993 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1994 			int tlen = dentry->d_name.len;
1995 			const char *tname = dentry->d_name.name;
1996 			if (parent->d_op->d_compare(parent, parent->d_inode,
1997 						dentry, dentry->d_inode,
1998 						tlen, tname, name))
1999 				goto next;
2000 		} else {
2001 			if (dentry->d_name.len != len)
2002 				goto next;
2003 			if (dentry_cmp(dentry, str, len))
2004 				goto next;
2005 		}
2006 
2007 		dentry->d_count++;
2008 		found = dentry;
2009 		spin_unlock(&dentry->d_lock);
2010 		break;
2011 next:
2012 		spin_unlock(&dentry->d_lock);
2013  	}
2014  	rcu_read_unlock();
2015 
2016  	return found;
2017 }
2018 
2019 /**
2020  * d_hash_and_lookup - hash the qstr then search for a dentry
2021  * @dir: Directory to search in
2022  * @name: qstr of name we wish to find
2023  *
2024  * On hash failure or on lookup failure NULL is returned.
2025  */
2026 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2027 {
2028 	struct dentry *dentry = NULL;
2029 
2030 	/*
2031 	 * Check for a fs-specific hash function. Note that we must
2032 	 * calculate the standard hash first, as the d_op->d_hash()
2033 	 * routine may choose to leave the hash value unchanged.
2034 	 */
2035 	name->hash = full_name_hash(name->name, name->len);
2036 	if (dir->d_flags & DCACHE_OP_HASH) {
2037 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
2038 			goto out;
2039 	}
2040 	dentry = d_lookup(dir, name);
2041 out:
2042 	return dentry;
2043 }
2044 
2045 /**
2046  * d_validate - verify dentry provided from insecure source (deprecated)
2047  * @dentry: The dentry alleged to be valid child of @dparent
2048  * @dparent: The parent dentry (known to be valid)
2049  *
2050  * An insecure source has sent us a dentry, here we verify it and dget() it.
2051  * This is used by ncpfs in its readdir implementation.
2052  * Zero is returned in the dentry is invalid.
2053  *
2054  * This function is slow for big directories, and deprecated, do not use it.
2055  */
2056 int d_validate(struct dentry *dentry, struct dentry *dparent)
2057 {
2058 	struct dentry *child;
2059 
2060 	spin_lock(&dparent->d_lock);
2061 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2062 		if (dentry == child) {
2063 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2064 			__dget_dlock(dentry);
2065 			spin_unlock(&dentry->d_lock);
2066 			spin_unlock(&dparent->d_lock);
2067 			return 1;
2068 		}
2069 	}
2070 	spin_unlock(&dparent->d_lock);
2071 
2072 	return 0;
2073 }
2074 EXPORT_SYMBOL(d_validate);
2075 
2076 /*
2077  * When a file is deleted, we have two options:
2078  * - turn this dentry into a negative dentry
2079  * - unhash this dentry and free it.
2080  *
2081  * Usually, we want to just turn this into
2082  * a negative dentry, but if anybody else is
2083  * currently using the dentry or the inode
2084  * we can't do that and we fall back on removing
2085  * it from the hash queues and waiting for
2086  * it to be deleted later when it has no users
2087  */
2088 
2089 /**
2090  * d_delete - delete a dentry
2091  * @dentry: The dentry to delete
2092  *
2093  * Turn the dentry into a negative dentry if possible, otherwise
2094  * remove it from the hash queues so it can be deleted later
2095  */
2096 
2097 void d_delete(struct dentry * dentry)
2098 {
2099 	struct inode *inode;
2100 	int isdir = 0;
2101 	/*
2102 	 * Are we the only user?
2103 	 */
2104 again:
2105 	spin_lock(&dentry->d_lock);
2106 	inode = dentry->d_inode;
2107 	isdir = S_ISDIR(inode->i_mode);
2108 	if (dentry->d_count == 1) {
2109 		if (inode && !spin_trylock(&inode->i_lock)) {
2110 			spin_unlock(&dentry->d_lock);
2111 			cpu_relax();
2112 			goto again;
2113 		}
2114 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2115 		dentry_unlink_inode(dentry);
2116 		fsnotify_nameremove(dentry, isdir);
2117 		return;
2118 	}
2119 
2120 	if (!d_unhashed(dentry))
2121 		__d_drop(dentry);
2122 
2123 	spin_unlock(&dentry->d_lock);
2124 
2125 	fsnotify_nameremove(dentry, isdir);
2126 }
2127 EXPORT_SYMBOL(d_delete);
2128 
2129 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2130 {
2131 	BUG_ON(!d_unhashed(entry));
2132 	hlist_bl_lock(b);
2133 	entry->d_flags |= DCACHE_RCUACCESS;
2134 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2135 	hlist_bl_unlock(b);
2136 }
2137 
2138 static void _d_rehash(struct dentry * entry)
2139 {
2140 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2141 }
2142 
2143 /**
2144  * d_rehash	- add an entry back to the hash
2145  * @entry: dentry to add to the hash
2146  *
2147  * Adds a dentry to the hash according to its name.
