1 /* 2 * fs/dcache.c 3 * 4 * Complete reimplementation 5 * (C) 1997 Thomas Schoebel-Theuer, 6 * with heavy changes by Linus Torvalds 7 */ 8 9 /* 10 * Notes on the allocation strategy: 11 * 12 * The dcache is a master of the icache - whenever a dcache entry 13 * exists, the inode will always exist. "iput()" is done either when 14 * the dcache entry is deleted or garbage collected. 15 */ 16 17 #include <linux/syscalls.h> 18 #include <linux/string.h> 19 #include <linux/mm.h> 20 #include <linux/fs.h> 21 #include <linux/fsnotify.h> 22 #include <linux/slab.h> 23 #include <linux/init.h> 24 #include <linux/hash.h> 25 #include <linux/cache.h> 26 #include <linux/export.h> 27 #include <linux/mount.h> 28 #include <linux/file.h> 29 #include <asm/uaccess.h> 30 #include <linux/security.h> 31 #include <linux/seqlock.h> 32 #include <linux/swap.h> 33 #include <linux/bootmem.h> 34 #include <linux/fs_struct.h> 35 #include <linux/hardirq.h> 36 #include <linux/bit_spinlock.h> 37 #include <linux/rculist_bl.h> 38 #include <linux/prefetch.h> 39 #include <linux/ratelimit.h> 40 #include "internal.h" 41 #include "mount.h" 42 43 /* 44 * Usage: 45 * dcache->d_inode->i_lock protects: 46 * - i_dentry, d_alias, d_inode of aliases 47 * dcache_hash_bucket lock protects: 48 * - the dcache hash table 49 * s_anon bl list spinlock protects: 50 * - the s_anon list (see __d_drop) 51 * dcache_lru_lock protects: 52 * - the dcache lru lists and counters 53 * d_lock protects: 54 * - d_flags 55 * - d_name 56 * - d_lru 57 * - d_count 58 * - d_unhashed() 59 * - d_parent and d_subdirs 60 * - childrens' d_child and d_parent 61 * - d_alias, d_inode 62 * 63 * Ordering: 64 * dentry->d_inode->i_lock 65 * dentry->d_lock 66 * dcache_lru_lock 67 * dcache_hash_bucket lock 68 * s_anon lock 69 * 70 * If there is an ancestor relationship: 71 * dentry->d_parent->...->d_parent->d_lock 72 * ... 73 * dentry->d_parent->d_lock 74 * dentry->d_lock 75 * 76 * If no ancestor relationship: 77 * if (dentry1 < dentry2) 78 * dentry1->d_lock 79 * dentry2->d_lock 80 */ 81 int sysctl_vfs_cache_pressure __read_mostly = 100; 82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure); 83 84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock); 85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 86 87 EXPORT_SYMBOL(rename_lock); 88 89 static struct kmem_cache *dentry_cache __read_mostly; 90 91 /* 92 * This is the single most critical data structure when it comes 93 * to the dcache: the hashtable for lookups. Somebody should try 94 * to make this good - I've just made it work. 95 * 96 * This hash-function tries to avoid losing too many bits of hash 97 * information, yet avoid using a prime hash-size or similar. 98 */ 99 #define D_HASHBITS d_hash_shift 100 #define D_HASHMASK d_hash_mask 101 102 static unsigned int d_hash_mask __read_mostly; 103 static unsigned int d_hash_shift __read_mostly; 104 105 static struct hlist_bl_head *dentry_hashtable __read_mostly; 106 107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent, 108 unsigned int hash) 109 { 110 hash += (unsigned long) parent / L1_CACHE_BYTES; 111 hash = hash + (hash >> D_HASHBITS); 112 return dentry_hashtable + (hash & D_HASHMASK); 113 } 114 115 /* Statistics gathering. */ 116 struct dentry_stat_t dentry_stat = { 117 .age_limit = 45, 118 }; 119 120 static DEFINE_PER_CPU(unsigned int, nr_dentry); 121 122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 123 static int get_nr_dentry(void) 124 { 125 int i; 126 int sum = 0; 127 for_each_possible_cpu(i) 128 sum += per_cpu(nr_dentry, i); 129 return sum < 0 ? 0 : sum; 130 } 131 132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer, 133 size_t *lenp, loff_t *ppos) 134 { 135 dentry_stat.nr_dentry = get_nr_dentry(); 136 return proc_dointvec(table, write, buffer, lenp, ppos); 137 } 138 #endif 139 140 /* 141 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 142 * The strings are both count bytes long, and count is non-zero. 143 */ 144 #ifdef CONFIG_DCACHE_WORD_ACCESS 145 146 #include <asm/word-at-a-time.h> 147 /* 148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 149 * aligned allocation for this particular component. We don't 150 * strictly need the load_unaligned_zeropad() safety, but it 151 * doesn't hurt either. 152 * 153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 154 * need the careful unaligned handling. 155 */ 156 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 157 { 158 unsigned long a,b,mask; 159 160 for (;;) { 161 a = *(unsigned long *)cs; 162 b = load_unaligned_zeropad(ct); 163 if (tcount < sizeof(unsigned long)) 164 break; 165 if (unlikely(a != b)) 166 return 1; 167 cs += sizeof(unsigned long); 168 ct += sizeof(unsigned long); 169 tcount -= sizeof(unsigned long); 170 if (!tcount) 171 return 0; 172 } 173 mask = ~(~0ul << tcount*8); 174 return unlikely(!!((a ^ b) & mask)); 175 } 176 177 #else 178 179 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 180 { 181 do { 182 if (*cs != *ct) 183 return 1; 184 cs++; 185 ct++; 186 tcount--; 187 } while (tcount); 188 return 0; 189 } 190 191 #endif 192 193 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 194 { 195 const unsigned char *cs; 196 /* 197 * Be careful about RCU walk racing with rename: 198 * use ACCESS_ONCE to fetch the name pointer. 199 * 200 * NOTE! Even if a rename will mean that the length 201 * was not loaded atomically, we don't care. The 202 * RCU walk will check the sequence count eventually, 203 * and catch it. And we won't overrun the buffer, 204 * because we're reading the name pointer atomically, 205 * and a dentry name is guaranteed to be properly 206 * terminated with a NUL byte. 207 * 208 * End result: even if 'len' is wrong, we'll exit 209 * early because the data cannot match (there can 210 * be no NUL in the ct/tcount data) 211 */ 212 cs = ACCESS_ONCE(dentry->d_name.name); 213 smp_read_barrier_depends(); 214 return dentry_string_cmp(cs, ct, tcount); 215 } 216 217 static void __d_free(struct rcu_head *head) 218 { 219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 220 221 WARN_ON(!hlist_unhashed(&dentry->d_alias)); 222 if (dname_external(dentry)) 223 kfree(dentry->d_name.name); 224 kmem_cache_free(dentry_cache, dentry); 225 } 226 227 /* 228 * no locks, please. 229 */ 230 static void d_free(struct dentry *dentry) 231 { 232 BUG_ON(dentry->d_count); 233 this_cpu_dec(nr_dentry); 234 if (dentry->d_op && dentry->d_op->d_release) 235 dentry->d_op->d_release(dentry); 236 237 /* if dentry was never visible to RCU, immediate free is OK */ 238 if (!(dentry->d_flags & DCACHE_RCUACCESS)) 239 __d_free(&dentry->d_u.d_rcu); 240 else 241 call_rcu(&dentry->d_u.d_rcu, __d_free); 242 } 243 244 /** 245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups 246 * @dentry: the target dentry 247 * After this call, in-progress rcu-walk path lookup will fail. This 248 * should be called after unhashing, and after changing d_inode (if 249 * the dentry has not already been unhashed). 250 */ 251 static inline void dentry_rcuwalk_barrier(struct dentry *dentry) 252 { 253 assert_spin_locked(&dentry->d_lock); 254 /* Go through a barrier */ 255 write_seqcount_barrier(&dentry->d_seq); 256 } 257 258 /* 259 * Release the dentry's inode, using the filesystem 260 * d_iput() operation if defined. Dentry has no refcount 261 * and is unhashed. 262 */ 263 static void dentry_iput(struct dentry * dentry) 264 __releases(dentry->d_lock) 265 __releases(dentry->d_inode->i_lock) 266 { 267 struct inode *inode = dentry->d_inode; 268 if (inode) { 269 dentry->d_inode = NULL; 270 hlist_del_init(&dentry->d_alias); 271 spin_unlock(&dentry->d_lock); 272 spin_unlock(&inode->i_lock); 273 if (!inode->i_nlink) 274 fsnotify_inoderemove(inode); 275 if (dentry->d_op && dentry->d_op->d_iput) 276 dentry->d_op->d_iput(dentry, inode); 277 else 278 iput(inode); 279 } else { 280 spin_unlock(&dentry->d_lock); 281 } 282 } 283 284 /* 285 * Release the dentry's inode, using the filesystem 286 * d_iput() operation if defined. dentry remains in-use. 287 */ 288 static void dentry_unlink_inode(struct dentry * dentry) 289 __releases(dentry->d_lock) 290 __releases(dentry->d_inode->i_lock) 291 { 292 struct inode *inode = dentry->d_inode; 293 dentry->d_inode = NULL; 294 hlist_del_init(&dentry->d_alias); 295 dentry_rcuwalk_barrier(dentry); 296 spin_unlock(&dentry->d_lock); 297 spin_unlock(&inode->i_lock); 298 if (!inode->i_nlink) 299 fsnotify_inoderemove(inode); 300 if (dentry->d_op && dentry->d_op->d_iput) 301 dentry->d_op->d_iput(dentry, inode); 302 else 303 iput(inode); 304 } 305 306 /* 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held. 308 */ 309 static void dentry_lru_add(struct dentry *dentry) 310 { 311 if (list_empty(&dentry->d_lru)) { 312 spin_lock(&dcache_lru_lock); 313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru); 314 dentry->d_sb->s_nr_dentry_unused++; 315 dentry_stat.nr_unused++; 316 spin_unlock(&dcache_lru_lock); 317 } 318 } 319 320 static void __dentry_lru_del(struct dentry *dentry) 321 { 322 list_del_init(&dentry->d_lru); 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST; 324 dentry->d_sb->s_nr_dentry_unused--; 325 dentry_stat.nr_unused--; 326 } 327 328 /* 329 * Remove a dentry with references from the LRU. 330 */ 331 static void dentry_lru_del(struct dentry *dentry) 332 { 333 if (!list_empty(&dentry->d_lru)) { 334 spin_lock(&dcache_lru_lock); 335 __dentry_lru_del(dentry); 336 spin_unlock(&dcache_lru_lock); 337 } 338 } 339 340 /* 341 * Remove a dentry that is unreferenced and about to be pruned 342 * (unhashed and destroyed) from the LRU, and inform the file system. 343 * This wrapper should be called _prior_ to unhashing a victim dentry. 344 */ 345 static void dentry_lru_prune(struct dentry *dentry) 346 { 347 if (!list_empty(&dentry->d_lru)) { 348 if (dentry->d_flags & DCACHE_OP_PRUNE) 349 dentry->d_op->d_prune(dentry); 350 351 spin_lock(&dcache_lru_lock); 352 __dentry_lru_del(dentry); 353 spin_unlock(&dcache_lru_lock); 354 } 355 } 356 357 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list) 358 { 359 spin_lock(&dcache_lru_lock); 360 if (list_empty(&dentry->d_lru)) { 361 list_add_tail(&dentry->d_lru, list); 362 dentry->d_sb->s_nr_dentry_unused++; 363 dentry_stat.nr_unused++; 364 } else { 365 list_move_tail(&dentry->d_lru, list); 366 } 367 spin_unlock(&dcache_lru_lock); 368 } 369 370 /** 371 * d_kill - kill dentry and return parent 372 * @dentry: dentry to kill 373 * @parent: parent dentry 374 * 375 * The dentry must already be unhashed and removed from the LRU. 376 * 377 * If this is the root of the dentry tree, return NULL. 378 * 379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by 380 * d_kill. 381 */ 382 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent) 383 __releases(dentry->d_lock) 384 __releases(parent->d_lock) 385 __releases(dentry->d_inode->i_lock) 386 { 387 list_del(&dentry->d_u.d_child); 388 /* 389 * Inform try_to_ascend() that we are no longer attached to the 390 * dentry tree 391 */ 392 dentry->d_flags |= DCACHE_DENTRY_KILLED; 393 if (parent) 394 spin_unlock(&parent->d_lock); 395 dentry_iput(dentry); 396 /* 397 * dentry_iput drops the locks, at which point nobody (except 398 * transient RCU lookups) can reach this dentry. 399 */ 400 d_free(dentry); 401 return parent; 402 } 403 404 /* 405 * Unhash a dentry without inserting an RCU walk barrier or checking that 406 * dentry->d_lock is locked. The caller must take care of that, if 407 * appropriate. 