1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include <linux/list_lru.h> 41 #include <linux/kasan.h> 42 43 #include "internal.h" 44 #include "mount.h" 45 46 /* 47 * Usage: 48 * dcache->d_inode->i_lock protects: 49 * - i_dentry, d_u.d_alias, d_inode of aliases 50 * dcache_hash_bucket lock protects: 51 * - the dcache hash table 52 * s_anon bl list spinlock protects: 53 * - the s_anon list (see __d_drop) 54 * dentry->d_sb->s_dentry_lru_lock protects: 55 * - the dcache lru lists and counters 56 * d_lock protects: 57 * - d_flags 58 * - d_name 59 * - d_lru 60 * - d_count 61 * - d_unhashed() 62 * - d_parent and d_subdirs 63 * - childrens' d_child and d_parent 64 * - d_u.d_alias, d_inode 65 * 66 * Ordering: 67 * dentry->d_inode->i_lock 68 * dentry->d_lock 69 * dentry->d_sb->s_dentry_lru_lock 70 * dcache_hash_bucket lock 71 * s_anon lock 72 * 73 * If there is an ancestor relationship: 74 * dentry->d_parent->...->d_parent->d_lock 75 * ... 76 * dentry->d_parent->d_lock 77 * dentry->d_lock 78 * 79 * If no ancestor relationship: 80 * if (dentry1 < dentry2) 81 * dentry1->d_lock 82 * dentry2->d_lock 83 */ 84 int sysctl_vfs_cache_pressure __read_mostly = 100; 85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 86 87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 88 89 EXPORT_SYMBOL(rename_lock); 90 91 static struct kmem_cache *dentry_cache __read_mostly; 92 93 /* 94 * This is the single most critical data structure when it comes 95 * to the dcache: the hashtable for lookups. Somebody should try 96 * to make this good - I've just made it work. 97 * 98 * This hash-function tries to avoid losing too many bits of hash 99 * information, yet avoid using a prime hash-size or similar. 100 */ 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 return dentry_hashtable + hash_32(hash, d_hash_shift); 112 } 113 114 /* Statistics gathering. */ 115 struct dentry_stat_t dentry_stat = { 116 .age_limit = 45, 117 }; 118 119 static DEFINE_PER_CPU(long, nr_dentry); 120 static DEFINE_PER_CPU(long, nr_dentry_unused); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 124 /* 125 * Here we resort to our own counters instead of using generic per-cpu counters 126 * for consistency with what the vfs inode code does. We are expected to harvest 127 * better code and performance by having our own specialized counters. 128 * 129 * Please note that the loop is done over all possible CPUs, not over all online 130 * CPUs. The reason for this is that we don't want to play games with CPUs going 131 * on and off. If one of them goes off, we will just keep their counters. 132 * 133 * glommer: See cffbc8a for details, and if you ever intend to change this, 134 * please update all vfs counters to match. 135 */ 136 static long get_nr_dentry(void) 137 { 138 int i; 139 long sum = 0; 140 for_each_possible_cpu(i) 141 sum += per_cpu(nr_dentry, i); 142 return sum < 0 ? 0 : sum; 143 } 144 145 static long get_nr_dentry_unused(void) 146 { 147 int i; 148 long sum = 0; 149 for_each_possible_cpu(i) 150 sum += per_cpu(nr_dentry_unused, i); 151 return sum < 0 ? 0 : sum; 152 } 153 154 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 155 size_t *lenp, loff_t *ppos) 156 { 157 dentry_stat.nr_dentry = get_nr_dentry(); 158 dentry_stat.nr_unused = get_nr_dentry_unused(); 159 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 160 } 161 #endif 162 163 /* 164 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 165 * The strings are both count bytes long, and count is non-zero. 166 */ 167 #ifdef CONFIG_DCACHE_WORD_ACCESS 168 169 #include <asm/word-at-a-time.h> 170 /* 171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 172 * aligned allocation for this particular component. We don't 173 * strictly need the load_unaligned_zeropad() safety, but it 174 * doesn't hurt either. 175 * 176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 177 * need the careful unaligned handling. 178 */ 179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180 { 181 unsigned long a,b,mask; 182 183 for (;;) { 184 a = *(unsigned long *)cs; 185 b = load_unaligned_zeropad(ct); 186 if (tcount < sizeof(unsigned long)) 187 break; 188 if (unlikely(a != b)) 189 return 1; 190 cs += sizeof(unsigned long); 191 ct += sizeof(unsigned long); 192 tcount -= sizeof(unsigned long); 193 if (!tcount) 194 return 0; 195 } 196 mask = bytemask_from_count(tcount); 197 return unlikely(!!((a ^ b) & mask)); 198 } 199 200 #else 201 202 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 203 { 204 do { 205 if (*cs != *ct) 206 return 1; 207 cs++; 208 ct++; 209 tcount--; 210 } while (tcount); 211 return 0; 212 } 213 214 #endif 215 216 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 217 { 218 const unsigned char *cs; 219 /* 220 * Be careful about RCU walk racing with rename: 221 * use ACCESS_ONCE to fetch the name pointer. 222 * 223 * NOTE! Even if a rename will mean that the length 224 * was not loaded atomically, we don't care. The 225 * RCU walk will check the sequence count eventually, 226 * and catch it. And we won't overrun the buffer, 227 * because we're reading the name pointer atomically, 228 * and a dentry name is guaranteed to be properly 229 * terminated with a NUL byte. 230 * 231 * End result: even if 'len' is wrong, we'll exit 232 * early because the data cannot match (there can 233 * be no NUL in the ct/tcount data) 234 */ 235 cs = ACCESS_ONCE(dentry->d_name.name); 236 smp_read_barrier_depends(); 237 return dentry_string_cmp(cs, ct, tcount); 238 } 239 240 struct external_name { 241 union { 242 atomic_t count; 243 struct rcu_head head; 244 } u; 245 unsigned char name[]; 246 }; 247 248 static inline struct external_name *external_name(struct dentry *dentry) 249 { 250 return container_of(dentry->d_name.name, struct external_name, name[0]); 251 } 252 253 static void __d_free(struct rcu_head *head) 254 { 255 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 256 257 kmem_cache_free(dentry_cache, dentry); 258 } 259 260 static void __d_free_external(struct rcu_head *head) 261 { 262 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 263 kfree(external_name(dentry)); 264 kmem_cache_free(dentry_cache, dentry); 265 } 266 267 static inline int dname_external(const struct dentry *dentry) 268 { 269 return dentry->d_name.name != dentry->d_iname; 270 } 271 272 static inline void __d_set_inode_and_type(struct dentry *dentry, 273 struct inode *inode, 274 unsigned type_flags) 275 { 276 unsigned flags; 277 278 dentry->d_inode = inode; 279 flags = READ_ONCE(dentry->d_flags); 280 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 281 flags |= type_flags; 282 WRITE_ONCE(dentry->d_flags, flags); 283 } 284 285 static inline void __d_clear_type_and_inode(struct dentry *dentry) 286 { 287 unsigned flags = READ_ONCE(dentry->d_flags); 288 289 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 290 WRITE_ONCE(dentry->d_flags, flags); 291 dentry->d_inode = NULL; 292 } 293 294 static void dentry_free(struct dentry *dentry) 295 { 296 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 297 if (unlikely(dname_external(dentry))) { 298 struct external_name *p = external_name(dentry); 299 if (likely(atomic_dec_and_test(&p->u.count))) { 300 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 301 return; 302 } 303 } 304 /* if dentry was never visible to RCU, immediate free is OK */ 305 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 306 __d_free(&dentry->d_u.d_rcu); 307 else 308 call_rcu(&dentry->d_u.d_rcu, __d_free); 309 } 310 311 /** 312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups 313 * @dentry: the target dentry 314 * After this call, in-progress rcu-walk path lookup will fail. This 315 * should be called after unhashing, and after changing d_inode (if 316 * the dentry has not already been unhashed). 317 */ 318 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry) 319 { 320 lockdep_assert_held(&dentry->d_lock); 321 /* Go through am invalidation barrier */ 322 write_seqcount_invalidate(&dentry->d_seq); 323 } 324 325 /* 326 * Release the dentry's inode, using the filesystem 327 * d_iput() operation if defined. Dentry has no refcount 328 * and is unhashed. 329 */ 330 static void dentry_iput(struct dentry * dentry) 331 __releases(dentry->d_lock) 332 __releases(dentry->d_inode->i_lock) 333 { 334 struct inode *inode = dentry->d_inode; 335 if (inode) { 336 __d_clear_type_and_inode(dentry); 337 hlist_del_init(&dentry->d_u.d_alias); 338 spin_unlock(&dentry->d_lock); 339 spin_unlock(&inode->i_lock); 340 if (!inode->i_nlink) 341 fsnotify_inoderemove(inode); 342 if (dentry->d_op && dentry->d_op->d_iput) 343 dentry->d_op->d_iput(dentry, inode); 344 else 345 iput(inode); 346 } else { 347 spin_unlock(&dentry->d_lock); 348 } 349 } 350 351 /* 352 * Release the dentry's inode, using the filesystem 353 * d_iput() operation if defined. dentry remains in-use. 354 */ 355 static void dentry_unlink_inode(struct dentry * dentry) 356 __releases(dentry->d_lock) 357 __releases(dentry->d_inode->i_lock) 358 { 359 struct inode *inode = dentry->d_inode; 360 361 raw_write_seqcount_begin(&dentry->d_seq); 362 __d_clear_type_and_inode(dentry); 363 hlist_del_init(&dentry->d_u.d_alias); 364 raw_write_seqcount_end(&dentry->d_seq); 365 spin_unlock(&dentry->d_lock); 366 spin_unlock(&inode->i_lock); 367 if (!inode->i_nlink) 368 fsnotify_inoderemove(inode); 369 if (dentry->d_op && dentry->d_op->d_iput) 370 dentry->d_op->d_iput(dentry, inode); 371 else 372 iput(inode); 373 } 374 375 /* 376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 377 * is in use - which includes both the "real" per-superblock 378 * LRU list _and_ the DCACHE_SHRINK_LIST use. 379 * 380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 381 * on the shrink list (ie not on the superblock LRU list). 382 * 383 * The per-cpu "nr_dentry_unused" counters are updated with 384 * the DCACHE_LRU_LIST bit. 385 * 386 * These helper functions make sure we always follow the 387 * rules. d_lock must be held by the caller. 388 */ 389 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 390 static void d_lru_add(struct dentry *dentry) 391 { 392 D_FLAG_VERIFY(dentry, 0); 393 dentry->d_flags |= DCACHE_LRU_LIST; 394 this_cpu_inc(nr_dentry_unused); 395 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 396 } 397 398 static void d_lru_del(struct dentry *dentry) 399 { 400 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 401 dentry->d_flags &= ~DCACHE_LRU_LIST; 402 this_cpu_dec(nr_dentry_unused); 403 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 404 } 405 406 static void d_shrink_del(struct dentry *dentry) 407 { 408 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 409 list_del_init(&dentry->d_lru); 410 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 411 this_cpu_dec(nr_dentry_unused); 412 } 413 414 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 415 { 416 D_FLAG_VERIFY(dentry, 0); 417 list_add(&dentry->d_lru, list); 418 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 419 this_cpu_inc(nr_dentry_unused); 420 } 421 422 /* 423 * These can only be called under the global LRU lock, ie during the 424 * callback for freeing the LRU list. "isolate" removes it from the 425 * LRU lists entirely, while shrink_move moves it to the indicated 426 * private list. 427 */ 428 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 429 { 430 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 431 dentry->d_flags &= ~DCACHE_LRU_LIST; 432 this_cpu_dec(nr_dentry_unused); 433 list_lru_isolate(lru, &dentry->d_lru); 434 } 435 436 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 437 struct list_head *list) 438 { 439 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 440 dentry->d_flags |= DCACHE_SHRINK_LIST; 441 list_lru_isolate_move(lru, &dentry->d_lru, list); 442 } 443 444 /* 445 * dentry_lru_(add|del)_list) must be called with d_lock held. 446 */ 447 static void dentry_lru_add(struct dentry *dentry) 448 { 449 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 450 d_lru_add(dentry); 451 } 452 453 /** 454 * d_drop - drop a dentry 455 * @dentry: dentry to drop 456 * 457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 458 * be found through a VFS lookup any more. Note that this is different from 459 * deleting the dentry - d_delete will try to mark the dentry negative if 460 * possible, giving a successful _negative_ lookup, while d_drop will 461 * just make the cache lookup fail. 462 * 463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 464 * reason (NFS timeouts or autofs deletes). 