2148  */
2149 
2150 void d_rehash(struct dentry * entry)
2151 {
2152 	spin_lock(&entry->d_lock);
2153 	_d_rehash(entry);
2154 	spin_unlock(&entry->d_lock);
2155 }
2156 EXPORT_SYMBOL(d_rehash);
2157 
2158 /**
2159  * dentry_update_name_case - update case insensitive dentry with a new name
2160  * @dentry: dentry to be updated
2161  * @name: new name
2162  *
2163  * Update a case insensitive dentry with new case of name.
2164  *
2165  * dentry must have been returned by d_lookup with name @name. Old and new
2166  * name lengths must match (ie. no d_compare which allows mismatched name
2167  * lengths).
2168  *
2169  * Parent inode i_mutex must be held over d_lookup and into this call (to
2170  * keep renames and concurrent inserts, and readdir(2) away).
2171  */
2172 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2173 {
2174 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2175 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2176 
2177 	spin_lock(&dentry->d_lock);
2178 	write_seqcount_begin(&dentry->d_seq);
2179 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2180 	write_seqcount_end(&dentry->d_seq);
2181 	spin_unlock(&dentry->d_lock);
2182 }
2183 EXPORT_SYMBOL(dentry_update_name_case);
2184 
2185 static void switch_names(struct dentry *dentry, struct dentry *target)
2186 {
2187 	if (dname_external(target)) {
2188 		if (dname_external(dentry)) {
2189 			/*
2190 			 * Both external: swap the pointers
2191 			 */
2192 			swap(target->d_name.name, dentry->d_name.name);
2193 		} else {
2194 			/*
2195 			 * dentry:internal, target:external.  Steal target's
2196 			 * storage and make target internal.
2197 			 */
2198 			memcpy(target->d_iname, dentry->d_name.name,
2199 					dentry->d_name.len + 1);
2200 			dentry->d_name.name = target->d_name.name;
2201 			target->d_name.name = target->d_iname;
2202 		}
2203 	} else {
2204 		if (dname_external(dentry)) {
2205 			/*
2206 			 * dentry:external, target:internal.  Give dentry's
2207 			 * storage to target and make dentry internal
2208 			 */
2209 			memcpy(dentry->d_iname, target->d_name.name,
2210 					target->d_name.len + 1);
2211 			target->d_name.name = dentry->d_name.name;
2212 			dentry->d_name.name = dentry->d_iname;
2213 		} else {
2214 			/*
2215 			 * Both are internal.  Just copy target to dentry
2216 			 */
2217 			memcpy(dentry->d_iname, target->d_name.name,
2218 					target->d_name.len + 1);
2219 			dentry->d_name.len = target->d_name.len;
2220 			return;
2221 		}
2222 	}
2223 	swap(dentry->d_name.len, target->d_name.len);
2224 }
2225 
2226 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2227 {
2228 	/*
2229 	 * XXXX: do we really need to take target->d_lock?
2230 	 */
2231 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2232 		spin_lock(&target->d_parent->d_lock);
2233 	else {
2234 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2235 			spin_lock(&dentry->d_parent->d_lock);
2236 			spin_lock_nested(&target->d_parent->d_lock,
2237 						DENTRY_D_LOCK_NESTED);
2238 		} else {
2239 			spin_lock(&target->d_parent->d_lock);
2240 			spin_lock_nested(&dentry->d_parent->d_lock,
2241 						DENTRY_D_LOCK_NESTED);
2242 		}
2243 	}
2244 	if (target < dentry) {
2245 		spin_lock_nested(&target->d_lock, 2);
2246 		spin_lock_nested(&dentry->d_lock, 3);
2247 	} else {
2248 		spin_lock_nested(&dentry->d_lock, 2);
2249 		spin_lock_nested(&target->d_lock, 3);
2250 	}
2251 }
2252 
2253 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2254 					struct dentry *target)
2255 {
2256 	if (target->d_parent != dentry->d_parent)
2257 		spin_unlock(&dentry->d_parent->d_lock);
2258 	if (target->d_parent != target)
2259 		spin_unlock(&target->d_parent->d_lock);
2260 }
2261 
2262 /*
2263  * When switching names, the actual string doesn't strictly have to
2264  * be preserved in the target - because we're dropping the target
2265  * anyway. As such, we can just do a simple memcpy() to copy over
2266  * the new name before we switch.
2267  *
2268  * Note that we have to be a lot more careful about getting the hash
2269  * switched - we have to switch the hash value properly even if it
2270  * then no longer matches the actual (corrupted) string of the target.