408 */ 409 static void __d_shrink(struct dentry *dentry) 410 { 411 if (!d_unhashed(dentry)) { 412 struct hlist_bl_head *b; 413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) 414 b = &dentry->d_sb->s_anon; 415 else 416 b = d_hash(dentry->d_parent, dentry->d_name.hash); 417 418 hlist_bl_lock(b); 419 __hlist_bl_del(&dentry->d_hash); 420 dentry->d_hash.pprev = NULL; 421 hlist_bl_unlock(b); 422 } 423 } 424 425 /** 426 * d_drop - drop a dentry 427 * @dentry: dentry to drop 428 * 429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 430 * be found through a VFS lookup any more. Note that this is different from 431 * deleting the dentry - d_delete will try to mark the dentry negative if 432 * possible, giving a successful _negative_ lookup, while d_drop will 433 * just make the cache lookup fail. 434 * 435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 436 * reason (NFS timeouts or autofs deletes). 437 * 438 * __d_drop requires dentry->d_lock. 439 */ 440 void __d_drop(struct dentry *dentry) 441 { 442 if (!d_unhashed(dentry)) { 443 __d_shrink(dentry); 444 dentry_rcuwalk_barrier(dentry); 445 } 446 } 447 EXPORT_SYMBOL(__d_drop); 448 449 void d_drop(struct dentry *dentry) 450 { 451 spin_lock(&dentry->d_lock); 452 __d_drop(dentry); 453 spin_unlock(&dentry->d_lock); 454 } 455 EXPORT_SYMBOL(d_drop); 456 457 /* 458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag 459 * @dentry: dentry to drop 460 * 461 * This is called when we do a lookup on a placeholder dentry that needed to be 462 * looked up. The dentry should have been hashed in order for it to be found by 463 * the lookup code, but now needs to be unhashed while we do the actual lookup 464 * and clear the DCACHE_NEED_LOOKUP flag. 465 */ 466 void d_clear_need_lookup(struct dentry *dentry) 467 { 468 spin_lock(&dentry->d_lock); 469 __d_drop(dentry); 470 dentry->d_flags &= ~DCACHE_NEED_LOOKUP; 471 spin_unlock(&dentry->d_lock); 472 } 473 EXPORT_SYMBOL(d_clear_need_lookup); 474 475 /* 476 * Finish off a dentry we've decided to kill. 477 * dentry->d_lock must be held, returns with it unlocked. 478 * If ref is non-zero, then decrement the refcount too. 479 * Returns dentry requiring refcount drop, or NULL if we're done. 480 */ 481 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref) 482 __releases(dentry->d_lock) 483 { 484 struct inode *inode; 485 struct dentry *parent; 486 487 inode = dentry->d_inode; 488 if (inode && !spin_trylock(&inode->i_lock)) { 489 relock: 490 spin_unlock(&dentry->d_lock); 491 cpu_relax(); 492 return dentry; /* try again with same dentry */ 493 } 494 if (IS_ROOT(dentry)) 495 parent = NULL; 496 else 497 parent = dentry->d_parent; 498 if (parent && !spin_trylock(&parent->d_lock)) { 499 if (inode) 500 spin_unlock(&inode->i_lock); 501 goto relock; 502 } 503 504 if (ref) 505 dentry->d_count--; 506 /* 507 * if dentry was on the d_lru list delete it from there. 508 * inform the fs via d_prune that this dentry is about to be 509 * unhashed and destroyed. 510 */ 511 dentry_lru_prune(dentry); 512 /* if it was on the hash then remove it */ 513 __d_drop(dentry); 514 return d_kill(dentry, parent); 515 } 516 517 /* 518 * This is dput 519 * 520 * This is complicated by the fact that we do not want to put 521 * dentries that are no longer on any hash chain on the unused 522 * list: we'd much rather just get rid of them immediately. 523 * 524 * However, that implies that we have to traverse the dentry 525 * tree upwards to the parents which might _also_ now be 526 * scheduled for deletion (it may have been only waiting for 527 * its last child to go away). 528 * 529 * This tail recursion is done by hand as we don't want to depend 530 * on the compiler to always get this right (gcc generally doesn't). 531 * Real recursion would eat up our stack space. 532 */ 533 534 /* 535 * dput - release a dentry 536 * @dentry: dentry to release 537 * 538 * Release a dentry. This will drop the usage count and if appropriate 539 * call the dentry unlink method as well as removing it from the queues and 540 * releasing its resources. If the parent dentries were scheduled for release 541 * they too may now get deleted. 542 */ 543 void dput(struct dentry *dentry) 544 { 545 if (!dentry) 546 return; 547 548 repeat: 549 if (dentry->d_count == 1) 550 might_sleep(); 551 spin_lock(&dentry->d_lock); 552 BUG_ON(!dentry->d_count); 553 if (dentry->d_count > 1) { 554 dentry->d_count--; 555 spin_unlock(&dentry->d_lock); 556 return; 557 } 558 559 if (dentry->d_flags & DCACHE_OP_DELETE) { 560 if (dentry->d_op->d_delete(dentry)) 561 goto kill_it; 562 } 563 564 /* Unreachable? Get rid of it */ 565 if (d_unhashed(dentry)) 566 goto kill_it; 567 568 /* 569 * If this dentry needs lookup, don't set the referenced flag so that it 570 * is more likely to be cleaned up by the dcache shrinker in case of 571 * memory pressure. 572 */ 573 if (!d_need_lookup(dentry)) 574 dentry->d_flags |= DCACHE_REFERENCED; 575 dentry_lru_add(dentry); 576 577 dentry->d_count--; 578 spin_unlock(&dentry->d_lock); 579 return; 580 581 kill_it: 582 dentry = dentry_kill(dentry, 1); 583 if (dentry) 584 goto repeat; 585 } 586 EXPORT_SYMBOL(dput); 587 588 /** 589 * d_invalidate - invalidate a dentry 590 * @dentry: dentry to invalidate 591 * 592 * Try to invalidate the dentry if it turns out to be 593 * possible. If there are other dentries that can be 594 * reached through this one we can't delete it and we 595 * return -EBUSY. On success we return 0. 596 * 597 * no dcache lock. 598 */ 599 600 int d_invalidate(struct dentry * dentry) 601 { 602 /* 603 * If it's already been dropped, return OK. 604 */ 605 spin_lock(&dentry->d_lock); 606 if (d_unhashed(dentry)) { 607 spin_unlock(&dentry->d_lock); 608 return 0; 609 } 610 /* 611 * Check whether to do a partial shrink_dcache 612 * to get rid of unused child entries. 613 */ 614 if (!list_empty(&dentry->d_subdirs)) { 615 spin_unlock(&dentry->d_lock); 616 shrink_dcache_parent(dentry); 617 spin_lock(&dentry->d_lock); 618 } 619 620 /* 621 * Somebody else still using it? 622 * 623 * If it's a directory, we can't drop it 624 * for fear of somebody re-populating it 625 * with children (even though dropping it 626 * would make it unreachable from the root, 627 * we might still populate it if it was a 628 * working directory or similar). 629 * We also need to leave mountpoints alone, 630 * directory or not. 631 */ 632 if (dentry->d_count > 1 && dentry->d_inode) { 633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) { 634 spin_unlock(&dentry->d_lock); 635 return -EBUSY; 636 } 637 } 638 639 __d_drop(dentry); 640 spin_unlock(&dentry->d_lock); 641 return 0; 642 } 643 EXPORT_SYMBOL(d_invalidate); 644 645 /* This must be called with d_lock held */ 646 static inline void __dget_dlock(struct dentry *dentry) 647 { 648 dentry->d_count++; 649 } 650 651 static inline void __dget(struct dentry *dentry) 652 { 653 spin_lock(&dentry->d_lock); 654 __dget_dlock(dentry); 655 spin_unlock(&dentry->d_lock); 656 } 657 658 struct dentry *dget_parent(struct dentry *dentry) 659 { 660 struct dentry *ret; 661 662 repeat: 663 /* 664 * Don't need rcu_dereference because we re-check it was correct under 665 * the lock. 666 */ 667 rcu_read_lock(); 668 ret = dentry->d_parent; 669 spin_lock(&ret->d_lock); 670 if (unlikely(ret != dentry->d_parent)) { 671 spin_unlock(&ret->d_lock); 672 rcu_read_unlock(); 673 goto repeat; 674 } 675 rcu_read_unlock(); 676 BUG_ON(!ret->d_count); 677 ret->d_count++; 678 spin_unlock(&ret->d_lock); 679 return ret; 680 } 681 EXPORT_SYMBOL(dget_parent); 682 683 /** 684 * d_find_alias - grab a hashed alias of inode 685 * @inode: inode in question 686 * @want_discon: flag, used by d_splice_alias, to request 687 * that only a DISCONNECTED alias be returned. 688 * 689 * If inode has a hashed alias, or is a directory and has any alias, 690 * acquire the reference to alias and return it. Otherwise return NULL. 691 * Notice that if inode is a directory there can be only one alias and 692 * it can be unhashed only if it has no children, or if it is the root 693 * of a filesystem. 694 * 695 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 696 * any other hashed alias over that one unless @want_discon is set, 697 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias. 698 */ 699 static struct dentry *__d_find_alias(struct inode *inode, int want_discon) 700 { 701 struct dentry *alias, *discon_alias; 702 struct hlist_node *p; 703 704 again: 705 discon_alias = NULL; 706 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) { 707 spin_lock(&alias->d_lock); 708 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 709 if (IS_ROOT(alias) && 710 (alias->d_flags & DCACHE_DISCONNECTED)) { 711 discon_alias = alias; 712 } else if (!want_discon) { 713 __dget_dlock(alias); 714 spin_unlock(&alias->d_lock); 715 return alias; 716 } 717 } 718 spin_unlock(&alias->d_lock); 719 } 720 if (discon_alias) { 721 alias = discon_alias; 722 spin_lock(&alias->d_lock); 723 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) { 724 if (IS_ROOT(alias) && 725 (alias->d_flags & DCACHE_DISCONNECTED)) { 726 __dget_dlock(alias); 727 spin_unlock(&alias->d_lock); 728 return alias; 729 } 730 } 731 spin_unlock(&alias->d_lock); 732 goto again; 733 } 734 return NULL; 735 } 736 737 struct dentry *d_find_alias(struct inode *inode) 738 { 739 struct dentry *de = NULL; 740 741 if (!hlist_empty(&inode->i_dentry)) { 742 spin_lock(&inode->i_lock); 743 de = __d_find_alias(inode, 0); 744 spin_unlock(&inode->i_lock); 745 } 746 return de; 747 } 748 EXPORT_SYMBOL(d_find_alias); 749 750 /* 751 * Try to kill dentries associated with this inode. 752 * WARNING: you must own a reference to inode. 753 */ 754 void d_prune_aliases(struct inode *inode) 755 { 756 struct dentry *dentry; 757 struct hlist_node *p; 758 restart: 759 spin_lock(&inode->i_lock); 760 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) { 761 spin_lock(&dentry->d_lock); 762 if (!dentry->d_count) { 763 __dget_dlock(dentry); 764 __d_drop(dentry); 765 spin_unlock(&dentry->d_lock); 766 spin_unlock(&inode->i_lock); 767 dput(dentry); 768 goto restart; 769 } 770 spin_unlock(&dentry->d_lock); 771 } 772 spin_unlock(&inode->i_lock); 773 } 774 EXPORT_SYMBOL(d_prune_aliases); 775 776 /* 777 * Try to throw away a dentry - free the inode, dput the parent. 778 * Requires dentry->d_lock is held, and dentry->d_count == 0. 779 * Releases dentry->d_lock. 780 * 781 * This may fail if locks cannot be acquired no problem, just try again. 782 */ 783 static void try_prune_one_dentry(struct dentry *dentry) 784 __releases(dentry->d_lock) 785 { 786 struct dentry *parent; 787 788 parent = dentry_kill(dentry, 0); 789 /* 790 * If dentry_kill returns NULL, we have nothing more to do. 791 * if it returns the same dentry, trylocks failed. In either 792 * case, just loop again. 793 * 794 * Otherwise, we need to prune ancestors too. This is necessary 795 * to prevent quadratic behavior of shrink_dcache_parent(), but 796 * is also expected to be beneficial in reducing dentry cache 797 * fragmentation. 