xref: /linux/fs/dcache.c (revision 185000fc556372b7fb7f26516c325f212030dbd3)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fdtable.h>
21 #include <linux/fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/slab.h>
24 #include <linux/init.h>
25 #include <linux/hash.h>
26 #include <linux/cache.h>
27 #include <linux/module.h>
28 #include <linux/mount.h>
29 #include <linux/file.h>
30 #include <asm/uaccess.h>
31 #include <linux/security.h>
32 #include <linux/seqlock.h>
33 #include <linux/swap.h>
34 #include <linux/bootmem.h>
35 #include "internal.h"
36 
37 
38 int sysctl_vfs_cache_pressure __read_mostly = 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
40 
41  __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
42 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
43 
44 EXPORT_SYMBOL(dcache_lock);
45 
46 static struct kmem_cache *dentry_cache __read_mostly;
47 
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
49 
50 /*
51  * This is the single most critical data structure when it comes
52  * to the dcache: the hashtable for lookups. Somebody should try
53  * to make this good - I've just made it work.
54  *
55  * This hash-function tries to avoid losing too many bits of hash
56  * information, yet avoid using a prime hash-size or similar.
57  */
58 #define D_HASHBITS     d_hash_shift
59 #define D_HASHMASK     d_hash_mask
60 
61 static unsigned int d_hash_mask __read_mostly;
62 static unsigned int d_hash_shift __read_mostly;
63 static struct hlist_head *dentry_hashtable __read_mostly;
64 static LIST_HEAD(dentry_unused);
65 
66 /* Statistics gathering. */
67 struct dentry_stat_t dentry_stat = {
68 	.age_limit = 45,
69 };
70 
71 static void __d_free(struct dentry *dentry)
72 {
73 	if (dname_external(dentry))
74 		kfree(dentry->d_name.name);
75 	kmem_cache_free(dentry_cache, dentry);
76 }
77 
78 static void d_callback(struct rcu_head *head)
79 {
80 	struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
81 	__d_free(dentry);
82 }
83 
84 /*
85  * no dcache_lock, please.  The caller must decrement dentry_stat.nr_dentry
86  * inside dcache_lock.
87  */
88 static void d_free(struct dentry *dentry)
89 {
90 	if (dentry->d_op && dentry->d_op->d_release)
91 		dentry->d_op->d_release(dentry);
92 	/* if dentry was never inserted into hash, immediate free is OK */
93 	if (hlist_unhashed(&dentry->d_hash))
94 		__d_free(dentry);
95 	else
96 		call_rcu(&dentry->d_u.d_rcu, d_callback);
97 }
98 
99 static void dentry_lru_remove(struct dentry *dentry)
100 {
101 	if (!list_empty(&dentry->d_lru)) {
102 		list_del_init(&dentry->d_lru);
103 		dentry_stat.nr_unused--;
104 	}
105 }
106 
107 /*
108  * Release the dentry's inode, using the filesystem
109  * d_iput() operation if defined.
110  */
111 static void dentry_iput(struct dentry * dentry)
112 	__releases(dentry->d_lock)
113 	__releases(dcache_lock)
114 {
115 	struct inode *inode = dentry->d_inode;
116 	if (inode) {
117 		dentry->d_inode = NULL;
118 		list_del_init(&dentry->d_alias);
119 		spin_unlock(&dentry->d_lock);
120 		spin_unlock(&dcache_lock);
121 		if (!inode->i_nlink)
122 			fsnotify_inoderemove(inode);
123 		if (dentry->d_op && dentry->d_op->d_iput)
124 			dentry->d_op->d_iput(dentry, inode);
125 		else
126 			iput(inode);
127 	} else {
128 		spin_unlock(&dentry->d_lock);
129 		spin_unlock(&dcache_lock);
130 	}
131 }
132 
133 /**
134  * d_kill - kill dentry and return parent
135  * @dentry: dentry to kill
136  *
137  * The dentry must already be unhashed and removed from the LRU.
138  *
139  * If this is the root of the dentry tree, return NULL.
140  */
141 static struct dentry *d_kill(struct dentry *dentry)
142 	__releases(dentry->d_lock)
143 	__releases(dcache_lock)
144 {
145 	struct dentry *parent;
146 
147 	list_del(&dentry->d_u.d_child);
148 	dentry_stat.nr_dentry--;	/* For d_free, below */
149 	/*drops the locks, at that point nobody can reach this dentry */
150 	dentry_iput(dentry);
151 	parent = dentry->d_parent;
152 	d_free(dentry);
153 	return dentry == parent ? NULL : parent;
154 }
155 
156 /*
157  * This is dput
158  *
159  * This is complicated by the fact that we do not want to put
160  * dentries that are no longer on any hash chain on the unused
161  * list: we'd much rather just get rid of them immediately.
162  *
163  * However, that implies that we have to traverse the dentry
164  * tree upwards to the parents which might _also_ now be
165  * scheduled for deletion (it may have been only waiting for
166  * its last child to go away).
167  *
168  * This tail recursion is done by hand as we don't want to depend
169  * on the compiler to always get this right (gcc generally doesn't).
170  * Real recursion would eat up our stack space.
171  */
172 
173 /*
174  * dput - release a dentry
175  * @dentry: dentry to release
176  *
177  * Release a dentry. This will drop the usage count and if appropriate
178  * call the dentry unlink method as well as removing it from the queues and
179  * releasing its resources. If the parent dentries were scheduled for release
180  * they too may now get deleted.
181  *
182  * no dcache lock, please.
183  */
184 
185 void dput(struct dentry *dentry)
186 {
187 	if (!dentry)
188 		return;
189 
190 repeat:
191 	if (atomic_read(&dentry->d_count) == 1)
192 		might_sleep();
193 	if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
194 		return;
195 
196 	spin_lock(&dentry->d_lock);
197 	if (atomic_read(&dentry->d_count)) {
198 		spin_unlock(&dentry->d_lock);
199 		spin_unlock(&dcache_lock);
200 		return;
201 	}
202 
203 	/*
204 	 * AV: ->d_delete() is _NOT_ allowed to block now.
205 	 */
206 	if (dentry->d_op && dentry->d_op->d_delete) {
207 		if (dentry->d_op->d_delete(dentry))
208 			goto unhash_it;
209 	}
210 	/* Unreachable? Get rid of it */
211  	if (d_unhashed(dentry))
212 		goto kill_it;
213   	if (list_empty(&dentry->d_lru)) {
214   		dentry->d_flags |= DCACHE_REFERENCED;
215   		list_add(&dentry->d_lru, &dentry_unused);
216   		dentry_stat.nr_unused++;
217   	}
218  	spin_unlock(&dentry->d_lock);
219 	spin_unlock(&dcache_lock);
220 	return;
221 
222 unhash_it:
223 	__d_drop(dentry);
224 kill_it:
225 	dentry_lru_remove(dentry);
226 	dentry = d_kill(dentry);
227 	if (dentry)
228 		goto repeat;
229 }
230 
231 /**
232  * d_invalidate - invalidate a dentry
233  * @dentry: dentry to invalidate
234  *
235  * Try to invalidate the dentry if it turns out to be
236  * possible. If there are other dentries that can be
237  * reached through this one we can't delete it and we
238  * return -EBUSY. On success we return 0.
239  *
240  * no dcache lock.
241  */
242 
243 int d_invalidate(struct dentry * dentry)
244 {
245 	/*
246 	 * If it's already been dropped, return OK.
247 	 */
248 	spin_lock(&dcache_lock);
249 	if (d_unhashed(dentry)) {
250 		spin_unlock(&dcache_lock);
251 		return 0;
252 	}
253 	/*
254 	 * Check whether to do a partial shrink_dcache
255 	 * to get rid of unused child entries.
256 	 */
257 	if (!list_empty(&dentry->d_subdirs)) {
258 		spin_unlock(&dcache_lock);
259 		shrink_dcache_parent(dentry);
260 		spin_lock(&dcache_lock);
261 	}
262 
263 	/*
264 	 * Somebody else still using it?
265 	 *
266 	 * If it's a directory, we can't drop it
267 	 * for fear of somebody re-populating it
268 	 * with children (even though dropping it
269 	 * would make it unreachable from the root,
270 	 * we might still populate it if it was a
271 	 * working directory or similar).
272 	 */
273 	spin_lock(&dentry->d_lock);
274 	if (atomic_read(&dentry->d_count) > 1) {
275 		if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
276 			spin_unlock(&dentry->d_lock);
277 			spin_unlock(&dcache_lock);
278 			return -EBUSY;
279 		}
280 	}
281 
282 	__d_drop(dentry);
283 	spin_unlock(&dentry->d_lock);
284 	spin_unlock(&dcache_lock);
285 	return 0;
286 }
287 
288 /* This should be called _only_ with dcache_lock held */
289 
290 static inline struct dentry * __dget_locked(struct dentry *dentry)
291 {
292 	atomic_inc(&dentry->d_count);
293 	dentry_lru_remove(dentry);
294 	return dentry;
295 }
296 
297 struct dentry * dget_locked(struct dentry *dentry)
298 {
299 	return __dget_locked(dentry);
300 }
301 
302 /**
303  * d_find_alias - grab a hashed alias of inode
304  * @inode: inode in question
305  * @want_discon:  flag, used by d_splice_alias, to request
306  *          that only a DISCONNECTED alias be returned.