2271  * The hash value has to match the hash queue that the dentry is on..
2272  */
2273 /*
2274  * __d_move - move a dentry
2275  * @dentry: entry to move
2276  * @target: new dentry
2277  *
2278  * Update the dcache to reflect the move of a file name. Negative
2279  * dcache entries should not be moved in this way. Caller must hold
2280  * rename_lock, the i_mutex of the source and target directories,
2281  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2282  */
2283 static void __d_move(struct dentry * dentry, struct dentry * target)
2284 {
2285 	if (!dentry->d_inode)
2286 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2287 
2288 	BUG_ON(d_ancestor(dentry, target));
2289 	BUG_ON(d_ancestor(target, dentry));
2290 
2291 	dentry_lock_for_move(dentry, target);
2292 
2293 	write_seqcount_begin(&dentry->d_seq);
2294 	write_seqcount_begin(&target->d_seq);
2295 
2296 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2297 
2298 	/*
2299 	 * Move the dentry to the target hash queue. Don't bother checking
2300 	 * for the same hash queue because of how unlikely it is.
2301 	 */
2302 	__d_drop(dentry);
2303 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2304 
2305 	/* Unhash the target: dput() will then get rid of it */
2306 	__d_drop(target);
2307 
2308 	list_del(&dentry->d_u.d_child);
2309 	list_del(&target->d_u.d_child);
2310 
2311 	/* Switch the names.. */
2312 	switch_names(dentry, target);
2313 	swap(dentry->d_name.hash, target->d_name.hash);
2314 
2315 	/* ... and switch the parents */
2316 	if (IS_ROOT(dentry)) {
2317 		dentry->d_parent = target->d_parent;
2318 		target->d_parent = target;
2319 		INIT_LIST_HEAD(&target->d_u.d_child);
2320 	} else {
2321 		swap(dentry->d_parent, target->d_parent);
2322 
2323 		/* And add them back to the (new) parent lists */
2324 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2325 	}
2326 
2327 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2328 
2329 	write_seqcount_end(&target->d_seq);
2330 	write_seqcount_end(&dentry->d_seq);
2331 
2332 	dentry_unlock_parents_for_move(dentry, target);
2333 	spin_unlock(&target->d_lock);
2334 	fsnotify_d_move(dentry);
2335 	spin_unlock(&dentry->d_lock);
2336 }
2337 
2338 /*
2339  * d_move - move a dentry
2340  * @dentry: entry to move
2341  * @target: new dentry
2342  *
2343  * Update the dcache to reflect the move of a file name. Negative
2344  * dcache entries should not be moved in this way. See the locking
2345  * requirements for __d_move.
2346  */
2347 void d_move(struct dentry *dentry, struct dentry *target)
2348 {
2349 	write_seqlock(&rename_lock);
2350 	__d_move(dentry, target);
2351 	write_sequnlock(&rename_lock);
2352 }
2353 EXPORT_SYMBOL(d_move);
2354 
2355 /**
2356  * d_ancestor - search for an ancestor
2357  * @p1: ancestor dentry
2358  * @p2: child dentry
2359  *
2360  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2361  * an ancestor of p2, else NULL.
2362  */
2363 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2364 {
2365 	struct dentry *p;
2366 
2367 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2368 		if (p->d_parent == p1)
2369 			return p;
2370 	}
2371 	return NULL;
2372 }
2373 
2374 /*
2375  * This helper attempts to cope with remotely renamed directories
2376  *
2377  * It assumes that the caller is already holding
2378  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2379  *
2380  * Note: If ever the locking in lock_rename() changes, then please
2381  * remember to update this too...
2382  */
2383 static struct dentry *__d_unalias(struct inode *inode,
2384 		struct dentry *dentry, struct dentry *alias)
2385 {
2386 	struct mutex *m1 = NULL, *m2 = NULL;
2387 	struct dentry *ret;
2388 
2389 	/* If alias and dentry share a parent, then no extra locks required */
2390 	if (alias->d_parent == dentry->d_parent)
2391 		goto out_unalias;
2392 
2393 	/* See lock_rename() */
2394 	ret = ERR_PTR(-EBUSY);
2395 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2396 		goto out_err;
2397 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2398 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2399 		goto out_err;
2400 	m2 = &alias->d_parent->d_inode->i_mutex;
2401 out_unalias:
2402 	__d_move(alias, dentry);
2403 	ret = alias;
2404 out_err:
2405 	spin_unlock(&inode->i_lock);
2406 	if (m2)
2407 		mutex_unlock(m2);
2408 	if (m1)
2409 		mutex_unlock(m1);
2410 	return ret;
2411 }
2412 
2413 /*
2414  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2415  * named dentry in place of the dentry to be replaced.
