xref: /linux/fs/dcache.c (revision 079c9534a96da9a85a2a2f9715851050fbfbf749)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 #include "mount.h"
42 
43 /*
44  * Usage:
45  * dcache->d_inode->i_lock protects:
46  *   - i_dentry, d_alias, d_inode of aliases
47  * dcache_hash_bucket lock protects:
48  *   - the dcache hash table
49  * s_anon bl list spinlock protects:
50  *   - the s_anon list (see __d_drop)
51  * dcache_lru_lock protects:
52  *   - the dcache lru lists and counters
53  * d_lock protects:
54  *   - d_flags
55  *   - d_name
56  *   - d_lru
57  *   - d_count
58  *   - d_unhashed()
59  *   - d_parent and d_subdirs
60  *   - childrens' d_child and d_parent
61  *   - d_alias, d_inode
62  *
63  * Ordering:
64  * dentry->d_inode->i_lock
65  *   dentry->d_lock
66  *     dcache_lru_lock
67  *     dcache_hash_bucket lock
68  *     s_anon lock
69  *
70  * If there is an ancestor relationship:
71  * dentry->d_parent->...->d_parent->d_lock
72  *   ...
73  *     dentry->d_parent->d_lock
74  *       dentry->d_lock
75  *
76  * If no ancestor relationship:
77  * if (dentry1 < dentry2)
78  *   dentry1->d_lock
79  *     dentry2->d_lock
80  */
81 int sysctl_vfs_cache_pressure __read_mostly = 100;
82 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83 
84 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86 
87 EXPORT_SYMBOL(rename_lock);
88 
89 static struct kmem_cache *dentry_cache __read_mostly;
90 
91 /*
92  * This is the single most critical data structure when it comes
93  * to the dcache: the hashtable for lookups. Somebody should try
94  * to make this good - I've just made it work.
95  *
96  * This hash-function tries to avoid losing too many bits of hash
97  * information, yet avoid using a prime hash-size or similar.
98  */
99 #define D_HASHBITS     d_hash_shift
100 #define D_HASHMASK     d_hash_mask
101 
102 static unsigned int d_hash_mask __read_mostly;
103 static unsigned int d_hash_shift __read_mostly;
104 
105 static struct hlist_bl_head *dentry_hashtable __read_mostly;
106 
107 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
108 					unsigned long hash)
109 {
110 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 	return dentry_hashtable + (hash & D_HASHMASK);
113 }
114 
115 /* Statistics gathering. */
116 struct dentry_stat_t dentry_stat = {
117 	.age_limit = 45,
118 };
119 
120 static DEFINE_PER_CPU(unsigned int, nr_dentry);
121 
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
123 static int get_nr_dentry(void)
124 {
125 	int i;
126 	int sum = 0;
127 	for_each_possible_cpu(i)
128 		sum += per_cpu(nr_dentry, i);
129 	return sum < 0 ? 0 : sum;
130 }
131 
132 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 		   size_t *lenp, loff_t *ppos)
134 {
135 	dentry_stat.nr_dentry = get_nr_dentry();
136 	return proc_dointvec(table, write, buffer, lenp, ppos);
137 }
138 #endif
139 
140 static void __d_free(struct rcu_head *head)
141 {
142 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
143 
144 	WARN_ON(!list_empty(&dentry->d_alias));
145 	if (dname_external(dentry))
146 		kfree(dentry->d_name.name);
147 	kmem_cache_free(dentry_cache, dentry);
148 }
149 
150 /*
151  * no locks, please.
152  */
153 static void d_free(struct dentry *dentry)
154 {
155 	BUG_ON(dentry->d_count);
156 	this_cpu_dec(nr_dentry);
157 	if (dentry->d_op && dentry->d_op->d_release)
158 		dentry->d_op->d_release(dentry);
159 
160 	/* if dentry was never visible to RCU, immediate free is OK */
161 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
162 		__d_free(&dentry->d_u.d_rcu);
163 	else
164 		call_rcu(&dentry->d_u.d_rcu, __d_free);
165 }
166 
167 /**
168  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
169  * @dentry: the target dentry
170  * After this call, in-progress rcu-walk path lookup will fail. This
171  * should be called after unhashing, and after changing d_inode (if
172  * the dentry has not already been unhashed).
173  */
174 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
175 {
176 	assert_spin_locked(&dentry->d_lock);
177 	/* Go through a barrier */
178 	write_seqcount_barrier(&dentry->d_seq);
179 }
180 
181 /*
182  * Release the dentry's inode, using the filesystem
183  * d_iput() operation if defined. Dentry has no refcount
184  * and is unhashed.
185  */
186 static void dentry_iput(struct dentry * dentry)
187 	__releases(dentry->d_lock)
188 	__releases(dentry->d_inode->i_lock)
189 {
190 	struct inode *inode = dentry->d_inode;
191 	if (inode) {
192 		dentry->d_inode = NULL;
193 		list_del_init(&dentry->d_alias);
194 		spin_unlock(&dentry->d_lock);
195 		spin_unlock(&inode->i_lock);
196 		if (!inode->i_nlink)
197 			fsnotify_inoderemove(inode);
198 		if (dentry->d_op && dentry->d_op->d_iput)
199 			dentry->d_op->d_iput(dentry, inode);
200 		else
201 			iput(inode);
202 	} else {
203 		spin_unlock(&dentry->d_lock);
204 	}
205 }
206 
207 /*
208  * Release the dentry's inode, using the filesystem
209  * d_iput() operation if defined. dentry remains in-use.
210  */
211 static void dentry_unlink_inode(struct dentry * dentry)
212 	__releases(dentry->d_lock)
213 	__releases(dentry->d_inode->i_lock)
214 {
215 	struct inode *inode = dentry->d_inode;
216 	dentry->d_inode = NULL;
217 	list_del_init(&dentry->d_alias);
218 	dentry_rcuwalk_barrier(dentry);
219 	spin_unlock(&dentry->d_lock);
220 	spin_unlock(&inode->i_lock);
221 	if (!inode->i_nlink)
222 		fsnotify_inoderemove(inode);
223 	if (dentry->d_op && dentry->d_op->d_iput)
224 		dentry->d_op->d_iput(dentry, inode);
225 	else
226 		iput(inode);
227 }
228 
229 /*
230  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
231  */
232 static void dentry_lru_add(struct dentry *dentry)
233 {
234 	if (list_empty(&dentry->d_lru)) {
235 		spin_lock(&dcache_lru_lock);
236 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
237 		dentry->d_sb->s_nr_dentry_unused++;
238 		dentry_stat.nr_unused++;
239 		spin_unlock(&dcache_lru_lock);
240 	}
241 }
242 
243 static void __dentry_lru_del(struct dentry *dentry)
244 {
245 	list_del_init(&dentry->d_lru);
246 	dentry->d_flags &= ~DCACHE_SHRINK_LIST;
247 	dentry->d_sb->s_nr_dentry_unused--;
248 	dentry_stat.nr_unused--;
249 }
250 
251 /*
252  * Remove a dentry with references from the LRU.
253  */
254 static void dentry_lru_del(struct dentry *dentry)
255 {
256 	if (!list_empty(&dentry->d_lru)) {
257 		spin_lock(&dcache_lru_lock);
258 		__dentry_lru_del(dentry);
259 		spin_unlock(&dcache_lru_lock);
260 	}
261 }
262 
263 /*
264  * Remove a dentry that is unreferenced and about to be pruned
265  * (unhashed and destroyed) from the LRU, and inform the file system.
266  * This wrapper should be called _prior_ to unhashing a victim dentry.
267  */
268 static void dentry_lru_prune(struct dentry *dentry)
269 {
270 	if (!list_empty(&dentry->d_lru)) {
271 		if (dentry->d_flags & DCACHE_OP_PRUNE)
272 			dentry->d_op->d_prune(dentry);
273 
274 		spin_lock(&dcache_lru_lock);
275 		__dentry_lru_del(dentry);
276 		spin_unlock(&dcache_lru_lock);
277 	}
278 }
279 
280 static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
281 {
282 	spin_lock(&dcache_lru_lock);
283 	if (list_empty(&dentry->d_lru)) {
284 		list_add_tail(&dentry->d_lru, list);
285 		dentry->d_sb->s_nr_dentry_unused++;
286 		dentry_stat.nr_unused++;
287 	} else {
288 		list_move_tail(&dentry->d_lru, list);
289 	}
290 	spin_unlock(&dcache_lru_lock);
291 }
292 
293 /**
294  * d_kill - kill dentry and return parent
295  * @dentry: dentry to kill
296  * @parent: parent dentry
297  *
298  * The dentry must already be unhashed and removed from the LRU.
299  *
300  * If this is the root of the dentry tree, return NULL.
301  *
302  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
303  * d_kill.
304  */
305 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
306 	__releases(dentry->d_lock)
307 	__releases(parent->d_lock)
308 	__releases(dentry->d_inode->i_lock)
309 {
310 	list_del(&dentry->d_u.d_child);
311 	/*
312 	 * Inform try_to_ascend() that we are no longer attached to the
313 	 * dentry tree
314 	 */
315 	dentry->d_flags |= DCACHE_DISCONNECTED;
316 	if (parent)
317 		spin_unlock(&parent->d_lock);
318 	dentry_iput(dentry);
319 	/*
320 	 * dentry_iput drops the locks, at which point nobody (except
321 	 * transient RCU lookups) can reach this dentry.
322 	 */
323 	d_free(dentry);
324 	return parent;
325 }
326 
327 /*
328  * Unhash a dentry without inserting an RCU walk barrier or checking that
329  * dentry->d_lock is locked.  The caller must take care of that, if
330  * appropriate.
331  */
332 static void __d_shrink(struct dentry *dentry)
333 {
334 	if (!d_unhashed(dentry)) {
335 		struct hlist_bl_head *b;
336 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
337 			b = &dentry->d_sb->s_anon;
338 		else
339 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
340 
341 		hlist_bl_lock(b);
342 		__hlist_bl_del(&dentry->d_hash);
343 		dentry->d_hash.pprev = NULL;
344 		hlist_bl_unlock(b);
345 	}
346 }
347 
348 /**
349  * d_drop - drop a dentry
350  * @dentry: dentry to drop
351  *
352  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
353  * be found through a VFS lookup any more. Note that this is different from
354  * deleting the dentry - d_delete will try to mark the dentry negative if
355  * possible, giving a successful _negative_ lookup, while d_drop will
356  * just make the cache lookup fail.
357  *
358  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
359  * reason (NFS timeouts or autofs deletes).
360  *
361  * __d_drop requires dentry->d_lock.
362  */
363 void __d_drop(struct dentry *dentry)
364 {
365 	if (!d_unhashed(dentry)) {
366 		__d_shrink(dentry);
367 		dentry_rcuwalk_barrier(dentry);
368 	}
369 }
370 EXPORT_SYMBOL(__d_drop);
371 
372 void d_drop(struct dentry *dentry)
373 {
374 	spin_lock(&dentry->d_lock);
375 	__d_drop(dentry);
376 	spin_unlock(&dentry->d_lock);
377 }
378 EXPORT_SYMBOL(d_drop);
379 
380 /*
381  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
382  * @dentry: dentry to drop
383  *
384  * This is called when we do a lookup on a placeholder dentry that needed to be
385  * looked up.  The dentry should have been hashed in order for it to be found by
386  * the lookup code, but now needs to be unhashed while we do the actual lookup
387  * and clear the DCACHE_NEED_LOOKUP flag.
388  */
389 void d_clear_need_lookup(struct dentry *dentry)
390 {
391 	spin_lock(&dentry->d_lock);
392 	__d_drop(dentry);
393 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
394 	spin_unlock(&dentry->d_lock);
395 }
396 EXPORT_SYMBOL(d_clear_need_lookup);
397 
398 /*
399  * Finish off a dentry we've decided to kill.
400  * dentry->d_lock must be held, returns with it unlocked.
401  * If ref is non-zero, then decrement the refcount too.
402  * Returns dentry requiring refcount drop, or NULL if we're done.
