1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 #include <asm/runtime-const.h> 39 40 /* 41 * Usage: 42 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 46 * s_roots bl list spinlock protects: 47 * - the s_roots list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 50 * d_lock protects: 51 * - d_flags 52 * - d_name 53 * - d_lru 54 * - d_count 55 * - d_unhashed() 56 * - d_parent and d_chilren 57 * - childrens' d_sib and d_parent 58 * - d_u.d_alias, d_inode 59 * 60 * Ordering: 61 * dentry->d_inode->i_lock 62 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 65 * s_roots lock 66 * 67 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 69 * ... 70 * dentry->d_parent->d_lock 71 * dentry->d_lock 72 * 73 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_lock 75 */ 76 int sysctl_vfs_cache_pressure __read_mostly = 100; 77 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 78 79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 80 81 EXPORT_SYMBOL(rename_lock); 82 83 static struct kmem_cache *dentry_cache __ro_after_init; 84 85 const struct qstr empty_name = QSTR_INIT("", 0); 86 EXPORT_SYMBOL(empty_name); 87 const struct qstr slash_name = QSTR_INIT("/", 1); 88 EXPORT_SYMBOL(slash_name); 89 const struct qstr dotdot_name = QSTR_INIT("..", 2); 90 EXPORT_SYMBOL(dotdot_name); 91 92 /* 93 * This is the single most critical data structure when it comes 94 * to the dcache: the hashtable for lookups. Somebody should try 95 * to make this good - I've just made it work. 96 * 97 * This hash-function tries to avoid losing too many bits of hash 98 * information, yet avoid using a prime hash-size or similar. 99 * 100 * Marking the variables "used" ensures that the compiler doesn't 101 * optimize them away completely on architectures with runtime 102 * constant infrastructure, this allows debuggers to see their 103 * values. But updating these values has no effect on those arches. 104 */ 105 106 static unsigned int d_hash_shift __ro_after_init __used; 107 108 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used; 109 110 static inline struct hlist_bl_head *d_hash(unsigned long hashlen) 111 { 112 return runtime_const_ptr(dentry_hashtable) + 113 runtime_const_shift_right_32(hashlen, d_hash_shift); 114 } 115 116 #define IN_LOOKUP_SHIFT 10 117 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 118 119 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 120 unsigned int hash) 121 { 122 hash += (unsigned long) parent / L1_CACHE_BYTES; 123 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 124 } 125 126 struct dentry_stat_t { 127 long nr_dentry; 128 long nr_unused; 129 long age_limit; /* age in seconds */ 130 long want_pages; /* pages requested by system */ 131 long nr_negative; /* # of unused negative dentries */ 132 long dummy; /* Reserved for future use */ 133 }; 134 135 static DEFINE_PER_CPU(long, nr_dentry); 136 static DEFINE_PER_CPU(long, nr_dentry_unused); 137 static DEFINE_PER_CPU(long, nr_dentry_negative); 138 static int dentry_negative_policy; 139 140 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 141 /* Statistics gathering. */ 142 static struct dentry_stat_t dentry_stat = { 143 .age_limit = 45, 144 }; 145 146 /* 147 * Here we resort to our own counters instead of using generic per-cpu counters 148 * for consistency with what the vfs inode code does. We are expected to harvest 149 * better code and performance by having our own specialized counters. 150 * 151 * Please note that the loop is done over all possible CPUs, not over all online 152 * CPUs. The reason for this is that we don't want to play games with CPUs going 153 * on and off. If one of them goes off, we will just keep their counters. 154 * 155 * glommer: See cffbc8a for details, and if you ever intend to change this, 156 * please update all vfs counters to match. 157 */ 158 static long get_nr_dentry(void) 159 { 160 int i; 161 long sum = 0; 162 for_each_possible_cpu(i) 163 sum += per_cpu(nr_dentry, i); 164 return sum < 0 ? 0 : sum; 165 } 166 167 static long get_nr_dentry_unused(void) 168 { 169 int i; 170 long sum = 0; 171 for_each_possible_cpu(i) 172 sum += per_cpu(nr_dentry_unused, i); 173 return sum < 0 ? 0 : sum; 174 } 175 176 static long get_nr_dentry_negative(void) 177 { 178 int i; 179 long sum = 0; 180 181 for_each_possible_cpu(i) 182 sum += per_cpu(nr_dentry_negative, i); 183 return sum < 0 ? 0 : sum; 184 } 185 186 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer, 187 size_t *lenp, loff_t *ppos) 188 { 189 dentry_stat.nr_dentry = get_nr_dentry(); 190 dentry_stat.nr_unused = get_nr_dentry_unused(); 191 dentry_stat.nr_negative = get_nr_dentry_negative(); 192 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 193 } 194 195 static struct ctl_table fs_dcache_sysctls[] = { 196 { 197 .procname = "dentry-state", 198 .data = &dentry_stat, 199 .maxlen = 6*sizeof(long), 200 .mode = 0444, 201 .proc_handler = proc_nr_dentry, 202 }, 203 { 204 .procname = "dentry-negative", 205 .data = &dentry_negative_policy, 206 .maxlen = sizeof(dentry_negative_policy), 207 .mode = 0644, 208 .proc_handler = proc_dointvec_minmax, 209 .extra1 = SYSCTL_ZERO, 210 .extra2 = SYSCTL_ONE, 211 }, 212 }; 213 214 static int __init init_fs_dcache_sysctls(void) 215 { 216 register_sysctl_init("fs", fs_dcache_sysctls); 217 return 0; 218 } 219 fs_initcall(init_fs_dcache_sysctls); 220 #endif 221 222 /* 223 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 224 * The strings are both count bytes long, and count is non-zero. 225 */ 226 #ifdef CONFIG_DCACHE_WORD_ACCESS 227 228 #include <asm/word-at-a-time.h> 229 /* 230 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 231 * aligned allocation for this particular component. We don't 232 * strictly need the load_unaligned_zeropad() safety, but it 233 * doesn't hurt either. 234 * 235 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 236 * need the careful unaligned handling. 237 */ 238 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 239 { 240 unsigned long a,b,mask; 241 242 for (;;) { 243 a = read_word_at_a_time(cs); 244 b = load_unaligned_zeropad(ct); 245 if (tcount < sizeof(unsigned long)) 246 break; 247 if (unlikely(a != b)) 248 return 1; 249 cs += sizeof(unsigned long); 250 ct += sizeof(unsigned long); 251 tcount -= sizeof(unsigned long); 252 if (!tcount) 253 return 0; 254 } 255 mask = bytemask_from_count(tcount); 256 return unlikely(!!((a ^ b) & mask)); 257 } 258 259 #else 260 261 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 262 { 263 do { 264 if (*cs != *ct) 265 return 1; 266 cs++; 267 ct++; 268 tcount--; 269 } while (tcount); 270 return 0; 271 } 272 273 #endif 274 275 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 276 { 277 /* 278 * Be careful about RCU walk racing with rename: 279 * use 'READ_ONCE' to fetch the name pointer. 280 * 281 * NOTE! Even if a rename will mean that the length 282 * was not loaded atomically, we don't care. The 283 * RCU walk will check the sequence count eventually, 284 * and catch it. And we won't overrun the buffer, 285 * because we're reading the name pointer atomically, 286 * and a dentry name is guaranteed to be properly 287 * terminated with a NUL byte. 288 * 289 * End result: even if 'len' is wrong, we'll exit 290 * early because the data cannot match (there can 291 * be no NUL in the ct/tcount data) 292 */ 293 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 294 295 return dentry_string_cmp(cs, ct, tcount); 296 } 297 298 struct external_name { 299 union { 300 atomic_t count; 301 struct rcu_head head; 302 } u; 303 unsigned char name[]; 304 }; 305 306 static inline struct external_name *external_name(struct dentry *dentry) 307 { 308 return container_of(dentry->d_name.name, struct external_name, name[0]); 309 } 310 311 static void __d_free(struct rcu_head *head) 312 { 313 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 314 315 kmem_cache_free(dentry_cache, dentry); 316 } 317 318 static void __d_free_external(struct rcu_head *head) 319 { 320 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 321 kfree(external_name(dentry)); 322 kmem_cache_free(dentry_cache, dentry); 323 } 324 325 static inline int dname_external(const struct dentry *dentry) 326 { 327 return dentry->d_name.name != dentry->d_iname; 328 } 329 330 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 331 { 332 spin_lock(&dentry->d_lock); 333 name->name = dentry->d_name; 334 if (unlikely(dname_external(dentry))) { 335 atomic_inc(&external_name(dentry)->u.count); 336 } else { 337 memcpy(name->inline_name, dentry->d_iname, 338 dentry->d_name.len + 1); 339 name->name.name = name->inline_name; 340 } 341 spin_unlock(&dentry->d_lock); 342 } 343 EXPORT_SYMBOL(take_dentry_name_snapshot); 344 345 void release_dentry_name_snapshot(struct name_snapshot *name) 346 { 347 if (unlikely(name->name.name != name->inline_name)) { 348 struct external_name *p; 349 p = container_of(name->name.name, struct external_name, name[0]); 350 if (unlikely(atomic_dec_and_test(&p->u.count))) 351 kfree_rcu(p, u.head); 352 } 353 } 354 EXPORT_SYMBOL(release_dentry_name_snapshot); 355 356 static inline void __d_set_inode_and_type(struct dentry *dentry, 357 struct inode *inode, 358 unsigned type_flags) 359 { 360 unsigned flags; 361 362 dentry->d_inode = inode; 363 flags = READ_ONCE(dentry->d_flags); 364 flags &= ~DCACHE_ENTRY_TYPE; 365 flags |= type_flags; 366 smp_store_release(&dentry->d_flags, flags); 367 } 368 369 static inline void __d_clear_type_and_inode(struct dentry *dentry) 370 { 371 unsigned flags = READ_ONCE(dentry->d_flags); 372 373 flags &= ~DCACHE_ENTRY_TYPE; 374 WRITE_ONCE(dentry->d_flags, flags); 375 dentry->d_inode = NULL; 376 /* 377 * The negative counter only tracks dentries on the LRU. Don't inc if 378 * d_lru is on another list. 379 */ 380 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 381 this_cpu_inc(nr_dentry_negative); 382 } 383 384 static void dentry_free(struct dentry *dentry) 385 { 386 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 387 if (unlikely(dname_external(dentry))) { 388 struct external_name *p = external_name(dentry); 389 if (likely(atomic_dec_and_test(&p->u.count))) { 390 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 391 return; 392 } 393 } 394 /* if dentry was never visible to RCU, immediate free is OK */ 395 if (dentry->d_flags & DCACHE_NORCU) 396 __d_free(&dentry->d_u.d_rcu); 397 else 398 call_rcu(&dentry->d_u.d_rcu, __d_free); 399 } 400 401 /* 402 * Release the dentry's inode, using the filesystem 403 * d_iput() operation if defined. 404 */ 405 static void dentry_unlink_inode(struct dentry * dentry) 406 __releases(dentry->d_lock) 407 __releases(dentry->d_inode->i_lock) 408 { 409 struct inode *inode = dentry->d_inode; 410 411 raw_write_seqcount_begin(&dentry->d_seq); 412 __d_clear_type_and_inode(dentry); 413 hlist_del_init(&dentry->d_u.d_alias); 414 raw_write_seqcount_end(&dentry->d_seq); 415 spin_unlock(&dentry->d_lock); 416 spin_unlock(&inode->i_lock); 417 if (!inode->i_nlink) 418 fsnotify_inoderemove(inode); 419 if (dentry->d_op && dentry->d_op->d_iput) 420 dentry->d_op->d_iput(dentry, inode); 421 else 422 iput(inode); 423 } 424 425 /* 426 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 427 * is in use - which includes both the "real" per-superblock 428 * LRU list _and_ the DCACHE_SHRINK_LIST use. 429 * 430 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 431 * on the shrink list (ie not on the superblock LRU list). 432 * 433 * The per-cpu "nr_dentry_unused" counters are updated with 434 * the DCACHE_LRU_LIST bit. 435 * 436 * The per-cpu "nr_dentry_negative" counters are only updated 437 * when deleted from or added to the per-superblock LRU list, not 438 * from/to the shrink list. That is to avoid an unneeded dec/inc 439 * pair when moving from LRU to shrink list in select_collect(). 440 * 441 * These helper functions make sure we always follow the 442 * rules. d_lock must be held by the caller. 