307  *
308  * If inode has a hashed alias, or is a directory and has any alias,
309  * acquire the reference to alias and return it. Otherwise return NULL.
310  * Notice that if inode is a directory there can be only one alias and
311  * it can be unhashed only if it has no children, or if it is the root
312  * of a filesystem.
313  *
314  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
315  * any other hashed alias over that one unless @want_discon is set,
316  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
317  */
318 
319 static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
320 {
321 	struct list_head *head, *next, *tmp;
322 	struct dentry *alias, *discon_alias=NULL;
323 
324 	head = &inode->i_dentry;
325 	next = inode->i_dentry.next;
326 	while (next != head) {
327 		tmp = next;
328 		next = tmp->next;
329 		prefetch(next);
330 		alias = list_entry(tmp, struct dentry, d_alias);
331  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
332 			if (IS_ROOT(alias) &&
333 			    (alias->d_flags & DCACHE_DISCONNECTED))
334 				discon_alias = alias;
335 			else if (!want_discon) {
336 				__dget_locked(alias);
337 				return alias;
338 			}
339 		}
340 	}
341 	if (discon_alias)
342 		__dget_locked(discon_alias);
343 	return discon_alias;
344 }
345 
346 struct dentry * d_find_alias(struct inode *inode)
347 {
348 	struct dentry *de = NULL;
349 
350 	if (!list_empty(&inode->i_dentry)) {
351 		spin_lock(&dcache_lock);
352 		de = __d_find_alias(inode, 0);
353 		spin_unlock(&dcache_lock);
354 	}
355 	return de;
356 }
357 
358 /*
359  *	Try to kill dentries associated with this inode.
360  * WARNING: you must own a reference to inode.
361  */
362 void d_prune_aliases(struct inode *inode)
363 {
364 	struct dentry *dentry;
365 restart:
366 	spin_lock(&dcache_lock);
367 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
368 		spin_lock(&dentry->d_lock);
369 		if (!atomic_read(&dentry->d_count)) {
370 			__dget_locked(dentry);
371 			__d_drop(dentry);
372 			spin_unlock(&dentry->d_lock);
373 			spin_unlock(&dcache_lock);
374 			dput(dentry);
375 			goto restart;
376 		}
377 		spin_unlock(&dentry->d_lock);
378 	}
379 	spin_unlock(&dcache_lock);
380 }
381 
382 /*
383  * Throw away a dentry - free the inode, dput the parent.  This requires that
384  * the LRU list has already been removed.
385  *
386  * Try to prune ancestors as well.  This is necessary to prevent
387  * quadratic behavior of shrink_dcache_parent(), but is also expected
388  * to be beneficial in reducing dentry cache fragmentation.
389  */
390 static void prune_one_dentry(struct dentry * dentry)
391 	__releases(dentry->d_lock)
392 	__releases(dcache_lock)
393 	__acquires(dcache_lock)
394 {
395 	__d_drop(dentry);
396 	dentry = d_kill(dentry);
397 
398 	/*
399 	 * Prune ancestors.  Locking is simpler than in dput(),
400 	 * because dcache_lock needs to be taken anyway.
401 	 */
402 	spin_lock(&dcache_lock);
403 	while (dentry) {
404 		if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
405 			return;
406 
407 		if (dentry->d_op && dentry->d_op->d_delete)
408 			dentry->d_op->d_delete(dentry);
409 		dentry_lru_remove(dentry);
410 		__d_drop(dentry);
411 		dentry = d_kill(dentry);
412 		spin_lock(&dcache_lock);
413 	}
414 }
415 
416 /**
417  * prune_dcache - shrink the dcache
418  * @count: number of entries to try and free
419  * @sb: if given, ignore dentries for other superblocks
420  *         which are being unmounted.
421  *
422  * Shrink the dcache. This is done when we need
423  * more memory, or simply when we need to unmount
424  * something (at which point we need to unuse
425  * all dentries).
426  *
427  * This function may fail to free any resources if
428  * all the dentries are in use.
429  */
430 
431 static void prune_dcache(int count, struct super_block *sb)
432 {
433 	spin_lock(&dcache_lock);
434 	for (; count ; count--) {
435 		struct dentry *dentry;
436 		struct list_head *tmp;
437 		struct rw_semaphore *s_umount;
438 
439 		cond_resched_lock(&dcache_lock);
440 
441 		tmp = dentry_unused.prev;
442 		if (sb) {
443 			/* Try to find a dentry for this sb, but don't try
444 			 * too hard, if they aren't near the tail they will
445 			 * be moved down again soon
446 			 */
447 			int skip = count;
448 			while (skip && tmp != &dentry_unused &&
449 			    list_entry(tmp, struct dentry, d_lru)->d_sb != sb) {
450 				skip--;
451 				tmp = tmp->prev;
452 			}
453 		}
454 		if (tmp == &dentry_unused)
455 			break;
456 		list_del_init(tmp);
457 		prefetch(dentry_unused.prev);
458  		dentry_stat.nr_unused--;
459 		dentry = list_entry(tmp, struct dentry, d_lru);
460 
461  		spin_lock(&dentry->d_lock);
462 		/*
463 		 * We found an inuse dentry which was not removed from
464 		 * dentry_unused because of laziness during lookup.  Do not free
465 		 * it - just keep it off the dentry_unused list.
466 		 */
467  		if (atomic_read(&dentry->d_count)) {
468  			spin_unlock(&dentry->d_lock);
469 			continue;
470 		}
471 		/* If the dentry was recently referenced, don't free it. */
472 		if (dentry->d_flags & DCACHE_REFERENCED) {
473 			dentry->d_flags &= ~DCACHE_REFERENCED;
474  			list_add(&dentry->d_lru, &dentry_unused);
475  			dentry_stat.nr_unused++;
476  			spin_unlock(&dentry->d_lock);
477 			continue;
478 		}
479 		/*
480 		 * If the dentry is not DCACHED_REFERENCED, it is time
481 		 * to remove it from the dcache, provided the super block is
482 		 * NULL (which means we are trying to reclaim memory)
483 		 * or this dentry belongs to the same super block that
484 		 * we want to shrink.
485 		 */
486 		/*
487 		 * If this dentry is for "my" filesystem, then I can prune it
488 		 * without taking the s_umount lock (I already hold it).
489 		 */
490 		if (sb && dentry->d_sb == sb) {
491 			prune_one_dentry(dentry);
492 			continue;
493 		}
494 		/*
495 		 * ...otherwise we need to be sure this filesystem isn't being
496 		 * unmounted, otherwise we could race with
497 		 * generic_shutdown_super(), and end up holding a reference to
498 		 * an inode while the filesystem is unmounted.
499 		 * So we try to get s_umount, and make sure s_root isn't NULL.
500 		 * (Take a local copy of s_umount to avoid a use-after-free of
501 		 * `dentry').
502 		 */
503 		s_umount = &dentry->d_sb->s_umount;
504 		if (down_read_trylock(s_umount)) {
505 			if (dentry->d_sb->s_root != NULL) {
506 				prune_one_dentry(dentry);
507 				up_read(s_umount);
508 				continue;
509 			}
510 			up_read(s_umount);
511 		}
512 		spin_unlock(&dentry->d_lock);
513 		/*
514 		 * Insert dentry at the head of the list as inserting at the
515 		 * tail leads to a cycle.
516 		 */
517  		list_add(&dentry->d_lru, &dentry_unused);
518 		dentry_stat.nr_unused++;
519 	}
520 	spin_unlock(&dcache_lock);
521 }
522 
523 /*
524  * Shrink the dcache for the specified super block.
525  * This allows us to unmount a device without disturbing
526  * the dcache for the other devices.
527  *
528  * This implementation makes just two traversals of the
529  * unused list.  On the first pass we move the selected
530  * dentries to the most recent end, and on the second
531  * pass we free them.  The second pass must restart after
532  * each dput(), but since the target dentries are all at
533  * the end, it's really just a single traversal.
534  */
535 
536 /**
537  * shrink_dcache_sb - shrink dcache for a superblock
538  * @sb: superblock
539  *
540  * Shrink the dcache for the specified super block. This
541  * is used to free the dcache before unmounting a file
542  * system
543  */
544 
545 void shrink_dcache_sb(struct super_block * sb)
546 {
547 	struct list_head *tmp, *next;
548 	struct dentry *dentry;
549 
550 	/*
551 	 * Pass one ... move the dentries for the specified
552 	 * superblock to the most recent end of the unused list.
553 	 */
554 	spin_lock(&dcache_lock);
555 	list_for_each_prev_safe(tmp, next, &dentry_unused) {
556 		dentry = list_entry(tmp, struct dentry, d_lru);
557 		if (dentry->d_sb != sb)
558 			continue;
559 		list_move_tail(tmp, &dentry_unused);
560 	}
561 
562 	/*
563 	 * Pass two ... free the dentries for this superblock.
