xref: /linux/fs/dcache.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
42 
43 #include "internal.h"
44 #include "mount.h"
45 
46 /*
47  * Usage:
48  * dcache->d_inode->i_lock protects:
49  *   - i_dentry, d_u.d_alias, d_inode of aliases
50  * dcache_hash_bucket lock protects:
51  *   - the dcache hash table
52  * s_anon bl list spinlock protects:
53  *   - the s_anon list (see __d_drop)
54  * dentry->d_sb->s_dentry_lru_lock protects:
55  *   - the dcache lru lists and counters
56  * d_lock protects:
57  *   - d_flags
58  *   - d_name
59  *   - d_lru
60  *   - d_count
61  *   - d_unhashed()
62  *   - d_parent and d_subdirs
63  *   - childrens' d_child and d_parent
64  *   - d_u.d_alias, d_inode
65  *
66  * Ordering:
67  * dentry->d_inode->i_lock
68  *   dentry->d_lock
69  *     dentry->d_sb->s_dentry_lru_lock
70  *     dcache_hash_bucket lock
71  *     s_anon lock
72  *
73  * If there is an ancestor relationship:
74  * dentry->d_parent->...->d_parent->d_lock
75  *   ...
76  *     dentry->d_parent->d_lock
77  *       dentry->d_lock
78  *
79  * If no ancestor relationship:
80  * if (dentry1 < dentry2)
81  *   dentry1->d_lock
82  *     dentry2->d_lock
83  */
84 int sysctl_vfs_cache_pressure __read_mostly = 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
86 
87 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
88 
89 EXPORT_SYMBOL(rename_lock);
90 
91 static struct kmem_cache *dentry_cache __read_mostly;
92 
93 /*
94  * This is the single most critical data structure when it comes
95  * to the dcache: the hashtable for lookups. Somebody should try
96  * to make this good - I've just made it work.
97  *
98  * This hash-function tries to avoid losing too many bits of hash
99  * information, yet avoid using a prime hash-size or similar.
100  */
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
108 					unsigned int hash)
109 {
110 	hash += (unsigned long) parent / L1_CACHE_BYTES;
111 	return dentry_hashtable + hash_32(hash, d_hash_shift);
112 }
113 
114 #define IN_LOOKUP_SHIFT 10
115 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
116 
117 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
118 					unsigned int hash)
119 {
120 	hash += (unsigned long) parent / L1_CACHE_BYTES;
121 	return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
122 }
123 
124 
125 /* Statistics gathering. */
126 struct dentry_stat_t dentry_stat = {
127 	.age_limit = 45,
128 };
129 
130 static DEFINE_PER_CPU(long, nr_dentry);
131 static DEFINE_PER_CPU(long, nr_dentry_unused);
132 
133 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
134 
135 /*
136  * Here we resort to our own counters instead of using generic per-cpu counters
137  * for consistency with what the vfs inode code does. We are expected to harvest
138  * better code and performance by having our own specialized counters.
139  *
140  * Please note that the loop is done over all possible CPUs, not over all online
141  * CPUs. The reason for this is that we don't want to play games with CPUs going
142  * on and off. If one of them goes off, we will just keep their counters.
143  *
144  * glommer: See cffbc8a for details, and if you ever intend to change this,
145  * please update all vfs counters to match.
146  */
147 static long get_nr_dentry(void)
148 {
149 	int i;
150 	long sum = 0;
151 	for_each_possible_cpu(i)
152 		sum += per_cpu(nr_dentry, i);
153 	return sum < 0 ? 0 : sum;
154 }
155 
156 static long get_nr_dentry_unused(void)
157 {
158 	int i;
159 	long sum = 0;
160 	for_each_possible_cpu(i)
161 		sum += per_cpu(nr_dentry_unused, i);
162 	return sum < 0 ? 0 : sum;
163 }
164 
165 int proc_nr_dentry(struct ctl_table *table, int write, void __user *buffer,
166 		   size_t *lenp, loff_t *ppos)
167 {
168 	dentry_stat.nr_dentry = get_nr_dentry();
169 	dentry_stat.nr_unused = get_nr_dentry_unused();
170 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
171 }
172 #endif
173 
174 /*
175  * Compare 2 name strings, return 0 if they match, otherwise non-zero.
176  * The strings are both count bytes long, and count is non-zero.
177  */
178 #ifdef CONFIG_DCACHE_WORD_ACCESS
179 
180 #include <asm/word-at-a-time.h>
181 /*
182  * NOTE! 'cs' and 'scount' come from a dentry, so it has a
183  * aligned allocation for this particular component. We don't
184  * strictly need the load_unaligned_zeropad() safety, but it
185  * doesn't hurt either.
186  *
187  * In contrast, 'ct' and 'tcount' can be from a pathname, and do
188  * need the careful unaligned handling.
189  */
190 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
191 {
192 	unsigned long a,b,mask;
193 
194 	for (;;) {
195 		a = *(unsigned long *)cs;
196 		b = load_unaligned_zeropad(ct);
197 		if (tcount < sizeof(unsigned long))
198 			break;
199 		if (unlikely(a != b))
200 			return 1;
201 		cs += sizeof(unsigned long);
202 		ct += sizeof(unsigned long);
203 		tcount -= sizeof(unsigned long);
204 		if (!tcount)
205 			return 0;
206 	}
207 	mask = bytemask_from_count(tcount);
208 	return unlikely(!!((a ^ b) & mask));
209 }
210 
211 #else
212 
213 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
214 {
215 	do {
216 		if (*cs != *ct)
217 			return 1;
218 		cs++;
219 		ct++;
220 		tcount--;
221 	} while (tcount);
222 	return 0;
223 }
224 
225 #endif
226 
227 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
228 {
229 	const unsigned char *cs;
230 	/*
231 	 * Be careful about RCU walk racing with rename:
232 	 * use ACCESS_ONCE to fetch the name pointer.
233 	 *
234 	 * NOTE! Even if a rename will mean that the length
235 	 * was not loaded atomically, we don't care. The
236 	 * RCU walk will check the sequence count eventually,
237 	 * and catch it. And we won't overrun the buffer,
238 	 * because we're reading the name pointer atomically,
239 	 * and a dentry name is guaranteed to be properly
240 	 * terminated with a NUL byte.
241 	 *
242 	 * End result: even if 'len' is wrong, we'll exit
243 	 * early because the data cannot match (there can
244 	 * be no NUL in the ct/tcount data)
245 	 */
246 	cs = ACCESS_ONCE(dentry->d_name.name);
247 	smp_read_barrier_depends();
248 	return dentry_string_cmp(cs, ct, tcount);
249 }
250 
251 struct external_name {
252 	union {
253 		atomic_t count;
254 		struct rcu_head head;
255 	} u;
256 	unsigned char name[];
257 };
258 
259 static inline struct external_name *external_name(struct dentry *dentry)
260 {
261 	return container_of(dentry->d_name.name, struct external_name, name[0]);
262 }
263 
264 static void __d_free(struct rcu_head *head)
265 {
266 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
267 
268 	kmem_cache_free(dentry_cache, dentry);
269 }
270 
271 static void __d_free_external(struct rcu_head *head)
272 {
273 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
274 	kfree(external_name(dentry));
275 	kmem_cache_free(dentry_cache, dentry);
276 }
277 
278 static inline int dname_external(const struct dentry *dentry)
279 {
280 	return dentry->d_name.name != dentry->d_iname;
281 }
282 
283 static inline void __d_set_inode_and_type(struct dentry *dentry,
284 					  struct inode *inode,
285 					  unsigned type_flags)
286 {
287 	unsigned flags;
288 
289 	dentry->d_inode = inode;
290 	flags = READ_ONCE(dentry->d_flags);
291 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
292 	flags |= type_flags;
293 	WRITE_ONCE(dentry->d_flags, flags);
294 }
295 
296 static inline void __d_clear_type_and_inode(struct dentry *dentry)
297 {
298 	unsigned flags = READ_ONCE(dentry->d_flags);
299 
300 	flags &= ~(DCACHE_ENTRY_TYPE | DCACHE_FALLTHRU);
301 	WRITE_ONCE(dentry->d_flags, flags);
302 	dentry->d_inode = NULL;
303 }
304 
305 static void dentry_free(struct dentry *dentry)
306 {
307 	WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
308 	if (unlikely(dname_external(dentry))) {
309 		struct external_name *p = external_name(dentry);
310 		if (likely(atomic_dec_and_test(&p->u.count))) {
311 			call_rcu(&dentry->d_u.d_rcu, __d_free_external);
312 			return;
313 		}
314 	}
315 	/* if dentry was never visible to RCU, immediate free is OK */
316 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
317 		__d_free(&dentry->d_u.d_rcu);
318 	else
319 		call_rcu(&dentry->d_u.d_rcu, __d_free);
320 }
321 
322 /**
323  * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
324  * @dentry: the target dentry
325  * After this call, in-progress rcu-walk path lookup will fail. This
326  * should be called after unhashing, and after changing d_inode (if
327  * the dentry has not already been unhashed).
328  */
329 static inline void dentry_rcuwalk_invalidate(struct dentry *dentry)
330 {
331 	lockdep_assert_held(&dentry->d_lock);
332 	/* Go through am invalidation barrier */
333 	write_seqcount_invalidate(&dentry->d_seq);
334 }
335 
336 /*
337  * Release the dentry's inode, using the filesystem
338  * d_iput() operation if defined. Dentry has no refcount
339  * and is unhashed.
340  */
341 static void dentry_iput(struct dentry * dentry)
342 	__releases(dentry->d_lock)
343 	__releases(dentry->d_inode->i_lock)
344 {
345 	struct inode *inode = dentry->d_inode;
346 	if (inode) {
347 		__d_clear_type_and_inode(dentry);
348 		hlist_del_init(&dentry->d_u.d_alias);
349 		spin_unlock(&dentry->d_lock);
350 		spin_unlock(&inode->i_lock);
351 		if (!inode->i_nlink)
352 			fsnotify_inoderemove(inode);
353 		if (dentry->d_op && dentry->d_op->d_iput)
354 			dentry->d_op->d_iput(dentry, inode);
355 		else
356 			iput(inode);
357 	} else {
358 		spin_unlock(&dentry->d_lock);
359 	}
360 }
361 
362 /*
363  * Release the dentry's inode, using the filesystem
364  * d_iput() operation if defined. dentry remains in-use.
365  */
366 static void dentry_unlink_inode(struct dentry * dentry)
367 	__releases(dentry->d_lock)
368 	__releases(dentry->d_inode->i_lock)
369 {
370 	struct inode *inode = dentry->d_inode;
371 
372 	raw_write_seqcount_begin(&dentry->d_seq);
373 	__d_clear_type_and_inode(dentry);
374 	hlist_del_init(&dentry->d_u.d_alias);
375 	raw_write_seqcount_end(&dentry->d_seq);
376 	spin_unlock(&dentry->d_lock);
377 	spin_unlock(&inode->i_lock);
378 	if (!inode->i_nlink)
379 		fsnotify_inoderemove(inode);
380 	if (dentry->d_op && dentry->d_op->d_iput)
381 		dentry->d_op->d_iput(dentry, inode);
382 	else
383 		iput(inode);
384 }
385 
386 /*
387  * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
388  * is in use - which includes both the "real" per-superblock
389  * LRU list _and_ the DCACHE_SHRINK_LIST use.
390  *
391  * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
392  * on the shrink list (ie not on the superblock LRU list).
393  *
394  * The per-cpu "nr_dentry_unused" counters are updated with
395  * the DCACHE_LRU_LIST bit.
396  *
397  * These helper functions make sure we always follow the
398  * rules. d_lock must be held by the caller.
399  */
400 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
401 static void d_lru_add(struct dentry *dentry)
402 {
403 	D_FLAG_VERIFY(dentry, 0);
404 	dentry->d_flags |= DCACHE_LRU_LIST;
405 	this_cpu_inc(nr_dentry_unused);
406 	WARN_ON_ONCE(!list_lru_add(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
407 }
408 
409 static void d_lru_del(struct dentry *dentry)
410 {
411 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
412 	dentry->d_flags &= ~DCACHE_LRU_LIST;
413 	this_cpu_dec(nr_dentry_unused);
414 	WARN_ON_ONCE(!list_lru_del(&dentry->d_sb->s_dentry_lru, &dentry->d_lru));
415 }
416 
417 static void d_shrink_del(struct dentry *dentry)
418 {
419 	D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
420 	list_del_init(&dentry->d_lru);
421 	dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
422 	this_cpu_dec(nr_dentry_unused);
423 }
424 
425 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
426 {
427 	D_FLAG_VERIFY(dentry, 0);
428 	list_add(&dentry->d_lru, list);
429 	dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
430 	this_cpu_inc(nr_dentry_unused);
431 }
432 
433 /*
434  * These can only be called under the global LRU lock, ie during the
435  * callback for freeing the LRU list. "isolate" removes it from the
436  * LRU lists entirely, while shrink_move moves it to the indicated
437  * private list.
438  */
439 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
440 {
441 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
442 	dentry->d_flags &= ~DCACHE_LRU_LIST;
443 	this_cpu_dec(nr_dentry_unused);
444 	list_lru_isolate(lru, &dentry->d_lru);
445 }
446 
447 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
448 			      struct list_head *list)
449 {
450 	D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
451 	dentry->d_flags |= DCACHE_SHRINK_LIST;
452 	list_lru_isolate_move(lru, &dentry->d_lru, list);
453 }
454 
455 /*
456  * dentry_lru_(add|del)_list) must be called with d_lock held.
457  */
458 static void dentry_lru_add(struct dentry *dentry)
459 {
460 	if (unlikely(!(dentry->d_flags & DCACHE_LRU_LIST)))
461 		d_lru_add(dentry);
462 }
463 
464 /**
465  * d_drop - drop a dentry
466  * @dentry: dentry to drop
467  *
468  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
469  * be found through a VFS lookup any more. Note that this is different from
470  * deleting the dentry - d_delete will try to mark the dentry negative if
471  * possible, giving a successful _negative_ lookup, while d_drop will
472  * just make the cache lookup fail.
473  *
474  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
475  * reason (NFS timeouts or autofs deletes).
476  *
477  * __d_drop requires dentry->d_lock.
478  */
479 void __d_drop(struct dentry *dentry)
480 {
481 	if (!d_unhashed(dentry)) {
482 		struct hlist_bl_head *b;
483 		/*
484 		 * Hashed dentries are normally on the dentry hashtable,
485 		 * with the exception of those newly allocated by
486 		 * d_obtain_alias, which are always IS_ROOT:
487 		 */
488 		if (unlikely(IS_ROOT(dentry)))
489 			b = &dentry->d_sb->s_anon;
490 		else
491 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
492 
493 		hlist_bl_lock(b);
494 		__hlist_bl_del(&dentry->d_hash);
495 		dentry->d_hash.pprev = NULL;
496 		hlist_bl_unlock(b);
497 		dentry_rcuwalk_invalidate(dentry);
498 	}
499 }
500 EXPORT_SYMBOL(__d_drop);
501 
502 void d_drop(struct dentry *dentry)
503 {
504 	spin_lock(&dentry->d_lock);
505 	__d_drop(dentry);
506 	spin_unlock(&dentry->d_lock);
507 }
508 EXPORT_SYMBOL(d_drop);
509 
510 static void __dentry_kill(struct dentry *dentry)
511 {
512 	struct dentry *parent = NULL;
513 	bool can_free = true;
514 	if (!IS_ROOT(dentry))
515 		parent = dentry->d_parent;
516 
517 	/*
518 	 * The dentry is now unrecoverably dead to the world.