465 * 466 * __d_drop requires dentry->d_lock. 467 */ 468 void __d_drop(struct dentry *dentry) 469 { 470 if (!d_unhashed(dentry)) { 471 struct hlist_bl_head *b; 472 /* 473 * Hashed dentries are normally on the dentry hashtable, 474 * with the exception of those newly allocated by 475 * d_obtain_alias, which are always IS_ROOT: 476 */ 477 if (unlikely(IS_ROOT(dentry))) 478 b = &dentry->d_sb->s_anon; 479 else 480 b = d_hash(dentry->d_parent, dentry->d_name.hash); 481 482 hlist_bl_lock(b); 483 __hlist_bl_del(&dentry->d_hash); 484 dentry->d_hash.pprev = NULL; 485 hlist_bl_unlock(b); 486 dentry_rcuwalk_invalidate(dentry); 487 } 488 } 489 EXPORT_SYMBOL(__d_drop); 490 491 void d_drop(struct dentry *dentry) 492 { 493 spin_lock(&dentry->d_lock); 494 __d_drop(dentry); 495 spin_unlock(&dentry->d_lock); 496 } 497 EXPORT_SYMBOL(d_drop); 498 499 static void __dentry_kill(struct dentry *dentry) 500 { 501 struct dentry *parent = NULL; 502 bool can_free = true; 503 if (!IS_ROOT(dentry)) 504 parent = dentry->d_parent; 505 506 /* 507 * The dentry is now unrecoverably dead to the world. 508 */ 509 lockref_mark_dead(&dentry->d_lockref); 510 511 /* 512 * inform the fs via d_prune that this dentry is about to be 513 * unhashed and destroyed. 514 */ 515 if (dentry->d_flags & DCACHE_OP_PRUNE) 516 dentry->d_op->d_prune(dentry); 517 518 if (dentry->d_flags & DCACHE_LRU_LIST) { 519 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 520 d_lru_del(dentry); 521 } 522 /* if it was on the hash then remove it */ 523 __d_drop(dentry); 524 __list_del_entry(&dentry->d_child); 525 /* 526 * Inform d_walk() that we are no longer attached to the 527 * dentry tree 528 */ 529 dentry->d_flags |= DCACHE_DENTRY_KILLED; 530 if (parent) 531 spin_unlock(&parent->d_lock); 532 dentry_iput(dentry); 533 /* 534 * dentry_iput drops the locks, at which point nobody (except 535 * transient RCU lookups) can reach this dentry. 536 */ 537 BUG_ON(dentry->d_lockref.count > 0); 538 this_cpu_dec(nr_dentry); 539 if (dentry->d_op && dentry->d_op->d_release) 540 dentry->d_op->d_release(dentry); 541 542 spin_lock(&dentry->d_lock); 543 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 544 dentry->d_flags |= DCACHE_MAY_FREE; 545 can_free = false; 546 } 547 spin_unlock(&dentry->d_lock); 548 if (likely(can_free)) 549 dentry_free(dentry); 550 } 551 552 /* 553 * Finish off a dentry we've decided to kill. 554 * dentry->d_lock must be held, returns with it unlocked. 555 * If ref is non-zero, then decrement the refcount too. 556 * Returns dentry requiring refcount drop, or NULL if we're done. 557 */ 558 static struct dentry *dentry_kill(struct dentry *dentry) 559 __releases(dentry->d_lock) 560 { 561 struct inode *inode = dentry->d_inode; 562 struct dentry *parent = NULL; 563 564 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 565 goto failed; 566 567 if (!IS_ROOT(dentry)) { 568 parent = dentry->d_parent; 569 if (unlikely(!spin_trylock(&parent->d_lock))) { 570 if (inode) 571 spin_unlock(&inode->i_lock); 572 goto failed; 573 } 574 } 575 576 __dentry_kill(dentry); 577 return parent; 578 579 failed: 580 spin_unlock(&dentry->d_lock); 581 cpu_relax(); 582 return dentry; /* try again with same dentry */ 583 } 584 585 static inline struct dentry *lock_parent(struct dentry *dentry) 586 { 587 struct dentry *parent = dentry->d_parent; 588 if (IS_ROOT(dentry)) 589 return NULL; 590 if (unlikely(dentry->d_lockref.count < 0)) 591 return NULL; 592 if (likely(spin_trylock(&parent->d_lock))) 593 return parent; 594 rcu_read_lock(); 595 spin_unlock(&dentry->d_lock); 596 again: 597 parent = ACCESS_ONCE(dentry->d_parent); 598 spin_lock(&parent->d_lock); 599 /* 600 * We can't blindly lock dentry until we are sure 601 * that we won't violate the locking order. 602 * Any changes of dentry->d_parent must have 603 * been done with parent->d_lock held, so 604 * spin_lock() above is enough of a barrier 605 * for checking if it's still our child. 606 */ 607 if (unlikely(parent != dentry->d_parent)) { 608 spin_unlock(&parent->d_lock); 609 goto again; 610 } 611 rcu_read_unlock(); 612 if (parent != dentry) 613 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 614 else 615 parent = NULL; 616 return parent; 617 } 618 619 /* 620 * Try to do a lockless dput(), and return whether that was successful. 621 * 622 * If unsuccessful, we return false, having already taken the dentry lock. 623 * 624 * The caller needs to hold the RCU read lock, so that the dentry is 625 * guaranteed to stay around even if the refcount goes down to zero! 626 */ 627 static inline bool fast_dput(struct dentry *dentry) 628 { 629 int ret; 630 unsigned int d_flags; 631 632 /* 633 * If we have a d_op->d_delete() operation, we sould not 634 * let the dentry count go to zero, so use "put_or_lock". 635 */ 636 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 637 return lockref_put_or_lock(&dentry->d_lockref); 638 639 /* 640 * .. otherwise, we can try to just decrement the 641 * lockref optimistically. 642 */ 643 ret = lockref_put_return(&dentry->d_lockref); 644 645 /* 646 * If the lockref_put_return() failed due to the lock being held 647 * by somebody else, the fast path has failed. We will need to 648 * get the lock, and then check the count again. 649 */ 650 if (unlikely(ret < 0)) { 651 spin_lock(&dentry->d_lock); 652 if (dentry->d_lockref.count > 1) { 653 dentry->d_lockref.count--; 654 spin_unlock(&dentry->d_lock); 655 return 1; 656 } 657 return 0; 658 } 659 660 /* 661 * If we weren't the last ref, we're done. 662 */ 663 if (ret) 664 return 1; 665 666 /* 667 * Careful, careful. The reference count went down 668 * to zero, but we don't hold the dentry lock, so 669 * somebody else could get it again, and do another 670 * dput(), and we need to not race with that. 671 * 672 * However, there is a very special and common case 673 * where we don't care, because there is nothing to 674 * do: the dentry is still hashed, it does not have 675 * a 'delete' op, and it's referenced and already on 676 * the LRU list. 677 * 678 * NOTE! Since we aren't locked, these values are 679 * not "stable". However, it is sufficient that at 680 * some point after we dropped the reference the 681 * dentry was hashed and the flags had the proper 682 * value. Other dentry users may have re-gotten 683 * a reference to the dentry and change that, but 684 * our work is done - we can leave the dentry 685 * around with a zero refcount. 686 */ 687 smp_rmb(); 688 d_flags = ACCESS_ONCE(dentry->d_flags); 689 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 690 691 /* Nothing to do? Dropping the reference was all we needed? */ 692 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 693 return 1; 694 695 /* 696 * Not the fast normal case? Get the lock. We've already decremented 697 * the refcount, but we'll need to re-check the situation after 698 * getting the lock. 699 */ 700 spin_lock(&dentry->d_lock); 701 702 /* 703 * Did somebody else grab a reference to it in the meantime, and 704 * we're no longer the last user after all? Alternatively, somebody 705 * else could have killed it and marked it dead. Either way, we 706 * don't need to do anything else. 707 */ 708 if (dentry->d_lockref.count) { 709 spin_unlock(&dentry->d_lock); 710 return 1; 711 } 712 713 /* 714 * Re-get the reference we optimistically dropped. We hold the 715 * lock, and we just tested that it was zero, so we can just 716 * set it to 1. 717 */ 718 dentry->d_lockref.count = 1; 719 return 0; 720 } 721 722 723 /* 724 * This is dput 725 * 726 * This is complicated by the fact that we do not want to put 727 * dentries that are no longer on any hash chain on the unused 728 * list: we'd much rather just get rid of them immediately. 729 * 730 * However, that implies that we have to traverse the dentry 731 * tree upwards to the parents which might _also_ now be 732 * scheduled for deletion (it may have been only waiting for 733 * its last child to go away). 734 * 735 * This tail recursion is done by hand as we don't want to depend 736 * on the compiler to always get this right (gcc generally doesn't). 737 * Real recursion would eat up our stack space. 738 */ 739 740 /* 741 * dput - release a dentry 742 * @dentry: dentry to release 743 * 744 * Release a dentry. This will drop the usage count and if appropriate 745 * call the dentry unlink method as well as removing it from the queues and 746 * releasing its resources. If the parent dentries were scheduled for release 747 * they too may now get deleted. 748 */ 749 void dput(struct dentry *dentry) 750 { 751 if (unlikely(!dentry)) 752 return; 753 754 repeat: 755 rcu_read_lock(); 756 if (likely(fast_dput(dentry))) { 757 rcu_read_unlock(); 758 return; 759 } 760 761 /* Slow case: now with the dentry lock held */ 762 rcu_read_unlock(); 763 764 /* Unreachable? Get rid of it */ 765 if (unlikely(d_unhashed(dentry))) 766 goto kill_it; 767 768 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 769 goto kill_it; 770 771 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 772 if (dentry->d_op->d_delete(dentry)) 773 goto kill_it; 774 } 775 776 if (!(dentry->d_flags & DCACHE_REFERENCED)) 777 dentry->d_flags |= DCACHE_REFERENCED; 778 dentry_lru_add(dentry); 779 780 dentry->d_lockref.count--; 781 spin_unlock(&dentry->d_lock); 782 return; 783 784 kill_it: 785 dentry = dentry_kill(dentry); 786 if (dentry) 787 goto repeat; 788 } 789 EXPORT_SYMBOL(dput); 790 791 792 /* This must be called with d_lock held */ 793 static inline void __dget_dlock(struct dentry *dentry) 794 { 795 dentry->d_lockref.count++; 796 } 797 798 static inline void __dget(struct dentry *dentry) 799 { 800 lockref_get(&dentry->d_lockref); 801 } 802 803 struct dentry *dget_parent(struct dentry *dentry) 804 { 805 int gotref; 806 struct dentry *ret; 807 808 /* 809 * Do optimistic parent lookup without any 810 * locking. 811 */ 812 rcu_read_lock(); 813 ret = ACCESS_ONCE(dentry->d_parent); 814 gotref = lockref_get_not_zero(&ret->d_lockref); 815 rcu_read_unlock(); 816 if (likely(gotref)) { 817 if (likely(ret == ACCESS_ONCE(dentry->d_parent))) 818 return ret; 819 dput(ret); 820 } 821 822 repeat: 823 /* 824 * Don't need rcu_dereference because we re-check it was correct under 825 * the lock. 826 */ 827 rcu_read_lock(); 828 ret = dentry->d_parent; 829 spin_lock(&ret->d_lock); 830 if (unlikely(ret != dentry->d_parent)) { 831 spin_unlock(&ret->d_lock); 832 rcu_read_unlock(); 833 goto repeat; 834 } 835 rcu_read_unlock(); 836 BUG_ON(!ret->d_lockref.count); 837 ret->d_lockref.count++; 838 spin_unlock(&ret->d_lock); 839 return ret; 840 } 841 EXPORT_SYMBOL(dget_parent); 842 843 /** 844 * d_find_alias - grab a hashed alias of inode 845 * @inode: inode in question 846 * 847 * If inode has a hashed alias, or is a directory and has any alias, 848 * acquire the reference to alias and return it. Otherwise return NULL. 849 * Notice that if inode is a directory there can be only one alias and 850 * it can be unhashed only if it has no children, or if it is the root 851 * of a filesystem, or if the directory was renamed and d_revalidate 852 * was the first vfs operation to notice. 853 * 854 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 855 * any other hashed alias over that one. 856 */ 857 static struct dentry *__d_find_alias(struct inode *inode) 858 { 859 struct dentry *alias, *discon_alias; 860 861 again: 862 discon_alias = NULL; 863 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 864 spin_lock(&alias->d_lock); 865 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 866 if (IS_ROOT(alias) && 867 (alias->d_flags & DCACHE_DISCONNECTED)) { 868 discon_alias = alias; 869 } else { 870 __dget_dlock(alias); 871 spin_unlock(&alias->d_lock); 872 return alias; 873 } 874 } 875 spin_unlock(&alias->d_lock); 876 } 877 if (discon_alias) { 878 alias = discon_alias; 879 spin_lock(&alias->d_lock); 880 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 881 __dget_dlock(alias); 882 spin_unlock(&alias->d_lock); 883 return alias; 884 } 885 spin_unlock(&alias->d_lock); 886 goto again; 887 } 888 return NULL; 889 } 890 891 struct dentry *d_find_alias(struct inode *inode) 892 { 893 struct dentry *de = NULL; 894 895 if (!hlist_empty(&inode->i_dentry)) { 896 spin_lock(&inode->i_lock); 897 de = __d_find_alias(inode); 898 spin_unlock(&inode->i_lock); 899 } 900 return de; 901 } 902 EXPORT_SYMBOL(d_find_alias); 903 904 /* 905 * Try to kill dentries associated with this inode. 