798 */ 799 if (!parent) 800 return; 801 if (parent == dentry) 802 return; 803 804 /* Prune ancestors. */ 805 dentry = parent; 806 while (dentry) { 807 spin_lock(&dentry->d_lock); 808 if (dentry->d_count > 1) { 809 dentry->d_count--; 810 spin_unlock(&dentry->d_lock); 811 return; 812 } 813 dentry = dentry_kill(dentry, 1); 814 } 815 } 816 817 static void shrink_dentry_list(struct list_head *list) 818 { 819 struct dentry *dentry; 820 821 rcu_read_lock(); 822 for (;;) { 823 dentry = list_entry_rcu(list->prev, struct dentry, d_lru); 824 if (&dentry->d_lru == list) 825 break; /* empty */ 826 spin_lock(&dentry->d_lock); 827 if (dentry != list_entry(list->prev, struct dentry, d_lru)) { 828 spin_unlock(&dentry->d_lock); 829 continue; 830 } 831 832 /* 833 * We found an inuse dentry which was not removed from 834 * the LRU because of laziness during lookup. Do not free 835 * it - just keep it off the LRU list. 836 */ 837 if (dentry->d_count) { 838 dentry_lru_del(dentry); 839 spin_unlock(&dentry->d_lock); 840 continue; 841 } 842 843 rcu_read_unlock(); 844 845 try_prune_one_dentry(dentry); 846 847 rcu_read_lock(); 848 } 849 rcu_read_unlock(); 850 } 851 852 /** 853 * prune_dcache_sb - shrink the dcache 854 * @sb: superblock 855 * @count: number of entries to try to free 856 * 857 * Attempt to shrink the superblock dcache LRU by @count entries. This is 858 * done when we need more memory an called from the superblock shrinker 859 * function. 860 * 861 * This function may fail to free any resources if all the dentries are in 862 * use. 863 */ 864 void prune_dcache_sb(struct super_block *sb, int count) 865 { 866 struct dentry *dentry; 867 LIST_HEAD(referenced); 868 LIST_HEAD(tmp); 869 870 relock: 871 spin_lock(&dcache_lru_lock); 872 while (!list_empty(&sb->s_dentry_lru)) { 873 dentry = list_entry(sb->s_dentry_lru.prev, 874 struct dentry, d_lru); 875 BUG_ON(dentry->d_sb != sb); 876 877 if (!spin_trylock(&dentry->d_lock)) { 878 spin_unlock(&dcache_lru_lock); 879 cpu_relax(); 880 goto relock; 881 } 882 883 if (dentry->d_flags & DCACHE_REFERENCED) { 884 dentry->d_flags &= ~DCACHE_REFERENCED; 885 list_move(&dentry->d_lru, &referenced); 886 spin_unlock(&dentry->d_lock); 887 } else { 888 list_move_tail(&dentry->d_lru, &tmp); 889 dentry->d_flags |= DCACHE_SHRINK_LIST; 890 spin_unlock(&dentry->d_lock); 891 if (!--count) 892 break; 893 } 894 cond_resched_lock(&dcache_lru_lock); 895 } 896 if (!list_empty(&referenced)) 897 list_splice(&referenced, &sb->s_dentry_lru); 898 spin_unlock(&dcache_lru_lock); 899 900 shrink_dentry_list(&tmp); 901 } 902 903 /** 904 * shrink_dcache_sb - shrink dcache for a superblock 905 * @sb: superblock 906 * 907 * Shrink the dcache for the specified super block. This is used to free 908 * the dcache before unmounting a file system. 909 */ 910 void shrink_dcache_sb(struct super_block *sb) 911 { 912 LIST_HEAD(tmp); 913 914 spin_lock(&dcache_lru_lock); 915 while (!list_empty(&sb->s_dentry_lru)) { 916 list_splice_init(&sb->s_dentry_lru, &tmp); 917 spin_unlock(&dcache_lru_lock); 918 shrink_dentry_list(&tmp); 919 spin_lock(&dcache_lru_lock); 920 } 921 spin_unlock(&dcache_lru_lock); 922 } 923 EXPORT_SYMBOL(shrink_dcache_sb); 924 925 /* 926 * destroy a single subtree of dentries for unmount 927 * - see the comments on shrink_dcache_for_umount() for a description of the 928 * locking 929 */ 930 static void shrink_dcache_for_umount_subtree(struct dentry *dentry) 931 { 932 struct dentry *parent; 933 934 BUG_ON(!IS_ROOT(dentry)); 935 936 for (;;) { 937 /* descend to the first leaf in the current subtree */ 938 while (!list_empty(&dentry->d_subdirs)) 939 dentry = list_entry(dentry->d_subdirs.next, 940 struct dentry, d_u.d_child); 941 942 /* consume the dentries from this leaf up through its parents 943 * until we find one with children or run out altogether */ 944 do { 945 struct inode *inode; 946 947 /* 948 * remove the dentry from the lru, and inform 949 * the fs that this dentry is about to be 950 * unhashed and destroyed. 951 */ 952 dentry_lru_prune(dentry); 953 __d_shrink(dentry); 954 955 if (dentry->d_count != 0) { 956 printk(KERN_ERR 957 "BUG: Dentry %p{i=%lx,n=%s}" 958 " still in use (%d)" 959 " [unmount of %s %s]\n", 960 dentry, 961 dentry->d_inode ? 962 dentry->d_inode->i_ino : 0UL, 963 dentry->d_name.name, 964 dentry->d_count, 965 dentry->d_sb->s_type->name, 966 dentry->d_sb->s_id); 967 BUG(); 968 } 969 970 if (IS_ROOT(dentry)) { 971 parent = NULL; 972 list_del(&dentry->d_u.d_child); 973 } else { 974 parent = dentry->d_parent; 975 parent->d_count--; 976 list_del(&dentry->d_u.d_child); 977 } 978 979 inode = dentry->d_inode; 980 if (inode) { 981 dentry->d_inode = NULL; 982 hlist_del_init(&dentry->d_alias); 983 if (dentry->d_op && dentry->d_op->d_iput) 984 dentry->d_op->d_iput(dentry, inode); 985 else 986 iput(inode); 987 } 988 989 d_free(dentry); 990 991 /* finished when we fall off the top of the tree, 992 * otherwise we ascend to the parent and move to the 993 * next sibling if there is one */ 994 if (!parent) 995 return; 996 dentry = parent; 997 } while (list_empty(&dentry->d_subdirs)); 998 999 dentry = list_entry(dentry->d_subdirs.next, 1000 struct dentry, d_u.d_child); 1001 } 1002 } 1003 1004 /* 1005 * destroy the dentries attached to a superblock on unmounting 1006 * - we don't need to use dentry->d_lock because: 1007 * - the superblock is detached from all mountings and open files, so the 1008 * dentry trees will not be rearranged by the VFS 1009 * - s_umount is write-locked, so the memory pressure shrinker will ignore 1010 * any dentries belonging to this superblock that it comes across 1011 * - the filesystem itself is no longer permitted to rearrange the dentries 1012 * in this superblock 1013 */ 1014 void shrink_dcache_for_umount(struct super_block *sb) 1015 { 1016 struct dentry *dentry; 1017 1018 if (down_read_trylock(&sb->s_umount)) 1019 BUG(); 1020 1021 dentry = sb->s_root; 1022 sb->s_root = NULL; 1023 dentry->d_count--; 1024 shrink_dcache_for_umount_subtree(dentry); 1025 1026 while (!hlist_bl_empty(&sb->s_anon)) { 1027 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash); 1028 shrink_dcache_for_umount_subtree(dentry); 1029 } 1030 } 1031 1032 /* 1033 * This tries to ascend one level of parenthood, but 1034 * we can race with renaming, so we need to re-check 1035 * the parenthood after dropping the lock and check 1036 * that the sequence number still matches. 1037 */ 1038 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq) 1039 { 1040 struct dentry *new = old->d_parent; 1041 1042 rcu_read_lock(); 1043 spin_unlock(&old->d_lock); 1044 spin_lock(&new->d_lock); 1045 1046 /* 1047 * might go back up the wrong parent if we have had a rename 1048 * or deletion 1049 */ 1050 if (new != old->d_parent || 1051 (old->d_flags & DCACHE_DENTRY_KILLED) || 1052 (!locked && read_seqretry(&rename_lock, seq))) { 1053 spin_unlock(&new->d_lock); 1054 new = NULL; 1055 } 1056 rcu_read_unlock(); 1057 return new; 1058 } 1059 1060 1061 /* 1062 * Search for at least 1 mount point in the dentry's subdirs. 1063 * We descend to the next level whenever the d_subdirs 1064 * list is non-empty and continue searching. 1065 */ 1066 1067 /** 1068 * have_submounts - check for mounts over a dentry 1069 * @parent: dentry to check. 1070 * 1071 * Return true if the parent or its subdirectories contain 1072 * a mount point 1073 */ 1074 int have_submounts(struct dentry *parent) 1075 { 1076 struct dentry *this_parent; 1077 struct list_head *next; 1078 unsigned seq; 1079 int locked = 0; 1080 1081 seq = read_seqbegin(&rename_lock); 1082 again: 1083 this_parent = parent; 1084 1085 if (d_mountpoint(parent)) 1086 goto positive; 1087 spin_lock(&this_parent->d_lock); 1088 repeat: 1089 next = this_parent->d_subdirs.next; 1090 resume: 1091 while (next != &this_parent->d_subdirs) { 1092 struct list_head *tmp = next; 1093 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1094 next = tmp->next; 1095 1096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1097 /* Have we found a mount point ? */ 1098 if (d_mountpoint(dentry)) { 1099 spin_unlock(&dentry->d_lock); 1100 spin_unlock(&this_parent->d_lock); 1101 goto positive; 1102 } 1103 if (!list_empty(&dentry->d_subdirs)) { 1104 spin_unlock(&this_parent->d_lock); 1105 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1106 this_parent = dentry; 1107 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1108 goto repeat; 1109 } 1110 spin_unlock(&dentry->d_lock); 1111 } 1112 /* 1113 * All done at this level ... ascend and resume the search. 1114 */ 1115 if (this_parent != parent) { 1116 struct dentry *child = this_parent; 1117 this_parent = try_to_ascend(this_parent, locked, seq); 1118 if (!this_parent) 1119 goto rename_retry; 1120 next = child->d_u.d_child.next; 1121 goto resume; 1122 } 1123 spin_unlock(&this_parent->d_lock); 1124 if (!locked && read_seqretry(&rename_lock, seq)) 1125 goto rename_retry; 1126 if (locked) 1127 write_sequnlock(&rename_lock); 1128 return 0; /* No mount points found in tree */ 1129 positive: 1130 if (!locked && read_seqretry(&rename_lock, seq)) 1131 goto rename_retry; 1132 if (locked) 1133 write_sequnlock(&rename_lock); 1134 return 1; 1135 1136 rename_retry: 1137 if (locked) 1138 goto again; 1139 locked = 1; 1140 write_seqlock(&rename_lock); 1141 goto again; 1142 } 1143 EXPORT_SYMBOL(have_submounts); 1144 1145 /* 1146 * Search the dentry child list of the specified parent, 1147 * and move any unused dentries to the end of the unused 1148 * list for prune_dcache(). We descend to the next level 1149 * whenever the d_subdirs list is non-empty and continue 1150 * searching. 1151 * 1152 * It returns zero iff there are no unused children, 1153 * otherwise it returns the number of children moved to 1154 * the end of the unused list. This may not be the total 1155 * number of unused children, because select_parent can 1156 * drop the lock and return early due to latency 1157 * constraints. 1158 */ 1159 static int select_parent(struct dentry *parent, struct list_head *dispose) 1160 { 1161 struct dentry *this_parent; 1162 struct list_head *next; 1163 unsigned seq; 1164 int found = 0; 1165 int locked = 0; 1166 1167 seq = read_seqbegin(&rename_lock); 1168 again: 1169 this_parent = parent; 1170 spin_lock(&this_parent->d_lock); 1171 repeat: 1172 next = this_parent->d_subdirs.next; 1173 resume: 1174 while (next != &this_parent->d_subdirs) { 1175 struct list_head *tmp = next; 1176 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 1177 next = tmp->next; 1178 1179 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1180 1181 /* 1182 * move only zero ref count dentries to the dispose list. 1183 * 1184 * Those which are presently on the shrink list, being processed 1185 * by shrink_dentry_list(), shouldn't be moved. Otherwise the 1186 * loop in shrink_dcache_parent() might not make any progress 1187 * and loop forever. 1188 */ 1189 if (dentry->d_count) { 1190 dentry_lru_del(dentry); 1191 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 1192 dentry_lru_move_list(dentry, dispose); 1193 dentry->d_flags |= DCACHE_SHRINK_LIST; 1194 found++; 1195 } 1196 /* 1197 * We can return to the caller if we have found some (this 1198 * ensures forward progress). We'll be coming back to find 1199 * the rest. 1200 */ 1201 if (found && need_resched()) { 1202 spin_unlock(&dentry->d_lock); 1203 goto out; 1204 } 1205 1206 /* 1207 * Descend a level if the d_subdirs list is non-empty. 1208 */ 1209 if (!list_empty(&dentry->d_subdirs)) { 1210 spin_unlock(&this_parent->d_lock); 1211 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 1212 this_parent = dentry; 1213 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1214 goto repeat; 1215 } 1216 1217 spin_unlock(&dentry->d_lock); 1218 } 1219 /* 1220 * All done at this level ... ascend and resume the search. 