519 	 */
520 	lockref_mark_dead(&dentry->d_lockref);
521 
522 	/*
523 	 * inform the fs via d_prune that this dentry is about to be
524 	 * unhashed and destroyed.
525 	 */
526 	if (dentry->d_flags & DCACHE_OP_PRUNE)
527 		dentry->d_op->d_prune(dentry);
528 
529 	if (dentry->d_flags & DCACHE_LRU_LIST) {
530 		if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
531 			d_lru_del(dentry);
532 	}
533 	/* if it was on the hash then remove it */
534 	__d_drop(dentry);
535 	__list_del_entry(&dentry->d_child);
536 	/*
537 	 * Inform d_walk() that we are no longer attached to the
538 	 * dentry tree
539 	 */
540 	dentry->d_flags |= DCACHE_DENTRY_KILLED;
541 	if (parent)
542 		spin_unlock(&parent->d_lock);
543 	dentry_iput(dentry);
544 	/*
545 	 * dentry_iput drops the locks, at which point nobody (except
546 	 * transient RCU lookups) can reach this dentry.
547 	 */
548 	BUG_ON(dentry->d_lockref.count > 0);
549 	this_cpu_dec(nr_dentry);
550 	if (dentry->d_op && dentry->d_op->d_release)
551 		dentry->d_op->d_release(dentry);
552 
553 	spin_lock(&dentry->d_lock);
554 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
555 		dentry->d_flags |= DCACHE_MAY_FREE;
556 		can_free = false;
557 	}
558 	spin_unlock(&dentry->d_lock);
559 	if (likely(can_free))
560 		dentry_free(dentry);
561 }
562 
563 /*
564  * Finish off a dentry we've decided to kill.
565  * dentry->d_lock must be held, returns with it unlocked.
566  * If ref is non-zero, then decrement the refcount too.
567  * Returns dentry requiring refcount drop, or NULL if we're done.
568  */
569 static struct dentry *dentry_kill(struct dentry *dentry)
570 	__releases(dentry->d_lock)
571 {
572 	struct inode *inode = dentry->d_inode;
573 	struct dentry *parent = NULL;
574 
575 	if (inode && unlikely(!spin_trylock(&inode->i_lock)))
576 		goto failed;
577 
578 	if (!IS_ROOT(dentry)) {
579 		parent = dentry->d_parent;
580 		if (unlikely(!spin_trylock(&parent->d_lock))) {
581 			if (inode)
582 				spin_unlock(&inode->i_lock);
583 			goto failed;
584 		}
585 	}
586 
587 	__dentry_kill(dentry);
588 	return parent;
589 
590 failed:
591 	spin_unlock(&dentry->d_lock);
592 	cpu_relax();
593 	return dentry; /* try again with same dentry */
594 }
595 
596 static inline struct dentry *lock_parent(struct dentry *dentry)
597 {
598 	struct dentry *parent = dentry->d_parent;
599 	if (IS_ROOT(dentry))
600 		return NULL;
601 	if (unlikely(dentry->d_lockref.count < 0))
602 		return NULL;
603 	if (likely(spin_trylock(&parent->d_lock)))
604 		return parent;
605 	rcu_read_lock();
606 	spin_unlock(&dentry->d_lock);
607 again:
608 	parent = ACCESS_ONCE(dentry->d_parent);
609 	spin_lock(&parent->d_lock);
610 	/*
611 	 * We can't blindly lock dentry until we are sure
612 	 * that we won't violate the locking order.
613 	 * Any changes of dentry->d_parent must have
614 	 * been done with parent->d_lock held, so
615 	 * spin_lock() above is enough of a barrier
616 	 * for checking if it's still our child.
617 	 */
618 	if (unlikely(parent != dentry->d_parent)) {
619 		spin_unlock(&parent->d_lock);
620 		goto again;
621 	}
622 	rcu_read_unlock();
623 	if (parent != dentry)
624 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
625 	else
626 		parent = NULL;
627 	return parent;
628 }
629 
630 /*
631  * Try to do a lockless dput(), and return whether that was successful.
632  *
633  * If unsuccessful, we return false, having already taken the dentry lock.
634  *
635  * The caller needs to hold the RCU read lock, so that the dentry is
636  * guaranteed to stay around even if the refcount goes down to zero!
637  */
638 static inline bool fast_dput(struct dentry *dentry)
639 {
640 	int ret;
641 	unsigned int d_flags;
642 
643 	/*
644 	 * If we have a d_op->d_delete() operation, we sould not
645 	 * let the dentry count go to zero, so use "put_or_lock".
646 	 */
647 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE))
648 		return lockref_put_or_lock(&dentry->d_lockref);
649 
650 	/*
651 	 * .. otherwise, we can try to just decrement the
652 	 * lockref optimistically.
653 	 */
654 	ret = lockref_put_return(&dentry->d_lockref);
655 
656 	/*
657 	 * If the lockref_put_return() failed due to the lock being held
658 	 * by somebody else, the fast path has failed. We will need to
659 	 * get the lock, and then check the count again.
660 	 */
661 	if (unlikely(ret < 0)) {
662 		spin_lock(&dentry->d_lock);
663 		if (dentry->d_lockref.count > 1) {
664 			dentry->d_lockref.count--;
665 			spin_unlock(&dentry->d_lock);
666 			return 1;
667 		}
668 		return 0;
669 	}
670 
671 	/*
672 	 * If we weren't the last ref, we're done.
673 	 */
674 	if (ret)
675 		return 1;
676 
677 	/*
678 	 * Careful, careful. The reference count went down
679 	 * to zero, but we don't hold the dentry lock, so
680 	 * somebody else could get it again, and do another
681 	 * dput(), and we need to not race with that.
682 	 *
683 	 * However, there is a very special and common case
684 	 * where we don't care, because there is nothing to
685 	 * do: the dentry is still hashed, it does not have
686 	 * a 'delete' op, and it's referenced and already on
687 	 * the LRU list.
688 	 *
689 	 * NOTE! Since we aren't locked, these values are
690 	 * not "stable". However, it is sufficient that at
691 	 * some point after we dropped the reference the
692 	 * dentry was hashed and the flags had the proper
693 	 * value. Other dentry users may have re-gotten
694 	 * a reference to the dentry and change that, but
695 	 * our work is done - we can leave the dentry
696 	 * around with a zero refcount.
697 	 */
698 	smp_rmb();
699 	d_flags = ACCESS_ONCE(dentry->d_flags);
700 	d_flags &= DCACHE_REFERENCED | DCACHE_LRU_LIST | DCACHE_DISCONNECTED;
701 
702 	/* Nothing to do? Dropping the reference was all we needed? */
703 	if (d_flags == (DCACHE_REFERENCED | DCACHE_LRU_LIST) && !d_unhashed(dentry))
704 		return 1;
705 
706 	/*
707 	 * Not the fast normal case? Get the lock. We've already decremented
708 	 * the refcount, but we'll need to re-check the situation after
709 	 * getting the lock.
710 	 */
711 	spin_lock(&dentry->d_lock);
712 
713 	/*
714 	 * Did somebody else grab a reference to it in the meantime, and
715 	 * we're no longer the last user after all? Alternatively, somebody
716 	 * else could have killed it and marked it dead. Either way, we
717 	 * don't need to do anything else.
718 	 */
719 	if (dentry->d_lockref.count) {
720 		spin_unlock(&dentry->d_lock);
721 		return 1;
722 	}
723 
724 	/*
725 	 * Re-get the reference we optimistically dropped. We hold the
726 	 * lock, and we just tested that it was zero, so we can just
727 	 * set it to 1.
728 	 */
729 	dentry->d_lockref.count = 1;
730 	return 0;
731 }
732 
733 
734 /*
735  * This is dput
736  *
737  * This is complicated by the fact that we do not want to put
738  * dentries that are no longer on any hash chain on the unused
739  * list: we'd much rather just get rid of them immediately.
740  *
741  * However, that implies that we have to traverse the dentry
742  * tree upwards to the parents which might _also_ now be
743  * scheduled for deletion (it may have been only waiting for
744  * its last child to go away).
745  *
746  * This tail recursion is done by hand as we don't want to depend
747  * on the compiler to always get this right (gcc generally doesn't).
748  * Real recursion would eat up our stack space.
749  */
750 
751 /*
752  * dput - release a dentry
753  * @dentry: dentry to release
754  *
755  * Release a dentry. This will drop the usage count and if appropriate
756  * call the dentry unlink method as well as removing it from the queues and
757  * releasing its resources. If the parent dentries were scheduled for release
758  * they too may now get deleted.
759  */
760 void dput(struct dentry *dentry)
761 {
762 	if (unlikely(!dentry))
763 		return;
764 
765 repeat:
766 	rcu_read_lock();
767 	if (likely(fast_dput(dentry))) {
768 		rcu_read_unlock();
769 		return;
770 	}
771 
772 	/* Slow case: now with the dentry lock held */
773 	rcu_read_unlock();
774 
775 	WARN_ON(d_in_lookup(dentry));
776 
777 	/* Unreachable? Get rid of it */
778 	if (unlikely(d_unhashed(dentry)))
779 		goto kill_it;
780 
781 	if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
782 		goto kill_it;
783 
784 	if (unlikely(dentry->d_flags & DCACHE_OP_DELETE)) {
785 		if (dentry->d_op->d_delete(dentry))
786 			goto kill_it;
787 	}
788 
789 	if (!(dentry->d_flags & DCACHE_REFERENCED))
790 		dentry->d_flags |= DCACHE_REFERENCED;
791 	dentry_lru_add(dentry);
792 
793 	dentry->d_lockref.count--;
794 	spin_unlock(&dentry->d_lock);
795 	return;
796 
797 kill_it:
798 	dentry = dentry_kill(dentry);
799 	if (dentry)
800 		goto repeat;
801 }
802 EXPORT_SYMBOL(dput);
803 
804 
805 /* This must be called with d_lock held */
806 static inline void __dget_dlock(struct dentry *dentry)
807 {
808 	dentry->d_lockref.count++;
809 }
810 
811 static inline void __dget(struct dentry *dentry)
812 {
813 	lockref_get(&dentry->d_lockref);
814 }
815 
816 struct dentry *dget_parent(struct dentry *dentry)
817 {
818 	int gotref;
819 	struct dentry *ret;
820 
821 	/*
822 	 * Do optimistic parent lookup without any
823 	 * locking.
824 	 */
825 	rcu_read_lock();
826 	ret = ACCESS_ONCE(dentry->d_parent);
827 	gotref = lockref_get_not_zero(&ret->d_lockref);
828 	rcu_read_unlock();
829 	if (likely(gotref)) {
830 		if (likely(ret == ACCESS_ONCE(dentry->d_parent)))
831 			return ret;
832 		dput(ret);
833 	}
834 
835 repeat:
836 	/*
837 	 * Don't need rcu_dereference because we re-check it was correct under
838 	 * the lock.
839 	 */
840 	rcu_read_lock();
841 	ret = dentry->d_parent;
842 	spin_lock(&ret->d_lock);
843 	if (unlikely(ret != dentry->d_parent)) {
844 		spin_unlock(&ret->d_lock);
845 		rcu_read_unlock();
846 		goto repeat;
847 	}
848 	rcu_read_unlock();
849 	BUG_ON(!ret->d_lockref.count);
850 	ret->d_lockref.count++;
851 	spin_unlock(&ret->d_lock);
852 	return ret;
853 }
854 EXPORT_SYMBOL(dget_parent);
855 
856 /**
857  * d_find_alias - grab a hashed alias of inode
858  * @inode: inode in question
859  *
860  * If inode has a hashed alias, or is a directory and has any alias,
861  * acquire the reference to alias and return it. Otherwise return NULL.
862  * Notice that if inode is a directory there can be only one alias and
863  * it can be unhashed only if it has no children, or if it is the root
864  * of a filesystem, or if the directory was renamed and d_revalidate
865  * was the first vfs operation to notice.
866  *
867  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
868  * any other hashed alias over that one.
869  */
870 static struct dentry *__d_find_alias(struct inode *inode)
871 {
872 	struct dentry *alias, *discon_alias;
873 
874 again:
875 	discon_alias = NULL;
876 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
877 		spin_lock(&alias->d_lock);
878  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
879 			if (IS_ROOT(alias) &&
880 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
881 				discon_alias = alias;
882 			} else {
883 				__dget_dlock(alias);
884 				spin_unlock(&alias->d_lock);
885 				return alias;
886 			}
887 		}
888 		spin_unlock(&alias->d_lock);
889 	}
890 	if (discon_alias) {
891 		alias = discon_alias;
892 		spin_lock(&alias->d_lock);
893 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
894 			__dget_dlock(alias);
895 			spin_unlock(&alias->d_lock);
896 			return alias;
897 		}
898 		spin_unlock(&alias->d_lock);
899 		goto again;
900 	}
901 	return NULL;
902 }
903 
904 struct dentry *d_find_alias(struct inode *inode)
905 {
906 	struct dentry *de = NULL;
907 
908 	if (!hlist_empty(&inode->i_dentry)) {
909 		spin_lock(&inode->i_lock);
910 		de = __d_find_alias(inode);
911 		spin_unlock(&inode->i_lock);
912 	}
913 	return de;
914 }
915 EXPORT_SYMBOL(d_find_alias);
916 
917 /*
918  *	Try to kill dentries associated with this inode.
919  * WARNING: you must own a reference to inode.
920  */
921 void d_prune_aliases(struct inode *inode)
922 {
923 	struct dentry *dentry;
924 restart:
925 	spin_lock(&inode->i_lock);
926 	hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) {
927 		spin_lock(&dentry->d_lock);
928 		if (!dentry->d_lockref.count) {
929 			struct dentry *parent = lock_parent(dentry);
930 			if (likely(!dentry->d_lockref.count)) {
931 				__dentry_kill(dentry);
932 				dput(parent);
933 				goto restart;
934 			}
935 			if (parent)
936 				spin_unlock(&parent->d_lock);
937 		}
938 		spin_unlock(&dentry->d_lock);
939 	}
940 	spin_unlock(&inode->i_lock);
941 }
942 EXPORT_SYMBOL(d_prune_aliases);
943 
944 static void shrink_dentry_list(struct list_head *list)
945 {
946 	struct dentry *dentry, *parent;
947 
948 	while (!list_empty(list)) {
949 		struct inode *inode;
950 		dentry = list_entry(list->prev, struct dentry, d_lru);
951 		spin_lock(&dentry->d_lock);
952 		parent = lock_parent(dentry);
953 
954 		/*
955 		 * The dispose list is isolated and dentries are not accounted
956 		 * to the LRU here, so we can simply remove it from the list
957 		 * here regardless of whether it is referenced or not.
958 		 */
959 		d_shrink_del(dentry);
960 
961 		/*
962 		 * We found an inuse dentry which was not removed from
963 		 * the LRU because of laziness during lookup. Do not free it.
964 		 */
965 		if (dentry->d_lockref.count > 0) {
966 			spin_unlock(&dentry->d_lock);
967 			if (parent)
968 				spin_unlock(&parent->d_lock);
969 			continue;
970 		}
971 
972 
973 		if (unlikely(dentry->d_flags & DCACHE_DENTRY_KILLED)) {
974 			bool can_free = dentry->d_flags & DCACHE_MAY_FREE;
975 			spin_unlock(&dentry->d_lock);
976 			if (parent)
977 				spin_unlock(&parent->d_lock);
978 			if (can_free)
979 				dentry_free(dentry);
980 			continue;
981 		}
982 
983 		inode = dentry->d_inode;
984 		if (inode && unlikely(!spin_trylock(&inode->i_lock))) {
985 			d_shrink_add(dentry, list);
986 			spin_unlock(&dentry->d_lock);
987 			if (parent)
988 				spin_unlock(&parent->d_lock);
989 			continue;
990 		}
991 
992 		__dentry_kill(dentry);
993 
994 		/*
995 		 * We need to prune ancestors too. This is necessary to prevent
996 		 * quadratic behavior of shrink_dcache_parent(), but is also
997 		 * expected to be beneficial in reducing dentry cache
998 		 * fragmentation.