2416  * returns with anon->d_lock held!
2417  */
2418 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2419 {
2420 	struct dentry *dparent, *aparent;
2421 
2422 	dentry_lock_for_move(anon, dentry);
2423 
2424 	write_seqcount_begin(&dentry->d_seq);
2425 	write_seqcount_begin(&anon->d_seq);
2426 
2427 	dparent = dentry->d_parent;
2428 	aparent = anon->d_parent;
2429 
2430 	switch_names(dentry, anon);
2431 	swap(dentry->d_name.hash, anon->d_name.hash);
2432 
2433 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2434 	list_del(&dentry->d_u.d_child);
2435 	if (!IS_ROOT(dentry))
2436 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2437 	else
2438 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2439 
2440 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2441 	list_del(&anon->d_u.d_child);
2442 	if (!IS_ROOT(anon))
2443 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2444 	else
2445 		INIT_LIST_HEAD(&anon->d_u.d_child);
2446 
2447 	write_seqcount_end(&dentry->d_seq);
2448 	write_seqcount_end(&anon->d_seq);
2449 
2450 	dentry_unlock_parents_for_move(anon, dentry);
2451 	spin_unlock(&dentry->d_lock);
2452 
2453 	/* anon->d_lock still locked, returns locked */
2454 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2455 }
2456 
2457 /**
2458  * d_materialise_unique - introduce an inode into the tree
2459  * @dentry: candidate dentry
2460  * @inode: inode to bind to the dentry, to which aliases may be attached
2461  *
2462  * Introduces an dentry into the tree, substituting an extant disconnected
2463  * root directory alias in its place if there is one. Caller must hold the
2464  * i_mutex of the parent directory.
2465  */
2466 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2467 {
2468 	struct dentry *actual;
2469 
2470 	BUG_ON(!d_unhashed(dentry));
2471 
2472 	if (!inode) {
2473 		actual = dentry;
2474 		__d_instantiate(dentry, NULL);
2475 		d_rehash(actual);
2476 		goto out_nolock;
2477 	}
2478 
2479 	spin_lock(&inode->i_lock);
2480 
2481 	if (S_ISDIR(inode->i_mode)) {
2482 		struct dentry *alias;
2483 
2484 		/* Does an aliased dentry already exist? */
2485 		alias = __d_find_alias(inode, 0);
2486 		if (alias) {
2487 			actual = alias;
2488 			write_seqlock(&rename_lock);
2489 
2490 			if (d_ancestor(alias, dentry)) {
2491 				/* Check for loops */
2492 				actual = ERR_PTR(-ELOOP);
2493 				spin_unlock(&inode->i_lock);
2494 			} else if (IS_ROOT(alias)) {
2495 				/* Is this an anonymous mountpoint that we
2496 				 * could splice into our tree? */
2497 				__d_materialise_dentry(dentry, alias);
2498 				write_sequnlock(&rename_lock);
2499 				__d_drop(alias);
2500 				goto found;
2501 			} else {
2502 				/* Nope, but we must(!) avoid directory
2503 				 * aliasing. This drops inode->i_lock */
2504 				actual = __d_unalias(inode, dentry, alias);
2505 			}
2506 			write_sequnlock(&rename_lock);
2507 			if (IS_ERR(actual)) {
2508 				if (PTR_ERR(actual) == -ELOOP)
2509 					pr_warn_ratelimited(
2510 						"VFS: Lookup of '%s' in %s %s"
2511 						" would have caused loop\n",
2512 						dentry->d_name.name,
2513 						inode->i_sb->s_type->name,
2514 						inode->i_sb->s_id);
2515 				dput(alias);
2516 			}
2517 			goto out_nolock;
2518 		}
2519 	}
2520 
2521 	/* Add a unique reference */
2522 	actual = __d_instantiate_unique(dentry, inode);
2523 	if (!actual)
2524 		actual = dentry;
2525 	else
2526 		BUG_ON(!d_unhashed(actual));
2527 
2528 	spin_lock(&actual->d_lock);
2529 found:
2530 	_d_rehash(actual);
2531 	spin_unlock(&actual->d_lock);
2532 	spin_unlock(&inode->i_lock);
2533 out_nolock:
2534 	if (actual == dentry) {
2535 		security_d_instantiate(dentry, inode);
2536 		return NULL;
2537 	}
2538 
2539 	iput(inode);
2540 	return actual;
2541 }
2542 EXPORT_SYMBOL_GPL(d_materialise_unique);
2543 
2544 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2545 {
2546 	*buflen -= namelen;
2547 	if (*buflen < 0)
2548 		return -ENAMETOOLONG;
2549 	*buffer -= namelen;
2550 	memcpy(*buffer, str, namelen);
2551 	return 0;
2552 }
2553 
2554 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2555 {
2556 	return prepend(buffer, buflen, name->name, name->len);
2557 }
2558 
2559 /**
2560  * prepend_path - Prepend path string to a buffer
2561  * @path: the dentry/vfsmount to report
2562  * @root: root vfsmnt/dentry
2563  * @buffer: pointer to the end of the buffer
2564  * @buflen: pointer to buffer length
2565  *
2566  * Caller holds the rename_lock.