564 	 */
565 repeat:
566 	list_for_each_prev_safe(tmp, next, &dentry_unused) {
567 		dentry = list_entry(tmp, struct dentry, d_lru);
568 		if (dentry->d_sb != sb)
569 			continue;
570 		dentry_stat.nr_unused--;
571 		list_del_init(tmp);
572 		spin_lock(&dentry->d_lock);
573 		if (atomic_read(&dentry->d_count)) {
574 			spin_unlock(&dentry->d_lock);
575 			continue;
576 		}
577 		prune_one_dentry(dentry);
578 		cond_resched_lock(&dcache_lock);
579 		goto repeat;
580 	}
581 	spin_unlock(&dcache_lock);
582 }
583 
584 /*
585  * destroy a single subtree of dentries for unmount
586  * - see the comments on shrink_dcache_for_umount() for a description of the
587  *   locking
588  */
589 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
590 {
591 	struct dentry *parent;
592 	unsigned detached = 0;
593 
594 	BUG_ON(!IS_ROOT(dentry));
595 
596 	/* detach this root from the system */
597 	spin_lock(&dcache_lock);
598 	dentry_lru_remove(dentry);
599 	__d_drop(dentry);
600 	spin_unlock(&dcache_lock);
601 
602 	for (;;) {
603 		/* descend to the first leaf in the current subtree */
604 		while (!list_empty(&dentry->d_subdirs)) {
605 			struct dentry *loop;
606 
607 			/* this is a branch with children - detach all of them
608 			 * from the system in one go */
609 			spin_lock(&dcache_lock);
610 			list_for_each_entry(loop, &dentry->d_subdirs,
611 					    d_u.d_child) {
612 				dentry_lru_remove(loop);
613 				__d_drop(loop);
614 				cond_resched_lock(&dcache_lock);
615 			}
616 			spin_unlock(&dcache_lock);
617 
618 			/* move to the first child */
619 			dentry = list_entry(dentry->d_subdirs.next,
620 					    struct dentry, d_u.d_child);
621 		}
622 
623 		/* consume the dentries from this leaf up through its parents
624 		 * until we find one with children or run out altogether */
625 		do {
626 			struct inode *inode;
627 
628 			if (atomic_read(&dentry->d_count) != 0) {
629 				printk(KERN_ERR
630 				       "BUG: Dentry %p{i=%lx,n=%s}"
631 				       " still in use (%d)"
632 				       " [unmount of %s %s]\n",
633 				       dentry,
634 				       dentry->d_inode ?
635 				       dentry->d_inode->i_ino : 0UL,
636 				       dentry->d_name.name,
637 				       atomic_read(&dentry->d_count),
638 				       dentry->d_sb->s_type->name,
639 				       dentry->d_sb->s_id);
640 				BUG();
641 			}
642 
643 			parent = dentry->d_parent;
644 			if (parent == dentry)
645 				parent = NULL;
646 			else
647 				atomic_dec(&parent->d_count);
648 
649 			list_del(&dentry->d_u.d_child);
650 			detached++;
651 
652 			inode = dentry->d_inode;
653 			if (inode) {
654 				dentry->d_inode = NULL;
655 				list_del_init(&dentry->d_alias);
656 				if (dentry->d_op && dentry->d_op->d_iput)
657 					dentry->d_op->d_iput(dentry, inode);
658 				else
659 					iput(inode);
660 			}
661 
662 			d_free(dentry);
663 
664 			/* finished when we fall off the top of the tree,
665 			 * otherwise we ascend to the parent and move to the
666 			 * next sibling if there is one */
667 			if (!parent)
668 				goto out;
669 
670 			dentry = parent;
671 
672 		} while (list_empty(&dentry->d_subdirs));
673 
674 		dentry = list_entry(dentry->d_subdirs.next,
675 				    struct dentry, d_u.d_child);
676 	}
677 out:
678 	/* several dentries were freed, need to correct nr_dentry */
679 	spin_lock(&dcache_lock);
680 	dentry_stat.nr_dentry -= detached;
681 	spin_unlock(&dcache_lock);
682 }
683 
684 /*
685  * destroy the dentries attached to a superblock on unmounting
686  * - we don't need to use dentry->d_lock, and only need dcache_lock when
687  *   removing the dentry from the system lists and hashes because:
688  *   - the superblock is detached from all mountings and open files, so the
689  *     dentry trees will not be rearranged by the VFS
690  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
691  *     any dentries belonging to this superblock that it comes across
692  *   - the filesystem itself is no longer permitted to rearrange the dentries
693  *     in this superblock
694  */
695 void shrink_dcache_for_umount(struct super_block *sb)
696 {
697 	struct dentry *dentry;
698 
699 	if (down_read_trylock(&sb->s_umount))
700 		BUG();
701 
702 	dentry = sb->s_root;
703 	sb->s_root = NULL;
704 	atomic_dec(&dentry->d_count);
705 	shrink_dcache_for_umount_subtree(dentry);
706 
707 	while (!hlist_empty(&sb->s_anon)) {
708 		dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
709 		shrink_dcache_for_umount_subtree(dentry);
710 	}
711 }
712 
713 /*
714  * Search for at least 1 mount point in the dentry's subdirs.
715  * We descend to the next level whenever the d_subdirs
716  * list is non-empty and continue searching.
717  */
718 
719 /**
720  * have_submounts - check for mounts over a dentry
721  * @parent: dentry to check.
722  *
723  * Return true if the parent or its subdirectories contain
724  * a mount point
725  */
726 
727 int have_submounts(struct dentry *parent)
728 {
729 	struct dentry *this_parent = parent;
730 	struct list_head *next;
731 
732 	spin_lock(&dcache_lock);
733 	if (d_mountpoint(parent))
734 		goto positive;
735 repeat:
736 	next = this_parent->d_subdirs.next;
737 resume:
738 	while (next != &this_parent->d_subdirs) {
739 		struct list_head *tmp = next;
740 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
741 		next = tmp->next;
742 		/* Have we found a mount point ? */
743 		if (d_mountpoint(dentry))
744 			goto positive;
745 		if (!list_empty(&dentry->d_subdirs)) {
746 			this_parent = dentry;
747 			goto repeat;
748 		}
749 	}
750 	/*
751 	 * All done at this level ... ascend and resume the search.
752 	 */
753 	if (this_parent != parent) {
754 		next = this_parent->d_u.d_child.next;
755 		this_parent = this_parent->d_parent;
756 		goto resume;
757 	}
758 	spin_unlock(&dcache_lock);
759 	return 0; /* No mount points found in tree */
760 positive:
761 	spin_unlock(&dcache_lock);
762 	return 1;
763 }
764 
765 /*
766  * Search the dentry child list for the specified parent,
767  * and move any unused dentries to the end of the unused
768  * list for prune_dcache(). We descend to the next level
769  * whenever the d_subdirs list is non-empty and continue
770  * searching.
771  *
772  * It returns zero iff there are no unused children,
773  * otherwise  it returns the number of children moved to
774  * the end of the unused list. This may not be the total
775  * number of unused children, because select_parent can
776  * drop the lock and return early due to latency
777  * constraints.
778  */
779 static int select_parent(struct dentry * parent)
780 {
781 	struct dentry *this_parent = parent;
782 	struct list_head *next;
783 	int found = 0;
784 
785 	spin_lock(&dcache_lock);
786 repeat:
787 	next = this_parent->d_subdirs.next;
788 resume:
789 	while (next != &this_parent->d_subdirs) {
790 		struct list_head *tmp = next;
791 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
792 		next = tmp->next;
793 
794 		dentry_lru_remove(dentry);
795 		/*
796 		 * move only zero ref count dentries to the end
797 		 * of the unused list for prune_dcache
798 		 */
799 		if (!atomic_read(&dentry->d_count)) {
800 			list_add_tail(&dentry->d_lru, &dentry_unused);
801 			dentry_stat.nr_unused++;
802 			found++;
803 		}
804 
805 		/*
806 		 * We can return to the caller if we have found some (this
807 		 * ensures forward progress). We'll be coming back to find
808 		 * the rest.
809 		 */
810 		if (found && need_resched())
811 			goto out;
812 
813 		/*
814 		 * Descend a level if the d_subdirs list is non-empty.
815 		 */
816 		if (!list_empty(&dentry->d_subdirs)) {
817 			this_parent = dentry;
818 			goto repeat;
819 		}
820 	}
821 	/*
822 	 * All done at this level ... ascend and resume the search.
823 	 */
824 	if (this_parent != parent) {
825 		next = this_parent->d_u.d_child.next;
826 		this_parent = this_parent->d_parent;
827 		goto resume;
828 	}
829 out:
830 	spin_unlock(&dcache_lock);
831 	return found;
832 }
833 
834 /**
835  * shrink_dcache_parent - prune dcache
836  * @parent: parent of entries to prune
837  *
838  * Prune the dcache to remove unused children of the parent dentry.
839  */
840 
841 void shrink_dcache_parent(struct dentry * parent)
842 {
843 	int found;
844 
845 	while ((found = select_parent(parent)) != 0)
846 		prune_dcache(found, parent->d_sb);
847 }
848 
849 /*
850  * Scan `nr' dentries and return the number which remain.