999 		 */
1000 		dentry = parent;
1001 		while (dentry && !lockref_put_or_lock(&dentry->d_lockref)) {
1002 			parent = lock_parent(dentry);
1003 			if (dentry->d_lockref.count != 1) {
1004 				dentry->d_lockref.count--;
1005 				spin_unlock(&dentry->d_lock);
1006 				if (parent)
1007 					spin_unlock(&parent->d_lock);
1008 				break;
1009 			}
1010 			inode = dentry->d_inode;	/* can't be NULL */
1011 			if (unlikely(!spin_trylock(&inode->i_lock))) {
1012 				spin_unlock(&dentry->d_lock);
1013 				if (parent)
1014 					spin_unlock(&parent->d_lock);
1015 				cpu_relax();
1016 				continue;
1017 			}
1018 			__dentry_kill(dentry);
1019 			dentry = parent;
1020 		}
1021 	}
1022 }
1023 
1024 static enum lru_status dentry_lru_isolate(struct list_head *item,
1025 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1026 {
1027 	struct list_head *freeable = arg;
1028 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1029 
1030 
1031 	/*
1032 	 * we are inverting the lru lock/dentry->d_lock here,
1033 	 * so use a trylock. If we fail to get the lock, just skip
1034 	 * it
1035 	 */
1036 	if (!spin_trylock(&dentry->d_lock))
1037 		return LRU_SKIP;
1038 
1039 	/*
1040 	 * Referenced dentries are still in use. If they have active
1041 	 * counts, just remove them from the LRU. Otherwise give them
1042 	 * another pass through the LRU.
1043 	 */
1044 	if (dentry->d_lockref.count) {
1045 		d_lru_isolate(lru, dentry);
1046 		spin_unlock(&dentry->d_lock);
1047 		return LRU_REMOVED;
1048 	}
1049 
1050 	if (dentry->d_flags & DCACHE_REFERENCED) {
1051 		dentry->d_flags &= ~DCACHE_REFERENCED;
1052 		spin_unlock(&dentry->d_lock);
1053 
1054 		/*
1055 		 * The list move itself will be made by the common LRU code. At
1056 		 * this point, we've dropped the dentry->d_lock but keep the
1057 		 * lru lock. This is safe to do, since every list movement is
1058 		 * protected by the lru lock even if both locks are held.
1059 		 *
1060 		 * This is guaranteed by the fact that all LRU management
1061 		 * functions are intermediated by the LRU API calls like
1062 		 * list_lru_add and list_lru_del. List movement in this file
1063 		 * only ever occur through this functions or through callbacks
1064 		 * like this one, that are called from the LRU API.
1065 		 *
1066 		 * The only exceptions to this are functions like
1067 		 * shrink_dentry_list, and code that first checks for the
1068 		 * DCACHE_SHRINK_LIST flag.  Those are guaranteed to be
1069 		 * operating only with stack provided lists after they are
1070 		 * properly isolated from the main list.  It is thus, always a
1071 		 * local access.
1072 		 */
1073 		return LRU_ROTATE;
1074 	}
1075 
1076 	d_lru_shrink_move(lru, dentry, freeable);
1077 	spin_unlock(&dentry->d_lock);
1078 
1079 	return LRU_REMOVED;
1080 }
1081 
1082 /**
1083  * prune_dcache_sb - shrink the dcache
1084  * @sb: superblock
1085  * @sc: shrink control, passed to list_lru_shrink_walk()
1086  *
1087  * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1088  * is done when we need more memory and called from the superblock shrinker
1089  * function.
1090  *
1091  * This function may fail to free any resources if all the dentries are in
1092  * use.
1093  */
1094 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1095 {
1096 	LIST_HEAD(dispose);
1097 	long freed;
1098 
1099 	freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1100 				     dentry_lru_isolate, &dispose);
1101 	shrink_dentry_list(&dispose);
1102 	return freed;
1103 }
1104 
1105 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1106 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
1107 {
1108 	struct list_head *freeable = arg;
1109 	struct dentry	*dentry = container_of(item, struct dentry, d_lru);
1110 
1111 	/*
1112 	 * we are inverting the lru lock/dentry->d_lock here,
1113 	 * so use a trylock. If we fail to get the lock, just skip
1114 	 * it
1115 	 */
1116 	if (!spin_trylock(&dentry->d_lock))
1117 		return LRU_SKIP;
1118 
1119 	d_lru_shrink_move(lru, dentry, freeable);
1120 	spin_unlock(&dentry->d_lock);
1121 
1122 	return LRU_REMOVED;
1123 }
1124 
1125 
1126 /**
1127  * shrink_dcache_sb - shrink dcache for a superblock
1128  * @sb: superblock
1129  *
1130  * Shrink the dcache for the specified super block. This is used to free
1131  * the dcache before unmounting a file system.
1132  */
1133 void shrink_dcache_sb(struct super_block *sb)
1134 {
1135 	long freed;
1136 
1137 	do {
1138 		LIST_HEAD(dispose);
1139 
1140 		freed = list_lru_walk(&sb->s_dentry_lru,
1141 			dentry_lru_isolate_shrink, &dispose, UINT_MAX);
1142 
1143 		this_cpu_sub(nr_dentry_unused, freed);
1144 		shrink_dentry_list(&dispose);
1145 	} while (freed > 0);
1146 }
1147 EXPORT_SYMBOL(shrink_dcache_sb);
1148 
1149 /**
1150  * enum d_walk_ret - action to talke during tree walk
1151  * @D_WALK_CONTINUE:	contrinue walk
1152  * @D_WALK_QUIT:	quit walk
1153  * @D_WALK_NORETRY:	quit when retry is needed
1154  * @D_WALK_SKIP:	skip this dentry and its children
1155  */
1156 enum d_walk_ret {
1157 	D_WALK_CONTINUE,
1158 	D_WALK_QUIT,
1159 	D_WALK_NORETRY,
1160 	D_WALK_SKIP,
1161 };
1162 
1163 /**
1164  * d_walk - walk the dentry tree
1165  * @parent:	start of walk
1166  * @data:	data passed to @enter() and @finish()
1167  * @enter:	callback when first entering the dentry
1168  * @finish:	callback when successfully finished the walk
1169  *
1170  * The @enter() and @finish() callbacks are called with d_lock held.
1171  */
1172 static void d_walk(struct dentry *parent, void *data,
1173 		   enum d_walk_ret (*enter)(void *, struct dentry *),
1174 		   void (*finish)(void *))
1175 {
1176 	struct dentry *this_parent;
1177 	struct list_head *next;
1178 	unsigned seq = 0;
1179 	enum d_walk_ret ret;
1180 	bool retry = true;
1181 
1182 again:
1183 	read_seqbegin_or_lock(&rename_lock, &seq);
1184 	this_parent = parent;
1185 	spin_lock(&this_parent->d_lock);
1186 
1187 	ret = enter(data, this_parent);
1188 	switch (ret) {
1189 	case D_WALK_CONTINUE:
1190 		break;
1191 	case D_WALK_QUIT:
1192 	case D_WALK_SKIP:
1193 		goto out_unlock;
1194 	case D_WALK_NORETRY:
1195 		retry = false;
1196 		break;
1197 	}
1198 repeat:
1199 	next = this_parent->d_subdirs.next;
1200 resume:
1201 	while (next != &this_parent->d_subdirs) {
1202 		struct list_head *tmp = next;
1203 		struct dentry *dentry = list_entry(tmp, struct dentry, d_child);
1204 		next = tmp->next;
1205 
1206 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1207 
1208 		ret = enter(data, dentry);
1209 		switch (ret) {
1210 		case D_WALK_CONTINUE:
1211 			break;
1212 		case D_WALK_QUIT:
1213 			spin_unlock(&dentry->d_lock);
1214 			goto out_unlock;
1215 		case D_WALK_NORETRY:
1216 			retry = false;
1217 			break;
1218 		case D_WALK_SKIP:
1219 			spin_unlock(&dentry->d_lock);
1220 			continue;
1221 		}
1222 
1223 		if (!list_empty(&dentry->d_subdirs)) {
1224 			spin_unlock(&this_parent->d_lock);
1225 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1226 			this_parent = dentry;
1227 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1228 			goto repeat;
1229 		}
1230 		spin_unlock(&dentry->d_lock);
1231 	}
1232 	/*
1233 	 * All done at this level ... ascend and resume the search.
1234 	 */
1235 	rcu_read_lock();
1236 ascend:
1237 	if (this_parent != parent) {
1238 		struct dentry *child = this_parent;
1239 		this_parent = child->d_parent;
1240 
1241 		spin_unlock(&child->d_lock);
1242 		spin_lock(&this_parent->d_lock);
1243 
1244 		/* might go back up the wrong parent if we have had a rename. */
1245 		if (need_seqretry(&rename_lock, seq))
1246 			goto rename_retry;
1247 		/* go into the first sibling still alive */
1248 		do {
1249 			next = child->d_child.next;
1250 			if (next == &this_parent->d_subdirs)
1251 				goto ascend;
1252 			child = list_entry(next, struct dentry, d_child);
1253 		} while (unlikely(child->d_flags & DCACHE_DENTRY_KILLED));
1254 		rcu_read_unlock();
1255 		goto resume;
1256 	}
1257 	if (need_seqretry(&rename_lock, seq))
1258 		goto rename_retry;
1259 	rcu_read_unlock();
1260 	if (finish)
1261 		finish(data);
1262 
1263 out_unlock:
1264 	spin_unlock(&this_parent->d_lock);
1265 	done_seqretry(&rename_lock, seq);
1266 	return;
1267 
1268 rename_retry:
1269 	spin_unlock(&this_parent->d_lock);
1270 	rcu_read_unlock();
1271 	BUG_ON(seq & 1);
1272 	if (!retry)
1273 		return;
1274 	seq = 1;
1275 	goto again;
1276 }
1277 
1278 /*
1279  * Search for at least 1 mount point in the dentry's subdirs.
1280  * We descend to the next level whenever the d_subdirs
1281  * list is non-empty and continue searching.
1282  */
1283 
1284 static enum d_walk_ret check_mount(void *data, struct dentry *dentry)
1285 {
1286 	int *ret = data;
1287 	if (d_mountpoint(dentry)) {
1288 		*ret = 1;
1289 		return D_WALK_QUIT;
1290 	}
1291 	return D_WALK_CONTINUE;
1292 }
1293 
1294 /**
1295  * have_submounts - check for mounts over a dentry
1296  * @parent: dentry to check.
1297  *
1298  * Return true if the parent or its subdirectories contain
1299  * a mount point
1300  */
1301 int have_submounts(struct dentry *parent)
1302 {
1303 	int ret = 0;
1304 
1305 	d_walk(parent, &ret, check_mount, NULL);
1306 
1307 	return ret;
1308 }
1309 EXPORT_SYMBOL(have_submounts);
1310 
1311 /*
1312  * Called by mount code to set a mountpoint and check if the mountpoint is
1313  * reachable (e.g. NFS can unhash a directory dentry and then the complete
1314  * subtree can become unreachable).
1315  *
1316  * Only one of d_invalidate() and d_set_mounted() must succeed.  For
1317  * this reason take rename_lock and d_lock on dentry and ancestors.
1318  */
1319 int d_set_mounted(struct dentry *dentry)
1320 {
1321 	struct dentry *p;
1322 	int ret = -ENOENT;
1323 	write_seqlock(&rename_lock);
1324 	for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1325 		/* Need exclusion wrt. d_invalidate() */
1326 		spin_lock(&p->d_lock);
1327 		if (unlikely(d_unhashed(p))) {
1328 			spin_unlock(&p->d_lock);
1329 			goto out;
1330 		}
1331 		spin_unlock(&p->d_lock);
1332 	}
1333 	spin_lock(&dentry->d_lock);
1334 	if (!d_unlinked(dentry)) {
1335 		dentry->d_flags |= DCACHE_MOUNTED;
1336 		ret = 0;
1337 	}
1338  	spin_unlock(&dentry->d_lock);
1339 out:
1340 	write_sequnlock(&rename_lock);
1341 	return ret;
1342 }
1343 
1344 /*
1345  * Search the dentry child list of the specified parent,
1346  * and move any unused dentries to the end of the unused
1347  * list for prune_dcache(). We descend to the next level
1348  * whenever the d_subdirs list is non-empty and continue
1349  * searching.
1350  *
1351  * It returns zero iff there are no unused children,
1352  * otherwise  it returns the number of children moved to
1353  * the end of the unused list. This may not be the total
1354  * number of unused children, because select_parent can
1355  * drop the lock and return early due to latency
1356  * constraints.
1357  */
1358 
1359 struct select_data {
1360 	struct dentry *start;
1361 	struct list_head dispose;
1362 	int found;
1363 };
1364 
1365 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1366 {
1367 	struct select_data *data = _data;
1368 	enum d_walk_ret ret = D_WALK_CONTINUE;
1369 
1370 	if (data->start == dentry)
1371 		goto out;
1372 
1373 	if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1374 		data->found++;
1375 	} else {
1376 		if (dentry->d_flags & DCACHE_LRU_LIST)
1377 			d_lru_del(dentry);
1378 		if (!dentry->d_lockref.count) {
1379 			d_shrink_add(dentry, &data->dispose);
1380 			data->found++;
1381 		}
1382 	}
1383 	/*
1384 	 * We can return to the caller if we have found some (this
1385 	 * ensures forward progress). We'll be coming back to find
1386 	 * the rest.
1387 	 */
1388 	if (!list_empty(&data->dispose))
1389 		ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1390 out:
1391 	return ret;
1392 }
1393 
1394 /**
1395  * shrink_dcache_parent - prune dcache
1396  * @parent: parent of entries to prune
1397  *
1398  * Prune the dcache to remove unused children of the parent dentry.
1399  */
1400 void shrink_dcache_parent(struct dentry *parent)
1401 {
1402 	for (;;) {
1403 		struct select_data data;
1404 
1405 		INIT_LIST_HEAD(&data.dispose);
1406 		data.start = parent;
1407 		data.found = 0;
1408 
1409 		d_walk(parent, &data, select_collect, NULL);
1410 		if (!data.found)
1411 			break;
1412 
1413 		shrink_dentry_list(&data.dispose);
1414 		cond_resched();
1415 	}
1416 }
1417 EXPORT_SYMBOL(shrink_dcache_parent);
1418 
1419 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1420 {
1421 	/* it has busy descendents; complain about those instead */
1422 	if (!list_empty(&dentry->d_subdirs))
1423 		return D_WALK_CONTINUE;
1424 
1425 	/* root with refcount 1 is fine */
1426 	if (dentry == _data && dentry->d_lockref.count == 1)
1427 		return D_WALK_CONTINUE;
1428 
1429 	printk(KERN_ERR "BUG: Dentry %p{i=%lx,n=%pd} "
1430 			" still in use (%d) [unmount of %s %s]\n",
1431 		       dentry,
1432 		       dentry->d_inode ?
