1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <linux/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/bit_spinlock.h> 36 #include <linux/rculist_bl.h> 37 #include <linux/prefetch.h> 38 #include <linux/ratelimit.h> 39 #include <linux/list_lru.h> 40 #include "internal.h" 41 #include "mount.h" 42 43 /* 44 * Usage: 45 * dcache->d_inode->i_lock protects: 46 * - i_dentry, d_u.d_alias, d_inode of aliases 47 * dcache_hash_bucket lock protects: 48 * - the dcache hash table 49 * s_roots bl list spinlock protects: 50 * - the s_roots list (see __d_drop) 51 * dentry->d_sb->s_dentry_lru_lock protects: 52 * - the dcache lru lists and counters 53 * d_lock protects: 54 * - d_flags 55 * - d_name 56 * - d_lru 57 * - d_count 58 * - d_unhashed() 59 * - d_parent and d_subdirs 60 * - childrens' d_child and d_parent 61 * - d_u.d_alias, d_inode 62 * 63 * Ordering: 64 * dentry->d_inode->i_lock 65 * dentry->d_lock 66 * dentry->d_sb->s_dentry_lru_lock 67 * dcache_hash_bucket lock 68 * s_roots lock 69 * 70 * If there is an ancestor relationship: 71 * dentry->d_parent->...->d_parent->d_lock 72 * ... 73 * dentry->d_parent->d_lock 74 * dentry->d_lock 75 * 76 * If no ancestor relationship: 77 * if (dentry1 < dentry2) 78 * dentry1->d_lock 79 * dentry2->d_lock 80 */ 81 int sysctl_vfs_cache_pressure __read_mostly = 100; 82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 83 84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 85 86 EXPORT_SYMBOL(rename_lock); 87 88 static struct kmem_cache *dentry_cache __read_mostly; 89 90 const struct qstr empty_name = QSTR_INIT("", 0); 91 EXPORT_SYMBOL(empty_name); 92 const struct qstr slash_name = QSTR_INIT("/", 1); 93 EXPORT_SYMBOL(slash_name); 94 95 /* 96 * This is the single most critical data structure when it comes 97 * to the dcache: the hashtable for lookups. Somebody should try 98 * to make this good - I've just made it work. 99 * 100 * This hash-function tries to avoid losing too many bits of hash 101 * information, yet avoid using a prime hash-size or similar. 102 */ 103 104 static unsigned int d_hash_shift __read_mostly; 105 106 static struct hlist_bl_head *dentry_hashtable __read_mostly; 107 108 static inline struct hlist_bl_head *d_hash(unsigned int hash) 109 { 110 return dentry_hashtable + (hash >> d_hash_shift); 111 } 112 113 #define IN_LOOKUP_SHIFT 10 114 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 115 116 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 117 unsigned int hash) 118 { 119 hash += (unsigned long) parent / L1_CACHE_BYTES; 120 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 121 } 122 123 124 /* Statistics gathering. */ 125 struct dentry_stat_t dentry_stat = { 126 .age_limit = 45, 127 }; 128 129 static DEFINE_PER_CPU(long, nr_dentry); 130 static DEFINE_PER_CPU(long, nr_dentry_unused); 131 132 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 133 134 /* 135 * Here we resort to our own counters instead of using generic per-cpu counters 136 * for consistency with what the vfs inode code does. We are expected to harvest 137 * better code and performance by having our own specialized counters. 138 * 139 * Please note that the loop is done over all possible CPUs, not over all online 140 * CPUs. The reason for this is that we don't want to play games with CPUs going 141 * on and off. If one of them goes off, we will just keep their counters. 142 * 143 * glommer: See cffbc8a for details, and if you ever intend to change this, 144 * please update all vfs counters to match. 145 */ 146 static long get_nr_dentry(void) 147 { 148 int i; 149 long sum = 0; 150 for_each_possible_cpu(i) 151 sum += per_cpu(nr_dentry, i); 152 return sum < 0 ? 0 : sum; 153 } 154 155 static long get_nr_dentry_unused(void) 156 { 157 int i; 158 long sum = 0; 159 for_each_possible_cpu(i) 160 sum += per_cpu(nr_dentry_unused, i); 161 return sum < 0 ? 0 : sum; 162 } 163 164 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer, 165 size_t *lenp, loff_t *ppos) 166 { 167 dentry_stat.nr_dentry = get_nr_dentry(); 168 dentry_stat.nr_unused = get_nr_dentry_unused(); 169 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 170 } 171 #endif 172 173 /* 174 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 175 * The strings are both count bytes long, and count is non-zero. 176 */ 177 #ifdef CONFIG_DCACHE_WORD_ACCESS 178 179 #include <asm/word-at-a-time.h> 180 /* 181 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 182 * aligned allocation for this particular component. We don't 183 * strictly need the load_unaligned_zeropad() safety, but it 184 * doesn't hurt either. 185 * 186 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 187 * need the careful unaligned handling. 188 */ 189 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 190 { 191 unsigned long a,b,mask; 192 193 for (;;) { 194 a = read_word_at_a_time(cs); 195 b = load_unaligned_zeropad(ct); 196 if (tcount < sizeof(unsigned long)) 197 break; 198 if (unlikely(a != b)) 199 return 1; 200 cs += sizeof(unsigned long); 201 ct += sizeof(unsigned long); 202 tcount -= sizeof(unsigned long); 203 if (!tcount) 204 return 0; 205 } 206 mask = bytemask_from_count(tcount); 207 return unlikely(!!((a ^ b) & mask)); 208 } 209 210 #else 211 212 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 213 { 214 do { 215 if (*cs != *ct) 216 return 1; 217 cs++; 218 ct++; 219 tcount--; 220 } while (tcount); 221 return 0; 222 } 223 224 #endif 225 226 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 227 { 228 /* 229 * Be careful about RCU walk racing with rename: 230 * use 'READ_ONCE' to fetch the name pointer. 231 * 232 * NOTE! Even if a rename will mean that the length 233 * was not loaded atomically, we don't care. The 234 * RCU walk will check the sequence count eventually, 235 * and catch it. And we won't overrun the buffer, 236 * because we're reading the name pointer atomically, 237 * and a dentry name is guaranteed to be properly 238 * terminated with a NUL byte. 239 * 240 * End result: even if 'len' is wrong, we'll exit 241 * early because the data cannot match (there can 242 * be no NUL in the ct/tcount data) 243 */ 244 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 245 246 return dentry_string_cmp(cs, ct, tcount); 247 } 248 249 struct external_name { 250 union { 251 atomic_t count; 252 struct rcu_head head; 253 } u; 254 unsigned char name[]; 255 }; 256 257 static inline struct external_name *external_name(struct dentry *dentry) 258 { 259 return container_of(dentry->d_name.name, struct external_name, name[0]); 260 } 261 262 static void __d_free(struct rcu_head *head) 263 { 264 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 265 266 kmem_cache_free(dentry_cache, dentry); 267 } 268 269 static void __d_free_external(struct rcu_head *head) 270 { 271 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 272 kfree(external_name(dentry)); 273 kmem_cache_free(dentry_cache, dentry); 274 } 275 276 static inline int dname_external(const struct dentry *dentry) 277 { 278 return dentry->d_name.name != dentry->d_iname; 279 } 280 281 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 282 { 283 spin_lock(&dentry->d_lock); 284 if (unlikely(dname_external(dentry))) { 285 struct external_name *p = external_name(dentry); 286 atomic_inc(&p->u.count); 287 spin_unlock(&dentry->d_lock); 288 name->name = p->name; 289 } else { 290 memcpy(name->inline_name, dentry->d_iname, DNAME_INLINE_LEN); 291 spin_unlock(&dentry->d_lock); 292 name->name = name->inline_name; 293 } 294 } 295 EXPORT_SYMBOL(take_dentry_name_snapshot); 296 297 void release_dentry_name_snapshot(struct name_snapshot *name) 298 { 299 if (unlikely(name->name != name->inline_name)) { 300 struct external_name *p; 301 p = container_of(name->name, struct external_name, name[0]); 302 if (unlikely(atomic_dec_and_test(&p->u.count))) 303 kfree_rcu(p, u.head); 304 } 305 } 306 EXPORT_SYMBOL(release_dentry_name_snapshot); 307 308 static inline void __d_set_inode_and_type(struct dentry *dentry, 309 struct inode *inode, 310 unsigned type_flags) 311 { 312 unsigned flags; 313 314 dentry->d_inode = inode; 315 flags = READ_ONCE(dentry->d_flags); 316 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 317 flags |= type_flags; 318 WRITE_ONCE(dentry->d_flags, flags); 319 } 320 321 static inline void __d_clear_type_and_inode(struct dentry *dentry) 322 { 323 unsigned flags = READ_ONCE(dentry->d_flags); 324 325 flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU); 326 WRITE_ONCE(dentry->d_flags, flags); 327 dentry->d_inode = NULL; 328 } 329 330 static void dentry_free(struct dentry *dentry) 331 { 332 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 333 if (unlikely(dname_external(dentry))) { 334 struct external_name *p = external_name(dentry); 335 if (likely(atomic_dec_and_test(&p->u.count))) { 336 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 337 return; 338 } 339 } 340 /* if dentry was never visible to RCU, immediate free is OK */ 341 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 342 __d_free(&dentry->d_u.d_rcu); 343 else 344 call_rcu(&dentry->d_u.d_rcu, __d_free); 345 } 346 347 /* 348 * Release the dentry's inode, using the filesystem 349 * d_iput() operation if defined. 350 */ 351 static void dentry_unlink_inode(struct dentry * dentry) 352 __releases(dentry->d_lock) 353 __releases(dentry->d_inode->i_lock) 354 { 355 struct inode *inode = dentry->d_inode; 356 bool hashed = !d_unhashed(dentry); 357 358 if (hashed) 359 raw_write_seqcount_begin(&dentry->d_seq); 360 __d_clear_type_and_inode(dentry); 361 hlist_del_init(&dentry->d_u.d_alias); 362 if (hashed) 363 raw_write_seqcount_end(&dentry->d_seq); 364 spin_unlock(&dentry->d_lock); 365 spin_unlock(&inode->i_lock); 366 if (!inode->i_nlink) 367 fsnotify_inoderemove(inode); 368 if (dentry->d_op && dentry->d_op->d_iput) 369 dentry->d_op->d_iput(dentry, inode); 370 else 371 iput(inode); 372 } 373 374 /* 375 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 376 * is in use - which includes both the "real" per-superblock 377 * LRU list _and_ the DCACHE_SHRINK_LIST use. 378 * 379 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 380 * on the shrink list (ie not on the superblock LRU list). 381 * 382 * The per-cpu "nr_dentry_unused" counters are updated with 383 * the DCACHE_LRU_LIST bit. 384 * 385 * These helper functions make sure we always follow the 386 * rules. d_lock must be held by the caller. 387 */ 388 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 389 static void d_lru_add(struct dentry *dentry) 390 { 391 D_FLAG_VERIFY(dentry, 0); 392 dentry->d_flags |= DCACHE_LRU_LIST; 393 this_cpu_inc(nr_dentry_unused); 394 WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 395 } 396 397 static void d_lru_del(struct dentry *dentry) 398 { 399 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 400 dentry->d_flags &= ~DCACHE_LRU_LIST; 401 this_cpu_dec(nr_dentry_unused); 402 WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 403 } 404 405 static void d_shrink_del(struct dentry *dentry) 406 { 407 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 408 list_del_init(&dentry->d_lru); 409 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 410 this_cpu_dec(nr_dentry_unused); 411 } 412 413 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 414 { 415 D_FLAG_VERIFY(dentry, 0); 416 list_add(&dentry->d_lru, list); 417 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 418 this_cpu_inc(nr_dentry_unused); 419 } 420 421 /* 422 * These can only be called under the global LRU lock, ie during the 423 * callback for freeing the LRU list. "isolate" removes it from the 424 * LRU lists entirely, while shrink_move moves it to the indicated 425 * private list. 426 */ 427 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 428 { 429 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 430 dentry->d_flags &= ~DCACHE_LRU_LIST; 431 this_cpu_dec(nr_dentry_unused); 432 list_lru_isolate(lru, &dentry->d_lru); 433 } 434 435 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 436 struct list_head *list) 437 { 438 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 439 dentry->d_flags |= DCACHE_SHRINK_LIST; 440 list_lru_isolate_move(lru, &dentry->d_lru, list); 441 } 442 443 /* 444 * dentry_lru_(add|del)_list) must be called with d_lock held. 445 */ 446 static void dentry_lru_add(struct dentry *dentry) 447 { 448 if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST))) 449 d_lru_add(dentry); 450 else if (unlikely(!(dentry->d_flags & DCACHE_REFERENCED))) 451 dentry->d_flags |= DCACHE_REFERENCED; 452 } 453 454 /** 455 * d_drop - drop a dentry 456 * @dentry: dentry to drop 457 * 458 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 459 * be found through a VFS lookup any more. Note that this is different from 460 * deleting the dentry - d_delete will try to mark the dentry negative if 461 * possible, giving a successful _negative_ lookup, while d_drop will 462 * just make the cache lookup fail. 463 * 464 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 465 * reason (NFS timeouts or autofs deletes). 