851  *
852  * We need to avoid reentering the filesystem if the caller is performing a
853  * GFP_NOFS allocation attempt.  One example deadlock is:
854  *
855  * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
856  * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
857  * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
858  *
859  * In this case we return -1 to tell the caller that we baled.
860  */
861 static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
862 {
863 	if (nr) {
864 		if (!(gfp_mask & __GFP_FS))
865 			return -1;
866 		prune_dcache(nr, NULL);
867 	}
868 	return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
869 }
870 
871 static struct shrinker dcache_shrinker = {
872 	.shrink = shrink_dcache_memory,
873 	.seeks = DEFAULT_SEEKS,
874 };
875 
876 /**
877  * d_alloc	-	allocate a dcache entry
878  * @parent: parent of entry to allocate
879  * @name: qstr of the name
880  *
881  * Allocates a dentry. It returns %NULL if there is insufficient memory
882  * available. On a success the dentry is returned. The name passed in is
883  * copied and the copy passed in may be reused after this call.
884  */
885 
886 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
887 {
888 	struct dentry *dentry;
889 	char *dname;
890 
891 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
892 	if (!dentry)
893 		return NULL;
894 
895 	if (name->len > DNAME_INLINE_LEN-1) {
896 		dname = kmalloc(name->len + 1, GFP_KERNEL);
897 		if (!dname) {
898 			kmem_cache_free(dentry_cache, dentry);
899 			return NULL;
900 		}
901 	} else  {
902 		dname = dentry->d_iname;
903 	}
904 	dentry->d_name.name = dname;
905 
906 	dentry->d_name.len = name->len;
907 	dentry->d_name.hash = name->hash;
908 	memcpy(dname, name->name, name->len);
909 	dname[name->len] = 0;
910 
911 	atomic_set(&dentry->d_count, 1);
912 	dentry->d_flags = DCACHE_UNHASHED;
913 	spin_lock_init(&dentry->d_lock);
914 	dentry->d_inode = NULL;
915 	dentry->d_parent = NULL;
916 	dentry->d_sb = NULL;
917 	dentry->d_op = NULL;
918 	dentry->d_fsdata = NULL;
919 	dentry->d_mounted = 0;
920 #ifdef CONFIG_PROFILING
921 	dentry->d_cookie = NULL;
922 #endif
923 	INIT_HLIST_NODE(&dentry->d_hash);
924 	INIT_LIST_HEAD(&dentry->d_lru);
925 	INIT_LIST_HEAD(&dentry->d_subdirs);
926 	INIT_LIST_HEAD(&dentry->d_alias);
927 
928 	if (parent) {
929 		dentry->d_parent = dget(parent);
930 		dentry->d_sb = parent->d_sb;
931 	} else {
932 		INIT_LIST_HEAD(&dentry->d_u.d_child);
933 	}
934 
935 	spin_lock(&dcache_lock);
936 	if (parent)
937 		list_add(&dentry->d_u.d_child, &parent->d_subdirs);
938 	dentry_stat.nr_dentry++;
939 	spin_unlock(&dcache_lock);
940 
941 	return dentry;
942 }
943 
944 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
945 {
946 	struct qstr q;
947 
948 	q.name = name;
949 	q.len = strlen(name);
950 	q.hash = full_name_hash(q.name, q.len);
951 	return d_alloc(parent, &q);
952 }
953 
954 /**
955  * d_instantiate - fill in inode information for a dentry
956  * @entry: dentry to complete
957  * @inode: inode to attach to this dentry
958  *
959  * Fill in inode information in the entry.
960  *
961  * This turns negative dentries into productive full members
962  * of society.
963  *
964  * NOTE! This assumes that the inode count has been incremented
965  * (or otherwise set) by the caller to indicate that it is now
966  * in use by the dcache.
967  */
968 
969 void d_instantiate(struct dentry *entry, struct inode * inode)
970 {
971 	BUG_ON(!list_empty(&entry->d_alias));
972 	spin_lock(&dcache_lock);
973 	if (inode)
974 		list_add(&entry->d_alias, &inode->i_dentry);
975 	entry->d_inode = inode;
976 	fsnotify_d_instantiate(entry, inode);
977 	spin_unlock(&dcache_lock);
978 	security_d_instantiate(entry, inode);
979 }
980 
981 /**
982  * d_instantiate_unique - instantiate a non-aliased dentry
983  * @entry: dentry to instantiate
984  * @inode: inode to attach to this dentry
985  *
986  * Fill in inode information in the entry. On success, it returns NULL.
987  * If an unhashed alias of "entry" already exists, then we return the
988  * aliased dentry instead and drop one reference to inode.
989  *
990  * Note that in order to avoid conflicts with rename() etc, the caller
991  * had better be holding the parent directory semaphore.
992  *
993  * This also assumes that the inode count has been incremented
994  * (or otherwise set) by the caller to indicate that it is now
995  * in use by the dcache.
996  */
997 static struct dentry *__d_instantiate_unique(struct dentry *entry,
998 					     struct inode *inode)
999 {
1000 	struct dentry *alias;
1001 	int len = entry->d_name.len;
1002 	const char *name = entry->d_name.name;
1003 	unsigned int hash = entry->d_name.hash;
1004 
1005 	if (!inode) {
1006 		entry->d_inode = NULL;
1007 		return NULL;
1008 	}
1009 
1010 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1011 		struct qstr *qstr = &alias->d_name;
1012 
1013 		if (qstr->hash != hash)
1014 			continue;
1015 		if (alias->d_parent != entry->d_parent)
1016 			continue;
1017 		if (qstr->len != len)
1018 			continue;
1019 		if (memcmp(qstr->name, name, len))
1020 			continue;
1021 		dget_locked(alias);
1022 		return alias;
1023 	}
1024 
1025 	list_add(&entry->d_alias, &inode->i_dentry);
1026 	entry->d_inode = inode;
1027 	fsnotify_d_instantiate(entry, inode);
1028 	return NULL;
1029 }
1030 
1031 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1032 {
1033 	struct dentry *result;
1034 
1035 	BUG_ON(!list_empty(&entry->d_alias));
1036 
1037 	spin_lock(&dcache_lock);
1038 	result = __d_instantiate_unique(entry, inode);
1039 	spin_unlock(&dcache_lock);
1040 
1041 	if (!result) {
1042 		security_d_instantiate(entry, inode);
1043 		return NULL;
1044 	}
1045 
1046 	BUG_ON(!d_unhashed(result));
1047 	iput(inode);
1048 	return result;
1049 }
1050 
1051 EXPORT_SYMBOL(d_instantiate_unique);
1052 
1053 /**
1054  * d_alloc_root - allocate root dentry
1055  * @root_inode: inode to allocate the root for
1056  *
1057  * Allocate a root ("/") dentry for the inode given. The inode is
1058  * instantiated and returned. %NULL is returned if there is insufficient
1059  * memory or the inode passed is %NULL.
1060  */
1061 
1062 struct dentry * d_alloc_root(struct inode * root_inode)
1063 {
1064 	struct dentry *res = NULL;
1065 
1066 	if (root_inode) {
1067 		static const struct qstr name = { .name = "/", .len = 1 };
1068 
1069 		res = d_alloc(NULL, &name);
1070 		if (res) {
1071 			res->d_sb = root_inode->i_sb;
1072 			res->d_parent = res;
1073 			d_instantiate(res, root_inode);
1074 		}
1075 	}
1076 	return res;
1077 }
1078 
1079 static inline struct hlist_head *d_hash(struct dentry *parent,
1080 					unsigned long hash)
1081 {
1082 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
1083 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
1084 	return dentry_hashtable + (hash & D_HASHMASK);
1085 }
1086 
1087 /**
1088  * d_alloc_anon - allocate an anonymous dentry
1089  * @inode: inode to allocate the dentry for
1090  *
1091  * This is similar to d_alloc_root.  It is used by filesystems when
1092  * creating a dentry for a given inode, often in the process of
1093  * mapping a filehandle to a dentry.  The returned dentry may be
1094  * anonymous, or may have a full name (if the inode was already
1095  * in the cache).  The file system may need to make further
1096  * efforts to connect this dentry into the dcache properly.
1097  *
1098  * When called on a directory inode, we must ensure that
1099  * the inode only ever has one dentry.  If a dentry is
1100  * found, that is returned instead of allocating a new one.
1101  *
1102  * On successful return, the reference to the inode has been transferred
1103  * to the dentry.  If %NULL is returned (indicating kmalloc failure),
1104  * the reference on the inode has not been released.