1433 		       dentry->d_inode->i_ino : 0UL,
1434 		       dentry,
1435 		       dentry->d_lockref.count,
1436 		       dentry->d_sb->s_type->name,
1437 		       dentry->d_sb->s_id);
1438 	WARN_ON(1);
1439 	return D_WALK_CONTINUE;
1440 }
1441 
1442 static void do_one_tree(struct dentry *dentry)
1443 {
1444 	shrink_dcache_parent(dentry);
1445 	d_walk(dentry, dentry, umount_check, NULL);
1446 	d_drop(dentry);
1447 	dput(dentry);
1448 }
1449 
1450 /*
1451  * destroy the dentries attached to a superblock on unmounting
1452  */
1453 void shrink_dcache_for_umount(struct super_block *sb)
1454 {
1455 	struct dentry *dentry;
1456 
1457 	WARN(down_read_trylock(&sb->s_umount), "s_umount should've been locked");
1458 
1459 	dentry = sb->s_root;
1460 	sb->s_root = NULL;
1461 	do_one_tree(dentry);
1462 
1463 	while (!hlist_bl_empty(&sb->s_anon)) {
1464 		dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash));
1465 		do_one_tree(dentry);
1466 	}
1467 }
1468 
1469 struct detach_data {
1470 	struct select_data select;
1471 	struct dentry *mountpoint;
1472 };
1473 static enum d_walk_ret detach_and_collect(void *_data, struct dentry *dentry)
1474 {
1475 	struct detach_data *data = _data;
1476 
1477 	if (d_mountpoint(dentry)) {
1478 		__dget_dlock(dentry);
1479 		data->mountpoint = dentry;
1480 		return D_WALK_QUIT;
1481 	}
1482 
1483 	return select_collect(&data->select, dentry);
1484 }
1485 
1486 static void check_and_drop(void *_data)
1487 {
1488 	struct detach_data *data = _data;
1489 
1490 	if (!data->mountpoint && !data->select.found)
1491 		__d_drop(data->select.start);
1492 }
1493 
1494 /**
1495  * d_invalidate - detach submounts, prune dcache, and drop
1496  * @dentry: dentry to invalidate (aka detach, prune and drop)
1497  *
1498  * no dcache lock.
1499  *
1500  * The final d_drop is done as an atomic operation relative to
1501  * rename_lock ensuring there are no races with d_set_mounted.  This
1502  * ensures there are no unhashed dentries on the path to a mountpoint.
1503  */
1504 void d_invalidate(struct dentry *dentry)
1505 {
1506 	/*
1507 	 * If it's already been dropped, return OK.
1508 	 */
1509 	spin_lock(&dentry->d_lock);
1510 	if (d_unhashed(dentry)) {
1511 		spin_unlock(&dentry->d_lock);
1512 		return;
1513 	}
1514 	spin_unlock(&dentry->d_lock);
1515 
1516 	/* Negative dentries can be dropped without further checks */
1517 	if (!dentry->d_inode) {
1518 		d_drop(dentry);
1519 		return;
1520 	}
1521 
1522 	for (;;) {
1523 		struct detach_data data;
1524 
1525 		data.mountpoint = NULL;
1526 		INIT_LIST_HEAD(&data.select.dispose);
1527 		data.select.start = dentry;
1528 		data.select.found = 0;
1529 
1530 		d_walk(dentry, &data, detach_and_collect, check_and_drop);
1531 
1532 		if (data.select.found)
1533 			shrink_dentry_list(&data.select.dispose);
1534 
1535 		if (data.mountpoint) {
1536 			detach_mounts(data.mountpoint);
1537 			dput(data.mountpoint);
1538 		}
1539 
1540 		if (!data.mountpoint && !data.select.found)
1541 			break;
1542 
1543 		cond_resched();
1544 	}
1545 }
1546 EXPORT_SYMBOL(d_invalidate);
1547 
1548 /**
1549  * __d_alloc	-	allocate a dcache entry
1550  * @sb: filesystem it will belong to
1551  * @name: qstr of the name
1552  *
1553  * Allocates a dentry. It returns %NULL if there is insufficient memory
1554  * available. On a success the dentry is returned. The name passed in is
1555  * copied and the copy passed in may be reused after this call.
1556  */
1557 
1558 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1559 {
1560 	struct dentry *dentry;
1561 	char *dname;
1562 
1563 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1564 	if (!dentry)
1565 		return NULL;
1566 
1567 	/*
1568 	 * We guarantee that the inline name is always NUL-terminated.
1569 	 * This way the memcpy() done by the name switching in rename
1570 	 * will still always have a NUL at the end, even if we might
1571 	 * be overwriting an internal NUL character
1572 	 */
1573 	dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1574 	if (unlikely(!name)) {
1575 		static const struct qstr anon = QSTR_INIT("/", 1);
1576 		name = &anon;
1577 		dname = dentry->d_iname;
1578 	} else if (name->len > DNAME_INLINE_LEN-1) {
1579 		size_t size = offsetof(struct external_name, name[1]);
1580 		struct external_name *p = kmalloc(size + name->len,
1581 						  GFP_KERNEL_ACCOUNT);
1582 		if (!p) {
1583 			kmem_cache_free(dentry_cache, dentry);
1584 			return NULL;
1585 		}
1586 		atomic_set(&p->u.count, 1);
1587 		dname = p->name;
1588 		if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS))
1589 			kasan_unpoison_shadow(dname,
1590 				round_up(name->len + 1,	sizeof(unsigned long)));
1591 	} else  {
1592 		dname = dentry->d_iname;
1593 	}
1594 
1595 	dentry->d_name.len = name->len;
1596 	dentry->d_name.hash = name->hash;
1597 	memcpy(dname, name->name, name->len);
1598 	dname[name->len] = 0;
1599 
1600 	/* Make sure we always see the terminating NUL character */
1601 	smp_wmb();
1602 	dentry->d_name.name = dname;
1603 
1604 	dentry->d_lockref.count = 1;
1605 	dentry->d_flags = 0;
1606 	spin_lock_init(&dentry->d_lock);
1607 	seqcount_init(&dentry->d_seq);
1608 	dentry->d_inode = NULL;
1609 	dentry->d_parent = dentry;
1610 	dentry->d_sb = sb;
1611 	dentry->d_op = NULL;
1612 	dentry->d_fsdata = NULL;
1613 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1614 	INIT_LIST_HEAD(&dentry->d_lru);
1615 	INIT_LIST_HEAD(&dentry->d_subdirs);
1616 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
1617 	INIT_LIST_HEAD(&dentry->d_child);
1618 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1619 
1620 	this_cpu_inc(nr_dentry);
1621 
1622 	return dentry;
1623 }
1624 
1625 /**
1626  * d_alloc	-	allocate a dcache entry
1627  * @parent: parent of entry to allocate
1628  * @name: qstr of the name
1629  *
1630  * Allocates a dentry. It returns %NULL if there is insufficient memory
1631  * available. On a success the dentry is returned. The name passed in is
1632  * copied and the copy passed in may be reused after this call.
1633  */
1634 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1635 {
1636 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1637 	if (!dentry)
1638 		return NULL;
1639 
1640 	spin_lock(&parent->d_lock);
1641 	/*
1642 	 * don't need child lock because it is not subject
1643 	 * to concurrency here
1644 	 */
1645 	__dget_dlock(parent);
1646 	dentry->d_parent = parent;
1647 	list_add(&dentry->d_child, &parent->d_subdirs);
1648 	spin_unlock(&parent->d_lock);
1649 
1650 	return dentry;
1651 }
1652 EXPORT_SYMBOL(d_alloc);
1653 
1654 /**
1655  * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1656  * @sb: the superblock
1657  * @name: qstr of the name
1658  *
1659  * For a filesystem that just pins its dentries in memory and never
1660  * performs lookups at all, return an unhashed IS_ROOT dentry.
1661  */
1662 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1663 {
1664 	return __d_alloc(sb, name);
1665 }
1666 EXPORT_SYMBOL(d_alloc_pseudo);
1667 
1668 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1669 {
1670 	struct qstr q;
1671 
1672 	q.name = name;
1673 	q.len = strlen(name);
1674 	q.hash = full_name_hash(q.name, q.len);
1675 	return d_alloc(parent, &q);
1676 }
1677 EXPORT_SYMBOL(d_alloc_name);
1678 
1679 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1680 {
1681 	WARN_ON_ONCE(dentry->d_op);
1682 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1683 				DCACHE_OP_COMPARE	|
1684 				DCACHE_OP_REVALIDATE	|
1685 				DCACHE_OP_WEAK_REVALIDATE	|
1686 				DCACHE_OP_DELETE	|
1687 				DCACHE_OP_SELECT_INODE	|
1688 				DCACHE_OP_REAL));
1689 	dentry->d_op = op;
1690 	if (!op)
1691 		return;
1692 	if (op->d_hash)
1693 		dentry->d_flags |= DCACHE_OP_HASH;
1694 	if (op->d_compare)
1695 		dentry->d_flags |= DCACHE_OP_COMPARE;
1696 	if (op->d_revalidate)
1697 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1698 	if (op->d_weak_revalidate)
1699 		dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
1700 	if (op->d_delete)
1701 		dentry->d_flags |= DCACHE_OP_DELETE;
1702 	if (op->d_prune)
1703 		dentry->d_flags |= DCACHE_OP_PRUNE;
1704 	if (op->d_select_inode)
1705 		dentry->d_flags |= DCACHE_OP_SELECT_INODE;
1706 	if (op->d_real)
1707 		dentry->d_flags |= DCACHE_OP_REAL;
1708 
1709 }
1710 EXPORT_SYMBOL(d_set_d_op);
1711 
1712 
1713 /*
1714  * d_set_fallthru - Mark a dentry as falling through to a lower layer
1715  * @dentry - The dentry to mark
1716  *
1717  * Mark a dentry as falling through to the lower layer (as set with
1718  * d_pin_lower()).  This flag may be recorded on the medium.
1719  */
1720 void d_set_fallthru(struct dentry *dentry)
1721 {
1722 	spin_lock(&dentry->d_lock);
1723 	dentry->d_flags |= DCACHE_FALLTHRU;
1724 	spin_unlock(&dentry->d_lock);
1725 }
1726 EXPORT_SYMBOL(d_set_fallthru);
1727 
1728 static unsigned d_flags_for_inode(struct inode *inode)
1729 {
1730 	unsigned add_flags = DCACHE_REGULAR_TYPE;
1731 
1732 	if (!inode)
1733 		return DCACHE_MISS_TYPE;
1734 
1735 	if (S_ISDIR(inode->i_mode)) {
1736 		add_flags = DCACHE_DIRECTORY_TYPE;
1737 		if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1738 			if (unlikely(!inode->i_op->lookup))
1739 				add_flags = DCACHE_AUTODIR_TYPE;
1740 			else
1741 				inode->i_opflags |= IOP_LOOKUP;
1742 		}
1743 		goto type_determined;
1744 	}
1745 
1746 	if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1747 		if (unlikely(inode->i_op->get_link)) {
1748 			add_flags = DCACHE_SYMLINK_TYPE;
1749 			goto type_determined;
1750 		}
1751 		inode->i_opflags |= IOP_NOFOLLOW;
1752 	}
1753 
1754 	if (unlikely(!S_ISREG(inode->i_mode)))
1755 		add_flags = DCACHE_SPECIAL_TYPE;
1756 
1757 type_determined:
1758 	if (unlikely(IS_AUTOMOUNT(inode)))
1759 		add_flags |= DCACHE_NEED_AUTOMOUNT;
1760 	return add_flags;
1761 }
1762 
1763 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1764 {
1765 	unsigned add_flags = d_flags_for_inode(inode);
1766 	WARN_ON(d_in_lookup(dentry));
1767 
1768 	spin_lock(&dentry->d_lock);
1769 	hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1770 	raw_write_seqcount_begin(&dentry->d_seq);
1771 	__d_set_inode_and_type(dentry, inode, add_flags);
1772 	raw_write_seqcount_end(&dentry->d_seq);
1773 	__fsnotify_d_instantiate(dentry);
1774 	spin_unlock(&dentry->d_lock);
1775 }
1776 
1777 /**
1778  * d_instantiate - fill in inode information for a dentry
1779  * @entry: dentry to complete
1780  * @inode: inode to attach to this dentry
1781  *
1782  * Fill in inode information in the entry.
1783  *
1784  * This turns negative dentries into productive full members
1785  * of society.
1786  *
1787  * NOTE! This assumes that the inode count has been incremented
1788  * (or otherwise set) by the caller to indicate that it is now
1789  * in use by the dcache.
1790  */
1791 
1792 void d_instantiate(struct dentry *entry, struct inode * inode)
1793 {
1794 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1795 	if (inode) {
1796 		security_d_instantiate(entry, inode);
1797 		spin_lock(&inode->i_lock);
1798 		__d_instantiate(entry, inode);
1799 		spin_unlock(&inode->i_lock);
1800 	}
1801 }
1802 EXPORT_SYMBOL(d_instantiate);
1803 
1804 /**
1805  * d_instantiate_no_diralias - instantiate a non-aliased dentry
1806  * @entry: dentry to complete
1807  * @inode: inode to attach to this dentry
1808  *
1809  * Fill in inode information in the entry.  If a directory alias is found, then
1810  * return an error (and drop inode).  Together with d_materialise_unique() this
1811  * guarantees that a directory inode may never have more than one alias.
1812  */
1813 int d_instantiate_no_diralias(struct dentry *entry, struct inode *inode)
1814 {
1815 	BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1816 
1817 	security_d_instantiate(entry, inode);
1818 	spin_lock(&inode->i_lock);
1819 	if (S_ISDIR(inode->i_mode) && !hlist_empty(&inode->i_dentry)) {
1820 		spin_unlock(&inode->i_lock);
1821 		iput(inode);
1822 		return -EBUSY;
1823 	}
1824 	__d_instantiate(entry, inode);
1825 	spin_unlock(&inode->i_lock);
1826 
1827 	return 0;
1828 }
1829 EXPORT_SYMBOL(d_instantiate_no_diralias);
1830 
1831 struct dentry *d_make_root(struct inode *root_inode)
1832 {
1833 	struct dentry *res = NULL;
1834 
1835 	if (root_inode) {
1836 		res = __d_alloc(root_inode->i_sb, NULL);
1837 		if (res)
1838 			d_instantiate(res, root_inode);
1839 		else
1840 			iput(root_inode);
1841 	}
1842 	return res;
1843 }
1844 EXPORT_SYMBOL(d_make_root);
1845 
1846 static struct dentry * __d_find_any_alias(struct inode *inode)
1847 {
1848 	struct dentry *alias;
1849 
1850 	if (hlist_empty(&inode->i_dentry))
1851 		return NULL;
1852 	alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1853 	__dget(alias);
1854 	return alias;
1855 }
1856 
1857 /**
1858  * d_find_any_alias - find any alias for a given inode
1859  * @inode: inode to find an alias for
1860  *
1861  * If any aliases exist for the given inode, take and return a
1862  * reference for one of them.  If no aliases exist, return %NULL.