443 */ 444 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 445 static void d_lru_add(struct dentry *dentry) 446 { 447 D_FLAG_VERIFY(dentry, 0); 448 dentry->d_flags |= DCACHE_LRU_LIST; 449 this_cpu_inc(nr_dentry_unused); 450 if (d_is_negative(dentry)) 451 this_cpu_inc(nr_dentry_negative); 452 WARN_ON_ONCE(!list_lru_add_obj( 453 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 454 } 455 456 static void d_lru_del(struct dentry *dentry) 457 { 458 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 459 dentry->d_flags &= ~DCACHE_LRU_LIST; 460 this_cpu_dec(nr_dentry_unused); 461 if (d_is_negative(dentry)) 462 this_cpu_dec(nr_dentry_negative); 463 WARN_ON_ONCE(!list_lru_del_obj( 464 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 465 } 466 467 static void d_shrink_del(struct dentry *dentry) 468 { 469 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 470 list_del_init(&dentry->d_lru); 471 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 472 this_cpu_dec(nr_dentry_unused); 473 } 474 475 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 476 { 477 D_FLAG_VERIFY(dentry, 0); 478 list_add(&dentry->d_lru, list); 479 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 480 this_cpu_inc(nr_dentry_unused); 481 } 482 483 /* 484 * These can only be called under the global LRU lock, ie during the 485 * callback for freeing the LRU list. "isolate" removes it from the 486 * LRU lists entirely, while shrink_move moves it to the indicated 487 * private list. 488 */ 489 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 490 { 491 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 492 dentry->d_flags &= ~DCACHE_LRU_LIST; 493 this_cpu_dec(nr_dentry_unused); 494 if (d_is_negative(dentry)) 495 this_cpu_dec(nr_dentry_negative); 496 list_lru_isolate(lru, &dentry->d_lru); 497 } 498 499 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 500 struct list_head *list) 501 { 502 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 503 dentry->d_flags |= DCACHE_SHRINK_LIST; 504 if (d_is_negative(dentry)) 505 this_cpu_dec(nr_dentry_negative); 506 list_lru_isolate_move(lru, &dentry->d_lru, list); 507 } 508 509 static void ___d_drop(struct dentry *dentry) 510 { 511 struct hlist_bl_head *b; 512 /* 513 * Hashed dentries are normally on the dentry hashtable, 514 * with the exception of those newly allocated by 515 * d_obtain_root, which are always IS_ROOT: 516 */ 517 if (unlikely(IS_ROOT(dentry))) 518 b = &dentry->d_sb->s_roots; 519 else 520 b = d_hash(dentry->d_name.hash); 521 522 hlist_bl_lock(b); 523 __hlist_bl_del(&dentry->d_hash); 524 hlist_bl_unlock(b); 525 } 526 527 void __d_drop(struct dentry *dentry) 528 { 529 if (!d_unhashed(dentry)) { 530 ___d_drop(dentry); 531 dentry->d_hash.pprev = NULL; 532 write_seqcount_invalidate(&dentry->d_seq); 533 } 534 } 535 EXPORT_SYMBOL(__d_drop); 536 537 /** 538 * d_drop - drop a dentry 539 * @dentry: dentry to drop 540 * 541 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 542 * be found through a VFS lookup any more. Note that this is different from 543 * deleting the dentry - d_delete will try to mark the dentry negative if 544 * possible, giving a successful _negative_ lookup, while d_drop will 545 * just make the cache lookup fail. 546 * 547 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 548 * reason (NFS timeouts or autofs deletes). 549 * 550 * __d_drop requires dentry->d_lock 551 * 552 * ___d_drop doesn't mark dentry as "unhashed" 553 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 554 */ 555 void d_drop(struct dentry *dentry) 556 { 557 spin_lock(&dentry->d_lock); 558 __d_drop(dentry); 559 spin_unlock(&dentry->d_lock); 560 } 561 EXPORT_SYMBOL(d_drop); 562 563 static inline void dentry_unlist(struct dentry *dentry) 564 { 565 struct dentry *next; 566 /* 567 * Inform d_walk() and shrink_dentry_list() that we are no longer 568 * attached to the dentry tree 569 */ 570 dentry->d_flags |= DCACHE_DENTRY_KILLED; 571 if (unlikely(hlist_unhashed(&dentry->d_sib))) 572 return; 573 __hlist_del(&dentry->d_sib); 574 /* 575 * Cursors can move around the list of children. While we'd been 576 * a normal list member, it didn't matter - ->d_sib.next would've 577 * been updated. However, from now on it won't be and for the 578 * things like d_walk() it might end up with a nasty surprise. 579 * Normally d_walk() doesn't care about cursors moving around - 580 * ->d_lock on parent prevents that and since a cursor has no children 581 * of its own, we get through it without ever unlocking the parent. 582 * There is one exception, though - if we ascend from a child that 583 * gets killed as soon as we unlock it, the next sibling is found 584 * using the value left in its ->d_sib.next. And if _that_ 585 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 586 * before d_walk() regains parent->d_lock, we'll end up skipping 587 * everything the cursor had been moved past. 588 * 589 * Solution: make sure that the pointer left behind in ->d_sib.next 590 * points to something that won't be moving around. I.e. skip the 591 * cursors. 592 */ 593 while (dentry->d_sib.next) { 594 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib); 595 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 596 break; 597 dentry->d_sib.next = next->d_sib.next; 598 } 599 } 600 601 static struct dentry *__dentry_kill(struct dentry *dentry) 602 { 603 struct dentry *parent = NULL; 604 bool can_free = true; 605 606 /* 607 * The dentry is now unrecoverably dead to the world. 608 */ 609 lockref_mark_dead(&dentry->d_lockref); 610 611 /* 612 * inform the fs via d_prune that this dentry is about to be 613 * unhashed and destroyed. 614 */ 615 if (dentry->d_flags & DCACHE_OP_PRUNE) 616 dentry->d_op->d_prune(dentry); 617 618 if (dentry->d_flags & DCACHE_LRU_LIST) { 619 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 620 d_lru_del(dentry); 621 } 622 /* if it was on the hash then remove it */ 623 __d_drop(dentry); 624 if (dentry->d_inode) 625 dentry_unlink_inode(dentry); 626 else 627 spin_unlock(&dentry->d_lock); 628 this_cpu_dec(nr_dentry); 629 if (dentry->d_op && dentry->d_op->d_release) 630 dentry->d_op->d_release(dentry); 631 632 cond_resched(); 633 /* now that it's negative, ->d_parent is stable */ 634 if (!IS_ROOT(dentry)) { 635 parent = dentry->d_parent; 636 spin_lock(&parent->d_lock); 637 } 638 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 639 dentry_unlist(dentry); 640 if (dentry->d_flags & DCACHE_SHRINK_LIST) 641 can_free = false; 642 spin_unlock(&dentry->d_lock); 643 if (likely(can_free)) 644 dentry_free(dentry); 645 if (parent && --parent->d_lockref.count) { 646 spin_unlock(&parent->d_lock); 647 return NULL; 648 } 649 return parent; 650 } 651 652 /* 653 * Lock a dentry for feeding it to __dentry_kill(). 654 * Called under rcu_read_lock() and dentry->d_lock; the former 655 * guarantees that nothing we access will be freed under us. 656 * Note that dentry is *not* protected from concurrent dentry_kill(), 657 * d_delete(), etc. 658 * 659 * Return false if dentry is busy. Otherwise, return true and have 660 * that dentry's inode locked. 661 */ 662 663 static bool lock_for_kill(struct dentry *dentry) 664 { 665 struct inode *inode = dentry->d_inode; 666 667 if (unlikely(dentry->d_lockref.count)) 668 return false; 669 670 if (!inode || likely(spin_trylock(&inode->i_lock))) 671 return true; 672 673 do { 674 spin_unlock(&dentry->d_lock); 675 spin_lock(&inode->i_lock); 676 spin_lock(&dentry->d_lock); 677 if (likely(inode == dentry->d_inode)) 678 break; 679 spin_unlock(&inode->i_lock); 680 inode = dentry->d_inode; 681 } while (inode); 682 if (likely(!dentry->d_lockref.count)) 683 return true; 684 if (inode) 685 spin_unlock(&inode->i_lock); 686 return false; 687 } 688 689 /* 690 * Decide if dentry is worth retaining. Usually this is called with dentry 691 * locked; if not locked, we are more limited and might not be able to tell 692 * without a lock. False in this case means "punt to locked path and recheck". 693 * 694 * In case we aren't locked, these predicates are not "stable". However, it is 695 * sufficient that at some point after we dropped the reference the dentry was 696 * hashed and the flags had the proper value. Other dentry users may have 697 * re-gotten a reference to the dentry and change that, but our work is done - 698 * we can leave the dentry around with a zero refcount. 699 */ 700 static inline bool retain_dentry(struct dentry *dentry, bool locked) 701 { 702 unsigned int d_flags; 703 704 smp_rmb(); 705 d_flags = READ_ONCE(dentry->d_flags); 706 707 // Unreachable? Nobody would be able to look it up, no point retaining 708 if (unlikely(d_unhashed(dentry))) 709 return false; 710 711 // Same if it's disconnected 712 if (unlikely(d_flags & DCACHE_DISCONNECTED)) 713 return false; 714 715 // ->d_delete() might tell us not to bother, but that requires 716 // ->d_lock; can't decide without it 717 if (unlikely(d_flags & DCACHE_OP_DELETE)) { 718 if (!locked || dentry->d_op->d_delete(dentry)) 719 return false; 720 } 721 722 // Explicitly told not to bother 723 if (unlikely(d_flags & DCACHE_DONTCACHE)) 724 return false; 725 726 // At this point it looks like we ought to keep it. We also might 727 // need to do something - put it on LRU if it wasn't there already 728 // and mark it referenced if it was on LRU, but not marked yet. 729 // Unfortunately, both actions require ->d_lock, so in lockless 730 // case we'd have to punt rather than doing those. 731 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) { 732 if (!locked) 733 return false; 734 d_lru_add(dentry); 735 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) { 736 if (!locked) 737 return false; 738 dentry->d_flags |= DCACHE_REFERENCED; 739 } 740 return true; 741 } 742 743 void d_mark_dontcache(struct inode *inode) 744 { 745 struct dentry *de; 746 747 spin_lock(&inode->i_lock); 748 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 749 spin_lock(&de->d_lock); 750 de->d_flags |= DCACHE_DONTCACHE; 751 spin_unlock(&de->d_lock); 752 } 753 inode->i_state |= I_DONTCACHE; 754 spin_unlock(&inode->i_lock); 755 } 756 EXPORT_SYMBOL(d_mark_dontcache); 757 758 /* 759 * Try to do a lockless dput(), and return whether that was successful. 760 * 761 * If unsuccessful, we return false, having already taken the dentry lock. 762 * In that case refcount is guaranteed to be zero and we have already 763 * decided that it's not worth keeping around. 764 * 765 * The caller needs to hold the RCU read lock, so that the dentry is 766 * guaranteed to stay around even if the refcount goes down to zero! 767 */ 768 static inline bool fast_dput(struct dentry *dentry) 769 { 770 int ret; 771 772 /* 773 * try to decrement the lockref optimistically. 774 */ 775 ret = lockref_put_return(&dentry->d_lockref); 776 777 /* 778 * If the lockref_put_return() failed due to the lock being held 779 * by somebody else, the fast path has failed. We will need to 780 * get the lock, and then check the count again. 781 */ 782 if (unlikely(ret < 0)) { 783 spin_lock(&dentry->d_lock); 784 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { 785 spin_unlock(&dentry->d_lock); 786 return true; 787 } 788 dentry->d_lockref.count--; 789 goto locked; 790 } 791 792 /* 793 * If we weren't the last ref, we're done. 794 */ 795 if (ret) 796 return true; 797 798 /* 799 * Can we decide that decrement of refcount is all we needed without 800 * taking the lock? There's a very common case when it's all we need - 801 * dentry looks like it ought to be retained and there's nothing else 802 * to do. 803 */ 804 if (retain_dentry(dentry, false)) 805 return true; 806 807 /* 808 * Either not worth retaining or we can't tell without the lock. 809 * Get the lock, then. We've already decremented the refcount to 0, 810 * but we'll need to re-check the situation after getting the lock. 811 */ 812 spin_lock(&dentry->d_lock); 813 814 /* 815 * Did somebody else grab a reference to it in the meantime, and 816 * we're no longer the last user after all? Alternatively, somebody 817 * else could have killed it and marked it dead. Either way, we 818 * don't need to do anything else. 819 */ 820 locked: 821 if (dentry->d_lockref.count || retain_dentry(dentry, true)) { 822 spin_unlock(&dentry->d_lock); 823 return true; 824 } 825 return false; 826 } 827 828 829 /* 830 * This is dput 831 * 832 * This is complicated by the fact that we do not want to put 833 * dentries that are no longer on any hash chain on the unused 834 * list: we'd much rather just get rid of them immediately. 