2567  */
2568 static int prepend_path(const struct path *path,
2569 			const struct path *root,
2570 			char **buffer, int *buflen)
2571 {
2572 	struct dentry *dentry = path->dentry;
2573 	struct vfsmount *vfsmnt = path->mnt;
2574 	struct mount *mnt = real_mount(vfsmnt);
2575 	bool slash = false;
2576 	int error = 0;
2577 
2578 	br_read_lock(&vfsmount_lock);
2579 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2580 		struct dentry * parent;
2581 
2582 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2583 			/* Global root? */
2584 			if (!mnt_has_parent(mnt))
2585 				goto global_root;
2586 			dentry = mnt->mnt_mountpoint;
2587 			mnt = mnt->mnt_parent;
2588 			vfsmnt = &mnt->mnt;
2589 			continue;
2590 		}
2591 		parent = dentry->d_parent;
2592 		prefetch(parent);
2593 		spin_lock(&dentry->d_lock);
2594 		error = prepend_name(buffer, buflen, &dentry->d_name);
2595 		spin_unlock(&dentry->d_lock);
2596 		if (!error)
2597 			error = prepend(buffer, buflen, "/", 1);
2598 		if (error)
2599 			break;
2600 
2601 		slash = true;
2602 		dentry = parent;
2603 	}
2604 
2605 	if (!error && !slash)
2606 		error = prepend(buffer, buflen, "/", 1);
2607 
2608 out:
2609 	br_read_unlock(&vfsmount_lock);
2610 	return error;
2611 
2612 global_root:
2613 	/*
2614 	 * Filesystems needing to implement special "root names"
2615 	 * should do so with ->d_dname()
2616 	 */
2617 	if (IS_ROOT(dentry) &&
2618 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2619 		WARN(1, "Root dentry has weird name <%.*s>\n",
2620 		     (int) dentry->d_name.len, dentry->d_name.name);
2621 	}
2622 	if (!slash)
2623 		error = prepend(buffer, buflen, "/", 1);
2624 	if (!error)
2625 		error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2626 	goto out;
2627 }
2628 
2629 /**
2630  * __d_path - return the path of a dentry
2631  * @path: the dentry/vfsmount to report
2632  * @root: root vfsmnt/dentry
2633  * @buf: buffer to return value in
2634  * @buflen: buffer length
2635  *
2636  * Convert a dentry into an ASCII path name.
2637  *
2638  * Returns a pointer into the buffer or an error code if the
2639  * path was too long.
2640  *
2641  * "buflen" should be positive.
2642  *
2643  * If the path is not reachable from the supplied root, return %NULL.
2644  */
2645 char *__d_path(const struct path *path,
2646 	       const struct path *root,
2647 	       char *buf, int buflen)
2648 {
2649 	char *res = buf + buflen;
2650 	int error;
2651 
2652 	prepend(&res, &buflen, "\0", 1);
2653 	write_seqlock(&rename_lock);
2654 	error = prepend_path(path, root, &res, &buflen);
2655 	write_sequnlock(&rename_lock);
2656 
2657 	if (error < 0)
2658 		return ERR_PTR(error);
2659 	if (error > 0)
2660 		return NULL;
2661 	return res;
2662 }
2663 
2664 char *d_absolute_path(const struct path *path,
2665 	       char *buf, int buflen)
2666 {
2667 	struct path root = {};
2668 	char *res = buf + buflen;
2669 	int error;
2670 
2671 	prepend(&res, &buflen, "\0", 1);
2672 	write_seqlock(&rename_lock);
2673 	error = prepend_path(path, &root, &res, &buflen);
2674 	write_sequnlock(&rename_lock);
2675 
2676 	if (error > 1)
2677 		error = -EINVAL;
2678 	if (error < 0)
2679 		return ERR_PTR(error);
2680 	return res;
2681 }
2682 
2683 /*
2684  * same as __d_path but appends "(deleted)" for unlinked files.