1863  */
1864 struct dentry *d_find_any_alias(struct inode *inode)
1865 {
1866 	struct dentry *de;
1867 
1868 	spin_lock(&inode->i_lock);
1869 	de = __d_find_any_alias(inode);
1870 	spin_unlock(&inode->i_lock);
1871 	return de;
1872 }
1873 EXPORT_SYMBOL(d_find_any_alias);
1874 
1875 static struct dentry *__d_obtain_alias(struct inode *inode, int disconnected)
1876 {
1877 	struct dentry *tmp;
1878 	struct dentry *res;
1879 	unsigned add_flags;
1880 
1881 	if (!inode)
1882 		return ERR_PTR(-ESTALE);
1883 	if (IS_ERR(inode))
1884 		return ERR_CAST(inode);
1885 
1886 	res = d_find_any_alias(inode);
1887 	if (res)
1888 		goto out_iput;
1889 
1890 	tmp = __d_alloc(inode->i_sb, NULL);
1891 	if (!tmp) {
1892 		res = ERR_PTR(-ENOMEM);
1893 		goto out_iput;
1894 	}
1895 
1896 	security_d_instantiate(tmp, inode);
1897 	spin_lock(&inode->i_lock);
1898 	res = __d_find_any_alias(inode);
1899 	if (res) {
1900 		spin_unlock(&inode->i_lock);
1901 		dput(tmp);
1902 		goto out_iput;
1903 	}
1904 
1905 	/* attach a disconnected dentry */
1906 	add_flags = d_flags_for_inode(inode);
1907 
1908 	if (disconnected)
1909 		add_flags |= DCACHE_DISCONNECTED;
1910 
1911 	spin_lock(&tmp->d_lock);
1912 	__d_set_inode_and_type(tmp, inode, add_flags);
1913 	hlist_add_head(&tmp->d_u.d_alias, &inode->i_dentry);
1914 	hlist_bl_lock(&tmp->d_sb->s_anon);
1915 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1916 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1917 	spin_unlock(&tmp->d_lock);
1918 	spin_unlock(&inode->i_lock);
1919 
1920 	return tmp;
1921 
1922  out_iput:
1923 	iput(inode);
1924 	return res;
1925 }
1926 
1927 /**
1928  * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1929  * @inode: inode to allocate the dentry for
1930  *
1931  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1932  * similar open by handle operations.  The returned dentry may be anonymous,
1933  * or may have a full name (if the inode was already in the cache).
1934  *
1935  * When called on a directory inode, we must ensure that the inode only ever
1936  * has one dentry.  If a dentry is found, that is returned instead of
1937  * allocating a new one.
1938  *
1939  * On successful return, the reference to the inode has been transferred
1940  * to the dentry.  In case of an error the reference on the inode is released.
1941  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1942  * be passed in and the error will be propagated to the return value,
1943  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1944  */
1945 struct dentry *d_obtain_alias(struct inode *inode)
1946 {
1947 	return __d_obtain_alias(inode, 1);
1948 }
1949 EXPORT_SYMBOL(d_obtain_alias);
1950 
1951 /**
1952  * d_obtain_root - find or allocate a dentry for a given inode
1953  * @inode: inode to allocate the dentry for
1954  *
1955  * Obtain an IS_ROOT dentry for the root of a filesystem.
1956  *
1957  * We must ensure that directory inodes only ever have one dentry.  If a
1958  * dentry is found, that is returned instead of allocating a new one.
1959  *
1960  * On successful return, the reference to the inode has been transferred
1961  * to the dentry.  In case of an error the reference on the inode is
1962  * released.  A %NULL or IS_ERR inode may be passed in and will be the
1963  * error will be propagate to the return value, with a %NULL @inode
1964  * replaced by ERR_PTR(-ESTALE).
1965  */
1966 struct dentry *d_obtain_root(struct inode *inode)
1967 {
1968 	return __d_obtain_alias(inode, 0);
1969 }
1970 EXPORT_SYMBOL(d_obtain_root);
1971 
1972 /**
1973  * d_add_ci - lookup or allocate new dentry with case-exact name
1974  * @inode:  the inode case-insensitive lookup has found
1975  * @dentry: the negative dentry that was passed to the parent's lookup func
1976  * @name:   the case-exact name to be associated with the returned dentry
1977  *
1978  * This is to avoid filling the dcache with case-insensitive names to the
1979  * same inode, only the actual correct case is stored in the dcache for
1980  * case-insensitive filesystems.
1981  *
1982  * For a case-insensitive lookup match and if the the case-exact dentry
1983  * already exists in in the dcache, use it and return it.
1984  *
1985  * If no entry exists with the exact case name, allocate new dentry with
1986  * the exact case, and return the spliced entry.
1987  */
1988 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1989 			struct qstr *name)
1990 {
1991 	struct dentry *found, *res;
1992 
1993 	/*
1994 	 * First check if a dentry matching the name already exists,
1995 	 * if not go ahead and create it now.
1996 	 */
1997 	found = d_hash_and_lookup(dentry->d_parent, name);
1998 	if (found) {
1999 		iput(inode);
2000 		return found;
2001 	}
2002 	if (d_in_lookup(dentry)) {
2003 		found = d_alloc_parallel(dentry->d_parent, name,
2004 					dentry->d_wait);
2005 		if (IS_ERR(found) || !d_in_lookup(found)) {
2006 			iput(inode);
2007 			return found;
2008 		}
2009 	} else {
2010 		found = d_alloc(dentry->d_parent, name);
2011 		if (!found) {
2012 			iput(inode);
2013 			return ERR_PTR(-ENOMEM);
2014 		}
2015 	}
2016 	res = d_splice_alias(inode, found);
2017 	if (res) {
2018 		dput(found);
2019 		return res;
2020 	}
2021 	return found;
2022 }
2023 EXPORT_SYMBOL(d_add_ci);
2024 
2025 /*
2026  * Do the slow-case of the dentry name compare.
2027  *
2028  * Unlike the dentry_cmp() function, we need to atomically
2029  * load the name and length information, so that the
2030  * filesystem can rely on them, and can use the 'name' and
2031  * 'len' information without worrying about walking off the
2032  * end of memory etc.
2033  *
2034  * Thus the read_seqcount_retry() and the "duplicate" info
2035  * in arguments (the low-level filesystem should not look
2036  * at the dentry inode or name contents directly, since
2037  * rename can change them while we're in RCU mode).
2038  */
2039 enum slow_d_compare {
2040 	D_COMP_OK,
2041 	D_COMP_NOMATCH,
2042 	D_COMP_SEQRETRY,
2043 };
2044 
2045 static noinline enum slow_d_compare slow_dentry_cmp(
2046 		const struct dentry *parent,
2047 		struct dentry *dentry,
2048 		unsigned int seq,
2049 		const struct qstr *name)
2050 {
2051 	int tlen = dentry->d_name.len;
2052 	const char *tname = dentry->d_name.name;
2053 
2054 	if (read_seqcount_retry(&dentry->d_seq, seq)) {
2055 		cpu_relax();
2056 		return D_COMP_SEQRETRY;
2057 	}
2058 	if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2059 		return D_COMP_NOMATCH;
2060 	return D_COMP_OK;
2061 }
2062 
2063 /**
2064  * __d_lookup_rcu - search for a dentry (racy, store-free)
2065  * @parent: parent dentry
2066  * @name: qstr of name we wish to find
2067  * @seqp: returns d_seq value at the point where the dentry was found
2068  * Returns: dentry, or NULL
2069  *
2070  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2071  * resolution (store-free path walking) design described in
2072  * Documentation/filesystems/path-lookup.txt.
2073  *
2074  * This is not to be used outside core vfs.
2075  *
2076  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2077  * held, and rcu_read_lock held. The returned dentry must not be stored into
2078  * without taking d_lock and checking d_seq sequence count against @seq
2079  * returned here.
2080  *
2081  * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2082  * function.
2083  *
2084  * Alternatively, __d_lookup_rcu may be called again to look up the child of
2085  * the returned dentry, so long as its parent's seqlock is checked after the
2086  * child is looked up. Thus, an interlocking stepping of sequence lock checks
2087  * is formed, giving integrity down the path walk.
2088  *
2089  * NOTE! The caller *has* to check the resulting dentry against the sequence
2090  * number we've returned before using any of the resulting dentry state!
2091  */
2092 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2093 				const struct qstr *name,
2094 				unsigned *seqp)
2095 {
2096 	u64 hashlen = name->hash_len;
2097 	const unsigned char *str = name->name;
2098 	struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
2099 	struct hlist_bl_node *node;
2100 	struct dentry *dentry;
2101 
2102 	/*
2103 	 * Note: There is significant duplication with __d_lookup_rcu which is
2104 	 * required to prevent single threaded performance regressions
2105 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2106 	 * Keep the two functions in sync.
2107 	 */
2108 
2109 	/*
2110 	 * The hash list is protected using RCU.
2111 	 *
2112 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
2113 	 * races with d_move().
2114 	 *
2115 	 * It is possible that concurrent renames can mess up our list
2116 	 * walk here and result in missing our dentry, resulting in the
2117 	 * false-negative result. d_lookup() protects against concurrent
2118 	 * renames using rename_lock seqlock.
2119 	 *
2120 	 * See Documentation/filesystems/path-lookup.txt for more details.
2121 	 */
2122 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2123 		unsigned seq;
2124 
2125 seqretry:
2126 		/*
2127 		 * The dentry sequence count protects us from concurrent
2128 		 * renames, and thus protects parent and name fields.
2129 		 *
2130 		 * The caller must perform a seqcount check in order
2131 		 * to do anything useful with the returned dentry.
2132 		 *
2133 		 * NOTE! We do a "raw" seqcount_begin here. That means that
2134 		 * we don't wait for the sequence count to stabilize if it
2135 		 * is in the middle of a sequence change. If we do the slow
2136 		 * dentry compare, we will do seqretries until it is stable,
2137 		 * and if we end up with a successful lookup, we actually
2138 		 * want to exit RCU lookup anyway.
2139 		 */
2140 		seq = raw_seqcount_begin(&dentry->d_seq);
2141 		if (dentry->d_parent != parent)
2142 			continue;
2143 		if (d_unhashed(dentry))
2144 			continue;
2145 
2146 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
2147 			if (dentry->d_name.hash != hashlen_hash(hashlen))
2148 				continue;
2149 			*seqp = seq;
2150 			switch (slow_dentry_cmp(parent, dentry, seq, name)) {
2151 			case D_COMP_OK:
2152 				return dentry;
2153 			case D_COMP_NOMATCH:
2154 				continue;
2155 			default:
2156 				goto seqretry;
2157 			}
2158 		}
2159 
2160 		if (dentry->d_name.hash_len != hashlen)
2161 			continue;
2162 		*seqp = seq;
2163 		if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
2164 			return dentry;
2165 	}
2166 	return NULL;
2167 }
2168 
2169 /**
2170  * d_lookup - search for a dentry
2171  * @parent: parent dentry
2172  * @name: qstr of name we wish to find
2173  * Returns: dentry, or NULL
2174  *
2175  * d_lookup searches the children of the parent dentry for the name in
2176  * question. If the dentry is found its reference count is incremented and the
2177  * dentry is returned. The caller must use dput to free the entry when it has
2178  * finished using it. %NULL is returned if the dentry does not exist.
2179  */
2180 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2181 {
2182 	struct dentry *dentry;
2183 	unsigned seq;
2184 
2185 	do {
2186 		seq = read_seqbegin(&rename_lock);
2187 		dentry = __d_lookup(parent, name);
2188 		if (dentry)
2189 			break;
2190 	} while (read_seqretry(&rename_lock, seq));
2191 	return dentry;
2192 }
2193 EXPORT_SYMBOL(d_lookup);
2194 
2195 /**
2196  * __d_lookup - search for a dentry (racy)
2197  * @parent: parent dentry
2198  * @name: qstr of name we wish to find
2199  * Returns: dentry, or NULL
2200  *
2201  * __d_lookup is like d_lookup, however it may (rarely) return a
2202  * false-negative result due to unrelated rename activity.
2203  *
2204  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2205  * however it must be used carefully, eg. with a following d_lookup in
2206  * the case of failure.
2207  *
2208  * __d_lookup callers must be commented.
2209  */
2210 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2211 {
2212 	unsigned int len = name->len;
2213 	unsigned int hash = name->hash;
2214 	const unsigned char *str = name->name;
2215 	struct hlist_bl_head *b = d_hash(parent, hash);
2216 	struct hlist_bl_node *node;
2217 	struct dentry *found = NULL;
2218 	struct dentry *dentry;
2219 
2220 	/*
2221 	 * Note: There is significant duplication with __d_lookup_rcu which is
2222 	 * required to prevent single threaded performance regressions
2223 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
2224 	 * Keep the two functions in sync.
2225 	 */
2226 
2227 	/*
2228 	 * The hash list is protected using RCU.
2229 	 *
2230 	 * Take d_lock when comparing a candidate dentry, to avoid races
2231 	 * with d_move().
2232 	 *
2233 	 * It is possible that concurrent renames can mess up our list
2234 	 * walk here and result in missing our dentry, resulting in the
2235 	 * false-negative result. d_lookup() protects against concurrent
2236 	 * renames using rename_lock seqlock.
2237 	 *
2238 	 * See Documentation/filesystems/path-lookup.txt for more details.
2239 	 */
2240 	rcu_read_lock();
2241 
2242 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2243 
2244 		if (dentry->d_name.hash != hash)
2245 			continue;
2246 
2247 		spin_lock(&dentry->d_lock);
2248 		if (dentry->d_parent != parent)
2249 			goto next;
2250 		if (d_unhashed(dentry))
2251 			goto next;
2252 
2253 		/*
2254 		 * It is safe to compare names since d_move() cannot
2255 		 * change the qstr (protected by d_lock).
2256 		 */
2257 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2258 			int tlen = dentry->d_name.len;
2259 			const char *tname = dentry->d_name.name;
2260 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2261 				goto next;
2262 		} else {
2263 			if (dentry->d_name.len != len)
2264 				goto next;
2265 			if (dentry_cmp(dentry, str, len))
2266 				goto next;
2267 		}
2268 
2269 		dentry->d_lockref.count++;
2270 		found = dentry;
2271 		spin_unlock(&dentry->d_lock);
2272 		break;
2273 next:
2274 		spin_unlock(&dentry->d_lock);
2275  	}
2276  	rcu_read_unlock();
2277 
2278  	return found;
2279 }
2280 
2281 /**
2282  * d_hash_and_lookup - hash the qstr then search for a dentry
2283  * @dir: Directory to search in
2284  * @name: qstr of name we wish to find
2285  *
2286  * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2287  */
2288 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2289 {
2290 	/*
2291 	 * Check for a fs-specific hash function. Note that we must
2292 	 * calculate the standard hash first, as the d_op->d_hash()
2293 	 * routine may choose to leave the hash value unchanged.
2294 	 */
2295 	name->hash = full_name_hash(name->name, name->len);
2296 	if (dir->d_flags & DCACHE_OP_HASH) {
2297 		int err = dir->d_op->d_hash(dir, name);
2298 		if (unlikely(err < 0))
2299 			return ERR_PTR(err);
2300 	}
2301 	return d_lookup(dir, name);
2302 }
2303 EXPORT_SYMBOL(d_hash_and_lookup);
2304 
2305 /*
2306  * When a file is deleted, we have two options:
2307  * - turn this dentry into a negative dentry
2308  * - unhash this dentry and free it.
2309  *
2310  * Usually, we want to just turn this into
2311  * a negative dentry, but if anybody else is
2312  * currently using the dentry or the inode
2313  * we can't do that and we fall back on removing
2314  * it from the hash queues and waiting for
2315  * it to be deleted later when it has no users
2316  */
2317 
2318 /**
2319  * d_delete - delete a dentry
2320  * @dentry: The dentry to delete
2321  *
2322  * Turn the dentry into a negative dentry if possible, otherwise
2323  * remove it from the hash queues so it can be deleted later
2324  */
2325 
2326 void d_delete(struct dentry * dentry)
2327 {
2328 	struct inode *inode;
2329 	int isdir = 0;
2330 	/*
2331 	 * Are we the only user?