466 * 467 * __d_drop requires dentry->d_lock 468 * ___d_drop doesn't mark dentry as "unhashed" 469 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 470 */ 471 static void ___d_drop(struct dentry *dentry) 472 { 473 if (!d_unhashed(dentry)) { 474 struct hlist_bl_head *b; 475 /* 476 * Hashed dentries are normally on the dentry hashtable, 477 * with the exception of those newly allocated by 478 * d_obtain_root, which are always IS_ROOT: 479 */ 480 if (unlikely(IS_ROOT(dentry))) 481 b = &dentry->d_sb->s_roots; 482 else 483 b = d_hash(dentry->d_name.hash); 484 485 hlist_bl_lock(b); 486 __hlist_bl_del(&dentry->d_hash); 487 hlist_bl_unlock(b); 488 /* After this call, in-progress rcu-walk path lookup will fail. */ 489 write_seqcount_invalidate(&dentry->d_seq); 490 } 491 } 492 493 void __d_drop(struct dentry *dentry) 494 { 495 ___d_drop(dentry); 496 dentry->d_hash.pprev = NULL; 497 } 498 EXPORT_SYMBOL(__d_drop); 499 500 void d_drop(struct dentry *dentry) 501 { 502 spin_lock(&dentry->d_lock); 503 __d_drop(dentry); 504 spin_unlock(&dentry->d_lock); 505 } 506 EXPORT_SYMBOL(d_drop); 507 508 static inline void dentry_unlist(struct dentry *dentry, struct dentry *parent) 509 { 510 struct dentry *next; 511 /* 512 * Inform d_walk() and shrink_dentry_list() that we are no longer 513 * attached to the dentry tree 514 */ 515 dentry->d_flags |= DCACHE_DENTRY_KILLED; 516 if (unlikely(list_empty(&dentry->d_child))) 517 return; 518 __list_del_entry(&dentry->d_child); 519 /* 520 * Cursors can move around the list of children. While we'd been 521 * a normal list member, it didn't matter - ->d_child.next would've 522 * been updated. However, from now on it won't be and for the 523 * things like d_walk() it might end up with a nasty surprise. 524 * Normally d_walk() doesn't care about cursors moving around - 525 * ->d_lock on parent prevents that and since a cursor has no children 526 * of its own, we get through it without ever unlocking the parent. 527 * There is one exception, though - if we ascend from a child that 528 * gets killed as soon as we unlock it, the next sibling is found 529 * using the value left in its ->d_child.next. And if _that_ 530 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 531 * before d_walk() regains parent->d_lock, we'll end up skipping 532 * everything the cursor had been moved past. 533 * 534 * Solution: make sure that the pointer left behind in ->d_child.next 535 * points to something that won't be moving around. I.e. skip the 536 * cursors. 537 */ 538 while (dentry->d_child.next != &parent->d_subdirs) { 539 next = list_entry(dentry->d_child.next, struct dentry, d_child); 540 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 541 break; 542 dentry->d_child.next = next->d_child.next; 543 } 544 } 545 546 static void __dentry_kill(struct dentry *dentry) 547 { 548 struct dentry *parent = NULL; 549 bool can_free = true; 550 if (!IS_ROOT(dentry)) 551 parent = dentry->d_parent; 552 553 /* 554 * The dentry is now unrecoverably dead to the world. 555 */ 556 lockref_mark_dead(&dentry->d_lockref); 557 558 /* 559 * inform the fs via d_prune that this dentry is about to be 560 * unhashed and destroyed. 561 */ 562 if (dentry->d_flags & DCACHE_OP_PRUNE) 563 dentry->d_op->d_prune(dentry); 564 565 if (dentry->d_flags & DCACHE_LRU_LIST) { 566 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 567 d_lru_del(dentry); 568 } 569 /* if it was on the hash then remove it */ 570 __d_drop(dentry); 571 dentry_unlist(dentry, parent); 572 if (parent) 573 spin_unlock(&parent->d_lock); 574 if (dentry->d_inode) 575 dentry_unlink_inode(dentry); 576 else 577 spin_unlock(&dentry->d_lock); 578 this_cpu_dec(nr_dentry); 579 if (dentry->d_op && dentry->d_op->d_release) 580 dentry->d_op->d_release(dentry); 581 582 spin_lock(&dentry->d_lock); 583 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 584 dentry->d_flags |= DCACHE_MAY_FREE; 585 can_free = false; 586 } 587 spin_unlock(&dentry->d_lock); 588 if (likely(can_free)) 589 dentry_free(dentry); 590 } 591 592 /* 593 * Finish off a dentry we've decided to kill. 594 * dentry->d_lock must be held, returns with it unlocked. 595 * If ref is non-zero, then decrement the refcount too. 596 * Returns dentry requiring refcount drop, or NULL if we're done. 597 */ 598 static struct dentry *dentry_kill(struct dentry *dentry) 599 __releases(dentry->d_lock) 600 { 601 struct inode *inode = dentry->d_inode; 602 struct dentry *parent = NULL; 603 604 if (inode && unlikely(!spin_trylock(&inode->i_lock))) 605 goto failed; 606 607 if (!IS_ROOT(dentry)) { 608 parent = dentry->d_parent; 609 if (unlikely(!spin_trylock(&parent->d_lock))) { 610 if (inode) 611 spin_unlock(&inode->i_lock); 612 goto failed; 613 } 614 } 615 616 __dentry_kill(dentry); 617 return parent; 618 619 failed: 620 spin_unlock(&dentry->d_lock); 621 return dentry; /* try again with same dentry */ 622 } 623 624 static inline struct dentry *lock_parent(struct dentry *dentry) 625 { 626 struct dentry *parent = dentry->d_parent; 627 if (IS_ROOT(dentry)) 628 return NULL; 629 if (unlikely(dentry->d_lockref.count < 0)) 630 return NULL; 631 if (likely(spin_trylock(&parent->d_lock))) 632 return parent; 633 rcu_read_lock(); 634 spin_unlock(&dentry->d_lock); 635 again: 636 parent = READ_ONCE(dentry->d_parent); 637 spin_lock(&parent->d_lock); 638 /* 639 * We can't blindly lock dentry until we are sure 640 * that we won't violate the locking order. 641 * Any changes of dentry->d_parent must have 642 * been done with parent->d_lock held, so 643 * spin_lock() above is enough of a barrier 644 * for checking if it's still our child. 645 */ 646 if (unlikely(parent != dentry->d_parent)) { 647 spin_unlock(&parent->d_lock); 648 goto again; 649 } 650 if (parent != dentry) { 651 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 652 if (unlikely(dentry->d_lockref.count < 0)) { 653 spin_unlock(&parent->d_lock); 654 parent = NULL; 655 } 656 } else { 657 parent = NULL; 658 } 659 rcu_read_unlock(); 660 return parent; 661 } 662 663 /* 664 * Try to do a lockless dput(), and return whether that was successful. 665 * 666 * If unsuccessful, we return false, having already taken the dentry lock. 667 * 668 * The caller needs to hold the RCU read lock, so that the dentry is 669 * guaranteed to stay around even if the refcount goes down to zero! 670 */ 671 static inline bool fast_dput(struct dentry *dentry) 672 { 673 int ret; 674 unsigned int d_flags; 675 676 /* 677 * If we have a d_op->d_delete() operation, we sould not 678 * let the dentry count go to zero, so use "put_or_lock". 679 */ 680 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) 681 return lockref_put_or_lock(&dentry->d_lockref); 682 683 /* 684 * .. otherwise, we can try to just decrement the 685 * lockref optimistically. 686 */ 687 ret = lockref_put_return(&dentry->d_lockref); 688 689 /* 690 * If the lockref_put_return() failed due to the lock being held 691 * by somebody else, the fast path has failed. We will need to 692 * get the lock, and then check the count again. 693 */ 694 if (unlikely(ret < 0)) { 695 spin_lock(&dentry->d_lock); 696 if (dentry->d_lockref.count > 1) { 697 dentry->d_lockref.count--; 698 spin_unlock(&dentry->d_lock); 699 return 1; 700 } 701 return 0; 702 } 703 704 /* 705 * If we weren't the last ref, we're done. 706 */ 707 if (ret) 708 return 1; 709 710 /* 711 * Careful, careful. The reference count went down 712 * to zero, but we don't hold the dentry lock, so 713 * somebody else could get it again, and do another 714 * dput(), and we need to not race with that. 715 * 716 * However, there is a very special and common case 717 * where we don't care, because there is nothing to 718 * do: the dentry is still hashed, it does not have 719 * a 'delete' op, and it's referenced and already on 720 * the LRU list. 721 * 722 * NOTE! Since we aren't locked, these values are 723 * not "stable". However, it is sufficient that at 724 * some point after we dropped the reference the 725 * dentry was hashed and the flags had the proper 726 * value. Other dentry users may have re-gotten 727 * a reference to the dentry and change that, but 728 * our work is done - we can leave the dentry 729 * around with a zero refcount. 730 */ 731 smp_rmb(); 732 d_flags = READ_ONCE(dentry->d_flags); 733 d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED; 734 735 /* Nothing to do? Dropping the reference was all we needed? */ 736 if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry)) 737 return 1; 738 739 /* 740 * Not the fast normal case? Get the lock. We've already decremented 741 * the refcount, but we'll need to re-check the situation after 742 * getting the lock. 743 */ 744 spin_lock(&dentry->d_lock); 745 746 /* 747 * Did somebody else grab a reference to it in the meantime, and 748 * we're no longer the last user after all? Alternatively, somebody 749 * else could have killed it and marked it dead. Either way, we 750 * don't need to do anything else. 751 */ 752 if (dentry->d_lockref.count) { 753 spin_unlock(&dentry->d_lock); 754 return 1; 755 } 756 757 /* 758 * Re-get the reference we optimistically dropped. We hold the 759 * lock, and we just tested that it was zero, so we can just 760 * set it to 1. 761 */ 762 dentry->d_lockref.count = 1; 763 return 0; 764 } 765 766 767 /* 768 * This is dput 769 * 770 * This is complicated by the fact that we do not want to put 771 * dentries that are no longer on any hash chain on the unused 772 * list: we'd much rather just get rid of them immediately. 773 * 774 * However, that implies that we have to traverse the dentry 775 * tree upwards to the parents which might _also_ now be 776 * scheduled for deletion (it may have been only waiting for 777 * its last child to go away). 778 * 779 * This tail recursion is done by hand as we don't want to depend 780 * on the compiler to always get this right (gcc generally doesn't). 781 * Real recursion would eat up our stack space. 782 */ 783 784 /* 785 * dput - release a dentry 786 * @dentry: dentry to release 787 * 788 * Release a dentry. This will drop the usage count and if appropriate 789 * call the dentry unlink method as well as removing it from the queues and 790 * releasing its resources. If the parent dentries were scheduled for release 791 * they too may now get deleted. 792 */ 793 void dput(struct dentry *dentry) 794 { 795 if (unlikely(!dentry)) 796 return; 797 798 repeat: 799 might_sleep(); 800 801 rcu_read_lock(); 802 if (likely(fast_dput(dentry))) { 803 rcu_read_unlock(); 804 return; 805 } 806 807 /* Slow case: now with the dentry lock held */ 808 rcu_read_unlock(); 809 810 WARN_ON(d_in_lookup(dentry)); 811 812 /* Unreachable? Get rid of it */ 813 if (unlikely(d_unhashed(dentry))) 814 goto kill_it; 815 816 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 817 goto kill_it; 818 819 if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) { 820 if (dentry->d_op->d_delete(dentry)) 821 goto kill_it; 822 } 823 824 dentry_lru_add(dentry); 825 826 dentry->d_lockref.count--; 827 spin_unlock(&dentry->d_lock); 828 return; 829 830 kill_it: 831 dentry = dentry_kill(dentry); 832 if (dentry) { 833 cond_resched(); 834 goto repeat; 835 } 836 } 837 EXPORT_SYMBOL(dput); 838 839 840 /* This must be called with d_lock held */ 841 static inline void __dget_dlock(struct dentry *dentry) 842 { 843 dentry->d_lockref.count++; 844 } 845 846 static inline void __dget(struct dentry *dentry) 847 { 848 lockref_get(&dentry->d_lockref); 849 } 850 851 struct dentry *dget_parent(struct dentry *dentry) 852 { 853 int gotref; 854 struct dentry *ret; 855 856 /* 857 * Do optimistic parent lookup without any 858 * locking. 859 */ 860 rcu_read_lock(); 861 ret = READ_ONCE(dentry->d_parent); 862 gotref = lockref_get_not_zero(&ret->d_lockref); 863 rcu_read_unlock(); 864 if (likely(gotref)) { 865 if (likely(ret == READ_ONCE(dentry->d_parent))) 866 return ret; 867 dput(ret); 868 } 869 870 repeat: 871 /* 872 * Don't need rcu_dereference because we re-check it was correct under 873 * the lock. 874 */ 875 rcu_read_lock(); 876 ret = dentry->d_parent; 877 spin_lock(&ret->d_lock); 878 if (unlikely(ret != dentry->d_parent)) { 879 spin_unlock(&ret->d_lock); 880 rcu_read_unlock(); 881 goto repeat; 882 } 883 rcu_read_unlock(); 884 BUG_ON(!ret->d_lockref.count); 885 ret->d_lockref.count++; 886 spin_unlock(&ret->d_lock); 887 return ret; 888 } 889 EXPORT_SYMBOL(dget_parent); 890 891 /** 892 * d_find_alias - grab a hashed alias of inode 893 * @inode: inode in question 894 * 895 * If inode has a hashed alias, or is a directory and has any alias, 896 * acquire the reference to alias and return it. Otherwise return NULL. 897 * Notice that if inode is a directory there can be only one alias and 898 * it can be unhashed only if it has no children, or if it is the root 899 * of a filesystem, or if the directory was renamed and d_revalidate 900 * was the first vfs operation to notice. 901 * 902 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 903 * any other hashed alias over that one. 904 */ 905 static struct dentry *__d_find_alias(struct inode *inode) 906 { 907 struct dentry *alias, *discon_alias; 908 909 again: 910 discon_alias = NULL; 911 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 912 spin_lock(&alias->d_lock); 913 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 914 if (IS_ROOT(alias) && 915 (alias->d_flags & DCACHE_DISCONNECTED)) { 916 discon_alias = alias; 917 } else { 918 __dget_dlock(alias); 919 spin_unlock(&alias->d_lock); 920 return alias; 921 } 922 } 923 spin_unlock(&alias->d_lock); 924 } 925 if (discon_alias) { 926 alias = discon_alias; 927 spin_lock(&alias->d_lock); 928 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 929 __dget_dlock(alias); 930 spin_unlock(&alias->d_lock); 931 return alias; 932 } 933 spin_unlock(&alias->d_lock); 934 goto again; 935 } 936 return NULL; 937 } 938 939 struct dentry *d_find_alias(struct inode *inode) 940 { 941 struct dentry *de = NULL; 942 943 if (!hlist_empty(&inode->i_dentry)) { 944 spin_lock(&inode->i_lock); 945 de = __d_find_alias(inode); 946 spin_unlock(&inode->i_lock); 947 } 948 return de; 949 } 950 EXPORT_SYMBOL(d_find_alias); 951 952 /* 953 * Try to kill dentries associated with this inode. 