xref: /linux/fs/dcache.c (revision 045ddc8991698a8e9c5668c6190faa8b5d516dc0)
1 /*
2  * fs/dcache.c
3  *
4  * Complete reimplementation
5  * (C) 1997 Thomas Schoebel-Theuer,
6  * with heavy changes by Linus Torvalds
7  */
8 
9 /*
10  * Notes on the allocation strategy:
11  *
12  * The dcache is a master of the icache - whenever a dcache entry
13  * exists, the inode will always exist. "iput()" is done either when
14  * the dcache entry is deleted or garbage collected.
15  */
16 
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include "internal.h"
41 
42 /*
43  * Usage:
44  * dcache->d_inode->i_lock protects:
45  *   - i_dentry, d_alias, d_inode of aliases
46  * dcache_hash_bucket lock protects:
47  *   - the dcache hash table
48  * s_anon bl list spinlock protects:
49  *   - the s_anon list (see __d_drop)
50  * dcache_lru_lock protects:
51  *   - the dcache lru lists and counters
52  * d_lock protects:
53  *   - d_flags
54  *   - d_name
55  *   - d_lru
56  *   - d_count
57  *   - d_unhashed()
58  *   - d_parent and d_subdirs
59  *   - childrens' d_child and d_parent
60  *   - d_alias, d_inode
61  *
62  * Ordering:
63  * dentry->d_inode->i_lock
64  *   dentry->d_lock
65  *     dcache_lru_lock
66  *     dcache_hash_bucket lock
67  *     s_anon lock
68  *
69  * If there is an ancestor relationship:
70  * dentry->d_parent->...->d_parent->d_lock
71  *   ...
72  *     dentry->d_parent->d_lock
73  *       dentry->d_lock
74  *
75  * If no ancestor relationship:
76  * if (dentry1 < dentry2)
77  *   dentry1->d_lock
78  *     dentry2->d_lock
79  */
80 int sysctl_vfs_cache_pressure __read_mostly = 100;
81 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
82 
83 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
85 
86 EXPORT_SYMBOL(rename_lock);
87 
88 static struct kmem_cache *dentry_cache __read_mostly;
89 
90 /*
91  * This is the single most critical data structure when it comes
92  * to the dcache: the hashtable for lookups. Somebody should try
93  * to make this good - I've just made it work.
94  *
95  * This hash-function tries to avoid losing too many bits of hash
96  * information, yet avoid using a prime hash-size or similar.
97  */
98 #define D_HASHBITS     d_hash_shift
99 #define D_HASHMASK     d_hash_mask
100 
101 static unsigned int d_hash_mask __read_mostly;
102 static unsigned int d_hash_shift __read_mostly;
103 
104 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 
106 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
107 					unsigned long hash)
108 {
109 	hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
110 	hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
111 	return dentry_hashtable + (hash & D_HASHMASK);
112 }
113 
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat = {
116 	.age_limit = 45,
117 };
118 
119 static DEFINE_PER_CPU(unsigned int, nr_dentry);
120 
121 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
122 static int get_nr_dentry(void)
123 {
124 	int i;
125 	int sum = 0;
126 	for_each_possible_cpu(i)
127 		sum += per_cpu(nr_dentry, i);
128 	return sum < 0 ? 0 : sum;
129 }
130 
131 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
132 		   size_t *lenp, loff_t *ppos)
133 {
134 	dentry_stat.nr_dentry = get_nr_dentry();
135 	return proc_dointvec(table, write, buffer, lenp, ppos);
136 }
137 #endif
138 
139 static void __d_free(struct rcu_head *head)
140 {
141 	struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
142 
143 	WARN_ON(!list_empty(&dentry->d_alias));
144 	if (dname_external(dentry))
145 		kfree(dentry->d_name.name);
146 	kmem_cache_free(dentry_cache, dentry);
147 }
148 
149 /*
150  * no locks, please.
151  */
152 static void d_free(struct dentry *dentry)
153 {
154 	BUG_ON(dentry->d_count);
155 	this_cpu_dec(nr_dentry);
156 	if (dentry->d_op && dentry->d_op->d_release)
157 		dentry->d_op->d_release(dentry);
158 
159 	/* if dentry was never visible to RCU, immediate free is OK */
160 	if (!(dentry->d_flags & DCACHE_RCUACCESS))
161 		__d_free(&dentry->d_u.d_rcu);
162 	else
163 		call_rcu(&dentry->d_u.d_rcu, __d_free);
164 }
165 
166 /**
167  * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
168  * @dentry: the target dentry
169  * After this call, in-progress rcu-walk path lookup will fail. This
170  * should be called after unhashing, and after changing d_inode (if
171  * the dentry has not already been unhashed).
172  */
173 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
174 {
175 	assert_spin_locked(&dentry->d_lock);
176 	/* Go through a barrier */
177 	write_seqcount_barrier(&dentry->d_seq);
178 }
179 
180 /*
181  * Release the dentry's inode, using the filesystem
182  * d_iput() operation if defined. Dentry has no refcount
183  * and is unhashed.