835 * 836 * However, that implies that we have to traverse the dentry 837 * tree upwards to the parents which might _also_ now be 838 * scheduled for deletion (it may have been only waiting for 839 * its last child to go away). 840 * 841 * This tail recursion is done by hand as we don't want to depend 842 * on the compiler to always get this right (gcc generally doesn't). 843 * Real recursion would eat up our stack space. 844 */ 845 846 /* 847 * dput - release a dentry 848 * @dentry: dentry to release 849 * 850 * Release a dentry. This will drop the usage count and if appropriate 851 * call the dentry unlink method as well as removing it from the queues and 852 * releasing its resources. If the parent dentries were scheduled for release 853 * they too may now get deleted. 854 */ 855 void dput(struct dentry *dentry) 856 { 857 if (!dentry) 858 return; 859 might_sleep(); 860 rcu_read_lock(); 861 if (likely(fast_dput(dentry))) { 862 rcu_read_unlock(); 863 return; 864 } 865 while (lock_for_kill(dentry)) { 866 rcu_read_unlock(); 867 dentry = __dentry_kill(dentry); 868 if (!dentry) 869 return; 870 if (retain_dentry(dentry, true)) { 871 spin_unlock(&dentry->d_lock); 872 return; 873 } 874 rcu_read_lock(); 875 } 876 rcu_read_unlock(); 877 spin_unlock(&dentry->d_lock); 878 } 879 EXPORT_SYMBOL(dput); 880 881 static void to_shrink_list(struct dentry *dentry, struct list_head *list) 882 __must_hold(&dentry->d_lock) 883 { 884 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 885 if (dentry->d_flags & DCACHE_LRU_LIST) 886 d_lru_del(dentry); 887 d_shrink_add(dentry, list); 888 } 889 } 890 891 void dput_to_list(struct dentry *dentry, struct list_head *list) 892 { 893 rcu_read_lock(); 894 if (likely(fast_dput(dentry))) { 895 rcu_read_unlock(); 896 return; 897 } 898 rcu_read_unlock(); 899 to_shrink_list(dentry, list); 900 spin_unlock(&dentry->d_lock); 901 } 902 903 struct dentry *dget_parent(struct dentry *dentry) 904 { 905 int gotref; 906 struct dentry *ret; 907 unsigned seq; 908 909 /* 910 * Do optimistic parent lookup without any 911 * locking. 912 */ 913 rcu_read_lock(); 914 seq = raw_seqcount_begin(&dentry->d_seq); 915 ret = READ_ONCE(dentry->d_parent); 916 gotref = lockref_get_not_zero(&ret->d_lockref); 917 rcu_read_unlock(); 918 if (likely(gotref)) { 919 if (!read_seqcount_retry(&dentry->d_seq, seq)) 920 return ret; 921 dput(ret); 922 } 923 924 repeat: 925 /* 926 * Don't need rcu_dereference because we re-check it was correct under 927 * the lock. 928 */ 929 rcu_read_lock(); 930 ret = dentry->d_parent; 931 spin_lock(&ret->d_lock); 932 if (unlikely(ret != dentry->d_parent)) { 933 spin_unlock(&ret->d_lock); 934 rcu_read_unlock(); 935 goto repeat; 936 } 937 rcu_read_unlock(); 938 BUG_ON(!ret->d_lockref.count); 939 ret->d_lockref.count++; 940 spin_unlock(&ret->d_lock); 941 return ret; 942 } 943 EXPORT_SYMBOL(dget_parent); 944 945 static struct dentry * __d_find_any_alias(struct inode *inode) 946 { 947 struct dentry *alias; 948 949 if (hlist_empty(&inode->i_dentry)) 950 return NULL; 951 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 952 lockref_get(&alias->d_lockref); 953 return alias; 954 } 955 956 /** 957 * d_find_any_alias - find any alias for a given inode 958 * @inode: inode to find an alias for 959 * 960 * If any aliases exist for the given inode, take and return a 961 * reference for one of them. If no aliases exist, return %NULL. 962 */ 963 struct dentry *d_find_any_alias(struct inode *inode) 964 { 965 struct dentry *de; 966 967 spin_lock(&inode->i_lock); 968 de = __d_find_any_alias(inode); 969 spin_unlock(&inode->i_lock); 970 return de; 971 } 972 EXPORT_SYMBOL(d_find_any_alias); 973 974 static struct dentry *__d_find_alias(struct inode *inode) 975 { 976 struct dentry *alias; 977 978 if (S_ISDIR(inode->i_mode)) 979 return __d_find_any_alias(inode); 980 981 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 982 spin_lock(&alias->d_lock); 983 if (!d_unhashed(alias)) { 984 dget_dlock(alias); 985 spin_unlock(&alias->d_lock); 986 return alias; 987 } 988 spin_unlock(&alias->d_lock); 989 } 990 return NULL; 991 } 992 993 /** 994 * d_find_alias - grab a hashed alias of inode 995 * @inode: inode in question 996 * 997 * If inode has a hashed alias, or is a directory and has any alias, 998 * acquire the reference to alias and return it. Otherwise return NULL. 999 * Notice that if inode is a directory there can be only one alias and 1000 * it can be unhashed only if it has no children, or if it is the root 1001 * of a filesystem, or if the directory was renamed and d_revalidate 1002 * was the first vfs operation to notice. 1003 * 1004 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1005 * any other hashed alias over that one. 1006 */ 1007 struct dentry *d_find_alias(struct inode *inode) 1008 { 1009 struct dentry *de = NULL; 1010 1011 if (!hlist_empty(&inode->i_dentry)) { 1012 spin_lock(&inode->i_lock); 1013 de = __d_find_alias(inode); 1014 spin_unlock(&inode->i_lock); 1015 } 1016 return de; 1017 } 1018 EXPORT_SYMBOL(d_find_alias); 1019 1020 /* 1021 * Caller MUST be holding rcu_read_lock() and be guaranteed 1022 * that inode won't get freed until rcu_read_unlock(). 1023 */ 1024 struct dentry *d_find_alias_rcu(struct inode *inode) 1025 { 1026 struct hlist_head *l = &inode->i_dentry; 1027 struct dentry *de = NULL; 1028 1029 spin_lock(&inode->i_lock); 1030 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1031 // used without having I_FREEING set, which means no aliases left 1032 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1033 if (S_ISDIR(inode->i_mode)) { 1034 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1035 } else { 1036 hlist_for_each_entry(de, l, d_u.d_alias) 1037 if (!d_unhashed(de)) 1038 break; 1039 } 1040 } 1041 spin_unlock(&inode->i_lock); 1042 return de; 1043 } 1044 1045 /* 1046 * Try to kill dentries associated with this inode. 1047 * WARNING: you must own a reference to inode. 1048 */ 1049 void d_prune_aliases(struct inode *inode) 1050 { 1051 LIST_HEAD(dispose); 1052 struct dentry *dentry; 1053 1054 spin_lock(&inode->i_lock); 1055 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1056 spin_lock(&dentry->d_lock); 1057 if (!dentry->d_lockref.count) 1058 to_shrink_list(dentry, &dispose); 1059 spin_unlock(&dentry->d_lock); 1060 } 1061 spin_unlock(&inode->i_lock); 1062 shrink_dentry_list(&dispose); 1063 } 1064 EXPORT_SYMBOL(d_prune_aliases); 1065 1066 static inline void shrink_kill(struct dentry *victim) 1067 { 1068 do { 1069 rcu_read_unlock(); 1070 victim = __dentry_kill(victim); 1071 rcu_read_lock(); 1072 } while (victim && lock_for_kill(victim)); 1073 rcu_read_unlock(); 1074 if (victim) 1075 spin_unlock(&victim->d_lock); 1076 } 1077 1078 void shrink_dentry_list(struct list_head *list) 1079 { 1080 while (!list_empty(list)) { 1081 struct dentry *dentry; 1082 1083 dentry = list_entry(list->prev, struct dentry, d_lru); 1084 spin_lock(&dentry->d_lock); 1085 rcu_read_lock(); 1086 if (!lock_for_kill(dentry)) { 1087 bool can_free; 1088 rcu_read_unlock(); 1089 d_shrink_del(dentry); 1090 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED; 1091 spin_unlock(&dentry->d_lock); 1092 if (can_free) 1093 dentry_free(dentry); 1094 continue; 1095 } 1096 d_shrink_del(dentry); 1097 shrink_kill(dentry); 1098 } 1099 } 1100 1101 static enum lru_status dentry_lru_isolate(struct list_head *item, 1102 struct list_lru_one *lru, void *arg) 1103 { 1104 struct list_head *freeable = arg; 1105 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1106 1107 1108 /* 1109 * we are inverting the lru lock/dentry->d_lock here, 1110 * so use a trylock. If we fail to get the lock, just skip 1111 * it 1112 */ 1113 if (!spin_trylock(&dentry->d_lock)) 1114 return LRU_SKIP; 1115 1116 /* 1117 * Referenced dentries are still in use. If they have active 1118 * counts, just remove them from the LRU. Otherwise give them 1119 * another pass through the LRU. 1120 */ 1121 if (dentry->d_lockref.count) { 1122 d_lru_isolate(lru, dentry); 1123 spin_unlock(&dentry->d_lock); 1124 return LRU_REMOVED; 1125 } 1126 1127 if (dentry->d_flags & DCACHE_REFERENCED) { 1128 dentry->d_flags &= ~DCACHE_REFERENCED; 1129 spin_unlock(&dentry->d_lock); 1130 1131 /* 1132 * The list move itself will be made by the common LRU code. At 1133 * this point, we've dropped the dentry->d_lock but keep the 1134 * lru lock. This is safe to do, since every list movement is 1135 * protected by the lru lock even if both locks are held. 1136 * 1137 * This is guaranteed by the fact that all LRU management 1138 * functions are intermediated by the LRU API calls like 1139 * list_lru_add_obj and list_lru_del_obj. List movement in this file 1140 * only ever occur through this functions or through callbacks 1141 * like this one, that are called from the LRU API. 1142 * 1143 * The only exceptions to this are functions like 1144 * shrink_dentry_list, and code that first checks for the 1145 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1146 * operating only with stack provided lists after they are 1147 * properly isolated from the main list. It is thus, always a 1148 * local access. 1149 */ 1150 return LRU_ROTATE; 1151 } 1152 1153 d_lru_shrink_move(lru, dentry, freeable); 1154 spin_unlock(&dentry->d_lock); 1155 1156 return LRU_REMOVED; 1157 } 1158 1159 /** 1160 * prune_dcache_sb - shrink the dcache 1161 * @sb: superblock 1162 * @sc: shrink control, passed to list_lru_shrink_walk() 1163 * 1164 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1165 * is done when we need more memory and called from the superblock shrinker 1166 * function. 1167 * 1168 * This function may fail to free any resources if all the dentries are in 1169 * use. 1170 */ 1171 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1172 { 1173 LIST_HEAD(dispose); 1174 long freed; 1175 1176 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1177 dentry_lru_isolate, &dispose); 1178 shrink_dentry_list(&dispose); 1179 return freed; 1180 } 1181 1182 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1183 struct list_lru_one *lru, void *arg) 1184 { 1185 struct list_head *freeable = arg; 1186 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1187 1188 /* 1189 * we are inverting the lru lock/dentry->d_lock here, 1190 * so use a trylock. If we fail to get the lock, just skip 1191 * it 1192 */ 1193 if (!spin_trylock(&dentry->d_lock)) 1194 return LRU_SKIP; 1195 1196 d_lru_shrink_move(lru, dentry, freeable); 1197 spin_unlock(&dentry->d_lock); 1198 1199 return LRU_REMOVED; 1200 } 1201 1202 1203 /** 1204 * shrink_dcache_sb - shrink dcache for a superblock 1205 * @sb: superblock 1206 * 1207 * Shrink the dcache for the specified super block. This is used to free 1208 * the dcache before unmounting a file system. 