1221 */ 1222 if (this_parent != parent) { 1223 struct dentry *child = this_parent; 1224 this_parent = try_to_ascend(this_parent, locked, seq); 1225 if (!this_parent) 1226 goto rename_retry; 1227 next = child->d_u.d_child.next; 1228 goto resume; 1229 } 1230 out: 1231 spin_unlock(&this_parent->d_lock); 1232 if (!locked && read_seqretry(&rename_lock, seq)) 1233 goto rename_retry; 1234 if (locked) 1235 write_sequnlock(&rename_lock); 1236 return found; 1237 1238 rename_retry: 1239 if (found) 1240 return found; 1241 if (locked) 1242 goto again; 1243 locked = 1; 1244 write_seqlock(&rename_lock); 1245 goto again; 1246 } 1247 1248 /** 1249 * shrink_dcache_parent - prune dcache 1250 * @parent: parent of entries to prune 1251 * 1252 * Prune the dcache to remove unused children of the parent dentry. 1253 */ 1254 void shrink_dcache_parent(struct dentry * parent) 1255 { 1256 LIST_HEAD(dispose); 1257 int found; 1258 1259 while ((found = select_parent(parent, &dispose)) != 0) 1260 shrink_dentry_list(&dispose); 1261 } 1262 EXPORT_SYMBOL(shrink_dcache_parent); 1263 1264 /** 1265 * __d_alloc - allocate a dcache entry 1266 * @sb: filesystem it will belong to 1267 * @name: qstr of the name 1268 * 1269 * Allocates a dentry. It returns %NULL if there is insufficient memory 1270 * available. On a success the dentry is returned. The name passed in is 1271 * copied and the copy passed in may be reused after this call. 1272 */ 1273 1274 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1275 { 1276 struct dentry *dentry; 1277 char *dname; 1278 1279 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL); 1280 if (!dentry) 1281 return NULL; 1282 1283 /* 1284 * We guarantee that the inline name is always NUL-terminated. 1285 * This way the memcpy() done by the name switching in rename 1286 * will still always have a NUL at the end, even if we might 1287 * be overwriting an internal NUL character 1288 */ 1289 dentry->d_iname[DNAME_INLINE_LEN-1] = 0; 1290 if (name->len > DNAME_INLINE_LEN-1) { 1291 dname = kmalloc(name->len + 1, GFP_KERNEL); 1292 if (!dname) { 1293 kmem_cache_free(dentry_cache, dentry); 1294 return NULL; 1295 } 1296 } else { 1297 dname = dentry->d_iname; 1298 } 1299 1300 dentry->d_name.len = name->len; 1301 dentry->d_name.hash = name->hash; 1302 memcpy(dname, name->name, name->len); 1303 dname[name->len] = 0; 1304 1305 /* Make sure we always see the terminating NUL character */ 1306 smp_wmb(); 1307 dentry->d_name.name = dname; 1308 1309 dentry->d_count = 1; 1310 dentry->d_flags = 0; 1311 spin_lock_init(&dentry->d_lock); 1312 seqcount_init(&dentry->d_seq); 1313 dentry->d_inode = NULL; 1314 dentry->d_parent = dentry; 1315 dentry->d_sb = sb; 1316 dentry->d_op = NULL; 1317 dentry->d_fsdata = NULL; 1318 INIT_HLIST_BL_NODE(&dentry->d_hash); 1319 INIT_LIST_HEAD(&dentry->d_lru); 1320 INIT_LIST_HEAD(&dentry->d_subdirs); 1321 INIT_HLIST_NODE(&dentry->d_alias); 1322 INIT_LIST_HEAD(&dentry->d_u.d_child); 1323 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1324 1325 this_cpu_inc(nr_dentry); 1326 1327 return dentry; 1328 } 1329 1330 /** 1331 * d_alloc - allocate a dcache entry 1332 * @parent: parent of entry to allocate 1333 * @name: qstr of the name 1334 * 1335 * Allocates a dentry. It returns %NULL if there is insufficient memory 1336 * available. On a success the dentry is returned. The name passed in is 1337 * copied and the copy passed in may be reused after this call. 1338 */ 1339 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1340 { 1341 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1342 if (!dentry) 1343 return NULL; 1344 1345 spin_lock(&parent->d_lock); 1346 /* 1347 * don't need child lock because it is not subject 1348 * to concurrency here 1349 */ 1350 __dget_dlock(parent); 1351 dentry->d_parent = parent; 1352 list_add(&dentry->d_u.d_child, &parent->d_subdirs); 1353 spin_unlock(&parent->d_lock); 1354 1355 return dentry; 1356 } 1357 EXPORT_SYMBOL(d_alloc); 1358 1359 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1360 { 1361 struct dentry *dentry = __d_alloc(sb, name); 1362 if (dentry) 1363 dentry->d_flags |= DCACHE_DISCONNECTED; 1364 return dentry; 1365 } 1366 EXPORT_SYMBOL(d_alloc_pseudo); 1367 1368 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1369 { 1370 struct qstr q; 1371 1372 q.name = name; 1373 q.len = strlen(name); 1374 q.hash = full_name_hash(q.name, q.len); 1375 return d_alloc(parent, &q); 1376 } 1377 EXPORT_SYMBOL(d_alloc_name); 1378 1379 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1380 { 1381 WARN_ON_ONCE(dentry->d_op); 1382 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1383 DCACHE_OP_COMPARE | 1384 DCACHE_OP_REVALIDATE | 1385 DCACHE_OP_DELETE )); 1386 dentry->d_op = op; 1387 if (!op) 1388 return; 1389 if (op->d_hash) 1390 dentry->d_flags |= DCACHE_OP_HASH; 1391 if (op->d_compare) 1392 dentry->d_flags |= DCACHE_OP_COMPARE; 1393 if (op->d_revalidate) 1394 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1395 if (op->d_delete) 1396 dentry->d_flags |= DCACHE_OP_DELETE; 1397 if (op->d_prune) 1398 dentry->d_flags |= DCACHE_OP_PRUNE; 1399 1400 } 1401 EXPORT_SYMBOL(d_set_d_op); 1402 1403 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1404 { 1405 spin_lock(&dentry->d_lock); 1406 if (inode) { 1407 if (unlikely(IS_AUTOMOUNT(inode))) 1408 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT; 1409 hlist_add_head(&dentry->d_alias, &inode->i_dentry); 1410 } 1411 dentry->d_inode = inode; 1412 dentry_rcuwalk_barrier(dentry); 1413 spin_unlock(&dentry->d_lock); 1414 fsnotify_d_instantiate(dentry, inode); 1415 } 1416 1417 /** 1418 * d_instantiate - fill in inode information for a dentry 1419 * @entry: dentry to complete 1420 * @inode: inode to attach to this dentry 1421 * 1422 * Fill in inode information in the entry. 1423 * 1424 * This turns negative dentries into productive full members 1425 * of society. 1426 * 1427 * NOTE! This assumes that the inode count has been incremented 1428 * (or otherwise set) by the caller to indicate that it is now 1429 * in use by the dcache. 1430 */ 1431 1432 void d_instantiate(struct dentry *entry, struct inode * inode) 1433 { 1434 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1435 if (inode) 1436 spin_lock(&inode->i_lock); 1437 __d_instantiate(entry, inode); 1438 if (inode) 1439 spin_unlock(&inode->i_lock); 1440 security_d_instantiate(entry, inode); 1441 } 1442 EXPORT_SYMBOL(d_instantiate); 1443 1444 /** 1445 * d_instantiate_unique - instantiate a non-aliased dentry 1446 * @entry: dentry to instantiate 1447 * @inode: inode to attach to this dentry 1448 * 1449 * Fill in inode information in the entry. On success, it returns NULL. 1450 * If an unhashed alias of "entry" already exists, then we return the 1451 * aliased dentry instead and drop one reference to inode. 1452 * 1453 * Note that in order to avoid conflicts with rename() etc, the caller 1454 * had better be holding the parent directory semaphore. 1455 * 1456 * This also assumes that the inode count has been incremented 1457 * (or otherwise set) by the caller to indicate that it is now 1458 * in use by the dcache. 1459 */ 1460 static struct dentry *__d_instantiate_unique(struct dentry *entry, 1461 struct inode *inode) 1462 { 1463 struct dentry *alias; 1464 int len = entry->d_name.len; 1465 const char *name = entry->d_name.name; 1466 unsigned int hash = entry->d_name.hash; 1467 struct hlist_node *p; 1468 1469 if (!inode) { 1470 __d_instantiate(entry, NULL); 1471 return NULL; 1472 } 1473 1474 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) { 1475 /* 1476 * Don't need alias->d_lock here, because aliases with 1477 * d_parent == entry->d_parent are not subject to name or 1478 * parent changes, because the parent inode i_mutex is held. 1479 */ 1480 if (alias->d_name.hash != hash) 1481 continue; 1482 if (alias->d_parent != entry->d_parent) 1483 continue; 1484 if (alias->d_name.len != len) 1485 continue; 1486 if (dentry_cmp(alias, name, len)) 1487 continue; 1488 __dget(alias); 1489 return alias; 1490 } 1491 1492 __d_instantiate(entry, inode); 1493 return NULL; 1494 } 1495 1496 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode) 1497 { 1498 struct dentry *result; 1499 1500 BUG_ON(!hlist_unhashed(&entry->d_alias)); 1501 1502 if (inode) 1503 spin_lock(&inode->i_lock); 1504 result = __d_instantiate_unique(entry, inode); 1505 if (inode) 1506 spin_unlock(&inode->i_lock); 1507 1508 if (!result) { 1509 security_d_instantiate(entry, inode); 1510 return NULL; 1511 } 1512 1513 BUG_ON(!d_unhashed(result)); 1514 iput(inode); 1515 return result; 1516 } 1517 1518 EXPORT_SYMBOL(d_instantiate_unique); 1519 1520 struct dentry *d_make_root(struct inode *root_inode) 1521 { 1522 struct dentry *res = NULL; 1523 1524 if (root_inode) { 1525 static const struct qstr name = QSTR_INIT("/", 1); 1526 1527 res = __d_alloc(root_inode->i_sb, &name); 1528 if (res) 1529 d_instantiate(res, root_inode); 1530 else 1531 iput(root_inode); 1532 } 1533 return res; 1534 } 1535 EXPORT_SYMBOL(d_make_root); 1536 1537 static struct dentry * __d_find_any_alias(struct inode *inode) 1538 { 1539 struct dentry *alias; 1540 1541 if (hlist_empty(&inode->i_dentry)) 1542 return NULL; 1543 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias); 1544 __dget(alias); 1545 return alias; 1546 } 1547 1548 /** 1549 * d_find_any_alias - find any alias for a given inode 1550 * @inode: inode to find an alias for 1551 * 1552 * If any aliases exist for the given inode, take and return a 1553 * reference for one of them. If no aliases exist, return %NULL. 1554 */ 1555 struct dentry *d_find_any_alias(struct inode *inode) 1556 { 1557 struct dentry *de; 1558 1559 spin_lock(&inode->i_lock); 1560 de = __d_find_any_alias(inode); 1561 spin_unlock(&inode->i_lock); 1562 return de; 1563 } 1564 EXPORT_SYMBOL(d_find_any_alias); 1565 1566 /** 1567 * d_obtain_alias - find or allocate a dentry for a given inode 1568 * @inode: inode to allocate the dentry for 1569 * 1570 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 1571 * similar open by handle operations. The returned dentry may be anonymous, 1572 * or may have a full name (if the inode was already in the cache). 1573 * 1574 * When called on a directory inode, we must ensure that the inode only ever 1575 * has one dentry. If a dentry is found, that is returned instead of 1576 * allocating a new one. 1577 * 1578 * On successful return, the reference to the inode has been transferred 1579 * to the dentry. In case of an error the reference on the inode is released. 1580 * To make it easier to use in export operations a %NULL or IS_ERR inode may 1581 * be passed in and will be the error will be propagate to the return value, 1582 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 1583 */ 1584 struct dentry *d_obtain_alias(struct inode *inode) 1585 { 1586 static const struct qstr anonstring = { .name = "" }; 1587 struct dentry *tmp; 1588 struct dentry *res; 1589 1590 if (!inode) 1591 return ERR_PTR(-ESTALE); 1592 if (IS_ERR(inode)) 1593 return ERR_CAST(inode); 1594 1595 res = d_find_any_alias(inode); 1596 if (res) 1597 goto out_iput; 1598 1599 tmp = __d_alloc(inode->i_sb, &anonstring); 1600 if (!tmp) { 1601 res = ERR_PTR(-ENOMEM); 1602 goto out_iput; 1603 } 1604 1605 spin_lock(&inode->i_lock); 1606 res = __d_find_any_alias(inode); 1607 if (res) { 1608 spin_unlock(&inode->i_lock); 1609 dput(tmp); 1610 goto out_iput; 1611 } 1612 1613 /* attach a disconnected dentry */ 1614 spin_lock(&tmp->d_lock); 1615 tmp->d_inode = inode; 1616 tmp->d_flags |= DCACHE_DISCONNECTED; 1617 hlist_add_head(&tmp->d_alias, &inode->i_dentry); 1618 hlist_bl_lock(&tmp->d_sb->s_anon); 1619 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon); 1620 hlist_bl_unlock(&tmp->d_sb->s_anon); 1621 spin_unlock(&tmp->d_lock); 1622 spin_unlock(&inode->i_lock); 1623 security_d_instantiate(tmp, inode); 1624 1625 return tmp; 1626 1627 out_iput: 1628 if (res && !IS_ERR(res)) 1629 security_d_instantiate(res, inode); 1630 iput(inode); 1631 return res; 1632 } 1633 EXPORT_SYMBOL(d_obtain_alias); 1634 1635 /** 1636 * d_splice_alias - splice a disconnected dentry into the tree if one exists 1637 * @inode: the inode which may have a disconnected dentry 1638 * @dentry: a negative dentry which we want to point to the inode. 