2332 	 */
2333 again:
2334 	spin_lock(&dentry->d_lock);
2335 	inode = dentry->d_inode;
2336 	isdir = S_ISDIR(inode->i_mode);
2337 	if (dentry->d_lockref.count == 1) {
2338 		if (!spin_trylock(&inode->i_lock)) {
2339 			spin_unlock(&dentry->d_lock);
2340 			cpu_relax();
2341 			goto again;
2342 		}
2343 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2344 		dentry_unlink_inode(dentry);
2345 		fsnotify_nameremove(dentry, isdir);
2346 		return;
2347 	}
2348 
2349 	if (!d_unhashed(dentry))
2350 		__d_drop(dentry);
2351 
2352 	spin_unlock(&dentry->d_lock);
2353 
2354 	fsnotify_nameremove(dentry, isdir);
2355 }
2356 EXPORT_SYMBOL(d_delete);
2357 
2358 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2359 {
2360 	BUG_ON(!d_unhashed(entry));
2361 	hlist_bl_lock(b);
2362 	entry->d_flags |= DCACHE_RCUACCESS;
2363 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2364 	hlist_bl_unlock(b);
2365 }
2366 
2367 static void _d_rehash(struct dentry * entry)
2368 {
2369 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2370 }
2371 
2372 /**
2373  * d_rehash	- add an entry back to the hash
2374  * @entry: dentry to add to the hash
2375  *
2376  * Adds a dentry to the hash according to its name.
2377  */
2378 
2379 void d_rehash(struct dentry * entry)
2380 {
2381 	spin_lock(&entry->d_lock);
2382 	_d_rehash(entry);
2383 	spin_unlock(&entry->d_lock);
2384 }
2385 EXPORT_SYMBOL(d_rehash);
2386 
2387 static inline unsigned start_dir_add(struct inode *dir)
2388 {
2389 
2390 	for (;;) {
2391 		unsigned n = dir->i_dir_seq;
2392 		if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n)
2393 			return n;
2394 		cpu_relax();
2395 	}
2396 }
2397 
2398 static inline void end_dir_add(struct inode *dir, unsigned n)
2399 {
2400 	smp_store_release(&dir->i_dir_seq, n + 2);
2401 }
2402 
2403 static void d_wait_lookup(struct dentry *dentry)
2404 {
2405 	if (d_in_lookup(dentry)) {
2406 		DECLARE_WAITQUEUE(wait, current);
2407 		add_wait_queue(dentry->d_wait, &wait);
2408 		do {
2409 			set_current_state(TASK_UNINTERRUPTIBLE);
2410 			spin_unlock(&dentry->d_lock);
2411 			schedule();
2412 			spin_lock(&dentry->d_lock);
2413 		} while (d_in_lookup(dentry));
2414 	}
2415 }
2416 
2417 struct dentry *d_alloc_parallel(struct dentry *parent,
2418 				const struct qstr *name,
2419 				wait_queue_head_t *wq)
2420 {
2421 	unsigned int len = name->len;
2422 	unsigned int hash = name->hash;
2423 	const unsigned char *str = name->name;
2424 	struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2425 	struct hlist_bl_node *node;
2426 	struct dentry *new = d_alloc(parent, name);
2427 	struct dentry *dentry;
2428 	unsigned seq, r_seq, d_seq;
2429 
2430 	if (unlikely(!new))
2431 		return ERR_PTR(-ENOMEM);
2432 
2433 retry:
2434 	rcu_read_lock();
2435 	seq = smp_load_acquire(&parent->d_inode->i_dir_seq) & ~1;
2436 	r_seq = read_seqbegin(&rename_lock);
2437 	dentry = __d_lookup_rcu(parent, name, &d_seq);
2438 	if (unlikely(dentry)) {
2439 		if (!lockref_get_not_dead(&dentry->d_lockref)) {
2440 			rcu_read_unlock();
2441 			goto retry;
2442 		}
2443 		if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2444 			rcu_read_unlock();
2445 			dput(dentry);
2446 			goto retry;
2447 		}
2448 		rcu_read_unlock();
2449 		dput(new);
2450 		return dentry;
2451 	}
2452 	if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2453 		rcu_read_unlock();
2454 		goto retry;
2455 	}
2456 	hlist_bl_lock(b);
2457 	if (unlikely(parent->d_inode->i_dir_seq != seq)) {
2458 		hlist_bl_unlock(b);
2459 		rcu_read_unlock();
2460 		goto retry;
2461 	}
2462 	rcu_read_unlock();
2463 	/*
2464 	 * No changes for the parent since the beginning of d_lookup().
2465 	 * Since all removals from the chain happen with hlist_bl_lock(),
2466 	 * any potential in-lookup matches are going to stay here until
2467 	 * we unlock the chain.  All fields are stable in everything
2468 	 * we encounter.
2469 	 */
2470 	hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2471 		if (dentry->d_name.hash != hash)
2472 			continue;
2473 		if (dentry->d_parent != parent)
2474 			continue;
2475 		if (d_unhashed(dentry))
2476 			continue;
2477 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2478 			int tlen = dentry->d_name.len;
2479 			const char *tname = dentry->d_name.name;
2480 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2481 				continue;
2482 		} else {
2483 			if (dentry->d_name.len != len)
2484 				continue;
2485 			if (dentry_cmp(dentry, str, len))
2486 				continue;
2487 		}
2488 		dget(dentry);
2489 		hlist_bl_unlock(b);
2490 		/* somebody is doing lookup for it right now; wait for it */
2491 		spin_lock(&dentry->d_lock);
2492 		d_wait_lookup(dentry);
2493 		/*
2494 		 * it's not in-lookup anymore; in principle we should repeat
2495 		 * everything from dcache lookup, but it's likely to be what
2496 		 * d_lookup() would've found anyway.  If it is, just return it;
2497 		 * otherwise we really have to repeat the whole thing.
2498 		 */
2499 		if (unlikely(dentry->d_name.hash != hash))
2500 			goto mismatch;
2501 		if (unlikely(dentry->d_parent != parent))
2502 			goto mismatch;
2503 		if (unlikely(d_unhashed(dentry)))
2504 			goto mismatch;
2505 		if (parent->d_flags & DCACHE_OP_COMPARE) {
2506 			int tlen = dentry->d_name.len;
2507 			const char *tname = dentry->d_name.name;
2508 			if (parent->d_op->d_compare(parent, dentry, tlen, tname, name))
2509 				goto mismatch;
2510 		} else {
2511 			if (unlikely(dentry->d_name.len != len))
2512 				goto mismatch;
2513 			if (unlikely(dentry_cmp(dentry, str, len)))
2514 				goto mismatch;
2515 		}
2516 		/* OK, it *is* a hashed match; return it */
2517 		spin_unlock(&dentry->d_lock);
2518 		dput(new);
2519 		return dentry;
2520 	}
2521 	/* we can't take ->d_lock here; it's OK, though. */
2522 	new->d_flags |= DCACHE_PAR_LOOKUP;
2523 	new->d_wait = wq;
2524 	hlist_bl_add_head_rcu(&new->d_u.d_in_lookup_hash, b);
2525 	hlist_bl_unlock(b);
2526 	return new;
2527 mismatch:
2528 	spin_unlock(&dentry->d_lock);
2529 	dput(dentry);
2530 	goto retry;
2531 }
2532 EXPORT_SYMBOL(d_alloc_parallel);
2533 
2534 void __d_lookup_done(struct dentry *dentry)
2535 {
2536 	struct hlist_bl_head *b = in_lookup_hash(dentry->d_parent,
2537 						 dentry->d_name.hash);
2538 	hlist_bl_lock(b);
2539 	dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2540 	__hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2541 	wake_up_all(dentry->d_wait);
2542 	dentry->d_wait = NULL;
2543 	hlist_bl_unlock(b);
2544 	INIT_HLIST_NODE(&dentry->d_u.d_alias);
2545 	INIT_LIST_HEAD(&dentry->d_lru);
2546 }
2547 EXPORT_SYMBOL(__d_lookup_done);
2548 
2549 /* inode->i_lock held if inode is non-NULL */
2550 
2551 static inline void __d_add(struct dentry *dentry, struct inode *inode)
2552 {
2553 	struct inode *dir = NULL;
2554 	unsigned n;
2555 	spin_lock(&dentry->d_lock);
2556 	if (unlikely(d_in_lookup(dentry))) {
2557 		dir = dentry->d_parent->d_inode;
2558 		n = start_dir_add(dir);
2559 		__d_lookup_done(dentry);
2560 	}
2561 	if (inode) {
2562 		unsigned add_flags = d_flags_for_inode(inode);
2563 		hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2564 		raw_write_seqcount_begin(&dentry->d_seq);
2565 		__d_set_inode_and_type(dentry, inode, add_flags);
2566 		raw_write_seqcount_end(&dentry->d_seq);
2567 		__fsnotify_d_instantiate(dentry);
2568 	}
2569 	_d_rehash(dentry);
2570 	if (dir)
2571 		end_dir_add(dir, n);
2572 	spin_unlock(&dentry->d_lock);
2573 	if (inode)
2574 		spin_unlock(&inode->i_lock);
2575 }
2576 
2577 /**
2578  * d_add - add dentry to hash queues
2579  * @entry: dentry to add
2580  * @inode: The inode to attach to this dentry
2581  *
2582  * This adds the entry to the hash queues and initializes @inode.
2583  * The entry was actually filled in earlier during d_alloc().
2584  */
2585 
2586 void d_add(struct dentry *entry, struct inode *inode)
2587 {
2588 	if (inode) {
2589 		security_d_instantiate(entry, inode);
2590 		spin_lock(&inode->i_lock);
2591 	}
2592 	__d_add(entry, inode);
2593 }
2594 EXPORT_SYMBOL(d_add);
2595 
2596 /**
2597  * d_exact_alias - find and hash an exact unhashed alias
2598  * @entry: dentry to add
2599  * @inode: The inode to go with this dentry
2600  *
2601  * If an unhashed dentry with the same name/parent and desired
2602  * inode already exists, hash and return it.  Otherwise, return
2603  * NULL.
2604  *
2605  * Parent directory should be locked.
2606  */
2607 struct dentry *d_exact_alias(struct dentry *entry, struct inode *inode)
2608 {
2609 	struct dentry *alias;
2610 	int len = entry->d_name.len;
2611 	const char *name = entry->d_name.name;
2612 	unsigned int hash = entry->d_name.hash;
2613 
2614 	spin_lock(&inode->i_lock);
2615 	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
2616 		/*
2617 		 * Don't need alias->d_lock here, because aliases with
2618 		 * d_parent == entry->d_parent are not subject to name or
2619 		 * parent changes, because the parent inode i_mutex is held.
2620 		 */
2621 		if (alias->d_name.hash != hash)
2622 			continue;
2623 		if (alias->d_parent != entry->d_parent)
2624 			continue;
2625 		if (alias->d_name.len != len)
2626 			continue;
2627 		if (dentry_cmp(alias, name, len))
2628 			continue;
2629 		spin_lock(&alias->d_lock);
2630 		if (!d_unhashed(alias)) {
2631 			spin_unlock(&alias->d_lock);
2632 			alias = NULL;
2633 		} else {
2634 			__dget_dlock(alias);
2635 			_d_rehash(alias);
2636 			spin_unlock(&alias->d_lock);
2637 		}
2638 		spin_unlock(&inode->i_lock);
2639 		return alias;
2640 	}
2641 	spin_unlock(&inode->i_lock);
2642 	return NULL;
2643 }
2644 EXPORT_SYMBOL(d_exact_alias);
2645 
2646 /**
2647  * dentry_update_name_case - update case insensitive dentry with a new name
2648  * @dentry: dentry to be updated
2649  * @name: new name
2650  *
2651  * Update a case insensitive dentry with new case of name.
2652  *
2653  * dentry must have been returned by d_lookup with name @name. Old and new
2654  * name lengths must match (ie. no d_compare which allows mismatched name
2655  * lengths).
2656  *
2657  * Parent inode i_mutex must be held over d_lookup and into this call (to
2658  * keep renames and concurrent inserts, and readdir(2) away).
2659  */
2660 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2661 {
2662 	BUG_ON(!inode_is_locked(dentry->d_parent->d_inode));
2663 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2664 
2665 	spin_lock(&dentry->d_lock);
2666 	write_seqcount_begin(&dentry->d_seq);
2667 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2668 	write_seqcount_end(&dentry->d_seq);
2669 	spin_unlock(&dentry->d_lock);
2670 }
2671 EXPORT_SYMBOL(dentry_update_name_case);
2672 
2673 static void swap_names(struct dentry *dentry, struct dentry *target)
2674 {
2675 	if (unlikely(dname_external(target))) {
2676 		if (unlikely(dname_external(dentry))) {
2677 			/*
2678 			 * Both external: swap the pointers
2679 			 */
2680 			swap(target->d_name.name, dentry->d_name.name);
2681 		} else {
2682 			/*
2683 			 * dentry:internal, target:external.  Steal target's
2684 			 * storage and make target internal.
2685 			 */
2686 			memcpy(target->d_iname, dentry->d_name.name,
2687 					dentry->d_name.len + 1);
2688 			dentry->d_name.name = target->d_name.name;
2689 			target->d_name.name = target->d_iname;
2690 		}
2691 	} else {
2692 		if (unlikely(dname_external(dentry))) {
2693 			/*
2694 			 * dentry:external, target:internal.  Give dentry's
2695 			 * storage to target and make dentry internal
2696 			 */
2697 			memcpy(dentry->d_iname, target->d_name.name,
2698 					target->d_name.len + 1);
2699 			target->d_name.name = dentry->d_name.name;
2700 			dentry->d_name.name = dentry->d_iname;
2701 		} else {
2702 			/*
2703 			 * Both are internal.
2704 			 */
2705 			unsigned int i;
2706 			BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN, sizeof(long)));
2707 			kmemcheck_mark_initialized(dentry->d_iname, DNAME_INLINE_LEN);
2708 			kmemcheck_mark_initialized(target->d_iname, DNAME_INLINE_LEN);
2709 			for (i = 0; i < DNAME_INLINE_LEN / sizeof(long); i++) {
2710 				swap(((long *) &dentry->d_iname)[i],
2711 				     ((long *) &target->d_iname)[i]);
2712 			}
2713 		}
2714 	}
2715 	swap(dentry->d_name.hash_len, target->d_name.hash_len);
2716 }
2717 
2718 static void copy_name(struct dentry *dentry, struct dentry *target)
2719 {
2720 	struct external_name *old_name = NULL;
2721 	if (unlikely(dname_external(dentry)))
2722 		old_name = external_name(dentry);
2723 	if (unlikely(dname_external(target))) {
2724 		atomic_inc(&external_name(target)->u.count);
2725 		dentry->d_name = target->d_name;
2726 	} else {
2727 		memcpy(dentry->d_iname, target->d_name.name,
2728 				target->d_name.len + 1);
2729 		dentry->d_name.name = dentry->d_iname;
2730 		dentry->d_name.hash_len = target->d_name.hash_len;
2731 	}
2732 	if (old_name && likely(atomic_dec_and_test(&old_name->u.count)))
2733 		kfree_rcu(old_name, u.head);
2734 }
2735 
2736 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2737 {
2738 	/*
2739 	 * XXXX: do we really need to take target->d_lock?