184  */
185 static void dentry_iput(struct dentry * dentry)
186 	__releases(dentry->d_lock)
187 	__releases(dentry->d_inode->i_lock)
188 {
189 	struct inode *inode = dentry->d_inode;
190 	if (inode) {
191 		dentry->d_inode = NULL;
192 		list_del_init(&dentry->d_alias);
193 		spin_unlock(&dentry->d_lock);
194 		spin_unlock(&inode->i_lock);
195 		if (!inode->i_nlink)
196 			fsnotify_inoderemove(inode);
197 		if (dentry->d_op && dentry->d_op->d_iput)
198 			dentry->d_op->d_iput(dentry, inode);
199 		else
200 			iput(inode);
201 	} else {
202 		spin_unlock(&dentry->d_lock);
203 	}
204 }
205 
206 /*
207  * Release the dentry's inode, using the filesystem
208  * d_iput() operation if defined. dentry remains in-use.
209  */
210 static void dentry_unlink_inode(struct dentry * dentry)
211 	__releases(dentry->d_lock)
212 	__releases(dentry->d_inode->i_lock)
213 {
214 	struct inode *inode = dentry->d_inode;
215 	dentry->d_inode = NULL;
216 	list_del_init(&dentry->d_alias);
217 	dentry_rcuwalk_barrier(dentry);
218 	spin_unlock(&dentry->d_lock);
219 	spin_unlock(&inode->i_lock);
220 	if (!inode->i_nlink)
221 		fsnotify_inoderemove(inode);
222 	if (dentry->d_op && dentry->d_op->d_iput)
223 		dentry->d_op->d_iput(dentry, inode);
224 	else
225 		iput(inode);
226 }
227 
228 /*
229  * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
230  */
231 static void dentry_lru_add(struct dentry *dentry)
232 {
233 	if (list_empty(&dentry->d_lru)) {
234 		spin_lock(&dcache_lru_lock);
235 		list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
236 		dentry->d_sb->s_nr_dentry_unused++;
237 		dentry_stat.nr_unused++;
238 		spin_unlock(&dcache_lru_lock);
239 	}
240 }
241 
242 static void __dentry_lru_del(struct dentry *dentry)
243 {
244 	list_del_init(&dentry->d_lru);
245 	dentry->d_sb->s_nr_dentry_unused--;
246 	dentry_stat.nr_unused--;
247 }
248 
249 /*
250  * Remove a dentry with references from the LRU.
251  */
252 static void dentry_lru_del(struct dentry *dentry)
253 {
254 	if (!list_empty(&dentry->d_lru)) {
255 		spin_lock(&dcache_lru_lock);
256 		__dentry_lru_del(dentry);
257 		spin_unlock(&dcache_lru_lock);
258 	}
259 }
260 
261 /*
262  * Remove a dentry that is unreferenced and about to be pruned
263  * (unhashed and destroyed) from the LRU, and inform the file system.
264  * This wrapper should be called _prior_ to unhashing a victim dentry.
265  */
266 static void dentry_lru_prune(struct dentry *dentry)
267 {
268 	if (!list_empty(&dentry->d_lru)) {
269 		if (dentry->d_flags & DCACHE_OP_PRUNE)
270 			dentry->d_op->d_prune(dentry);
271 
272 		spin_lock(&dcache_lru_lock);
273 		__dentry_lru_del(dentry);
274 		spin_unlock(&dcache_lru_lock);
275 	}
276 }
277 
278 static void dentry_lru_move_tail(struct dentry *dentry)
279 {
280 	spin_lock(&dcache_lru_lock);
281 	if (list_empty(&dentry->d_lru)) {
282 		list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
283 		dentry->d_sb->s_nr_dentry_unused++;
284 		dentry_stat.nr_unused++;
285 	} else {
286 		list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
287 	}
288 	spin_unlock(&dcache_lru_lock);
289 }
290 
291 /**
292  * d_kill - kill dentry and return parent
293  * @dentry: dentry to kill
294  * @parent: parent dentry
295  *
296  * The dentry must already be unhashed and removed from the LRU.
297  *
298  * If this is the root of the dentry tree, return NULL.
299  *
300  * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
301  * d_kill.
302  */
303 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
304 	__releases(dentry->d_lock)
305 	__releases(parent->d_lock)
306 	__releases(dentry->d_inode->i_lock)
307 {
308 	list_del(&dentry->d_u.d_child);
309 	/*
310 	 * Inform try_to_ascend() that we are no longer attached to the
311 	 * dentry tree
312 	 */
313 	dentry->d_flags |= DCACHE_DISCONNECTED;
314 	if (parent)
315 		spin_unlock(&parent->d_lock);
316 	dentry_iput(dentry);
317 	/*
318 	 * dentry_iput drops the locks, at which point nobody (except
319 	 * transient RCU lookups) can reach this dentry.