2685  */
2686 static int path_with_deleted(const struct path *path,
2687 			     const struct path *root,
2688 			     char **buf, int *buflen)
2689 {
2690 	prepend(buf, buflen, "\0", 1);
2691 	if (d_unlinked(path->dentry)) {
2692 		int error = prepend(buf, buflen, " (deleted)", 10);
2693 		if (error)
2694 			return error;
2695 	}
2696 
2697 	return prepend_path(path, root, buf, buflen);
2698 }
2699 
2700 static int prepend_unreachable(char **buffer, int *buflen)
2701 {
2702 	return prepend(buffer, buflen, "(unreachable)", 13);
2703 }
2704 
2705 /**
2706  * d_path - return the path of a dentry
2707  * @path: path to report
2708  * @buf: buffer to return value in
2709  * @buflen: buffer length
2710  *
2711  * Convert a dentry into an ASCII path name. If the entry has been deleted
2712  * the string " (deleted)" is appended. Note that this is ambiguous.
2713  *
2714  * Returns a pointer into the buffer or an error code if the path was
2715  * too long. Note: Callers should use the returned pointer, not the passed
2716  * in buffer, to use the name! The implementation often starts at an offset
2717  * into the buffer, and may leave 0 bytes at the start.
2718  *
2719  * "buflen" should be positive.
2720  */
2721 char *d_path(const struct path *path, char *buf, int buflen)
2722 {
2723 	char *res = buf + buflen;
2724 	struct path root;
2725 	int error;
2726 
2727 	/*
2728 	 * We have various synthetic filesystems that never get mounted.  On
2729 	 * these filesystems dentries are never used for lookup purposes, and
2730 	 * thus don't need to be hashed.  They also don't need a name until a
2731 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2732 	 * below allows us to generate a name for these objects on demand:
2733 	 */
2734 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2735 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2736 
2737 	get_fs_root(current->fs, &root);
2738 	write_seqlock(&rename_lock);
2739 	error = path_with_deleted(path, &root, &res, &buflen);
2740 	if (error < 0)
2741 		res = ERR_PTR(error);
2742 	write_sequnlock(&rename_lock);
2743 	path_put(&root);
2744 	return res;
2745 }
2746 EXPORT_SYMBOL(d_path);
2747 
2748 /**
2749  * d_path_with_unreachable - return the path of a dentry
2750  * @path: path to report
2751  * @buf: buffer to return value in
2752  * @buflen: buffer length
2753  *
2754  * The difference from d_path() is that this prepends "(unreachable)"
2755  * to paths which are unreachable from the current process' root.
2756  */
2757 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2758 {
2759 	char *res = buf + buflen;
2760 	struct path root;
2761 	int error;
2762 
2763 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2764 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2765 
2766 	get_fs_root(current->fs, &root);
2767 	write_seqlock(&rename_lock);
2768 	error = path_with_deleted(path, &root, &res, &buflen);
2769 	if (error > 0)
2770 		error = prepend_unreachable(&res, &buflen);
2771 	write_sequnlock(&rename_lock);
2772 	path_put(&root);
2773 	if (error)
2774 		res =  ERR_PTR(error);
2775 
2776 	return res;
2777 }
2778 
2779 /*
2780  * Helper function for dentry_operations.d_dname() members
2781  */
2782 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2783 			const char *fmt, ...)
2784 {
2785 	va_list args;
2786 	char temp[64];
2787 	int sz;
2788 
2789 	va_start(args, fmt);
2790 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2791 	va_end(args);
2792 
2793 	if (sz > sizeof(temp) || sz > buflen)
2794 		return ERR_PTR(-ENAMETOOLONG);
2795 
2796 	buffer += buflen - sz;
2797 	return memcpy(buffer, temp, sz);
2798 }
2799 
2800 /*
2801  * Write full pathname from the root of the filesystem into the buffer.