2740 	 */
2741 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2742 		spin_lock(&target->d_parent->d_lock);
2743 	else {
2744 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2745 			spin_lock(&dentry->d_parent->d_lock);
2746 			spin_lock_nested(&target->d_parent->d_lock,
2747 						DENTRY_D_LOCK_NESTED);
2748 		} else {
2749 			spin_lock(&target->d_parent->d_lock);
2750 			spin_lock_nested(&dentry->d_parent->d_lock,
2751 						DENTRY_D_LOCK_NESTED);
2752 		}
2753 	}
2754 	if (target < dentry) {
2755 		spin_lock_nested(&target->d_lock, 2);
2756 		spin_lock_nested(&dentry->d_lock, 3);
2757 	} else {
2758 		spin_lock_nested(&dentry->d_lock, 2);
2759 		spin_lock_nested(&target->d_lock, 3);
2760 	}
2761 }
2762 
2763 static void dentry_unlock_for_move(struct dentry *dentry, struct dentry *target)
2764 {
2765 	if (target->d_parent != dentry->d_parent)
2766 		spin_unlock(&dentry->d_parent->d_lock);
2767 	if (target->d_parent != target)
2768 		spin_unlock(&target->d_parent->d_lock);
2769 	spin_unlock(&target->d_lock);
2770 	spin_unlock(&dentry->d_lock);
2771 }
2772 
2773 /*
2774  * When switching names, the actual string doesn't strictly have to
2775  * be preserved in the target - because we're dropping the target
2776  * anyway. As such, we can just do a simple memcpy() to copy over
2777  * the new name before we switch, unless we are going to rehash
2778  * it.  Note that if we *do* unhash the target, we are not allowed
2779  * to rehash it without giving it a new name/hash key - whether
2780  * we swap or overwrite the names here, resulting name won't match
2781  * the reality in filesystem; it's only there for d_path() purposes.
2782  * Note that all of this is happening under rename_lock, so the
2783  * any hash lookup seeing it in the middle of manipulations will
2784  * be discarded anyway.  So we do not care what happens to the hash
2785  * key in that case.
2786  */
2787 /*
2788  * __d_move - move a dentry
2789  * @dentry: entry to move
2790  * @target: new dentry
2791  * @exchange: exchange the two dentries
2792  *
2793  * Update the dcache to reflect the move of a file name. Negative
2794  * dcache entries should not be moved in this way. Caller must hold
2795  * rename_lock, the i_mutex of the source and target directories,
2796  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2797  */
2798 static void __d_move(struct dentry *dentry, struct dentry *target,
2799 		     bool exchange)
2800 {
2801 	struct inode *dir = NULL;
2802 	unsigned n;
2803 	if (!dentry->d_inode)
2804 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2805 
2806 	BUG_ON(d_ancestor(dentry, target));
2807 	BUG_ON(d_ancestor(target, dentry));
2808 
2809 	dentry_lock_for_move(dentry, target);
2810 	if (unlikely(d_in_lookup(target))) {
2811 		dir = target->d_parent->d_inode;
2812 		n = start_dir_add(dir);
2813 		__d_lookup_done(target);
2814 	}
2815 
2816 	write_seqcount_begin(&dentry->d_seq);
2817 	write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2818 
2819 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2820 
2821 	/*
2822 	 * Move the dentry to the target hash queue. Don't bother checking
2823 	 * for the same hash queue because of how unlikely it is.
2824 	 */
2825 	__d_drop(dentry);
2826 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2827 
2828 	/*
2829 	 * Unhash the target (d_delete() is not usable here).  If exchanging
2830 	 * the two dentries, then rehash onto the other's hash queue.
2831 	 */
2832 	__d_drop(target);
2833 	if (exchange) {
2834 		__d_rehash(target,
2835 			   d_hash(dentry->d_parent, dentry->d_name.hash));
2836 	}
2837 
2838 	/* Switch the names.. */
2839 	if (exchange)
2840 		swap_names(dentry, target);
2841 	else
2842 		copy_name(dentry, target);
2843 
2844 	/* ... and switch them in the tree */
2845 	if (IS_ROOT(dentry)) {
2846 		/* splicing a tree */
2847 		dentry->d_parent = target->d_parent;
2848 		target->d_parent = target;
2849 		list_del_init(&target->d_child);
2850 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2851 	} else {
2852 		/* swapping two dentries */
2853 		swap(dentry->d_parent, target->d_parent);
2854 		list_move(&target->d_child, &target->d_parent->d_subdirs);
2855 		list_move(&dentry->d_child, &dentry->d_parent->d_subdirs);
2856 		if (exchange)
2857 			fsnotify_d_move(target);
2858 		fsnotify_d_move(dentry);
2859 	}
2860 
2861 	write_seqcount_end(&target->d_seq);
2862 	write_seqcount_end(&dentry->d_seq);
2863 
2864 	if (dir)
2865 		end_dir_add(dir, n);
2866 	dentry_unlock_for_move(dentry, target);
2867 }
2868 
2869 /*
2870  * d_move - move a dentry
2871  * @dentry: entry to move
2872  * @target: new dentry
2873  *
2874  * Update the dcache to reflect the move of a file name. Negative
2875  * dcache entries should not be moved in this way. See the locking
2876  * requirements for __d_move.
2877  */
2878 void d_move(struct dentry *dentry, struct dentry *target)
2879 {
2880 	write_seqlock(&rename_lock);
2881 	__d_move(dentry, target, false);
2882 	write_sequnlock(&rename_lock);
2883 }
2884 EXPORT_SYMBOL(d_move);
2885 
2886 /*
2887  * d_exchange - exchange two dentries
2888  * @dentry1: first dentry
2889  * @dentry2: second dentry
2890  */
2891 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2892 {
2893 	write_seqlock(&rename_lock);
2894 
2895 	WARN_ON(!dentry1->d_inode);
2896 	WARN_ON(!dentry2->d_inode);
2897 	WARN_ON(IS_ROOT(dentry1));
2898 	WARN_ON(IS_ROOT(dentry2));
2899 
2900 	__d_move(dentry1, dentry2, true);
2901 
2902 	write_sequnlock(&rename_lock);
2903 }
2904 
2905 /**
2906  * d_ancestor - search for an ancestor
2907  * @p1: ancestor dentry
2908  * @p2: child dentry
2909  *
2910  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2911  * an ancestor of p2, else NULL.
2912  */
2913 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2914 {
2915 	struct dentry *p;
2916 
2917 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2918 		if (p->d_parent == p1)
2919 			return p;
2920 	}
2921 	return NULL;
2922 }
2923 
2924 /*
2925  * This helper attempts to cope with remotely renamed directories
2926  *
2927  * It assumes that the caller is already holding
2928  * dentry->d_parent->d_inode->i_mutex, and rename_lock
2929  *
2930  * Note: If ever the locking in lock_rename() changes, then please
2931  * remember to update this too...
2932  */
2933 static int __d_unalias(struct inode *inode,
2934 		struct dentry *dentry, struct dentry *alias)
2935 {
2936 	struct mutex *m1 = NULL;
2937 	struct rw_semaphore *m2 = NULL;
2938 	int ret = -ESTALE;
2939 
2940 	/* If alias and dentry share a parent, then no extra locks required */
2941 	if (alias->d_parent == dentry->d_parent)
2942 		goto out_unalias;
2943 
2944 	/* See lock_rename() */
2945 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2946 		goto out_err;
2947 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2948 	if (!inode_trylock_shared(alias->d_parent->d_inode))
2949 		goto out_err;
2950 	m2 = &alias->d_parent->d_inode->i_rwsem;
2951 out_unalias:
2952 	__d_move(alias, dentry, false);
2953 	ret = 0;
2954 out_err:
2955 	if (m2)
2956 		up_read(m2);
2957 	if (m1)
2958 		mutex_unlock(m1);
2959 	return ret;
2960 }
2961 
2962 /**
2963  * d_splice_alias - splice a disconnected dentry into the tree if one exists
2964  * @inode:  the inode which may have a disconnected dentry
2965  * @dentry: a negative dentry which we want to point to the inode.
2966  *
2967  * If inode is a directory and has an IS_ROOT alias, then d_move that in
2968  * place of the given dentry and return it, else simply d_add the inode
2969  * to the dentry and return NULL.
2970  *
2971  * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2972  * we should error out: directories can't have multiple aliases.
2973  *
2974  * This is needed in the lookup routine of any filesystem that is exportable
2975  * (via knfsd) so that we can build dcache paths to directories effectively.
2976  *
2977  * If a dentry was found and moved, then it is returned.  Otherwise NULL
2978  * is returned.  This matches the expected return value of ->lookup.
2979  *
2980  * Cluster filesystems may call this function with a negative, hashed dentry.
2981  * In that case, we know that the inode will be a regular file, and also this
2982  * will only occur during atomic_open. So we need to check for the dentry
2983  * being already hashed only in the final case.
2984  */
2985 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
2986 {
2987 	if (IS_ERR(inode))
2988 		return ERR_CAST(inode);
2989 
2990 	BUG_ON(!d_unhashed(dentry));
2991 
2992 	if (!inode)
2993 		goto out;
2994 
2995 	security_d_instantiate(dentry, inode);
2996 	spin_lock(&inode->i_lock);
2997 	if (S_ISDIR(inode->i_mode)) {
2998 		struct dentry *new = __d_find_any_alias(inode);
2999 		if (unlikely(new)) {
3000 			/* The reference to new ensures it remains an alias */
3001 			spin_unlock(&inode->i_lock);
3002 			write_seqlock(&rename_lock);
3003 			if (unlikely(d_ancestor(new, dentry))) {
3004 				write_sequnlock(&rename_lock);
3005 				dput(new);
3006 				new = ERR_PTR(-ELOOP);
3007 				pr_warn_ratelimited(
3008 					"VFS: Lookup of '%s' in %s %s"
3009 					" would have caused loop\n",
3010 					dentry->d_name.name,
3011 					inode->i_sb->s_type->name,
3012 					inode->i_sb->s_id);
3013 			} else if (!IS_ROOT(new)) {
3014 				int err = __d_unalias(inode, dentry, new);
3015 				write_sequnlock(&rename_lock);
3016 				if (err) {
3017 					dput(new);
3018 					new = ERR_PTR(err);
3019 				}
3020 			} else {
3021 				__d_move(new, dentry, false);
3022 				write_sequnlock(&rename_lock);
3023 			}
3024 			iput(inode);
3025 			return new;
3026 		}
3027 	}
3028 out:
3029 	__d_add(dentry, inode);
3030 	return NULL;
3031 }
3032 EXPORT_SYMBOL(d_splice_alias);
3033 
3034 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
3035 {
3036 	*buflen -= namelen;
3037 	if (*buflen < 0)
3038 		return -ENAMETOOLONG;
3039 	*buffer -= namelen;
3040 	memcpy(*buffer, str, namelen);
3041 	return 0;
3042 }
3043 
3044 /**
3045  * prepend_name - prepend a pathname in front of current buffer pointer
3046  * @buffer: buffer pointer
3047  * @buflen: allocated length of the buffer
3048  * @name:   name string and length qstr structure
3049  *
3050  * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3051  * make sure that either the old or the new name pointer and length are
3052  * fetched. However, there may be mismatch between length and pointer.
3053  * The length cannot be trusted, we need to copy it byte-by-byte until
3054  * the length is reached or a null byte is found. It also prepends "/" at
3055  * the beginning of the name. The sequence number check at the caller will
3056  * retry it again when a d_move() does happen. So any garbage in the buffer
3057  * due to mismatched pointer and length will be discarded.
3058  *
3059  * Data dependency barrier is needed to make sure that we see that terminating
3060  * NUL.  Alpha strikes again, film at 11...
3061  */
3062 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
3063 {
3064 	const char *dname = ACCESS_ONCE(name->name);
3065 	u32 dlen = ACCESS_ONCE(name->len);
3066 	char *p;
3067 
3068 	smp_read_barrier_depends();
3069 
3070 	*buflen -= dlen + 1;
3071 	if (*buflen < 0)
3072 		return -ENAMETOOLONG;
3073 	p = *buffer -= dlen + 1;
3074 	*p++ = '/';
3075 	while (dlen--) {
3076 		char c = *dname++;
3077 		if (!c)
3078 			break;
3079 		*p++ = c;
3080 	}
3081 	return 0;
3082 }
3083 
3084 /**
3085  * prepend_path - Prepend path string to a buffer
3086  * @path: the dentry/vfsmount to report
3087  * @root: root vfsmnt/dentry
3088  * @buffer: pointer to the end of the buffer
3089  * @buflen: pointer to buffer length
3090  *
3091  * The function will first try to write out the pathname without taking any
3092  * lock other than the RCU read lock to make sure that dentries won't go away.
3093  * It only checks the sequence number of the global rename_lock as any change
3094  * in the dentry's d_seq will be preceded by changes in the rename_lock
3095  * sequence number. If the sequence number had been changed, it will restart
3096  * the whole pathname back-tracing sequence again by taking the rename_lock.
3097  * In this case, there is no need to take the RCU read lock as the recursive
3098  * parent pointer references will keep the dentry chain alive as long as no
3099  * rename operation is performed.
3100  */
3101 static int prepend_path(const struct path *path,
3102 			const struct path *root,
3103 			char **buffer, int *buflen)
3104 {
3105 	struct dentry *dentry;
3106 	struct vfsmount *vfsmnt;
3107 	struct mount *mnt;
3108 	int error = 0;
3109 	unsigned seq, m_seq = 0;
3110 	char *bptr;
3111 	int blen;
3112 
3113 	rcu_read_lock();
3114 restart_mnt:
3115 	read_seqbegin_or_lock(&mount_lock, &m_seq);
3116 	seq = 0;
3117 	rcu_read_lock();
3118 restart:
3119 	bptr = *buffer;
3120 	blen = *buflen;
3121 	error = 0;
3122 	dentry = path->dentry;
3123 	vfsmnt = path->mnt;
3124 	mnt = real_mount(vfsmnt);
3125 	read_seqbegin_or_lock(&rename_lock, &seq);
3126 	while (dentry != root->dentry || vfsmnt != root->mnt) {
3127 		struct dentry * parent;
3128 
3129 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
3130 			struct mount *parent = ACCESS_ONCE(mnt->mnt_parent);
3131 			/* Escaped? */
3132 			if (dentry != vfsmnt->mnt_root) {
3133 				bptr = *buffer;
3134 				blen = *buflen;
3135 				error = 3;
3136 				break;
3137 			}
3138 			/* Global root? */
3139 			if (mnt != parent) {
3140 				dentry = ACCESS_ONCE(mnt->mnt_mountpoint);
3141 				mnt = parent;
3142 				vfsmnt = &mnt->mnt;
3143 				continue;
3144 			}
3145 			if (!error)
3146 				error = is_mounted(vfsmnt) ? 1 : 2;
3147 			break;
3148 		}
3149 		parent = dentry->d_parent;
3150 		prefetch(parent);
3151 		error = prepend_name(&bptr, &blen, &dentry->d_name);
3152 		if (error)
3153 			break;
3154 
3155 		dentry = parent;
3156 	}
3157 	if (!(seq & 1))
3158 		rcu_read_unlock();
3159 	if (need_seqretry(&rename_lock, seq)) {
3160 		seq = 1;
3161 		goto restart;
3162 	}
3163 	done_seqretry(&rename_lock, seq);
3164 
3165 	if (!(m_seq & 1))
3166 		rcu_read_unlock();
3167 	if (need_seqretry(&mount_lock, m_seq)) {
3168 		m_seq = 1;
3169 		goto restart_mnt;
3170 	}
3171 	done_seqretry(&mount_lock, m_seq);
3172 
3173 	if (error >= 0 && bptr == *buffer) {
3174 		if (--blen < 0)
3175 			error = -ENAMETOOLONG;
3176 		else
3177 			*--bptr = '/';
3178 	}
3179 	*buffer = bptr;
3180 	*buflen = blen;
3181 	return error;
3182 }
3183 
3184 /**
3185  * __d_path - return the path of a dentry
3186  * @path: the dentry/vfsmount to report
3187  * @root: root vfsmnt/dentry
3188  * @buf: buffer to return value in
3189  * @buflen: buffer length
3190  *
3191  * Convert a dentry into an ASCII path name.