1639 * 1640 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and 1641 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry 1642 * and return it, else simply d_add the inode to the dentry and return NULL. 1643 * 1644 * This is needed in the lookup routine of any filesystem that is exportable 1645 * (via knfsd) so that we can build dcache paths to directories effectively. 1646 * 1647 * If a dentry was found and moved, then it is returned. Otherwise NULL 1648 * is returned. This matches the expected return value of ->lookup. 1649 * 1650 */ 1651 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 1652 { 1653 struct dentry *new = NULL; 1654 1655 if (IS_ERR(inode)) 1656 return ERR_CAST(inode); 1657 1658 if (inode && S_ISDIR(inode->i_mode)) { 1659 spin_lock(&inode->i_lock); 1660 new = __d_find_alias(inode, 1); 1661 if (new) { 1662 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED)); 1663 spin_unlock(&inode->i_lock); 1664 security_d_instantiate(new, inode); 1665 d_move(new, dentry); 1666 iput(inode); 1667 } else { 1668 /* already taking inode->i_lock, so d_add() by hand */ 1669 __d_instantiate(dentry, inode); 1670 spin_unlock(&inode->i_lock); 1671 security_d_instantiate(dentry, inode); 1672 d_rehash(dentry); 1673 } 1674 } else 1675 d_add(dentry, inode); 1676 return new; 1677 } 1678 EXPORT_SYMBOL(d_splice_alias); 1679 1680 /** 1681 * d_add_ci - lookup or allocate new dentry with case-exact name 1682 * @inode: the inode case-insensitive lookup has found 1683 * @dentry: the negative dentry that was passed to the parent's lookup func 1684 * @name: the case-exact name to be associated with the returned dentry 1685 * 1686 * This is to avoid filling the dcache with case-insensitive names to the 1687 * same inode, only the actual correct case is stored in the dcache for 1688 * case-insensitive filesystems. 1689 * 1690 * For a case-insensitive lookup match and if the the case-exact dentry 1691 * already exists in in the dcache, use it and return it. 1692 * 1693 * If no entry exists with the exact case name, allocate new dentry with 1694 * the exact case, and return the spliced entry. 1695 */ 1696 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 1697 struct qstr *name) 1698 { 1699 int error; 1700 struct dentry *found; 1701 struct dentry *new; 1702 1703 /* 1704 * First check if a dentry matching the name already exists, 1705 * if not go ahead and create it now. 1706 */ 1707 found = d_hash_and_lookup(dentry->d_parent, name); 1708 if (!found) { 1709 new = d_alloc(dentry->d_parent, name); 1710 if (!new) { 1711 error = -ENOMEM; 1712 goto err_out; 1713 } 1714 1715 found = d_splice_alias(inode, new); 1716 if (found) { 1717 dput(new); 1718 return found; 1719 } 1720 return new; 1721 } 1722 1723 /* 1724 * If a matching dentry exists, and it's not negative use it. 1725 * 1726 * Decrement the reference count to balance the iget() done 1727 * earlier on. 1728 */ 1729 if (found->d_inode) { 1730 if (unlikely(found->d_inode != inode)) { 1731 /* This can't happen because bad inodes are unhashed. */ 1732 BUG_ON(!is_bad_inode(inode)); 1733 BUG_ON(!is_bad_inode(found->d_inode)); 1734 } 1735 iput(inode); 1736 return found; 1737 } 1738 1739 /* 1740 * We are going to instantiate this dentry, unhash it and clear the 1741 * lookup flag so we can do that. 1742 */ 1743 if (unlikely(d_need_lookup(found))) 1744 d_clear_need_lookup(found); 1745 1746 /* 1747 * Negative dentry: instantiate it unless the inode is a directory and 1748 * already has a dentry. 1749 */ 1750 new = d_splice_alias(inode, found); 1751 if (new) { 1752 dput(found); 1753 found = new; 1754 } 1755 return found; 1756 1757 err_out: 1758 iput(inode); 1759 return ERR_PTR(error); 1760 } 1761 EXPORT_SYMBOL(d_add_ci); 1762 1763 /* 1764 * Do the slow-case of the dentry name compare. 1765 * 1766 * Unlike the dentry_cmp() function, we need to atomically 1767 * load the name, length and inode information, so that the 1768 * filesystem can rely on them, and can use the 'name' and 1769 * 'len' information without worrying about walking off the 1770 * end of memory etc. 1771 * 1772 * Thus the read_seqcount_retry() and the "duplicate" info 1773 * in arguments (the low-level filesystem should not look 1774 * at the dentry inode or name contents directly, since 1775 * rename can change them while we're in RCU mode). 1776 */ 1777 enum slow_d_compare { 1778 D_COMP_OK, 1779 D_COMP_NOMATCH, 1780 D_COMP_SEQRETRY, 1781 }; 1782 1783 static noinline enum slow_d_compare slow_dentry_cmp( 1784 const struct dentry *parent, 1785 struct inode *inode, 1786 struct dentry *dentry, 1787 unsigned int seq, 1788 const struct qstr *name) 1789 { 1790 int tlen = dentry->d_name.len; 1791 const char *tname = dentry->d_name.name; 1792 struct inode *i = dentry->d_inode; 1793 1794 if (read_seqcount_retry(&dentry->d_seq, seq)) { 1795 cpu_relax(); 1796 return D_COMP_SEQRETRY; 1797 } 1798 if (parent->d_op->d_compare(parent, inode, 1799 dentry, i, 1800 tlen, tname, name)) 1801 return D_COMP_NOMATCH; 1802 return D_COMP_OK; 1803 } 1804 1805 /** 1806 * __d_lookup_rcu - search for a dentry (racy, store-free) 1807 * @parent: parent dentry 1808 * @name: qstr of name we wish to find 1809 * @seqp: returns d_seq value at the point where the dentry was found 1810 * @inode: returns dentry->d_inode when the inode was found valid. 1811 * Returns: dentry, or NULL 1812 * 1813 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 1814 * resolution (store-free path walking) design described in 1815 * Documentation/filesystems/path-lookup.txt. 1816 * 1817 * This is not to be used outside core vfs. 1818 * 1819 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 1820 * held, and rcu_read_lock held. The returned dentry must not be stored into 1821 * without taking d_lock and checking d_seq sequence count against @seq 1822 * returned here. 1823 * 1824 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount 1825 * function. 1826 * 1827 * Alternatively, __d_lookup_rcu may be called again to look up the child of 1828 * the returned dentry, so long as its parent's seqlock is checked after the 1829 * child is looked up. Thus, an interlocking stepping of sequence lock checks 1830 * is formed, giving integrity down the path walk. 1831 * 1832 * NOTE! The caller *has* to check the resulting dentry against the sequence 1833 * number we've returned before using any of the resulting dentry state! 1834 */ 1835 struct dentry *__d_lookup_rcu(const struct dentry *parent, 1836 const struct qstr *name, 1837 unsigned *seqp, struct inode *inode) 1838 { 1839 u64 hashlen = name->hash_len; 1840 const unsigned char *str = name->name; 1841 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen)); 1842 struct hlist_bl_node *node; 1843 struct dentry *dentry; 1844 1845 /* 1846 * Note: There is significant duplication with __d_lookup_rcu which is 1847 * required to prevent single threaded performance regressions 1848 * especially on architectures where smp_rmb (in seqcounts) are costly. 1849 * Keep the two functions in sync. 1850 */ 1851 1852 /* 1853 * The hash list is protected using RCU. 1854 * 1855 * Carefully use d_seq when comparing a candidate dentry, to avoid 1856 * races with d_move(). 1857 * 1858 * It is possible that concurrent renames can mess up our list 1859 * walk here and result in missing our dentry, resulting in the 1860 * false-negative result. d_lookup() protects against concurrent 1861 * renames using rename_lock seqlock. 1862 * 1863 * See Documentation/filesystems/path-lookup.txt for more details. 1864 */ 1865 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1866 unsigned seq; 1867 1868 seqretry: 1869 /* 1870 * The dentry sequence count protects us from concurrent 1871 * renames, and thus protects inode, parent and name fields. 1872 * 1873 * The caller must perform a seqcount check in order 1874 * to do anything useful with the returned dentry, 1875 * including using the 'd_inode' pointer. 1876 * 1877 * NOTE! We do a "raw" seqcount_begin here. That means that 1878 * we don't wait for the sequence count to stabilize if it 1879 * is in the middle of a sequence change. If we do the slow 1880 * dentry compare, we will do seqretries until it is stable, 1881 * and if we end up with a successful lookup, we actually 1882 * want to exit RCU lookup anyway. 1883 */ 1884 seq = raw_seqcount_begin(&dentry->d_seq); 1885 if (dentry->d_parent != parent) 1886 continue; 1887 if (d_unhashed(dentry)) 1888 continue; 1889 *seqp = seq; 1890 1891 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) { 1892 if (dentry->d_name.hash != hashlen_hash(hashlen)) 1893 continue; 1894 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) { 1895 case D_COMP_OK: 1896 return dentry; 1897 case D_COMP_NOMATCH: 1898 continue; 1899 default: 1900 goto seqretry; 1901 } 1902 } 1903 1904 if (dentry->d_name.hash_len != hashlen) 1905 continue; 1906 if (!dentry_cmp(dentry, str, hashlen_len(hashlen))) 1907 return dentry; 1908 } 1909 return NULL; 1910 } 1911 1912 /** 1913 * d_lookup - search for a dentry 1914 * @parent: parent dentry 1915 * @name: qstr of name we wish to find 1916 * Returns: dentry, or NULL 1917 * 1918 * d_lookup searches the children of the parent dentry for the name in 1919 * question. If the dentry is found its reference count is incremented and the 1920 * dentry is returned. The caller must use dput to free the entry when it has 1921 * finished using it. %NULL is returned if the dentry does not exist. 1922 */ 1923 struct dentry *d_lookup(struct dentry *parent, struct qstr *name) 1924 { 1925 struct dentry *dentry; 1926 unsigned seq; 1927 1928 do { 1929 seq = read_seqbegin(&rename_lock); 1930 dentry = __d_lookup(parent, name); 1931 if (dentry) 1932 break; 1933 } while (read_seqretry(&rename_lock, seq)); 1934 return dentry; 1935 } 1936 EXPORT_SYMBOL(d_lookup); 1937 1938 /** 1939 * __d_lookup - search for a dentry (racy) 1940 * @parent: parent dentry 1941 * @name: qstr of name we wish to find 1942 * Returns: dentry, or NULL 1943 * 1944 * __d_lookup is like d_lookup, however it may (rarely) return a 1945 * false-negative result due to unrelated rename activity. 1946 * 1947 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 1948 * however it must be used carefully, eg. with a following d_lookup in 1949 * the case of failure. 1950 * 1951 * __d_lookup callers must be commented. 1952 */ 1953 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name) 1954 { 1955 unsigned int len = name->len; 1956 unsigned int hash = name->hash; 1957 const unsigned char *str = name->name; 1958 struct hlist_bl_head *b = d_hash(parent, hash); 1959 struct hlist_bl_node *node; 1960 struct dentry *found = NULL; 1961 struct dentry *dentry; 1962 1963 /* 1964 * Note: There is significant duplication with __d_lookup_rcu which is 1965 * required to prevent single threaded performance regressions 1966 * especially on architectures where smp_rmb (in seqcounts) are costly. 