906 * WARNING: you must own a reference to inode. 907 */ 908 void d_prune_aliases(struct inode *inode) 909 { 910 struct dentry *dentry; 911 restart: 912 spin_lock(&inode->i_lock); 913 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 914 spin_lock(&dentry->d_lock); 915 if (!dentry->d_lockref.count) { 916 struct dentry *parent = lock_parent(dentry); 917 if (likely(!dentry->d_lockref.count)) { 918 __dentry_kill(dentry); 919 dput(parent); 920 goto restart; 921 } 922 if (parent) 923 spin_unlock(&parent->d_lock); 924 } 925 spin_unlock(&dentry->d_lock); 926 } 927 spin_unlock(&inode->i_lock); 928 } 929 EXPORT_SYMBOL(d_prune_aliases); 930 931 static void shrink_dentry_list(struct list_head *list) 932 { 933 struct dentry *dentry, *parent; 934 935 while (!list_empty(list)) { 936 struct inode *inode; 937 dentry = list_entry(list->prev, struct dentry, d_lru); 938 spin_lock(&dentry->d_lock); 939 parent = lock_parent(dentry); 940 941 /* 942 * The dispose list is isolated and dentries are not accounted 943 * to the LRU here, so we can simply remove it from the list 944 * here regardless of whether it is referenced or not. 945 */ 946 d_shrink_del(dentry); 947 948 /* 949 * We found an inuse dentry which was not removed from 950 * the LRU because of laziness during lookup. Do not free it. 951 */ 952 if (dentry->d_lockref.count > 0) { 953 spin_unlock(&dentry->d_lock); 954 if (parent) 955 spin_unlock(&parent->d_lock); 956 continue; 957 } 958 959 960 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 961 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 962 spin_unlock(&dentry->d_lock); 963 if (parent) 964 spin_unlock(&parent->d_lock); 965 if (can_free) 966 dentry_free(dentry); 967 continue; 968 } 969 970 inode = dentry->d_inode; 971 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 972 d_shrink_add(dentry, list); 973 spin_unlock(&dentry->d_lock); 974 if (parent) 975 spin_unlock(&parent->d_lock); 976 continue; 977 } 978 979 __dentry_kill(dentry); 980 981 /* 982 * We need to prune ancestors too. This is necessary to prevent 983 * quadratic behavior of shrink_dcache_parent(), but is also 984 * expected to be beneficial in reducing dentry cache 985 * fragmentation. 986 */ 987 dentry = parent; 988 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 989 parent = lock_parent(dentry); 990 if (dentry->d_lockref.count != 1) { 991 dentry->d_lockref.count--; 992 spin_unlock(&dentry->d_lock); 993 if (parent) 994 spin_unlock(&parent->d_lock); 995 break; 996 } 997 inode = dentry->d_inode; /* can't be NULL */ 998 if (unlikely(!spin_trylock(&inode->i_lock))) { 999 spin_unlock(&dentry->d_lock); 1000 if (parent) 1001 spin_unlock(&parent->d_lock); 1002 cpu_relax(); 1003 continue; 1004 } 1005 __dentry_kill(dentry); 1006 dentry = parent; 1007 } 1008 } 1009 } 1010 1011 static enum lru_status dentry_lru_isolate(struct list_head *item, 1012 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1013 { 1014 struct list_head *freeable = arg; 1015 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1016 1017 1018 /* 1019 * we are inverting the lru lock/dentry->d_lock here, 1020 * so use a trylock. If we fail to get the lock, just skip 1021 * it 1022 */ 1023 if (!spin_trylock(&dentry->d_lock)) 1024 return LRU_SKIP; 1025 1026 /* 1027 * Referenced dentries are still in use. If they have active 1028 * counts, just remove them from the LRU. Otherwise give them 1029 * another pass through the LRU. 1030 */ 1031 if (dentry->d_lockref.count) { 1032 d_lru_isolate(lru, dentry); 1033 spin_unlock(&dentry->d_lock); 1034 return LRU_REMOVED; 1035 } 1036 1037 if (dentry->d_flags & DCACHE_REFERENCED) { 1038 dentry->d_flags &= ~DCACHE_REFERENCED; 1039 spin_unlock(&dentry->d_lock); 1040 1041 /* 1042 * The list move itself will be made by the common LRU code. At 1043 * this point, we've dropped the dentry->d_lock but keep the 1044 * lru lock. This is safe to do, since every list movement is 1045 * protected by the lru lock even if both locks are held. 1046 * 1047 * This is guaranteed by the fact that all LRU management 1048 * functions are intermediated by the LRU API calls like 1049 * list_lru_add and list_lru_del. List movement in this file 1050 * only ever occur through this functions or through callbacks 1051 * like this one, that are called from the LRU API. 1052 * 1053 * The only exceptions to this are functions like 1054 * shrink_dentry_list, and code that first checks for the 1055 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1056 * operating only with stack provided lists after they are 1057 * properly isolated from the main list. It is thus, always a 1058 * local access. 1059 */ 1060 return LRU_ROTATE; 1061 } 1062 1063 d_lru_shrink_move(lru, dentry, freeable); 1064 spin_unlock(&dentry->d_lock); 1065 1066 return LRU_REMOVED; 1067 } 1068 1069 /** 1070 * prune_dcache_sb - shrink the dcache 1071 * @sb: superblock 1072 * @sc: shrink control, passed to list_lru_shrink_walk() 1073 * 1074 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1075 * is done when we need more memory and called from the superblock shrinker 1076 * function. 1077 * 1078 * This function may fail to free any resources if all the dentries are in 1079 * use. 1080 */ 1081 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1082 { 1083 LIST_HEAD(dispose); 1084 long freed; 1085 1086 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1087 dentry_lru_isolate, &dispose); 1088 shrink_dentry_list(&dispose); 1089 return freed; 1090 } 1091 1092 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1093 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1094 { 1095 struct list_head *freeable = arg; 1096 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1097 1098 /* 1099 * we are inverting the lru lock/dentry->d_lock here, 1100 * so use a trylock. If we fail to get the lock, just skip 1101 * it 1102 */ 1103 if (!spin_trylock(&dentry->d_lock)) 1104 return LRU_SKIP; 1105 1106 d_lru_shrink_move(lru, dentry, freeable); 1107 spin_unlock(&dentry->d_lock); 1108 1109 return LRU_REMOVED; 1110 } 1111 1112 1113 /** 1114 * shrink_dcache_sb - shrink dcache for a superblock 1115 * @sb: superblock 1116 * 1117 * Shrink the dcache for the specified super block. This is used to free 1118 * the dcache before unmounting a file system. 1119 */ 1120 void shrink_dcache_sb(struct super_block *sb) 1121 { 1122 long freed; 1123 1124 do { 1125 LIST_HEAD(dispose); 1126 1127 freed = list_lru_walk(&sb->s_dentry_lru, 1128 dentry_lru_isolate_shrink, &dispose, UINT_MAX); 1129 1130 this_cpu_sub(nr_dentry_unused, freed); 1131 shrink_dentry_list(&dispose); 1132 } while (freed > 0); 1133 } 1134 EXPORT_SYMBOL(shrink_dcache_sb); 1135 1136 /** 1137 * enum d_walk_ret - action to talke during tree walk 1138 * @D_WALK_CONTINUE: contrinue walk 1139 * @D_WALK_QUIT: quit walk 1140 * @D_WALK_NORETRY: quit when retry is needed 1141 * @D_WALK_SKIP: skip this dentry and its children 1142 */ 1143 enum d_walk_ret { 1144 D_WALK_CONTINUE, 1145 D_WALK_QUIT, 1146 D_WALK_NORETRY, 1147 D_WALK_SKIP, 1148 }; 1149 1150 /** 1151 * d_walk - walk the dentry tree 1152 * @parent: start of walk 1153 * @data: data passed to @enter() and @finish() 1154 * @enter: callback when first entering the dentry 1155 * @finish: callback when successfully finished the walk 1156 * 1157 * The @enter() and @finish() callbacks are called with d_lock held. 1158 */ 1159 static void d_walk(struct dentry *parent, void *data, 1160 enum d_walk_ret (*enter)(void *, struct dentry *), 1161 void (*finish)(void *)) 1162 { 1163 struct dentry *this_parent; 1164 struct list_head *next; 1165 unsigned seq = 0; 1166 enum d_walk_ret ret; 1167 bool retry = true; 1168 1169 again: 1170 read_seqbegin_or_lock(&rename_lock, &seq); 1171 this_parent = parent; 1172 spin_lock(&this_parent->d_lock); 1173 1174 ret = enter(data, this_parent); 1175 switch (ret) { 1176 case D_WALK_CONTINUE: 1177 break; 1178 case D_WALK_QUIT: 1179 case D_WALK_SKIP: 1180 goto out_unlock; 1181 case D_WALK_NORETRY: 1182 retry = false; 1183 break; 1184 } 1185 repeat: 1186 next = this_parent->d_subdirs.next; 1187 resume: 1188 while (next != &this_parent->d_subdirs) { 1189 struct list_head *tmp = next; 1190 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1191 next = tmp->next; 1192 1193 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1194 1195 ret = enter(data, dentry); 1196 switch (ret) { 1197 case D_WALK_CONTINUE: 1198 break; 1199 case D_WALK_QUIT: 1200 spin_unlock(&dentry->d_lock); 1201 goto out_unlock; 1202 case D_WALK_NORETRY: 1203 retry = false; 1204 break; 1205 case D_WALK_SKIP: 1206 spin_unlock(&dentry->d_lock); 1207 continue; 1208 } 1209 1210 if (!list_empty(&dentry->d_subdirs)) { 1211 spin_unlock(&this_parent->d_lock); 1212 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1213 this_parent = dentry; 1214 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1215 goto repeat; 1216 } 1217 spin_unlock(&dentry->d_lock); 1218 } 1219 /* 1220 * All done at this level ... ascend and resume the search. 1221 */ 1222 rcu_read_lock(); 1223 ascend: 1224 if (this_parent != parent) { 1225 struct dentry *child = this_parent; 1226 this_parent = child->d_parent; 1227 1228 spin_unlock(&child->d_lock); 1229 spin_lock(&this_parent->d_lock); 1230 1231 /* might go back up the wrong parent if we have had a rename. */ 1232 if (need_seqretry(&rename_lock, seq)) 1233 goto rename_retry; 1234 /* go into the first sibling still alive */ 1235 do { 1236 next = child->d_child.next; 1237 if (next == &this_parent->d_subdirs) 1238 goto ascend; 1239 child = list_entry(next, struct dentry, d_child); 1240 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1241 rcu_read_unlock(); 1242 goto resume; 1243 } 1244 if (need_seqretry(&rename_lock, seq)) 1245 goto rename_retry; 1246 rcu_read_unlock(); 1247 if (finish) 1248 finish(data); 1249 1250 out_unlock: 1251 spin_unlock(&this_parent->d_lock); 1252 done_seqretry(&rename_lock, seq); 1253 return; 1254 1255 rename_retry: 1256 spin_unlock(&this_parent->d_lock); 1257 rcu_read_unlock(); 1258 BUG_ON(seq & 1); 1259 if (!retry) 1260 return; 1261 seq = 1; 1262 goto again; 1263 } 1264 1265 /* 1266 * Search for at least 1 mount point in the dentry's subdirs. 1267 * We descend to the next level whenever the d_subdirs 1268 * list is non-empty and continue searching. 1269 */ 1270 1271 static enum d_walk_ret check_mount(void *data, struct dentry *dentry) 1272 { 1273 int *ret = data; 1274 if (d_mountpoint(dentry)) { 1275 *ret = 1; 1276 return D_WALK_QUIT; 1277 } 1278 return D_WALK_CONTINUE; 1279 } 1280 1281 /** 1282 * have_submounts - check for mounts over a dentry 1283 * @parent: dentry to check. 1284 * 1285 * Return true if the parent or its subdirectories contain 1286 * a mount point 1287 */ 1288 int have_submounts(struct dentry *parent) 1289 { 1290 int ret = 0; 1291 1292 d_walk(parent, &ret, check_mount, NULL); 1293 1294 return ret; 1295 } 1296 EXPORT_SYMBOL(have_submounts); 1297 1298 /* 1299 * Called by mount code to set a mountpoint and check if the mountpoint is 1300 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1301 * subtree can become unreachable). 1302 * 1303 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1304 * this reason take rename_lock and d_lock on dentry and ancestors. 1305 */ 1306 int d_set_mounted(struct dentry *dentry) 1307 { 1308 struct dentry *p; 1309 int ret = -ENOENT; 1310 write_seqlock(&rename_lock); 1311 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1312 /* Need exclusion wrt. d_invalidate() */ 1313 spin_lock(&p->d_lock); 1314 if (unlikely(d_unhashed(p))) { 1315 spin_unlock(&p->d_lock); 1316 goto out; 1317 } 1318 spin_unlock(&p->d_lock); 1319 } 1320 spin_lock(&dentry->d_lock); 1321 if (!d_unlinked(dentry)) { 1322 dentry->d_flags |= DCACHE_MOUNTED; 1323 ret = 0; 1324 } 1325 spin_unlock(&dentry->d_lock); 1326 out: 1327 write_sequnlock(&rename_lock); 1328 return ret; 1329 } 1330 1331 /* 1332 * Search the dentry child list of the specified parent, 1333 * and move any unused dentries to the end of the unused 1334 * list for prune_dcache(). We descend to the next level 1335 * whenever the d_subdirs list is non-empty and continue 1336 * searching. 1337 * 1338 * It returns zero iff there are no unused children, 1339 * otherwise it returns the number of children moved to 1340 * the end of the unused list. This may not be the total 1341 * number of unused children, because select_parent can 1342 * drop the lock and return early due to latency 1343 * constraints. 