320 	 */
321 	d_free(dentry);
322 	return parent;
323 }
324 
325 /*
326  * Unhash a dentry without inserting an RCU walk barrier or checking that
327  * dentry->d_lock is locked.  The caller must take care of that, if
328  * appropriate.
329  */
330 static void __d_shrink(struct dentry *dentry)
331 {
332 	if (!d_unhashed(dentry)) {
333 		struct hlist_bl_head *b;
334 		if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
335 			b = &dentry->d_sb->s_anon;
336 		else
337 			b = d_hash(dentry->d_parent, dentry->d_name.hash);
338 
339 		hlist_bl_lock(b);
340 		__hlist_bl_del(&dentry->d_hash);
341 		dentry->d_hash.pprev = NULL;
342 		hlist_bl_unlock(b);
343 	}
344 }
345 
346 /**
347  * d_drop - drop a dentry
348  * @dentry: dentry to drop
349  *
350  * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
351  * be found through a VFS lookup any more. Note that this is different from
352  * deleting the dentry - d_delete will try to mark the dentry negative if
353  * possible, giving a successful _negative_ lookup, while d_drop will
354  * just make the cache lookup fail.
355  *
356  * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
357  * reason (NFS timeouts or autofs deletes).
358  *
359  * __d_drop requires dentry->d_lock.
360  */
361 void __d_drop(struct dentry *dentry)
362 {
363 	if (!d_unhashed(dentry)) {
364 		__d_shrink(dentry);
365 		dentry_rcuwalk_barrier(dentry);
366 	}
367 }
368 EXPORT_SYMBOL(__d_drop);
369 
370 void d_drop(struct dentry *dentry)
371 {
372 	spin_lock(&dentry->d_lock);
373 	__d_drop(dentry);
374 	spin_unlock(&dentry->d_lock);
375 }
376 EXPORT_SYMBOL(d_drop);
377 
378 /*
379  * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
380  * @dentry: dentry to drop
381  *
382  * This is called when we do a lookup on a placeholder dentry that needed to be
383  * looked up.  The dentry should have been hashed in order for it to be found by
384  * the lookup code, but now needs to be unhashed while we do the actual lookup
385  * and clear the DCACHE_NEED_LOOKUP flag.
386  */
387 void d_clear_need_lookup(struct dentry *dentry)
388 {
389 	spin_lock(&dentry->d_lock);
390 	__d_drop(dentry);
391 	dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
392 	spin_unlock(&dentry->d_lock);
393 }
394 EXPORT_SYMBOL(d_clear_need_lookup);
395 
396 /*
397  * Finish off a dentry we've decided to kill.
398  * dentry->d_lock must be held, returns with it unlocked.
399  * If ref is non-zero, then decrement the refcount too.
400  * Returns dentry requiring refcount drop, or NULL if we're done.
401  */
402 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
403 	__releases(dentry->d_lock)
404 {
405 	struct inode *inode;
406 	struct dentry *parent;
407 
408 	inode = dentry->d_inode;
409 	if (inode && !spin_trylock(&inode->i_lock)) {
410 relock:
411 		spin_unlock(&dentry->d_lock);
412 		cpu_relax();
413 		return dentry; /* try again with same dentry */
414 	}
415 	if (IS_ROOT(dentry))
416 		parent = NULL;
417 	else
418 		parent = dentry->d_parent;
419 	if (parent && !spin_trylock(&parent->d_lock)) {
420 		if (inode)
421 			spin_unlock(&inode->i_lock);
422 		goto relock;
423 	}
424 
425 	if (ref)
426 		dentry->d_count--;
427 	/*
428 	 * if dentry was on the d_lru list delete it from there.
429 	 * inform the fs via d_prune that this dentry is about to be
430 	 * unhashed and destroyed.
431 	 */
432 	dentry_lru_prune(dentry);
433 	/* if it was on the hash then remove it */
434 	__d_drop(dentry);
435 	return d_kill(dentry, parent);
436 }
437 
438 /*
439  * This is dput
440  *
441  * This is complicated by the fact that we do not want to put
442  * dentries that are no longer on any hash chain on the unused
443  * list: we'd much rather just get rid of them immediately.
444  *
445  * However, that implies that we have to traverse the dentry
446  * tree upwards to the parents which might _also_ now be
447  * scheduled for deletion (it may have been only waiting for
448  * its last child to go away).
449  *
450  * This tail recursion is done by hand as we don't want to depend
451  * on the compiler to always get this right (gcc generally doesn't).
452  * Real recursion would eat up our stack space.
453  */
454 
455 /*
456  * dput - release a dentry
457  * @dentry: dentry to release
458  *
459  * Release a dentry. This will drop the usage count and if appropriate
460  * call the dentry unlink method as well as removing it from the queues and
461  * releasing its resources. If the parent dentries were scheduled for release
462  * they too may now get deleted.