1967 * Keep the two functions in sync. 1968 */ 1969 1970 /* 1971 * The hash list is protected using RCU. 1972 * 1973 * Take d_lock when comparing a candidate dentry, to avoid races 1974 * with d_move(). 1975 * 1976 * It is possible that concurrent renames can mess up our list 1977 * walk here and result in missing our dentry, resulting in the 1978 * false-negative result. d_lookup() protects against concurrent 1979 * renames using rename_lock seqlock. 1980 * 1981 * See Documentation/filesystems/path-lookup.txt for more details. 1982 */ 1983 rcu_read_lock(); 1984 1985 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 1986 1987 if (dentry->d_name.hash != hash) 1988 continue; 1989 1990 spin_lock(&dentry->d_lock); 1991 if (dentry->d_parent != parent) 1992 goto next; 1993 if (d_unhashed(dentry)) 1994 goto next; 1995 1996 /* 1997 * It is safe to compare names since d_move() cannot 1998 * change the qstr (protected by d_lock). 1999 */ 2000 if (parent->d_flags & DCACHE_OP_COMPARE) { 2001 int tlen = dentry->d_name.len; 2002 const char *tname = dentry->d_name.name; 2003 if (parent->d_op->d_compare(parent, parent->d_inode, 2004 dentry, dentry->d_inode, 2005 tlen, tname, name)) 2006 goto next; 2007 } else { 2008 if (dentry->d_name.len != len) 2009 goto next; 2010 if (dentry_cmp(dentry, str, len)) 2011 goto next; 2012 } 2013 2014 dentry->d_count++; 2015 found = dentry; 2016 spin_unlock(&dentry->d_lock); 2017 break; 2018 next: 2019 spin_unlock(&dentry->d_lock); 2020 } 2021 rcu_read_unlock(); 2022 2023 return found; 2024 } 2025 2026 /** 2027 * d_hash_and_lookup - hash the qstr then search for a dentry 2028 * @dir: Directory to search in 2029 * @name: qstr of name we wish to find 2030 * 2031 * On hash failure or on lookup failure NULL is returned. 2032 */ 2033 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2034 { 2035 struct dentry *dentry = NULL; 2036 2037 /* 2038 * Check for a fs-specific hash function. Note that we must 2039 * calculate the standard hash first, as the d_op->d_hash() 2040 * routine may choose to leave the hash value unchanged. 2041 */ 2042 name->hash = full_name_hash(name->name, name->len); 2043 if (dir->d_flags & DCACHE_OP_HASH) { 2044 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0) 2045 goto out; 2046 } 2047 dentry = d_lookup(dir, name); 2048 out: 2049 return dentry; 2050 } 2051 2052 /** 2053 * d_validate - verify dentry provided from insecure source (deprecated) 2054 * @dentry: The dentry alleged to be valid child of @dparent 2055 * @dparent: The parent dentry (known to be valid) 2056 * 2057 * An insecure source has sent us a dentry, here we verify it and dget() it. 2058 * This is used by ncpfs in its readdir implementation. 2059 * Zero is returned in the dentry is invalid. 2060 * 2061 * This function is slow for big directories, and deprecated, do not use it. 2062 */ 2063 int d_validate(struct dentry *dentry, struct dentry *dparent) 2064 { 2065 struct dentry *child; 2066 2067 spin_lock(&dparent->d_lock); 2068 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) { 2069 if (dentry == child) { 2070 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 2071 __dget_dlock(dentry); 2072 spin_unlock(&dentry->d_lock); 2073 spin_unlock(&dparent->d_lock); 2074 return 1; 2075 } 2076 } 2077 spin_unlock(&dparent->d_lock); 2078 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(d_validate); 2082 2083 /* 2084 * When a file is deleted, we have two options: 2085 * - turn this dentry into a negative dentry 2086 * - unhash this dentry and free it. 2087 * 2088 * Usually, we want to just turn this into 2089 * a negative dentry, but if anybody else is 2090 * currently using the dentry or the inode 2091 * we can't do that and we fall back on removing 2092 * it from the hash queues and waiting for 2093 * it to be deleted later when it has no users 2094 */ 2095 2096 /** 2097 * d_delete - delete a dentry 2098 * @dentry: The dentry to delete 2099 * 2100 * Turn the dentry into a negative dentry if possible, otherwise 2101 * remove it from the hash queues so it can be deleted later 2102 */ 2103 2104 void d_delete(struct dentry * dentry) 2105 { 2106 struct inode *inode; 2107 int isdir = 0; 2108 /* 2109 * Are we the only user? 2110 */ 2111 again: 2112 spin_lock(&dentry->d_lock); 2113 inode = dentry->d_inode; 2114 isdir = S_ISDIR(inode->i_mode); 2115 if (dentry->d_count == 1) { 2116 if (!spin_trylock(&inode->i_lock)) { 2117 spin_unlock(&dentry->d_lock); 2118 cpu_relax(); 2119 goto again; 2120 } 2121 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2122 dentry_unlink_inode(dentry); 2123 fsnotify_nameremove(dentry, isdir); 2124 return; 2125 } 2126 2127 if (!d_unhashed(dentry)) 2128 __d_drop(dentry); 2129 2130 spin_unlock(&dentry->d_lock); 2131 2132 fsnotify_nameremove(dentry, isdir); 2133 } 2134 EXPORT_SYMBOL(d_delete); 2135 2136 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b) 2137 { 2138 BUG_ON(!d_unhashed(entry)); 2139 hlist_bl_lock(b); 2140 entry->d_flags |= DCACHE_RCUACCESS; 2141 hlist_bl_add_head_rcu(&entry->d_hash, b); 2142 hlist_bl_unlock(b); 2143 } 2144 2145 static void _d_rehash(struct dentry * entry) 2146 { 2147 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash)); 2148 } 2149 2150 /** 2151 * d_rehash - add an entry back to the hash 2152 * @entry: dentry to add to the hash 2153 * 2154 * Adds a dentry to the hash according to its name. 2155 */ 2156 2157 void d_rehash(struct dentry * entry) 2158 { 2159 spin_lock(&entry->d_lock); 2160 _d_rehash(entry); 2161 spin_unlock(&entry->d_lock); 2162 } 2163 EXPORT_SYMBOL(d_rehash); 2164 2165 /** 2166 * dentry_update_name_case - update case insensitive dentry with a new name 2167 * @dentry: dentry to be updated 2168 * @name: new name 2169 * 2170 * Update a case insensitive dentry with new case of name. 2171 * 2172 * dentry must have been returned by d_lookup with name @name. Old and new 2173 * name lengths must match (ie. no d_compare which allows mismatched name 2174 * lengths). 2175 * 2176 * Parent inode i_mutex must be held over d_lookup and into this call (to 2177 * keep renames and concurrent inserts, and readdir(2) away). 2178 */ 2179 void dentry_update_name_case(struct dentry *dentry, struct qstr *name) 2180 { 2181 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex)); 2182 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */ 2183 2184 spin_lock(&dentry->d_lock); 2185 write_seqcount_begin(&dentry->d_seq); 2186 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len); 2187 write_seqcount_end(&dentry->d_seq); 2188 spin_unlock(&dentry->d_lock); 2189 } 2190 EXPORT_SYMBOL(dentry_update_name_case); 2191 2192 static void switch_names(struct dentry *dentry, struct dentry *target) 2193 { 2194 if (dname_external(target)) { 2195 if (dname_external(dentry)) { 2196 /* 2197 * Both external: swap the pointers 2198 */ 2199 swap(target->d_name.name, dentry->d_name.name); 2200 } else { 2201 /* 2202 * dentry:internal, target:external. Steal target's 2203 * storage and make target internal. 2204 */ 2205 memcpy(target->d_iname, dentry->d_name.name, 2206 dentry->d_name.len + 1); 2207 dentry->d_name.name = target->d_name.name; 2208 target->d_name.name = target->d_iname; 2209 } 2210 } else { 2211 if (dname_external(dentry)) { 2212 /* 2213 * dentry:external, target:internal. Give dentry's 2214 * storage to target and make dentry internal 2215 */ 2216 memcpy(dentry->d_iname, target->d_name.name, 2217 target->d_name.len + 1); 2218 target->d_name.name = dentry->d_name.name; 2219 dentry->d_name.name = dentry->d_iname; 2220 } else { 2221 /* 2222 * Both are internal. Just copy target to dentry 2223 */ 2224 memcpy(dentry->d_iname, target->d_name.name, 2225 target->d_name.len + 1); 2226 dentry->d_name.len = target->d_name.len; 2227 return; 2228 } 2229 } 2230 swap(dentry->d_name.len, target->d_name.len); 2231 } 2232 2233 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target) 2234 { 2235 /* 2236 * XXXX: do we really need to take target->d_lock? 2237 */ 2238 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent) 2239 spin_lock(&target->d_parent->d_lock); 2240 else { 2241 if (d_ancestor(dentry->d_parent, target->d_parent)) { 2242 spin_lock(&dentry->d_parent->d_lock); 2243 spin_lock_nested(&target->d_parent->d_lock, 2244 DENTRY_D_LOCK_NESTED); 2245 } else { 2246 spin_lock(&target->d_parent->d_lock); 2247 spin_lock_nested(&dentry->d_parent->d_lock, 2248 DENTRY_D_LOCK_NESTED); 2249 } 2250 } 2251 if (target < dentry) { 2252 spin_lock_nested(&target->d_lock, 2); 2253 spin_lock_nested(&dentry->d_lock, 3); 2254 } else { 2255 spin_lock_nested(&dentry->d_lock, 2); 2256 spin_lock_nested(&target->d_lock, 3); 2257 } 2258 } 2259 2260 static void dentry_unlock_parents_for_move(struct dentry *dentry, 2261 struct dentry *target) 2262 { 2263 if (target->d_parent != dentry->d_parent) 2264 spin_unlock(&dentry->d_parent->d_lock); 2265 if (target->d_parent != target) 2266 spin_unlock(&target->d_parent->d_lock); 2267 } 2268 2269 /* 2270 * When switching names, the actual string doesn't strictly have to 2271 * be preserved in the target - because we're dropping the target 2272 * anyway. As such, we can just do a simple memcpy() to copy over 2273 * the new name before we switch. 2274 * 2275 * Note that we have to be a lot more careful about getting the hash 2276 * switched - we have to switch the hash value properly even if it 2277 * then no longer matches the actual (corrupted) string of the target. 2278 * The hash value has to match the hash queue that the dentry is on.. 2279 */ 2280 /* 2281 * __d_move - move a dentry 2282 * @dentry: entry to move 2283 * @target: new dentry 2284 * 2285 * Update the dcache to reflect the move of a file name. Negative 2286 * dcache entries should not be moved in this way. Caller must hold 2287 * rename_lock, the i_mutex of the source and target directories, 2288 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2289 */ 2290 static void __d_move(struct dentry * dentry, struct dentry * target) 2291 { 2292 if (!dentry->d_inode) 2293 printk(KERN_WARNING "VFS: moving negative dcache entry\n"); 2294 2295 BUG_ON(d_ancestor(dentry, target)); 2296 BUG_ON(d_ancestor(target, dentry)); 2297 2298 dentry_lock_for_move(dentry, target); 2299 2300 write_seqcount_begin(&dentry->d_seq); 2301 write_seqcount_begin(&target->d_seq); 2302 2303 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */ 2304 2305 /* 2306 * Move the dentry to the target hash queue. Don't bother checking 2307 * for the same hash queue because of how unlikely it is. 2308 */ 2309 __d_drop(dentry); 2310 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash)); 2311 2312 /* Unhash the target: dput() will then get rid of it */ 2313 __d_drop(target); 2314 2315 list_del(&dentry->d_u.d_child); 2316 list_del(&target->d_u.d_child); 2317 2318 /* Switch the names.. */ 2319 switch_names(dentry, target); 2320 swap(dentry->d_name.hash, target->d_name.hash); 2321 2322 /* ... and switch the parents */ 2323 if (IS_ROOT(dentry)) { 2324 dentry->d_parent = target->d_parent; 2325 target->d_parent = target; 2326 INIT_LIST_HEAD(&target->d_u.d_child); 2327 } else { 2328 swap(dentry->d_parent, target->d_parent); 2329 2330 /* And add them back to the (new) parent lists */ 2331 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs); 2332 } 2333 2334 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2335 2336 write_seqcount_end(&target->d_seq); 2337 write_seqcount_end(&dentry->d_seq); 