3192  *
3193  * Returns a pointer into the buffer or an error code if the
3194  * path was too long.
3195  *
3196  * "buflen" should be positive.
3197  *
3198  * If the path is not reachable from the supplied root, return %NULL.
3199  */
3200 char *__d_path(const struct path *path,
3201 	       const struct path *root,
3202 	       char *buf, int buflen)
3203 {
3204 	char *res = buf + buflen;
3205 	int error;
3206 
3207 	prepend(&res, &buflen, "\0", 1);
3208 	error = prepend_path(path, root, &res, &buflen);
3209 
3210 	if (error < 0)
3211 		return ERR_PTR(error);
3212 	if (error > 0)
3213 		return NULL;
3214 	return res;
3215 }
3216 
3217 char *d_absolute_path(const struct path *path,
3218 	       char *buf, int buflen)
3219 {
3220 	struct path root = {};
3221 	char *res = buf + buflen;
3222 	int error;
3223 
3224 	prepend(&res, &buflen, "\0", 1);
3225 	error = prepend_path(path, &root, &res, &buflen);
3226 
3227 	if (error > 1)
3228 		error = -EINVAL;
3229 	if (error < 0)
3230 		return ERR_PTR(error);
3231 	return res;
3232 }
3233 
3234 /*
3235  * same as __d_path but appends "(deleted)" for unlinked files.
3236  */
3237 static int path_with_deleted(const struct path *path,
3238 			     const struct path *root,
3239 			     char **buf, int *buflen)
3240 {
3241 	prepend(buf, buflen, "\0", 1);
3242 	if (d_unlinked(path->dentry)) {
3243 		int error = prepend(buf, buflen, " (deleted)", 10);
3244 		if (error)
3245 			return error;
3246 	}
3247 
3248 	return prepend_path(path, root, buf, buflen);
3249 }
3250 
3251 static int prepend_unreachable(char **buffer, int *buflen)
3252 {
3253 	return prepend(buffer, buflen, "(unreachable)", 13);
3254 }
3255 
3256 static void get_fs_root_rcu(struct fs_struct *fs, struct path *root)
3257 {
3258 	unsigned seq;
3259 
3260 	do {
3261 		seq = read_seqcount_begin(&fs->seq);
3262 		*root = fs->root;
3263 	} while (read_seqcount_retry(&fs->seq, seq));
3264 }
3265 
3266 /**
3267  * d_path - return the path of a dentry
3268  * @path: path to report
3269  * @buf: buffer to return value in
3270  * @buflen: buffer length
3271  *
3272  * Convert a dentry into an ASCII path name. If the entry has been deleted
3273  * the string " (deleted)" is appended. Note that this is ambiguous.
3274  *
3275  * Returns a pointer into the buffer or an error code if the path was
3276  * too long. Note: Callers should use the returned pointer, not the passed
3277  * in buffer, to use the name! The implementation often starts at an offset
3278  * into the buffer, and may leave 0 bytes at the start.
3279  *
3280  * "buflen" should be positive.
3281  */
3282 char *d_path(const struct path *path, char *buf, int buflen)
3283 {
3284 	char *res = buf + buflen;
3285 	struct path root;
3286 	int error;
3287 
3288 	/*
3289 	 * We have various synthetic filesystems that never get mounted.  On
3290 	 * these filesystems dentries are never used for lookup purposes, and
3291 	 * thus don't need to be hashed.  They also don't need a name until a
3292 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
3293 	 * below allows us to generate a name for these objects on demand:
3294 	 *
3295 	 * Some pseudo inodes are mountable.  When they are mounted
3296 	 * path->dentry == path->mnt->mnt_root.  In that case don't call d_dname
3297 	 * and instead have d_path return the mounted path.
3298 	 */
3299 	if (path->dentry->d_op && path->dentry->d_op->d_dname &&
3300 	    (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
3301 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
3302 
3303 	rcu_read_lock();
3304 	get_fs_root_rcu(current->fs, &root);
3305 	error = path_with_deleted(path, &root, &res, &buflen);
3306 	rcu_read_unlock();
3307 
3308 	if (error < 0)
3309 		res = ERR_PTR(error);
3310 	return res;
3311 }
3312 EXPORT_SYMBOL(d_path);
3313 
3314 /*
3315  * Helper function for dentry_operations.d_dname() members
3316  */
3317 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
3318 			const char *fmt, ...)
3319 {
3320 	va_list args;
3321 	char temp[64];
3322 	int sz;
3323 
3324 	va_start(args, fmt);
3325 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
3326 	va_end(args);
3327 
3328 	if (sz > sizeof(temp) || sz > buflen)
3329 		return ERR_PTR(-ENAMETOOLONG);
3330 
3331 	buffer += buflen - sz;
3332 	return memcpy(buffer, temp, sz);
3333 }
3334 
3335 char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
3336 {
3337 	char *end = buffer + buflen;
3338 	/* these dentries are never renamed, so d_lock is not needed */
3339 	if (prepend(&end, &buflen, " (deleted)", 11) ||
3340 	    prepend(&end, &buflen, dentry->d_name.name, dentry->d_name.len) ||
3341 	    prepend(&end, &buflen, "/", 1))
3342 		end = ERR_PTR(-ENAMETOOLONG);
3343 	return end;
3344 }
3345 EXPORT_SYMBOL(simple_dname);
3346 
3347 /*
3348  * Write full pathname from the root of the filesystem into the buffer.
3349  */
3350 static char *__dentry_path(struct dentry *d, char *buf, int buflen)
3351 {
3352 	struct dentry *dentry;
3353 	char *end, *retval;
3354 	int len, seq = 0;
3355 	int error = 0;
3356 
3357 	if (buflen < 2)
3358 		goto Elong;
3359 
3360 	rcu_read_lock();
3361 restart:
3362 	dentry = d;
3363 	end = buf + buflen;
3364 	len = buflen;
3365 	prepend(&end, &len, "\0", 1);
3366 	/* Get '/' right */
3367 	retval = end-1;
3368 	*retval = '/';
3369 	read_seqbegin_or_lock(&rename_lock, &seq);
3370 	while (!IS_ROOT(dentry)) {
3371 		struct dentry *parent = dentry->d_parent;
3372 
3373 		prefetch(parent);
3374 		error = prepend_name(&end, &len, &dentry->d_name);
3375 		if (error)
3376 			break;
3377 
3378 		retval = end;
3379 		dentry = parent;
3380 	}
3381 	if (!(seq & 1))
3382 		rcu_read_unlock();
3383 	if (need_seqretry(&rename_lock, seq)) {
3384 		seq = 1;
3385 		goto restart;
3386 	}
3387 	done_seqretry(&rename_lock, seq);
3388 	if (error)
3389 		goto Elong;
3390 	return retval;
3391 Elong:
3392 	return ERR_PTR(-ENAMETOOLONG);
3393 }
3394 
3395 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
3396 {
3397 	return __dentry_path(dentry, buf, buflen);
3398 }
3399 EXPORT_SYMBOL(dentry_path_raw);
3400 
3401 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
3402 {
3403 	char *p = NULL;
3404 	char *retval;
3405 
3406 	if (d_unlinked(dentry)) {
3407 		p = buf + buflen;
3408 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
3409 			goto Elong;
3410 		buflen++;
3411 	}
3412 	retval = __dentry_path(dentry, buf, buflen);
3413 	if (!IS_ERR(retval) && p)
3414 		*p = '/';	/* restore '/' overriden with '\0' */
3415 	return retval;
3416 Elong:
3417 	return ERR_PTR(-ENAMETOOLONG);
3418 }
3419 
3420 static void get_fs_root_and_pwd_rcu(struct fs_struct *fs, struct path *root,
3421 				    struct path *pwd)
3422 {
3423 	unsigned seq;
3424 
3425 	do {
3426 		seq = read_seqcount_begin(&fs->seq);
3427 		*root = fs->root;
3428 		*pwd = fs->pwd;
3429 	} while (read_seqcount_retry(&fs->seq, seq));
3430 }
3431 
3432 /*
3433  * NOTE! The user-level library version returns a
3434  * character pointer. The kernel system call just
3435  * returns the length of the buffer filled (which
3436  * includes the ending '\0' character), or a negative
3437  * error value. So libc would do something like
3438  *
3439  *	char *getcwd(char * buf, size_t size)
3440  *	{
3441  *		int retval;
3442  *
3443  *		retval = sys_getcwd(buf, size);
3444  *		if (retval >= 0)
3445  *			return buf;
3446  *		errno = -retval;
3447  *		return NULL;
3448  *	}
3449  */
3450 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
3451 {
3452 	int error;
3453 	struct path pwd, root;
3454 	char *page = __getname();
3455 
3456 	if (!page)
3457 		return -ENOMEM;
3458 
3459 	rcu_read_lock();
3460 	get_fs_root_and_pwd_rcu(current->fs, &root, &pwd);
3461 
3462 	error = -ENOENT;
3463 	if (!d_unlinked(pwd.dentry)) {
3464 		unsigned long len;
3465 		char *cwd = page + PATH_MAX;
3466 		int buflen = PATH_MAX;
3467 
3468 		prepend(&cwd, &buflen, "\0", 1);
3469 		error = prepend_path(&pwd, &root, &cwd, &buflen);
3470 		rcu_read_unlock();
3471 
3472 		if (error < 0)
3473 			goto out;
3474 
3475 		/* Unreachable from current root */
3476 		if (error > 0) {
3477 			error = prepend_unreachable(&cwd, &buflen);
3478 			if (error)
3479 				goto out;
3480 		}
3481 
3482 		error = -ERANGE;
3483 		len = PATH_MAX + page - cwd;
3484 		if (len <= size) {
3485 			error = len;
3486 			if (copy_to_user(buf, cwd, len))
3487 				error = -EFAULT;
3488 		}
3489 	} else {
3490 		rcu_read_unlock();
3491 	}
3492 
3493 out:
3494 	__putname(page);
3495 	return error;
3496 }
3497 
3498 /*
3499  * Test whether new_dentry is a subdirectory of old_dentry.
3500  *
3501  * Trivially implemented using the dcache structure
3502  */
3503 
3504 /**
3505  * is_subdir - is new dentry a subdirectory of old_dentry
3506  * @new_dentry: new dentry
3507  * @old_dentry: old dentry
3508  *
3509  * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3510  * Returns false otherwise.
3511  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3512  */
3513 
3514 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3515 {
3516 	bool result;
3517 	unsigned seq;
3518 
3519 	if (new_dentry == old_dentry)
3520 		return true;
3521 
3522 	do {
3523 		/* for restarting inner loop in case of seq retry */
3524 		seq = read_seqbegin(&rename_lock);
3525 		/*
3526 		 * Need rcu_readlock to protect against the d_parent trashing
3527 		 * due to d_move
3528 		 */
3529 		rcu_read_lock();
3530 		if (d_ancestor(old_dentry, new_dentry))
3531 			result = true;
3532 		else
3533 			result = false;
3534 		rcu_read_unlock();
3535 	} while (read_seqretry(&rename_lock, seq));
3536 
3537 	return result;
3538 }
3539 
3540 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry)
3541 {
3542 	struct dentry *root = data;
3543 	if (dentry != root) {
3544 		if (d_unhashed(dentry) || !dentry->d_inode)
3545 			return D_WALK_SKIP;
3546 
3547 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3548 			dentry->d_flags |= DCACHE_GENOCIDE;
3549 			dentry->d_lockref.count--;
3550 		}
3551 	}
3552 	return D_WALK_CONTINUE;
3553 }
3554 
3555 void d_genocide(struct dentry *parent)
3556 {
3557 	d_walk(parent, parent, d_genocide_kill, NULL);
3558 }
3559 
3560 void d_tmpfile(struct dentry *dentry, struct inode *inode)
3561 {
3562 	inode_dec_link_count(inode);
3563 	BUG_ON(dentry->d_name.name != dentry->d_iname ||
3564 		!hlist_unhashed(&dentry->d_u.d_alias) ||
3565 		!d_unlinked(dentry));
3566 	spin_lock(&dentry->d_parent->d_lock);
3567 	spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3568 	dentry->d_name.len = sprintf(dentry->d_iname, "#%llu",
3569 				(unsigned long long)inode->i_ino);
3570 	spin_unlock(&dentry->d_lock);
3571 	spin_unlock(&dentry->d_parent->d_lock);
3572 	d_instantiate(dentry, inode);
3573 }
3574 EXPORT_SYMBOL(d_tmpfile);
3575 
3576 static __initdata unsigned long dhash_entries;
3577 static int __init set_dhash_entries(char *str)
3578 {
3579 	if (!str)
3580 		return 0;
3581 	dhash_entries = simple_strtoul(str, &str, 0);
3582 	return 1;
3583 }
3584 __setup("dhash_entries=", set_dhash_entries);
3585 
3586 static void __init dcache_init_early(void)
3587 {
3588 	unsigned int loop;
3589 
3590 	/* If hashes are distributed across NUMA nodes, defer
3591 	 * hash allocation until vmalloc space is available.
3592 	 */
3593 	if (hashdist)
3594 		return;
3595 
3596 	dentry_hashtable =
3597 		alloc_large_system_hash("Dentry cache",
3598 					sizeof(struct hlist_bl_head),
3599 					dhash_entries,
3600 					13,
3601 					HASH_EARLY,
3602 					&d_hash_shift,
3603 					&d_hash_mask,
3604 					0,
3605 					0);
3606 
3607 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3608 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3609 }
3610 
3611 static void __init dcache_init(void)
3612 {
3613 	unsigned int loop;
3614 
3615 	/*
3616 	 * A constructor could be added for stable state like the lists,
3617 	 * but it is probably not worth it because of the cache nature
3618 	 * of the dcache.
3619 	 */
3620 	dentry_cache = KMEM_CACHE(dentry,
3621 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD|SLAB_ACCOUNT);
3622 
3623 	/* Hash may have been set up in dcache_init_early */
3624 	if (!hashdist)
3625 		return;
3626 
3627 	dentry_hashtable =
3628 		alloc_large_system_hash("Dentry cache",
3629 					sizeof(struct hlist_bl_head),
3630 					dhash_entries,
3631 					13,
3632 					0,
3633 					&d_hash_shift,
3634 					&d_hash_mask,
3635 					0,
3636 					0);
3637 
3638 	for (loop = 0; loop < (1U << d_hash_shift); loop++)
3639 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3640 }
3641 
3642 /* SLAB cache for __getname() consumers */
3643 struct kmem_cache *names_cachep __read_mostly;
3644 EXPORT_SYMBOL(names_cachep);
3645 
3646 EXPORT_SYMBOL(d_genocide);
3647 
3648 void __init vfs_caches_init_early(void)
3649 {
3650 	dcache_init_early();
3651 	inode_init_early();
3652 }
3653 
3654 void __init vfs_caches_init(void)
3655 {
3656 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3657 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3658 
3659 	dcache_init();
3660 	inode_init();
3661 	files_init();
3662 	files_maxfiles_init();
3663 	mnt_init();
3664 	bdev_cache_init();
3665 	chrdev_init();
3666 }
3667