1209 */ 1210 void shrink_dcache_sb(struct super_block *sb) 1211 { 1212 do { 1213 LIST_HEAD(dispose); 1214 1215 list_lru_walk(&sb->s_dentry_lru, 1216 dentry_lru_isolate_shrink, &dispose, 1024); 1217 shrink_dentry_list(&dispose); 1218 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1219 } 1220 EXPORT_SYMBOL(shrink_dcache_sb); 1221 1222 /** 1223 * enum d_walk_ret - action to talke during tree walk 1224 * @D_WALK_CONTINUE: contrinue walk 1225 * @D_WALK_QUIT: quit walk 1226 * @D_WALK_NORETRY: quit when retry is needed 1227 * @D_WALK_SKIP: skip this dentry and its children 1228 */ 1229 enum d_walk_ret { 1230 D_WALK_CONTINUE, 1231 D_WALK_QUIT, 1232 D_WALK_NORETRY, 1233 D_WALK_SKIP, 1234 }; 1235 1236 /** 1237 * d_walk - walk the dentry tree 1238 * @parent: start of walk 1239 * @data: data passed to @enter() and @finish() 1240 * @enter: callback when first entering the dentry 1241 * 1242 * The @enter() callbacks are called with d_lock held. 1243 */ 1244 static void d_walk(struct dentry *parent, void *data, 1245 enum d_walk_ret (*enter)(void *, struct dentry *)) 1246 { 1247 struct dentry *this_parent, *dentry; 1248 unsigned seq = 0; 1249 enum d_walk_ret ret; 1250 bool retry = true; 1251 1252 again: 1253 read_seqbegin_or_lock(&rename_lock, &seq); 1254 this_parent = parent; 1255 spin_lock(&this_parent->d_lock); 1256 1257 ret = enter(data, this_parent); 1258 switch (ret) { 1259 case D_WALK_CONTINUE: 1260 break; 1261 case D_WALK_QUIT: 1262 case D_WALK_SKIP: 1263 goto out_unlock; 1264 case D_WALK_NORETRY: 1265 retry = false; 1266 break; 1267 } 1268 repeat: 1269 dentry = d_first_child(this_parent); 1270 resume: 1271 hlist_for_each_entry_from(dentry, d_sib) { 1272 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1273 continue; 1274 1275 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1276 1277 ret = enter(data, dentry); 1278 switch (ret) { 1279 case D_WALK_CONTINUE: 1280 break; 1281 case D_WALK_QUIT: 1282 spin_unlock(&dentry->d_lock); 1283 goto out_unlock; 1284 case D_WALK_NORETRY: 1285 retry = false; 1286 break; 1287 case D_WALK_SKIP: 1288 spin_unlock(&dentry->d_lock); 1289 continue; 1290 } 1291 1292 if (!hlist_empty(&dentry->d_children)) { 1293 spin_unlock(&this_parent->d_lock); 1294 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1295 this_parent = dentry; 1296 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1297 goto repeat; 1298 } 1299 spin_unlock(&dentry->d_lock); 1300 } 1301 /* 1302 * All done at this level ... ascend and resume the search. 1303 */ 1304 rcu_read_lock(); 1305 ascend: 1306 if (this_parent != parent) { 1307 dentry = this_parent; 1308 this_parent = dentry->d_parent; 1309 1310 spin_unlock(&dentry->d_lock); 1311 spin_lock(&this_parent->d_lock); 1312 1313 /* might go back up the wrong parent if we have had a rename. */ 1314 if (need_seqretry(&rename_lock, seq)) 1315 goto rename_retry; 1316 /* go into the first sibling still alive */ 1317 hlist_for_each_entry_continue(dentry, d_sib) { 1318 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) { 1319 rcu_read_unlock(); 1320 goto resume; 1321 } 1322 } 1323 goto ascend; 1324 } 1325 if (need_seqretry(&rename_lock, seq)) 1326 goto rename_retry; 1327 rcu_read_unlock(); 1328 1329 out_unlock: 1330 spin_unlock(&this_parent->d_lock); 1331 done_seqretry(&rename_lock, seq); 1332 return; 1333 1334 rename_retry: 1335 spin_unlock(&this_parent->d_lock); 1336 rcu_read_unlock(); 1337 BUG_ON(seq & 1); 1338 if (!retry) 1339 return; 1340 seq = 1; 1341 goto again; 1342 } 1343 1344 struct check_mount { 1345 struct vfsmount *mnt; 1346 unsigned int mounted; 1347 }; 1348 1349 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1350 { 1351 struct check_mount *info = data; 1352 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1353 1354 if (likely(!d_mountpoint(dentry))) 1355 return D_WALK_CONTINUE; 1356 if (__path_is_mountpoint(&path)) { 1357 info->mounted = 1; 1358 return D_WALK_QUIT; 1359 } 1360 return D_WALK_CONTINUE; 1361 } 1362 1363 /** 1364 * path_has_submounts - check for mounts over a dentry in the 1365 * current namespace. 1366 * @parent: path to check. 1367 * 1368 * Return true if the parent or its subdirectories contain 1369 * a mount point in the current namespace. 1370 */ 1371 int path_has_submounts(const struct path *parent) 1372 { 1373 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1374 1375 read_seqlock_excl(&mount_lock); 1376 d_walk(parent->dentry, &data, path_check_mount); 1377 read_sequnlock_excl(&mount_lock); 1378 1379 return data.mounted; 1380 } 1381 EXPORT_SYMBOL(path_has_submounts); 1382 1383 /* 1384 * Called by mount code to set a mountpoint and check if the mountpoint is 1385 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1386 * subtree can become unreachable). 1387 * 1388 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1389 * this reason take rename_lock and d_lock on dentry and ancestors. 1390 */ 1391 int d_set_mounted(struct dentry *dentry) 1392 { 1393 struct dentry *p; 1394 int ret = -ENOENT; 1395 write_seqlock(&rename_lock); 1396 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1397 /* Need exclusion wrt. d_invalidate() */ 1398 spin_lock(&p->d_lock); 1399 if (unlikely(d_unhashed(p))) { 1400 spin_unlock(&p->d_lock); 1401 goto out; 1402 } 1403 spin_unlock(&p->d_lock); 1404 } 1405 spin_lock(&dentry->d_lock); 1406 if (!d_unlinked(dentry)) { 1407 ret = -EBUSY; 1408 if (!d_mountpoint(dentry)) { 1409 dentry->d_flags |= DCACHE_MOUNTED; 1410 ret = 0; 1411 } 1412 } 1413 spin_unlock(&dentry->d_lock); 1414 out: 1415 write_sequnlock(&rename_lock); 1416 return ret; 1417 } 1418 1419 /* 1420 * Search the dentry child list of the specified parent, 1421 * and move any unused dentries to the end of the unused 1422 * list for prune_dcache(). We descend to the next level 1423 * whenever the d_children list is non-empty and continue 1424 * searching. 1425 * 1426 * It returns zero iff there are no unused children, 1427 * otherwise it returns the number of children moved to 1428 * the end of the unused list. This may not be the total 1429 * number of unused children, because select_parent can 1430 * drop the lock and return early due to latency 1431 * constraints. 1432 */ 1433 1434 struct select_data { 1435 struct dentry *start; 1436 union { 1437 long found; 1438 struct dentry *victim; 1439 }; 1440 struct list_head dispose; 1441 }; 1442 1443 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1444 { 1445 struct select_data *data = _data; 1446 enum d_walk_ret ret = D_WALK_CONTINUE; 1447 1448 if (data->start == dentry) 1449 goto out; 1450 1451 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1452 data->found++; 1453 } else if (!dentry->d_lockref.count) { 1454 to_shrink_list(dentry, &data->dispose); 1455 data->found++; 1456 } else if (dentry->d_lockref.count < 0) { 1457 data->found++; 1458 } 1459 /* 1460 * We can return to the caller if we have found some (this 1461 * ensures forward progress). We'll be coming back to find 1462 * the rest. 1463 */ 1464 if (!list_empty(&data->dispose)) 1465 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1466 out: 1467 return ret; 1468 } 1469 1470 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1471 { 1472 struct select_data *data = _data; 1473 enum d_walk_ret ret = D_WALK_CONTINUE; 1474 1475 if (data->start == dentry) 1476 goto out; 1477 1478 if (!dentry->d_lockref.count) { 1479 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1480 rcu_read_lock(); 1481 data->victim = dentry; 1482 return D_WALK_QUIT; 1483 } 1484 to_shrink_list(dentry, &data->dispose); 1485 } 1486 /* 1487 * We can return to the caller if we have found some (this 1488 * ensures forward progress). We'll be coming back to find 1489 * the rest. 1490 */ 1491 if (!list_empty(&data->dispose)) 1492 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1493 out: 1494 return ret; 1495 } 1496 1497 /** 1498 * shrink_dcache_parent - prune dcache 1499 * @parent: parent of entries to prune 1500 * 1501 * Prune the dcache to remove unused children of the parent dentry. 1502 */ 1503 void shrink_dcache_parent(struct dentry *parent) 1504 { 1505 for (;;) { 1506 struct select_data data = {.start = parent}; 1507 1508 INIT_LIST_HEAD(&data.dispose); 1509 d_walk(parent, &data, select_collect); 1510 1511 if (!list_empty(&data.dispose)) { 1512 shrink_dentry_list(&data.dispose); 1513 continue; 1514 } 1515 1516 cond_resched(); 1517 if (!data.found) 1518 break; 1519 data.victim = NULL; 1520 d_walk(parent, &data, select_collect2); 1521 if (data.victim) { 1522 spin_lock(&data.victim->d_lock); 1523 if (!lock_for_kill(data.victim)) { 1524 spin_unlock(&data.victim->d_lock); 1525 rcu_read_unlock(); 1526 } else { 1527 shrink_kill(data.victim); 1528 } 1529 } 1530 if (!list_empty(&data.dispose)) 1531 shrink_dentry_list(&data.dispose); 1532 } 1533 } 1534 EXPORT_SYMBOL(shrink_dcache_parent); 1535 1536 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1537 { 1538 /* it has busy descendents; complain about those instead */ 1539 if (!hlist_empty(&dentry->d_children)) 1540 return D_WALK_CONTINUE; 1541 1542 /* root with refcount 1 is fine */ 1543 if (dentry == _data && dentry->d_lockref.count == 1) 1544 return D_WALK_CONTINUE; 1545 1546 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " 1547 " still in use (%d) [unmount of %s %s]\n", 1548 dentry, 1549 dentry->d_inode ? 1550 dentry->d_inode->i_ino : 0UL, 1551 dentry, 1552 dentry->d_lockref.count, 1553 dentry->d_sb->s_type->name, 1554 dentry->d_sb->s_id); 1555 return D_WALK_CONTINUE; 1556 } 1557 1558 static void do_one_tree(struct dentry *dentry) 1559 { 1560 shrink_dcache_parent(dentry); 1561 d_walk(dentry, dentry, umount_check); 1562 d_drop(dentry); 1563 dput(dentry); 1564 } 1565 1566 /* 1567 * destroy the dentries attached to a superblock on unmounting 1568 */ 1569 void shrink_dcache_for_umount(struct super_block *sb) 1570 { 1571 struct dentry *dentry; 1572 1573 rwsem_assert_held_write(&sb->s_umount); 1574 1575 dentry = sb->s_root; 1576 sb->s_root = NULL; 1577 do_one_tree(dentry); 1578 1579 while (!hlist_bl_empty(&sb->s_roots)) { 1580 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1581 do_one_tree(dentry); 1582 } 1583 } 1584 1585 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1586 { 1587 struct dentry **victim = _data; 1588 if (d_mountpoint(dentry)) { 1589 *victim = dget_dlock(dentry); 1590 return D_WALK_QUIT; 1591 } 1592 return D_WALK_CONTINUE; 1593 } 1594 1595 /** 1596 * d_invalidate - detach submounts, prune dcache, and drop 1597 * @dentry: dentry to invalidate (aka detach, prune and drop) 1598 */ 1599 void d_invalidate(struct dentry *dentry) 1600 { 1601 bool had_submounts = false; 1602 spin_lock(&dentry->d_lock); 1603 if (d_unhashed(dentry)) { 1604 spin_unlock(&dentry->d_lock); 1605 return; 1606 } 1607 __d_drop(dentry); 1608 spin_unlock(&dentry->d_lock); 1609 1610 /* Negative dentries can be dropped without further checks */ 1611 if (!dentry->d_inode) 1612 return; 1613 1614 shrink_dcache_parent(dentry); 1615 for (;;) { 1616 struct dentry *victim = NULL; 1617 d_walk(dentry, &victim, find_submount); 1618 if (!victim) { 1619 if (had_submounts) 1620 shrink_dcache_parent(dentry); 1621 return; 1622 } 1623 had_submounts = true; 1624 detach_mounts(victim); 1625 dput(victim); 1626 } 1627 } 1628 EXPORT_SYMBOL(d_invalidate); 1629 1630 /** 1631 * __d_alloc - allocate a dcache entry 1632 * @sb: filesystem it will belong to 1633 * @name: qstr of the name 1634 * 1635 * Allocates a dentry. It returns %NULL if there is insufficient memory 1636 * available. On a success the dentry is returned. The name passed in is 1637 * copied and the copy passed in may be reused after this call. 1638 */ 1639 1640 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1641 { 1642 struct dentry *dentry; 1643 char *dname; 1644 int err; 1645 1646 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1647 GFP_KERNEL); 1648 if (!dentry) 1649 return NULL; 1650 1651 /* 1652 * We guarantee that the inline name is always NUL-terminated. 