1105  */
1106 
1107 struct dentry * d_alloc_anon(struct inode *inode)
1108 {
1109 	static const struct qstr anonstring = { .name = "" };
1110 	struct dentry *tmp;
1111 	struct dentry *res;
1112 
1113 	if ((res = d_find_alias(inode))) {
1114 		iput(inode);
1115 		return res;
1116 	}
1117 
1118 	tmp = d_alloc(NULL, &anonstring);
1119 	if (!tmp)
1120 		return NULL;
1121 
1122 	tmp->d_parent = tmp; /* make sure dput doesn't croak */
1123 
1124 	spin_lock(&dcache_lock);
1125 	res = __d_find_alias(inode, 0);
1126 	if (!res) {
1127 		/* attach a disconnected dentry */
1128 		res = tmp;
1129 		tmp = NULL;
1130 		spin_lock(&res->d_lock);
1131 		res->d_sb = inode->i_sb;
1132 		res->d_parent = res;
1133 		res->d_inode = inode;
1134 		res->d_flags |= DCACHE_DISCONNECTED;
1135 		res->d_flags &= ~DCACHE_UNHASHED;
1136 		list_add(&res->d_alias, &inode->i_dentry);
1137 		hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
1138 		spin_unlock(&res->d_lock);
1139 
1140 		inode = NULL; /* don't drop reference */
1141 	}
1142 	spin_unlock(&dcache_lock);
1143 
1144 	if (inode)
1145 		iput(inode);
1146 	if (tmp)
1147 		dput(tmp);
1148 	return res;
1149 }
1150 
1151 
1152 /**
1153  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1154  * @inode:  the inode which may have a disconnected dentry
1155  * @dentry: a negative dentry which we want to point to the inode.
1156  *
1157  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1158  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1159  * and return it, else simply d_add the inode to the dentry and return NULL.
1160  *
1161  * This is needed in the lookup routine of any filesystem that is exportable
1162  * (via knfsd) so that we can build dcache paths to directories effectively.
1163  *
1164  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1165  * is returned.  This matches the expected return value of ->lookup.
1166  *
1167  */
1168 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1169 {
1170 	struct dentry *new = NULL;
1171 
1172 	if (inode && S_ISDIR(inode->i_mode)) {
1173 		spin_lock(&dcache_lock);
1174 		new = __d_find_alias(inode, 1);
1175 		if (new) {
1176 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1177 			fsnotify_d_instantiate(new, inode);
1178 			spin_unlock(&dcache_lock);
1179 			security_d_instantiate(new, inode);
1180 			d_rehash(dentry);
1181 			d_move(new, dentry);
1182 			iput(inode);
1183 		} else {
1184 			/* d_instantiate takes dcache_lock, so we do it by hand */
1185 			list_add(&dentry->d_alias, &inode->i_dentry);
1186 			dentry->d_inode = inode;
1187 			fsnotify_d_instantiate(dentry, inode);
1188 			spin_unlock(&dcache_lock);
1189 			security_d_instantiate(dentry, inode);
1190 			d_rehash(dentry);
1191 		}
1192 	} else
1193 		d_add(dentry, inode);
1194 	return new;
1195 }
1196 
1197 
1198 /**
1199  * d_lookup - search for a dentry
1200  * @parent: parent dentry
1201  * @name: qstr of name we wish to find
1202  *
1203  * Searches the children of the parent dentry for the name in question. If
1204  * the dentry is found its reference count is incremented and the dentry
1205  * is returned. The caller must use d_put to free the entry when it has
1206  * finished using it. %NULL is returned on failure.
1207  *
1208  * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1209  * Memory barriers are used while updating and doing lockless traversal.
1210  * To avoid races with d_move while rename is happening, d_lock is used.
1211  *
1212  * Overflows in memcmp(), while d_move, are avoided by keeping the length
1213  * and name pointer in one structure pointed by d_qstr.
1214  *
1215  * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1216  * lookup is going on.
1217  *
1218  * dentry_unused list is not updated even if lookup finds the required dentry
1219  * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1220  * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1221  * acquisition.
1222  *
1223  * d_lookup() is protected against the concurrent renames in some unrelated
1224  * directory using the seqlockt_t rename_lock.
1225  */
1226 
1227 struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
1228 {
1229 	struct dentry * dentry = NULL;
1230 	unsigned long seq;
1231 
1232         do {
1233                 seq = read_seqbegin(&rename_lock);
1234                 dentry = __d_lookup(parent, name);
1235                 if (dentry)
1236 			break;
1237 	} while (read_seqretry(&rename_lock, seq));
1238 	return dentry;
1239 }
1240 
1241 struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
1242 {
1243 	unsigned int len = name->len;
1244 	unsigned int hash = name->hash;
1245 	const unsigned char *str = name->name;
1246 	struct hlist_head *head = d_hash(parent,hash);
1247 	struct dentry *found = NULL;
1248 	struct hlist_node *node;
1249 	struct dentry *dentry;
1250 
1251 	rcu_read_lock();
1252 
1253 	hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
1254 		struct qstr *qstr;
1255 
1256 		if (dentry->d_name.hash != hash)
1257 			continue;
1258 		if (dentry->d_parent != parent)
1259 			continue;
1260 
1261 		spin_lock(&dentry->d_lock);
1262 
1263 		/*
1264 		 * Recheck the dentry after taking the lock - d_move may have
1265 		 * changed things.  Don't bother checking the hash because we're
1266 		 * about to compare the whole name anyway.
1267 		 */
1268 		if (dentry->d_parent != parent)
1269 			goto next;
1270 
1271 		/*
1272 		 * It is safe to compare names since d_move() cannot
1273 		 * change the qstr (protected by d_lock).
1274 		 */
1275 		qstr = &dentry->d_name;
1276 		if (parent->d_op && parent->d_op->d_compare) {
1277 			if (parent->d_op->d_compare(parent, qstr, name))
1278 				goto next;
1279 		} else {
1280 			if (qstr->len != len)
1281 				goto next;
1282 			if (memcmp(qstr->name, str, len))
1283 				goto next;
1284 		}
1285 
1286 		if (!d_unhashed(dentry)) {
1287 			atomic_inc(&dentry->d_count);
1288 			found = dentry;
1289 		}
1290 		spin_unlock(&dentry->d_lock);
1291 		break;
1292 next:
1293 		spin_unlock(&dentry->d_lock);
1294  	}
1295  	rcu_read_unlock();
1296 
1297  	return found;
1298 }
1299 
1300 /**
1301  * d_hash_and_lookup - hash the qstr then search for a dentry
1302  * @dir: Directory to search in
1303  * @name: qstr of name we wish to find
1304  *
1305  * On hash failure or on lookup failure NULL is returned.
1306  */
1307 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1308 {
1309 	struct dentry *dentry = NULL;
1310 
1311 	/*
1312 	 * Check for a fs-specific hash function. Note that we must
1313 	 * calculate the standard hash first, as the d_op->d_hash()
1314 	 * routine may choose to leave the hash value unchanged.
1315 	 */
1316 	name->hash = full_name_hash(name->name, name->len);
1317 	if (dir->d_op && dir->d_op->d_hash) {
1318 		if (dir->d_op->d_hash(dir, name) < 0)
1319 			goto out;
1320 	}
1321 	dentry = d_lookup(dir, name);
1322 out:
1323 	return dentry;
1324 }
1325 
1326 /**
1327  * d_validate - verify dentry provided from insecure source
1328  * @dentry: The dentry alleged to be valid child of @dparent
1329  * @dparent: The parent dentry (known to be valid)
1330  * @hash: Hash of the dentry
1331  * @len: Length of the name
1332  *
1333  * An insecure source has sent us a dentry, here we verify it and dget() it.
1334  * This is used by ncpfs in its readdir implementation.
1335  * Zero is returned in the dentry is invalid.
1336  */
1337 
1338 int d_validate(struct dentry *dentry, struct dentry *dparent)
1339 {
1340 	struct hlist_head *base;
1341 	struct hlist_node *lhp;
1342 
1343 	/* Check whether the ptr might be valid at all.. */
1344 	if (!kmem_ptr_validate(dentry_cache, dentry))
1345 		goto out;
1346 
1347 	if (dentry->d_parent != dparent)
1348 		goto out;
1349 
1350 	spin_lock(&dcache_lock);
1351 	base = d_hash(dparent, dentry->d_name.hash);
1352 	hlist_for_each(lhp,base) {
1353 		/* hlist_for_each_entry_rcu() not required for d_hash list
1354 		 * as it is parsed under dcache_lock
1355 		 */
1356 		if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
1357 			__dget_locked(dentry);
1358 			spin_unlock(&dcache_lock);
1359 			return 1;
1360 		}
1361 	}
1362 	spin_unlock(&dcache_lock);
1363 out:
1364 	return 0;
1365 }
1366 
1367 /*
1368  * When a file is deleted, we have two options:
1369  * - turn this dentry into a negative dentry
1370  * - unhash this dentry and free it.
1371  *
1372  * Usually, we want to just turn this into
1373  * a negative dentry, but if anybody else is
1374  * currently using the dentry or the inode
1375  * we can't do that and we fall back on removing
1376  * it from the hash queues and waiting for
1377  * it to be deleted later when it has no users
1378  */
1379 
1380 /**
1381  * d_delete - delete a dentry
1382  * @dentry: The dentry to delete
1383  *
1384  * Turn the dentry into a negative dentry if possible, otherwise
1385  * remove it from the hash queues so it can be deleted later
1386  */
1387 
1388 void d_delete(struct dentry * dentry)
1389 {
1390 	int isdir = 0;
1391 	/*
1392 	 * Are we the only user?