2802  */
2803 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2804 {
2805 	char *end = buf + buflen;
2806 	char *retval;
2807 
2808 	prepend(&end, &buflen, "\0", 1);
2809 	if (buflen < 1)
2810 		goto Elong;
2811 	/* Get '/' right */
2812 	retval = end-1;
2813 	*retval = '/';
2814 
2815 	while (!IS_ROOT(dentry)) {
2816 		struct dentry *parent = dentry->d_parent;
2817 		int error;
2818 
2819 		prefetch(parent);
2820 		spin_lock(&dentry->d_lock);
2821 		error = prepend_name(&end, &buflen, &dentry->d_name);
2822 		spin_unlock(&dentry->d_lock);
2823 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2824 			goto Elong;
2825 
2826 		retval = end;
2827 		dentry = parent;
2828 	}
2829 	return retval;
2830 Elong:
2831 	return ERR_PTR(-ENAMETOOLONG);
2832 }
2833 
2834 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2835 {
2836 	char *retval;
2837 
2838 	write_seqlock(&rename_lock);
2839 	retval = __dentry_path(dentry, buf, buflen);
2840 	write_sequnlock(&rename_lock);
2841 
2842 	return retval;
2843 }
2844 EXPORT_SYMBOL(dentry_path_raw);
2845 
2846 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2847 {
2848 	char *p = NULL;
2849 	char *retval;
2850 
2851 	write_seqlock(&rename_lock);
2852 	if (d_unlinked(dentry)) {
2853 		p = buf + buflen;
2854 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2855 			goto Elong;
2856 		buflen++;
2857 	}
2858 	retval = __dentry_path(dentry, buf, buflen);
2859 	write_sequnlock(&rename_lock);
2860 	if (!IS_ERR(retval) && p)
2861 		*p = '/';	/* restore '/' overriden with '\0' */
2862 	return retval;
2863 Elong:
2864 	return ERR_PTR(-ENAMETOOLONG);
2865 }
2866 
2867 /*
2868  * NOTE! The user-level library version returns a
2869  * character pointer. The kernel system call just
2870  * returns the length of the buffer filled (which
2871  * includes the ending '\0' character), or a negative
2872  * error value. So libc would do something like
2873  *
2874  *	char *getcwd(char * buf, size_t size)
2875  *	{
2876  *		int retval;
2877  *
2878  *		retval = sys_getcwd(buf, size);
2879  *		if (retval >= 0)
2880  *			return buf;
2881  *		errno = -retval;
2882  *		return NULL;
2883  *	}
2884  */
2885 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2886 {
2887 	int error;
2888 	struct path pwd, root;
2889 	char *page = (char *) __get_free_page(GFP_USER);
2890 
2891 	if (!page)
2892 		return -ENOMEM;
2893 
2894 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2895 
2896 	error = -ENOENT;
2897 	write_seqlock(&rename_lock);
2898 	if (!d_unlinked(pwd.dentry)) {
2899 		unsigned long len;
2900 		char *cwd = page + PAGE_SIZE;
2901 		int buflen = PAGE_SIZE;
2902 
2903 		prepend(&cwd, &buflen, "\0", 1);
2904 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2905 		write_sequnlock(&rename_lock);
2906 
2907 		if (error < 0)
2908 			goto out;
2909 
2910 		/* Unreachable from current root */
2911 		if (error > 0) {
2912 			error = prepend_unreachable(&cwd, &buflen);
2913 			if (error)
2914 				goto out;
2915 		}
2916 
2917 		error = -ERANGE;
2918 		len = PAGE_SIZE + page - cwd;
2919 		if (len <= size) {
2920 			error = len;
2921 			if (copy_to_user(buf, cwd, len))
2922 				error = -EFAULT;
2923 		}
2924 	} else {
2925 		write_sequnlock(&rename_lock);
2926 	}
2927 
2928 out:
2929 	path_put(&pwd);
2930 	path_put(&root);
2931 	free_page((unsigned long) page);
2932 	return error;
2933 }
2934 
2935 /*
2936  * Test whether new_dentry is a subdirectory of old_dentry.
2937  *
2938  * Trivially implemented using the dcache structure
2939  */
2940 
2941 /**
2942  * is_subdir - is new dentry a subdirectory of old_dentry
2943  * @new_dentry: new dentry
2944  * @old_dentry: old dentry
2945  *
2946  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2947  * Returns 0 otherwise.
2948  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2949  */
2950 
2951 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2952 {
2953 	int result;
2954 	unsigned seq;
2955 
2956 	if (new_dentry == old_dentry)
2957 		return 1;
2958 
2959 	do {
2960 		/* for restarting inner loop in case of seq retry */
2961 		seq = read_seqbegin(&rename_lock);
2962 		/*
2963 		 * Need rcu_readlock to protect against the d_parent trashing
2964 		 * due to d_move
2965 		 */
2966 		rcu_read_lock();
2967 		if (d_ancestor(old_dentry, new_dentry))
2968 			result = 1;
2969 		else
2970 			result = 0;
2971 		rcu_read_unlock();
2972 	} while (read_seqretry(&rename_lock, seq));
2973 
2974 	return result;
2975 }
2976 
2977 void d_genocide(struct dentry *root)
2978 {
2979 	struct dentry *this_parent;
2980 	struct list_head *next;
2981 	unsigned seq;
2982 	int locked = 0;
2983 
2984 	seq = read_seqbegin(&rename_lock);
2985 again:
2986 	this_parent = root;
2987 	spin_lock(&this_parent->d_lock);
2988 repeat:
2989 	next = this_parent->d_subdirs.next;
2990 resume:
2991 	while (next != &this_parent->d_subdirs) {
2992 		struct list_head *tmp = next;
2993 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2994 		next = tmp->next;
2995 
2996 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2997 		if (d_unhashed(dentry) || !dentry->d_inode) {
2998 			spin_unlock(&dentry->d_lock);
2999 			continue;
3000 		}
3001 		if (!list_empty(&dentry->d_subdirs)) {
3002 			spin_unlock(&this_parent->d_lock);
3003 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
3004 			this_parent = dentry;
3005 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
3006 			goto repeat;
3007 		}
3008 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3009 			dentry->d_flags |= DCACHE_GENOCIDE;
3010 			dentry->d_count--;
3011 		}
3012 		spin_unlock(&dentry->d_lock);
3013 	}
3014 	if (this_parent != root) {
3015 		struct dentry *child = this_parent;
3016 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3017 			this_parent->d_flags |= DCACHE_GENOCIDE;
3018 			this_parent->d_count--;
3019 		}
3020 		this_parent = try_to_ascend(this_parent, locked, seq);
3021 		if (!this_parent)
3022 			goto rename_retry;
3023 		next = child->d_u.d_child.next;
3024 		goto resume;
3025 	}
3026 	spin_unlock(&this_parent->d_lock);
3027 	if (!locked && read_seqretry(&rename_lock, seq))
3028 		goto rename_retry;
3029 	if (locked)
3030 		write_sequnlock(&rename_lock);
3031 	return;
3032 
3033 rename_retry:
3034 	locked = 1;
3035 	write_seqlock(&rename_lock);
3036 	goto again;
3037 }
3038 
3039 /**
3040  * find_inode_number - check for dentry with name
3041  * @dir: directory to check
3042  * @name: Name to find.