403  */
404 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
405 	__releases(dentry->d_lock)
406 {
407 	struct inode *inode;
408 	struct dentry *parent;
409 
410 	inode = dentry->d_inode;
411 	if (inode && !spin_trylock(&inode->i_lock)) {
412 relock:
413 		spin_unlock(&dentry->d_lock);
414 		cpu_relax();
415 		return dentry; /* try again with same dentry */
416 	}
417 	if (IS_ROOT(dentry))
418 		parent = NULL;
419 	else
420 		parent = dentry->d_parent;
421 	if (parent && !spin_trylock(&parent->d_lock)) {
422 		if (inode)
423 			spin_unlock(&inode->i_lock);
424 		goto relock;
425 	}
426 
427 	if (ref)
428 		dentry->d_count--;
429 	/*
430 	 * if dentry was on the d_lru list delete it from there.
431 	 * inform the fs via d_prune that this dentry is about to be
432 	 * unhashed and destroyed.
433 	 */
434 	dentry_lru_prune(dentry);
435 	/* if it was on the hash then remove it */
436 	__d_drop(dentry);
437 	return d_kill(dentry, parent);
438 }
439 
440 /*
441  * This is dput
442  *
443  * This is complicated by the fact that we do not want to put
444  * dentries that are no longer on any hash chain on the unused
445  * list: we'd much rather just get rid of them immediately.
446  *
447  * However, that implies that we have to traverse the dentry
448  * tree upwards to the parents which might _also_ now be
449  * scheduled for deletion (it may have been only waiting for
450  * its last child to go away).
451  *
452  * This tail recursion is done by hand as we don't want to depend
453  * on the compiler to always get this right (gcc generally doesn't).
454  * Real recursion would eat up our stack space.
455  */
456 
457 /*
458  * dput - release a dentry
459  * @dentry: dentry to release
460  *
461  * Release a dentry. This will drop the usage count and if appropriate
462  * call the dentry unlink method as well as removing it from the queues and
463  * releasing its resources. If the parent dentries were scheduled for release
464  * they too may now get deleted.
465  */
466 void dput(struct dentry *dentry)
467 {
468 	if (!dentry)
469 		return;
470 
471 repeat:
472 	if (dentry->d_count == 1)
473 		might_sleep();
474 	spin_lock(&dentry->d_lock);
475 	BUG_ON(!dentry->d_count);
476 	if (dentry->d_count > 1) {
477 		dentry->d_count--;
478 		spin_unlock(&dentry->d_lock);
479 		return;
480 	}
481 
482 	if (dentry->d_flags & DCACHE_OP_DELETE) {
483 		if (dentry->d_op->d_delete(dentry))
484 			goto kill_it;
485 	}
486 
487 	/* Unreachable? Get rid of it */
488  	if (d_unhashed(dentry))
489 		goto kill_it;
490 
491 	/*
492 	 * If this dentry needs lookup, don't set the referenced flag so that it
493 	 * is more likely to be cleaned up by the dcache shrinker in case of
494 	 * memory pressure.
495 	 */
496 	if (!d_need_lookup(dentry))
497 		dentry->d_flags |= DCACHE_REFERENCED;
498 	dentry_lru_add(dentry);
499 
500 	dentry->d_count--;
501 	spin_unlock(&dentry->d_lock);
502 	return;
503 
504 kill_it:
505 	dentry = dentry_kill(dentry, 1);
506 	if (dentry)
507 		goto repeat;
508 }
509 EXPORT_SYMBOL(dput);
510 
511 /**
512  * d_invalidate - invalidate a dentry
513  * @dentry: dentry to invalidate
514  *
515  * Try to invalidate the dentry if it turns out to be
516  * possible. If there are other dentries that can be
517  * reached through this one we can't delete it and we
518  * return -EBUSY. On success we return 0.
519  *
520  * no dcache lock.
521  */
522 
523 int d_invalidate(struct dentry * dentry)
524 {
525 	/*
526 	 * If it's already been dropped, return OK.
527 	 */
528 	spin_lock(&dentry->d_lock);
529 	if (d_unhashed(dentry)) {
530 		spin_unlock(&dentry->d_lock);
531 		return 0;
532 	}
533 	/*
534 	 * Check whether to do a partial shrink_dcache
535 	 * to get rid of unused child entries.
536 	 */
537 	if (!list_empty(&dentry->d_subdirs)) {
538 		spin_unlock(&dentry->d_lock);
539 		shrink_dcache_parent(dentry);
540 		spin_lock(&dentry->d_lock);
541 	}
542 
543 	/*
544 	 * Somebody else still using it?
545 	 *
546 	 * If it's a directory, we can't drop it
547 	 * for fear of somebody re-populating it
548 	 * with children (even though dropping it
549 	 * would make it unreachable from the root,
550 	 * we might still populate it if it was a
551 	 * working directory or similar).
552 	 * We also need to leave mountpoints alone,
553 	 * directory or not.
554 	 */
555 	if (dentry->d_count > 1 && dentry->d_inode) {
556 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
557 			spin_unlock(&dentry->d_lock);
558 			return -EBUSY;
559 		}
560 	}
561 
562 	__d_drop(dentry);
563 	spin_unlock(&dentry->d_lock);
564 	return 0;
565 }
566 EXPORT_SYMBOL(d_invalidate);
567 
568 /* This must be called with d_lock held */
569 static inline void __dget_dlock(struct dentry *dentry)
570 {
571 	dentry->d_count++;
572 }
573 
574 static inline void __dget(struct dentry *dentry)
575 {
576 	spin_lock(&dentry->d_lock);
577 	__dget_dlock(dentry);
578 	spin_unlock(&dentry->d_lock);
579 }
580 
581 struct dentry *dget_parent(struct dentry *dentry)
582 {
583 	struct dentry *ret;
584 
585 repeat:
586 	/*
587 	 * Don't need rcu_dereference because we re-check it was correct under
588 	 * the lock.
589 	 */
590 	rcu_read_lock();
591 	ret = dentry->d_parent;
592 	spin_lock(&ret->d_lock);
593 	if (unlikely(ret != dentry->d_parent)) {
594 		spin_unlock(&ret->d_lock);
595 		rcu_read_unlock();
596 		goto repeat;
597 	}
598 	rcu_read_unlock();
599 	BUG_ON(!ret->d_count);
600 	ret->d_count++;
601 	spin_unlock(&ret->d_lock);
602 	return ret;
603 }
604 EXPORT_SYMBOL(dget_parent);
605 
606 /**
607  * d_find_alias - grab a hashed alias of inode
608  * @inode: inode in question
609  * @want_discon:  flag, used by d_splice_alias, to request
610  *          that only a DISCONNECTED alias be returned.
611  *
612  * If inode has a hashed alias, or is a directory and has any alias,
613  * acquire the reference to alias and return it. Otherwise return NULL.
614  * Notice that if inode is a directory there can be only one alias and
615  * it can be unhashed only if it has no children, or if it is the root
616  * of a filesystem.
617  *
618  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
619  * any other hashed alias over that one unless @want_discon is set,
620  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
621  */
622 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
623 {
624 	struct dentry *alias, *discon_alias;
625 
626 again:
627 	discon_alias = NULL;
628 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
629 		spin_lock(&alias->d_lock);
630  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
631 			if (IS_ROOT(alias) &&
632 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
633 				discon_alias = alias;
634 			} else if (!want_discon) {
635 				__dget_dlock(alias);
636 				spin_unlock(&alias->d_lock);
637 				return alias;
638 			}
639 		}
640 		spin_unlock(&alias->d_lock);
641 	}
642 	if (discon_alias) {
643 		alias = discon_alias;
644 		spin_lock(&alias->d_lock);
645 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
646 			if (IS_ROOT(alias) &&
647 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
648 				__dget_dlock(alias);
649 				spin_unlock(&alias->d_lock);
650 				return alias;
651 			}
652 		}
653 		spin_unlock(&alias->d_lock);
654 		goto again;
655 	}
656 	return NULL;
657 }
658 
659 struct dentry *d_find_alias(struct inode *inode)
660 {
661 	struct dentry *de = NULL;
662 
663 	if (!list_empty(&inode->i_dentry)) {
664 		spin_lock(&inode->i_lock);
665 		de = __d_find_alias(inode, 0);
666 		spin_unlock(&inode->i_lock);
667 	}
668 	return de;
669 }
670 EXPORT_SYMBOL(d_find_alias);
671 
672 /*
673  *	Try to kill dentries associated with this inode.
674  * WARNING: you must own a reference to inode.
675  */
676 void d_prune_aliases(struct inode *inode)
677 {
678 	struct dentry *dentry;
679 restart:
680 	spin_lock(&inode->i_lock);
681 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
682 		spin_lock(&dentry->d_lock);
683 		if (!dentry->d_count) {
684 			__dget_dlock(dentry);
685 			__d_drop(dentry);
686 			spin_unlock(&dentry->d_lock);
687 			spin_unlock(&inode->i_lock);
688 			dput(dentry);
689 			goto restart;
690 		}
691 		spin_unlock(&dentry->d_lock);
692 	}
693 	spin_unlock(&inode->i_lock);
694 }
695 EXPORT_SYMBOL(d_prune_aliases);
696 
697 /*
698  * Try to throw away a dentry - free the inode, dput the parent.
699  * Requires dentry->d_lock is held, and dentry->d_count == 0.
700  * Releases dentry->d_lock.
701  *
702  * This may fail if locks cannot be acquired no problem, just try again.
703  */
704 static void try_prune_one_dentry(struct dentry *dentry)
705 	__releases(dentry->d_lock)
706 {
707 	struct dentry *parent;
708 
709 	parent = dentry_kill(dentry, 0);
710 	/*
711 	 * If dentry_kill returns NULL, we have nothing more to do.
712 	 * if it returns the same dentry, trylocks failed. In either
713 	 * case, just loop again.
714 	 *
715 	 * Otherwise, we need to prune ancestors too. This is necessary
716 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
717 	 * is also expected to be beneficial in reducing dentry cache
718 	 * fragmentation.
719 	 */
720 	if (!parent)
721 		return;
722 	if (parent == dentry)
723 		return;
724 
725 	/* Prune ancestors. */
726 	dentry = parent;
727 	while (dentry) {
728 		spin_lock(&dentry->d_lock);
729 		if (dentry->d_count > 1) {
730 			dentry->d_count--;
731 			spin_unlock(&dentry->d_lock);
732 			return;
733 		}
734 		dentry = dentry_kill(dentry, 1);
735 	}
736 }
737 
738 static void shrink_dentry_list(struct list_head *list)
739 {
740 	struct dentry *dentry;
741 
742 	rcu_read_lock();
743 	for (;;) {
744 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
745 		if (&dentry->d_lru == list)
746 			break; /* empty */
747 		spin_lock(&dentry->d_lock);
748 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
749 			spin_unlock(&dentry->d_lock);
750 			continue;
751 		}
752 
753 		/*
754 		 * We found an inuse dentry which was not removed from
755 		 * the LRU because of laziness during lookup.  Do not free
756 		 * it - just keep it off the LRU list.
757 		 */
758 		if (dentry->d_count) {
759 			dentry_lru_del(dentry);
760 			spin_unlock(&dentry->d_lock);
761 			continue;
762 		}
763 
764 		rcu_read_unlock();
765 
766 		try_prune_one_dentry(dentry);
767 
768 		rcu_read_lock();
769 	}
770 	rcu_read_unlock();
771 }
772 
773 /**
774  * prune_dcache_sb - shrink the dcache
775  * @sb: superblock
776  * @count: number of entries to try to free
777  *
778  * Attempt to shrink the superblock dcache LRU by @count entries. This is
779  * done when we need more memory an called from the superblock shrinker
780  * function.
781  *
782  * This function may fail to free any resources if all the dentries are in
783  * use.