2338 2339 dentry_unlock_parents_for_move(dentry, target); 2340 spin_unlock(&target->d_lock); 2341 fsnotify_d_move(dentry); 2342 spin_unlock(&dentry->d_lock); 2343 } 2344 2345 /* 2346 * d_move - move a dentry 2347 * @dentry: entry to move 2348 * @target: new dentry 2349 * 2350 * Update the dcache to reflect the move of a file name. Negative 2351 * dcache entries should not be moved in this way. See the locking 2352 * requirements for __d_move. 2353 */ 2354 void d_move(struct dentry *dentry, struct dentry *target) 2355 { 2356 write_seqlock(&rename_lock); 2357 __d_move(dentry, target); 2358 write_sequnlock(&rename_lock); 2359 } 2360 EXPORT_SYMBOL(d_move); 2361 2362 /** 2363 * d_ancestor - search for an ancestor 2364 * @p1: ancestor dentry 2365 * @p2: child dentry 2366 * 2367 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2368 * an ancestor of p2, else NULL. 2369 */ 2370 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2371 { 2372 struct dentry *p; 2373 2374 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2375 if (p->d_parent == p1) 2376 return p; 2377 } 2378 return NULL; 2379 } 2380 2381 /* 2382 * This helper attempts to cope with remotely renamed directories 2383 * 2384 * It assumes that the caller is already holding 2385 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock 2386 * 2387 * Note: If ever the locking in lock_rename() changes, then please 2388 * remember to update this too... 2389 */ 2390 static struct dentry *__d_unalias(struct inode *inode, 2391 struct dentry *dentry, struct dentry *alias) 2392 { 2393 struct mutex *m1 = NULL, *m2 = NULL; 2394 struct dentry *ret = ERR_PTR(-EBUSY); 2395 2396 /* If alias and dentry share a parent, then no extra locks required */ 2397 if (alias->d_parent == dentry->d_parent) 2398 goto out_unalias; 2399 2400 /* See lock_rename() */ 2401 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2402 goto out_err; 2403 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2404 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex)) 2405 goto out_err; 2406 m2 = &alias->d_parent->d_inode->i_mutex; 2407 out_unalias: 2408 if (likely(!d_mountpoint(alias))) { 2409 __d_move(alias, dentry); 2410 ret = alias; 2411 } 2412 out_err: 2413 spin_unlock(&inode->i_lock); 2414 if (m2) 2415 mutex_unlock(m2); 2416 if (m1) 2417 mutex_unlock(m1); 2418 return ret; 2419 } 2420 2421 /* 2422 * Prepare an anonymous dentry for life in the superblock's dentry tree as a 2423 * named dentry in place of the dentry to be replaced. 2424 * returns with anon->d_lock held! 2425 */ 2426 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon) 2427 { 2428 struct dentry *dparent, *aparent; 2429 2430 dentry_lock_for_move(anon, dentry); 2431 2432 write_seqcount_begin(&dentry->d_seq); 2433 write_seqcount_begin(&anon->d_seq); 2434 2435 dparent = dentry->d_parent; 2436 aparent = anon->d_parent; 2437 2438 switch_names(dentry, anon); 2439 swap(dentry->d_name.hash, anon->d_name.hash); 2440 2441 dentry->d_parent = (aparent == anon) ? dentry : aparent; 2442 list_del(&dentry->d_u.d_child); 2443 if (!IS_ROOT(dentry)) 2444 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs); 2445 else 2446 INIT_LIST_HEAD(&dentry->d_u.d_child); 2447 2448 anon->d_parent = (dparent == dentry) ? anon : dparent; 2449 list_del(&anon->d_u.d_child); 2450 if (!IS_ROOT(anon)) 2451 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs); 2452 else 2453 INIT_LIST_HEAD(&anon->d_u.d_child); 2454 2455 write_seqcount_end(&dentry->d_seq); 2456 write_seqcount_end(&anon->d_seq); 2457 2458 dentry_unlock_parents_for_move(anon, dentry); 2459 spin_unlock(&dentry->d_lock); 2460 2461 /* anon->d_lock still locked, returns locked */ 2462 anon->d_flags &= ~DCACHE_DISCONNECTED; 2463 } 2464 2465 /** 2466 * d_materialise_unique - introduce an inode into the tree 2467 * @dentry: candidate dentry 2468 * @inode: inode to bind to the dentry, to which aliases may be attached 2469 * 2470 * Introduces an dentry into the tree, substituting an extant disconnected 2471 * root directory alias in its place if there is one. Caller must hold the 2472 * i_mutex of the parent directory. 2473 */ 2474 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode) 2475 { 2476 struct dentry *actual; 2477 2478 BUG_ON(!d_unhashed(dentry)); 2479 2480 if (!inode) { 2481 actual = dentry; 2482 __d_instantiate(dentry, NULL); 2483 d_rehash(actual); 2484 goto out_nolock; 2485 } 2486 2487 spin_lock(&inode->i_lock); 2488 2489 if (S_ISDIR(inode->i_mode)) { 2490 struct dentry *alias; 2491 2492 /* Does an aliased dentry already exist? */ 2493 alias = __d_find_alias(inode, 0); 2494 if (alias) { 2495 actual = alias; 2496 write_seqlock(&rename_lock); 2497 2498 if (d_ancestor(alias, dentry)) { 2499 /* Check for loops */ 2500 actual = ERR_PTR(-ELOOP); 2501 spin_unlock(&inode->i_lock); 2502 } else if (IS_ROOT(alias)) { 2503 /* Is this an anonymous mountpoint that we 2504 * could splice into our tree? */ 2505 __d_materialise_dentry(dentry, alias); 2506 write_sequnlock(&rename_lock); 2507 __d_drop(alias); 2508 goto found; 2509 } else { 2510 /* Nope, but we must(!) avoid directory 2511 * aliasing. This drops inode->i_lock */ 2512 actual = __d_unalias(inode, dentry, alias); 2513 } 2514 write_sequnlock(&rename_lock); 2515 if (IS_ERR(actual)) { 2516 if (PTR_ERR(actual) == -ELOOP) 2517 pr_warn_ratelimited( 2518 "VFS: Lookup of '%s' in %s %s" 2519 " would have caused loop\n", 2520 dentry->d_name.name, 2521 inode->i_sb->s_type->name, 2522 inode->i_sb->s_id); 2523 dput(alias); 2524 } 2525 goto out_nolock; 2526 } 2527 } 2528 2529 /* Add a unique reference */ 2530 actual = __d_instantiate_unique(dentry, inode); 2531 if (!actual) 2532 actual = dentry; 2533 else 2534 BUG_ON(!d_unhashed(actual)); 2535 2536 spin_lock(&actual->d_lock); 2537 found: 2538 _d_rehash(actual); 2539 spin_unlock(&actual->d_lock); 2540 spin_unlock(&inode->i_lock); 2541 out_nolock: 2542 if (actual == dentry) { 2543 security_d_instantiate(dentry, inode); 2544 return NULL; 2545 } 2546 2547 iput(inode); 2548 return actual; 2549 } 2550 EXPORT_SYMBOL_GPL(d_materialise_unique); 2551 2552 static int prepend(char **buffer, int *buflen, const char *str, int namelen) 2553 { 2554 *buflen -= namelen; 2555 if (*buflen < 0) 2556 return -ENAMETOOLONG; 2557 *buffer -= namelen; 2558 memcpy(*buffer, str, namelen); 2559 return 0; 2560 } 2561 2562 static int prepend_name(char **buffer, int *buflen, struct qstr *name) 2563 { 2564 return prepend(buffer, buflen, name->name, name->len); 2565 } 2566 2567 /** 2568 * prepend_path - Prepend path string to a buffer 2569 * @path: the dentry/vfsmount to report 2570 * @root: root vfsmnt/dentry 2571 * @buffer: pointer to the end of the buffer 2572 * @buflen: pointer to buffer length 2573 * 2574 * Caller holds the rename_lock. 2575 */ 2576 static int prepend_path(const struct path *path, 2577 const struct path *root, 2578 char **buffer, int *buflen) 2579 { 2580 struct dentry *dentry = path->dentry; 2581 struct vfsmount *vfsmnt = path->mnt; 2582 struct mount *mnt = real_mount(vfsmnt); 2583 bool slash = false; 2584 int error = 0; 2585 2586 br_read_lock(&vfsmount_lock); 2587 while (dentry != root->dentry || vfsmnt != root->mnt) { 2588 struct dentry * parent; 2589 2590 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) { 2591 /* Global root? */ 2592 if (!mnt_has_parent(mnt)) 2593 goto global_root; 2594 dentry = mnt->mnt_mountpoint; 2595 mnt = mnt->mnt_parent; 2596 vfsmnt = &mnt->mnt; 2597 continue; 2598 } 2599 parent = dentry->d_parent; 2600 prefetch(parent); 2601 spin_lock(&dentry->d_lock); 2602 error = prepend_name(buffer, buflen, &dentry->d_name); 2603 spin_unlock(&dentry->d_lock); 2604 if (!error) 2605 error = prepend(buffer, buflen, "/", 1); 2606 if (error) 2607 break; 2608 2609 slash = true; 2610 dentry = parent; 2611 } 2612 2613 if (!error && !slash) 2614 error = prepend(buffer, buflen, "/", 1); 2615 2616 out: 2617 br_read_unlock(&vfsmount_lock); 2618 return error; 2619 2620 global_root: 2621 /* 2622 * Filesystems needing to implement special "root names" 2623 * should do so with ->d_dname() 2624 */ 2625 if (IS_ROOT(dentry) && 2626 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) { 2627 WARN(1, "Root dentry has weird name <%.*s>\n", 2628 (int) dentry->d_name.len, dentry->d_name.name); 2629 } 2630 if (!slash) 2631 error = prepend(buffer, buflen, "/", 1); 2632 if (!error) 2633 error = is_mounted(vfsmnt) ? 1 : 2; 2634 goto out; 2635 } 2636 2637 /** 2638 * __d_path - return the path of a dentry 2639 * @path: the dentry/vfsmount to report 2640 * @root: root vfsmnt/dentry 2641 * @buf: buffer to return value in 2642 * @buflen: buffer length 2643 * 2644 * Convert a dentry into an ASCII path name. 2645 * 2646 * Returns a pointer into the buffer or an error code if the 2647 * path was too long. 2648 * 2649 * "buflen" should be positive. 2650 * 2651 * If the path is not reachable from the supplied root, return %NULL. 2652 */ 2653 char *__d_path(const struct path *path, 2654 const struct path *root, 2655 char *buf, int buflen) 2656 { 2657 char *res = buf + buflen; 2658 int error; 2659 2660 prepend(&res, &buflen, "\0", 1); 2661 write_seqlock(&rename_lock); 2662 error = prepend_path(path, root, &res, &buflen); 2663 write_sequnlock(&rename_lock); 2664 2665 if (error < 0) 2666 return ERR_PTR(error); 2667 if (error > 0) 2668 return NULL; 2669 return res; 2670 } 2671 2672 char *d_absolute_path(const struct path *path, 2673 char *buf, int buflen) 2674 { 2675 struct path root = {}; 2676 char *res = buf + buflen; 2677 int error; 2678 2679 prepend(&res, &buflen, "\0", 1); 2680 write_seqlock(&rename_lock); 2681 error = prepend_path(path, &root, &res, &buflen); 2682 write_sequnlock(&rename_lock); 2683 2684 if (error > 1) 2685 error = -EINVAL; 2686 if (error < 0) 2687 return ERR_PTR(error); 2688 return res; 2689 } 2690 2691 /* 2692 * same as __d_path but appends "(deleted)" for unlinked files. 2693 */ 2694 static int path_with_deleted(const struct path *path, 2695 const struct path *root, 2696 char **buf, int *buflen) 2697 { 2698 prepend(buf, buflen, "\0", 1); 2699 if (d_unlinked(path->dentry)) { 2700 int error = prepend(buf, buflen, " (deleted)", 10); 2701 if (error) 2702 return error; 2703 } 2704 2705 return prepend_path(path, root, buf, buflen); 2706 } 2707 2708 static int prepend_unreachable(char **buffer, int *buflen) 2709 { 2710 return prepend(buffer, buflen, "(unreachable)", 13); 2711 } 2712 2713 /** 2714 * d_path - return the path of a dentry 2715 * @path: path to report 2716 * @buf: buffer to return value in 2717 * @buflen: buffer length 2718 * 2719 * Convert a dentry into an ASCII path name. If the entry has been deleted 2720 * the string " (deleted)" is appended. Note that this is ambiguous. 2721 * 2722 * Returns a pointer into the buffer or an error code if the path was 2723 * too long. Note: Callers should use the returned pointer, not the passed 2724 * in buffer, to use the name! The implementation often starts at an offset 2725 * into the buffer, and may leave 0 bytes at the start. 2726 * 2727 * "buflen" should be positive. 