1653 * This way the memcpy() done by the name switching in rename 1654 * will still always have a NUL at the end, even if we might 1655 * be overwriting an internal NUL character 1656 */ 1657 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1658 if (unlikely(!name)) { 1659 name = &slash_name; 1660 dname = dentry->d_iname; 1661 } else if (name->len > DNAME_INLINE_LEN-1) { 1662 size_t size = offsetof(struct external_name, name[1]); 1663 struct external_name *p = kmalloc(size + name->len, 1664 GFP_KERNEL_ACCOUNT | 1665 __GFP_RECLAIMABLE); 1666 if (!p) { 1667 kmem_cache_free(dentry_cache, dentry); 1668 return NULL; 1669 } 1670 atomic_set(&p->u.count, 1); 1671 dname = p->name; 1672 } else { 1673 dname = dentry->d_iname; 1674 } 1675 1676 dentry->d_name.len = name->len; 1677 dentry->d_name.hash = name->hash; 1678 memcpy(dname, name->name, name->len); 1679 dname[name->len] = 0; 1680 1681 /* Make sure we always see the terminating NUL character */ 1682 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1683 1684 dentry->d_flags = 0; 1685 lockref_init(&dentry->d_lockref, 1); 1686 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1687 dentry->d_inode = NULL; 1688 dentry->d_parent = dentry; 1689 dentry->d_sb = sb; 1690 dentry->d_op = NULL; 1691 dentry->d_fsdata = NULL; 1692 INIT_HLIST_BL_NODE(&dentry->d_hash); 1693 INIT_LIST_HEAD(&dentry->d_lru); 1694 INIT_HLIST_HEAD(&dentry->d_children); 1695 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1696 INIT_HLIST_NODE(&dentry->d_sib); 1697 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1698 1699 if (dentry->d_op && dentry->d_op->d_init) { 1700 err = dentry->d_op->d_init(dentry); 1701 if (err) { 1702 if (dname_external(dentry)) 1703 kfree(external_name(dentry)); 1704 kmem_cache_free(dentry_cache, dentry); 1705 return NULL; 1706 } 1707 } 1708 1709 this_cpu_inc(nr_dentry); 1710 1711 return dentry; 1712 } 1713 1714 /** 1715 * d_alloc - allocate a dcache entry 1716 * @parent: parent of entry to allocate 1717 * @name: qstr of the name 1718 * 1719 * Allocates a dentry. It returns %NULL if there is insufficient memory 1720 * available. On a success the dentry is returned. The name passed in is 1721 * copied and the copy passed in may be reused after this call. 1722 */ 1723 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1724 { 1725 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1726 if (!dentry) 1727 return NULL; 1728 spin_lock(&parent->d_lock); 1729 /* 1730 * don't need child lock because it is not subject 1731 * to concurrency here 1732 */ 1733 dentry->d_parent = dget_dlock(parent); 1734 hlist_add_head(&dentry->d_sib, &parent->d_children); 1735 spin_unlock(&parent->d_lock); 1736 1737 return dentry; 1738 } 1739 EXPORT_SYMBOL(d_alloc); 1740 1741 struct dentry *d_alloc_anon(struct super_block *sb) 1742 { 1743 return __d_alloc(sb, NULL); 1744 } 1745 EXPORT_SYMBOL(d_alloc_anon); 1746 1747 struct dentry *d_alloc_cursor(struct dentry * parent) 1748 { 1749 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1750 if (dentry) { 1751 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1752 dentry->d_parent = dget(parent); 1753 } 1754 return dentry; 1755 } 1756 1757 /** 1758 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1759 * @sb: the superblock 1760 * @name: qstr of the name 1761 * 1762 * For a filesystem that just pins its dentries in memory and never 1763 * performs lookups at all, return an unhashed IS_ROOT dentry. 1764 * This is used for pipes, sockets et.al. - the stuff that should 1765 * never be anyone's children or parents. Unlike all other 1766 * dentries, these will not have RCU delay between dropping the 1767 * last reference and freeing them. 1768 * 1769 * The only user is alloc_file_pseudo() and that's what should 1770 * be considered a public interface. Don't use directly. 1771 */ 1772 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1773 { 1774 static const struct dentry_operations anon_ops = { 1775 .d_dname = simple_dname 1776 }; 1777 struct dentry *dentry = __d_alloc(sb, name); 1778 if (likely(dentry)) { 1779 dentry->d_flags |= DCACHE_NORCU; 1780 if (!sb->s_d_op) 1781 d_set_d_op(dentry, &anon_ops); 1782 } 1783 return dentry; 1784 } 1785 1786 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1787 { 1788 struct qstr q; 1789 1790 q.name = name; 1791 q.hash_len = hashlen_string(parent, name); 1792 return d_alloc(parent, &q); 1793 } 1794 EXPORT_SYMBOL(d_alloc_name); 1795 1796 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1797 { 1798 WARN_ON_ONCE(dentry->d_op); 1799 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1800 DCACHE_OP_COMPARE | 1801 DCACHE_OP_REVALIDATE | 1802 DCACHE_OP_WEAK_REVALIDATE | 1803 DCACHE_OP_DELETE | 1804 DCACHE_OP_REAL)); 1805 dentry->d_op = op; 1806 if (!op) 1807 return; 1808 if (op->d_hash) 1809 dentry->d_flags |= DCACHE_OP_HASH; 1810 if (op->d_compare) 1811 dentry->d_flags |= DCACHE_OP_COMPARE; 1812 if (op->d_revalidate) 1813 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1814 if (op->d_weak_revalidate) 1815 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1816 if (op->d_delete) 1817 dentry->d_flags |= DCACHE_OP_DELETE; 1818 if (op->d_prune) 1819 dentry->d_flags |= DCACHE_OP_PRUNE; 1820 if (op->d_real) 1821 dentry->d_flags |= DCACHE_OP_REAL; 1822 1823 } 1824 EXPORT_SYMBOL(d_set_d_op); 1825 1826 static unsigned d_flags_for_inode(struct inode *inode) 1827 { 1828 unsigned add_flags = DCACHE_REGULAR_TYPE; 1829 1830 if (!inode) 1831 return DCACHE_MISS_TYPE; 1832 1833 if (S_ISDIR(inode->i_mode)) { 1834 add_flags = DCACHE_DIRECTORY_TYPE; 1835 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1836 if (unlikely(!inode->i_op->lookup)) 1837 add_flags = DCACHE_AUTODIR_TYPE; 1838 else 1839 inode->i_opflags |= IOP_LOOKUP; 1840 } 1841 goto type_determined; 1842 } 1843 1844 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1845 if (unlikely(inode->i_op->get_link)) { 1846 add_flags = DCACHE_SYMLINK_TYPE; 1847 goto type_determined; 1848 } 1849 inode->i_opflags |= IOP_NOFOLLOW; 1850 } 1851 1852 if (unlikely(!S_ISREG(inode->i_mode))) 1853 add_flags = DCACHE_SPECIAL_TYPE; 1854 1855 type_determined: 1856 if (unlikely(IS_AUTOMOUNT(inode))) 1857 add_flags |= DCACHE_NEED_AUTOMOUNT; 1858 return add_flags; 1859 } 1860 1861 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1862 { 1863 unsigned add_flags = d_flags_for_inode(inode); 1864 WARN_ON(d_in_lookup(dentry)); 1865 1866 spin_lock(&dentry->d_lock); 1867 /* 1868 * The negative counter only tracks dentries on the LRU. Don't dec if 1869 * d_lru is on another list. 1870 */ 1871 if ((dentry->d_flags & 1872 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 1873 this_cpu_dec(nr_dentry_negative); 1874 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1875 raw_write_seqcount_begin(&dentry->d_seq); 1876 __d_set_inode_and_type(dentry, inode, add_flags); 1877 raw_write_seqcount_end(&dentry->d_seq); 1878 fsnotify_update_flags(dentry); 1879 spin_unlock(&dentry->d_lock); 1880 } 1881 1882 /** 1883 * d_instantiate - fill in inode information for a dentry 1884 * @entry: dentry to complete 1885 * @inode: inode to attach to this dentry 1886 * 1887 * Fill in inode information in the entry. 1888 * 1889 * This turns negative dentries into productive full members 1890 * of society. 1891 * 1892 * NOTE! This assumes that the inode count has been incremented 1893 * (or otherwise set) by the caller to indicate that it is now 1894 * in use by the dcache. 1895 */ 1896 1897 void d_instantiate(struct dentry *entry, struct inode * inode) 1898 { 1899 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1900 if (inode) { 1901 security_d_instantiate(entry, inode); 1902 spin_lock(&inode->i_lock); 1903 __d_instantiate(entry, inode); 1904 spin_unlock(&inode->i_lock); 1905 } 1906 } 1907 EXPORT_SYMBOL(d_instantiate); 1908 1909 /* 1910 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1911 * with lockdep-related part of unlock_new_inode() done before 1912 * anything else. Use that instead of open-coding d_instantiate()/ 1913 * unlock_new_inode() combinations. 1914 */ 1915 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1916 { 1917 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1918 BUG_ON(!inode); 1919 lockdep_annotate_inode_mutex_key(inode); 1920 security_d_instantiate(entry, inode); 1921 spin_lock(&inode->i_lock); 1922 __d_instantiate(entry, inode); 1923 WARN_ON(!(inode->i_state & I_NEW)); 1924 inode->i_state &= ~I_NEW & ~I_CREATING; 1925 /* 1926 * Pairs with the barrier in prepare_to_wait_event() to make sure 1927 * ___wait_var_event() either sees the bit cleared or 1928 * waitqueue_active() check in wake_up_var() sees the waiter. 1929 */ 1930 smp_mb(); 1931 inode_wake_up_bit(inode, __I_NEW); 1932 spin_unlock(&inode->i_lock); 1933 } 1934 EXPORT_SYMBOL(d_instantiate_new); 1935 1936 struct dentry *d_make_root(struct inode *root_inode) 1937 { 1938 struct dentry *res = NULL; 1939 1940 if (root_inode) { 1941 res = d_alloc_anon(root_inode->i_sb); 1942 if (res) 1943 d_instantiate(res, root_inode); 1944 else 1945 iput(root_inode); 1946 } 1947 return res; 1948 } 1949 EXPORT_SYMBOL(d_make_root); 1950 1951 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1952 { 1953 struct super_block *sb; 1954 struct dentry *new, *res; 1955 1956 if (!inode) 1957 return ERR_PTR(-ESTALE); 1958 if (IS_ERR(inode)) 1959 return ERR_CAST(inode); 1960 1961 sb = inode->i_sb; 1962 1963 res = d_find_any_alias(inode); /* existing alias? */ 1964 if (res) 1965 goto out; 1966 1967 new = d_alloc_anon(sb); 1968 if (!new) { 1969 res = ERR_PTR(-ENOMEM); 1970 goto out; 1971 } 1972 1973 security_d_instantiate(new, inode); 1974 spin_lock(&inode->i_lock); 1975 res = __d_find_any_alias(inode); /* recheck under lock */ 1976 if (likely(!res)) { /* still no alias, attach a disconnected dentry */ 1977 unsigned add_flags = d_flags_for_inode(inode); 1978 1979 if (disconnected) 1980 add_flags |= DCACHE_DISCONNECTED; 1981 1982 spin_lock(&new->d_lock); 1983 __d_set_inode_and_type(new, inode, add_flags); 1984 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry); 1985 if (!disconnected) { 1986 hlist_bl_lock(&sb->s_roots); 1987 hlist_bl_add_head(&new->d_hash, &sb->s_roots); 1988 hlist_bl_unlock(&sb->s_roots); 1989 } 1990 spin_unlock(&new->d_lock); 1991 spin_unlock(&inode->i_lock); 1992 inode = NULL; /* consumed by new->d_inode */ 1993 res = new; 1994 } else { 1995 spin_unlock(&inode->i_lock); 1996 dput(new); 1997 } 1998 1999 out: 2000 iput(inode); 2001 return res; 2002 } 2003 2004 /** 2005 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2006 * @inode: inode to allocate the dentry for 2007 * 2008 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2009 * similar open by handle operations. The returned dentry may be anonymous, 2010 * or may have a full name (if the inode was already in the cache). 2011 * 2012 * When called on a directory inode, we must ensure that the inode only ever 2013 * has one dentry. If a dentry is found, that is returned instead of 2014 * allocating a new one. 2015 * 2016 * On successful return, the reference to the inode has been transferred 2017 * to the dentry. In case of an error the reference on the inode is released. 2018 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2019 * be passed in and the error will be propagated to the return value, 2020 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2021 */ 2022 struct dentry *d_obtain_alias(struct inode *inode) 2023 { 2024 return __d_obtain_alias(inode, true); 2025 } 2026 EXPORT_SYMBOL(d_obtain_alias); 2027 2028 /** 2029 * d_obtain_root - find or allocate a dentry for a given inode 2030 * @inode: inode to allocate the dentry for 2031 * 2032 * Obtain an IS_ROOT dentry for the root of a filesystem. 2033 * 2034 * We must ensure that directory inodes only ever have one dentry. If a 2035 * dentry is found, that is returned instead of allocating a new one. 2036 * 2037 * On successful return, the reference to the inode has been transferred 2038 * to the dentry. In case of an error the reference on the inode is 2039 * released. A %NULL or IS_ERR inode may be passed in and will be the 2040 * error will be propagate to the return value, with a %NULL @inode 2041 * replaced by ERR_PTR(-ESTALE). 2042 */ 2043 struct dentry *d_obtain_root(struct inode *inode) 2044 { 2045 return __d_obtain_alias(inode, false); 2046 } 2047 EXPORT_SYMBOL(d_obtain_root); 2048 2049 /** 2050 * d_add_ci - lookup or allocate new dentry with case-exact name 2051 * @dentry: the negative dentry that was passed to the parent's lookup func 2052 * @inode: the inode case-insensitive lookup has found 2053 * @name: the case-exact name to be associated with the returned dentry 2054 * 2055 * This is to avoid filling the dcache with case-insensitive names to the 2056 * same inode, only the actual correct case is stored in the dcache for 2057 * case-insensitive filesystems. 