954 * WARNING: you must own a reference to inode. 955 */ 956 void d_prune_aliases(struct inode *inode) 957 { 958 struct dentry *dentry; 959 restart: 960 spin_lock(&inode->i_lock); 961 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 962 spin_lock(&dentry->d_lock); 963 if (!dentry->d_lockref.count) { 964 struct dentry *parent = lock_parent(dentry); 965 if (likely(!dentry->d_lockref.count)) { 966 __dentry_kill(dentry); 967 dput(parent); 968 goto restart; 969 } 970 if (parent) 971 spin_unlock(&parent->d_lock); 972 } 973 spin_unlock(&dentry->d_lock); 974 } 975 spin_unlock(&inode->i_lock); 976 } 977 EXPORT_SYMBOL(d_prune_aliases); 978 979 static void shrink_dentry_list(struct list_head *list) 980 { 981 struct dentry *dentry, *parent; 982 983 while (!list_empty(list)) { 984 struct inode *inode; 985 dentry = list_entry(list->prev, struct dentry, d_lru); 986 spin_lock(&dentry->d_lock); 987 parent = lock_parent(dentry); 988 989 /* 990 * The dispose list is isolated and dentries are not accounted 991 * to the LRU here, so we can simply remove it from the list 992 * here regardless of whether it is referenced or not. 993 */ 994 d_shrink_del(dentry); 995 996 /* 997 * We found an inuse dentry which was not removed from 998 * the LRU because of laziness during lookup. Do not free it. 999 */ 1000 if (dentry->d_lockref.count > 0) { 1001 spin_unlock(&dentry->d_lock); 1002 if (parent) 1003 spin_unlock(&parent->d_lock); 1004 continue; 1005 } 1006 1007 1008 if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) { 1009 bool can_free = dentry->d_flags & DCACHE_MAY_FREE; 1010 spin_unlock(&dentry->d_lock); 1011 if (parent) 1012 spin_unlock(&parent->d_lock); 1013 if (can_free) 1014 dentry_free(dentry); 1015 continue; 1016 } 1017 1018 inode = dentry->d_inode; 1019 if (inode && unlikely(!spin_trylock(&inode->i_lock))) { 1020 d_shrink_add(dentry, list); 1021 spin_unlock(&dentry->d_lock); 1022 if (parent) 1023 spin_unlock(&parent->d_lock); 1024 continue; 1025 } 1026 1027 __dentry_kill(dentry); 1028 1029 /* 1030 * We need to prune ancestors too. This is necessary to prevent 1031 * quadratic behavior of shrink_dcache_parent(), but is also 1032 * expected to be beneficial in reducing dentry cache 1033 * fragmentation. 1034 */ 1035 dentry = parent; 1036 while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) { 1037 parent = lock_parent(dentry); 1038 if (dentry->d_lockref.count != 1) { 1039 dentry->d_lockref.count--; 1040 spin_unlock(&dentry->d_lock); 1041 if (parent) 1042 spin_unlock(&parent->d_lock); 1043 break; 1044 } 1045 inode = dentry->d_inode; /* can't be NULL */ 1046 if (unlikely(!spin_trylock(&inode->i_lock))) { 1047 spin_unlock(&dentry->d_lock); 1048 if (parent) 1049 spin_unlock(&parent->d_lock); 1050 cpu_relax(); 1051 continue; 1052 } 1053 __dentry_kill(dentry); 1054 dentry = parent; 1055 } 1056 } 1057 } 1058 1059 static enum lru_status dentry_lru_isolate(struct list_head *item, 1060 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1061 { 1062 struct list_head *freeable = arg; 1063 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1064 1065 1066 /* 1067 * we are inverting the lru lock/dentry->d_lock here, 1068 * so use a trylock. If we fail to get the lock, just skip 1069 * it 1070 */ 1071 if (!spin_trylock(&dentry->d_lock)) 1072 return LRU_SKIP; 1073 1074 /* 1075 * Referenced dentries are still in use. If they have active 1076 * counts, just remove them from the LRU. Otherwise give them 1077 * another pass through the LRU. 1078 */ 1079 if (dentry->d_lockref.count) { 1080 d_lru_isolate(lru, dentry); 1081 spin_unlock(&dentry->d_lock); 1082 return LRU_REMOVED; 1083 } 1084 1085 if (dentry->d_flags & DCACHE_REFERENCED) { 1086 dentry->d_flags &= ~DCACHE_REFERENCED; 1087 spin_unlock(&dentry->d_lock); 1088 1089 /* 1090 * The list move itself will be made by the common LRU code. At 1091 * this point, we've dropped the dentry->d_lock but keep the 1092 * lru lock. This is safe to do, since every list movement is 1093 * protected by the lru lock even if both locks are held. 1094 * 1095 * This is guaranteed by the fact that all LRU management 1096 * functions are intermediated by the LRU API calls like 1097 * list_lru_add and list_lru_del. List movement in this file 1098 * only ever occur through this functions or through callbacks 1099 * like this one, that are called from the LRU API. 1100 * 1101 * The only exceptions to this are functions like 1102 * shrink_dentry_list, and code that first checks for the 1103 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1104 * operating only with stack provided lists after they are 1105 * properly isolated from the main list. It is thus, always a 1106 * local access. 1107 */ 1108 return LRU_ROTATE; 1109 } 1110 1111 d_lru_shrink_move(lru, dentry, freeable); 1112 spin_unlock(&dentry->d_lock); 1113 1114 return LRU_REMOVED; 1115 } 1116 1117 /** 1118 * prune_dcache_sb - shrink the dcache 1119 * @sb: superblock 1120 * @sc: shrink control, passed to list_lru_shrink_walk() 1121 * 1122 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1123 * is done when we need more memory and called from the superblock shrinker 1124 * function. 1125 * 1126 * This function may fail to free any resources if all the dentries are in 1127 * use. 1128 */ 1129 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1130 { 1131 LIST_HEAD(dispose); 1132 long freed; 1133 1134 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1135 dentry_lru_isolate, &dispose); 1136 shrink_dentry_list(&dispose); 1137 return freed; 1138 } 1139 1140 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1141 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 1142 { 1143 struct list_head *freeable = arg; 1144 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1145 1146 /* 1147 * we are inverting the lru lock/dentry->d_lock here, 1148 * so use a trylock. If we fail to get the lock, just skip 1149 * it 1150 */ 1151 if (!spin_trylock(&dentry->d_lock)) 1152 return LRU_SKIP; 1153 1154 d_lru_shrink_move(lru, dentry, freeable); 1155 spin_unlock(&dentry->d_lock); 1156 1157 return LRU_REMOVED; 1158 } 1159 1160 1161 /** 1162 * shrink_dcache_sb - shrink dcache for a superblock 1163 * @sb: superblock 1164 * 1165 * Shrink the dcache for the specified super block. This is used to free 1166 * the dcache before unmounting a file system. 1167 */ 1168 void shrink_dcache_sb(struct super_block *sb) 1169 { 1170 long freed; 1171 1172 do { 1173 LIST_HEAD(dispose); 1174 1175 freed = list_lru_walk(&sb->s_dentry_lru, 1176 dentry_lru_isolate_shrink, &dispose, 1024); 1177 1178 this_cpu_sub(nr_dentry_unused, freed); 1179 shrink_dentry_list(&dispose); 1180 cond_resched(); 1181 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1182 } 1183 EXPORT_SYMBOL(shrink_dcache_sb); 1184 1185 /** 1186 * enum d_walk_ret - action to talke during tree walk 1187 * @D_WALK_CONTINUE: contrinue walk 1188 * @D_WALK_QUIT: quit walk 1189 * @D_WALK_NORETRY: quit when retry is needed 1190 * @D_WALK_SKIP: skip this dentry and its children 1191 */ 1192 enum d_walk_ret { 1193 D_WALK_CONTINUE, 1194 D_WALK_QUIT, 1195 D_WALK_NORETRY, 1196 D_WALK_SKIP, 1197 }; 1198 1199 /** 1200 * d_walk - walk the dentry tree 1201 * @parent: start of walk 1202 * @data: data passed to @enter() and @finish() 1203 * @enter: callback when first entering the dentry 1204 * @finish: callback when successfully finished the walk 1205 * 1206 * The @enter() and @finish() callbacks are called with d_lock held. 1207 */ 1208 static void d_walk(struct dentry *parent, void *data, 1209 enum d_walk_ret (*enter)(void *, struct dentry *), 1210 void (*finish)(void *)) 1211 { 1212 struct dentry *this_parent; 1213 struct list_head *next; 1214 unsigned seq = 0; 1215 enum d_walk_ret ret; 1216 bool retry = true; 1217 1218 again: 1219 read_seqbegin_or_lock(&rename_lock, &seq); 1220 this_parent = parent; 1221 spin_lock(&this_parent->d_lock); 1222 1223 ret = enter(data, this_parent); 1224 switch (ret) { 1225 case D_WALK_CONTINUE: 1226 break; 1227 case D_WALK_QUIT: 1228 case D_WALK_SKIP: 1229 goto out_unlock; 1230 case D_WALK_NORETRY: 1231 retry = false; 1232 break; 1233 } 1234 repeat: 1235 next = this_parent->d_subdirs.next; 1236 resume: 1237 while (next != &this_parent->d_subdirs) { 1238 struct list_head *tmp = next; 1239 struct dentry *dentry = list_entry(tmp, struct dentry, d_child); 1240 next = tmp->next; 1241 1242 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1243 continue; 1244 1245 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1246 1247 ret = enter(data, dentry); 1248 switch (ret) { 1249 case D_WALK_CONTINUE: 1250 break; 1251 case D_WALK_QUIT: 1252 spin_unlock(&dentry->d_lock); 1253 goto out_unlock; 1254 case D_WALK_NORETRY: 1255 retry = false; 1256 break; 1257 case D_WALK_SKIP: 1258 spin_unlock(&dentry->d_lock); 1259 continue; 1260 } 1261 1262 if (!list_empty(&dentry->d_subdirs)) { 1263 spin_unlock(&this_parent->d_lock); 1264 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1265 this_parent = dentry; 1266 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1267 goto repeat; 1268 } 1269 spin_unlock(&dentry->d_lock); 1270 } 1271 /* 1272 * All done at this level ... ascend and resume the search. 1273 */ 1274 rcu_read_lock(); 1275 ascend: 1276 if (this_parent != parent) { 1277 struct dentry *child = this_parent; 1278 this_parent = child->d_parent; 1279 1280 spin_unlock(&child->d_lock); 1281 spin_lock(&this_parent->d_lock); 1282 1283 /* might go back up the wrong parent if we have had a rename. */ 1284 if (need_seqretry(&rename_lock, seq)) 1285 goto rename_retry; 1286 /* go into the first sibling still alive */ 1287 do { 1288 next = child->d_child.next; 1289 if (next == &this_parent->d_subdirs) 1290 goto ascend; 1291 child = list_entry(next, struct dentry, d_child); 1292 } while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED)); 1293 rcu_read_unlock(); 1294 goto resume; 1295 } 1296 if (need_seqretry(&rename_lock, seq)) 1297 goto rename_retry; 1298 rcu_read_unlock(); 1299 if (finish) 1300 finish(data); 1301 1302 out_unlock: 1303 spin_unlock(&this_parent->d_lock); 1304 done_seqretry(&rename_lock, seq); 1305 return; 1306 1307 rename_retry: 1308 spin_unlock(&this_parent->d_lock); 1309 rcu_read_unlock(); 1310 BUG_ON(seq & 1); 1311 if (!retry) 1312 return; 1313 seq = 1; 1314 goto again; 1315 } 1316 1317 struct check_mount { 1318 struct vfsmount *mnt; 1319 unsigned int mounted; 1320 }; 1321 1322 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1323 { 1324 struct check_mount *info = data; 1325 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1326 1327 if (likely(!d_mountpoint(dentry))) 1328 return D_WALK_CONTINUE; 1329 if (__path_is_mountpoint(&path)) { 1330 info->mounted = 1; 1331 return D_WALK_QUIT; 1332 } 1333 return D_WALK_CONTINUE; 1334 } 1335 1336 /** 1337 * path_has_submounts - check for mounts over a dentry in the 1338 * current namespace. 1339 * @parent: path to check. 1340 * 1341 * Return true if the parent or its subdirectories contain 1342 * a mount point in the current namespace. 1343 */ 1344 int path_has_submounts(const struct path *parent) 1345 { 1346 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1347 1348 read_seqlock_excl(&mount_lock); 1349 d_walk(parent->dentry, &data, path_check_mount, NULL); 1350 read_sequnlock_excl(&mount_lock); 1351 1352 return data.mounted; 1353 } 1354 EXPORT_SYMBOL(path_has_submounts); 1355 1356 /* 1357 * Called by mount code to set a mountpoint and check if the mountpoint is 1358 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1359 * subtree can become unreachable). 1360 * 1361 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1362 * this reason take rename_lock and d_lock on dentry and ancestors. 1363 */ 1364 int d_set_mounted(struct dentry *dentry) 1365 { 1366 struct dentry *p; 1367 int ret = -ENOENT; 1368 write_seqlock(&rename_lock); 1369 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1370 /* Need exclusion wrt. d_invalidate() */ 1371 spin_lock(&p->d_lock); 1372 if (unlikely(d_unhashed(p))) { 1373 spin_unlock(&p->d_lock); 1374 goto out; 1375 } 1376 spin_unlock(&p->d_lock); 1377 } 1378 spin_lock(&dentry->d_lock); 1379 if (!d_unlinked(dentry)) { 1380 ret = -EBUSY; 1381 if (!d_mountpoint(dentry)) { 1382 dentry->d_flags |= DCACHE_MOUNTED; 1383 ret = 0; 1384 } 1385 } 1386 spin_unlock(&dentry->d_lock); 1387 out: 1388 write_sequnlock(&rename_lock); 1389 return ret; 1390 } 1391 1392 /* 1393 * Search the dentry child list of the specified parent, 1394 * and move any unused dentries to the end of the unused 1395 * list for prune_dcache(). We descend to the next level 1396 * whenever the d_subdirs list is non-empty and continue 1397 * searching. 1398 * 1399 * It returns zero iff there are no unused children, 1400 * otherwise it returns the number of children moved to 1401 * the end of the unused list. This may not be the total 1402 * number of unused children, because select_parent can 1403 * drop the lock and return early due to latency 1404 * constraints. 