1344 */ 1345 1346 struct select_data { 1347 struct dentry *start; 1348 struct list_head dispose; 1349 int found; 1350 }; 1351 1352 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1353 { 1354 struct select_data *data = _data; 1355 enum d_walk_ret ret = D_WALK_CONTINUE; 1356 1357 if (data->start == dentry) 1358 goto out; 1359 1360 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1361 data->found++; 1362 } else { 1363 if (dentry->d_flags & DCACHE_LRU_LIST) 1364 d_lru_del(dentry); 1365 if (!dentry->d_lockref.count) { 1366 d_shrink_add(dentry, &data->dispose); 1367 data->found++; 1368 } 1369 } 1370 /* 1371 * We can return to the caller if we have found some (this 1372 * ensures forward progress). We'll be coming back to find 1373 * the rest. 1374 */ 1375 if (!list_empty(&data->dispose)) 1376 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1377 out: 1378 return ret; 1379 } 1380 1381 /** 1382 * shrink_dcache_parent - prune dcache 1383 * @parent: parent of entries to prune 1384 * 1385 * Prune the dcache to remove unused children of the parent dentry. 1386 */ 1387 void shrink_dcache_parent(struct dentry *parent) 1388 { 1389 for (;;) { 1390 struct select_data data; 1391 1392 INIT_LIST_HEAD(&data.dispose); 1393 data.start = parent; 1394 data.found = 0; 1395 1396 d_walk(parent, &data, select_collect, NULL); 1397 if (!data.found) 1398 break; 1399 1400 shrink_dentry_list(&data.dispose); 1401 cond_resched(); 1402 } 1403 } 1404 EXPORT_SYMBOL(shrink_dcache_parent); 1405 1406 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1407 { 1408 /* it has busy descendents; complain about those instead */ 1409 if (!list_empty(&dentry->d_subdirs)) 1410 return D_WALK_CONTINUE; 1411 1412 /* root with refcount 1 is fine */ 1413 if (dentry == _data && dentry->d_lockref.count == 1) 1414 return D_WALK_CONTINUE; 1415 1416 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1417 " still in use (%d) [unmount of %s %s]\n", 1418 dentry, 1419 dentry->d_inode ? 1420 dentry->d_inode->i_ino : 0UL, 1421 dentry, 1422 dentry->d_lockref.count, 1423 dentry->d_sb->s_type->name, 1424 dentry->d_sb->s_id); 1425 WARN_ON(1); 1426 return D_WALK_CONTINUE; 1427 } 1428 1429 static void do_one_tree(struct dentry *dentry) 1430 { 1431 shrink_dcache_parent(dentry); 1432 d_walk(dentry, dentry, umount_check, NULL); 1433 d_drop(dentry); 1434 dput(dentry); 1435 } 1436 1437 /* 1438 * destroy the dentries attached to a superblock on unmounting 1439 */ 1440 void shrink_dcache_for_umount(struct super_block *sb) 1441 { 1442 struct dentry *dentry; 1443 1444 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1445 1446 dentry = sb->s_root; 1447 sb->s_root = NULL; 1448 do_one_tree(dentry); 1449 1450 while (!hlist_bl_empty(&sb->s_anon)) { 1451 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash)); 1452 do_one_tree(dentry); 1453 } 1454 } 1455 1456 struct detach_data { 1457 struct select_data select; 1458 struct dentry *mountpoint; 1459 }; 1460 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1461 { 1462 struct detach_data *data = _data; 1463 1464 if (d_mountpoint(dentry)) { 1465 __dget_dlock(dentry); 1466 data->mountpoint = dentry; 1467 return D_WALK_QUIT; 1468 } 1469 1470 return select_collect(&data->select, dentry); 1471 } 1472 1473 static void check_and_drop(void *_data) 1474 { 1475 struct detach_data *data = _data; 1476 1477 if (!data->mountpoint && !data->select.found) 1478 __d_drop(data->select.start); 1479 } 1480 1481 /** 1482 * d_invalidate - detach submounts, prune dcache, and drop 1483 * @dentry: dentry to invalidate (aka detach, prune and drop) 1484 * 1485 * no dcache lock. 1486 * 1487 * The final d_drop is done as an atomic operation relative to 1488 * rename_lock ensuring there are no races with d_set_mounted. This 1489 * ensures there are no unhashed dentries on the path to a mountpoint. 1490 */ 1491 void d_invalidate(struct dentry *dentry) 1492 { 1493 /* 1494 * If it's already been dropped, return OK. 1495 */ 1496 spin_lock(&dentry->d_lock); 1497 if (d_unhashed(dentry)) { 1498 spin_unlock(&dentry->d_lock); 1499 return; 1500 } 1501 spin_unlock(&dentry->d_lock); 1502 1503 /* Negative dentries can be dropped without further checks */ 1504 if (!dentry->d_inode) { 1505 d_drop(dentry); 1506 return; 1507 } 1508 1509 for (;;) { 1510 struct detach_data data; 1511 1512 data.mountpoint = NULL; 1513 INIT_LIST_HEAD(&data.select.dispose); 1514 data.select.start = dentry; 1515 data.select.found = 0; 1516 1517 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1518 1519 if (data.select.found) 1520 shrink_dentry_list(&data.select.dispose); 1521 1522 if (data.mountpoint) { 1523 detach_mounts(data.mountpoint); 1524 dput(data.mountpoint); 1525 } 1526 1527 if (!data.mountpoint && !data.select.found) 1528 break; 1529 1530 cond_resched(); 1531 } 1532 } 1533 EXPORT_SYMBOL(d_invalidate); 1534 1535 /** 1536 * __d_alloc - allocate a dcache entry 1537 * @sb: filesystem it will belong to 1538 * @name: qstr of the name 1539 * 1540 * Allocates a dentry. It returns %NULL if there is insufficient memory 1541 * available. On a success the dentry is returned. The name passed in is 1542 * copied and the copy passed in may be reused after this call. 1543 */ 1544 1545 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1546 { 1547 struct dentry *dentry; 1548 char *dname; 1549 1550 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1551 if (!dentry) 1552 return NULL; 1553 1554 /* 1555 * We guarantee that the inline name is always NUL-terminated. 1556 * This way the memcpy() done by the name switching in rename 1557 * will still always have a NUL at the end, even if we might 1558 * be overwriting an internal NUL character 1559 */ 1560 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1561 if (name->len > DNAME_INLINE_LEN-1) { 1562 size_t size = offsetof(struct external_name, name[1]); 1563 struct external_name *p = kmalloc(size + name->len, 1564 GFP_KERNEL_ACCOUNT); 1565 if (!p) { 1566 kmem_cache_free(dentry_cache, dentry); 1567 return NULL; 1568 } 1569 atomic_set(&p->u.count, 1); 1570 dname = p->name; 1571 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS)) 1572 kasan_unpoison_shadow(dname, 1573 round_up(name->len + 1, sizeof(unsigned long))); 1574 } else { 1575 dname = dentry->d_iname; 1576 } 1577 1578 dentry->d_name.len = name->len; 1579 dentry->d_name.hash = name->hash; 1580 memcpy(dname, name->name, name->len); 1581 dname[name->len] = 0; 1582 1583 /* Make sure we always see the terminating NUL character */ 1584 smp_wmb(); 1585 dentry->d_name.name = dname; 1586 1587 dentry->d_lockref.count = 1; 1588 dentry->d_flags = 0; 1589 spin_lock_init(&dentry->d_lock); 1590 seqcount_init(&dentry->d_seq); 1591 dentry->d_inode = NULL; 1592 dentry->d_parent = dentry; 1593 dentry->d_sb = sb; 1594 dentry->d_op = NULL; 1595 dentry->d_fsdata = NULL; 1596 INIT_HLIST_BL_NODE(&dentry->d_hash); 1597 INIT_LIST_HEAD(&dentry->d_lru); 1598 INIT_LIST_HEAD(&dentry->d_subdirs); 1599 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1600 INIT_LIST_HEAD(&dentry->d_child); 1601 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1602 1603 this_cpu_inc(nr_dentry); 1604 1605 return dentry; 1606 } 1607 1608 /** 1609 * d_alloc - allocate a dcache entry 1610 * @parent: parent of entry to allocate 1611 * @name: qstr of the name 1612 * 1613 * Allocates a dentry. It returns %NULL if there is insufficient memory 1614 * available. On a success the dentry is returned. The name passed in is 1615 * copied and the copy passed in may be reused after this call. 1616 */ 1617 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1618 { 1619 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1620 if (!dentry) 1621 return NULL; 1622 1623 spin_lock(&parent->d_lock); 1624 /* 1625 * don't need child lock because it is not subject 1626 * to concurrency here 1627 */ 1628 __dget_dlock(parent); 1629 dentry->d_parent = parent; 1630 list_add(&dentry->d_child, &parent->d_subdirs); 1631 spin_unlock(&parent->d_lock); 1632 1633 return dentry; 1634 } 1635 EXPORT_SYMBOL(d_alloc); 1636 1637 /** 1638 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1639 * @sb: the superblock 1640 * @name: qstr of the name 1641 * 1642 * For a filesystem that just pins its dentries in memory and never 1643 * performs lookups at all, return an unhashed IS_ROOT dentry. 1644 */ 1645 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1646 { 1647 return __d_alloc(sb, name); 1648 } 1649 EXPORT_SYMBOL(d_alloc_pseudo); 1650 1651 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1652 { 1653 struct qstr q; 1654 1655 q.name = name; 1656 q.len = strlen(name); 1657 q.hash = full_name_hash(q.name, q.len); 1658 return d_alloc(parent, &q); 1659 } 1660 EXPORT_SYMBOL(d_alloc_name); 1661 1662 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1663 { 1664 WARN_ON_ONCE(dentry->d_op); 1665 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1666 DCACHE_OP_COMPARE | 1667 DCACHE_OP_REVALIDATE | 1668 DCACHE_OP_WEAK_REVALIDATE | 1669 DCACHE_OP_DELETE | 1670 DCACHE_OP_SELECT_INODE | 1671 DCACHE_OP_REAL)); 1672 dentry->d_op = op; 1673 if (!op) 1674 return; 1675 if (op->d_hash) 1676 dentry->d_flags |= DCACHE_OP_HASH; 1677 if (op->d_compare) 1678 dentry->d_flags |= DCACHE_OP_COMPARE; 1679 if (op->d_revalidate) 1680 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1681 if (op->d_weak_revalidate) 1682 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1683 if (op->d_delete) 1684 dentry->d_flags |= DCACHE_OP_DELETE; 1685 if (op->d_prune) 1686 dentry->d_flags |= DCACHE_OP_PRUNE; 1687 if (op->d_select_inode) 1688 dentry->d_flags |= DCACHE_OP_SELECT_INODE; 1689 if (op->d_real) 1690 dentry->d_flags |= DCACHE_OP_REAL; 1691 1692 } 1693 EXPORT_SYMBOL(d_set_d_op); 1694 1695 1696 /* 1697 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1698 * @dentry - The dentry to mark 1699 * 1700 * Mark a dentry as falling through to the lower layer (as set with 1701 * d_pin_lower()). This flag may be recorded on the medium. 1702 */ 1703 void d_set_fallthru(struct dentry *dentry) 1704 { 1705 spin_lock(&dentry->d_lock); 1706 dentry->d_flags |= DCACHE_FALLTHRU; 1707 spin_unlock(&dentry->d_lock); 1708 } 1709 EXPORT_SYMBOL(d_set_fallthru); 1710 1711 static unsigned d_flags_for_inode(struct inode *inode) 1712 { 1713 unsigned add_flags = DCACHE_REGULAR_TYPE; 1714 1715 if (!inode) 1716 return DCACHE_MISS_TYPE; 1717 1718 if (S_ISDIR(inode->i_mode)) { 1719 add_flags = DCACHE_DIRECTORY_TYPE; 1720 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1721 if (unlikely(!inode->i_op->lookup)) 1722 add_flags = DCACHE_AUTODIR_TYPE; 1723 else 1724 inode->i_opflags |= IOP_LOOKUP; 1725 } 1726 goto type_determined; 1727 } 1728 1729 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1730 if (unlikely(inode->i_op->get_link)) { 1731 add_flags = DCACHE_SYMLINK_TYPE; 1732 goto type_determined; 1733 } 1734 inode->i_opflags |= IOP_NOFOLLOW; 1735 } 1736 1737 if (unlikely(!S_ISREG(inode->i_mode))) 1738 add_flags = DCACHE_SPECIAL_TYPE; 1739 1740 type_determined: 1741 if (unlikely(IS_AUTOMOUNT(inode))) 1742 add_flags |= DCACHE_NEED_AUTOMOUNT; 1743 return add_flags; 1744 } 1745 1746 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1747 { 1748 unsigned add_flags = d_flags_for_inode(inode); 1749 1750 spin_lock(&dentry->d_lock); 1751 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1752 raw_write_seqcount_begin(&dentry->d_seq); 1753 __d_set_inode_and_type(dentry, inode, add_flags); 1754 raw_write_seqcount_end(&dentry->d_seq); 1755 __fsnotify_d_instantiate(dentry); 1756 spin_unlock(&dentry->d_lock); 1757 } 1758 1759 /** 1760 * d_instantiate - fill in inode information for a dentry 1761 * @entry: dentry to complete 1762 * @inode: inode to attach to this dentry 1763 * 1764 * Fill in inode information in the entry. 1765 * 1766 * This turns negative dentries into productive full members 1767 * of society. 1768 * 1769 * NOTE! This assumes that the inode count has been incremented 1770 * (or otherwise set) by the caller to indicate that it is now 1771 * in use by the dcache. 1772 */ 1773 1774 void d_instantiate(struct dentry *entry, struct inode * inode) 1775 { 1776 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1777 if (inode) { 1778 spin_lock(&inode->i_lock); 1779 __d_instantiate(entry, inode); 1780 spin_unlock(&inode->i_lock); 1781 } 1782 security_d_instantiate(entry, inode); 1783 } 1784 EXPORT_SYMBOL(d_instantiate); 1785 1786 /** 1787 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1788 * @entry: dentry to complete 1789 * @inode: inode to attach to this dentry 1790 * 1791 * Fill in inode information in the entry. If a directory alias is found, then 1792 * return an error (and drop inode). Together with d_materialise_unique() this 1793 * guarantees that a directory inode may never have more than one alias. 