2058 * 2059 * For a case-insensitive lookup match and if the case-exact dentry 2060 * already exists in the dcache, use it and return it. 2061 * 2062 * If no entry exists with the exact case name, allocate new dentry with 2063 * the exact case, and return the spliced entry. 2064 */ 2065 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2066 struct qstr *name) 2067 { 2068 struct dentry *found, *res; 2069 2070 /* 2071 * First check if a dentry matching the name already exists, 2072 * if not go ahead and create it now. 2073 */ 2074 found = d_hash_and_lookup(dentry->d_parent, name); 2075 if (found) { 2076 iput(inode); 2077 return found; 2078 } 2079 if (d_in_lookup(dentry)) { 2080 found = d_alloc_parallel(dentry->d_parent, name, 2081 dentry->d_wait); 2082 if (IS_ERR(found) || !d_in_lookup(found)) { 2083 iput(inode); 2084 return found; 2085 } 2086 } else { 2087 found = d_alloc(dentry->d_parent, name); 2088 if (!found) { 2089 iput(inode); 2090 return ERR_PTR(-ENOMEM); 2091 } 2092 } 2093 res = d_splice_alias(inode, found); 2094 if (res) { 2095 d_lookup_done(found); 2096 dput(found); 2097 return res; 2098 } 2099 return found; 2100 } 2101 EXPORT_SYMBOL(d_add_ci); 2102 2103 /** 2104 * d_same_name - compare dentry name with case-exact name 2105 * @dentry: the negative dentry that was passed to the parent's lookup func 2106 * @parent: parent dentry 2107 * @name: the case-exact name to be associated with the returned dentry 2108 * 2109 * Return: true if names are same, or false 2110 */ 2111 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2112 const struct qstr *name) 2113 { 2114 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2115 if (dentry->d_name.len != name->len) 2116 return false; 2117 return dentry_cmp(dentry, name->name, name->len) == 0; 2118 } 2119 return parent->d_op->d_compare(dentry, 2120 dentry->d_name.len, dentry->d_name.name, 2121 name) == 0; 2122 } 2123 EXPORT_SYMBOL_GPL(d_same_name); 2124 2125 /* 2126 * This is __d_lookup_rcu() when the parent dentry has 2127 * DCACHE_OP_COMPARE, which makes things much nastier. 2128 */ 2129 static noinline struct dentry *__d_lookup_rcu_op_compare( 2130 const struct dentry *parent, 2131 const struct qstr *name, 2132 unsigned *seqp) 2133 { 2134 u64 hashlen = name->hash_len; 2135 struct hlist_bl_head *b = d_hash(hashlen); 2136 struct hlist_bl_node *node; 2137 struct dentry *dentry; 2138 2139 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2140 int tlen; 2141 const char *tname; 2142 unsigned seq; 2143 2144 seqretry: 2145 seq = raw_seqcount_begin(&dentry->d_seq); 2146 if (dentry->d_parent != parent) 2147 continue; 2148 if (d_unhashed(dentry)) 2149 continue; 2150 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2151 continue; 2152 tlen = dentry->d_name.len; 2153 tname = dentry->d_name.name; 2154 /* we want a consistent (name,len) pair */ 2155 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2156 cpu_relax(); 2157 goto seqretry; 2158 } 2159 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2160 continue; 2161 *seqp = seq; 2162 return dentry; 2163 } 2164 return NULL; 2165 } 2166 2167 /** 2168 * __d_lookup_rcu - search for a dentry (racy, store-free) 2169 * @parent: parent dentry 2170 * @name: qstr of name we wish to find 2171 * @seqp: returns d_seq value at the point where the dentry was found 2172 * Returns: dentry, or NULL 2173 * 2174 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2175 * resolution (store-free path walking) design described in 2176 * Documentation/filesystems/path-lookup.txt. 2177 * 2178 * This is not to be used outside core vfs. 2179 * 2180 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2181 * held, and rcu_read_lock held. The returned dentry must not be stored into 2182 * without taking d_lock and checking d_seq sequence count against @seq 2183 * returned here. 2184 * 2185 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2186 * the returned dentry, so long as its parent's seqlock is checked after the 2187 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2188 * is formed, giving integrity down the path walk. 2189 * 2190 * NOTE! The caller *has* to check the resulting dentry against the sequence 2191 * number we've returned before using any of the resulting dentry state! 2192 */ 2193 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2194 const struct qstr *name, 2195 unsigned *seqp) 2196 { 2197 u64 hashlen = name->hash_len; 2198 const unsigned char *str = name->name; 2199 struct hlist_bl_head *b = d_hash(hashlen); 2200 struct hlist_bl_node *node; 2201 struct dentry *dentry; 2202 2203 /* 2204 * Note: There is significant duplication with __d_lookup_rcu which is 2205 * required to prevent single threaded performance regressions 2206 * especially on architectures where smp_rmb (in seqcounts) are costly. 2207 * Keep the two functions in sync. 2208 */ 2209 2210 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2211 return __d_lookup_rcu_op_compare(parent, name, seqp); 2212 2213 /* 2214 * The hash list is protected using RCU. 2215 * 2216 * Carefully use d_seq when comparing a candidate dentry, to avoid 2217 * races with d_move(). 2218 * 2219 * It is possible that concurrent renames can mess up our list 2220 * walk here and result in missing our dentry, resulting in the 2221 * false-negative result. d_lookup() protects against concurrent 2222 * renames using rename_lock seqlock. 2223 * 2224 * See Documentation/filesystems/path-lookup.txt for more details. 2225 */ 2226 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2227 unsigned seq; 2228 2229 /* 2230 * The dentry sequence count protects us from concurrent 2231 * renames, and thus protects parent and name fields. 2232 * 2233 * The caller must perform a seqcount check in order 2234 * to do anything useful with the returned dentry. 2235 * 2236 * NOTE! We do a "raw" seqcount_begin here. That means that 2237 * we don't wait for the sequence count to stabilize if it 2238 * is in the middle of a sequence change. If we do the slow 2239 * dentry compare, we will do seqretries until it is stable, 2240 * and if we end up with a successful lookup, we actually 2241 * want to exit RCU lookup anyway. 2242 * 2243 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2244 * we are still guaranteed NUL-termination of ->d_name.name. 2245 */ 2246 seq = raw_seqcount_begin(&dentry->d_seq); 2247 if (dentry->d_parent != parent) 2248 continue; 2249 if (d_unhashed(dentry)) 2250 continue; 2251 if (dentry->d_name.hash_len != hashlen) 2252 continue; 2253 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2254 continue; 2255 *seqp = seq; 2256 return dentry; 2257 } 2258 return NULL; 2259 } 2260 2261 /** 2262 * d_lookup - search for a dentry 2263 * @parent: parent dentry 2264 * @name: qstr of name we wish to find 2265 * Returns: dentry, or NULL 2266 * 2267 * d_lookup searches the children of the parent dentry for the name in 2268 * question. If the dentry is found its reference count is incremented and the 2269 * dentry is returned. The caller must use dput to free the entry when it has 2270 * finished using it. %NULL is returned if the dentry does not exist. 2271 */ 2272 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2273 { 2274 struct dentry *dentry; 2275 unsigned seq; 2276 2277 do { 2278 seq = read_seqbegin(&rename_lock); 2279 dentry = __d_lookup(parent, name); 2280 if (dentry) 2281 break; 2282 } while (read_seqretry(&rename_lock, seq)); 2283 return dentry; 2284 } 2285 EXPORT_SYMBOL(d_lookup); 2286 2287 /** 2288 * __d_lookup - search for a dentry (racy) 2289 * @parent: parent dentry 2290 * @name: qstr of name we wish to find 2291 * Returns: dentry, or NULL 2292 * 2293 * __d_lookup is like d_lookup, however it may (rarely) return a 2294 * false-negative result due to unrelated rename activity. 2295 * 2296 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2297 * however it must be used carefully, eg. with a following d_lookup in 2298 * the case of failure. 2299 * 2300 * __d_lookup callers must be commented. 2301 */ 2302 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2303 { 2304 unsigned int hash = name->hash; 2305 struct hlist_bl_head *b = d_hash(hash); 2306 struct hlist_bl_node *node; 2307 struct dentry *found = NULL; 2308 struct dentry *dentry; 2309 2310 /* 2311 * Note: There is significant duplication with __d_lookup_rcu which is 2312 * required to prevent single threaded performance regressions 2313 * especially on architectures where smp_rmb (in seqcounts) are costly. 2314 * Keep the two functions in sync. 2315 */ 2316 2317 /* 2318 * The hash list is protected using RCU. 2319 * 2320 * Take d_lock when comparing a candidate dentry, to avoid races 2321 * with d_move(). 2322 * 2323 * It is possible that concurrent renames can mess up our list 2324 * walk here and result in missing our dentry, resulting in the 2325 * false-negative result. d_lookup() protects against concurrent 2326 * renames using rename_lock seqlock. 2327 * 2328 * See Documentation/filesystems/path-lookup.txt for more details. 2329 */ 2330 rcu_read_lock(); 2331 2332 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2333 2334 if (dentry->d_name.hash != hash) 2335 continue; 2336 2337 spin_lock(&dentry->d_lock); 2338 if (dentry->d_parent != parent) 2339 goto next; 2340 if (d_unhashed(dentry)) 2341 goto next; 2342 2343 if (!d_same_name(dentry, parent, name)) 2344 goto next; 2345 2346 dentry->d_lockref.count++; 2347 found = dentry; 2348 spin_unlock(&dentry->d_lock); 2349 break; 2350 next: 2351 spin_unlock(&dentry->d_lock); 2352 } 2353 rcu_read_unlock(); 2354 2355 return found; 2356 } 2357 2358 /** 2359 * d_hash_and_lookup - hash the qstr then search for a dentry 2360 * @dir: Directory to search in 2361 * @name: qstr of name we wish to find 2362 * 2363 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2364 */ 2365 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2366 { 2367 /* 2368 * Check for a fs-specific hash function. Note that we must 2369 * calculate the standard hash first, as the d_op->d_hash() 2370 * routine may choose to leave the hash value unchanged. 