3043  *
3044  * Check whether a dentry already exists for the given name,
3045  * and return the inode number if it has an inode. Otherwise
3046  * 0 is returned.
3047  *
3048  * This routine is used to post-process directory listings for
3049  * filesystems using synthetic inode numbers, and is necessary
3050  * to keep getcwd() working.
3051  */
3052 
3053 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3054 {
3055 	struct dentry * dentry;
3056 	ino_t ino = 0;
3057 
3058 	dentry = d_hash_and_lookup(dir, name);
3059 	if (dentry) {
3060 		if (dentry->d_inode)
3061 			ino = dentry->d_inode->i_ino;
3062 		dput(dentry);
3063 	}
3064 	return ino;
3065 }
3066 EXPORT_SYMBOL(find_inode_number);
3067 
3068 static __initdata unsigned long dhash_entries;
3069 static int __init set_dhash_entries(char *str)
3070 {
3071 	if (!str)
3072 		return 0;
3073 	dhash_entries = simple_strtoul(str, &str, 0);
3074 	return 1;
3075 }
3076 __setup("dhash_entries=", set_dhash_entries);
3077 
3078 static void __init dcache_init_early(void)
3079 {
3080 	unsigned int loop;
3081 
3082 	/* If hashes are distributed across NUMA nodes, defer
3083 	 * hash allocation until vmalloc space is available.
3084 	 */
3085 	if (hashdist)
3086 		return;
3087 
3088 	dentry_hashtable =
3089 		alloc_large_system_hash("Dentry cache",
3090 					sizeof(struct hlist_bl_head),
3091 					dhash_entries,
3092 					13,
3093 					HASH_EARLY,
3094 					&d_hash_shift,
3095 					&d_hash_mask,
3096 					0,
3097 					0);
3098 
3099 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3100 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3101 }
3102 
3103 static void __init dcache_init(void)
3104 {
3105 	unsigned int loop;
3106 
3107 	/*
3108 	 * A constructor could be added for stable state like the lists,
3109 	 * but it is probably not worth it because of the cache nature
3110 	 * of the dcache.
3111 	 */
3112 	dentry_cache = KMEM_CACHE(dentry,
3113 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3114 
3115 	/* Hash may have been set up in dcache_init_early */
3116 	if (!hashdist)
3117 		return;
3118 
3119 	dentry_hashtable =
3120 		alloc_large_system_hash("Dentry cache",
3121 					sizeof(struct hlist_bl_head),
3122 					dhash_entries,
3123 					13,
3124 					0,
3125 					&d_hash_shift,
3126 					&d_hash_mask,
3127 					0,
3128 					0);
3129 
3130 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3131 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3132 }
3133 
3134 /* SLAB cache for __getname() consumers */
3135 struct kmem_cache *names_cachep __read_mostly;
3136 EXPORT_SYMBOL(names_cachep);
3137 
3138 EXPORT_SYMBOL(d_genocide);
3139 
3140 void __init vfs_caches_init_early(void)
3141 {
3142 	dcache_init_early();
3143 	inode_init_early();
3144 }
3145 
3146 void __init vfs_caches_init(unsigned long mempages)
3147 {
3148 	unsigned long reserve;
3149 
3150 	/* Base hash sizes on available memory, with a reserve equal to
3151            150% of current kernel size */
3152 
3153 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3154 	mempages -= reserve;
3155 
3156 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3157 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3158 
3159 	dcache_init();
3160 	inode_init();
3161 	files_init(mempages);
3162 	mnt_init();
3163 	bdev_cache_init();
3164 	chrdev_init();
3165 }
3166