784  */
785 void prune_dcache_sb(struct super_block *sb, int count)
786 {
787 	struct dentry *dentry;
788 	LIST_HEAD(referenced);
789 	LIST_HEAD(tmp);
790 
791 relock:
792 	spin_lock(&dcache_lru_lock);
793 	while (!list_empty(&sb->s_dentry_lru)) {
794 		dentry = list_entry(sb->s_dentry_lru.prev,
795 				struct dentry, d_lru);
796 		BUG_ON(dentry->d_sb != sb);
797 
798 		if (!spin_trylock(&dentry->d_lock)) {
799 			spin_unlock(&dcache_lru_lock);
800 			cpu_relax();
801 			goto relock;
802 		}
803 
804 		if (dentry->d_flags & DCACHE_REFERENCED) {
805 			dentry->d_flags &= ~DCACHE_REFERENCED;
806 			list_move(&dentry->d_lru, &referenced);
807 			spin_unlock(&dentry->d_lock);
808 		} else {
809 			list_move_tail(&dentry->d_lru, &tmp);
810 			dentry->d_flags |= DCACHE_SHRINK_LIST;
811 			spin_unlock(&dentry->d_lock);
812 			if (!--count)
813 				break;
814 		}
815 		cond_resched_lock(&dcache_lru_lock);
816 	}
817 	if (!list_empty(&referenced))
818 		list_splice(&referenced, &sb->s_dentry_lru);
819 	spin_unlock(&dcache_lru_lock);
820 
821 	shrink_dentry_list(&tmp);
822 }
823 
824 /**
825  * shrink_dcache_sb - shrink dcache for a superblock
826  * @sb: superblock
827  *
828  * Shrink the dcache for the specified super block. This is used to free
829  * the dcache before unmounting a file system.
830  */
831 void shrink_dcache_sb(struct super_block *sb)
832 {
833 	LIST_HEAD(tmp);
834 
835 	spin_lock(&dcache_lru_lock);
836 	while (!list_empty(&sb->s_dentry_lru)) {
837 		list_splice_init(&sb->s_dentry_lru, &tmp);
838 		spin_unlock(&dcache_lru_lock);
839 		shrink_dentry_list(&tmp);
840 		spin_lock(&dcache_lru_lock);
841 	}
842 	spin_unlock(&dcache_lru_lock);
843 }
844 EXPORT_SYMBOL(shrink_dcache_sb);
845 
846 /*
847  * destroy a single subtree of dentries for unmount
848  * - see the comments on shrink_dcache_for_umount() for a description of the
849  *   locking
850  */
851 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
852 {
853 	struct dentry *parent;
854 
855 	BUG_ON(!IS_ROOT(dentry));
856 
857 	for (;;) {
858 		/* descend to the first leaf in the current subtree */
859 		while (!list_empty(&dentry->d_subdirs))
860 			dentry = list_entry(dentry->d_subdirs.next,
861 					    struct dentry, d_u.d_child);
862 
863 		/* consume the dentries from this leaf up through its parents
864 		 * until we find one with children or run out altogether */
865 		do {
866 			struct inode *inode;
867 
868 			/*
869 			 * remove the dentry from the lru, and inform
870 			 * the fs that this dentry is about to be
871 			 * unhashed and destroyed.
872 			 */
873 			dentry_lru_prune(dentry);
874 			__d_shrink(dentry);
875 
876 			if (dentry->d_count != 0) {
877 				printk(KERN_ERR
878 				       "BUG: Dentry %p{i=%lx,n=%s}"
879 				       " still in use (%d)"
880 				       " [unmount of %s %s]\n",
881 				       dentry,
882 				       dentry->d_inode ?
883 				       dentry->d_inode->i_ino : 0UL,
884 				       dentry->d_name.name,
885 				       dentry->d_count,
886 				       dentry->d_sb->s_type->name,
887 				       dentry->d_sb->s_id);
888 				BUG();
889 			}
890 
891 			if (IS_ROOT(dentry)) {
892 				parent = NULL;
893 				list_del(&dentry->d_u.d_child);
894 			} else {
895 				parent = dentry->d_parent;
896 				parent->d_count--;
897 				list_del(&dentry->d_u.d_child);
898 			}
899 
900 			inode = dentry->d_inode;
901 			if (inode) {
902 				dentry->d_inode = NULL;
903 				list_del_init(&dentry->d_alias);
904 				if (dentry->d_op && dentry->d_op->d_iput)
905 					dentry->d_op->d_iput(dentry, inode);
906 				else
907 					iput(inode);
908 			}
909 
910 			d_free(dentry);
911 
912 			/* finished when we fall off the top of the tree,
913 			 * otherwise we ascend to the parent and move to the
914 			 * next sibling if there is one */
915 			if (!parent)
916 				return;
917 			dentry = parent;
918 		} while (list_empty(&dentry->d_subdirs));
919 
920 		dentry = list_entry(dentry->d_subdirs.next,
921 				    struct dentry, d_u.d_child);
922 	}
923 }
924 
925 /*
926  * destroy the dentries attached to a superblock on unmounting
927  * - we don't need to use dentry->d_lock because:
928  *   - the superblock is detached from all mountings and open files, so the
929  *     dentry trees will not be rearranged by the VFS
930  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
931  *     any dentries belonging to this superblock that it comes across
932  *   - the filesystem itself is no longer permitted to rearrange the dentries
933  *     in this superblock
934  */
935 void shrink_dcache_for_umount(struct super_block *sb)
936 {
937 	struct dentry *dentry;
938 
939 	if (down_read_trylock(&sb->s_umount))
940 		BUG();
941 
942 	dentry = sb->s_root;
943 	sb->s_root = NULL;
944 	dentry->d_count--;
945 	shrink_dcache_for_umount_subtree(dentry);
946 
947 	while (!hlist_bl_empty(&sb->s_anon)) {
948 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
949 		shrink_dcache_for_umount_subtree(dentry);
950 	}
951 }
952 
953 /*
954  * This tries to ascend one level of parenthood, but
955  * we can race with renaming, so we need to re-check
956  * the parenthood after dropping the lock and check
957  * that the sequence number still matches.
958  */
959 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
960 {
961 	struct dentry *new = old->d_parent;
962 
963 	rcu_read_lock();
964 	spin_unlock(&old->d_lock);
965 	spin_lock(&new->d_lock);
966 
967 	/*
968 	 * might go back up the wrong parent if we have had a rename
969 	 * or deletion
970 	 */
971 	if (new != old->d_parent ||
972 		 (old->d_flags & DCACHE_DISCONNECTED) ||
973 		 (!locked && read_seqretry(&rename_lock, seq))) {
974 		spin_unlock(&new->d_lock);
975 		new = NULL;
976 	}
977 	rcu_read_unlock();
978 	return new;
979 }
980 
981 
982 /*
983  * Search for at least 1 mount point in the dentry's subdirs.
984  * We descend to the next level whenever the d_subdirs
985  * list is non-empty and continue searching.
986  */
987 
988 /**
989  * have_submounts - check for mounts over a dentry
990  * @parent: dentry to check.
991  *
992  * Return true if the parent or its subdirectories contain
993  * a mount point
994  */
995 int have_submounts(struct dentry *parent)
996 {
997 	struct dentry *this_parent;
998 	struct list_head *next;
999 	unsigned seq;
1000 	int locked = 0;
1001 
1002 	seq = read_seqbegin(&rename_lock);
1003 again:
1004 	this_parent = parent;
1005 
1006 	if (d_mountpoint(parent))
1007 		goto positive;
1008 	spin_lock(&this_parent->d_lock);
1009 repeat:
1010 	next = this_parent->d_subdirs.next;
1011 resume:
1012 	while (next != &this_parent->d_subdirs) {
1013 		struct list_head *tmp = next;
1014 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1015 		next = tmp->next;
1016 
1017 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1018 		/* Have we found a mount point ? */
1019 		if (d_mountpoint(dentry)) {
1020 			spin_unlock(&dentry->d_lock);
1021 			spin_unlock(&this_parent->d_lock);
1022 			goto positive;
1023 		}
1024 		if (!list_empty(&dentry->d_subdirs)) {
1025 			spin_unlock(&this_parent->d_lock);
1026 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1027 			this_parent = dentry;
1028 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1029 			goto repeat;
1030 		}
1031 		spin_unlock(&dentry->d_lock);
1032 	}
1033 	/*
1034 	 * All done at this level ... ascend and resume the search.
1035 	 */
1036 	if (this_parent != parent) {
1037 		struct dentry *child = this_parent;
1038 		this_parent = try_to_ascend(this_parent, locked, seq);
1039 		if (!this_parent)
1040 			goto rename_retry;
1041 		next = child->d_u.d_child.next;
1042 		goto resume;
1043 	}
1044 	spin_unlock(&this_parent->d_lock);
1045 	if (!locked && read_seqretry(&rename_lock, seq))
1046 		goto rename_retry;
1047 	if (locked)
1048 		write_sequnlock(&rename_lock);
1049 	return 0; /* No mount points found in tree */
1050 positive:
1051 	if (!locked && read_seqretry(&rename_lock, seq))
1052 		goto rename_retry;
1053 	if (locked)
1054 		write_sequnlock(&rename_lock);
1055 	return 1;
1056 
1057 rename_retry:
1058 	locked = 1;
1059 	write_seqlock(&rename_lock);
1060 	goto again;
1061 }
1062 EXPORT_SYMBOL(have_submounts);
1063 
1064 /*
1065  * Search the dentry child list for the specified parent,
1066  * and move any unused dentries to the end of the unused
1067  * list for prune_dcache(). We descend to the next level
1068  * whenever the d_subdirs list is non-empty and continue
1069  * searching.
1070  *
1071  * It returns zero iff there are no unused children,
1072  * otherwise  it returns the number of children moved to
1073  * the end of the unused list. This may not be the total
1074  * number of unused children, because select_parent can
1075  * drop the lock and return early due to latency
1076  * constraints.
1077  */
1078 static int select_parent(struct dentry *parent, struct list_head *dispose)
1079 {
1080 	struct dentry *this_parent;
1081 	struct list_head *next;
1082 	unsigned seq;
1083 	int found = 0;
1084 	int locked = 0;
1085 
1086 	seq = read_seqbegin(&rename_lock);
1087 again:
1088 	this_parent = parent;
1089 	spin_lock(&this_parent->d_lock);
1090 repeat:
1091 	next = this_parent->d_subdirs.next;
1092 resume:
1093 	while (next != &this_parent->d_subdirs) {
1094 		struct list_head *tmp = next;
1095 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1096 		next = tmp->next;
1097 
1098 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1099 
1100 		/*
1101 		 * move only zero ref count dentries to the dispose list.
1102 		 *
1103 		 * Those which are presently on the shrink list, being processed
1104 		 * by shrink_dentry_list(), shouldn't be moved.  Otherwise the
1105 		 * loop in shrink_dcache_parent() might not make any progress
1106 		 * and loop forever.
1107 		 */
1108 		if (dentry->d_count) {
1109 			dentry_lru_del(dentry);
1110 		} else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
1111 			dentry_lru_move_list(dentry, dispose);
1112 			dentry->d_flags |= DCACHE_SHRINK_LIST;
1113 			found++;
1114 		}
1115 		/*
1116 		 * We can return to the caller if we have found some (this
1117 		 * ensures forward progress). We'll be coming back to find
1118 		 * the rest.
1119 		 */
1120 		if (found && need_resched()) {
1121 			spin_unlock(&dentry->d_lock);
1122 			goto out;
1123 		}
1124 
1125 		/*
1126 		 * Descend a level if the d_subdirs list is non-empty.
1127 		 */
1128 		if (!list_empty(&dentry->d_subdirs)) {
1129 			spin_unlock(&this_parent->d_lock);
1130 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1131 			this_parent = dentry;
1132 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1133 			goto repeat;
1134 		}
1135 
1136 		spin_unlock(&dentry->d_lock);
1137 	}
1138 	/*
1139 	 * All done at this level ... ascend and resume the search.
1140 	 */
1141 	if (this_parent != parent) {
1142 		struct dentry *child = this_parent;
1143 		this_parent = try_to_ascend(this_parent, locked, seq);
1144 		if (!this_parent)
1145 			goto rename_retry;
1146 		next = child->d_u.d_child.next;
1147 		goto resume;
1148 	}
1149 out:
1150 	spin_unlock(&this_parent->d_lock);
1151 	if (!locked && read_seqretry(&rename_lock, seq))
1152 		goto rename_retry;
1153 	if (locked)
1154 		write_sequnlock(&rename_lock);
1155 	return found;
1156 
1157 rename_retry:
1158 	if (found)
1159 		return found;
1160 	locked = 1;
1161 	write_seqlock(&rename_lock);
1162 	goto again;
1163 }
1164 
1165 /**
1166  * shrink_dcache_parent - prune dcache
1167  * @parent: parent of entries to prune
1168  *
1169  * Prune the dcache to remove unused children of the parent dentry.