1405 */ 1406 1407 struct select_data { 1408 struct dentry *start; 1409 struct list_head dispose; 1410 int found; 1411 }; 1412 1413 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1414 { 1415 struct select_data *data = _data; 1416 enum d_walk_ret ret = D_WALK_CONTINUE; 1417 1418 if (data->start == dentry) 1419 goto out; 1420 1421 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1422 data->found++; 1423 } else { 1424 if (dentry->d_flags & DCACHE_LRU_LIST) 1425 d_lru_del(dentry); 1426 if (!dentry->d_lockref.count) { 1427 d_shrink_add(dentry, &data->dispose); 1428 data->found++; 1429 } 1430 } 1431 /* 1432 * We can return to the caller if we have found some (this 1433 * ensures forward progress). We'll be coming back to find 1434 * the rest. 1435 */ 1436 if (!list_empty(&data->dispose)) 1437 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1438 out: 1439 return ret; 1440 } 1441 1442 /** 1443 * shrink_dcache_parent - prune dcache 1444 * @parent: parent of entries to prune 1445 * 1446 * Prune the dcache to remove unused children of the parent dentry. 1447 */ 1448 void shrink_dcache_parent(struct dentry *parent) 1449 { 1450 for (;;) { 1451 struct select_data data; 1452 1453 INIT_LIST_HEAD(&data.dispose); 1454 data.start = parent; 1455 data.found = 0; 1456 1457 d_walk(parent, &data, select_collect, NULL); 1458 if (!data.found) 1459 break; 1460 1461 shrink_dentry_list(&data.dispose); 1462 cond_resched(); 1463 } 1464 } 1465 EXPORT_SYMBOL(shrink_dcache_parent); 1466 1467 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1468 { 1469 /* it has busy descendents; complain about those instead */ 1470 if (!list_empty(&dentry->d_subdirs)) 1471 return D_WALK_CONTINUE; 1472 1473 /* root with refcount 1 is fine */ 1474 if (dentry == _data && dentry->d_lockref.count == 1) 1475 return D_WALK_CONTINUE; 1476 1477 printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} " 1478 " still in use (%d) [unmount of %s %s]\n", 1479 dentry, 1480 dentry->d_inode ? 1481 dentry->d_inode->i_ino : 0UL, 1482 dentry, 1483 dentry->d_lockref.count, 1484 dentry->d_sb->s_type->name, 1485 dentry->d_sb->s_id); 1486 WARN_ON(1); 1487 return D_WALK_CONTINUE; 1488 } 1489 1490 static void do_one_tree(struct dentry *dentry) 1491 { 1492 shrink_dcache_parent(dentry); 1493 d_walk(dentry, dentry, umount_check, NULL); 1494 d_drop(dentry); 1495 dput(dentry); 1496 } 1497 1498 /* 1499 * destroy the dentries attached to a superblock on unmounting 1500 */ 1501 void shrink_dcache_for_umount(struct super_block *sb) 1502 { 1503 struct dentry *dentry; 1504 1505 WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked"); 1506 1507 dentry = sb->s_root; 1508 sb->s_root = NULL; 1509 do_one_tree(dentry); 1510 1511 while (!hlist_bl_empty(&sb->s_roots)) { 1512 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1513 do_one_tree(dentry); 1514 } 1515 } 1516 1517 struct detach_data { 1518 struct select_data select; 1519 struct dentry *mountpoint; 1520 }; 1521 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry) 1522 { 1523 struct detach_data *data = _data; 1524 1525 if (d_mountpoint(dentry)) { 1526 __dget_dlock(dentry); 1527 data->mountpoint = dentry; 1528 return D_WALK_QUIT; 1529 } 1530 1531 return select_collect(&data->select, dentry); 1532 } 1533 1534 static void check_and_drop(void *_data) 1535 { 1536 struct detach_data *data = _data; 1537 1538 if (!data->mountpoint && list_empty(&data->select.dispose)) 1539 __d_drop(data->select.start); 1540 } 1541 1542 /** 1543 * d_invalidate - detach submounts, prune dcache, and drop 1544 * @dentry: dentry to invalidate (aka detach, prune and drop) 1545 * 1546 * no dcache lock. 1547 * 1548 * The final d_drop is done as an atomic operation relative to 1549 * rename_lock ensuring there are no races with d_set_mounted. This 1550 * ensures there are no unhashed dentries on the path to a mountpoint. 1551 */ 1552 void d_invalidate(struct dentry *dentry) 1553 { 1554 /* 1555 * If it's already been dropped, return OK. 1556 */ 1557 spin_lock(&dentry->d_lock); 1558 if (d_unhashed(dentry)) { 1559 spin_unlock(&dentry->d_lock); 1560 return; 1561 } 1562 spin_unlock(&dentry->d_lock); 1563 1564 /* Negative dentries can be dropped without further checks */ 1565 if (!dentry->d_inode) { 1566 d_drop(dentry); 1567 return; 1568 } 1569 1570 for (;;) { 1571 struct detach_data data; 1572 1573 data.mountpoint = NULL; 1574 INIT_LIST_HEAD(&data.select.dispose); 1575 data.select.start = dentry; 1576 data.select.found = 0; 1577 1578 d_walk(dentry, &data, detach_and_collect, check_and_drop); 1579 1580 if (!list_empty(&data.select.dispose)) 1581 shrink_dentry_list(&data.select.dispose); 1582 else if (!data.mountpoint) 1583 return; 1584 1585 if (data.mountpoint) { 1586 detach_mounts(data.mountpoint); 1587 dput(data.mountpoint); 1588 } 1589 cond_resched(); 1590 } 1591 } 1592 EXPORT_SYMBOL(d_invalidate); 1593 1594 /** 1595 * __d_alloc - allocate a dcache entry 1596 * @sb: filesystem it will belong to 1597 * @name: qstr of the name 1598 * 1599 * Allocates a dentry. It returns %NULL if there is insufficient memory 1600 * available. On a success the dentry is returned. The name passed in is 1601 * copied and the copy passed in may be reused after this call. 1602 */ 1603 1604 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1605 { 1606 struct dentry *dentry; 1607 char *dname; 1608 int err; 1609 1610 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1611 if (!dentry) 1612 return NULL; 1613 1614 /* 1615 * We guarantee that the inline name is always NUL-terminated. 1616 * This way the memcpy() done by the name switching in rename 1617 * will still always have a NUL at the end, even if we might 1618 * be overwriting an internal NUL character 1619 */ 1620 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1621 if (unlikely(!name)) { 1622 name = &slash_name; 1623 dname = dentry->d_iname; 1624 } else if (name->len > DNAME_INLINE_LEN-1) { 1625 size_t size = offsetof(struct external_name, name[1]); 1626 struct external_name *p = kmalloc(size + name->len, 1627 GFP_KERNEL_ACCOUNT); 1628 if (!p) { 1629 kmem_cache_free(dentry_cache, dentry); 1630 return NULL; 1631 } 1632 atomic_set(&p->u.count, 1); 1633 dname = p->name; 1634 } else { 1635 dname = dentry->d_iname; 1636 } 1637 1638 dentry->d_name.len = name->len; 1639 dentry->d_name.hash = name->hash; 1640 memcpy(dname, name->name, name->len); 1641 dname[name->len] = 0; 1642 1643 /* Make sure we always see the terminating NUL character */ 1644 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1645 1646 dentry->d_lockref.count = 1; 1647 dentry->d_flags = 0; 1648 spin_lock_init(&dentry->d_lock); 1649 seqcount_init(&dentry->d_seq); 1650 dentry->d_inode = NULL; 1651 dentry->d_parent = dentry; 1652 dentry->d_sb = sb; 1653 dentry->d_op = NULL; 1654 dentry->d_fsdata = NULL; 1655 INIT_HLIST_BL_NODE(&dentry->d_hash); 1656 INIT_LIST_HEAD(&dentry->d_lru); 1657 INIT_LIST_HEAD(&dentry->d_subdirs); 1658 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1659 INIT_LIST_HEAD(&dentry->d_child); 1660 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1661 1662 if (dentry->d_op && dentry->d_op->d_init) { 1663 err = dentry->d_op->d_init(dentry); 1664 if (err) { 1665 if (dname_external(dentry)) 1666 kfree(external_name(dentry)); 1667 kmem_cache_free(dentry_cache, dentry); 1668 return NULL; 1669 } 1670 } 1671 1672 this_cpu_inc(nr_dentry); 1673 1674 return dentry; 1675 } 1676 1677 /** 1678 * d_alloc - allocate a dcache entry 1679 * @parent: parent of entry to allocate 1680 * @name: qstr of the name 1681 * 1682 * Allocates a dentry. It returns %NULL if there is insufficient memory 1683 * available. On a success the dentry is returned. The name passed in is 1684 * copied and the copy passed in may be reused after this call. 1685 */ 1686 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1687 { 1688 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1689 if (!dentry) 1690 return NULL; 1691 dentry->d_flags |= DCACHE_RCUACCESS; 1692 spin_lock(&parent->d_lock); 1693 /* 1694 * don't need child lock because it is not subject 1695 * to concurrency here 1696 */ 1697 __dget_dlock(parent); 1698 dentry->d_parent = parent; 1699 list_add(&dentry->d_child, &parent->d_subdirs); 1700 spin_unlock(&parent->d_lock); 1701 1702 return dentry; 1703 } 1704 EXPORT_SYMBOL(d_alloc); 1705 1706 struct dentry *d_alloc_anon(struct super_block *sb) 1707 { 1708 return __d_alloc(sb, NULL); 1709 } 1710 EXPORT_SYMBOL(d_alloc_anon); 1711 1712 struct dentry *d_alloc_cursor(struct dentry * parent) 1713 { 1714 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1715 if (dentry) { 1716 dentry->d_flags |= DCACHE_RCUACCESS | DCACHE_DENTRY_CURSOR; 1717 dentry->d_parent = dget(parent); 1718 } 1719 return dentry; 1720 } 1721 1722 /** 1723 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1724 * @sb: the superblock 1725 * @name: qstr of the name 1726 * 1727 * For a filesystem that just pins its dentries in memory and never 1728 * performs lookups at all, return an unhashed IS_ROOT dentry. 1729 */ 1730 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1731 { 1732 return __d_alloc(sb, name); 1733 } 1734 EXPORT_SYMBOL(d_alloc_pseudo); 1735 1736 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1737 { 1738 struct qstr q; 1739 1740 q.name = name; 1741 q.hash_len = hashlen_string(parent, name); 1742 return d_alloc(parent, &q); 1743 } 1744 EXPORT_SYMBOL(d_alloc_name); 1745 1746 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1747 { 1748 WARN_ON_ONCE(dentry->d_op); 1749 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1750 DCACHE_OP_COMPARE | 1751 DCACHE_OP_REVALIDATE | 1752 DCACHE_OP_WEAK_REVALIDATE | 1753 DCACHE_OP_DELETE | 1754 DCACHE_OP_REAL)); 1755 dentry->d_op = op; 1756 if (!op) 1757 return; 1758 if (op->d_hash) 1759 dentry->d_flags |= DCACHE_OP_HASH; 1760 if (op->d_compare) 1761 dentry->d_flags |= DCACHE_OP_COMPARE; 1762 if (op->d_revalidate) 1763 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1764 if (op->d_weak_revalidate) 1765 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1766 if (op->d_delete) 1767 dentry->d_flags |= DCACHE_OP_DELETE; 1768 if (op->d_prune) 1769 dentry->d_flags |= DCACHE_OP_PRUNE; 1770 if (op->d_real) 1771 dentry->d_flags |= DCACHE_OP_REAL; 1772 1773 } 1774 EXPORT_SYMBOL(d_set_d_op); 1775 1776 1777 /* 1778 * d_set_fallthru - Mark a dentry as falling through to a lower layer 1779 * @dentry - The dentry to mark 1780 * 1781 * Mark a dentry as falling through to the lower layer (as set with 1782 * d_pin_lower()). This flag may be recorded on the medium. 1783 */ 1784 void d_set_fallthru(struct dentry *dentry) 1785 { 1786 spin_lock(&dentry->d_lock); 1787 dentry->d_flags |= DCACHE_FALLTHRU; 1788 spin_unlock(&dentry->d_lock); 1789 } 1790 EXPORT_SYMBOL(d_set_fallthru); 1791 1792 static unsigned d_flags_for_inode(struct inode *inode) 1793 { 1794 unsigned add_flags = DCACHE_REGULAR_TYPE; 1795 1796 if (!inode) 1797 return DCACHE_MISS_TYPE; 1798 1799 if (S_ISDIR(inode->i_mode)) { 1800 add_flags = DCACHE_DIRECTORY_TYPE; 1801 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1802 if (unlikely(!inode->i_op->lookup)) 1803 add_flags = DCACHE_AUTODIR_TYPE; 1804 else 1805 inode->i_opflags |= IOP_LOOKUP; 1806 } 1807 goto type_determined; 1808 } 1809 1810 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1811 if (unlikely(inode->i_op->get_link)) { 1812 add_flags = DCACHE_SYMLINK_TYPE; 1813 goto type_determined; 1814 } 1815 inode->i_opflags |= IOP_NOFOLLOW; 1816 } 1817 1818 if (unlikely(!S_ISREG(inode->i_mode))) 1819 add_flags = DCACHE_SPECIAL_TYPE; 1820 1821 type_determined: 1822 if (unlikely(IS_AUTOMOUNT(inode))) 1823 add_flags |= DCACHE_NEED_AUTOMOUNT; 1824 return add_flags; 1825 } 1826 1827 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1828 { 1829 unsigned add_flags = d_flags_for_inode(inode); 1830 WARN_ON(d_in_lookup(dentry)); 1831 1832 spin_lock(&dentry->d_lock); 1833 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1834 raw_write_seqcount_begin(&dentry->d_seq); 1835 __d_set_inode_and_type(dentry, inode, add_flags); 1836 raw_write_seqcount_end(&dentry->d_seq); 1837 fsnotify_update_flags(dentry); 1838 spin_unlock(&dentry->d_lock); 1839 } 1840 1841 /** 1842 * d_instantiate - fill in inode information for a dentry 1843 * @entry: dentry to complete 1844 * @inode: inode to attach to this dentry 1845 * 1846 * Fill in inode information in the entry. 1847 * 1848 * This turns negative dentries into productive full members 1849 * of society. 1850 * 1851 * NOTE! This assumes that the inode count has been incremented 1852 * (or otherwise set) by the caller to indicate that it is now 1853 * in use by the dcache. 1854 */ 1855 1856 void d_instantiate(struct dentry *entry, struct inode * inode) 1857 { 1858 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1859 if (inode) { 1860 security_d_instantiate(entry, inode); 1861 spin_lock(&inode->i_lock); 1862 __d_instantiate(entry, inode); 1863 spin_unlock(&inode->i_lock); 1864 } 1865 } 1866 EXPORT_SYMBOL(d_instantiate); 1867 1868 /** 1869 * d_instantiate_no_diralias - instantiate a non-aliased dentry 1870 * @entry: dentry to complete 1871 * @inode: inode to attach to this dentry 1872 * 1873 * Fill in inode information in the entry. If a directory alias is found, then 1874 * return an error (and drop inode). Together with d_materialise_unique() this 1875 * guarantees that a directory inode may never have more than one alias. 