2728 */ 2729 char *d_path(const struct path *path, char *buf, int buflen) 2730 { 2731 char *res = buf + buflen; 2732 struct path root; 2733 int error; 2734 2735 /* 2736 * We have various synthetic filesystems that never get mounted. On 2737 * these filesystems dentries are never used for lookup purposes, and 2738 * thus don't need to be hashed. They also don't need a name until a 2739 * user wants to identify the object in /proc/pid/fd/. The little hack 2740 * below allows us to generate a name for these objects on demand: 2741 */ 2742 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2743 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2744 2745 get_fs_root(current->fs, &root); 2746 write_seqlock(&rename_lock); 2747 error = path_with_deleted(path, &root, &res, &buflen); 2748 if (error < 0) 2749 res = ERR_PTR(error); 2750 write_sequnlock(&rename_lock); 2751 path_put(&root); 2752 return res; 2753 } 2754 EXPORT_SYMBOL(d_path); 2755 2756 /** 2757 * d_path_with_unreachable - return the path of a dentry 2758 * @path: path to report 2759 * @buf: buffer to return value in 2760 * @buflen: buffer length 2761 * 2762 * The difference from d_path() is that this prepends "(unreachable)" 2763 * to paths which are unreachable from the current process' root. 2764 */ 2765 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen) 2766 { 2767 char *res = buf + buflen; 2768 struct path root; 2769 int error; 2770 2771 if (path->dentry->d_op && path->dentry->d_op->d_dname) 2772 return path->dentry->d_op->d_dname(path->dentry, buf, buflen); 2773 2774 get_fs_root(current->fs, &root); 2775 write_seqlock(&rename_lock); 2776 error = path_with_deleted(path, &root, &res, &buflen); 2777 if (error > 0) 2778 error = prepend_unreachable(&res, &buflen); 2779 write_sequnlock(&rename_lock); 2780 path_put(&root); 2781 if (error) 2782 res = ERR_PTR(error); 2783 2784 return res; 2785 } 2786 2787 /* 2788 * Helper function for dentry_operations.d_dname() members 2789 */ 2790 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen, 2791 const char *fmt, ...) 2792 { 2793 va_list args; 2794 char temp[64]; 2795 int sz; 2796 2797 va_start(args, fmt); 2798 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1; 2799 va_end(args); 2800 2801 if (sz > sizeof(temp) || sz > buflen) 2802 return ERR_PTR(-ENAMETOOLONG); 2803 2804 buffer += buflen - sz; 2805 return memcpy(buffer, temp, sz); 2806 } 2807 2808 /* 2809 * Write full pathname from the root of the filesystem into the buffer. 2810 */ 2811 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen) 2812 { 2813 char *end = buf + buflen; 2814 char *retval; 2815 2816 prepend(&end, &buflen, "\0", 1); 2817 if (buflen < 1) 2818 goto Elong; 2819 /* Get '/' right */ 2820 retval = end-1; 2821 *retval = '/'; 2822 2823 while (!IS_ROOT(dentry)) { 2824 struct dentry *parent = dentry->d_parent; 2825 int error; 2826 2827 prefetch(parent); 2828 spin_lock(&dentry->d_lock); 2829 error = prepend_name(&end, &buflen, &dentry->d_name); 2830 spin_unlock(&dentry->d_lock); 2831 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0) 2832 goto Elong; 2833 2834 retval = end; 2835 dentry = parent; 2836 } 2837 return retval; 2838 Elong: 2839 return ERR_PTR(-ENAMETOOLONG); 2840 } 2841 2842 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen) 2843 { 2844 char *retval; 2845 2846 write_seqlock(&rename_lock); 2847 retval = __dentry_path(dentry, buf, buflen); 2848 write_sequnlock(&rename_lock); 2849 2850 return retval; 2851 } 2852 EXPORT_SYMBOL(dentry_path_raw); 2853 2854 char *dentry_path(struct dentry *dentry, char *buf, int buflen) 2855 { 2856 char *p = NULL; 2857 char *retval; 2858 2859 write_seqlock(&rename_lock); 2860 if (d_unlinked(dentry)) { 2861 p = buf + buflen; 2862 if (prepend(&p, &buflen, "//deleted", 10) != 0) 2863 goto Elong; 2864 buflen++; 2865 } 2866 retval = __dentry_path(dentry, buf, buflen); 2867 write_sequnlock(&rename_lock); 2868 if (!IS_ERR(retval) && p) 2869 *p = '/'; /* restore '/' overriden with '\0' */ 2870 return retval; 2871 Elong: 2872 return ERR_PTR(-ENAMETOOLONG); 2873 } 2874 2875 /* 2876 * NOTE! The user-level library version returns a 2877 * character pointer. The kernel system call just 2878 * returns the length of the buffer filled (which 2879 * includes the ending '\0' character), or a negative 2880 * error value. So libc would do something like 2881 * 2882 * char *getcwd(char * buf, size_t size) 2883 * { 2884 * int retval; 2885 * 2886 * retval = sys_getcwd(buf, size); 2887 * if (retval >= 0) 2888 * return buf; 2889 * errno = -retval; 2890 * return NULL; 2891 * } 2892 */ 2893 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size) 2894 { 2895 int error; 2896 struct path pwd, root; 2897 char *page = (char *) __get_free_page(GFP_USER); 2898 2899 if (!page) 2900 return -ENOMEM; 2901 2902 get_fs_root_and_pwd(current->fs, &root, &pwd); 2903 2904 error = -ENOENT; 2905 write_seqlock(&rename_lock); 2906 if (!d_unlinked(pwd.dentry)) { 2907 unsigned long len; 2908 char *cwd = page + PAGE_SIZE; 2909 int buflen = PAGE_SIZE; 2910 2911 prepend(&cwd, &buflen, "\0", 1); 2912 error = prepend_path(&pwd, &root, &cwd, &buflen); 2913 write_sequnlock(&rename_lock); 2914 2915 if (error < 0) 2916 goto out; 2917 2918 /* Unreachable from current root */ 2919 if (error > 0) { 2920 error = prepend_unreachable(&cwd, &buflen); 2921 if (error) 2922 goto out; 2923 } 2924 2925 error = -ERANGE; 2926 len = PAGE_SIZE + page - cwd; 2927 if (len <= size) { 2928 error = len; 2929 if (copy_to_user(buf, cwd, len)) 2930 error = -EFAULT; 2931 } 2932 } else { 2933 write_sequnlock(&rename_lock); 2934 } 2935 2936 out: 2937 path_put(&pwd); 2938 path_put(&root); 2939 free_page((unsigned long) page); 2940 return error; 2941 } 2942 2943 /* 2944 * Test whether new_dentry is a subdirectory of old_dentry. 2945 * 2946 * Trivially implemented using the dcache structure 2947 */ 2948 2949 /** 2950 * is_subdir - is new dentry a subdirectory of old_dentry 2951 * @new_dentry: new dentry 2952 * @old_dentry: old dentry 2953 * 2954 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth). 2955 * Returns 0 otherwise. 2956 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 2957 */ 2958 2959 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 2960 { 2961 int result; 2962 unsigned seq; 2963 2964 if (new_dentry == old_dentry) 2965 return 1; 2966 2967 do { 2968 /* for restarting inner loop in case of seq retry */ 2969 seq = read_seqbegin(&rename_lock); 2970 /* 2971 * Need rcu_readlock to protect against the d_parent trashing 2972 * due to d_move 2973 */ 2974 rcu_read_lock(); 2975 if (d_ancestor(old_dentry, new_dentry)) 2976 result = 1; 2977 else 2978 result = 0; 2979 rcu_read_unlock(); 2980 } while (read_seqretry(&rename_lock, seq)); 2981 2982 return result; 2983 } 2984 2985 void d_genocide(struct dentry *root) 2986 { 2987 struct dentry *this_parent; 2988 struct list_head *next; 2989 unsigned seq; 2990 int locked = 0; 2991 2992 seq = read_seqbegin(&rename_lock); 2993 again: 2994 this_parent = root; 2995 spin_lock(&this_parent->d_lock); 2996 repeat: 2997 next = this_parent->d_subdirs.next; 2998 resume: 2999 while (next != &this_parent->d_subdirs) { 3000 struct list_head *tmp = next; 3001 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child); 3002 next = tmp->next; 3003 3004 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3005 if (d_unhashed(dentry) || !dentry->d_inode) { 3006 spin_unlock(&dentry->d_lock); 3007 continue; 3008 } 3009 if (!list_empty(&dentry->d_subdirs)) { 3010 spin_unlock(&this_parent->d_lock); 3011 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_); 3012 this_parent = dentry; 3013 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 3014 goto repeat; 3015 } 3016 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3017 dentry->d_flags |= DCACHE_GENOCIDE; 3018 dentry->d_count--; 3019 } 3020 spin_unlock(&dentry->d_lock); 3021 } 3022 if (this_parent != root) { 3023 struct dentry *child = this_parent; 3024 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) { 3025 this_parent->d_flags |= DCACHE_GENOCIDE; 3026 this_parent->d_count--; 3027 } 3028 this_parent = try_to_ascend(this_parent, locked, seq); 3029 if (!this_parent) 3030 goto rename_retry; 3031 next = child->d_u.d_child.next; 3032 goto resume; 3033 } 3034 spin_unlock(&this_parent->d_lock); 3035 if (!locked && read_seqretry(&rename_lock, seq)) 3036 goto rename_retry; 3037 if (locked) 3038 write_sequnlock(&rename_lock); 3039 return; 3040 3041 rename_retry: 3042 if (locked) 3043 goto again; 3044 locked = 1; 3045 write_seqlock(&rename_lock); 3046 goto again; 3047 } 3048 3049 /** 3050 * find_inode_number - check for dentry with name 3051 * @dir: directory to check 3052 * @name: Name to find. 3053 * 3054 * Check whether a dentry already exists for the given name, 3055 * and return the inode number if it has an inode. Otherwise 3056 * 0 is returned. 3057 * 3058 * This routine is used to post-process directory listings for 3059 * filesystems using synthetic inode numbers, and is necessary 3060 * to keep getcwd() working. 3061 */ 3062 3063 ino_t find_inode_number(struct dentry *dir, struct qstr *name) 3064 { 3065 struct dentry * dentry; 3066 ino_t ino = 0; 3067 3068 dentry = d_hash_and_lookup(dir, name); 3069 if (dentry) { 3070 if (dentry->d_inode) 3071 ino = dentry->d_inode->i_ino; 3072 dput(dentry); 3073 } 3074 return ino; 3075 } 3076 EXPORT_SYMBOL(find_inode_number); 3077 3078 static __initdata unsigned long dhash_entries; 3079 static int __init set_dhash_entries(char *str) 3080 { 3081 if (!str) 3082 return 0; 3083 dhash_entries = simple_strtoul(str, &str, 0); 3084 return 1; 3085 } 3086 __setup("dhash_entries=", set_dhash_entries); 3087 3088 static void __init dcache_init_early(void) 3089 { 3090 unsigned int loop; 3091 3092 /* If hashes are distributed across NUMA nodes, defer 3093 * hash allocation until vmalloc space is available. 3094 */ 3095 if (hashdist) 3096 return; 3097 3098 dentry_hashtable = 3099 alloc_large_system_hash("Dentry cache", 3100 sizeof(struct hlist_bl_head), 3101 dhash_entries, 3102 13, 3103 HASH_EARLY, 3104 &d_hash_shift, 3105 &d_hash_mask, 3106 0, 3107 0); 3108 3109 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3110 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3111 } 3112 3113 static void __init dcache_init(void) 3114 { 3115 unsigned int loop; 3116 3117 /* 3118 * A constructor could be added for stable state like the lists, 3119 * but it is probably not worth it because of the cache nature 3120 * of the dcache. 3121 */ 3122 dentry_cache = KMEM_CACHE(dentry, 3123 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD); 3124 3125 /* Hash may have been set up in dcache_init_early */ 3126 if (!hashdist) 3127 return; 3128 3129 dentry_hashtable = 3130 alloc_large_system_hash("Dentry cache", 3131 sizeof(struct hlist_bl_head), 3132 dhash_entries, 3133 13, 3134 0, 3135 &d_hash_shift, 3136 &d_hash_mask, 3137 0, 3138 0); 3139 3140 for (loop = 0; loop < (1U << d_hash_shift); loop++) 3141 INIT_HLIST_BL_HEAD(dentry_hashtable + loop); 3142 } 3143 3144 /* SLAB cache for __getname() consumers */ 3145 struct kmem_cache *names_cachep __read_mostly; 3146 EXPORT_SYMBOL(names_cachep); 3147 3148 EXPORT_SYMBOL(d_genocide); 3149 3150 void __init vfs_caches_init_early(void) 3151 { 3152 dcache_init_early(); 3153 inode_init_early(); 3154 } 3155 3156 void __init vfs_caches_init(unsigned long mempages) 3157 { 3158 unsigned long reserve; 3159 3160 /* Base hash sizes on available memory, with a reserve equal to 3161 150% of current kernel size */ 3162 3163 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1); 3164 mempages -= reserve; 3165 3166 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0, 3167 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); 3168 3169 dcache_init(); 3170 inode_init(); 3171 files_init(mempages); 3172 mnt_init(); 3173 bdev_cache_init(); 3174 chrdev_init(); 3175 } 3176