463  */
464 void dput(struct dentry *dentry)
465 {
466 	if (!dentry)
467 		return;
468 
469 repeat:
470 	if (dentry->d_count == 1)
471 		might_sleep();
472 	spin_lock(&dentry->d_lock);
473 	BUG_ON(!dentry->d_count);
474 	if (dentry->d_count > 1) {
475 		dentry->d_count--;
476 		spin_unlock(&dentry->d_lock);
477 		return;
478 	}
479 
480 	if (dentry->d_flags & DCACHE_OP_DELETE) {
481 		if (dentry->d_op->d_delete(dentry))
482 			goto kill_it;
483 	}
484 
485 	/* Unreachable? Get rid of it */
486  	if (d_unhashed(dentry))
487 		goto kill_it;
488 
489 	/*
490 	 * If this dentry needs lookup, don't set the referenced flag so that it
491 	 * is more likely to be cleaned up by the dcache shrinker in case of
492 	 * memory pressure.
493 	 */
494 	if (!d_need_lookup(dentry))
495 		dentry->d_flags |= DCACHE_REFERENCED;
496 	dentry_lru_add(dentry);
497 
498 	dentry->d_count--;
499 	spin_unlock(&dentry->d_lock);
500 	return;
501 
502 kill_it:
503 	dentry = dentry_kill(dentry, 1);
504 	if (dentry)
505 		goto repeat;
506 }
507 EXPORT_SYMBOL(dput);
508 
509 /**
510  * d_invalidate - invalidate a dentry
511  * @dentry: dentry to invalidate
512  *
513  * Try to invalidate the dentry if it turns out to be
514  * possible. If there are other dentries that can be
515  * reached through this one we can't delete it and we
516  * return -EBUSY. On success we return 0.
517  *
518  * no dcache lock.
519  */
520 
521 int d_invalidate(struct dentry * dentry)
522 {
523 	/*
524 	 * If it's already been dropped, return OK.
525 	 */
526 	spin_lock(&dentry->d_lock);
527 	if (d_unhashed(dentry)) {
528 		spin_unlock(&dentry->d_lock);
529 		return 0;
530 	}
531 	/*
532 	 * Check whether to do a partial shrink_dcache
533 	 * to get rid of unused child entries.
534 	 */
535 	if (!list_empty(&dentry->d_subdirs)) {
536 		spin_unlock(&dentry->d_lock);
537 		shrink_dcache_parent(dentry);
538 		spin_lock(&dentry->d_lock);
539 	}
540 
541 	/*
542 	 * Somebody else still using it?
543 	 *
544 	 * If it's a directory, we can't drop it
545 	 * for fear of somebody re-populating it
546 	 * with children (even though dropping it
547 	 * would make it unreachable from the root,
548 	 * we might still populate it if it was a
549 	 * working directory or similar).
550 	 * We also need to leave mountpoints alone,
551 	 * directory or not.
552 	 */
553 	if (dentry->d_count > 1 && dentry->d_inode) {
554 		if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
555 			spin_unlock(&dentry->d_lock);
556 			return -EBUSY;
557 		}
558 	}
559 
560 	__d_drop(dentry);
561 	spin_unlock(&dentry->d_lock);
562 	return 0;
563 }
564 EXPORT_SYMBOL(d_invalidate);
565 
566 /* This must be called with d_lock held */
567 static inline void __dget_dlock(struct dentry *dentry)
568 {
569 	dentry->d_count++;
570 }
571 
572 static inline void __dget(struct dentry *dentry)
573 {
574 	spin_lock(&dentry->d_lock);
575 	__dget_dlock(dentry);
576 	spin_unlock(&dentry->d_lock);
577 }
578 
579 struct dentry *dget_parent(struct dentry *dentry)
580 {
581 	struct dentry *ret;
582 
583 repeat:
584 	/*
585 	 * Don't need rcu_dereference because we re-check it was correct under
586 	 * the lock.
587 	 */
588 	rcu_read_lock();
589 	ret = dentry->d_parent;
590 	spin_lock(&ret->d_lock);
591 	if (unlikely(ret != dentry->d_parent)) {
592 		spin_unlock(&ret->d_lock);
593 		rcu_read_unlock();
594 		goto repeat;
595 	}
596 	rcu_read_unlock();
597 	BUG_ON(!ret->d_count);
598 	ret->d_count++;
599 	spin_unlock(&ret->d_lock);
600 	return ret;
601 }
602 EXPORT_SYMBOL(dget_parent);
603 
604 /**
605  * d_find_alias - grab a hashed alias of inode
606  * @inode: inode in question
607  * @want_discon:  flag, used by d_splice_alias, to request
608  *          that only a DISCONNECTED alias be returned.
609  *
610  * If inode has a hashed alias, or is a directory and has any alias,
611  * acquire the reference to alias and return it. Otherwise return NULL.
612  * Notice that if inode is a directory there can be only one alias and
613  * it can be unhashed only if it has no children, or if it is the root
614  * of a filesystem.