1876 */ 1877 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode) 1878 { 1879 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1880 1881 security_d_instantiate(entry, inode); 1882 spin_lock(&inode->i_lock); 1883 if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) { 1884 spin_unlock(&inode->i_lock); 1885 iput(inode); 1886 return -EBUSY; 1887 } 1888 __d_instantiate(entry, inode); 1889 spin_unlock(&inode->i_lock); 1890 1891 return 0; 1892 } 1893 EXPORT_SYMBOL(d_instantiate_no_diralias); 1894 1895 struct dentry *d_make_root(struct inode *root_inode) 1896 { 1897 struct dentry *res = NULL; 1898 1899 if (root_inode) { 1900 res = d_alloc_anon(root_inode->i_sb); 1901 if (res) 1902 d_instantiate(res, root_inode); 1903 else 1904 iput(root_inode); 1905 } 1906 return res; 1907 } 1908 EXPORT_SYMBOL(d_make_root); 1909 1910 static struct dentry * __d_find_any_alias(struct inode *inode) 1911 { 1912 struct dentry *alias; 1913 1914 if (hlist_empty(&inode->i_dentry)) 1915 return NULL; 1916 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 1917 __dget(alias); 1918 return alias; 1919 } 1920 1921 /** 1922 * d_find_any_alias - find any alias for a given inode 1923 * @inode: inode to find an alias for 1924 * 1925 * If any aliases exist for the given inode, take and return a 1926 * reference for one of them. If no aliases exist, return %NULL. 1927 */ 1928 struct dentry *d_find_any_alias(struct inode *inode) 1929 { 1930 struct dentry *de; 1931 1932 spin_lock(&inode->i_lock); 1933 de = __d_find_any_alias(inode); 1934 spin_unlock(&inode->i_lock); 1935 return de; 1936 } 1937 EXPORT_SYMBOL(d_find_any_alias); 1938 1939 static struct dentry *__d_instantiate_anon(struct dentry *dentry, 1940 struct inode *inode, 1941 bool disconnected) 1942 { 1943 struct dentry *res; 1944 unsigned add_flags; 1945 1946 security_d_instantiate(dentry, inode); 1947 spin_lock(&inode->i_lock); 1948 res = __d_find_any_alias(inode); 1949 if (res) { 1950 spin_unlock(&inode->i_lock); 1951 dput(dentry); 1952 goto out_iput; 1953 } 1954 1955 /* attach a disconnected dentry */ 1956 add_flags = d_flags_for_inode(inode); 1957 1958 if (disconnected) 1959 add_flags |= DCACHE_DISCONNECTED; 1960 1961 spin_lock(&dentry->d_lock); 1962 __d_set_inode_and_type(dentry, inode, add_flags); 1963 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1964 if (!disconnected) { 1965 hlist_bl_lock(&dentry->d_sb->s_roots); 1966 hlist_bl_add_head(&dentry->d_hash, &dentry->d_sb->s_roots); 1967 hlist_bl_unlock(&dentry->d_sb->s_roots); 1968 } 1969 spin_unlock(&dentry->d_lock); 1970 spin_unlock(&inode->i_lock); 1971 1972 return dentry; 1973 1974 out_iput: 1975 iput(inode); 1976 return res; 1977 } 1978 1979 struct dentry *d_instantiate_anon(struct dentry *dentry, struct inode *inode) 1980 { 1981 return __d_instantiate_anon(dentry, inode, true); 1982 } 1983 EXPORT_SYMBOL(d_instantiate_anon); 1984 1985 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1986 { 1987 struct dentry *tmp; 1988 struct dentry *res; 1989 1990 if (!inode) 1991 return ERR_PTR(-ESTALE); 1992 if (IS_ERR(inode)) 1993 return ERR_CAST(inode); 1994 1995 res = d_find_any_alias(inode); 1996 if (res) 1997 goto out_iput; 1998 1999 tmp = d_alloc_anon(inode->i_sb); 2000 if (!tmp) { 2001 res = ERR_PTR(-ENOMEM); 2002 goto out_iput; 2003 } 2004 2005 return __d_instantiate_anon(tmp, inode, disconnected); 2006 2007 out_iput: 2008 iput(inode); 2009 return res; 2010 } 2011 2012 /** 2013 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2014 * @inode: inode to allocate the dentry for 2015 * 2016 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2017 * similar open by handle operations. The returned dentry may be anonymous, 2018 * or may have a full name (if the inode was already in the cache). 2019 * 2020 * When called on a directory inode, we must ensure that the inode only ever 2021 * has one dentry. If a dentry is found, that is returned instead of 2022 * allocating a new one. 2023 * 2024 * On successful return, the reference to the inode has been transferred 2025 * to the dentry. In case of an error the reference on the inode is released. 2026 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2027 * be passed in and the error will be propagated to the return value, 2028 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2029 */ 2030 struct dentry *d_obtain_alias(struct inode *inode) 2031 { 2032 return __d_obtain_alias(inode, true); 2033 } 2034 EXPORT_SYMBOL(d_obtain_alias); 2035 2036 /** 2037 * d_obtain_root - find or allocate a dentry for a given inode 2038 * @inode: inode to allocate the dentry for 2039 * 2040 * Obtain an IS_ROOT dentry for the root of a filesystem. 2041 * 2042 * We must ensure that directory inodes only ever have one dentry. If a 2043 * dentry is found, that is returned instead of allocating a new one. 2044 * 2045 * On successful return, the reference to the inode has been transferred 2046 * to the dentry. In case of an error the reference on the inode is 2047 * released. A %NULL or IS_ERR inode may be passed in and will be the 2048 * error will be propagate to the return value, with a %NULL @inode 2049 * replaced by ERR_PTR(-ESTALE). 2050 */ 2051 struct dentry *d_obtain_root(struct inode *inode) 2052 { 2053 return __d_obtain_alias(inode, false); 2054 } 2055 EXPORT_SYMBOL(d_obtain_root); 2056 2057 /** 2058 * d_add_ci - lookup or allocate new dentry with case-exact name 2059 * @inode: the inode case-insensitive lookup has found 2060 * @dentry: the negative dentry that was passed to the parent's lookup func 2061 * @name: the case-exact name to be associated with the returned dentry 2062 * 2063 * This is to avoid filling the dcache with case-insensitive names to the 2064 * same inode, only the actual correct case is stored in the dcache for 2065 * case-insensitive filesystems. 2066 * 2067 * For a case-insensitive lookup match and if the the case-exact dentry 2068 * already exists in in the dcache, use it and return it. 2069 * 2070 * If no entry exists with the exact case name, allocate new dentry with 2071 * the exact case, and return the spliced entry. 2072 */ 2073 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2074 struct qstr *name) 2075 { 2076 struct dentry *found, *res; 2077 2078 /* 2079 * First check if a dentry matching the name already exists, 2080 * if not go ahead and create it now. 2081 */ 2082 found = d_hash_and_lookup(dentry->d_parent, name); 2083 if (found) { 2084 iput(inode); 2085 return found; 2086 } 2087 if (d_in_lookup(dentry)) { 2088 found = d_alloc_parallel(dentry->d_parent, name, 2089 dentry->d_wait); 2090 if (IS_ERR(found) || !d_in_lookup(found)) { 2091 iput(inode); 2092 return found; 2093 } 2094 } else { 2095 found = d_alloc(dentry->d_parent, name); 2096 if (!found) { 2097 iput(inode); 2098 return ERR_PTR(-ENOMEM); 2099 } 2100 } 2101 res = d_splice_alias(inode, found); 2102 if (res) { 2103 dput(found); 2104 return res; 2105 } 2106 return found; 2107 } 2108 EXPORT_SYMBOL(d_add_ci); 2109 2110 2111 static inline bool d_same_name(const struct dentry *dentry, 2112 const struct dentry *parent, 2113 const struct qstr *name) 2114 { 2115 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2116 if (dentry->d_name.len != name->len) 2117 return false; 2118 return dentry_cmp(dentry, name->name, name->len) == 0; 2119 } 2120 return parent->d_op->d_compare(dentry, 2121 dentry->d_name.len, dentry->d_name.name, 2122 name) == 0; 2123 } 2124 2125 /** 2126 * __d_lookup_rcu - search for a dentry (racy, store-free) 2127 * @parent: parent dentry 2128 * @name: qstr of name we wish to find 2129 * @seqp: returns d_seq value at the point where the dentry was found 2130 * Returns: dentry, or NULL 2131 * 2132 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2133 * resolution (store-free path walking) design described in 2134 * Documentation/filesystems/path-lookup.txt. 2135 * 2136 * This is not to be used outside core vfs. 2137 * 2138 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2139 * held, and rcu_read_lock held. The returned dentry must not be stored into 2140 * without taking d_lock and checking d_seq sequence count against @seq 2141 * returned here. 2142 * 2143 * A refcount may be taken on the found dentry with the d_rcu_to_refcount 2144 * function. 2145 * 2146 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2147 * the returned dentry, so long as its parent's seqlock is checked after the 2148 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2149 * is formed, giving integrity down the path walk. 2150 * 2151 * NOTE! The caller *has* to check the resulting dentry against the sequence 2152 * number we've returned before using any of the resulting dentry state! 2153 */ 2154 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2155 const struct qstr *name, 2156 unsigned *seqp) 2157 { 2158 u64 hashlen = name->hash_len; 2159 const unsigned char *str = name->name; 2160 struct hlist_bl_head *b = d_hash(hashlen_hash(hashlen)); 2161 struct hlist_bl_node *node; 2162 struct dentry *dentry; 2163 2164 /* 2165 * Note: There is significant duplication with __d_lookup_rcu which is 2166 * required to prevent single threaded performance regressions 2167 * especially on architectures where smp_rmb (in seqcounts) are costly. 2168 * Keep the two functions in sync. 2169 */ 2170 2171 /* 2172 * The hash list is protected using RCU. 2173 * 2174 * Carefully use d_seq when comparing a candidate dentry, to avoid 2175 * races with d_move(). 2176 * 2177 * It is possible that concurrent renames can mess up our list 2178 * walk here and result in missing our dentry, resulting in the 2179 * false-negative result. d_lookup() protects against concurrent 2180 * renames using rename_lock seqlock. 2181 * 2182 * See Documentation/filesystems/path-lookup.txt for more details. 2183 */ 2184 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2185 unsigned seq; 2186 2187 seqretry: 2188 /* 2189 * The dentry sequence count protects us from concurrent 2190 * renames, and thus protects parent and name fields. 2191 * 2192 * The caller must perform a seqcount check in order 2193 * to do anything useful with the returned dentry. 2194 * 2195 * NOTE! We do a "raw" seqcount_begin here. That means that 2196 * we don't wait for the sequence count to stabilize if it 2197 * is in the middle of a sequence change. If we do the slow 2198 * dentry compare, we will do seqretries until it is stable, 2199 * and if we end up with a successful lookup, we actually 2200 * want to exit RCU lookup anyway. 2201 * 2202 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2203 * we are still guaranteed NUL-termination of ->d_name.name. 2204 */ 2205 seq = raw_seqcount_begin(&dentry->d_seq); 2206 if (dentry->d_parent != parent) 2207 continue; 2208 if (d_unhashed(dentry)) 2209 continue; 2210 2211 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 2212 int tlen; 2213 const char *tname; 2214 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2215 continue; 2216 tlen = dentry->d_name.len; 2217 tname = dentry->d_name.name; 2218 /* we want a consistent (name,len) pair */ 2219 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2220 cpu_relax(); 2221 goto seqretry; 2222 } 2223 if (parent->d_op->d_compare(dentry, 2224 tlen, tname, name) != 0) 2225 continue; 2226 } else { 2227 if (dentry->d_name.hash_len != hashlen) 2228 continue; 2229 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2230 continue; 2231 } 2232 *seqp = seq; 2233 return dentry; 2234 } 2235 return NULL; 2236 } 2237 2238 /** 2239 * d_lookup - search for a dentry 2240 * @parent: parent dentry 2241 * @name: qstr of name we wish to find 2242 * Returns: dentry, or NULL 2243 * 2244 * d_lookup searches the children of the parent dentry for the name in 2245 * question. If the dentry is found its reference count is incremented and the 2246 * dentry is returned. The caller must use dput to free the entry when it has 2247 * finished using it. %NULL is returned if the dentry does not exist. 2248 */ 2249 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2250 { 2251 struct dentry *dentry; 2252 unsigned seq; 2253 2254 do { 2255 seq = read_seqbegin(&rename_lock); 2256 dentry = __d_lookup(parent, name); 2257 if (dentry) 2258 break; 2259 } while (read_seqretry(&rename_lock, seq)); 2260 return dentry; 2261 } 2262 EXPORT_SYMBOL(d_lookup); 2263 2264 /** 2265 * __d_lookup - search for a dentry (racy) 2266 * @parent: parent dentry 2267 * @name: qstr of name we wish to find 2268 * Returns: dentry, or NULL 2269 * 2270 * __d_lookup is like d_lookup, however it may (rarely) return a 2271 * false-negative result due to unrelated rename activity. 2272 * 2273 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2274 * however it must be used carefully, eg. with a following d_lookup in 2275 * the case of failure. 2276 * 2277 * __d_lookup callers must be commented. 2278 */ 2279 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2280 { 2281 unsigned int hash = name->hash; 2282 struct hlist_bl_head *b = d_hash(hash); 2283 struct hlist_bl_node *node; 2284 struct dentry *found = NULL; 2285 struct dentry *dentry; 2286 2287 /* 2288 * Note: There is significant duplication with __d_lookup_rcu which is 2289 * required to prevent single threaded performance regressions 2290 * especially on architectures where smp_rmb (in seqcounts) are costly. 2291 * Keep the two functions in sync. 2292 */ 2293 2294 /* 2295 * The hash list is protected using RCU. 2296 * 2297 * Take d_lock when comparing a candidate dentry, to avoid races 2298 * with d_move(). 