1170  */
1171 void shrink_dcache_parent(struct dentry * parent)
1172 {
1173 	LIST_HEAD(dispose);
1174 	int found;
1175 
1176 	while ((found = select_parent(parent, &dispose)) != 0)
1177 		shrink_dentry_list(&dispose);
1178 }
1179 EXPORT_SYMBOL(shrink_dcache_parent);
1180 
1181 /**
1182  * __d_alloc	-	allocate a dcache entry
1183  * @sb: filesystem it will belong to
1184  * @name: qstr of the name
1185  *
1186  * Allocates a dentry. It returns %NULL if there is insufficient memory
1187  * available. On a success the dentry is returned. The name passed in is
1188  * copied and the copy passed in may be reused after this call.
1189  */
1190 
1191 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1192 {
1193 	struct dentry *dentry;
1194 	char *dname;
1195 
1196 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1197 	if (!dentry)
1198 		return NULL;
1199 
1200 	if (name->len > DNAME_INLINE_LEN-1) {
1201 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1202 		if (!dname) {
1203 			kmem_cache_free(dentry_cache, dentry);
1204 			return NULL;
1205 		}
1206 	} else  {
1207 		dname = dentry->d_iname;
1208 	}
1209 	dentry->d_name.name = dname;
1210 
1211 	dentry->d_name.len = name->len;
1212 	dentry->d_name.hash = name->hash;
1213 	memcpy(dname, name->name, name->len);
1214 	dname[name->len] = 0;
1215 
1216 	dentry->d_count = 1;
1217 	dentry->d_flags = 0;
1218 	spin_lock_init(&dentry->d_lock);
1219 	seqcount_init(&dentry->d_seq);
1220 	dentry->d_inode = NULL;
1221 	dentry->d_parent = dentry;
1222 	dentry->d_sb = sb;
1223 	dentry->d_op = NULL;
1224 	dentry->d_fsdata = NULL;
1225 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1226 	INIT_LIST_HEAD(&dentry->d_lru);
1227 	INIT_LIST_HEAD(&dentry->d_subdirs);
1228 	INIT_LIST_HEAD(&dentry->d_alias);
1229 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1230 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1231 
1232 	this_cpu_inc(nr_dentry);
1233 
1234 	return dentry;
1235 }
1236 
1237 /**
1238  * d_alloc	-	allocate a dcache entry
1239  * @parent: parent of entry to allocate
1240  * @name: qstr of the name
1241  *
1242  * Allocates a dentry. It returns %NULL if there is insufficient memory
1243  * available. On a success the dentry is returned. The name passed in is
1244  * copied and the copy passed in may be reused after this call.
1245  */
1246 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1247 {
1248 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1249 	if (!dentry)
1250 		return NULL;
1251 
1252 	spin_lock(&parent->d_lock);
1253 	/*
1254 	 * don't need child lock because it is not subject
1255 	 * to concurrency here
1256 	 */
1257 	__dget_dlock(parent);
1258 	dentry->d_parent = parent;
1259 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1260 	spin_unlock(&parent->d_lock);
1261 
1262 	return dentry;
1263 }
1264 EXPORT_SYMBOL(d_alloc);
1265 
1266 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1267 {
1268 	struct dentry *dentry = __d_alloc(sb, name);
1269 	if (dentry)
1270 		dentry->d_flags |= DCACHE_DISCONNECTED;
1271 	return dentry;
1272 }
1273 EXPORT_SYMBOL(d_alloc_pseudo);
1274 
1275 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1276 {
1277 	struct qstr q;
1278 
1279 	q.name = name;
1280 	q.len = strlen(name);
1281 	q.hash = full_name_hash(q.name, q.len);
1282 	return d_alloc(parent, &q);
1283 }
1284 EXPORT_SYMBOL(d_alloc_name);
1285 
1286 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1287 {
1288 	WARN_ON_ONCE(dentry->d_op);
1289 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1290 				DCACHE_OP_COMPARE	|
1291 				DCACHE_OP_REVALIDATE	|
1292 				DCACHE_OP_DELETE ));
1293 	dentry->d_op = op;
1294 	if (!op)
1295 		return;
1296 	if (op->d_hash)
1297 		dentry->d_flags |= DCACHE_OP_HASH;
1298 	if (op->d_compare)
1299 		dentry->d_flags |= DCACHE_OP_COMPARE;
1300 	if (op->d_revalidate)
1301 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1302 	if (op->d_delete)
1303 		dentry->d_flags |= DCACHE_OP_DELETE;
1304 	if (op->d_prune)
1305 		dentry->d_flags |= DCACHE_OP_PRUNE;
1306 
1307 }
1308 EXPORT_SYMBOL(d_set_d_op);
1309 
1310 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1311 {
1312 	spin_lock(&dentry->d_lock);
1313 	if (inode) {
1314 		if (unlikely(IS_AUTOMOUNT(inode)))
1315 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1316 		list_add(&dentry->d_alias, &inode->i_dentry);
1317 	}
1318 	dentry->d_inode = inode;
1319 	dentry_rcuwalk_barrier(dentry);
1320 	spin_unlock(&dentry->d_lock);
1321 	fsnotify_d_instantiate(dentry, inode);
1322 }
1323 
1324 /**
1325  * d_instantiate - fill in inode information for a dentry
1326  * @entry: dentry to complete
1327  * @inode: inode to attach to this dentry
1328  *
1329  * Fill in inode information in the entry.
1330  *
1331  * This turns negative dentries into productive full members
1332  * of society.
1333  *
1334  * NOTE! This assumes that the inode count has been incremented
1335  * (or otherwise set) by the caller to indicate that it is now
1336  * in use by the dcache.
1337  */
1338 
1339 void d_instantiate(struct dentry *entry, struct inode * inode)
1340 {
1341 	BUG_ON(!list_empty(&entry->d_alias));
1342 	if (inode)
1343 		spin_lock(&inode->i_lock);
1344 	__d_instantiate(entry, inode);
1345 	if (inode)
1346 		spin_unlock(&inode->i_lock);
1347 	security_d_instantiate(entry, inode);
1348 }
1349 EXPORT_SYMBOL(d_instantiate);
1350 
1351 /**
1352  * d_instantiate_unique - instantiate a non-aliased dentry
1353  * @entry: dentry to instantiate
1354  * @inode: inode to attach to this dentry
1355  *
1356  * Fill in inode information in the entry. On success, it returns NULL.
1357  * If an unhashed alias of "entry" already exists, then we return the
1358  * aliased dentry instead and drop one reference to inode.
1359  *
1360  * Note that in order to avoid conflicts with rename() etc, the caller
1361  * had better be holding the parent directory semaphore.
1362  *
1363  * This also assumes that the inode count has been incremented
1364  * (or otherwise set) by the caller to indicate that it is now
1365  * in use by the dcache.
1366  */
1367 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1368 					     struct inode *inode)
1369 {
1370 	struct dentry *alias;
1371 	int len = entry->d_name.len;
1372 	const char *name = entry->d_name.name;
1373 	unsigned int hash = entry->d_name.hash;
1374 
1375 	if (!inode) {
1376 		__d_instantiate(entry, NULL);
1377 		return NULL;
1378 	}
1379 
1380 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1381 		struct qstr *qstr = &alias->d_name;
1382 
1383 		/*
1384 		 * Don't need alias->d_lock here, because aliases with
1385 		 * d_parent == entry->d_parent are not subject to name or
1386 		 * parent changes, because the parent inode i_mutex is held.
1387 		 */
1388 		if (qstr->hash != hash)
1389 			continue;
1390 		if (alias->d_parent != entry->d_parent)
1391 			continue;
1392 		if (dentry_cmp(qstr->name, qstr->len, name, len))
1393 			continue;
1394 		__dget(alias);
1395 		return alias;
1396 	}
1397 
1398 	__d_instantiate(entry, inode);
1399 	return NULL;
1400 }
1401 
1402 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1403 {
1404 	struct dentry *result;
1405 
1406 	BUG_ON(!list_empty(&entry->d_alias));
1407 
1408 	if (inode)
1409 		spin_lock(&inode->i_lock);
1410 	result = __d_instantiate_unique(entry, inode);
1411 	if (inode)
1412 		spin_unlock(&inode->i_lock);
1413 
1414 	if (!result) {
1415 		security_d_instantiate(entry, inode);
1416 		return NULL;
1417 	}
1418 
1419 	BUG_ON(!d_unhashed(result));
1420 	iput(inode);
1421 	return result;
1422 }
1423 
1424 EXPORT_SYMBOL(d_instantiate_unique);
1425 
1426 /**
1427  * d_alloc_root - allocate root dentry
1428  * @root_inode: inode to allocate the root for
1429  *
1430  * Allocate a root ("/") dentry for the inode given. The inode is
1431  * instantiated and returned. %NULL is returned if there is insufficient
1432  * memory or the inode passed is %NULL.
1433  */
1434 
1435 struct dentry * d_alloc_root(struct inode * root_inode)
1436 {
1437 	struct dentry *res = NULL;
1438 
1439 	if (root_inode) {
1440 		static const struct qstr name = { .name = "/", .len = 1 };
1441 
1442 		res = __d_alloc(root_inode->i_sb, &name);
1443 		if (res)
1444 			d_instantiate(res, root_inode);
1445 	}
1446 	return res;
1447 }
1448 EXPORT_SYMBOL(d_alloc_root);
1449 
1450 struct dentry *d_make_root(struct inode *root_inode)
1451 {
1452 	struct dentry *res = NULL;
1453 
1454 	if (root_inode) {
1455 		static const struct qstr name = { .name = "/", .len = 1 };
1456 
1457 		res = __d_alloc(root_inode->i_sb, &name);
1458 		if (res)
1459 			d_instantiate(res, root_inode);
1460 		else
1461 			iput(root_inode);
1462 	}
1463 	return res;
1464 }
1465 EXPORT_SYMBOL(d_make_root);
1466 
1467 static struct dentry * __d_find_any_alias(struct inode *inode)
1468 {
1469 	struct dentry *alias;
1470 
1471 	if (list_empty(&inode->i_dentry))
1472 		return NULL;
1473 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1474 	__dget(alias);
1475 	return alias;
1476 }
1477 
1478 /**
1479  * d_find_any_alias - find any alias for a given inode
1480  * @inode: inode to find an alias for
1481  *
1482  * If any aliases exist for the given inode, take and return a
1483  * reference for one of them.  If no aliases exist, return %NULL.
1484  */
1485 struct dentry *d_find_any_alias(struct inode *inode)
1486 {
1487 	struct dentry *de;
1488 
1489 	spin_lock(&inode->i_lock);
1490 	de = __d_find_any_alias(inode);
1491 	spin_unlock(&inode->i_lock);
1492 	return de;
1493 }
1494 EXPORT_SYMBOL(d_find_any_alias);
1495 
1496 /**
1497  * d_obtain_alias - find or allocate a dentry for a given inode
1498  * @inode: inode to allocate the dentry for
1499  *
1500  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1501  * similar open by handle operations.  The returned dentry may be anonymous,
1502  * or may have a full name (if the inode was already in the cache).
1503  *
1504  * When called on a directory inode, we must ensure that the inode only ever
1505  * has one dentry.  If a dentry is found, that is returned instead of
1506  * allocating a new one.
1507  *
1508  * On successful return, the reference to the inode has been transferred
1509  * to the dentry.  In case of an error the reference on the inode is released.