615  *
616  * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
617  * any other hashed alias over that one unless @want_discon is set,
618  * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
619  */
620 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
621 {
622 	struct dentry *alias, *discon_alias;
623 
624 again:
625 	discon_alias = NULL;
626 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
627 		spin_lock(&alias->d_lock);
628  		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
629 			if (IS_ROOT(alias) &&
630 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
631 				discon_alias = alias;
632 			} else if (!want_discon) {
633 				__dget_dlock(alias);
634 				spin_unlock(&alias->d_lock);
635 				return alias;
636 			}
637 		}
638 		spin_unlock(&alias->d_lock);
639 	}
640 	if (discon_alias) {
641 		alias = discon_alias;
642 		spin_lock(&alias->d_lock);
643 		if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
644 			if (IS_ROOT(alias) &&
645 			    (alias->d_flags & DCACHE_DISCONNECTED)) {
646 				__dget_dlock(alias);
647 				spin_unlock(&alias->d_lock);
648 				return alias;
649 			}
650 		}
651 		spin_unlock(&alias->d_lock);
652 		goto again;
653 	}
654 	return NULL;
655 }
656 
657 struct dentry *d_find_alias(struct inode *inode)
658 {
659 	struct dentry *de = NULL;
660 
661 	if (!list_empty(&inode->i_dentry)) {
662 		spin_lock(&inode->i_lock);
663 		de = __d_find_alias(inode, 0);
664 		spin_unlock(&inode->i_lock);
665 	}
666 	return de;
667 }
668 EXPORT_SYMBOL(d_find_alias);
669 
670 /*
671  *	Try to kill dentries associated with this inode.
672  * WARNING: you must own a reference to inode.
673  */
674 void d_prune_aliases(struct inode *inode)
675 {
676 	struct dentry *dentry;
677 restart:
678 	spin_lock(&inode->i_lock);
679 	list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
680 		spin_lock(&dentry->d_lock);
681 		if (!dentry->d_count) {
682 			__dget_dlock(dentry);
683 			__d_drop(dentry);
684 			spin_unlock(&dentry->d_lock);
685 			spin_unlock(&inode->i_lock);
686 			dput(dentry);
687 			goto restart;
688 		}
689 		spin_unlock(&dentry->d_lock);
690 	}
691 	spin_unlock(&inode->i_lock);
692 }
693 EXPORT_SYMBOL(d_prune_aliases);
694 
695 /*
696  * Try to throw away a dentry - free the inode, dput the parent.
697  * Requires dentry->d_lock is held, and dentry->d_count == 0.
698  * Releases dentry->d_lock.
699  *
700  * This may fail if locks cannot be acquired no problem, just try again.
701  */
702 static void try_prune_one_dentry(struct dentry *dentry)
703 	__releases(dentry->d_lock)
704 {
705 	struct dentry *parent;
706 
707 	parent = dentry_kill(dentry, 0);
708 	/*
709 	 * If dentry_kill returns NULL, we have nothing more to do.
710 	 * if it returns the same dentry, trylocks failed. In either
711 	 * case, just loop again.
712 	 *
713 	 * Otherwise, we need to prune ancestors too. This is necessary
714 	 * to prevent quadratic behavior of shrink_dcache_parent(), but
715 	 * is also expected to be beneficial in reducing dentry cache
716 	 * fragmentation.
717 	 */
718 	if (!parent)
719 		return;
720 	if (parent == dentry)
721 		return;
722 
723 	/* Prune ancestors. */
724 	dentry = parent;
725 	while (dentry) {
726 		spin_lock(&dentry->d_lock);
727 		if (dentry->d_count > 1) {
728 			dentry->d_count--;
729 			spin_unlock(&dentry->d_lock);
730 			return;
731 		}
732 		dentry = dentry_kill(dentry, 1);
733 	}
734 }
735 
736 static void shrink_dentry_list(struct list_head *list)
737 {
738 	struct dentry *dentry;
739 
740 	rcu_read_lock();
741 	for (;;) {
742 		dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
743 		if (&dentry->d_lru == list)
744 			break; /* empty */
745 		spin_lock(&dentry->d_lock);
746 		if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
747 			spin_unlock(&dentry->d_lock);
748 			continue;
749 		}
750 
751 		/*
752 		 * We found an inuse dentry which was not removed from
753 		 * the LRU because of laziness during lookup.  Do not free
754 		 * it - just keep it off the LRU list.
755 		 */
756 		if (dentry->d_count) {
757 			dentry_lru_del(dentry);
758 			spin_unlock(&dentry->d_lock);
759 			continue;
760 		}
761 
762 		rcu_read_unlock();
763 
764 		try_prune_one_dentry(dentry);
765 
766 		rcu_read_lock();
767 	}
768 	rcu_read_unlock();
769 }
770 
771 /**
772  * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
773  * @sb:		superblock to shrink dentry LRU.