2299 * 2300 * It is possible that concurrent renames can mess up our list 2301 * walk here and result in missing our dentry, resulting in the 2302 * false-negative result. d_lookup() protects against concurrent 2303 * renames using rename_lock seqlock. 2304 * 2305 * See Documentation/filesystems/path-lookup.txt for more details. 2306 */ 2307 rcu_read_lock(); 2308 2309 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2310 2311 if (dentry->d_name.hash != hash) 2312 continue; 2313 2314 spin_lock(&dentry->d_lock); 2315 if (dentry->d_parent != parent) 2316 goto next; 2317 if (d_unhashed(dentry)) 2318 goto next; 2319 2320 if (!d_same_name(dentry, parent, name)) 2321 goto next; 2322 2323 dentry->d_lockref.count++; 2324 found = dentry; 2325 spin_unlock(&dentry->d_lock); 2326 break; 2327 next: 2328 spin_unlock(&dentry->d_lock); 2329 } 2330 rcu_read_unlock(); 2331 2332 return found; 2333 } 2334 2335 /** 2336 * d_hash_and_lookup - hash the qstr then search for a dentry 2337 * @dir: Directory to search in 2338 * @name: qstr of name we wish to find 2339 * 2340 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2341 */ 2342 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2343 { 2344 /* 2345 * Check for a fs-specific hash function. Note that we must 2346 * calculate the standard hash first, as the d_op->d_hash() 2347 * routine may choose to leave the hash value unchanged. 2348 */ 2349 name->hash = full_name_hash(dir, name->name, name->len); 2350 if (dir->d_flags & DCACHE_OP_HASH) { 2351 int err = dir->d_op->d_hash(dir, name); 2352 if (unlikely(err < 0)) 2353 return ERR_PTR(err); 2354 } 2355 return d_lookup(dir, name); 2356 } 2357 EXPORT_SYMBOL(d_hash_and_lookup); 2358 2359 /* 2360 * When a file is deleted, we have two options: 2361 * - turn this dentry into a negative dentry 2362 * - unhash this dentry and free it. 2363 * 2364 * Usually, we want to just turn this into 2365 * a negative dentry, but if anybody else is 2366 * currently using the dentry or the inode 2367 * we can't do that and we fall back on removing 2368 * it from the hash queues and waiting for 2369 * it to be deleted later when it has no users 2370 */ 2371 2372 /** 2373 * d_delete - delete a dentry 2374 * @dentry: The dentry to delete 2375 * 2376 * Turn the dentry into a negative dentry if possible, otherwise 2377 * remove it from the hash queues so it can be deleted later 2378 */ 2379 2380 void d_delete(struct dentry * dentry) 2381 { 2382 struct inode *inode; 2383 int isdir = 0; 2384 /* 2385 * Are we the only user? 2386 */ 2387 again: 2388 spin_lock(&dentry->d_lock); 2389 inode = dentry->d_inode; 2390 isdir = S_ISDIR(inode->i_mode); 2391 if (dentry->d_lockref.count == 1) { 2392 if (!spin_trylock(&inode->i_lock)) { 2393 spin_unlock(&dentry->d_lock); 2394 cpu_relax(); 2395 goto again; 2396 } 2397 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2398 dentry_unlink_inode(dentry); 2399 fsnotify_nameremove(dentry, isdir); 2400 return; 2401 } 2402 2403 if (!d_unhashed(dentry)) 2404 __d_drop(dentry); 2405 2406 spin_unlock(&dentry->d_lock); 2407 2408 fsnotify_nameremove(dentry, isdir); 2409 } 2410 EXPORT_SYMBOL(d_delete); 2411 2412 static void __d_rehash(struct dentry *entry) 2413 { 2414 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2415 2416 hlist_bl_lock(b); 2417 hlist_bl_add_head_rcu(&entry->d_hash, b); 2418 hlist_bl_unlock(b); 2419 } 2420 2421 /** 2422 * d_rehash - add an entry back to the hash 2423 * @entry: dentry to add to the hash 2424 * 2425 * Adds a dentry to the hash according to its name. 2426 */ 2427 2428 void d_rehash(struct dentry * entry) 2429 { 2430 spin_lock(&entry->d_lock); 2431 __d_rehash(entry); 2432 spin_unlock(&entry->d_lock); 2433 } 2434 EXPORT_SYMBOL(d_rehash); 2435 2436 static inline unsigned start_dir_add(struct inode *dir) 2437 { 2438 2439 for (;;) { 2440 unsigned n = dir->i_dir_seq; 2441 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2442 return n; 2443 cpu_relax(); 2444 } 2445 } 2446 2447 static inline void end_dir_add(struct inode *dir, unsigned n) 2448 { 2449 smp_store_release(&dir->i_dir_seq, n + 2); 2450 } 2451 2452 static void d_wait_lookup(struct dentry *dentry) 2453 { 2454 if (d_in_lookup(dentry)) { 2455 DECLARE_WAITQUEUE(wait, current); 2456 add_wait_queue(dentry->d_wait, &wait); 2457 do { 2458 set_current_state(TASK_UNINTERRUPTIBLE); 2459 spin_unlock(&dentry->d_lock); 2460 schedule(); 2461 spin_lock(&dentry->d_lock); 2462 } while (d_in_lookup(dentry)); 2463 } 2464 } 2465 2466 struct dentry *d_alloc_parallel(struct dentry *parent, 2467 const struct qstr *name, 2468 wait_queue_head_t *wq) 2469 { 2470 unsigned int hash = name->hash; 2471 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2472 struct hlist_bl_node *node; 2473 struct dentry *new = d_alloc(parent, name); 2474 struct dentry *dentry; 2475 unsigned seq, r_seq, d_seq; 2476 2477 if (unlikely(!new)) 2478 return ERR_PTR(-ENOMEM); 2479 2480 retry: 2481 rcu_read_lock(); 2482 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2483 r_seq = read_seqbegin(&rename_lock); 2484 dentry = __d_lookup_rcu(parent, name, &d_seq); 2485 if (unlikely(dentry)) { 2486 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2487 rcu_read_unlock(); 2488 goto retry; 2489 } 2490 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2491 rcu_read_unlock(); 2492 dput(dentry); 2493 goto retry; 2494 } 2495 rcu_read_unlock(); 2496 dput(new); 2497 return dentry; 2498 } 2499 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2500 rcu_read_unlock(); 2501 goto retry; 2502 } 2503 2504 if (unlikely(seq & 1)) { 2505 rcu_read_unlock(); 2506 goto retry; 2507 } 2508 2509 hlist_bl_lock(b); 2510 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2511 hlist_bl_unlock(b); 2512 rcu_read_unlock(); 2513 goto retry; 2514 } 2515 /* 2516 * No changes for the parent since the beginning of d_lookup(). 2517 * Since all removals from the chain happen with hlist_bl_lock(), 2518 * any potential in-lookup matches are going to stay here until 2519 * we unlock the chain. All fields are stable in everything 2520 * we encounter. 2521 */ 2522 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2523 if (dentry->d_name.hash != hash) 2524 continue; 2525 if (dentry->d_parent != parent) 2526 continue; 2527 if (!d_same_name(dentry, parent, name)) 2528 continue; 2529 hlist_bl_unlock(b); 2530 /* now we can try to grab a reference */ 2531 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2532 rcu_read_unlock(); 2533 goto retry; 2534 } 2535 2536 rcu_read_unlock(); 2537 /* 2538 * somebody is likely to be still doing lookup for it; 2539 * wait for them to finish 2540 */ 2541 spin_lock(&dentry->d_lock); 2542 d_wait_lookup(dentry); 2543 /* 2544 * it's not in-lookup anymore; in principle we should repeat 2545 * everything from dcache lookup, but it's likely to be what 2546 * d_lookup() would've found anyway. If it is, just return it; 2547 * otherwise we really have to repeat the whole thing. 2548 */ 2549 if (unlikely(dentry->d_name.hash != hash)) 2550 goto mismatch; 2551 if (unlikely(dentry->d_parent != parent)) 2552 goto mismatch; 2553 if (unlikely(d_unhashed(dentry))) 2554 goto mismatch; 2555 if (unlikely(!d_same_name(dentry, parent, name))) 2556 goto mismatch; 2557 /* OK, it *is* a hashed match; return it */ 2558 spin_unlock(&dentry->d_lock); 2559 dput(new); 2560 return dentry; 2561 } 2562 rcu_read_unlock(); 2563 /* we can't take ->d_lock here; it's OK, though. */ 2564 new->d_flags |= DCACHE_PAR_LOOKUP; 2565 new->d_wait = wq; 2566 hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b); 2567 hlist_bl_unlock(b); 2568 return new; 2569 mismatch: 2570 spin_unlock(&dentry->d_lock); 2571 dput(dentry); 2572 goto retry; 2573 } 2574 EXPORT_SYMBOL(d_alloc_parallel); 2575 2576 void __d_lookup_done(struct dentry *dentry) 2577 { 2578 struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent, 2579 dentry->d_name.hash); 2580 hlist_bl_lock(b); 2581 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2582 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2583 wake_up_all(dentry->d_wait); 2584 dentry->d_wait = NULL; 2585 hlist_bl_unlock(b); 2586 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2587 INIT_LIST_HEAD(&dentry->d_lru); 2588 } 2589 EXPORT_SYMBOL(__d_lookup_done); 2590 2591 /* inode->i_lock held if inode is non-NULL */ 2592 2593 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2594 { 2595 struct inode *dir = NULL; 2596 unsigned n; 2597 spin_lock(&dentry->d_lock); 2598 if (unlikely(d_in_lookup(dentry))) { 2599 dir = dentry->d_parent->d_inode; 2600 n = start_dir_add(dir); 2601 __d_lookup_done(dentry); 2602 } 2603 if (inode) { 2604 unsigned add_flags = d_flags_for_inode(inode); 2605 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2606 raw_write_seqcount_begin(&dentry->d_seq); 2607 __d_set_inode_and_type(dentry, inode, add_flags); 2608 raw_write_seqcount_end(&dentry->d_seq); 2609 fsnotify_update_flags(dentry); 2610 } 2611 __d_rehash(dentry); 2612 if (dir) 2613 end_dir_add(dir, n); 2614 spin_unlock(&dentry->d_lock); 2615 if (inode) 2616 spin_unlock(&inode->i_lock); 2617 } 2618 2619 /** 2620 * d_add - add dentry to hash queues 2621 * @entry: dentry to add 2622 * @inode: The inode to attach to this dentry 2623 * 2624 * This adds the entry to the hash queues and initializes @inode. 2625 * The entry was actually filled in earlier during d_alloc(). 2626 */ 2627 2628 void d_add(struct dentry *entry, struct inode *inode) 2629 { 2630 if (inode) { 2631 security_d_instantiate(entry, inode); 2632 spin_lock(&inode->i_lock); 2633 } 2634 __d_add(entry, inode); 2635 } 2636 EXPORT_SYMBOL(d_add); 2637 2638 /** 2639 * d_exact_alias - find and hash an exact unhashed alias 2640 * @entry: dentry to add 2641 * @inode: The inode to go with this dentry 2642 * 2643 * If an unhashed dentry with the same name/parent and desired 2644 * inode already exists, hash and return it. Otherwise, return 2645 * NULL. 2646 * 2647 * Parent directory should be locked. 2648 */ 2649 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode) 2650 { 2651 struct dentry *alias; 2652 unsigned int hash = entry->d_name.hash; 2653 2654 spin_lock(&inode->i_lock); 2655 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 2656 /* 2657 * Don't need alias->d_lock here, because aliases with 2658 * d_parent == entry->d_parent are not subject to name or 2659 * parent changes, because the parent inode i_mutex is held. 2660 */ 2661 if (alias->d_name.hash != hash) 2662 continue; 2663 if (alias->d_parent != entry->d_parent) 2664 continue; 2665 if (!d_same_name(alias, entry->d_parent, &entry->d_name)) 2666 continue; 2667 spin_lock(&alias->d_lock); 2668 if (!d_unhashed(alias)) { 2669 spin_unlock(&alias->d_lock); 2670 alias = NULL; 2671 } else { 2672 __dget_dlock(alias); 2673 __d_rehash(alias); 2674 spin_unlock(&alias->d_lock); 2675 } 2676 spin_unlock(&inode->i_lock); 2677 return alias; 2678 } 2679 spin_unlock(&inode->i_lock); 2680 return NULL; 2681 } 2682 EXPORT_SYMBOL(d_exact_alias); 2683 2684 /** 2685 * dentry_update_name_case - update case insensitive dentry with a new name 2686 * @dentry: dentry to be updated 2687 * @name: new name 2688 * 2689 * Update a case insensitive dentry with new case of name. 2690 * 2691 * dentry must have been returned by d_lookup with name @name. Old and new 2692 * name lengths must match (ie. no d_compare which allows mismatched name 2693 * lengths). 2694 * 2695 * Parent inode i_mutex must be held over d_lookup and into this call (to 2696 * keep renames and concurrent inserts, and readdir(2) away). 2697 */ 2698 void dentry_update_name_case(struct dentry *dentry, const struct qstr *name) 2699 { 2700 BUG_ON(!inode_is_locked(dentry->d_parent->d_inode)); 2701 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2702 2703 spin_lock(&dentry->d_lock); 2704 write_seqcount_begin(&dentry->d_seq); 2705 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2706 write_seqcount_end(&dentry->d_seq); 2707 spin_unlock(&dentry->d_lock); 2708 } 2709 EXPORT_SYMBOL(dentry_update_name_case); 2710 2711 static void swap_names(struct dentry *dentry, struct dentry *target) 2712 { 2713 if (unlikely(dname_external(target))) { 2714 if (unlikely(dname_external(dentry))) { 2715 /* 2716 * Both external: swap the pointers 2717 */ 2718 swap(target->d_name.name, dentry->d_name.name); 2719 } else { 2720 /* 2721 * dentry:internal, target:external. Steal target's 2722 * storage and make target internal. 2723 */ 2724 memcpy(target->d_iname, dentry->d_name.name, 2725 dentry->d_name.len + 1); 2726 dentry->d_name.name = target->d_name.name; 2727 target->d_name.name = target->d_iname; 2728 } 2729 } else { 2730 if (unlikely(dname_external(dentry))) { 2731 /* 2732 * dentry:external, target:internal. Give dentry's 2733 * storage to target and make dentry internal 2734 */ 2735 memcpy(dentry->d_iname, target->d_name.name, 2736 target->d_name.len + 1); 2737 target->d_name.name = dentry->d_name.name; 2738 dentry->d_name.name = dentry->d_iname; 2739 } else { 2740 /* 2741 * Both are internal. 