1794 */ 1795 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1796 { 1797 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1798 1799 spin_lock(&inode->i_lock); 1800 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1801 spin_unlock(&inode->i_lock); 1802 iput(inode); 1803 return -EBUSY; 1804 } 1805 __d_instantiate(entry, inode); 1806 spin_unlock(&inode->i_lock); 1807 security_d_instantiate(entry, inode); 1808 1809 return 0; 1810 } 1811 EXPORT_SYMBOL(d_instantiate_no_diralias); 1812 1813 struct dentry *d_make_root(struct inode *root_inode) 1814 { 1815 struct dentry *res = NULL; 1816 1817 if (root_inode) { 1818 static const struct qstr name = QSTR_INIT("/", 1); 1819 1820 res = __d_alloc(root_inode->i_sb, &name); 1821 if (res) 1822 d_instantiate(res, root_inode); 1823 else 1824 iput(root_inode); 1825 } 1826 return res; 1827 } 1828 EXPORT_SYMBOL(d_make_root); 1829 1830 static struct dentry * __d_find_any_alias(struct inode *inode) 1831 { 1832 struct dentry *alias; 1833 1834 if (hlist_empty(&inode->i_dentry)) 1835 return NULL; 1836 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1837 __dget(alias); 1838 return alias; 1839 } 1840 1841 /** 1842 * d_find_any_alias - find any alias for a given inode 1843 * @inode: inode to find an alias for 1844 * 1845 * If any aliases exist for the given inode, take and return a 1846 * reference for one of them. If no aliases exist, return %NULL. 1847 */ 1848 struct dentry *d_find_any_alias(struct inode *inode) 1849 { 1850 struct dentry *de; 1851 1852 spin_lock(&inode->i_lock); 1853 de = __d_find_any_alias(inode); 1854 spin_unlock(&inode->i_lock); 1855 return de; 1856 } 1857 EXPORT_SYMBOL(d_find_any_alias); 1858 1859 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected) 1860 { 1861 static const struct qstr anonstring = QSTR_INIT("/", 1); 1862 struct dentry *tmp; 1863 struct dentry *res; 1864 unsigned add_flags; 1865 1866 if (!inode) 1867 return ERR_PTR(-ESTALE); 1868 if (IS_ERR(inode)) 1869 return ERR_CAST(inode); 1870 1871 res = d_find_any_alias(inode); 1872 if (res) 1873 goto out_iput; 1874 1875 tmp = __d_alloc(inode->i_sb, &anonstring); 1876 if (!tmp) { 1877 res = ERR_PTR(-ENOMEM); 1878 goto out_iput; 1879 } 1880 1881 spin_lock(&inode->i_lock); 1882 res = __d_find_any_alias(inode); 1883 if (res) { 1884 spin_unlock(&inode->i_lock); 1885 dput(tmp); 1886 goto out_iput; 1887 } 1888 1889 /* attach a disconnected dentry */ 1890 add_flags = d_flags_for_inode(inode); 1891 1892 if (disconnected) 1893 add_flags |= DCACHE_DISCONNECTED; 1894 1895 spin_lock(&tmp->d_lock); 1896 __d_set_inode_and_type(tmp, inode, add_flags); 1897 hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry); 1898 hlist_bl_lock(&tmp->d_sb->s_anon); 1899 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1900 hlist_bl_unlock(&tmp->d_sb->s_anon); 1901 spin_unlock(&tmp->d_lock); 1902 spin_unlock(&inode->i_lock); 1903 security_d_instantiate(tmp, inode); 1904 1905 return tmp; 1906 1907 out_iput: 1908 if (res && !IS_ERR(res)) 1909 security_d_instantiate(res, inode); 1910 iput(inode); 1911 return res; 1912 } 1913 1914 /** 1915 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 1916 * @inode: inode to allocate the dentry for 1917 * 1918 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1919 * similar open by handle operations. The returned dentry may be anonymous, 1920 * or may have a full name (if the inode was already in the cache). 1921 * 1922 * When called on a directory inode, we must ensure that the inode only ever 1923 * has one dentry. If a dentry is found, that is returned instead of 1924 * allocating a new one. 1925 * 1926 * On successful return, the reference to the inode has been transferred 1927 * to the dentry. In case of an error the reference on the inode is released. 1928 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1929 * be passed in and the error will be propagated to the return value, 1930 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1931 */ 1932 struct dentry *d_obtain_alias(struct inode *inode) 1933 { 1934 return __d_obtain_alias(inode, 1); 1935 } 1936 EXPORT_SYMBOL(d_obtain_alias); 1937 1938 /** 1939 * d_obtain_root - find or allocate a dentry for a given inode 1940 * @inode: inode to allocate the dentry for 1941 * 1942 * Obtain an IS_ROOT dentry for the root of a filesystem. 1943 * 1944 * We must ensure that directory inodes only ever have one dentry. If a 1945 * dentry is found, that is returned instead of allocating a new one. 1946 * 1947 * On successful return, the reference to the inode has been transferred 1948 * to the dentry. In case of an error the reference on the inode is 1949 * released. A %NULL or IS_ERR inode may be passed in and will be the 1950 * error will be propagate to the return value, with a %NULL @inode 1951 * replaced by ERR_PTR(-ESTALE). 1952 */ 1953 struct dentry *d_obtain_root(struct inode *inode) 1954 { 1955 return __d_obtain_alias(inode, 0); 1956 } 1957 EXPORT_SYMBOL(d_obtain_root); 1958 1959 /** 1960 * d_add_ci - lookup or allocate new dentry with case-exact name 1961 * @inode: the inode case-insensitive lookup has found 1962 * @dentry: the negative dentry that was passed to the parent's lookup func 1963 * @name: the case-exact name to be associated with the returned dentry 1964 * 1965 * This is to avoid filling the dcache with case-insensitive names to the 1966 * same inode, only the actual correct case is stored in the dcache for 1967 * case-insensitive filesystems. 1968 * 1969 * For a case-insensitive lookup match and if the the case-exact dentry 1970 * already exists in in the dcache, use it and return it. 1971 * 1972 * If no entry exists with the exact case name, allocate new dentry with 1973 * the exact case, and return the spliced entry. 1974 */ 1975 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1976 struct qstr *name) 1977 { 1978 struct dentry *found; 1979 struct dentry *new; 1980 1981 /* 1982 * First check if a dentry matching the name already exists, 1983 * if not go ahead and create it now. 1984 */ 1985 found = d_hash_and_lookup(dentry->d_parent, name); 1986 if (!found) { 1987 new = d_alloc(dentry->d_parent, name); 1988 if (!new) { 1989 found = ERR_PTR(-ENOMEM); 1990 } else { 1991 found = d_splice_alias(inode, new); 1992 if (found) { 1993 dput(new); 1994 return found; 1995 } 1996 return new; 1997 } 1998 } 1999 iput(inode); 2000 return found; 2001 } 2002 EXPORT_SYMBOL(d_add_ci); 2003 2004 /* 2005 * Do the slow-case of the dentry name compare. 2006 * 2007 * Unlike the dentry_cmp() function, we need to atomically 2008 * load the name and length information, so that the 2009 * filesystem can rely on them, and can use the 'name' and 2010 * 'len' information without worrying about walking off the 2011 * end of memory etc. 2012 * 2013 * Thus the read_seqcount_retry() and the "duplicate" info 2014 * in arguments (the low-level filesystem should not look 2015 * at the dentry inode or name contents directly, since 2016 * rename can change them while we're in RCU mode). 2017 */ 2018 enum slow_d_compare { 2019 D_COMP_OK, 2020 D_COMP_NOMATCH, 2021 D_COMP_SEQRETRY, 2022 }; 2023 2024 static noinline enum slow_d_compare slow_dentry_cmp( 2025 const struct dentry *parent, 2026 struct dentry *dentry, 2027 unsigned int seq, 2028 const struct qstr *name) 2029 { 2030 int tlen = dentry->d_name.len; 2031 const char *tname = dentry->d_name.name; 2032 2033 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2034 cpu_relax(); 2035 return D_COMP_SEQRETRY; 2036 } 2037 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2038 return D_COMP_NOMATCH; 2039 return D_COMP_OK; 2040 } 2041 2042 /** 2043 * __d_lookup_rcu - search for a dentry (racy, store-free) 2044 * @parent: parent dentry 2045 * @name: qstr of name we wish to find 2046 * @seqp: returns d_seq value at the point where the dentry was found 2047 * Returns: dentry, or NULL 2048 * 2049 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2050 * resolution (store-free path walking) design described in 2051 * Documentation/filesystems/path-lookup.txt. 2052 * 2053 * This is not to be used outside core vfs. 2054 * 2055 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2056 * held, and rcu_read_lock held. The returned dentry must not be stored into 2057 * without taking d_lock and checking d_seq sequence count against @seq 2058 * returned here. 2059 * 2060 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2061 * function. 2062 * 2063 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2064 * the returned dentry, so long as its parent's seqlock is checked after the 2065 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2066 * is formed, giving integrity down the path walk. 2067 * 2068 * NOTE! The caller *has* to check the resulting dentry against the sequence 2069 * number we've returned before using any of the resulting dentry state! 2070 */ 2071 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2072 const struct qstr *name, 2073 unsigned *seqp) 2074 { 2075 u64 hashlen = name->hash_len; 2076 const unsigned char *str = name->name; 2077 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 2078 struct hlist_bl_node *node; 2079 struct dentry *dentry; 2080 2081 /* 2082 * Note: There is significant duplication with __d_lookup_rcu which is 2083 * required to prevent single threaded performance regressions 2084 * especially on architectures where smp_rmb (in seqcounts) are costly. 2085 * Keep the two functions in sync. 2086 */ 2087 2088 /* 2089 * The hash list is protected using RCU. 2090 * 2091 * Carefully use d_seq when comparing a candidate dentry, to avoid 2092 * races with d_move(). 2093 * 2094 * It is possible that concurrent renames can mess up our list 2095 * walk here and result in missing our dentry, resulting in the 2096 * false-negative result. d_lookup() protects against concurrent 2097 * renames using rename_lock seqlock. 2098 * 2099 * See Documentation/filesystems/path-lookup.txt for more details. 2100 */ 2101 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2102 unsigned seq; 2103 2104 seqretry: 2105 /* 2106 * The dentry sequence count protects us from concurrent 2107 * renames, and thus protects parent and name fields. 2108 * 2109 * The caller must perform a seqcount check in order 2110 * to do anything useful with the returned dentry. 2111 * 2112 * NOTE! We do a "raw" seqcount_begin here. That means that 2113 * we don't wait for the sequence count to stabilize if it 2114 * is in the middle of a sequence change. If we do the slow 2115 * dentry compare, we will do seqretries until it is stable, 2116 * and if we end up with a successful lookup, we actually 2117 * want to exit RCU lookup anyway. 2118 */ 2119 seq = raw_seqcount_begin(&dentry->d_seq); 2120 if (dentry->d_parent != parent) 2121 continue; 2122 if (d_unhashed(dentry)) 2123 continue; 2124 2125 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2126 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2127 continue; 2128 *seqp = seq; 2129 switch (slow_dentry_cmp(parent, dentry, seq, name)) { 2130 case D_COMP_OK: 2131 return dentry; 2132 case D_COMP_NOMATCH: 2133 continue; 2134 default: 2135 goto seqretry; 2136 } 2137 } 2138 2139 if (dentry->d_name.hash_len != hashlen) 2140 continue; 2141 *seqp = seq; 2142 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 2143 return dentry; 2144 } 2145 return NULL; 2146 } 2147 2148 /** 2149 * d_lookup - search for a dentry 2150 * @parent: parent dentry 2151 * @name: qstr of name we wish to find 2152 * Returns: dentry, or NULL 2153 * 2154 * d_lookup searches the children of the parent dentry for the name in 2155 * question. If the dentry is found its reference count is incremented and the 2156 * dentry is returned. The caller must use dput to free the entry when it has 2157 * finished using it. %NULL is returned if the dentry does not exist. 