774  * @count:	number of entries to prune
775  * @flags:	flags to control the dentry processing
776  *
777  * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
778  */
779 static void __shrink_dcache_sb(struct super_block *sb, int count, int flags)
780 {
781 	struct dentry *dentry;
782 	LIST_HEAD(referenced);
783 	LIST_HEAD(tmp);
784 
785 relock:
786 	spin_lock(&dcache_lru_lock);
787 	while (!list_empty(&sb->s_dentry_lru)) {
788 		dentry = list_entry(sb->s_dentry_lru.prev,
789 				struct dentry, d_lru);
790 		BUG_ON(dentry->d_sb != sb);
791 
792 		if (!spin_trylock(&dentry->d_lock)) {
793 			spin_unlock(&dcache_lru_lock);
794 			cpu_relax();
795 			goto relock;
796 		}
797 
798 		/*
799 		 * If we are honouring the DCACHE_REFERENCED flag and the
800 		 * dentry has this flag set, don't free it.  Clear the flag
801 		 * and put it back on the LRU.
802 		 */
803 		if (flags & DCACHE_REFERENCED &&
804 				dentry->d_flags & DCACHE_REFERENCED) {
805 			dentry->d_flags &= ~DCACHE_REFERENCED;
806 			list_move(&dentry->d_lru, &referenced);
807 			spin_unlock(&dentry->d_lock);
808 		} else {
809 			list_move_tail(&dentry->d_lru, &tmp);
810 			spin_unlock(&dentry->d_lock);
811 			if (!--count)
812 				break;
813 		}
814 		cond_resched_lock(&dcache_lru_lock);
815 	}
816 	if (!list_empty(&referenced))
817 		list_splice(&referenced, &sb->s_dentry_lru);
818 	spin_unlock(&dcache_lru_lock);
819 
820 	shrink_dentry_list(&tmp);
821 }
822 
823 /**
824  * prune_dcache_sb - shrink the dcache
825  * @sb: superblock
826  * @nr_to_scan: number of entries to try to free
827  *
828  * Attempt to shrink the superblock dcache LRU by @nr_to_scan entries. This is
829  * done when we need more memory an called from the superblock shrinker
830  * function.
831  *
832  * This function may fail to free any resources if all the dentries are in
833  * use.
834  */
835 void prune_dcache_sb(struct super_block *sb, int nr_to_scan)
836 {
837 	__shrink_dcache_sb(sb, nr_to_scan, DCACHE_REFERENCED);
838 }
839 
840 /**
841  * shrink_dcache_sb - shrink dcache for a superblock
842  * @sb: superblock
843  *
844  * Shrink the dcache for the specified super block. This is used to free
845  * the dcache before unmounting a file system.
846  */
847 void shrink_dcache_sb(struct super_block *sb)
848 {
849 	LIST_HEAD(tmp);
850 
851 	spin_lock(&dcache_lru_lock);
852 	while (!list_empty(&sb->s_dentry_lru)) {
853 		list_splice_init(&sb->s_dentry_lru, &tmp);
854 		spin_unlock(&dcache_lru_lock);
855 		shrink_dentry_list(&tmp);
856 		spin_lock(&dcache_lru_lock);
857 	}
858 	spin_unlock(&dcache_lru_lock);
859 }
860 EXPORT_SYMBOL(shrink_dcache_sb);
861 
862 /*
863  * destroy a single subtree of dentries for unmount
864  * - see the comments on shrink_dcache_for_umount() for a description of the
865  *   locking
866  */
867 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
868 {
869 	struct dentry *parent;
870 
871 	BUG_ON(!IS_ROOT(dentry));
872 
873 	for (;;) {
874 		/* descend to the first leaf in the current subtree */
875 		while (!list_empty(&dentry->d_subdirs))
876 			dentry = list_entry(dentry->d_subdirs.next,
877 					    struct dentry, d_u.d_child);
878 
879 		/* consume the dentries from this leaf up through its parents
880 		 * until we find one with children or run out altogether */
881 		do {
882 			struct inode *inode;
883 
884 			/*
885 			 * remove the dentry from the lru, and inform
886 			 * the fs that this dentry is about to be
887 			 * unhashed and destroyed.
888 			 */
889 			dentry_lru_prune(dentry);
890 			__d_shrink(dentry);
891 
892 			if (dentry->d_count != 0) {
893 				printk(KERN_ERR
894 				       "BUG: Dentry %p{i=%lx,n=%s}"
895 				       " still in use (%d)"
896 				       " [unmount of %s %s]\n",
897 				       dentry,
898 				       dentry->d_inode ?