1510  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1511  * be passed in and will be the error will be propagate to the return value,
1512  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1513  */
1514 struct dentry *d_obtain_alias(struct inode *inode)
1515 {
1516 	static const struct qstr anonstring = { .name = "" };
1517 	struct dentry *tmp;
1518 	struct dentry *res;
1519 
1520 	if (!inode)
1521 		return ERR_PTR(-ESTALE);
1522 	if (IS_ERR(inode))
1523 		return ERR_CAST(inode);
1524 
1525 	res = d_find_any_alias(inode);
1526 	if (res)
1527 		goto out_iput;
1528 
1529 	tmp = __d_alloc(inode->i_sb, &anonstring);
1530 	if (!tmp) {
1531 		res = ERR_PTR(-ENOMEM);
1532 		goto out_iput;
1533 	}
1534 
1535 	spin_lock(&inode->i_lock);
1536 	res = __d_find_any_alias(inode);
1537 	if (res) {
1538 		spin_unlock(&inode->i_lock);
1539 		dput(tmp);
1540 		goto out_iput;
1541 	}
1542 
1543 	/* attach a disconnected dentry */
1544 	spin_lock(&tmp->d_lock);
1545 	tmp->d_inode = inode;
1546 	tmp->d_flags |= DCACHE_DISCONNECTED;
1547 	list_add(&tmp->d_alias, &inode->i_dentry);
1548 	hlist_bl_lock(&tmp->d_sb->s_anon);
1549 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1550 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1551 	spin_unlock(&tmp->d_lock);
1552 	spin_unlock(&inode->i_lock);
1553 	security_d_instantiate(tmp, inode);
1554 
1555 	return tmp;
1556 
1557  out_iput:
1558 	if (res && !IS_ERR(res))
1559 		security_d_instantiate(res, inode);
1560 	iput(inode);
1561 	return res;
1562 }
1563 EXPORT_SYMBOL(d_obtain_alias);
1564 
1565 /**
1566  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1567  * @inode:  the inode which may have a disconnected dentry
1568  * @dentry: a negative dentry which we want to point to the inode.
1569  *
1570  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1571  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1572  * and return it, else simply d_add the inode to the dentry and return NULL.
1573  *
1574  * This is needed in the lookup routine of any filesystem that is exportable
1575  * (via knfsd) so that we can build dcache paths to directories effectively.
1576  *
1577  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1578  * is returned.  This matches the expected return value of ->lookup.
1579  *
1580  */
1581 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1582 {
1583 	struct dentry *new = NULL;
1584 
1585 	if (IS_ERR(inode))
1586 		return ERR_CAST(inode);
1587 
1588 	if (inode && S_ISDIR(inode->i_mode)) {
1589 		spin_lock(&inode->i_lock);
1590 		new = __d_find_alias(inode, 1);
1591 		if (new) {
1592 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1593 			spin_unlock(&inode->i_lock);
1594 			security_d_instantiate(new, inode);
1595 			d_move(new, dentry);
1596 			iput(inode);
1597 		} else {
1598 			/* already taking inode->i_lock, so d_add() by hand */
1599 			__d_instantiate(dentry, inode);
1600 			spin_unlock(&inode->i_lock);
1601 			security_d_instantiate(dentry, inode);
1602 			d_rehash(dentry);
1603 		}
1604 	} else
1605 		d_add(dentry, inode);
1606 	return new;
1607 }
1608 EXPORT_SYMBOL(d_splice_alias);
1609 
1610 /**
1611  * d_add_ci - lookup or allocate new dentry with case-exact name
1612  * @inode:  the inode case-insensitive lookup has found
1613  * @dentry: the negative dentry that was passed to the parent's lookup func
1614  * @name:   the case-exact name to be associated with the returned dentry
1615  *
1616  * This is to avoid filling the dcache with case-insensitive names to the
1617  * same inode, only the actual correct case is stored in the dcache for
1618  * case-insensitive filesystems.
1619  *
1620  * For a case-insensitive lookup match and if the the case-exact dentry
1621  * already exists in in the dcache, use it and return it.
1622  *
1623  * If no entry exists with the exact case name, allocate new dentry with
1624  * the exact case, and return the spliced entry.
1625  */
1626 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1627 			struct qstr *name)
1628 {
1629 	int error;
1630 	struct dentry *found;
1631 	struct dentry *new;
1632 
1633 	/*
1634 	 * First check if a dentry matching the name already exists,
1635 	 * if not go ahead and create it now.
1636 	 */
1637 	found = d_hash_and_lookup(dentry->d_parent, name);
1638 	if (!found) {
1639 		new = d_alloc(dentry->d_parent, name);
1640 		if (!new) {
1641 			error = -ENOMEM;
1642 			goto err_out;
1643 		}
1644 
1645 		found = d_splice_alias(inode, new);
1646 		if (found) {
1647 			dput(new);
1648 			return found;
1649 		}
1650 		return new;
1651 	}
1652 
1653 	/*
1654 	 * If a matching dentry exists, and it's not negative use it.
1655 	 *
1656 	 * Decrement the reference count to balance the iget() done
1657 	 * earlier on.
1658 	 */
1659 	if (found->d_inode) {
1660 		if (unlikely(found->d_inode != inode)) {
1661 			/* This can't happen because bad inodes are unhashed. */
1662 			BUG_ON(!is_bad_inode(inode));
1663 			BUG_ON(!is_bad_inode(found->d_inode));
1664 		}
1665 		iput(inode);
1666 		return found;
1667 	}
1668 
1669 	/*
1670 	 * We are going to instantiate this dentry, unhash it and clear the
1671 	 * lookup flag so we can do that.
1672 	 */
1673 	if (unlikely(d_need_lookup(found)))
1674 		d_clear_need_lookup(found);
1675 
1676 	/*
1677 	 * Negative dentry: instantiate it unless the inode is a directory and
1678 	 * already has a dentry.
1679 	 */
1680 	new = d_splice_alias(inode, found);
1681 	if (new) {
1682 		dput(found);
1683 		found = new;
1684 	}
1685 	return found;
1686 
1687 err_out:
1688 	iput(inode);
1689 	return ERR_PTR(error);
1690 }
1691 EXPORT_SYMBOL(d_add_ci);
1692 
1693 /**
1694  * __d_lookup_rcu - search for a dentry (racy, store-free)
1695  * @parent: parent dentry
1696  * @name: qstr of name we wish to find
1697  * @seq: returns d_seq value at the point where the dentry was found
1698  * @inode: returns dentry->d_inode when the inode was found valid.
1699  * Returns: dentry, or NULL
1700  *
1701  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1702  * resolution (store-free path walking) design described in
1703  * Documentation/filesystems/path-lookup.txt.
1704  *
1705  * This is not to be used outside core vfs.
1706  *
1707  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1708  * held, and rcu_read_lock held. The returned dentry must not be stored into
1709  * without taking d_lock and checking d_seq sequence count against @seq
1710  * returned here.
1711  *
1712  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1713  * function.
1714  *
1715  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1716  * the returned dentry, so long as its parent's seqlock is checked after the
1717  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1718  * is formed, giving integrity down the path walk.
1719  */
1720 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1721 				unsigned *seq, struct inode **inode)
1722 {
1723 	unsigned int len = name->len;
1724 	unsigned int hash = name->hash;
1725 	const unsigned char *str = name->name;
1726 	struct hlist_bl_head *b = d_hash(parent, hash);
1727 	struct hlist_bl_node *node;
1728 	struct dentry *dentry;
1729 
1730 	/*
1731 	 * Note: There is significant duplication with __d_lookup_rcu which is
1732 	 * required to prevent single threaded performance regressions
1733 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1734 	 * Keep the two functions in sync.
1735 	 */
1736 
1737 	/*
1738 	 * The hash list is protected using RCU.
1739 	 *
1740 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1741 	 * races with d_move().
1742 	 *
1743 	 * It is possible that concurrent renames can mess up our list
1744 	 * walk here and result in missing our dentry, resulting in the
1745 	 * false-negative result. d_lookup() protects against concurrent
1746 	 * renames using rename_lock seqlock.
1747 	 *
1748 	 * See Documentation/filesystems/path-lookup.txt for more details.
1749 	 */
1750 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1751 		struct inode *i;
1752 		const char *tname;
1753 		int tlen;
1754 
1755 		if (dentry->d_name.hash != hash)
1756 			continue;
1757 
1758 seqretry:
1759 		*seq = read_seqcount_begin(&dentry->d_seq);
1760 		if (dentry->d_parent != parent)
1761 			continue;
1762 		if (d_unhashed(dentry))
1763 			continue;
1764 		tlen = dentry->d_name.len;
1765 		tname = dentry->d_name.name;
1766 		i = dentry->d_inode;
1767 		prefetch(tname);
1768 		/*
1769 		 * This seqcount check is required to ensure name and
1770 		 * len are loaded atomically, so as not to walk off the
1771 		 * edge of memory when walking. If we could load this
1772 		 * atomically some other way, we could drop this check.
1773 		 */
1774 		if (read_seqcount_retry(&dentry->d_seq, *seq))
1775 			goto seqretry;
1776 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1777 			if (parent->d_op->d_compare(parent, *inode,
1778 						dentry, i,
1779 						tlen, tname, name))
1780 				continue;
1781 		} else {
1782 			if (dentry_cmp(tname, tlen, str, len))
1783 				continue;
1784 		}
1785 		/*
1786 		 * No extra seqcount check is required after the name
1787 		 * compare. The caller must perform a seqcount check in
1788 		 * order to do anything useful with the returned dentry
1789 		 * anyway.
1790 		 */
1791 		*inode = i;
1792 		return dentry;
1793 	}
1794 	return NULL;
1795 }
1796 
1797 /**
1798  * d_lookup - search for a dentry
1799  * @parent: parent dentry
1800  * @name: qstr of name we wish to find
1801  * Returns: dentry, or NULL
1802  *
1803  * d_lookup searches the children of the parent dentry for the name in
1804  * question. If the dentry is found its reference count is incremented and the
1805  * dentry is returned. The caller must use dput to free the entry when it has
1806  * finished using it. %NULL is returned if the dentry does not exist.
1807  */
1808 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1809 {
1810 	struct dentry *dentry;
1811 	unsigned seq;
1812 
1813         do {
1814                 seq = read_seqbegin(&rename_lock);
1815                 dentry = __d_lookup(parent, name);
1816                 if (dentry)
1817 			break;
1818 	} while (read_seqretry(&rename_lock, seq));
1819 	return dentry;
1820 }
1821 EXPORT_SYMBOL(d_lookup);
1822 
1823 /**
1824  * __d_lookup - search for a dentry (racy)
1825  * @parent: parent dentry
1826  * @name: qstr of name we wish to find
1827  * Returns: dentry, or NULL
1828  *
1829  * __d_lookup is like d_lookup, however it may (rarely) return a
1830  * false-negative result due to unrelated rename activity.
1831  *
1832  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1833  * however it must be used carefully, eg. with a following d_lookup in
1834  * the case of failure.
1835  *
1836  * __d_lookup callers must be commented.
1837  */
1838 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1839 {
1840 	unsigned int len = name->len;
1841 	unsigned int hash = name->hash;
1842 	const unsigned char *str = name->name;
1843 	struct hlist_bl_head *b = d_hash(parent, hash);
1844 	struct hlist_bl_node *node;
1845 	struct dentry *found = NULL;
1846 	struct dentry *dentry;
1847 
1848 	/*
1849 	 * Note: There is significant duplication with __d_lookup_rcu which is
1850 	 * required to prevent single threaded performance regressions
1851 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1852 	 * Keep the two functions in sync.
1853 	 */
1854 
1855 	/*
1856 	 * The hash list is protected using RCU.
1857 	 *
1858 	 * Take d_lock when comparing a candidate dentry, to avoid races
1859 	 * with d_move().
1860 	 *
1861 	 * It is possible that concurrent renames can mess up our list
1862 	 * walk here and result in missing our dentry, resulting in the
1863 	 * false-negative result. d_lookup() protects against concurrent
1864 	 * renames using rename_lock seqlock.
1865 	 *
1866 	 * See Documentation/filesystems/path-lookup.txt for more details.
1867 	 */
1868 	rcu_read_lock();
1869 
1870 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1871 		const char *tname;
1872 		int tlen;
1873 
1874 		if (dentry->d_name.hash != hash)
1875 			continue;
1876 
1877 		spin_lock(&dentry->d_lock);
1878 		if (dentry->d_parent != parent)
1879 			goto next;
1880 		if (d_unhashed(dentry))
1881 			goto next;
1882 
1883 		/*
1884 		 * It is safe to compare names since d_move() cannot
1885 		 * change the qstr (protected by d_lock).
1886 		 */
1887 		tlen = dentry->d_name.len;
1888 		tname = dentry->d_name.name;
1889 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1890 			if (parent->d_op->d_compare(parent, parent->d_inode,
1891 						dentry, dentry->d_inode,
1892 						tlen, tname, name))
1893 				goto next;
1894 		} else {
1895 			if (dentry_cmp(tname, tlen, str, len))
1896 				goto next;
1897 		}
1898 
1899 		dentry->d_count++;
1900 		found = dentry;
1901 		spin_unlock(&dentry->d_lock);
1902 		break;
1903 next:
1904 		spin_unlock(&dentry->d_lock);
1905  	}
1906  	rcu_read_unlock();
1907 
1908  	return found;
1909 }
1910 
1911 /**
1912  * d_hash_and_lookup - hash the qstr then search for a dentry
1913  * @dir: Directory to search in
1914  * @name: qstr of name we wish to find
1915  *
1916  * On hash failure or on lookup failure NULL is returned.