2742 */ 2743 unsigned int i; 2744 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long))); 2745 for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) { 2746 swap(((long *) &dentry->d_iname)[i], 2747 ((long *) &target->d_iname)[i]); 2748 } 2749 } 2750 } 2751 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2752 } 2753 2754 static void copy_name(struct dentry *dentry, struct dentry *target) 2755 { 2756 struct external_name *old_name = NULL; 2757 if (unlikely(dname_external(dentry))) 2758 old_name = external_name(dentry); 2759 if (unlikely(dname_external(target))) { 2760 atomic_inc(&external_name(target)->u.count); 2761 dentry->d_name = target->d_name; 2762 } else { 2763 memcpy(dentry->d_iname, target->d_name.name, 2764 target->d_name.len + 1); 2765 dentry->d_name.name = dentry->d_iname; 2766 dentry->d_name.hash_len = target->d_name.hash_len; 2767 } 2768 if (old_name && likely(atomic_dec_and_test(&old_name->u.count))) 2769 kfree_rcu(old_name, u.head); 2770 } 2771 2772 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2773 { 2774 /* 2775 * XXXX: do we really need to take target->d_lock? 2776 */ 2777 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2778 spin_lock(&target->d_parent->d_lock); 2779 else { 2780 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2781 spin_lock(&dentry->d_parent->d_lock); 2782 spin_lock_nested(&target->d_parent->d_lock, 2783 DENTRY_D_LOCK_NESTED); 2784 } else { 2785 spin_lock(&target->d_parent->d_lock); 2786 spin_lock_nested(&dentry->d_parent->d_lock, 2787 DENTRY_D_LOCK_NESTED); 2788 } 2789 } 2790 if (target < dentry) { 2791 spin_lock_nested(&target->d_lock, 2); 2792 spin_lock_nested(&dentry->d_lock, 3); 2793 } else { 2794 spin_lock_nested(&dentry->d_lock, 2); 2795 spin_lock_nested(&target->d_lock, 3); 2796 } 2797 } 2798 2799 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target) 2800 { 2801 if (target->d_parent != dentry->d_parent) 2802 spin_unlock(&dentry->d_parent->d_lock); 2803 if (target->d_parent != target) 2804 spin_unlock(&target->d_parent->d_lock); 2805 spin_unlock(&target->d_lock); 2806 spin_unlock(&dentry->d_lock); 2807 } 2808 2809 /* 2810 * When switching names, the actual string doesn't strictly have to 2811 * be preserved in the target - because we're dropping the target 2812 * anyway. As such, we can just do a simple memcpy() to copy over 2813 * the new name before we switch, unless we are going to rehash 2814 * it. Note that if we *do* unhash the target, we are not allowed 2815 * to rehash it without giving it a new name/hash key - whether 2816 * we swap or overwrite the names here, resulting name won't match 2817 * the reality in filesystem; it's only there for d_path() purposes. 2818 * Note that all of this is happening under rename_lock, so the 2819 * any hash lookup seeing it in the middle of manipulations will 2820 * be discarded anyway. So we do not care what happens to the hash 2821 * key in that case. 2822 */ 2823 /* 2824 * __d_move - move a dentry 2825 * @dentry: entry to move 2826 * @target: new dentry 2827 * @exchange: exchange the two dentries 2828 * 2829 * Update the dcache to reflect the move of a file name. Negative 2830 * dcache entries should not be moved in this way. Caller must hold 2831 * rename_lock, the i_mutex of the source and target directories, 2832 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2833 */ 2834 static void __d_move(struct dentry *dentry, struct dentry *target, 2835 bool exchange) 2836 { 2837 struct inode *dir = NULL; 2838 unsigned n; 2839 if (!dentry->d_inode) 2840 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2841 2842 BUG_ON(d_ancestor(dentry, target)); 2843 BUG_ON(d_ancestor(target, dentry)); 2844 2845 dentry_lock_for_move(dentry, target); 2846 if (unlikely(d_in_lookup(target))) { 2847 dir = target->d_parent->d_inode; 2848 n = start_dir_add(dir); 2849 __d_lookup_done(target); 2850 } 2851 2852 write_seqcount_begin(&dentry->d_seq); 2853 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2854 2855 /* unhash both */ 2856 /* ___d_drop does write_seqcount_barrier, but they're OK to nest. */ 2857 ___d_drop(dentry); 2858 ___d_drop(target); 2859 2860 /* Switch the names.. */ 2861 if (exchange) 2862 swap_names(dentry, target); 2863 else 2864 copy_name(dentry, target); 2865 2866 /* rehash in new place(s) */ 2867 __d_rehash(dentry); 2868 if (exchange) 2869 __d_rehash(target); 2870 else 2871 target->d_hash.pprev = NULL; 2872 2873 /* ... and switch them in the tree */ 2874 if (IS_ROOT(dentry)) { 2875 /* splicing a tree */ 2876 dentry->d_flags |= DCACHE_RCUACCESS; 2877 dentry->d_parent = target->d_parent; 2878 target->d_parent = target; 2879 list_del_init(&target->d_child); 2880 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2881 } else { 2882 /* swapping two dentries */ 2883 swap(dentry->d_parent, target->d_parent); 2884 list_move(&target->d_child, &target->d_parent->d_subdirs); 2885 list_move(&dentry->d_child, &dentry->d_parent->d_subdirs); 2886 if (exchange) 2887 fsnotify_update_flags(target); 2888 fsnotify_update_flags(dentry); 2889 } 2890 2891 write_seqcount_end(&target->d_seq); 2892 write_seqcount_end(&dentry->d_seq); 2893 2894 if (dir) 2895 end_dir_add(dir, n); 2896 dentry_unlock_for_move(dentry, target); 2897 } 2898 2899 /* 2900 * d_move - move a dentry 2901 * @dentry: entry to move 2902 * @target: new dentry 2903 * 2904 * Update the dcache to reflect the move of a file name. Negative 2905 * dcache entries should not be moved in this way. See the locking 2906 * requirements for __d_move. 2907 */ 2908 void d_move(struct dentry *dentry, struct dentry *target) 2909 { 2910 write_seqlock(&rename_lock); 2911 __d_move(dentry, target, false); 2912 write_sequnlock(&rename_lock); 2913 } 2914 EXPORT_SYMBOL(d_move); 2915 2916 /* 2917 * d_exchange - exchange two dentries 2918 * @dentry1: first dentry 2919 * @dentry2: second dentry 2920 */ 2921 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2922 { 2923 write_seqlock(&rename_lock); 2924 2925 WARN_ON(!dentry1->d_inode); 2926 WARN_ON(!dentry2->d_inode); 2927 WARN_ON(IS_ROOT(dentry1)); 2928 WARN_ON(IS_ROOT(dentry2)); 2929 2930 __d_move(dentry1, dentry2, true); 2931 2932 write_sequnlock(&rename_lock); 2933 } 2934 2935 /** 2936 * d_ancestor - search for an ancestor 2937 * @p1: ancestor dentry 2938 * @p2: child dentry 2939 * 2940 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2941 * an ancestor of p2, else NULL. 2942 */ 2943 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2944 { 2945 struct dentry *p; 2946 2947 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2948 if (p->d_parent == p1) 2949 return p; 2950 } 2951 return NULL; 2952 } 2953 2954 /* 2955 * This helper attempts to cope with remotely renamed directories 2956 * 2957 * It assumes that the caller is already holding 2958 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2959 * 2960 * Note: If ever the locking in lock_rename() changes, then please 2961 * remember to update this too... 2962 */ 2963 static int __d_unalias(struct inode *inode, 2964 struct dentry *dentry, struct dentry *alias) 2965 { 2966 struct mutex *m1 = NULL; 2967 struct rw_semaphore *m2 = NULL; 2968 int ret = -ESTALE; 2969 2970 /* If alias and dentry share a parent, then no extra locks required */ 2971 if (alias->d_parent == dentry->d_parent) 2972 goto out_unalias; 2973 2974 /* See lock_rename() */ 2975 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2976 goto out_err; 2977 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2978 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2979 goto out_err; 2980 m2 = &alias->d_parent->d_inode->i_rwsem; 2981 out_unalias: 2982 __d_move(alias, dentry, false); 2983 ret = 0; 2984 out_err: 2985 if (m2) 2986 up_read(m2); 2987 if (m1) 2988 mutex_unlock(m1); 2989 return ret; 2990 } 2991 2992 /** 2993 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2994 * @inode: the inode which may have a disconnected dentry 2995 * @dentry: a negative dentry which we want to point to the inode. 2996 * 2997 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2998 * place of the given dentry and return it, else simply d_add the inode 2999 * to the dentry and return NULL. 3000 * 3001 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 3002 * we should error out: directories can't have multiple aliases. 3003 * 3004 * This is needed in the lookup routine of any filesystem that is exportable 3005 * (via knfsd) so that we can build dcache paths to directories effectively. 3006 * 3007 * If a dentry was found and moved, then it is returned. Otherwise NULL 3008 * is returned. This matches the expected return value of ->lookup. 3009 * 3010 * Cluster filesystems may call this function with a negative, hashed dentry. 3011 * In that case, we know that the inode will be a regular file, and also this 3012 * will only occur during atomic_open. So we need to check for the dentry 3013 * being already hashed only in the final case. 3014 */ 3015 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 3016 { 3017 if (IS_ERR(inode)) 3018 return ERR_CAST(inode); 3019 3020 BUG_ON(!d_unhashed(dentry)); 3021 3022 if (!inode) 3023 goto out; 3024 3025 security_d_instantiate(dentry, inode); 3026 spin_lock(&inode->i_lock); 3027 if (S_ISDIR(inode->i_mode)) { 3028 struct dentry *new = __d_find_any_alias(inode); 3029 if (unlikely(new)) { 3030 /* The reference to new ensures it remains an alias */ 3031 spin_unlock(&inode->i_lock); 3032 write_seqlock(&rename_lock); 3033 if (unlikely(d_ancestor(new, dentry))) { 3034 write_sequnlock(&rename_lock); 3035 dput(new); 3036 new = ERR_PTR(-ELOOP); 3037 pr_warn_ratelimited( 3038 "VFS: Lookup of '%s' in %s %s" 3039 " would have caused loop\n", 3040 dentry->d_name.name, 3041 inode->i_sb->s_type->name, 3042 inode->i_sb->s_id); 3043 } else if (!IS_ROOT(new)) { 3044 int err = __d_unalias(inode, dentry, new); 3045 write_sequnlock(&rename_lock); 3046 if (err) { 3047 dput(new); 3048 new = ERR_PTR(err); 3049 } 3050 } else { 3051 __d_move(new, dentry, false); 3052 write_sequnlock(&rename_lock); 3053 } 3054 iput(inode); 3055 return new; 3056 } 3057 } 3058 out: 3059 __d_add(dentry, inode); 3060 return NULL; 3061 } 3062 EXPORT_SYMBOL(d_splice_alias); 3063 3064 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 3065 { 3066 *buflen -= namelen; 3067 if (*buflen < 0) 3068 return -ENAMETOOLONG; 3069 *buffer -= namelen; 3070 memcpy(*buffer, str, namelen); 3071 return 0; 3072 } 3073 3074 /** 3075 * prepend_name - prepend a pathname in front of current buffer pointer 3076 * @buffer: buffer pointer 3077 * @buflen: allocated length of the buffer 3078 * @name: name string and length qstr structure 3079 * 3080 * With RCU path tracing, it may race with d_move(). Use READ_ONCE() to 3081 * make sure that either the old or the new name pointer and length are 3082 * fetched. However, there may be mismatch between length and pointer. 3083 * The length cannot be trusted, we need to copy it byte-by-byte until 3084 * the length is reached or a null byte is found. It also prepends "/" at 3085 * the beginning of the name. The sequence number check at the caller will 3086 * retry it again when a d_move() does happen. So any garbage in the buffer 3087 * due to mismatched pointer and length will be discarded. 3088 * 3089 * Load acquire is needed to make sure that we see that terminating NUL. 3090 */ 3091 static int prepend_name(char **buffer, int *buflen, const struct qstr *name) 3092 { 3093 const char *dname = smp_load_acquire(&name->name); /* ^^^ */ 3094 u32 dlen = READ_ONCE(name->len); 3095 char *p; 3096 3097 *buflen -= dlen + 1; 3098 if (*buflen < 0) 3099 return -ENAMETOOLONG; 3100 p = *buffer -= dlen + 1; 3101 *p++ = '/'; 3102 while (dlen--) { 3103 char c = *dname++; 3104 if (!c) 3105 break; 3106 *p++ = c; 3107 } 3108 return 0; 3109 } 3110 3111 /** 3112 * prepend_path - Prepend path string to a buffer 3113 * @path: the dentry/vfsmount to report 3114 * @root: root vfsmnt/dentry 3115 * @buffer: pointer to the end of the buffer 3116 * @buflen: pointer to buffer length 3117 * 3118 * The function will first try to write out the pathname without taking any 3119 * lock other than the RCU read lock to make sure that dentries won't go away. 3120 * It only checks the sequence number of the global rename_lock as any change 3121 * in the dentry's d_seq will be preceded by changes in the rename_lock 3122 * sequence number. If the sequence number had been changed, it will restart 3123 * the whole pathname back-tracing sequence again by taking the rename_lock. 3124 * In this case, there is no need to take the RCU read lock as the recursive 3125 * parent pointer references will keep the dentry chain alive as long as no 3126 * rename operation is performed. 3127 */ 3128 static int prepend_path(const struct path *path, 3129 const struct path *root, 3130 char **buffer, int *buflen) 3131 { 3132 struct dentry *dentry; 3133 struct vfsmount *vfsmnt; 3134 struct mount *mnt; 3135 int error = 0; 3136 unsigned seq, m_seq = 0; 3137 char *bptr; 3138 int blen; 3139 3140 rcu_read_lock(); 3141 restart_mnt: 3142 read_seqbegin_or_lock(&mount_lock, &m_seq); 3143 seq = 0; 3144 rcu_read_lock(); 3145 restart: 3146 bptr = *buffer; 3147 blen = *buflen; 3148 error = 0; 3149 dentry = path->dentry; 3150 vfsmnt = path->mnt; 3151 mnt = real_mount(vfsmnt); 3152 read_seqbegin_or_lock(&rename_lock, &seq); 3153 while (dentry != root->dentry || vfsmnt != root->mnt) { 3154 struct dentry * parent; 3155 3156 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 3157 struct mount *parent = READ_ONCE(mnt->mnt_parent); 3158 /* Escaped? */ 3159 if (dentry != vfsmnt->mnt_root) { 3160 bptr = *buffer; 3161 blen = *buflen; 3162 error = 3; 3163 break; 3164 } 3165 /* Global root? */ 3166 if (mnt != parent) { 3167 dentry = READ_ONCE(mnt->mnt_mountpoint); 3168 mnt = parent; 3169 vfsmnt = &mnt->mnt; 3170 continue; 3171 } 3172 if (!error) 3173 error = is_mounted(vfsmnt) ? 