899 				       dentry->d_inode->i_ino : 0UL,
900 				       dentry->d_name.name,
901 				       dentry->d_count,
902 				       dentry->d_sb->s_type->name,
903 				       dentry->d_sb->s_id);
904 				BUG();
905 			}
906 
907 			if (IS_ROOT(dentry)) {
908 				parent = NULL;
909 				list_del(&dentry->d_u.d_child);
910 			} else {
911 				parent = dentry->d_parent;
912 				parent->d_count--;
913 				list_del(&dentry->d_u.d_child);
914 			}
915 
916 			inode = dentry->d_inode;
917 			if (inode) {
918 				dentry->d_inode = NULL;
919 				list_del_init(&dentry->d_alias);
920 				if (dentry->d_op && dentry->d_op->d_iput)
921 					dentry->d_op->d_iput(dentry, inode);
922 				else
923 					iput(inode);
924 			}
925 
926 			d_free(dentry);
927 
928 			/* finished when we fall off the top of the tree,
929 			 * otherwise we ascend to the parent and move to the
930 			 * next sibling if there is one */
931 			if (!parent)
932 				return;
933 			dentry = parent;
934 		} while (list_empty(&dentry->d_subdirs));
935 
936 		dentry = list_entry(dentry->d_subdirs.next,
937 				    struct dentry, d_u.d_child);
938 	}
939 }
940 
941 /*
942  * destroy the dentries attached to a superblock on unmounting
943  * - we don't need to use dentry->d_lock because:
944  *   - the superblock is detached from all mountings and open files, so the
945  *     dentry trees will not be rearranged by the VFS
946  *   - s_umount is write-locked, so the memory pressure shrinker will ignore
947  *     any dentries belonging to this superblock that it comes across
948  *   - the filesystem itself is no longer permitted to rearrange the dentries
949  *     in this superblock
950  */
951 void shrink_dcache_for_umount(struct super_block *sb)
952 {
953 	struct dentry *dentry;
954 
955 	if (down_read_trylock(&sb->s_umount))
956 		BUG();
957 
958 	dentry = sb->s_root;
959 	sb->s_root = NULL;
960 	dentry->d_count--;
961 	shrink_dcache_for_umount_subtree(dentry);
962 
963 	while (!hlist_bl_empty(&sb->s_anon)) {
964 		dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
965 		shrink_dcache_for_umount_subtree(dentry);
966 	}
967 }
968 
969 /*
970  * This tries to ascend one level of parenthood, but
971  * we can race with renaming, so we need to re-check
972  * the parenthood after dropping the lock and check
973  * that the sequence number still matches.
974  */
975 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
976 {
977 	struct dentry *new = old->d_parent;
978 
979 	rcu_read_lock();
980 	spin_unlock(&old->d_lock);
981 	spin_lock(&new->d_lock);
982 
983 	/*
984 	 * might go back up the wrong parent if we have had a rename
985 	 * or deletion
986 	 */
987 	if (new != old->d_parent ||
988 		 (old->d_flags & DCACHE_DISCONNECTED) ||
989 		 (!locked && read_seqretry(&rename_lock, seq))) {
990 		spin_unlock(&new->d_lock);
991 		new = NULL;
992 	}
993 	rcu_read_unlock();
994 	return new;
995 }
996 
997 
998 /*
999  * Search for at least 1 mount point in the dentry's subdirs.
1000  * We descend to the next level whenever the d_subdirs
1001  * list is non-empty and continue searching.
1002  */
1003 
1004 /**
1005  * have_submounts - check for mounts over a dentry
1006  * @parent: dentry to check.
1007  *
1008  * Return true if the parent or its subdirectories contain
1009  * a mount point
1010  */
1011 int have_submounts(struct dentry *parent)
1012 {
1013 	struct dentry *this_parent;
1014 	struct list_head *next;
1015 	unsigned seq;
1016 	int locked = 0;
1017 
1018 	seq = read_seqbegin(&rename_lock);
1019 again:
1020 	this_parent = parent;
1021 
1022 	if (d_mountpoint(parent))
1023 		goto positive;
1024 	spin_lock(&this_parent->d_lock);
1025 repeat:
1026 	next = this_parent->d_subdirs.next;
1027 resume:
1028 	while (next != &this_parent->d_subdirs) {
1029 		struct list_head *tmp = next;
1030 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1031 		next = tmp->next;
1032 
1033 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1034 		/* Have we found a mount point ? */
1035 		if (d_mountpoint(dentry)) {
1036 			spin_unlock(&dentry->d_lock);
1037 			spin_unlock(&this_parent->d_lock);
1038 			goto positive;
1039 		}
1040 		if (!list_empty(&dentry->d_subdirs)) {
1041 			spin_unlock(&this_parent->d_lock);
1042 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1043 			this_parent = dentry;
1044 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1045 			goto repeat;
1046 		}
1047 		spin_unlock(&dentry->d_lock);
1048 	}
1049 	/*
1050 	 * All done at this level ... ascend and resume the search.