1917  */
1918 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1919 {
1920 	struct dentry *dentry = NULL;
1921 
1922 	/*
1923 	 * Check for a fs-specific hash function. Note that we must
1924 	 * calculate the standard hash first, as the d_op->d_hash()
1925 	 * routine may choose to leave the hash value unchanged.
1926 	 */
1927 	name->hash = full_name_hash(name->name, name->len);
1928 	if (dir->d_flags & DCACHE_OP_HASH) {
1929 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1930 			goto out;
1931 	}
1932 	dentry = d_lookup(dir, name);
1933 out:
1934 	return dentry;
1935 }
1936 
1937 /**
1938  * d_validate - verify dentry provided from insecure source (deprecated)
1939  * @dentry: The dentry alleged to be valid child of @dparent
1940  * @dparent: The parent dentry (known to be valid)
1941  *
1942  * An insecure source has sent us a dentry, here we verify it and dget() it.
1943  * This is used by ncpfs in its readdir implementation.
1944  * Zero is returned in the dentry is invalid.
1945  *
1946  * This function is slow for big directories, and deprecated, do not use it.
1947  */
1948 int d_validate(struct dentry *dentry, struct dentry *dparent)
1949 {
1950 	struct dentry *child;
1951 
1952 	spin_lock(&dparent->d_lock);
1953 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1954 		if (dentry == child) {
1955 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1956 			__dget_dlock(dentry);
1957 			spin_unlock(&dentry->d_lock);
1958 			spin_unlock(&dparent->d_lock);
1959 			return 1;
1960 		}
1961 	}
1962 	spin_unlock(&dparent->d_lock);
1963 
1964 	return 0;
1965 }
1966 EXPORT_SYMBOL(d_validate);
1967 
1968 /*
1969  * When a file is deleted, we have two options:
1970  * - turn this dentry into a negative dentry
1971  * - unhash this dentry and free it.
1972  *
1973  * Usually, we want to just turn this into
1974  * a negative dentry, but if anybody else is
1975  * currently using the dentry or the inode
1976  * we can't do that and we fall back on removing
1977  * it from the hash queues and waiting for
1978  * it to be deleted later when it has no users
1979  */
1980 
1981 /**
1982  * d_delete - delete a dentry
1983  * @dentry: The dentry to delete
1984  *
1985  * Turn the dentry into a negative dentry if possible, otherwise
1986  * remove it from the hash queues so it can be deleted later
1987  */
1988 
1989 void d_delete(struct dentry * dentry)
1990 {
1991 	struct inode *inode;
1992 	int isdir = 0;
1993 	/*
1994 	 * Are we the only user?
1995 	 */
1996 again:
1997 	spin_lock(&dentry->d_lock);
1998 	inode = dentry->d_inode;
1999 	isdir = S_ISDIR(inode->i_mode);
2000 	if (dentry->d_count == 1) {
2001 		if (inode && !spin_trylock(&inode->i_lock)) {
2002 			spin_unlock(&dentry->d_lock);
2003 			cpu_relax();
2004 			goto again;
2005 		}
2006 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2007 		dentry_unlink_inode(dentry);
2008 		fsnotify_nameremove(dentry, isdir);
2009 		return;
2010 	}
2011 
2012 	if (!d_unhashed(dentry))
2013 		__d_drop(dentry);
2014 
2015 	spin_unlock(&dentry->d_lock);
2016 
2017 	fsnotify_nameremove(dentry, isdir);
2018 }
2019 EXPORT_SYMBOL(d_delete);
2020 
2021 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2022 {
2023 	BUG_ON(!d_unhashed(entry));
2024 	hlist_bl_lock(b);
2025 	entry->d_flags |= DCACHE_RCUACCESS;
2026 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2027 	hlist_bl_unlock(b);
2028 }
2029 
2030 static void _d_rehash(struct dentry * entry)
2031 {
2032 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2033 }
2034 
2035 /**
2036  * d_rehash	- add an entry back to the hash
2037  * @entry: dentry to add to the hash
2038  *
2039  * Adds a dentry to the hash according to its name.
2040  */
2041 
2042 void d_rehash(struct dentry * entry)
2043 {
2044 	spin_lock(&entry->d_lock);
2045 	_d_rehash(entry);
2046 	spin_unlock(&entry->d_lock);
2047 }
2048 EXPORT_SYMBOL(d_rehash);
2049 
2050 /**
2051  * dentry_update_name_case - update case insensitive dentry with a new name
2052  * @dentry: dentry to be updated
2053  * @name: new name
2054  *
2055  * Update a case insensitive dentry with new case of name.
2056  *
2057  * dentry must have been returned by d_lookup with name @name. Old and new
2058  * name lengths must match (ie. no d_compare which allows mismatched name
2059  * lengths).
2060  *
2061  * Parent inode i_mutex must be held over d_lookup and into this call (to
2062  * keep renames and concurrent inserts, and readdir(2) away).
2063  */
2064 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2065 {
2066 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2067 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2068 
2069 	spin_lock(&dentry->d_lock);
2070 	write_seqcount_begin(&dentry->d_seq);
2071 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2072 	write_seqcount_end(&dentry->d_seq);
2073 	spin_unlock(&dentry->d_lock);
2074 }
2075 EXPORT_SYMBOL(dentry_update_name_case);
2076 
2077 static void switch_names(struct dentry *dentry, struct dentry *target)
2078 {
2079 	if (dname_external(target)) {
2080 		if (dname_external(dentry)) {
2081 			/*
2082 			 * Both external: swap the pointers
2083 			 */
2084 			swap(target->d_name.name, dentry->d_name.name);
2085 		} else {
2086 			/*
2087 			 * dentry:internal, target:external.  Steal target's
2088 			 * storage and make target internal.
2089 			 */
2090 			memcpy(target->d_iname, dentry->d_name.name,
2091 					dentry->d_name.len + 1);
2092 			dentry->d_name.name = target->d_name.name;
2093 			target->d_name.name = target->d_iname;
2094 		}
2095 	} else {
2096 		if (dname_external(dentry)) {
2097 			/*
2098 			 * dentry:external, target:internal.  Give dentry's
2099 			 * storage to target and make dentry internal
2100 			 */
2101 			memcpy(dentry->d_iname, target->d_name.name,
2102 					target->d_name.len + 1);
2103 			target->d_name.name = dentry->d_name.name;
2104 			dentry->d_name.name = dentry->d_iname;
2105 		} else {
2106 			/*
2107 			 * Both are internal.  Just copy target to dentry
2108 			 */
2109 			memcpy(dentry->d_iname, target->d_name.name,
2110 					target->d_name.len + 1);
2111 			dentry->d_name.len = target->d_name.len;
2112 			return;
2113 		}
2114 	}
2115 	swap(dentry->d_name.len, target->d_name.len);
2116 }
2117 
2118 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2119 {
2120 	/*
2121 	 * XXXX: do we really need to take target->d_lock?
2122 	 */
2123 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2124 		spin_lock(&target->d_parent->d_lock);
2125 	else {
2126 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2127 			spin_lock(&dentry->d_parent->d_lock);
2128 			spin_lock_nested(&target->d_parent->d_lock,
2129 						DENTRY_D_LOCK_NESTED);
2130 		} else {
2131 			spin_lock(&target->d_parent->d_lock);
2132 			spin_lock_nested(&dentry->d_parent->d_lock,
2133 						DENTRY_D_LOCK_NESTED);
2134 		}
2135 	}
2136 	if (target < dentry) {
2137 		spin_lock_nested(&target->d_lock, 2);
2138 		spin_lock_nested(&dentry->d_lock, 3);
2139 	} else {
2140 		spin_lock_nested(&dentry->d_lock, 2);
2141 		spin_lock_nested(&target->d_lock, 3);
2142 	}
2143 }
2144 
2145 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2146 					struct dentry *target)
2147 {
2148 	if (target->d_parent != dentry->d_parent)
2149 		spin_unlock(&dentry->d_parent->d_lock);
2150 	if (target->d_parent != target)
2151 		spin_unlock(&target->d_parent->d_lock);
2152 }
2153 
2154 /*
2155  * When switching names, the actual string doesn't strictly have to
2156  * be preserved in the target - because we're dropping the target
2157  * anyway. As such, we can just do a simple memcpy() to copy over
2158  * the new name before we switch.
2159  *
2160  * Note that we have to be a lot more careful about getting the hash
2161  * switched - we have to switch the hash value properly even if it
2162  * then no longer matches the actual (corrupted) string of the target.
2163  * The hash value has to match the hash queue that the dentry is on..
2164  */
2165 /*
2166  * __d_move - move a dentry
2167  * @dentry: entry to move
2168  * @target: new dentry
2169  *
2170  * Update the dcache to reflect the move of a file name. Negative
2171  * dcache entries should not be moved in this way. Caller must hold
2172  * rename_lock, the i_mutex of the source and target directories,
2173  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2174  */
2175 static void __d_move(struct dentry * dentry, struct dentry * target)
2176 {
2177 	if (!dentry->d_inode)
2178 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2179 
2180 	BUG_ON(d_ancestor(dentry, target));
2181 	BUG_ON(d_ancestor(target, dentry));
2182 
2183 	dentry_lock_for_move(dentry, target);
2184 
2185 	write_seqcount_begin(&dentry->d_seq);
2186 	write_seqcount_begin(&target->d_seq);
2187 
2188 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2189 
2190 	/*
2191 	 * Move the dentry to the target hash queue. Don't bother checking
2192 	 * for the same hash queue because of how unlikely it is.
2193 	 */
2194 	__d_drop(dentry);
2195 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2196 
2197 	/* Unhash the target: dput() will then get rid of it */
2198 	__d_drop(target);
2199 
2200 	list_del(&dentry->d_u.d_child);
2201 	list_del(&target->d_u.d_child);
2202 
2203 	/* Switch the names.. */
2204 	switch_names(dentry, target);
2205 	swap(dentry->d_name.hash, target->d_name.hash);
2206 
2207 	/* ... and switch the parents */
2208 	if (IS_ROOT(dentry)) {
2209 		dentry->d_parent = target->d_parent;
2210 		target->d_parent = target;
2211 		INIT_LIST_HEAD(&target->d_u.d_child);
2212 	} else {
2213 		swap(dentry->d_parent, target->d_parent);
2214 
2215 		/* And add them back to the (new) parent lists */
2216 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2217 	}
2218 
2219 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2220 
2221 	write_seqcount_end(&target->d_seq);
2222 	write_seqcount_end(&dentry->d_seq);
2223 
2224 	dentry_unlock_parents_for_move(dentry, target);
2225 	spin_unlock(&target->d_lock);
2226 	fsnotify_d_move(dentry);
2227 	spin_unlock(&dentry->d_lock);
2228 }
2229 
2230 /*
2231  * d_move - move a dentry
2232  * @dentry: entry to move
2233  * @target: new dentry
2234  *
2235  * Update the dcache to reflect the move of a file name. Negative
2236  * dcache entries should not be moved in this way. See the locking
2237  * requirements for __d_move.
2238  */
2239 void d_move(struct dentry *dentry, struct dentry *target)
2240 {
2241 	write_seqlock(&rename_lock);
2242 	__d_move(dentry, target);
2243 	write_sequnlock(&rename_lock);
2244 }
2245 EXPORT_SYMBOL(d_move);
2246 
2247 /**
2248  * d_ancestor - search for an ancestor
2249  * @p1: ancestor dentry
2250  * @p2: child dentry
2251  *
2252  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2253  * an ancestor of p2, else NULL.
2254  */
2255 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2256 {
2257 	struct dentry *p;
2258 
2259 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2260 		if (p->d_parent == p1)
2261 			return p;
2262 	}
2263 	return NULL;
2264 }
2265 
2266 /*
2267  * This helper attempts to cope with remotely renamed directories
2268  *
2269  * It assumes that the caller is already holding
2270  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2271  *
2272  * Note: If ever the locking in lock_rename() changes, then please
2273  * remember to update this too...