2158 */ 2159 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2160 { 2161 struct dentry *dentry; 2162 unsigned seq; 2163 2164 do { 2165 seq = read_seqbegin(&rename_lock); 2166 dentry = __d_lookup(parent, name); 2167 if (dentry) 2168 break; 2169 } while (read_seqretry(&rename_lock, seq)); 2170 return dentry; 2171 } 2172 EXPORT_SYMBOL(d_lookup); 2173 2174 /** 2175 * __d_lookup - search for a dentry (racy) 2176 * @parent: parent dentry 2177 * @name: qstr of name we wish to find 2178 * Returns: dentry, or NULL 2179 * 2180 * __d_lookup is like d_lookup, however it may (rarely) return a 2181 * false-negative result due to unrelated rename activity. 2182 * 2183 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2184 * however it must be used carefully, eg. with a following d_lookup in 2185 * the case of failure. 2186 * 2187 * __d_lookup callers must be commented. 2188 */ 2189 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2190 { 2191 unsigned int len = name->len; 2192 unsigned int hash = name->hash; 2193 const unsigned char *str = name->name; 2194 struct hlist_bl_head *b = d_hash(parent, hash); 2195 struct hlist_bl_node *node; 2196 struct dentry *found = NULL; 2197 struct dentry *dentry; 2198 2199 /* 2200 * Note: There is significant duplication with __d_lookup_rcu which is 2201 * required to prevent single threaded performance regressions 2202 * especially on architectures where smp_rmb (in seqcounts) are costly. 2203 * Keep the two functions in sync. 2204 */ 2205 2206 /* 2207 * The hash list is protected using RCU. 2208 * 2209 * Take d_lock when comparing a candidate dentry, to avoid races 2210 * with d_move(). 2211 * 2212 * It is possible that concurrent renames can mess up our list 2213 * walk here and result in missing our dentry, resulting in the 2214 * false-negative result. d_lookup() protects against concurrent 2215 * renames using rename_lock seqlock. 2216 * 2217 * See Documentation/filesystems/path-lookup.txt for more details. 2218 */ 2219 rcu_read_lock(); 2220 2221 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2222 2223 if (dentry->d_name.hash != hash) 2224 continue; 2225 2226 spin_lock(&dentry->d_lock); 2227 if (dentry->d_parent != parent) 2228 goto next; 2229 if (d_unhashed(dentry)) 2230 goto next; 2231 2232 /* 2233 * It is safe to compare names since d_move() cannot 2234 * change the qstr (protected by d_lock). 2235 */ 2236 if (parent->d_flags & DCACHE_OP_COMPARE) { 2237 int tlen = dentry->d_name.len; 2238 const char *tname = dentry->d_name.name; 2239 if (parent->d_op->d_compare(parent, dentry, tlen, tname, name)) 2240 goto next; 2241 } else { 2242 if (dentry->d_name.len != len) 2243 goto next; 2244 if (dentry_cmp(dentry, str, len)) 2245 goto next; 2246 } 2247 2248 dentry->d_lockref.count++; 2249 found = dentry; 2250 spin_unlock(&dentry->d_lock); 2251 break; 2252 next: 2253 spin_unlock(&dentry->d_lock); 2254 } 2255 rcu_read_unlock(); 2256 2257 return found; 2258 } 2259 2260 /** 2261 * d_hash_and_lookup - hash the qstr then search for a dentry 2262 * @dir: Directory to search in 2263 * @name: qstr of name we wish to find 2264 * 2265 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2266 */ 2267 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2268 { 2269 /* 2270 * Check for a fs-specific hash function. Note that we must 2271 * calculate the standard hash first, as the d_op->d_hash() 2272 * routine may choose to leave the hash value unchanged. 2273 */ 2274 name->hash = full_name_hash(name->name, name->len); 2275 if (dir->d_flags & DCACHE_OP_HASH) { 2276 int err = dir->d_op->d_hash(dir, name); 2277 if (unlikely(err < 0)) 2278 return ERR_PTR(err); 2279 } 2280 return d_lookup(dir, name); 2281 } 2282 EXPORT_SYMBOL(d_hash_and_lookup); 2283 2284 /* 2285 * When a file is deleted, we have two options: 2286 * - turn this dentry into a negative dentry 2287 * - unhash this dentry and free it. 2288 * 2289 * Usually, we want to just turn this into 2290 * a negative dentry, but if anybody else is 2291 * currently using the dentry or the inode 2292 * we can't do that and we fall back on removing 2293 * it from the hash queues and waiting for 2294 * it to be deleted later when it has no users 2295 */ 2296 2297 /** 2298 * d_delete - delete a dentry 2299 * @dentry: The dentry to delete 2300 * 2301 * Turn the dentry into a negative dentry if possible, otherwise 2302 * remove it from the hash queues so it can be deleted later 2303 */ 2304 2305 void d_delete(struct dentry * dentry) 2306 { 2307 struct inode *inode; 2308 int isdir = 0; 2309 /* 2310 * Are we the only user? 2311 */ 2312 again: 2313 spin_lock(&dentry->d_lock); 2314 inode = dentry->d_inode; 2315 isdir = S_ISDIR(inode->i_mode); 2316 if (dentry->d_lockref.count == 1) { 2317 if (!spin_trylock(&inode->i_lock)) { 2318 spin_unlock(&dentry->d_lock); 2319 cpu_relax(); 2320 goto again; 2321 } 2322 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2323 dentry_unlink_inode(dentry); 2324 fsnotify_nameremove(dentry, isdir); 2325 return; 2326 } 2327 2328 if (!d_unhashed(dentry)) 2329 __d_drop(dentry); 2330 2331 spin_unlock(&dentry->d_lock); 2332 2333 fsnotify_nameremove(dentry, isdir); 2334 } 2335 EXPORT_SYMBOL(d_delete); 2336 2337 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2338 { 2339 BUG_ON(!d_unhashed(entry)); 2340 hlist_bl_lock(b); 2341 entry->d_flags |= DCACHE_RCUACCESS; 2342 hlist_bl_add_head_rcu(&entry->d_hash, b); 2343 hlist_bl_unlock(b); 2344 } 2345 2346 static void _d_rehash(struct dentry * entry) 2347 { 2348 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2349 } 2350 2351 /** 2352 * d_rehash - add an entry back to the hash 2353 * @entry: dentry to add to the hash 2354 * 2355 * Adds a dentry to the hash according to its name. 2356 */ 2357 2358 void d_rehash(struct dentry * entry) 2359 { 2360 spin_lock(&entry->d_lock); 2361 _d_rehash(entry); 2362 spin_unlock(&entry->d_lock); 2363 } 2364 EXPORT_SYMBOL(d_rehash); 2365 2366 2367 /* inode->i_lock held if inode is non-NULL */ 2368 2369 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2370 { 2371 if (inode) { 2372 __d_instantiate(dentry, inode); 2373 spin_unlock(&inode->i_lock); 2374 } 2375 security_d_instantiate(dentry, inode); 2376 d_rehash(dentry); 2377 } 2378 2379 /** 2380 * d_add - add dentry to hash queues 2381 * @entry: dentry to add 2382 * @inode: The inode to attach to this dentry 2383 * 2384 * This adds the entry to the hash queues and initializes @inode. 2385 * The entry was actually filled in earlier during d_alloc(). 2386 */ 2387 2388 void d_add(struct dentry *entry, struct inode *inode) 2389 { 2390 if (inode) 2391 spin_lock(&inode->i_lock); 2392 __d_add(entry, inode); 2393 } 2394 EXPORT_SYMBOL(d_add); 2395 2396 /** 2397 * d_exact_alias - find and hash an exact unhashed alias 2398 * @entry: dentry to add 2399 * @inode: The inode to go with this dentry 2400 * 2401 * If an unhashed dentry with the same name/parent and desired 2402 * inode already exists, hash and return it. Otherwise, return 2403 * NULL. 2404 * 2405 * Parent directory should be locked. 2406 */ 2407 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2408 { 2409 struct dentry *alias; 2410 int len = entry->d_name.len; 2411 const char *name = entry->d_name.name; 2412 unsigned int hash = entry->d_name.hash; 2413 2414 spin_lock(&inode->i_lock); 2415 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2416 /* 2417 * Don't need alias->d_lock here, because aliases with 2418 * d_parent == entry->d_parent are not subject to name or 2419 * parent changes, because the parent inode i_mutex is held. 2420 */ 2421 if (alias->d_name.hash != hash) 2422 continue; 2423 if (alias->d_parent != entry->d_parent) 2424 continue; 2425 if (alias->d_name.len != len) 2426 continue; 2427 if (dentry_cmp(alias, name, len)) 2428 continue; 2429 spin_lock(&alias->d_lock); 2430 if (!d_unhashed(alias)) { 2431 spin_unlock(&alias->d_lock); 2432 alias = NULL; 2433 } else { 2434 __dget_dlock(alias); 2435 _d_rehash(alias); 2436 spin_unlock(&alias->d_lock); 2437 } 2438 spin_unlock(&inode->i_lock); 2439 return alias; 2440 } 2441 spin_unlock(&inode->i_lock); 2442 return NULL; 2443 } 2444 EXPORT_SYMBOL(d_exact_alias); 2445 2446 /** 2447 * dentry_update_name_case - update case insensitive dentry with a new name 2448 * @dentry: dentry to be updated 2449 * @name: new name 2450 * 2451 * Update a case insensitive dentry with new case of name. 2452 * 2453 * dentry must have been returned by d_lookup with name @name. Old and new 2454 * name lengths must match (ie. no d_compare which allows mismatched name 2455 * lengths). 2456 * 2457 * Parent inode i_mutex must be held over d_lookup and into this call (to 2458 * keep renames and concurrent inserts, and readdir(2) away). 2459 */ 2460 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2461 { 2462 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2463 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2464 2465 spin_lock(&dentry->d_lock); 2466 write_seqcount_begin(&dentry->d_seq); 2467 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2468 write_seqcount_end(&dentry->d_seq); 2469 spin_unlock(&dentry->d_lock); 2470 } 2471 EXPORT_SYMBOL(dentry_update_name_case); 2472 2473 static void swap_names(struct dentry *dentry, struct dentry *target) 2474 { 2475 if (unlikely(dname_external(target))) { 2476 if (unlikely(dname_external(dentry))) { 2477 /* 2478 * Both external: swap the pointers 2479 */ 2480 swap(target->d_name.name, dentry->d_name.name); 2481 } else { 2482 /* 2483 * dentry:internal, target:external. Steal target's 2484 * storage and make target internal. 2485 */ 2486 memcpy(target->d_iname, dentry->d_name.name, 2487 dentry->d_name.len + 1); 2488 dentry->d_name.name = target->d_name.name; 2489 target->d_name.name = target->d_iname; 2490 } 2491 } else { 2492 if (unlikely(dname_external(dentry))) { 2493 /* 2494 * dentry:external, target:internal. Give dentry's 2495 * storage to target and make dentry internal 2496 */ 2497 memcpy(dentry->d_iname, target->d_name.name, 2498 target->d_name.len + 1); 2499 target->d_name.name = dentry->d_name.name; 2500 dentry->d_name.name = dentry->d_iname; 2501 } else { 2502 /* 2503 * Both are internal. 2504 */ 2505 unsigned int i; 2506 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2507 kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN); 2508 kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN); 2509 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2510 swap(((long *) &dentry->d_iname)[i], 2511 ((long *) &target->d_iname)[i]); 2512 } 2513 } 2514 } 2515 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2516 } 2517 2518 static void copy_name(struct dentry *dentry, struct dentry *target) 2519 { 2520 struct external_name *old_name = NULL; 2521 if (unlikely(dname_external(dentry))) 2522 old_name = external_name(dentry); 2523 if (unlikely(dname_external(target))) { 2524 atomic_inc(&external_name(target)->u.count); 2525 dentry->d_name = target->d_name; 2526 } else { 2527 memcpy(dentry->d_iname, target->d_name.name, 2528 target->d_name.len + 1); 2529 dentry->d_name.name = dentry->d_iname; 2530 dentry->d_name.hash_len = target->d_name.hash_len; 2531 } 2532 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2533 kfree_rcu(old_name, u.head); 2534 } 2535 2536 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2537 { 2538 /* 2539 * XXXX: do we really need to take target->d_lock? 2540 */ 2541 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2542 spin_lock(&target->d_parent->d_lock); 2543 else { 2544 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2545 spin_lock(&dentry->d_parent->d_lock); 2546 spin_lock_nested(&target->d_parent->d_lock, 2547 DENTRY_D_LOCK_NESTED); 2548 } else { 2549 spin_lock(&target->d_parent->d_lock); 2550 spin_lock_nested(&dentry->d_parent->d_lock, 2551 DENTRY_D_LOCK_NESTED); 2552 } 2553 } 2554 if (target < dentry) { 2555 spin_lock_nested(&target->d_lock, 2); 2556 spin_lock_nested(&dentry->d_lock, 3); 2557 } else { 2558 spin_lock_nested(&dentry->d_lock, 2); 2559 spin_lock_nested(&target->d_lock, 3); 2560 } 2561 } 2562 2563 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2564 { 2565 if (target->d_parent != dentry->d_parent) 2566 spin_unlock(&dentry->d_parent->d_lock); 2567 if (target->d_parent != target) 2568 spin_unlock(&target->d_parent->d_lock); 2569 spin_unlock(&target->d_lock); 2570 spin_unlock(&dentry->d_lock); 2571 } 2572 2573 /* 2574 * When switching names, the actual string doesn't strictly have to 2575 * be preserved in the target - because we're dropping the target 2576 * anyway. As such, we can just do a simple memcpy() to copy over 2577 * the new name before we switch, unless we are going to rehash 2578 * it. Note that if we *do* unhash the target, we are not allowed 2579 * to rehash it without giving it a new name/hash key - whether 2580 * we swap or overwrite the names here, resulting name won't match 2581 * the reality in filesystem; it's only there for d_path() purposes. 