2371 */ 2372 name->hash = full_name_hash(dir, name->name, name->len); 2373 if (dir->d_flags & DCACHE_OP_HASH) { 2374 int err = dir->d_op->d_hash(dir, name); 2375 if (unlikely(err < 0)) 2376 return ERR_PTR(err); 2377 } 2378 return d_lookup(dir, name); 2379 } 2380 EXPORT_SYMBOL(d_hash_and_lookup); 2381 2382 /* 2383 * When a file is deleted, we have two options: 2384 * - turn this dentry into a negative dentry 2385 * - unhash this dentry and free it. 2386 * 2387 * Usually, we want to just turn this into 2388 * a negative dentry, but if anybody else is 2389 * currently using the dentry or the inode 2390 * we can't do that and we fall back on removing 2391 * it from the hash queues and waiting for 2392 * it to be deleted later when it has no users 2393 */ 2394 2395 /** 2396 * d_delete - delete a dentry 2397 * @dentry: The dentry to delete 2398 * 2399 * Turn the dentry into a negative dentry if possible, otherwise 2400 * remove it from the hash queues so it can be deleted later 2401 */ 2402 2403 void d_delete(struct dentry * dentry) 2404 { 2405 struct inode *inode = dentry->d_inode; 2406 2407 spin_lock(&inode->i_lock); 2408 spin_lock(&dentry->d_lock); 2409 /* 2410 * Are we the only user? 2411 */ 2412 if (dentry->d_lockref.count == 1) { 2413 if (dentry_negative_policy) 2414 __d_drop(dentry); 2415 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2416 dentry_unlink_inode(dentry); 2417 } else { 2418 __d_drop(dentry); 2419 spin_unlock(&dentry->d_lock); 2420 spin_unlock(&inode->i_lock); 2421 } 2422 } 2423 EXPORT_SYMBOL(d_delete); 2424 2425 static void __d_rehash(struct dentry *entry) 2426 { 2427 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2428 2429 hlist_bl_lock(b); 2430 hlist_bl_add_head_rcu(&entry->d_hash, b); 2431 hlist_bl_unlock(b); 2432 } 2433 2434 /** 2435 * d_rehash - add an entry back to the hash 2436 * @entry: dentry to add to the hash 2437 * 2438 * Adds a dentry to the hash according to its name. 2439 */ 2440 2441 void d_rehash(struct dentry * entry) 2442 { 2443 spin_lock(&entry->d_lock); 2444 __d_rehash(entry); 2445 spin_unlock(&entry->d_lock); 2446 } 2447 EXPORT_SYMBOL(d_rehash); 2448 2449 static inline unsigned start_dir_add(struct inode *dir) 2450 { 2451 preempt_disable_nested(); 2452 for (;;) { 2453 unsigned n = dir->i_dir_seq; 2454 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2455 return n; 2456 cpu_relax(); 2457 } 2458 } 2459 2460 static inline void end_dir_add(struct inode *dir, unsigned int n, 2461 wait_queue_head_t *d_wait) 2462 { 2463 smp_store_release(&dir->i_dir_seq, n + 2); 2464 preempt_enable_nested(); 2465 wake_up_all(d_wait); 2466 } 2467 2468 static void d_wait_lookup(struct dentry *dentry) 2469 { 2470 if (d_in_lookup(dentry)) { 2471 DECLARE_WAITQUEUE(wait, current); 2472 add_wait_queue(dentry->d_wait, &wait); 2473 do { 2474 set_current_state(TASK_UNINTERRUPTIBLE); 2475 spin_unlock(&dentry->d_lock); 2476 schedule(); 2477 spin_lock(&dentry->d_lock); 2478 } while (d_in_lookup(dentry)); 2479 } 2480 } 2481 2482 struct dentry *d_alloc_parallel(struct dentry *parent, 2483 const struct qstr *name, 2484 wait_queue_head_t *wq) 2485 { 2486 unsigned int hash = name->hash; 2487 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2488 struct hlist_bl_node *node; 2489 struct dentry *new = d_alloc(parent, name); 2490 struct dentry *dentry; 2491 unsigned seq, r_seq, d_seq; 2492 2493 if (unlikely(!new)) 2494 return ERR_PTR(-ENOMEM); 2495 2496 retry: 2497 rcu_read_lock(); 2498 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2499 r_seq = read_seqbegin(&rename_lock); 2500 dentry = __d_lookup_rcu(parent, name, &d_seq); 2501 if (unlikely(dentry)) { 2502 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2503 rcu_read_unlock(); 2504 goto retry; 2505 } 2506 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2507 rcu_read_unlock(); 2508 dput(dentry); 2509 goto retry; 2510 } 2511 rcu_read_unlock(); 2512 dput(new); 2513 return dentry; 2514 } 2515 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2516 rcu_read_unlock(); 2517 goto retry; 2518 } 2519 2520 if (unlikely(seq & 1)) { 2521 rcu_read_unlock(); 2522 goto retry; 2523 } 2524 2525 hlist_bl_lock(b); 2526 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2527 hlist_bl_unlock(b); 2528 rcu_read_unlock(); 2529 goto retry; 2530 } 2531 /* 2532 * No changes for the parent since the beginning of d_lookup(). 2533 * Since all removals from the chain happen with hlist_bl_lock(), 2534 * any potential in-lookup matches are going to stay here until 2535 * we unlock the chain. All fields are stable in everything 2536 * we encounter. 2537 */ 2538 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2539 if (dentry->d_name.hash != hash) 2540 continue; 2541 if (dentry->d_parent != parent) 2542 continue; 2543 if (!d_same_name(dentry, parent, name)) 2544 continue; 2545 hlist_bl_unlock(b); 2546 /* now we can try to grab a reference */ 2547 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2548 rcu_read_unlock(); 2549 goto retry; 2550 } 2551 2552 rcu_read_unlock(); 2553 /* 2554 * somebody is likely to be still doing lookup for it; 2555 * wait for them to finish 2556 */ 2557 spin_lock(&dentry->d_lock); 2558 d_wait_lookup(dentry); 2559 /* 2560 * it's not in-lookup anymore; in principle we should repeat 2561 * everything from dcache lookup, but it's likely to be what 2562 * d_lookup() would've found anyway. If it is, just return it; 2563 * otherwise we really have to repeat the whole thing. 2564 */ 2565 if (unlikely(dentry->d_name.hash != hash)) 2566 goto mismatch; 2567 if (unlikely(dentry->d_parent != parent)) 2568 goto mismatch; 2569 if (unlikely(d_unhashed(dentry))) 2570 goto mismatch; 2571 if (unlikely(!d_same_name(dentry, parent, name))) 2572 goto mismatch; 2573 /* OK, it *is* a hashed match; return it */ 2574 spin_unlock(&dentry->d_lock); 2575 dput(new); 2576 return dentry; 2577 } 2578 rcu_read_unlock(); 2579 /* we can't take ->d_lock here; it's OK, though. */ 2580 new->d_flags |= DCACHE_PAR_LOOKUP; 2581 new->d_wait = wq; 2582 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b); 2583 hlist_bl_unlock(b); 2584 return new; 2585 mismatch: 2586 spin_unlock(&dentry->d_lock); 2587 dput(dentry); 2588 goto retry; 2589 } 2590 EXPORT_SYMBOL(d_alloc_parallel); 2591 2592 /* 2593 * - Unhash the dentry 2594 * - Retrieve and clear the waitqueue head in dentry 2595 * - Return the waitqueue head 2596 */ 2597 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2598 { 2599 wait_queue_head_t *d_wait; 2600 struct hlist_bl_head *b; 2601 2602 lockdep_assert_held(&dentry->d_lock); 2603 2604 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2605 hlist_bl_lock(b); 2606 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2607 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2608 d_wait = dentry->d_wait; 2609 dentry->d_wait = NULL; 2610 hlist_bl_unlock(b); 2611 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2612 INIT_LIST_HEAD(&dentry->d_lru); 2613 return d_wait; 2614 } 2615 2616 void __d_lookup_unhash_wake(struct dentry *dentry) 2617 { 2618 spin_lock(&dentry->d_lock); 2619 wake_up_all(__d_lookup_unhash(dentry)); 2620 spin_unlock(&dentry->d_lock); 2621 } 2622 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2623 2624 /* inode->i_lock held if inode is non-NULL */ 2625 2626 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2627 { 2628 wait_queue_head_t *d_wait; 2629 struct inode *dir = NULL; 2630 unsigned n; 2631 spin_lock(&dentry->d_lock); 2632 if (unlikely(d_in_lookup(dentry))) { 2633 dir = dentry->d_parent->d_inode; 2634 n = start_dir_add(dir); 2635 d_wait = __d_lookup_unhash(dentry); 2636 } 2637 if (inode) { 2638 unsigned add_flags = d_flags_for_inode(inode); 2639 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2640 raw_write_seqcount_begin(&dentry->d_seq); 2641 __d_set_inode_and_type(dentry, inode, add_flags); 2642 raw_write_seqcount_end(&dentry->d_seq); 2643 fsnotify_update_flags(dentry); 2644 } 2645 __d_rehash(dentry); 2646 if (dir) 2647 end_dir_add(dir, n, d_wait); 2648 spin_unlock(&dentry->d_lock); 2649 if (inode) 2650 spin_unlock(&inode->i_lock); 2651 } 2652 2653 /** 2654 * d_add - add dentry to hash queues 2655 * @entry: dentry to add 2656 * @inode: The inode to attach to this dentry 2657 * 2658 * This adds the entry to the hash queues and initializes @inode. 2659 * The entry was actually filled in earlier during d_alloc(). 2660 */ 2661 2662 void d_add(struct dentry *entry, struct inode *inode) 2663 { 2664 if (inode) { 2665 security_d_instantiate(entry, inode); 2666 spin_lock(&inode->i_lock); 2667 } 2668 __d_add(entry, inode); 2669 } 2670 EXPORT_SYMBOL(d_add); 2671 2672 /** 2673 * d_exact_alias - find and hash an exact unhashed alias 2674 * @entry: dentry to add 2675 * @inode: The inode to go with this dentry 2676 * 2677 * If an unhashed dentry with the same name/parent and desired 2678 * inode already exists, hash and return it. Otherwise, return 2679 * NULL. 2680 * 2681 * Parent directory should be locked. 2682 */ 2683 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2684 { 2685 struct dentry *alias; 2686 unsigned int hash = entry->d_name.hash; 2687 2688 spin_lock(&inode->i_lock); 2689 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2690 /* 2691 * Don't need alias->d_lock here, because aliases with 2692 * d_parent == entry->d_parent are not subject to name or 2693 * parent changes, because the parent inode i_mutex is held. 2694 */ 2695 if (alias->d_name.hash != hash) 2696 continue; 2697 if (alias->d_parent != entry->d_parent) 2698 continue; 2699 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2700 continue; 2701 spin_lock(&alias->d_lock); 2702 if (!d_unhashed(alias)) { 2703 spin_unlock(&alias->d_lock); 2704 alias = NULL; 2705 } else { 2706 dget_dlock(alias); 2707 __d_rehash(alias); 2708 spin_unlock(&alias->d_lock); 2709 } 2710 spin_unlock(&inode->i_lock); 2711 return alias; 2712 } 2713 spin_unlock(&inode->i_lock); 2714 return NULL; 2715 } 2716 EXPORT_SYMBOL(d_exact_alias); 2717 2718 static void swap_names(struct dentry *dentry, struct dentry *target) 2719 { 2720 if (unlikely(dname_external(target))) { 2721 if (unlikely(dname_external(dentry))) { 2722 /* 2723 * Both external: swap the pointers 2724 */ 2725 swap(target->d_name.name, dentry->d_name.name); 2726 } else { 2727 /* 2728 * dentry:internal, target:external. Steal target's 2729 * storage and make target internal. 2730 */ 2731 memcpy(target->d_iname, dentry->d_name.name, 2732 dentry->d_name.len + 1); 2733 dentry->d_name.name = target->d_name.name; 2734 target->d_name.name = target->d_iname; 2735 } 2736 } else { 2737 if (unlikely(dname_external(dentry))) { 2738 /* 2739 * dentry:external, target:internal. Give dentry's 2740 * storage to target and make dentry internal 2741 */ 2742 memcpy(dentry->d_iname, target->d_name.name, 2743 target->d_name.len + 1); 2744 target->d_name.name = dentry->d_name.name; 2745 dentry->d_name.name = dentry->d_iname; 2746 } else { 2747 /* 2748 * Both are internal. 2749 */ 2750 unsigned int i; 2751 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2752 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2753 swap(((long *) &dentry->d_iname)[i], 2754 ((long *) &target->d_iname)[i]); 2755 } 2756 } 2757 } 2758 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2759 } 2760 2761 static void copy_name(struct dentry *dentry, struct dentry *target) 2762 { 2763 struct external_name *old_name = NULL; 2764 if (unlikely(dname_external(dentry))) 2765 old_name = external_name(dentry); 2766 if (unlikely(dname_external(target))) { 2767 atomic_inc(&external_name(target)->u.count); 2768 dentry->d_name = target->d_name; 2769 } else { 2770 memcpy(dentry->d_iname, target->d_name.name, 2771 target->d_name.len + 1); 2772 dentry->d_name.name = dentry->d_iname; 2773 dentry->d_name.hash_len = target->d_name.hash_len; 2774 } 2775 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2776 kfree_rcu(old_name, u.head); 2777 } 2778 2779 /* 2780 * __d_move - move a dentry 2781 * @dentry: entry to move 2782 * @target: new dentry 2783 * @exchange: exchange the two dentries 2784 * 2785 * Update the dcache to reflect the move of a file name. Negative 2786 * dcache entries should not be moved in this way. Caller must hold 2787 * rename_lock, the i_mutex of the source and target directories, 2788 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2789 */ 2790 static void __d_move(struct dentry *dentry, struct dentry *target, 2791 bool exchange) 2792 { 2793 struct dentry *old_parent, *p; 2794 wait_queue_head_t *d_wait; 2795 struct inode *dir = NULL; 2796 unsigned n; 2797 2798 WARN_ON(!dentry->d_inode); 2799 if (WARN_ON(dentry == target)) 2800 return; 2801 2802 BUG_ON(d_ancestor(target, dentry)); 2803 old_parent = dentry->d_parent; 2804 p = d_ancestor(old_parent, target); 2805 if (IS_ROOT(dentry)) { 2806 BUG_ON(p); 2807 spin_lock(&target->d_parent->d_lock); 2808 } else if (!p) { 2809 /* target is not a descendent of dentry->d_parent */ 2810 spin_lock(&target->d_parent->d_lock); 2811 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2812 } else { 2813 BUG_ON(p == dentry); 2814 spin_lock(&old_parent->d_lock); 2815 if (p != target) 2816 spin_lock_nested(&target->d_parent->d_lock, 2817 DENTRY_D_LOCK_NESTED); 2818 } 2819 spin_lock_nested(&dentry->d_lock, 2); 2820 spin_lock_nested(&target->d_lock, 3); 2821 2822 if (unlikely(d_in_lookup(target))) { 2823 dir = target->d_parent->d_inode; 2824 n = start_dir_add(dir); 2825 d_wait = __d_lookup_unhash(target); 2826 } 2827 2828 write_seqcount_begin(&dentry->d_seq); 2829 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2830 2831 /* unhash both */ 2832 if (!d_unhashed(dentry)) 2833 ___d_drop(dentry); 2834 if (!d_unhashed(target)) 2835 ___d_drop(target); 2836 2837 /* ... and switch them in the tree */ 2838 dentry->d_parent = target->d_parent; 2839 if (!exchange) { 2840 copy_name(dentry, target); 2841 target->d_hash.pprev = NULL; 2842 dentry->d_parent->d_lockref.count++; 2843 if (dentry != old_parent) /* wasn't IS_ROOT */ 2844 WARN_ON(!