2274  */
2275 static struct dentry *__d_unalias(struct inode *inode,
2276 		struct dentry *dentry, struct dentry *alias)
2277 {
2278 	struct mutex *m1 = NULL, *m2 = NULL;
2279 	struct dentry *ret;
2280 
2281 	/* If alias and dentry share a parent, then no extra locks required */
2282 	if (alias->d_parent == dentry->d_parent)
2283 		goto out_unalias;
2284 
2285 	/* See lock_rename() */
2286 	ret = ERR_PTR(-EBUSY);
2287 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2288 		goto out_err;
2289 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2290 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2291 		goto out_err;
2292 	m2 = &alias->d_parent->d_inode->i_mutex;
2293 out_unalias:
2294 	__d_move(alias, dentry);
2295 	ret = alias;
2296 out_err:
2297 	spin_unlock(&inode->i_lock);
2298 	if (m2)
2299 		mutex_unlock(m2);
2300 	if (m1)
2301 		mutex_unlock(m1);
2302 	return ret;
2303 }
2304 
2305 /*
2306  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2307  * named dentry in place of the dentry to be replaced.
2308  * returns with anon->d_lock held!
2309  */
2310 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2311 {
2312 	struct dentry *dparent, *aparent;
2313 
2314 	dentry_lock_for_move(anon, dentry);
2315 
2316 	write_seqcount_begin(&dentry->d_seq);
2317 	write_seqcount_begin(&anon->d_seq);
2318 
2319 	dparent = dentry->d_parent;
2320 	aparent = anon->d_parent;
2321 
2322 	switch_names(dentry, anon);
2323 	swap(dentry->d_name.hash, anon->d_name.hash);
2324 
2325 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2326 	list_del(&dentry->d_u.d_child);
2327 	if (!IS_ROOT(dentry))
2328 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2329 	else
2330 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2331 
2332 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2333 	list_del(&anon->d_u.d_child);
2334 	if (!IS_ROOT(anon))
2335 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2336 	else
2337 		INIT_LIST_HEAD(&anon->d_u.d_child);
2338 
2339 	write_seqcount_end(&dentry->d_seq);
2340 	write_seqcount_end(&anon->d_seq);
2341 
2342 	dentry_unlock_parents_for_move(anon, dentry);
2343 	spin_unlock(&dentry->d_lock);
2344 
2345 	/* anon->d_lock still locked, returns locked */
2346 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2347 }
2348 
2349 /**
2350  * d_materialise_unique - introduce an inode into the tree
2351  * @dentry: candidate dentry
2352  * @inode: inode to bind to the dentry, to which aliases may be attached
2353  *
2354  * Introduces an dentry into the tree, substituting an extant disconnected
2355  * root directory alias in its place if there is one. Caller must hold the
2356  * i_mutex of the parent directory.
2357  */
2358 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2359 {
2360 	struct dentry *actual;
2361 
2362 	BUG_ON(!d_unhashed(dentry));
2363 
2364 	if (!inode) {
2365 		actual = dentry;
2366 		__d_instantiate(dentry, NULL);
2367 		d_rehash(actual);
2368 		goto out_nolock;
2369 	}
2370 
2371 	spin_lock(&inode->i_lock);
2372 
2373 	if (S_ISDIR(inode->i_mode)) {
2374 		struct dentry *alias;
2375 
2376 		/* Does an aliased dentry already exist? */
2377 		alias = __d_find_alias(inode, 0);
2378 		if (alias) {
2379 			actual = alias;
2380 			write_seqlock(&rename_lock);
2381 
2382 			if (d_ancestor(alias, dentry)) {
2383 				/* Check for loops */
2384 				actual = ERR_PTR(-ELOOP);
2385 			} else if (IS_ROOT(alias)) {
2386 				/* Is this an anonymous mountpoint that we
2387 				 * could splice into our tree? */
2388 				__d_materialise_dentry(dentry, alias);
2389 				write_sequnlock(&rename_lock);
2390 				__d_drop(alias);
2391 				goto found;
2392 			} else {
2393 				/* Nope, but we must(!) avoid directory
2394 				 * aliasing */
2395 				actual = __d_unalias(inode, dentry, alias);
2396 			}
2397 			write_sequnlock(&rename_lock);
2398 			if (IS_ERR(actual)) {
2399 				if (PTR_ERR(actual) == -ELOOP)
2400 					pr_warn_ratelimited(
2401 						"VFS: Lookup of '%s' in %s %s"
2402 						" would have caused loop\n",
2403 						dentry->d_name.name,
2404 						inode->i_sb->s_type->name,
2405 						inode->i_sb->s_id);
2406 				dput(alias);
2407 			}
2408 			goto out_nolock;
2409 		}
2410 	}
2411 
2412 	/* Add a unique reference */
2413 	actual = __d_instantiate_unique(dentry, inode);
2414 	if (!actual)
2415 		actual = dentry;
2416 	else
2417 		BUG_ON(!d_unhashed(actual));
2418 
2419 	spin_lock(&actual->d_lock);
2420 found:
2421 	_d_rehash(actual);
2422 	spin_unlock(&actual->d_lock);
2423 	spin_unlock(&inode->i_lock);
2424 out_nolock:
2425 	if (actual == dentry) {
2426 		security_d_instantiate(dentry, inode);
2427 		return NULL;
2428 	}
2429 
2430 	iput(inode);
2431 	return actual;
2432 }
2433 EXPORT_SYMBOL_GPL(d_materialise_unique);
2434 
2435 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2436 {
2437 	*buflen -= namelen;
2438 	if (*buflen < 0)
2439 		return -ENAMETOOLONG;
2440 	*buffer -= namelen;
2441 	memcpy(*buffer, str, namelen);
2442 	return 0;
2443 }
2444 
2445 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2446 {
2447 	return prepend(buffer, buflen, name->name, name->len);
2448 }
2449 
2450 /**
2451  * prepend_path - Prepend path string to a buffer
2452  * @path: the dentry/vfsmount to report
2453  * @root: root vfsmnt/dentry
2454  * @buffer: pointer to the end of the buffer
2455  * @buflen: pointer to buffer length
2456  *
2457  * Caller holds the rename_lock.
2458  */
2459 static int prepend_path(const struct path *path,
2460 			const struct path *root,
2461 			char **buffer, int *buflen)
2462 {
2463 	struct dentry *dentry = path->dentry;
2464 	struct vfsmount *vfsmnt = path->mnt;
2465 	struct mount *mnt = real_mount(vfsmnt);
2466 	bool slash = false;
2467 	int error = 0;
2468 
2469 	br_read_lock(vfsmount_lock);
2470 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2471 		struct dentry * parent;
2472 
2473 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2474 			/* Global root? */
2475 			if (!mnt_has_parent(mnt))
2476 				goto global_root;
2477 			dentry = mnt->mnt_mountpoint;
2478 			mnt = mnt->mnt_parent;
2479 			vfsmnt = &mnt->mnt;
2480 			continue;
2481 		}
2482 		parent = dentry->d_parent;
2483 		prefetch(parent);
2484 		spin_lock(&dentry->d_lock);
2485 		error = prepend_name(buffer, buflen, &dentry->d_name);
2486 		spin_unlock(&dentry->d_lock);
2487 		if (!error)
2488 			error = prepend(buffer, buflen, "/", 1);
2489 		if (error)
2490 			break;
2491 
2492 		slash = true;
2493 		dentry = parent;
2494 	}
2495 
2496 	if (!error && !slash)
2497 		error = prepend(buffer, buflen, "/", 1);
2498 
2499 out:
2500 	br_read_unlock(vfsmount_lock);
2501 	return error;
2502 
2503 global_root:
2504 	/*
2505 	 * Filesystems needing to implement special "root names"
2506 	 * should do so with ->d_dname()
2507 	 */
2508 	if (IS_ROOT(dentry) &&
2509 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2510 		WARN(1, "Root dentry has weird name <%.*s>\n",
2511 		     (int) dentry->d_name.len, dentry->d_name.name);
2512 	}
2513 	if (!slash)
2514 		error = prepend(buffer, buflen, "/", 1);
2515 	if (!error)
2516 		error = real_mount(vfsmnt)->mnt_ns ? 1 : 2;
2517 	goto out;
2518 }
2519 
2520 /**
2521  * __d_path - return the path of a dentry
2522  * @path: the dentry/vfsmount to report
2523  * @root: root vfsmnt/dentry
2524  * @buf: buffer to return value in
2525  * @buflen: buffer length
2526  *
2527  * Convert a dentry into an ASCII path name.
2528  *
2529  * Returns a pointer into the buffer or an error code if the
2530  * path was too long.
2531  *
2532  * "buflen" should be positive.
2533  *
2534  * If the path is not reachable from the supplied root, return %NULL.
2535  */
2536 char *__d_path(const struct path *path,
2537 	       const struct path *root,
2538 	       char *buf, int buflen)
2539 {
2540 	char *res = buf + buflen;
2541 	int error;
2542 
2543 	prepend(&res, &buflen, "\0", 1);
2544 	write_seqlock(&rename_lock);
2545 	error = prepend_path(path, root, &res, &buflen);
2546 	write_sequnlock(&rename_lock);
2547 
2548 	if (error < 0)
2549 		return ERR_PTR(error);
2550 	if (error > 0)
2551 		return NULL;
2552 	return res;
2553 }
2554 
2555 char *d_absolute_path(const struct path *path,
2556 	       char *buf, int buflen)
2557 {
2558 	struct path root = {};
2559 	char *res = buf + buflen;
2560 	int error;
2561 
2562 	prepend(&res, &buflen, "\0", 1);
2563 	write_seqlock(&rename_lock);
2564 	error = prepend_path(path, &root, &res, &buflen);
2565 	write_sequnlock(&rename_lock);
2566 
2567 	if (error > 1)
2568 		error = -EINVAL;
2569 	if (error < 0)
2570 		return ERR_PTR(error);
2571 	return res;
2572 }
2573 
2574 /*
2575  * same as __d_path but appends "(deleted)" for unlinked files.
2576  */
2577 static int path_with_deleted(const struct path *path,
2578 			     const struct path *root,
2579 			     char **buf, int *buflen)
2580 {
2581 	prepend(buf, buflen, "\0", 1);
2582 	if (d_unlinked(path->dentry)) {
2583 		int error = prepend(buf, buflen, " (deleted)", 10);
2584 		if (error)
2585 			return error;
2586 	}
2587 
2588 	return prepend_path(path, root, buf, buflen);
2589 }
2590 
2591 static int prepend_unreachable(char **buffer, int *buflen)
2592 {
2593 	return prepend(buffer, buflen, "(unreachable)", 13);
2594 }
2595 
2596 /**
2597  * d_path - return the path of a dentry
2598  * @path: path to report
2599  * @buf: buffer to return value in
2600  * @buflen: buffer length
2601  *
2602  * Convert a dentry into an ASCII path name. If the entry has been deleted
2603  * the string " (deleted)" is appended. Note that this is ambiguous.
2604  *
2605  * Returns a pointer into the buffer or an error code if the path was
2606  * too long. Note: Callers should use the returned pointer, not the passed
2607  * in buffer, to use the name! The implementation often starts at an offset
2608  * into the buffer, and may leave 0 bytes at the start.
2609  *
2610  * "buflen" should be positive.
2611  */
2612 char *d_path(const struct path *path, char *buf, int buflen)
2613 {
2614 	char *res = buf + buflen;
2615 	struct path root;
2616 	int error;
2617 
2618 	/*
2619 	 * We have various synthetic filesystems that never get mounted.  On
2620 	 * these filesystems dentries are never used for lookup purposes, and
2621 	 * thus don't need to be hashed.  They also don't need a name until a
2622 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2623 	 * below allows us to generate a name for these objects on demand:
2624 	 */
2625 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2626 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2627 
2628 	get_fs_root(current->fs, &root);
2629 	write_seqlock(&rename_lock);
2630 	error = path_with_deleted(path, &root, &res, &buflen);
2631 	if (error < 0)
2632 		res = ERR_PTR(error);
2633 	write_sequnlock(&rename_lock);
2634 	path_put(&root);
2635 	return res;
2636 }
2637 EXPORT_SYMBOL(d_path);
2638 
2639 /**
2640  * d_path_with_unreachable - return the path of a dentry
2641  * @path: path to report
2642  * @buf: buffer to return value in
2643  * @buflen: buffer length
2644  *
2645  * The difference from d_path() is that this prepends "(unreachable)"
2646  * to paths which are unreachable from the current process' root.