2582 * Note that all of this is happening under rename_lock, so the 2583 * any hash lookup seeing it in the middle of manipulations will 2584 * be discarded anyway. So we do not care what happens to the hash 2585 * key in that case. 2586 */ 2587 /* 2588 * __d_move - move a dentry 2589 * @dentry: entry to move 2590 * @target: new dentry 2591 * @exchange: exchange the two dentries 2592 * 2593 * Update the dcache to reflect the move of a file name. Negative 2594 * dcache entries should not be moved in this way. Caller must hold 2595 * rename_lock, the i_mutex of the source and target directories, 2596 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2597 */ 2598 static void __d_move(struct dentry *dentry, struct dentry *target, 2599 bool exchange) 2600 { 2601 if (!dentry->d_inode) 2602 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2603 2604 BUG_ON(d_ancestor(dentry, target)); 2605 BUG_ON(d_ancestor(target, dentry)); 2606 2607 dentry_lock_for_move(dentry, target); 2608 2609 write_seqcount_begin(&dentry->d_seq); 2610 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2611 2612 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2613 2614 /* 2615 * Move the dentry to the target hash queue. Don't bother checking 2616 * for the same hash queue because of how unlikely it is. 2617 */ 2618 __d_drop(dentry); 2619 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2620 2621 /* 2622 * Unhash the target (d_delete() is not usable here). If exchanging 2623 * the two dentries, then rehash onto the other's hash queue. 2624 */ 2625 __d_drop(target); 2626 if (exchange) { 2627 __d_rehash(target, 2628 d_hash(dentry->d_parent, dentry->d_name.hash)); 2629 } 2630 2631 /* Switch the names.. */ 2632 if (exchange) 2633 swap_names(dentry, target); 2634 else 2635 copy_name(dentry, target); 2636 2637 /* ... and switch them in the tree */ 2638 if (IS_ROOT(dentry)) { 2639 /* splicing a tree */ 2640 dentry->d_parent = target->d_parent; 2641 target->d_parent = target; 2642 list_del_init(&target->d_child); 2643 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2644 } else { 2645 /* swapping two dentries */ 2646 swap(dentry->d_parent, target->d_parent); 2647 list_move(&target->d_child, &target->d_parent->d_subdirs); 2648 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2649 if (exchange) 2650 fsnotify_d_move(target); 2651 fsnotify_d_move(dentry); 2652 } 2653 2654 write_seqcount_end(&target->d_seq); 2655 write_seqcount_end(&dentry->d_seq); 2656 2657 dentry_unlock_for_move(dentry, target); 2658 } 2659 2660 /* 2661 * d_move - move a dentry 2662 * @dentry: entry to move 2663 * @target: new dentry 2664 * 2665 * Update the dcache to reflect the move of a file name. Negative 2666 * dcache entries should not be moved in this way. See the locking 2667 * requirements for __d_move. 2668 */ 2669 void d_move(struct dentry *dentry, struct dentry *target) 2670 { 2671 write_seqlock(&rename_lock); 2672 __d_move(dentry, target, false); 2673 write_sequnlock(&rename_lock); 2674 } 2675 EXPORT_SYMBOL(d_move); 2676 2677 /* 2678 * d_exchange - exchange two dentries 2679 * @dentry1: first dentry 2680 * @dentry2: second dentry 2681 */ 2682 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2683 { 2684 write_seqlock(&rename_lock); 2685 2686 WARN_ON(!dentry1->d_inode); 2687 WARN_ON(!dentry2->d_inode); 2688 WARN_ON(IS_ROOT(dentry1)); 2689 WARN_ON(IS_ROOT(dentry2)); 2690 2691 __d_move(dentry1, dentry2, true); 2692 2693 write_sequnlock(&rename_lock); 2694 } 2695 2696 /** 2697 * d_ancestor - search for an ancestor 2698 * @p1: ancestor dentry 2699 * @p2: child dentry 2700 * 2701 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2702 * an ancestor of p2, else NULL. 2703 */ 2704 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2705 { 2706 struct dentry *p; 2707 2708 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2709 if (p->d_parent == p1) 2710 return p; 2711 } 2712 return NULL; 2713 } 2714 2715 /* 2716 * This helper attempts to cope with remotely renamed directories 2717 * 2718 * It assumes that the caller is already holding 2719 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2720 * 2721 * Note: If ever the locking in lock_rename() changes, then please 2722 * remember to update this too... 2723 */ 2724 static int __d_unalias(struct inode *inode, 2725 struct dentry *dentry, struct dentry *alias) 2726 { 2727 struct mutex *m1 = NULL, *m2 = NULL; 2728 int ret = -ESTALE; 2729 2730 /* If alias and dentry share a parent, then no extra locks required */ 2731 if (alias->d_parent == dentry->d_parent) 2732 goto out_unalias; 2733 2734 /* See lock_rename() */ 2735 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2736 goto out_err; 2737 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2738 if (!inode_trylock(alias->d_parent->d_inode)) 2739 goto out_err; 2740 m2 = &alias->d_parent->d_inode->i_mutex; 2741 out_unalias: 2742 __d_move(alias, dentry, false); 2743 ret = 0; 2744 out_err: 2745 if (m2) 2746 mutex_unlock(m2); 2747 if (m1) 2748 mutex_unlock(m1); 2749 return ret; 2750 } 2751 2752 /** 2753 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2754 * @inode: the inode which may have a disconnected dentry 2755 * @dentry: a negative dentry which we want to point to the inode. 2756 * 2757 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2758 * place of the given dentry and return it, else simply d_add the inode 2759 * to the dentry and return NULL. 2760 * 2761 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2762 * we should error out: directories can't have multiple aliases. 2763 * 2764 * This is needed in the lookup routine of any filesystem that is exportable 2765 * (via knfsd) so that we can build dcache paths to directories effectively. 2766 * 2767 * If a dentry was found and moved, then it is returned. Otherwise NULL 2768 * is returned. This matches the expected return value of ->lookup. 2769 * 2770 * Cluster filesystems may call this function with a negative, hashed dentry. 2771 * In that case, we know that the inode will be a regular file, and also this 2772 * will only occur during atomic_open. So we need to check for the dentry 2773 * being already hashed only in the final case. 2774 */ 2775 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2776 { 2777 if (IS_ERR(inode)) 2778 return ERR_CAST(inode); 2779 2780 BUG_ON(!d_unhashed(dentry)); 2781 2782 if (!inode) 2783 goto out; 2784 2785 spin_lock(&inode->i_lock); 2786 if (S_ISDIR(inode->i_mode)) { 2787 struct dentry *new = __d_find_any_alias(inode); 2788 if (unlikely(new)) { 2789 /* The reference to new ensures it remains an alias */ 2790 spin_unlock(&inode->i_lock); 2791 write_seqlock(&rename_lock); 2792 if (unlikely(d_ancestor(new, dentry))) { 2793 write_sequnlock(&rename_lock); 2794 dput(new); 2795 new = ERR_PTR(-ELOOP); 2796 pr_warn_ratelimited( 2797 "VFS: Lookup of '%s' in %s %s" 2798 " would have caused loop\n", 2799 dentry->d_name.name, 2800 inode->i_sb->s_type->name, 2801 inode->i_sb->s_id); 2802 } else if (!IS_ROOT(new)) { 2803 int err = __d_unalias(inode, dentry, new); 2804 write_sequnlock(&rename_lock); 2805 if (err) { 2806 dput(new); 2807 new = ERR_PTR(err); 2808 } 2809 } else { 2810 __d_move(new, dentry, false); 2811 write_sequnlock(&rename_lock); 2812 security_d_instantiate(new, inode); 2813 } 2814 iput(inode); 2815 return new; 2816 } 2817 } 2818 out: 2819 __d_add(dentry, inode); 2820 return NULL; 2821 } 2822 EXPORT_SYMBOL(d_splice_alias); 2823 2824 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2825 { 2826 *buflen -= namelen; 2827 if (*buflen < 0) 2828 return -ENAMETOOLONG; 2829 *buffer -= namelen; 2830 memcpy(*buffer, str, namelen); 2831 return 0; 2832 } 2833 2834 /** 2835 * prepend_name - prepend a pathname in front of current buffer pointer 2836 * @buffer: buffer pointer 2837 * @buflen: allocated length of the buffer 2838 * @name: name string and length qstr structure 2839 * 2840 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to 2841 * make sure that either the old or the new name pointer and length are 2842 * fetched. However, there may be mismatch between length and pointer. 2843 * The length cannot be trusted, we need to copy it byte-by-byte until 2844 * the length is reached or a null byte is found. It also prepends "/" at 2845 * the beginning of the name. The sequence number check at the caller will 2846 * retry it again when a d_move() does happen. So any garbage in the buffer 2847 * due to mismatched pointer and length will be discarded. 2848 * 2849 * Data dependency barrier is needed to make sure that we see that terminating 2850 * NUL. Alpha strikes again, film at 11... 2851 */ 2852 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2853 { 2854 const char *dname = ACCESS_ONCE(name->name); 2855 u32 dlen = ACCESS_ONCE(name->len); 2856 char *p; 2857 2858 smp_read_barrier_depends(); 2859 2860 *buflen -= dlen + 1; 2861 if (*buflen < 0) 2862 return -ENAMETOOLONG; 2863 p = *buffer -= dlen + 1; 2864 *p++ = '/'; 2865 while (dlen--) { 2866 char c = *dname++; 2867 if (!c) 2868 break; 2869 *p++ = c; 2870 } 2871 return 0; 2872 } 2873 2874 /** 2875 * prepend_path - Prepend path string to a buffer 2876 * @path: the dentry/vfsmount to report 2877 * @root: root vfsmnt/dentry 2878 * @buffer: pointer to the end of the buffer 2879 * @buflen: pointer to buffer length 2880 * 2881 * The function will first try to write out the pathname without taking any 2882 * lock other than the RCU read lock to make sure that dentries won't go away. 2883 * It only checks the sequence number of the global rename_lock as any change 2884 * in the dentry's d_seq will be preceded by changes in the rename_lock 2885 * sequence number. If the sequence number had been changed, it will restart 2886 * the whole pathname back-tracing sequence again by taking the rename_lock. 2887 * In this case, there is no need to take the RCU read lock as the recursive 2888 * parent pointer references will keep the dentry chain alive as long as no 2889 * rename operation is performed. 2890 */ 2891 static int prepend_path(const struct path *path, 2892 const struct path *root, 2893 char **buffer, int *buflen) 2894 { 2895 struct dentry *dentry; 2896 struct vfsmount *vfsmnt; 2897 struct mount *mnt; 2898 int error = 0; 2899 unsigned seq, m_seq = 0; 2900 char *bptr; 2901 int blen; 2902 2903 rcu_read_lock(); 2904 restart_mnt: 2905 read_seqbegin_or_lock(&mount_lock, &m_seq); 2906 seq = 0; 2907 rcu_read_lock(); 2908 restart: 2909 bptr = *buffer; 2910 blen = *buflen; 2911 error = 0; 2912 dentry = path->dentry; 2913 vfsmnt = path->mnt; 2914 mnt = real_mount(vfsmnt); 2915 read_seqbegin_or_lock(&rename_lock, &seq); 2916 while (dentry != root->dentry || vfsmnt != root->mnt) { 2917 struct dentry * parent; 2918 2919 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2920 struct mount *parent = ACCESS_ONCE(mnt->mnt_parent); 2921 /* Escaped? */ 2922 if (dentry != vfsmnt->mnt_root) { 2923 bptr = *buffer; 2924 blen = *buflen; 2925 error = 3; 2926 break; 2927 } 2928 /* Global root? */ 2929 if (mnt != parent) { 2930 dentry = ACCESS_ONCE(mnt->mnt_mountpoint); 2931 mnt = parent; 2932 vfsmnt = &mnt->mnt; 2933 continue; 2934 } 2935 if (!error) 2936 error = is_mounted(vfsmnt) ? 1 : 2; 2937 break; 2938 } 2939 parent = dentry->d_parent; 2940 prefetch(parent); 2941 error = prepend_name(&bptr, &blen, &dentry->d_name); 2942 if (error) 2943 break; 2944 2945 dentry = parent; 2946 } 2947 if (!(seq & 1)) 2948 rcu_read_unlock(); 2949 if (need_seqretry(&rename_lock, seq)) { 2950 seq = 1; 2951 goto restart; 2952 } 2953 done_seqretry(&rename_lock, seq); 2954 2955 if (!(m_seq & 1)) 2956 rcu_read_unlock(); 2957 if (need_seqretry(&mount_lock, m_seq)) { 2958 m_seq = 1; 2959 goto restart_mnt; 2960 } 2961 done_seqretry(&mount_lock, m_seq); 2962 2963 if (error >= 0 && bptr == *buffer) { 2964 if (--blen < 0) 2965 error = -ENAMETOOLONG; 2966 else 2967 *--bptr = '/'; 2968 } 2969 *buffer = bptr; 2970 *buflen = blen; 2971 return error; 2972 } 2973 2974 /** 2975 * __d_path - return the path of a dentry 2976 * @path: the dentry/vfsmount to report 2977 * @root: root vfsmnt/dentry 2978 * @buf: buffer to return value in 2979 * @buflen: buffer length 2980 * 2981 * Convert a dentry into an ASCII path name. 2982 * 2983 * Returns a pointer into the buffer or an error code if the 2984 * path was too long. 2985 * 2986 * "buflen" should be positive. 