1393 	 */
1394 	spin_lock(&dcache_lock);
1395 	spin_lock(&dentry->d_lock);
1396 	isdir = S_ISDIR(dentry->d_inode->i_mode);
1397 	if (atomic_read(&dentry->d_count) == 1) {
1398 		dentry_iput(dentry);
1399 		fsnotify_nameremove(dentry, isdir);
1400 		return;
1401 	}
1402 
1403 	if (!d_unhashed(dentry))
1404 		__d_drop(dentry);
1405 
1406 	spin_unlock(&dentry->d_lock);
1407 	spin_unlock(&dcache_lock);
1408 
1409 	fsnotify_nameremove(dentry, isdir);
1410 }
1411 
1412 static void __d_rehash(struct dentry * entry, struct hlist_head *list)
1413 {
1414 
1415  	entry->d_flags &= ~DCACHE_UNHASHED;
1416  	hlist_add_head_rcu(&entry->d_hash, list);
1417 }
1418 
1419 static void _d_rehash(struct dentry * entry)
1420 {
1421 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
1422 }
1423 
1424 /**
1425  * d_rehash	- add an entry back to the hash
1426  * @entry: dentry to add to the hash
1427  *
1428  * Adds a dentry to the hash according to its name.
1429  */
1430 
1431 void d_rehash(struct dentry * entry)
1432 {
1433 	spin_lock(&dcache_lock);
1434 	spin_lock(&entry->d_lock);
1435 	_d_rehash(entry);
1436 	spin_unlock(&entry->d_lock);
1437 	spin_unlock(&dcache_lock);
1438 }
1439 
1440 #define do_switch(x,y) do { \
1441 	__typeof__ (x) __tmp = x; \
1442 	x = y; y = __tmp; } while (0)
1443 
1444 /*
1445  * When switching names, the actual string doesn't strictly have to
1446  * be preserved in the target - because we're dropping the target
1447  * anyway. As such, we can just do a simple memcpy() to copy over
1448  * the new name before we switch.
1449  *
1450  * Note that we have to be a lot more careful about getting the hash
1451  * switched - we have to switch the hash value properly even if it
1452  * then no longer matches the actual (corrupted) string of the target.
1453  * The hash value has to match the hash queue that the dentry is on..
1454  */
1455 static void switch_names(struct dentry *dentry, struct dentry *target)
1456 {
1457 	if (dname_external(target)) {
1458 		if (dname_external(dentry)) {
1459 			/*
1460 			 * Both external: swap the pointers
1461 			 */
1462 			do_switch(target->d_name.name, dentry->d_name.name);
1463 		} else {
1464 			/*
1465 			 * dentry:internal, target:external.  Steal target's
1466 			 * storage and make target internal.
1467 			 */
1468 			memcpy(target->d_iname, dentry->d_name.name,
1469 					dentry->d_name.len + 1);
1470 			dentry->d_name.name = target->d_name.name;
1471 			target->d_name.name = target->d_iname;
1472 		}
1473 	} else {
1474 		if (dname_external(dentry)) {
1475 			/*
1476 			 * dentry:external, target:internal.  Give dentry's
1477 			 * storage to target and make dentry internal
1478 			 */
1479 			memcpy(dentry->d_iname, target->d_name.name,
1480 					target->d_name.len + 1);
1481 			target->d_name.name = dentry->d_name.name;
1482 			dentry->d_name.name = dentry->d_iname;
1483 		} else {
1484 			/*
1485 			 * Both are internal.  Just copy target to dentry
1486 			 */
1487 			memcpy(dentry->d_iname, target->d_name.name,
1488 					target->d_name.len + 1);
1489 		}
1490 	}
1491 }
1492 
1493 /*
1494  * We cannibalize "target" when moving dentry on top of it,
1495  * because it's going to be thrown away anyway. We could be more
1496  * polite about it, though.
1497  *
1498  * This forceful removal will result in ugly /proc output if
1499  * somebody holds a file open that got deleted due to a rename.
1500  * We could be nicer about the deleted file, and let it show
1501  * up under the name it had before it was deleted rather than
1502  * under the original name of the file that was moved on top of it.
1503  */
1504 
1505 /*
1506  * d_move_locked - move a dentry
1507  * @dentry: entry to move
1508  * @target: new dentry
1509  *
1510  * Update the dcache to reflect the move of a file name. Negative
1511  * dcache entries should not be moved in this way.
1512  */
1513 static void d_move_locked(struct dentry * dentry, struct dentry * target)
1514 {
1515 	struct hlist_head *list;
1516 
1517 	if (!dentry->d_inode)
1518 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
1519 
1520 	write_seqlock(&rename_lock);
1521 	/*
1522 	 * XXXX: do we really need to take target->d_lock?
1523 	 */
1524 	if (target < dentry) {
1525 		spin_lock(&target->d_lock);
1526 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1527 	} else {
1528 		spin_lock(&dentry->d_lock);
1529 		spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
1530 	}
1531 
1532 	/* Move the dentry to the target hash queue, if on different bucket */
1533 	if (d_unhashed(dentry))
1534 		goto already_unhashed;
1535 
1536 	hlist_del_rcu(&dentry->d_hash);
1537 
1538 already_unhashed:
1539 	list = d_hash(target->d_parent, target->d_name.hash);
1540 	__d_rehash(dentry, list);
1541 
1542 	/* Unhash the target: dput() will then get rid of it */
1543 	__d_drop(target);
1544 
1545 	list_del(&dentry->d_u.d_child);
1546 	list_del(&target->d_u.d_child);
1547 
1548 	/* Switch the names.. */
1549 	switch_names(dentry, target);
1550 	do_switch(dentry->d_name.len, target->d_name.len);
1551 	do_switch(dentry->d_name.hash, target->d_name.hash);
1552 
1553 	/* ... and switch the parents */
1554 	if (IS_ROOT(dentry)) {
1555 		dentry->d_parent = target->d_parent;
1556 		target->d_parent = target;
1557 		INIT_LIST_HEAD(&target->d_u.d_child);
1558 	} else {
1559 		do_switch(dentry->d_parent, target->d_parent);
1560 
1561 		/* And add them back to the (new) parent lists */
1562 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1563 	}
1564 
1565 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1566 	spin_unlock(&target->d_lock);
1567 	fsnotify_d_move(dentry);
1568 	spin_unlock(&dentry->d_lock);
1569 	write_sequnlock(&rename_lock);
1570 }
1571 
1572 /**
1573  * d_move - move a dentry
1574  * @dentry: entry to move
1575  * @target: new dentry
1576  *
1577  * Update the dcache to reflect the move of a file name. Negative
1578  * dcache entries should not be moved in this way.
1579  */
1580 
1581 void d_move(struct dentry * dentry, struct dentry * target)
1582 {
1583 	spin_lock(&dcache_lock);
1584 	d_move_locked(dentry, target);
1585 	spin_unlock(&dcache_lock);
1586 }
1587 
1588 /*
1589  * Helper that returns 1 if p1 is a parent of p2, else 0
1590  */
1591 static int d_isparent(struct dentry *p1, struct dentry *p2)
1592 {
1593 	struct dentry *p;
1594 
1595 	for (p = p2; p->d_parent != p; p = p->d_parent) {
1596 		if (p->d_parent == p1)
1597 			return 1;
1598 	}
1599 	return 0;
1600 }
1601 
1602 /*
1603  * This helper attempts to cope with remotely renamed directories
1604  *
1605  * It assumes that the caller is already holding
1606  * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1607  *
1608  * Note: If ever the locking in lock_rename() changes, then please
1609  * remember to update this too...
1610  */
1611 static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
1612 	__releases(dcache_lock)
1613 {
1614 	struct mutex *m1 = NULL, *m2 = NULL;
1615 	struct dentry *ret;
1616 
1617 	/* If alias and dentry share a parent, then no extra locks required */
1618 	if (alias->d_parent == dentry->d_parent)
1619 		goto out_unalias;
1620 
1621 	/* Check for loops */
1622 	ret = ERR_PTR(-ELOOP);
1623 	if (d_isparent(alias, dentry))
1624 		goto out_err;
1625 
1626 	/* See lock_rename() */
1627 	ret = ERR_PTR(-EBUSY);
1628 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
1629 		goto out_err;
1630 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
1631 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
1632 		goto out_err;
1633 	m2 = &alias->d_parent->d_inode->i_mutex;
1634 out_unalias:
1635 	d_move_locked(alias, dentry);
1636 	ret = alias;
1637 out_err:
1638 	spin_unlock(&dcache_lock);
1639 	if (m2)
1640 		mutex_unlock(m2);
1641 	if (m1)
1642 		mutex_unlock(m1);
1643 	return ret;
1644 }
1645 
1646 /*
1647  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1648  * named dentry in place of the dentry to be replaced.