--old_parent->d_lockref.count); 2845 } else { 2846 target->d_parent = old_parent; 2847 swap_names(dentry, target); 2848 if (!hlist_unhashed(&target->d_sib)) 2849 __hlist_del(&target->d_sib); 2850 hlist_add_head(&target->d_sib, &target->d_parent->d_children); 2851 __d_rehash(target); 2852 fsnotify_update_flags(target); 2853 } 2854 if (!hlist_unhashed(&dentry->d_sib)) 2855 __hlist_del(&dentry->d_sib); 2856 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children); 2857 __d_rehash(dentry); 2858 fsnotify_update_flags(dentry); 2859 fscrypt_handle_d_move(dentry); 2860 2861 write_seqcount_end(&target->d_seq); 2862 write_seqcount_end(&dentry->d_seq); 2863 2864 if (dir) 2865 end_dir_add(dir, n, d_wait); 2866 2867 if (dentry->d_parent != old_parent) 2868 spin_unlock(&dentry->d_parent->d_lock); 2869 if (dentry != old_parent) 2870 spin_unlock(&old_parent->d_lock); 2871 spin_unlock(&target->d_lock); 2872 spin_unlock(&dentry->d_lock); 2873 } 2874 2875 /* 2876 * d_move - move a dentry 2877 * @dentry: entry to move 2878 * @target: new dentry 2879 * 2880 * Update the dcache to reflect the move of a file name. Negative 2881 * dcache entries should not be moved in this way. See the locking 2882 * requirements for __d_move. 2883 */ 2884 void d_move(struct dentry *dentry, struct dentry *target) 2885 { 2886 write_seqlock(&rename_lock); 2887 __d_move(dentry, target, false); 2888 write_sequnlock(&rename_lock); 2889 } 2890 EXPORT_SYMBOL(d_move); 2891 2892 /* 2893 * d_exchange - exchange two dentries 2894 * @dentry1: first dentry 2895 * @dentry2: second dentry 2896 */ 2897 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2898 { 2899 write_seqlock(&rename_lock); 2900 2901 WARN_ON(!dentry1->d_inode); 2902 WARN_ON(!dentry2->d_inode); 2903 WARN_ON(IS_ROOT(dentry1)); 2904 WARN_ON(IS_ROOT(dentry2)); 2905 2906 __d_move(dentry1, dentry2, true); 2907 2908 write_sequnlock(&rename_lock); 2909 } 2910 2911 /** 2912 * d_ancestor - search for an ancestor 2913 * @p1: ancestor dentry 2914 * @p2: child dentry 2915 * 2916 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2917 * an ancestor of p2, else NULL. 2918 */ 2919 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2920 { 2921 struct dentry *p; 2922 2923 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2924 if (p->d_parent == p1) 2925 return p; 2926 } 2927 return NULL; 2928 } 2929 2930 /* 2931 * This helper attempts to cope with remotely renamed directories 2932 * 2933 * It assumes that the caller is already holding 2934 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2935 * 2936 * Note: If ever the locking in lock_rename() changes, then please 2937 * remember to update this too... 2938 */ 2939 static int __d_unalias(struct dentry *dentry, struct dentry *alias) 2940 { 2941 struct mutex *m1 = NULL; 2942 struct rw_semaphore *m2 = NULL; 2943 int ret = -ESTALE; 2944 2945 /* If alias and dentry share a parent, then no extra locks required */ 2946 if (alias->d_parent == dentry->d_parent) 2947 goto out_unalias; 2948 2949 /* See lock_rename() */ 2950 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2951 goto out_err; 2952 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2953 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2954 goto out_err; 2955 m2 = &alias->d_parent->d_inode->i_rwsem; 2956 out_unalias: 2957 __d_move(alias, dentry, false); 2958 ret = 0; 2959 out_err: 2960 if (m2) 2961 up_read(m2); 2962 if (m1) 2963 mutex_unlock(m1); 2964 return ret; 2965 } 2966 2967 /** 2968 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2969 * @inode: the inode which may have a disconnected dentry 2970 * @dentry: a negative dentry which we want to point to the inode. 2971 * 2972 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2973 * place of the given dentry and return it, else simply d_add the inode 2974 * to the dentry and return NULL. 2975 * 2976 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2977 * we should error out: directories can't have multiple aliases. 2978 * 2979 * This is needed in the lookup routine of any filesystem that is exportable 2980 * (via knfsd) so that we can build dcache paths to directories effectively. 2981 * 2982 * If a dentry was found and moved, then it is returned. Otherwise NULL 2983 * is returned. This matches the expected return value of ->lookup. 2984 * 2985 * Cluster filesystems may call this function with a negative, hashed dentry. 2986 * In that case, we know that the inode will be a regular file, and also this 2987 * will only occur during atomic_open. So we need to check for the dentry 2988 * being already hashed only in the final case. 2989 */ 2990 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2991 { 2992 if (IS_ERR(inode)) 2993 return ERR_CAST(inode); 2994 2995 BUG_ON(!d_unhashed(dentry)); 2996 2997 if (!inode) 2998 goto out; 2999 3000 security_d_instantiate(dentry, inode); 3001 spin_lock(&inode->i_lock); 3002 if (S_ISDIR(inode->i_mode)) { 3003 struct dentry *new = __d_find_any_alias(inode); 3004 if (unlikely(new)) { 3005 /* The reference to new ensures it remains an alias */ 3006 spin_unlock(&inode->i_lock); 3007 write_seqlock(&rename_lock); 3008 if (unlikely(d_ancestor(new, dentry))) { 3009 write_sequnlock(&rename_lock); 3010 dput(new); 3011 new = ERR_PTR(-ELOOP); 3012 pr_warn_ratelimited( 3013 "VFS: Lookup of '%s' in %s %s" 3014 " would have caused loop\n", 3015 dentry->d_name.name, 3016 inode->i_sb->s_type->name, 3017 inode->i_sb->s_id); 3018 } else if (!IS_ROOT(new)) { 3019 struct dentry *old_parent = dget(new->d_parent); 3020 int err = __d_unalias(dentry, new); 3021 write_sequnlock(&rename_lock); 3022 if (err) { 3023 dput(new); 3024 new = ERR_PTR(err); 3025 } 3026 dput(old_parent); 3027 } else { 3028 __d_move(new, dentry, false); 3029 write_sequnlock(&rename_lock); 3030 } 3031 iput(inode); 3032 return new; 3033 } 3034 } 3035 out: 3036 __d_add(dentry, inode); 3037 return NULL; 3038 } 3039 EXPORT_SYMBOL(d_splice_alias); 3040 3041 /* 3042 * Test whether new_dentry is a subdirectory of old_dentry. 3043 * 3044 * Trivially implemented using the dcache structure 3045 */ 3046 3047 /** 3048 * is_subdir - is new dentry a subdirectory of old_dentry 3049 * @new_dentry: new dentry 3050 * @old_dentry: old dentry 3051 * 3052 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3053 * Returns false otherwise. 3054 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3055 */ 3056 3057 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3058 { 3059 bool subdir; 3060 unsigned seq; 3061 3062 if (new_dentry == old_dentry) 3063 return true; 3064 3065 /* Access d_parent under rcu as d_move() may change it. */ 3066 rcu_read_lock(); 3067 seq = read_seqbegin(&rename_lock); 3068 subdir = d_ancestor(old_dentry, new_dentry); 3069 /* Try lockless once... */ 3070 if (read_seqretry(&rename_lock, seq)) { 3071 /* ...else acquire lock for progress even on deep chains. */ 3072 read_seqlock_excl(&rename_lock); 3073 subdir = d_ancestor(old_dentry, new_dentry); 3074 read_sequnlock_excl(&rename_lock); 3075 } 3076 rcu_read_unlock(); 3077 return subdir; 3078 } 3079 EXPORT_SYMBOL(is_subdir); 3080 3081 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3082 { 3083 struct dentry *root = data; 3084 if (dentry != root) { 3085 if (d_unhashed(dentry) || !dentry->d_inode) 3086 return D_WALK_SKIP; 3087 3088 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3089 dentry->d_flags |= DCACHE_GENOCIDE; 3090 dentry->d_lockref.count--; 3091 } 3092 } 3093 return D_WALK_CONTINUE; 3094 } 3095 3096 void d_genocide(struct dentry *parent) 3097 { 3098 d_walk(parent, parent, d_genocide_kill); 3099 } 3100 3101 void d_mark_tmpfile(struct file *file, struct inode *inode) 3102 { 3103 struct dentry *dentry = file->f_path.dentry; 3104 3105 BUG_ON(dentry->d_name.name != dentry->d_iname || 3106 !hlist_unhashed(&dentry->d_u.d_alias) || 3107 !d_unlinked(dentry)); 3108 spin_lock(&dentry->d_parent->d_lock); 3109 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3110 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3111 (unsigned long long)inode->i_ino); 3112 spin_unlock(&dentry->d_lock); 3113 spin_unlock(&dentry->d_parent->d_lock); 3114 } 3115 EXPORT_SYMBOL(d_mark_tmpfile); 3116 3117 void d_tmpfile(struct file *file, struct inode *inode) 3118 { 3119 struct dentry *dentry = file->f_path.dentry; 3120 3121 inode_dec_link_count(inode); 3122 d_mark_tmpfile(file, inode); 3123 d_instantiate(dentry, inode); 3124 } 3125 EXPORT_SYMBOL(d_tmpfile); 3126 3127 /* 3128 * Obtain inode number of the parent dentry. 3129 */ 3130 ino_t d_parent_ino(struct dentry *dentry) 3131 { 3132 struct dentry *parent; 3133 struct inode *iparent; 3134 unsigned seq; 3135 ino_t ret; 3136 3137 scoped_guard(rcu) { 3138 seq = raw_seqcount_begin(&dentry->d_seq); 3139 parent = READ_ONCE(dentry->d_parent); 3140 iparent = d_inode_rcu(parent); 3141 if (likely(iparent)) { 3142 ret = iparent->i_ino; 3143 if (!read_seqcount_retry(&dentry->d_seq, seq)) 3144 return ret; 3145 } 3146 } 3147 3148 spin_lock(&dentry->d_lock); 3149 ret = dentry->d_parent->d_inode->i_ino; 3150 spin_unlock(&dentry->d_lock); 3151 return ret; 3152 } 3153 EXPORT_SYMBOL(d_parent_ino); 3154 3155 static __initdata unsigned long dhash_entries; 3156 static int __init set_dhash_entries(char *str) 3157 { 3158 if (!str) 3159 return 0; 3160 dhash_entries = simple_strtoul(str, &str, 0); 3161 return 1; 3162 } 3163 __setup("dhash_entries=", set_dhash_entries); 3164 3165 static void __init dcache_init_early(void) 3166 { 3167 /* If hashes are distributed across NUMA nodes, defer 3168 * hash allocation until vmalloc space is available. 3169 */ 3170 if (hashdist) 3171 return; 3172 3173 dentry_hashtable = 3174 alloc_large_system_hash("Dentry cache", 3175 sizeof(struct hlist_bl_head), 3176 dhash_entries, 3177 13, 3178 HASH_EARLY | HASH_ZERO, 3179 &d_hash_shift, 3180 NULL, 3181 0, 3182 0); 3183 d_hash_shift = 32 - d_hash_shift; 3184 3185 runtime_const_init(shift, d_hash_shift); 3186 runtime_const_init(ptr, dentry_hashtable); 3187 } 3188 3189 static void __init dcache_init(void) 3190 { 3191 /* 3192 * A constructor could be added for stable state like the lists, 3193 * but it is probably not worth it because of the cache nature 3194 * of the dcache. 3195 */ 3196 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3197 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT, 3198 d_iname); 3199 3200 /* Hash may have been set up in dcache_init_early */ 3201 if (!hashdist) 3202 return; 3203 3204 dentry_hashtable = 3205 alloc_large_system_hash("Dentry cache", 3206 sizeof(struct hlist_bl_head), 3207 dhash_entries, 3208 13, 3209 HASH_ZERO, 3210 &d_hash_shift, 3211 NULL, 3212 0, 3213 0); 3214 d_hash_shift = 32 - d_hash_shift; 3215 3216 runtime_const_init(shift, d_hash_shift); 3217 runtime_const_init(ptr, dentry_hashtable); 3218 } 3219 3220 /* SLAB cache for __getname() consumers */ 3221 struct kmem_cache *names_cachep __ro_after_init; 3222 EXPORT_SYMBOL(names_cachep); 3223 3224 void __init vfs_caches_init_early(void) 3225 { 3226 int i; 3227 3228 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3229 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3230 3231 dcache_init_early(); 3232 inode_init_early(); 3233 } 3234 3235 void __init vfs_caches_init(void) 3236 { 3237 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3238 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3239 3240 dcache_init(); 3241 inode_init(); 3242 files_init(); 3243 files_maxfiles_init(); 3244 mnt_init(); 3245 bdev_cache_init(); 3246 chrdev_init(); 3247 } 3248