2647  */
2648 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2649 {
2650 	char *res = buf + buflen;
2651 	struct path root;
2652 	int error;
2653 
2654 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2655 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2656 
2657 	get_fs_root(current->fs, &root);
2658 	write_seqlock(&rename_lock);
2659 	error = path_with_deleted(path, &root, &res, &buflen);
2660 	if (error > 0)
2661 		error = prepend_unreachable(&res, &buflen);
2662 	write_sequnlock(&rename_lock);
2663 	path_put(&root);
2664 	if (error)
2665 		res =  ERR_PTR(error);
2666 
2667 	return res;
2668 }
2669 
2670 /*
2671  * Helper function for dentry_operations.d_dname() members
2672  */
2673 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2674 			const char *fmt, ...)
2675 {
2676 	va_list args;
2677 	char temp[64];
2678 	int sz;
2679 
2680 	va_start(args, fmt);
2681 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2682 	va_end(args);
2683 
2684 	if (sz > sizeof(temp) || sz > buflen)
2685 		return ERR_PTR(-ENAMETOOLONG);
2686 
2687 	buffer += buflen - sz;
2688 	return memcpy(buffer, temp, sz);
2689 }
2690 
2691 /*
2692  * Write full pathname from the root of the filesystem into the buffer.
2693  */
2694 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2695 {
2696 	char *end = buf + buflen;
2697 	char *retval;
2698 
2699 	prepend(&end, &buflen, "\0", 1);
2700 	if (buflen < 1)
2701 		goto Elong;
2702 	/* Get '/' right */
2703 	retval = end-1;
2704 	*retval = '/';
2705 
2706 	while (!IS_ROOT(dentry)) {
2707 		struct dentry *parent = dentry->d_parent;
2708 		int error;
2709 
2710 		prefetch(parent);
2711 		spin_lock(&dentry->d_lock);
2712 		error = prepend_name(&end, &buflen, &dentry->d_name);
2713 		spin_unlock(&dentry->d_lock);
2714 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2715 			goto Elong;
2716 
2717 		retval = end;
2718 		dentry = parent;
2719 	}
2720 	return retval;
2721 Elong:
2722 	return ERR_PTR(-ENAMETOOLONG);
2723 }
2724 
2725 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2726 {
2727 	char *retval;
2728 
2729 	write_seqlock(&rename_lock);
2730 	retval = __dentry_path(dentry, buf, buflen);
2731 	write_sequnlock(&rename_lock);
2732 
2733 	return retval;
2734 }
2735 EXPORT_SYMBOL(dentry_path_raw);
2736 
2737 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2738 {
2739 	char *p = NULL;
2740 	char *retval;
2741 
2742 	write_seqlock(&rename_lock);
2743 	if (d_unlinked(dentry)) {
2744 		p = buf + buflen;
2745 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2746 			goto Elong;
2747 		buflen++;
2748 	}
2749 	retval = __dentry_path(dentry, buf, buflen);
2750 	write_sequnlock(&rename_lock);
2751 	if (!IS_ERR(retval) && p)
2752 		*p = '/';	/* restore '/' overriden with '\0' */
2753 	return retval;
2754 Elong:
2755 	return ERR_PTR(-ENAMETOOLONG);
2756 }
2757 
2758 /*
2759  * NOTE! The user-level library version returns a
2760  * character pointer. The kernel system call just
2761  * returns the length of the buffer filled (which
2762  * includes the ending '\0' character), or a negative
2763  * error value. So libc would do something like
2764  *
2765  *	char *getcwd(char * buf, size_t size)
2766  *	{
2767  *		int retval;
2768  *
2769  *		retval = sys_getcwd(buf, size);
2770  *		if (retval >= 0)
2771  *			return buf;
2772  *		errno = -retval;
2773  *		return NULL;
2774  *	}
2775  */
2776 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2777 {
2778 	int error;
2779 	struct path pwd, root;
2780 	char *page = (char *) __get_free_page(GFP_USER);
2781 
2782 	if (!page)
2783 		return -ENOMEM;
2784 
2785 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2786 
2787 	error = -ENOENT;
2788 	write_seqlock(&rename_lock);
2789 	if (!d_unlinked(pwd.dentry)) {
2790 		unsigned long len;
2791 		char *cwd = page + PAGE_SIZE;
2792 		int buflen = PAGE_SIZE;
2793 
2794 		prepend(&cwd, &buflen, "\0", 1);
2795 		error = prepend_path(&pwd, &root, &cwd, &buflen);
2796 		write_sequnlock(&rename_lock);
2797 
2798 		if (error < 0)
2799 			goto out;
2800 
2801 		/* Unreachable from current root */
2802 		if (error > 0) {
2803 			error = prepend_unreachable(&cwd, &buflen);
2804 			if (error)
2805 				goto out;
2806 		}
2807 
2808 		error = -ERANGE;
2809 		len = PAGE_SIZE + page - cwd;
2810 		if (len <= size) {
2811 			error = len;
2812 			if (copy_to_user(buf, cwd, len))
2813 				error = -EFAULT;
2814 		}
2815 	} else {
2816 		write_sequnlock(&rename_lock);
2817 	}
2818 
2819 out:
2820 	path_put(&pwd);
2821 	path_put(&root);
2822 	free_page((unsigned long) page);
2823 	return error;
2824 }
2825 
2826 /*
2827  * Test whether new_dentry is a subdirectory of old_dentry.
2828  *
2829  * Trivially implemented using the dcache structure
2830  */
2831 
2832 /**
2833  * is_subdir - is new dentry a subdirectory of old_dentry
2834  * @new_dentry: new dentry
2835  * @old_dentry: old dentry
2836  *
2837  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2838  * Returns 0 otherwise.
2839  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2840  */
2841 
2842 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2843 {
2844 	int result;
2845 	unsigned seq;
2846 
2847 	if (new_dentry == old_dentry)
2848 		return 1;
2849 
2850 	do {
2851 		/* for restarting inner loop in case of seq retry */
2852 		seq = read_seqbegin(&rename_lock);
2853 		/*
2854 		 * Need rcu_readlock to protect against the d_parent trashing
2855 		 * due to d_move
2856 		 */
2857 		rcu_read_lock();
2858 		if (d_ancestor(old_dentry, new_dentry))
2859 			result = 1;
2860 		else
2861 			result = 0;
2862 		rcu_read_unlock();
2863 	} while (read_seqretry(&rename_lock, seq));
2864 
2865 	return result;
2866 }
2867 
2868 void d_genocide(struct dentry *root)
2869 {
2870 	struct dentry *this_parent;
2871 	struct list_head *next;
2872 	unsigned seq;
2873 	int locked = 0;
2874 
2875 	seq = read_seqbegin(&rename_lock);
2876 again:
2877 	this_parent = root;
2878 	spin_lock(&this_parent->d_lock);
2879 repeat:
2880 	next = this_parent->d_subdirs.next;
2881 resume:
2882 	while (next != &this_parent->d_subdirs) {
2883 		struct list_head *tmp = next;
2884 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2885 		next = tmp->next;
2886 
2887 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2888 		if (d_unhashed(dentry) || !dentry->d_inode) {
2889 			spin_unlock(&dentry->d_lock);
2890 			continue;
2891 		}
2892 		if (!list_empty(&dentry->d_subdirs)) {
2893 			spin_unlock(&this_parent->d_lock);
2894 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2895 			this_parent = dentry;
2896 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2897 			goto repeat;
2898 		}
2899 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2900 			dentry->d_flags |= DCACHE_GENOCIDE;
2901 			dentry->d_count--;
2902 		}
2903 		spin_unlock(&dentry->d_lock);
2904 	}
2905 	if (this_parent != root) {
2906 		struct dentry *child = this_parent;
2907 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2908 			this_parent->d_flags |= DCACHE_GENOCIDE;
2909 			this_parent->d_count--;
2910 		}
2911 		this_parent = try_to_ascend(this_parent, locked, seq);
2912 		if (!this_parent)
2913 			goto rename_retry;
2914 		next = child->d_u.d_child.next;
2915 		goto resume;
2916 	}
2917 	spin_unlock(&this_parent->d_lock);
2918 	if (!locked && read_seqretry(&rename_lock, seq))
2919 		goto rename_retry;
2920 	if (locked)
2921 		write_sequnlock(&rename_lock);
2922 	return;
2923 
2924 rename_retry:
2925 	locked = 1;
2926 	write_seqlock(&rename_lock);
2927 	goto again;
2928 }
2929 
2930 /**
2931  * find_inode_number - check for dentry with name
2932  * @dir: directory to check
2933  * @name: Name to find.
2934  *
2935  * Check whether a dentry already exists for the given name,
2936  * and return the inode number if it has an inode. Otherwise
2937  * 0 is returned.
2938  *
2939  * This routine is used to post-process directory listings for
2940  * filesystems using synthetic inode numbers, and is necessary
2941  * to keep getcwd() working.
2942  */
2943 
2944 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2945 {
2946 	struct dentry * dentry;
2947 	ino_t ino = 0;
2948 
2949 	dentry = d_hash_and_lookup(dir, name);
2950 	if (dentry) {
2951 		if (dentry->d_inode)
2952 			ino = dentry->d_inode->i_ino;
2953 		dput(dentry);
2954 	}
2955 	return ino;
2956 }
2957 EXPORT_SYMBOL(find_inode_number);
2958 
2959 static __initdata unsigned long dhash_entries;
2960 static int __init set_dhash_entries(char *str)
2961 {
2962 	if (!str)
2963 		return 0;
2964 	dhash_entries = simple_strtoul(str, &str, 0);
2965 	return 1;
2966 }
2967 __setup("dhash_entries=", set_dhash_entries);
2968 
2969 static void __init dcache_init_early(void)
2970 {
2971 	int loop;
2972 
2973 	/* If hashes are distributed across NUMA nodes, defer
2974 	 * hash allocation until vmalloc space is available.
2975 	 */
2976 	if (hashdist)
2977 		return;
2978 
2979 	dentry_hashtable =
2980 		alloc_large_system_hash("Dentry cache",
2981 					sizeof(struct hlist_bl_head),
2982 					dhash_entries,
2983 					13,
2984 					HASH_EARLY,
2985 					&d_hash_shift,
2986 					&d_hash_mask,
2987 					0);
2988 
2989 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2990 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2991 }
2992 
2993 static void __init dcache_init(void)
2994 {
2995 	int loop;
2996 
2997 	/*
2998 	 * A constructor could be added for stable state like the lists,
2999 	 * but it is probably not worth it because of the cache nature
3000 	 * of the dcache.
3001 	 */
3002 	dentry_cache = KMEM_CACHE(dentry,
3003 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3004 
3005 	/* Hash may have been set up in dcache_init_early */
3006 	if (!hashdist)
3007 		return;
3008 
3009 	dentry_hashtable =
3010 		alloc_large_system_hash("Dentry cache",
3011 					sizeof(struct hlist_bl_head),
3012 					dhash_entries,
3013 					13,
3014 					0,
3015 					&d_hash_shift,
3016 					&d_hash_mask,
3017 					0);
3018 
3019 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3020 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3021 }
3022 
3023 /* SLAB cache for __getname() consumers */
3024 struct kmem_cache *names_cachep __read_mostly;
3025 EXPORT_SYMBOL(names_cachep);
3026 
3027 EXPORT_SYMBOL(d_genocide);
3028 
3029 void __init vfs_caches_init_early(void)
3030 {
3031 	dcache_init_early();
3032 	inode_init_early();
3033 }
3034 
3035 void __init vfs_caches_init(unsigned long mempages)
3036 {
3037 	unsigned long reserve;
3038 
3039 	/* Base hash sizes on available memory, with a reserve equal to
3040            150% of current kernel size */
3041 
3042 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3043 	mempages -= reserve;
3044 
3045 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3046 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3047 
3048 	dcache_init();
3049 	inode_init();
3050 	files_init(mempages);
3051 	mnt_init();
3052 	bdev_cache_init();
3053 	chrdev_init();
3054 }
3055