1649  */
1650 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
1651 {
1652 	struct dentry *dparent, *aparent;
1653 
1654 	switch_names(dentry, anon);
1655 	do_switch(dentry->d_name.len, anon->d_name.len);
1656 	do_switch(dentry->d_name.hash, anon->d_name.hash);
1657 
1658 	dparent = dentry->d_parent;
1659 	aparent = anon->d_parent;
1660 
1661 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
1662 	list_del(&dentry->d_u.d_child);
1663 	if (!IS_ROOT(dentry))
1664 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
1665 	else
1666 		INIT_LIST_HEAD(&dentry->d_u.d_child);
1667 
1668 	anon->d_parent = (dparent == dentry) ? anon : dparent;
1669 	list_del(&anon->d_u.d_child);
1670 	if (!IS_ROOT(anon))
1671 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
1672 	else
1673 		INIT_LIST_HEAD(&anon->d_u.d_child);
1674 
1675 	anon->d_flags &= ~DCACHE_DISCONNECTED;
1676 }
1677 
1678 /**
1679  * d_materialise_unique - introduce an inode into the tree
1680  * @dentry: candidate dentry
1681  * @inode: inode to bind to the dentry, to which aliases may be attached
1682  *
1683  * Introduces an dentry into the tree, substituting an extant disconnected
1684  * root directory alias in its place if there is one
1685  */
1686 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
1687 {
1688 	struct dentry *actual;
1689 
1690 	BUG_ON(!d_unhashed(dentry));
1691 
1692 	spin_lock(&dcache_lock);
1693 
1694 	if (!inode) {
1695 		actual = dentry;
1696 		dentry->d_inode = NULL;
1697 		goto found_lock;
1698 	}
1699 
1700 	if (S_ISDIR(inode->i_mode)) {
1701 		struct dentry *alias;
1702 
1703 		/* Does an aliased dentry already exist? */
1704 		alias = __d_find_alias(inode, 0);
1705 		if (alias) {
1706 			actual = alias;
1707 			/* Is this an anonymous mountpoint that we could splice
1708 			 * into our tree? */
1709 			if (IS_ROOT(alias)) {
1710 				spin_lock(&alias->d_lock);
1711 				__d_materialise_dentry(dentry, alias);
1712 				__d_drop(alias);
1713 				goto found;
1714 			}
1715 			/* Nope, but we must(!) avoid directory aliasing */
1716 			actual = __d_unalias(dentry, alias);
1717 			if (IS_ERR(actual))
1718 				dput(alias);
1719 			goto out_nolock;
1720 		}
1721 	}
1722 
1723 	/* Add a unique reference */
1724 	actual = __d_instantiate_unique(dentry, inode);
1725 	if (!actual)
1726 		actual = dentry;
1727 	else if (unlikely(!d_unhashed(actual)))
1728 		goto shouldnt_be_hashed;
1729 
1730 found_lock:
1731 	spin_lock(&actual->d_lock);
1732 found:
1733 	_d_rehash(actual);
1734 	spin_unlock(&actual->d_lock);
1735 	spin_unlock(&dcache_lock);
1736 out_nolock:
1737 	if (actual == dentry) {
1738 		security_d_instantiate(dentry, inode);
1739 		return NULL;
1740 	}
1741 
1742 	iput(inode);
1743 	return actual;
1744 
1745 shouldnt_be_hashed:
1746 	spin_unlock(&dcache_lock);
1747 	BUG();
1748 }
1749 
1750 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
1751 {
1752 	*buflen -= namelen;
1753 	if (*buflen < 0)
1754 		return -ENAMETOOLONG;
1755 	*buffer -= namelen;
1756 	memcpy(*buffer, str, namelen);
1757 	return 0;
1758 }
1759 
1760 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
1761 {
1762 	return prepend(buffer, buflen, name->name, name->len);
1763 }
1764 
1765 /**
1766  * __d_path - return the path of a dentry
1767  * @path: the dentry/vfsmount to report
1768  * @root: root vfsmnt/dentry (may be modified by this function)
1769  * @buffer: buffer to return value in
1770  * @buflen: buffer length
1771  *
1772  * Convert a dentry into an ASCII path name. If the entry has been deleted
1773  * the string " (deleted)" is appended. Note that this is ambiguous.
1774  *
1775  * Returns the buffer or an error code if the path was too long.
1776  *
1777  * "buflen" should be positive. Caller holds the dcache_lock.
1778  *
1779  * If path is not reachable from the supplied root, then the value of
1780  * root is changed (without modifying refcounts).
1781  */
1782 char *__d_path(const struct path *path, struct path *root,
1783 	       char *buffer, int buflen)
1784 {
1785 	struct dentry *dentry = path->dentry;
1786 	struct vfsmount *vfsmnt = path->mnt;
1787 	char *end = buffer + buflen;
1788 	char *retval;
1789 
1790 	spin_lock(&vfsmount_lock);
1791 	prepend(&end, &buflen, "\0", 1);
1792 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1793 		(prepend(&end, &buflen, " (deleted)", 10) != 0))
1794 			goto Elong;
1795 
1796 	if (buflen < 1)
1797 		goto Elong;
1798 	/* Get '/' right */
1799 	retval = end-1;
1800 	*retval = '/';
1801 
1802 	for (;;) {
1803 		struct dentry * parent;
1804 
1805 		if (dentry == root->dentry && vfsmnt == root->mnt)
1806 			break;
1807 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
1808 			/* Global root? */
1809 			if (vfsmnt->mnt_parent == vfsmnt) {
1810 				goto global_root;
1811 			}
1812 			dentry = vfsmnt->mnt_mountpoint;
1813 			vfsmnt = vfsmnt->mnt_parent;
1814 			continue;
1815 		}
1816 		parent = dentry->d_parent;
1817 		prefetch(parent);
1818 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1819 		    (prepend(&end, &buflen, "/", 1) != 0))
1820 			goto Elong;
1821 		retval = end;
1822 		dentry = parent;
1823 	}
1824 
1825 out:
1826 	spin_unlock(&vfsmount_lock);
1827 	return retval;
1828 
1829 global_root:
1830 	retval += 1;	/* hit the slash */
1831 	if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
1832 		goto Elong;
1833 	root->mnt = vfsmnt;
1834 	root->dentry = dentry;
1835 	goto out;
1836 
1837 Elong:
1838 	retval = ERR_PTR(-ENAMETOOLONG);
1839 	goto out;
1840 }
1841 
1842 /**
1843  * d_path - return the path of a dentry
1844  * @path: path to report
1845  * @buf: buffer to return value in
1846  * @buflen: buffer length
1847  *
1848  * Convert a dentry into an ASCII path name. If the entry has been deleted
1849  * the string " (deleted)" is appended. Note that this is ambiguous.
1850  *
1851  * Returns the buffer or an error code if the path was too long.
1852  *
1853  * "buflen" should be positive.
1854  */
1855 char *d_path(const struct path *path, char *buf, int buflen)
1856 {
1857 	char *res;
1858 	struct path root;
1859 	struct path tmp;
1860 
1861 	/*
1862 	 * We have various synthetic filesystems that never get mounted.  On
1863 	 * these filesystems dentries are never used for lookup purposes, and
1864 	 * thus don't need to be hashed.  They also don't need a name until a
1865 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
1866 	 * below allows us to generate a name for these objects on demand:
1867 	 */
1868 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
1869 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
1870 
1871 	read_lock(&current->fs->lock);
1872 	root = current->fs->root;
1873 	path_get(&root);
1874 	read_unlock(&current->fs->lock);
1875 	spin_lock(&dcache_lock);
1876 	tmp = root;
1877 	res = __d_path(path, &tmp, buf, buflen);
1878 	spin_unlock(&dcache_lock);
1879 	path_put(&root);
1880 	return res;
1881 }
1882 
1883 /*
1884  * Helper function for dentry_operations.d_dname() members
1885  */
1886 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
1887 			const char *fmt, ...)
1888 {
1889 	va_list args;
1890 	char temp[64];
1891 	int sz;
1892 
1893 	va_start(args, fmt);
1894 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
1895 	va_end(args);
1896 
1897 	if (sz > sizeof(temp) || sz > buflen)
1898 		return ERR_PTR(-ENAMETOOLONG);
1899 
1900 	buffer += buflen - sz;
1901 	return memcpy(buffer, temp, sz);
1902 }
1903 
1904 /*
1905  * Write full pathname from the root of the filesystem into the buffer.