2987 * 2988 * If the path is not reachable from the supplied root, return %NULL. 2989 */ 2990 char *__d_path(const struct path *path, 2991 const struct path *root, 2992 char *buf, int buflen) 2993 { 2994 char *res = buf + buflen; 2995 int error; 2996 2997 prepend(&res, &buflen, "\0", 1); 2998 error = prepend_path(path, root, &res, &buflen); 2999 3000 if (error < 0) 3001 return ERR_PTR(error); 3002 if (error > 0) 3003 return NULL; 3004 return res; 3005 } 3006 3007 char *d_absolute_path(const struct path *path, 3008 char *buf, int buflen) 3009 { 3010 struct path root = {}; 3011 char *res = buf + buflen; 3012 int error; 3013 3014 prepend(&res, &buflen, "\0", 1); 3015 error = prepend_path(path, &root, &res, &buflen); 3016 3017 if (error > 1) 3018 error = -EINVAL; 3019 if (error < 0) 3020 return ERR_PTR(error); 3021 return res; 3022 } 3023 3024 /* 3025 * same as __d_path but appends "(deleted)" for unlinked files. 3026 */ 3027 static int path_with_deleted(const struct path *path, 3028 const struct path *root, 3029 char **buf, int *buflen) 3030 { 3031 prepend(buf, buflen, "\0", 1); 3032 if (d_unlinked(path->dentry)) { 3033 int error = prepend(buf, buflen, " (deleted)", 10); 3034 if (error) 3035 return error; 3036 } 3037 3038 return prepend_path(path, root, buf, buflen); 3039 } 3040 3041 static int prepend_unreachable(char **buffer, int *buflen) 3042 { 3043 return prepend(buffer, buflen, "(unreachable)", 13); 3044 } 3045 3046 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3047 { 3048 unsigned seq; 3049 3050 do { 3051 seq = read_seqcount_begin(&fs->seq); 3052 *root = fs->root; 3053 } while (read_seqcount_retry(&fs->seq, seq)); 3054 } 3055 3056 /** 3057 * d_path - return the path of a dentry 3058 * @path: path to report 3059 * @buf: buffer to return value in 3060 * @buflen: buffer length 3061 * 3062 * Convert a dentry into an ASCII path name. If the entry has been deleted 3063 * the string " (deleted)" is appended. Note that this is ambiguous. 3064 * 3065 * Returns a pointer into the buffer or an error code if the path was 3066 * too long. Note: Callers should use the returned pointer, not the passed 3067 * in buffer, to use the name! The implementation often starts at an offset 3068 * into the buffer, and may leave 0 bytes at the start. 3069 * 3070 * "buflen" should be positive. 3071 */ 3072 char *d_path(const struct path *path, char *buf, int buflen) 3073 { 3074 char *res = buf + buflen; 3075 struct path root; 3076 int error; 3077 3078 /* 3079 * We have various synthetic filesystems that never get mounted. On 3080 * these filesystems dentries are never used for lookup purposes, and 3081 * thus don't need to be hashed. They also don't need a name until a 3082 * user wants to identify the object in /proc/pid/fd/. The little hack 3083 * below allows us to generate a name for these objects on demand: 3084 * 3085 * Some pseudo inodes are mountable. When they are mounted 3086 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3087 * and instead have d_path return the mounted path. 3088 */ 3089 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3090 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3091 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3092 3093 rcu_read_lock(); 3094 get_fs_root_rcu(current->fs, &root); 3095 error = path_with_deleted(path, &root, &res, &buflen); 3096 rcu_read_unlock(); 3097 3098 if (error < 0) 3099 res = ERR_PTR(error); 3100 return res; 3101 } 3102 EXPORT_SYMBOL(d_path); 3103 3104 /* 3105 * Helper function for dentry_operations.d_dname() members 3106 */ 3107 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3108 const char *fmt, ...) 3109 { 3110 va_list args; 3111 char temp[64]; 3112 int sz; 3113 3114 va_start(args, fmt); 3115 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3116 va_end(args); 3117 3118 if (sz > sizeof(temp) || sz > buflen) 3119 return ERR_PTR(-ENAMETOOLONG); 3120 3121 buffer += buflen - sz; 3122 return memcpy(buffer, temp, sz); 3123 } 3124 3125 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3126 { 3127 char *end = buffer + buflen; 3128 /* these dentries are never renamed, so d_lock is not needed */ 3129 if (prepend(&end, &buflen, " (deleted)", 11) || 3130 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3131 prepend(&end, &buflen, "/", 1)) 3132 end = ERR_PTR(-ENAMETOOLONG); 3133 return end; 3134 } 3135 EXPORT_SYMBOL(simple_dname); 3136 3137 /* 3138 * Write full pathname from the root of the filesystem into the buffer. 3139 */ 3140 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3141 { 3142 struct dentry *dentry; 3143 char *end, *retval; 3144 int len, seq = 0; 3145 int error = 0; 3146 3147 if (buflen < 2) 3148 goto Elong; 3149 3150 rcu_read_lock(); 3151 restart: 3152 dentry = d; 3153 end = buf + buflen; 3154 len = buflen; 3155 prepend(&end, &len, "\0", 1); 3156 /* Get '/' right */ 3157 retval = end-1; 3158 *retval = '/'; 3159 read_seqbegin_or_lock(&rename_lock, &seq); 3160 while (!IS_ROOT(dentry)) { 3161 struct dentry *parent = dentry->d_parent; 3162 3163 prefetch(parent); 3164 error = prepend_name(&end, &len, &dentry->d_name); 3165 if (error) 3166 break; 3167 3168 retval = end; 3169 dentry = parent; 3170 } 3171 if (!(seq & 1)) 3172 rcu_read_unlock(); 3173 if (need_seqretry(&rename_lock, seq)) { 3174 seq = 1; 3175 goto restart; 3176 } 3177 done_seqretry(&rename_lock, seq); 3178 if (error) 3179 goto Elong; 3180 return retval; 3181 Elong: 3182 return ERR_PTR(-ENAMETOOLONG); 3183 } 3184 3185 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3186 { 3187 return __dentry_path(dentry, buf, buflen); 3188 } 3189 EXPORT_SYMBOL(dentry_path_raw); 3190 3191 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3192 { 3193 char *p = NULL; 3194 char *retval; 3195 3196 if (d_unlinked(dentry)) { 3197 p = buf + buflen; 3198 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3199 goto Elong; 3200 buflen++; 3201 } 3202 retval = __dentry_path(dentry, buf, buflen); 3203 if (!IS_ERR(retval) && p) 3204 *p = '/'; /* restore '/' overriden with '\0' */ 3205 return retval; 3206 Elong: 3207 return ERR_PTR(-ENAMETOOLONG); 3208 } 3209 3210 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3211 struct path *pwd) 3212 { 3213 unsigned seq; 3214 3215 do { 3216 seq = read_seqcount_begin(&fs->seq); 3217 *root = fs->root; 3218 *pwd = fs->pwd; 3219 } while (read_seqcount_retry(&fs->seq, seq)); 3220 } 3221 3222 /* 3223 * NOTE! The user-level library version returns a 3224 * character pointer. The kernel system call just 3225 * returns the length of the buffer filled (which 3226 * includes the ending '\0' character), or a negative 3227 * error value. So libc would do something like 3228 * 3229 * char *getcwd(char * buf, size_t size) 3230 * { 3231 * int retval; 3232 * 3233 * retval = sys_getcwd(buf, size); 3234 * if (retval >= 0) 3235 * return buf; 3236 * errno = -retval; 3237 * return NULL; 3238 * } 3239 */ 3240 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3241 { 3242 int error; 3243 struct path pwd, root; 3244 char *page = __getname(); 3245 3246 if (!page) 3247 return -ENOMEM; 3248 3249 rcu_read_lock(); 3250 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3251 3252 error = -ENOENT; 3253 if (!d_unlinked(pwd.dentry)) { 3254 unsigned long len; 3255 char *cwd = page + PATH_MAX; 3256 int buflen = PATH_MAX; 3257 3258 prepend(&cwd, &buflen, "\0", 1); 3259 error = prepend_path(&pwd, &root, &cwd, &buflen); 3260 rcu_read_unlock(); 3261 3262 if (error < 0) 3263 goto out; 3264 3265 /* Unreachable from current root */ 3266 if (error > 0) { 3267 error = prepend_unreachable(&cwd, &buflen); 3268 if (error) 3269 goto out; 3270 } 3271 3272 error = -ERANGE; 3273 len = PATH_MAX + page - cwd; 3274 if (len <= size) { 3275 error = len; 3276 if (copy_to_user(buf, cwd, len)) 3277 error = -EFAULT; 3278 } 3279 } else { 3280 rcu_read_unlock(); 3281 } 3282 3283 out: 3284 __putname(page); 3285 return error; 3286 } 3287 3288 /* 3289 * Test whether new_dentry is a subdirectory of old_dentry. 3290 * 3291 * Trivially implemented using the dcache structure 3292 */ 3293 3294 /** 3295 * is_subdir - is new dentry a subdirectory of old_dentry 3296 * @new_dentry: new dentry 3297 * @old_dentry: old dentry 3298 * 3299 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3300 * Returns false otherwise. 3301 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3302 */ 3303 3304 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3305 { 3306 bool result; 3307 unsigned seq; 3308 3309 if (new_dentry == old_dentry) 3310 return true; 3311 3312 do { 3313 /* for restarting inner loop in case of seq retry */ 3314 seq = read_seqbegin(&rename_lock); 3315 /* 3316 * Need rcu_readlock to protect against the d_parent trashing 3317 * due to d_move 3318 */ 3319 rcu_read_lock(); 3320 if (d_ancestor(old_dentry, new_dentry)) 3321 result = true; 3322 else 3323 result = false; 3324 rcu_read_unlock(); 3325 } while (read_seqretry(&rename_lock, seq)); 3326 3327 return result; 3328 } 3329 3330 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3331 { 3332 struct dentry *root = data; 3333 if (dentry != root) { 3334 if (d_unhashed(dentry) || !dentry->d_inode) 3335 return D_WALK_SKIP; 3336 3337 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3338 dentry->d_flags |= DCACHE_GENOCIDE; 3339 dentry->d_lockref.count--; 3340 } 3341 } 3342 return D_WALK_CONTINUE; 3343 } 3344 3345 void d_genocide(struct dentry *parent) 3346 { 3347 d_walk(parent, parent, d_genocide_kill, NULL); 3348 } 3349 3350 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3351 { 3352 inode_dec_link_count(inode); 3353 BUG_ON(dentry->d_name.name != dentry->d_iname || 3354 !hlist_unhashed(&dentry->d_u.d_alias) || 3355 !d_unlinked(dentry)); 3356 spin_lock(&dentry->d_parent->d_lock); 3357 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3358 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3359 (unsigned long long)inode->i_ino); 3360 spin_unlock(&dentry->d_lock); 3361 spin_unlock(&dentry->d_parent->d_lock); 3362 d_instantiate(dentry, inode); 3363 } 3364 EXPORT_SYMBOL(d_tmpfile); 3365 3366 static __initdata unsigned long dhash_entries; 3367 static int __init set_dhash_entries(char *str) 3368 { 3369 if (!str) 3370 return 0; 3371 dhash_entries = simple_strtoul(str, &str, 0); 3372 return 1; 3373 } 3374 __setup("dhash_entries=", set_dhash_entries); 3375 3376 static void __init dcache_init_early(void) 3377 { 3378 unsigned int loop; 3379 3380 /* If hashes are distributed across NUMA nodes, defer 3381 * hash allocation until vmalloc space is available. 3382 */ 3383 if (hashdist) 3384 return; 3385 3386 dentry_hashtable = 3387 alloc_large_system_hash("Dentry cache", 3388 sizeof(struct hlist_bl_head), 3389 dhash_entries, 3390 13, 3391 HASH_EARLY, 3392 &d_hash_shift, 3393 &d_hash_mask, 3394 0, 3395 0); 3396 3397 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3398 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3399 } 3400 3401 static void __init dcache_init(void) 3402 { 3403 unsigned int loop; 3404 3405 /* 3406 * A constructor could be added for stable state like the lists, 3407 * but it is probably not worth it because of the cache nature 3408 * of the dcache. 3409 */ 3410 dentry_cache = KMEM_CACHE(dentry, 3411 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT); 3412 3413 /* Hash may have been set up in dcache_init_early */ 3414 if (!hashdist) 3415 return; 3416 3417 dentry_hashtable = 3418 alloc_large_system_hash("Dentry cache", 3419 sizeof(struct hlist_bl_head), 3420 dhash_entries, 3421 13, 3422 0, 3423 &d_hash_shift, 3424 &d_hash_mask, 3425 0, 3426 0); 3427 3428 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3429 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3430 } 3431 3432 /* SLAB cache for __getname() consumers */ 3433 struct kmem_cache *names_cachep __read_mostly; 3434 EXPORT_SYMBOL(names_cachep); 3435 3436 EXPORT_SYMBOL(d_genocide); 3437 3438 void __init vfs_caches_init_early(void) 3439 { 3440 dcache_init_early(); 3441 inode_init_early(); 3442 } 3443 3444 void __init vfs_caches_init(void) 3445 { 3446 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3447 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3448 3449 dcache_init(); 3450 inode_init(); 3451 files_init(); 3452 files_maxfiles_init(); 3453 mnt_init(); 3454 bdev_cache_init(); 3455 chrdev_init(); 3456 } 3457