1 : 2; 3174 break; 3175 } 3176 parent = dentry->d_parent; 3177 prefetch(parent); 3178 error = prepend_name(&bptr, &blen, &dentry->d_name); 3179 if (error) 3180 break; 3181 3182 dentry = parent; 3183 } 3184 if (!(seq & 1)) 3185 rcu_read_unlock(); 3186 if (need_seqretry(&rename_lock, seq)) { 3187 seq = 1; 3188 goto restart; 3189 } 3190 done_seqretry(&rename_lock, seq); 3191 3192 if (!(m_seq & 1)) 3193 rcu_read_unlock(); 3194 if (need_seqretry(&mount_lock, m_seq)) { 3195 m_seq = 1; 3196 goto restart_mnt; 3197 } 3198 done_seqretry(&mount_lock, m_seq); 3199 3200 if (error >= 0 && bptr == *buffer) { 3201 if (--blen < 0) 3202 error = -ENAMETOOLONG; 3203 else 3204 *--bptr = '/'; 3205 } 3206 *buffer = bptr; 3207 *buflen = blen; 3208 return error; 3209 } 3210 3211 /** 3212 * __d_path - return the path of a dentry 3213 * @path: the dentry/vfsmount to report 3214 * @root: root vfsmnt/dentry 3215 * @buf: buffer to return value in 3216 * @buflen: buffer length 3217 * 3218 * Convert a dentry into an ASCII path name. 3219 * 3220 * Returns a pointer into the buffer or an error code if the 3221 * path was too long. 3222 * 3223 * "buflen" should be positive. 3224 * 3225 * If the path is not reachable from the supplied root, return %NULL. 3226 */ 3227 char *__d_path(const struct path *path, 3228 const struct path *root, 3229 char *buf, int buflen) 3230 { 3231 char *res = buf + buflen; 3232 int error; 3233 3234 prepend(&res, &buflen, "\0", 1); 3235 error = prepend_path(path, root, &res, &buflen); 3236 3237 if (error < 0) 3238 return ERR_PTR(error); 3239 if (error > 0) 3240 return NULL; 3241 return res; 3242 } 3243 3244 char *d_absolute_path(const struct path *path, 3245 char *buf, int buflen) 3246 { 3247 struct path root = {}; 3248 char *res = buf + buflen; 3249 int error; 3250 3251 prepend(&res, &buflen, "\0", 1); 3252 error = prepend_path(path, &root, &res, &buflen); 3253 3254 if (error > 1) 3255 error = -EINVAL; 3256 if (error < 0) 3257 return ERR_PTR(error); 3258 return res; 3259 } 3260 3261 /* 3262 * same as __d_path but appends "(deleted)" for unlinked files. 3263 */ 3264 static int path_with_deleted(const struct path *path, 3265 const struct path *root, 3266 char **buf, int *buflen) 3267 { 3268 prepend(buf, buflen, "\0", 1); 3269 if (d_unlinked(path->dentry)) { 3270 int error = prepend(buf, buflen, " (deleted)", 10); 3271 if (error) 3272 return error; 3273 } 3274 3275 return prepend_path(path, root, buf, buflen); 3276 } 3277 3278 static int prepend_unreachable(char **buffer, int *buflen) 3279 { 3280 return prepend(buffer, buflen, "(unreachable)", 13); 3281 } 3282 3283 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root) 3284 { 3285 unsigned seq; 3286 3287 do { 3288 seq = read_seqcount_begin(&fs->seq); 3289 *root = fs->root; 3290 } while (read_seqcount_retry(&fs->seq, seq)); 3291 } 3292 3293 /** 3294 * d_path - return the path of a dentry 3295 * @path: path to report 3296 * @buf: buffer to return value in 3297 * @buflen: buffer length 3298 * 3299 * Convert a dentry into an ASCII path name. If the entry has been deleted 3300 * the string " (deleted)" is appended. Note that this is ambiguous. 3301 * 3302 * Returns a pointer into the buffer or an error code if the path was 3303 * too long. Note: Callers should use the returned pointer, not the passed 3304 * in buffer, to use the name! The implementation often starts at an offset 3305 * into the buffer, and may leave 0 bytes at the start. 3306 * 3307 * "buflen" should be positive. 3308 */ 3309 char *d_path(const struct path *path, char *buf, int buflen) 3310 { 3311 char *res = buf + buflen; 3312 struct path root; 3313 int error; 3314 3315 /* 3316 * We have various synthetic filesystems that never get mounted. On 3317 * these filesystems dentries are never used for lookup purposes, and 3318 * thus don't need to be hashed. They also don't need a name until a 3319 * user wants to identify the object in /proc/pid/fd/. The little hack 3320 * below allows us to generate a name for these objects on demand: 3321 * 3322 * Some pseudo inodes are mountable. When they are mounted 3323 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname 3324 * and instead have d_path return the mounted path. 3325 */ 3326 if (path->dentry->d_op && path->dentry->d_op->d_dname && 3327 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root)) 3328 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 3329 3330 rcu_read_lock(); 3331 get_fs_root_rcu(current->fs, &root); 3332 error = path_with_deleted(path, &root, &res, &buflen); 3333 rcu_read_unlock(); 3334 3335 if (error < 0) 3336 res = ERR_PTR(error); 3337 return res; 3338 } 3339 EXPORT_SYMBOL(d_path); 3340 3341 /* 3342 * Helper function for dentry_operations.d_dname() members 3343 */ 3344 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 3345 const char *fmt, ...) 3346 { 3347 va_list args; 3348 char temp[64]; 3349 int sz; 3350 3351 va_start(args, fmt); 3352 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 3353 va_end(args); 3354 3355 if (sz > sizeof(temp) || sz > buflen) 3356 return ERR_PTR(-ENAMETOOLONG); 3357 3358 buffer += buflen - sz; 3359 return memcpy(buffer, temp, sz); 3360 } 3361 3362 char *simple_dname(struct dentry *dentry, char *buffer, int buflen) 3363 { 3364 char *end = buffer + buflen; 3365 /* these dentries are never renamed, so d_lock is not needed */ 3366 if (prepend(&end, &buflen, " (deleted)", 11) || 3367 prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) || 3368 prepend(&end, &buflen, "/", 1)) 3369 end = ERR_PTR(-ENAMETOOLONG); 3370 return end; 3371 } 3372 EXPORT_SYMBOL(simple_dname); 3373 3374 /* 3375 * Write full pathname from the root of the filesystem into the buffer. 3376 */ 3377 static char *__dentry_path(struct dentry *d, char *buf, int buflen) 3378 { 3379 struct dentry *dentry; 3380 char *end, *retval; 3381 int len, seq = 0; 3382 int error = 0; 3383 3384 if (buflen < 2) 3385 goto Elong; 3386 3387 rcu_read_lock(); 3388 restart: 3389 dentry = d; 3390 end = buf + buflen; 3391 len = buflen; 3392 prepend(&end, &len, "\0", 1); 3393 /* Get '/' right */ 3394 retval = end-1; 3395 *retval = '/'; 3396 read_seqbegin_or_lock(&rename_lock, &seq); 3397 while (!IS_ROOT(dentry)) { 3398 struct dentry *parent = dentry->d_parent; 3399 3400 prefetch(parent); 3401 error = prepend_name(&end, &len, &dentry->d_name); 3402 if (error) 3403 break; 3404 3405 retval = end; 3406 dentry = parent; 3407 } 3408 if (!(seq & 1)) 3409 rcu_read_unlock(); 3410 if (need_seqretry(&rename_lock, seq)) { 3411 seq = 1; 3412 goto restart; 3413 } 3414 done_seqretry(&rename_lock, seq); 3415 if (error) 3416 goto Elong; 3417 return retval; 3418 Elong: 3419 return ERR_PTR(-ENAMETOOLONG); 3420 } 3421 3422 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 3423 { 3424 return __dentry_path(dentry, buf, buflen); 3425 } 3426 EXPORT_SYMBOL(dentry_path_raw); 3427 3428 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 3429 { 3430 char *p = NULL; 3431 char *retval; 3432 3433 if (d_unlinked(dentry)) { 3434 p = buf + buflen; 3435 if (prepend(&p, &buflen, "//deleted", 10) != 0) 3436 goto Elong; 3437 buflen++; 3438 } 3439 retval = __dentry_path(dentry, buf, buflen); 3440 if (!IS_ERR(retval) && p) 3441 *p = '/'; /* restore '/' overriden with '\0' */ 3442 return retval; 3443 Elong: 3444 return ERR_PTR(-ENAMETOOLONG); 3445 } 3446 3447 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root, 3448 struct path *pwd) 3449 { 3450 unsigned seq; 3451 3452 do { 3453 seq = read_seqcount_begin(&fs->seq); 3454 *root = fs->root; 3455 *pwd = fs->pwd; 3456 } while (read_seqcount_retry(&fs->seq, seq)); 3457 } 3458 3459 /* 3460 * NOTE! The user-level library version returns a 3461 * character pointer. The kernel system call just 3462 * returns the length of the buffer filled (which 3463 * includes the ending '\0' character), or a negative 3464 * error value. So libc would do something like 3465 * 3466 * char *getcwd(char * buf, size_t size) 3467 * { 3468 * int retval; 3469 * 3470 * retval = sys_getcwd(buf, size); 3471 * if (retval >= 0) 3472 * return buf; 3473 * errno = -retval; 3474 * return NULL; 3475 * } 3476 */ 3477 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 3478 { 3479 int error; 3480 struct path pwd, root; 3481 char *page = __getname(); 3482 3483 if (!page) 3484 return -ENOMEM; 3485 3486 rcu_read_lock(); 3487 get_fs_root_and_pwd_rcu(current->fs, &root, &pwd); 3488 3489 error = -ENOENT; 3490 if (!d_unlinked(pwd.dentry)) { 3491 unsigned long len; 3492 char *cwd = page + PATH_MAX; 3493 int buflen = PATH_MAX; 3494 3495 prepend(&cwd, &buflen, "\0", 1); 3496 error = prepend_path(&pwd, &root, &cwd, &buflen); 3497 rcu_read_unlock(); 3498 3499 if (error < 0) 3500 goto out; 3501 3502 /* Unreachable from current root */ 3503 if (error > 0) { 3504 error = prepend_unreachable(&cwd, &buflen); 3505 if (error) 3506 goto out; 3507 } 3508 3509 error = -ERANGE; 3510 len = PATH_MAX + page - cwd; 3511 if (len <= size) { 3512 error = len; 3513 if (copy_to_user(buf, cwd, len)) 3514 error = -EFAULT; 3515 } 3516 } else { 3517 rcu_read_unlock(); 3518 } 3519 3520 out: 3521 __putname(page); 3522 return error; 3523 } 3524 3525 /* 3526 * Test whether new_dentry is a subdirectory of old_dentry. 3527 * 3528 * Trivially implemented using the dcache structure 3529 */ 3530 3531 /** 3532 * is_subdir - is new dentry a subdirectory of old_dentry 3533 * @new_dentry: new dentry 3534 * @old_dentry: old dentry 3535 * 3536 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3537 * Returns false otherwise. 3538 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3539 */ 3540 3541 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3542 { 3543 bool result; 3544 unsigned seq; 3545 3546 if (new_dentry == old_dentry) 3547 return true; 3548 3549 do { 3550 /* for restarting inner loop in case of seq retry */ 3551 seq = read_seqbegin(&rename_lock); 3552 /* 3553 * Need rcu_readlock to protect against the d_parent trashing 3554 * due to d_move 3555 */ 3556 rcu_read_lock(); 3557 if (d_ancestor(old_dentry, new_dentry)) 3558 result = true; 3559 else 3560 result = false; 3561 rcu_read_unlock(); 3562 } while (read_seqretry(&rename_lock, seq)); 3563 3564 return result; 3565 } 3566 EXPORT_SYMBOL(is_subdir); 3567 3568 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3569 { 3570 struct dentry *root = data; 3571 if (dentry != root) { 3572 if (d_unhashed(dentry) || !dentry->d_inode) 3573 return D_WALK_SKIP; 3574 3575 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3576 dentry->d_flags |= DCACHE_GENOCIDE; 3577 dentry->d_lockref.count--; 3578 } 3579 } 3580 return D_WALK_CONTINUE; 3581 } 3582 3583 void d_genocide(struct dentry *parent) 3584 { 3585 d_walk(parent, parent, d_genocide_kill, NULL); 3586 } 3587 3588 void d_tmpfile(struct dentry *dentry, struct inode *inode) 3589 { 3590 inode_dec_link_count(inode); 3591 BUG_ON(dentry->d_name.name != dentry->d_iname || 3592 !hlist_unhashed(&dentry->d_u.d_alias) || 3593 !d_unlinked(dentry)); 3594 spin_lock(&dentry->d_parent->d_lock); 3595 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3596 dentry->d_name.len = sprintf(dentry->d_iname, "#%llu", 3597 (unsigned long long)inode->i_ino); 3598 spin_unlock(&dentry->d_lock); 3599 spin_unlock(&dentry->d_parent->d_lock); 3600 d_instantiate(dentry, inode); 3601 } 3602 EXPORT_SYMBOL(d_tmpfile); 3603 3604 static __initdata unsigned long dhash_entries; 3605 static int __init set_dhash_entries(char *str) 3606 { 3607 if (!str) 3608 return 0; 3609 dhash_entries = simple_strtoul(str, &str, 0); 3610 return 1; 3611 } 3612 __setup("dhash_entries=", set_dhash_entries); 3613 3614 static void __init dcache_init_early(void) 3615 { 3616 /* If hashes are distributed across NUMA nodes, defer 3617 * hash allocation until vmalloc space is available. 3618 */ 3619 if (hashdist) 3620 return; 3621 3622 dentry_hashtable = 3623 alloc_large_system_hash("Dentry cache", 3624 sizeof(struct hlist_bl_head), 3625 dhash_entries, 3626 13, 3627 HASH_EARLY | HASH_ZERO, 3628 &d_hash_shift, 3629 NULL, 3630 0, 3631 0); 3632 d_hash_shift = 32 - d_hash_shift; 3633 } 3634 3635 static void __init dcache_init(void) 3636 { 3637 /* 3638 * A constructor could be added for stable state like the lists, 3639 * but it is probably not worth it because of the cache nature 3640 * of the dcache. 3641 */ 3642 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3643 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT, 3644 d_iname); 3645 3646 /* Hash may have been set up in dcache_init_early */ 3647 if (!hashdist) 3648 return; 3649 3650 dentry_hashtable = 3651 alloc_large_system_hash("Dentry cache", 3652 sizeof(struct hlist_bl_head), 3653 dhash_entries, 3654 13, 3655 HASH_ZERO, 3656 &d_hash_shift, 3657 NULL, 3658 0, 3659 0); 3660 d_hash_shift = 32 - d_hash_shift; 3661 } 3662 3663 /* SLAB cache for __getname() consumers */ 3664 struct kmem_cache *names_cachep __read_mostly; 3665 EXPORT_SYMBOL(names_cachep); 3666 3667 EXPORT_SYMBOL(d_genocide); 3668 3669 void __init vfs_caches_init_early(void) 3670 { 3671 int i; 3672 3673 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3674 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3675 3676 dcache_init_early(); 3677 inode_init_early(); 3678 } 3679 3680 void __init vfs_caches_init(void) 3681 { 3682 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3683 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3684 3685 dcache_init(); 3686 inode_init(); 3687 files_init(); 3688 files_maxfiles_init(); 3689 mnt_init(); 3690 bdev_cache_init(); 3691 chrdev_init(); 3692 } 3693