1906  */
1907 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
1908 {
1909 	char *end = buf + buflen;
1910 	char *retval;
1911 
1912 	spin_lock(&dcache_lock);
1913 	prepend(&end, &buflen, "\0", 1);
1914 	if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
1915 		(prepend(&end, &buflen, "//deleted", 9) != 0))
1916 			goto Elong;
1917 	if (buflen < 1)
1918 		goto Elong;
1919 	/* Get '/' right */
1920 	retval = end-1;
1921 	*retval = '/';
1922 
1923 	while (!IS_ROOT(dentry)) {
1924 		struct dentry *parent = dentry->d_parent;
1925 
1926 		prefetch(parent);
1927 		if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
1928 		    (prepend(&end, &buflen, "/", 1) != 0))
1929 			goto Elong;
1930 
1931 		retval = end;
1932 		dentry = parent;
1933 	}
1934 	spin_unlock(&dcache_lock);
1935 	return retval;
1936 Elong:
1937 	spin_unlock(&dcache_lock);
1938 	return ERR_PTR(-ENAMETOOLONG);
1939 }
1940 
1941 /*
1942  * NOTE! The user-level library version returns a
1943  * character pointer. The kernel system call just
1944  * returns the length of the buffer filled (which
1945  * includes the ending '\0' character), or a negative
1946  * error value. So libc would do something like
1947  *
1948  *	char *getcwd(char * buf, size_t size)
1949  *	{
1950  *		int retval;
1951  *
1952  *		retval = sys_getcwd(buf, size);
1953  *		if (retval >= 0)
1954  *			return buf;
1955  *		errno = -retval;
1956  *		return NULL;
1957  *	}
1958  */
1959 asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
1960 {
1961 	int error;
1962 	struct path pwd, root;
1963 	char *page = (char *) __get_free_page(GFP_USER);
1964 
1965 	if (!page)
1966 		return -ENOMEM;
1967 
1968 	read_lock(&current->fs->lock);
1969 	pwd = current->fs->pwd;
1970 	path_get(&pwd);
1971 	root = current->fs->root;
1972 	path_get(&root);
1973 	read_unlock(&current->fs->lock);
1974 
1975 	error = -ENOENT;
1976 	/* Has the current directory has been unlinked? */
1977 	spin_lock(&dcache_lock);
1978 	if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
1979 		unsigned long len;
1980 		struct path tmp = root;
1981 		char * cwd;
1982 
1983 		cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
1984 		spin_unlock(&dcache_lock);
1985 
1986 		error = PTR_ERR(cwd);
1987 		if (IS_ERR(cwd))
1988 			goto out;
1989 
1990 		error = -ERANGE;
1991 		len = PAGE_SIZE + page - cwd;
1992 		if (len <= size) {
1993 			error = len;
1994 			if (copy_to_user(buf, cwd, len))
1995 				error = -EFAULT;
1996 		}
1997 	} else
1998 		spin_unlock(&dcache_lock);
1999 
2000 out:
2001 	path_put(&pwd);
2002 	path_put(&root);
2003 	free_page((unsigned long) page);
2004 	return error;
2005 }
2006 
2007 /*
2008  * Test whether new_dentry is a subdirectory of old_dentry.
2009  *
2010  * Trivially implemented using the dcache structure
2011  */
2012 
2013 /**
2014  * is_subdir - is new dentry a subdirectory of old_dentry
2015  * @new_dentry: new dentry
2016  * @old_dentry: old dentry
2017  *
2018  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2019  * Returns 0 otherwise.
2020  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2021  */
2022 
2023 int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
2024 {
2025 	int result;
2026 	struct dentry * saved = new_dentry;
2027 	unsigned long seq;
2028 
2029 	/* need rcu_readlock to protect against the d_parent trashing due to
2030 	 * d_move
2031 	 */
2032 	rcu_read_lock();
2033         do {
2034 		/* for restarting inner loop in case of seq retry */
2035 		new_dentry = saved;
2036 		result = 0;
2037 		seq = read_seqbegin(&rename_lock);
2038 		for (;;) {
2039 			if (new_dentry != old_dentry) {
2040 				struct dentry * parent = new_dentry->d_parent;
2041 				if (parent == new_dentry)
2042 					break;
2043 				new_dentry = parent;
2044 				continue;
2045 			}
2046 			result = 1;
2047 			break;
2048 		}
2049 	} while (read_seqretry(&rename_lock, seq));
2050 	rcu_read_unlock();
2051 
2052 	return result;
2053 }
2054 
2055 void d_genocide(struct dentry *root)
2056 {
2057 	struct dentry *this_parent = root;
2058 	struct list_head *next;
2059 
2060 	spin_lock(&dcache_lock);
2061 repeat:
2062 	next = this_parent->d_subdirs.next;
2063 resume:
2064 	while (next != &this_parent->d_subdirs) {
2065 		struct list_head *tmp = next;
2066 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2067 		next = tmp->next;
2068 		if (d_unhashed(dentry)||!dentry->d_inode)
2069 			continue;
2070 		if (!list_empty(&dentry->d_subdirs)) {
2071 			this_parent = dentry;
2072 			goto repeat;
2073 		}
2074 		atomic_dec(&dentry->d_count);
2075 	}
2076 	if (this_parent != root) {
2077 		next = this_parent->d_u.d_child.next;
2078 		atomic_dec(&this_parent->d_count);
2079 		this_parent = this_parent->d_parent;
2080 		goto resume;
2081 	}
2082 	spin_unlock(&dcache_lock);
2083 }
2084 
2085 /**
2086  * find_inode_number - check for dentry with name
2087  * @dir: directory to check
2088  * @name: Name to find.
2089  *
2090  * Check whether a dentry already exists for the given name,
2091  * and return the inode number if it has an inode. Otherwise
2092  * 0 is returned.
2093  *
2094  * This routine is used to post-process directory listings for
2095  * filesystems using synthetic inode numbers, and is necessary
2096  * to keep getcwd() working.
2097  */
2098 
2099 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2100 {
2101 	struct dentry * dentry;
2102 	ino_t ino = 0;
2103 
2104 	dentry = d_hash_and_lookup(dir, name);
2105 	if (dentry) {
2106 		if (dentry->d_inode)
2107 			ino = dentry->d_inode->i_ino;
2108 		dput(dentry);
2109 	}
2110 	return ino;
2111 }
2112 
2113 static __initdata unsigned long dhash_entries;
2114 static int __init set_dhash_entries(char *str)
2115 {
2116 	if (!str)
2117 		return 0;
2118 	dhash_entries = simple_strtoul(str, &str, 0);
2119 	return 1;
2120 }
2121 __setup("dhash_entries=", set_dhash_entries);
2122 
2123 static void __init dcache_init_early(void)
2124 {
2125 	int loop;
2126 
2127 	/* If hashes are distributed across NUMA nodes, defer
2128 	 * hash allocation until vmalloc space is available.
2129 	 */
2130 	if (hashdist)
2131 		return;
2132 
2133 	dentry_hashtable =
2134 		alloc_large_system_hash("Dentry cache",
2135 					sizeof(struct hlist_head),
2136 					dhash_entries,
2137 					13,
2138 					HASH_EARLY,
2139 					&d_hash_shift,
2140 					&d_hash_mask,
2141 					0);
2142 
2143 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2144 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2145 }
2146 
2147 static void __init dcache_init(void)
2148 {
2149 	int loop;
2150 
2151 	/*
2152 	 * A constructor could be added for stable state like the lists,
2153 	 * but it is probably not worth it because of the cache nature
2154 	 * of the dcache.
2155 	 */
2156 	dentry_cache = KMEM_CACHE(dentry,
2157 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
2158 
2159 	register_shrinker(&dcache_shrinker);
2160 
2161 	/* Hash may have been set up in dcache_init_early */
2162 	if (!hashdist)
2163 		return;
2164 
2165 	dentry_hashtable =
2166 		alloc_large_system_hash("Dentry cache",
2167 					sizeof(struct hlist_head),
2168 					dhash_entries,
2169 					13,
2170 					0,
2171 					&d_hash_shift,
2172 					&d_hash_mask,
2173 					0);
2174 
2175 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2176 		INIT_HLIST_HEAD(&dentry_hashtable[loop]);
2177 }
2178 
2179 /* SLAB cache for __getname() consumers */
2180 struct kmem_cache *names_cachep __read_mostly;
2181 
2182 /* SLAB cache for file structures */
2183 struct kmem_cache *filp_cachep __read_mostly;
2184 
2185 EXPORT_SYMBOL(d_genocide);
2186 
2187 void __init vfs_caches_init_early(void)
2188 {
2189 	dcache_init_early();
2190 	inode_init_early();
2191 }
2192 
2193 void __init vfs_caches_init(unsigned long mempages)
2194 {
2195 	unsigned long reserve;
2196 
2197 	/* Base hash sizes on available memory, with a reserve equal to
2198            150% of current kernel size */
2199 
2200 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
2201 	mempages -= reserve;
2202 
2203 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
2204 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2205 
2206 	filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
2207 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2208 
2209 	dcache_init();
2210 	inode_init();
2211 	files_init(mempages);
2212 	mnt_init();
2213 	bdev_cache_init();
2214 	chrdev_init();
2215 }
2216 
2217 EXPORT_SYMBOL(d_alloc);
2218 EXPORT_SYMBOL(d_alloc_anon);
2219 EXPORT_SYMBOL(d_alloc_root);
2220 EXPORT_SYMBOL(d_delete);
2221 EXPORT_SYMBOL(d_find_alias);
2222 EXPORT_SYMBOL(d_instantiate);
2223 EXPORT_SYMBOL(d_invalidate);
2224 EXPORT_SYMBOL(d_lookup);
2225 EXPORT_SYMBOL(d_move);
2226 EXPORT_SYMBOL_GPL(d_materialise_unique);
2227 EXPORT_SYMBOL(d_path);
2228 EXPORT_SYMBOL(d_prune_aliases);
2229 EXPORT_SYMBOL(d_rehash);
2230 EXPORT_SYMBOL(d_splice_alias);
2231 EXPORT_SYMBOL(d_validate);
2232 EXPORT_SYMBOL(dget_locked);
2233 EXPORT_SYMBOL(dput);
2234 EXPORT_SYMBOL(find_inode_number);
2235 EXPORT_SYMBOL(have_submounts);
2236 EXPORT_SYMBOL(names_cachep);
2237 EXPORT_SYMBOL(shrink_dcache_parent);
2238 EXPORT_SYMBOL(shrink_dcache_sb);
2239