1051 	 */
1052 	if (this_parent != parent) {
1053 		struct dentry *child = this_parent;
1054 		this_parent = try_to_ascend(this_parent, locked, seq);
1055 		if (!this_parent)
1056 			goto rename_retry;
1057 		next = child->d_u.d_child.next;
1058 		goto resume;
1059 	}
1060 	spin_unlock(&this_parent->d_lock);
1061 	if (!locked && read_seqretry(&rename_lock, seq))
1062 		goto rename_retry;
1063 	if (locked)
1064 		write_sequnlock(&rename_lock);
1065 	return 0; /* No mount points found in tree */
1066 positive:
1067 	if (!locked && read_seqretry(&rename_lock, seq))
1068 		goto rename_retry;
1069 	if (locked)
1070 		write_sequnlock(&rename_lock);
1071 	return 1;
1072 
1073 rename_retry:
1074 	locked = 1;
1075 	write_seqlock(&rename_lock);
1076 	goto again;
1077 }
1078 EXPORT_SYMBOL(have_submounts);
1079 
1080 /*
1081  * Search the dentry child list for the specified parent,
1082  * and move any unused dentries to the end of the unused
1083  * list for prune_dcache(). We descend to the next level
1084  * whenever the d_subdirs list is non-empty and continue
1085  * searching.
1086  *
1087  * It returns zero iff there are no unused children,
1088  * otherwise  it returns the number of children moved to
1089  * the end of the unused list. This may not be the total
1090  * number of unused children, because select_parent can
1091  * drop the lock and return early due to latency
1092  * constraints.
1093  */
1094 static int select_parent(struct dentry * parent)
1095 {
1096 	struct dentry *this_parent;
1097 	struct list_head *next;
1098 	unsigned seq;
1099 	int found = 0;
1100 	int locked = 0;
1101 
1102 	seq = read_seqbegin(&rename_lock);
1103 again:
1104 	this_parent = parent;
1105 	spin_lock(&this_parent->d_lock);
1106 repeat:
1107 	next = this_parent->d_subdirs.next;
1108 resume:
1109 	while (next != &this_parent->d_subdirs) {
1110 		struct list_head *tmp = next;
1111 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1112 		next = tmp->next;
1113 
1114 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1115 
1116 		/*
1117 		 * move only zero ref count dentries to the end
1118 		 * of the unused list for prune_dcache
1119 		 */
1120 		if (!dentry->d_count) {
1121 			dentry_lru_move_tail(dentry);
1122 			found++;
1123 		} else {
1124 			dentry_lru_del(dentry);
1125 		}
1126 
1127 		/*
1128 		 * We can return to the caller if we have found some (this
1129 		 * ensures forward progress). We'll be coming back to find
1130 		 * the rest.
1131 		 */
1132 		if (found && need_resched()) {
1133 			spin_unlock(&dentry->d_lock);
1134 			goto out;
1135 		}
1136 
1137 		/*
1138 		 * Descend a level if the d_subdirs list is non-empty.
1139 		 */
1140 		if (!list_empty(&dentry->d_subdirs)) {
1141 			spin_unlock(&this_parent->d_lock);
1142 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1143 			this_parent = dentry;
1144 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1145 			goto repeat;
1146 		}
1147 
1148 		spin_unlock(&dentry->d_lock);
1149 	}
1150 	/*
1151 	 * All done at this level ... ascend and resume the search.
1152 	 */
1153 	if (this_parent != parent) {
1154 		struct dentry *child = this_parent;
1155 		this_parent = try_to_ascend(this_parent, locked, seq);
1156 		if (!this_parent)
1157 			goto rename_retry;
1158 		next = child->d_u.d_child.next;
1159 		goto resume;
1160 	}
1161 out:
1162 	spin_unlock(&this_parent->d_lock);
1163 	if (!locked && read_seqretry(&rename_lock, seq))
1164 		goto rename_retry;
1165 	if (locked)
1166 		write_sequnlock(&rename_lock);
1167 	return found;
1168 
1169 rename_retry:
1170 	if (found)
1171 		return found;
1172 	locked = 1;
1173 	write_seqlock(&rename_lock);
1174 	goto again;
1175 }
1176 
1177 /**
1178  * shrink_dcache_parent - prune dcache
1179  * @parent: parent of entries to prune
1180  *
1181  * Prune the dcache to remove unused children of the parent dentry.
1182  */
1183 
1184 void shrink_dcache_parent(struct dentry * parent)
1185 {
1186 	struct super_block *sb = parent->d_sb;
1187 	int found;
1188 
1189 	while ((found = select_parent(parent)) != 0)
1190 		__shrink_dcache_sb(sb, found, 0);
1191 }
1192 EXPORT_SYMBOL(shrink_dcache_parent);
1193 
1194 /**
1195  * __d_alloc	-	allocate a dcache entry
1196  * @sb: filesystem it will belong to
1197  * @name: qstr of the name
1198  *
1199  * Allocates a dentry. It returns %NULL if there is insufficient memory
1200  * available. On a success the dentry is returned. The name passed in is
1201  * copied and the copy passed in may be reused after this call.
1202  */
1203 
1204 struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1205 {
1206 	struct dentry *dentry;
1207 	char *dname;
1208 
1209 	dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1210 	if (!dentry)
1211 		return NULL;
1212 
1213 	if (name->len > DNAME_INLINE_LEN-1) {
1214 		dname = kmalloc(name->len + 1, GFP_KERNEL);
1215 		if (!dname) {
1216 			kmem_cache_free(dentry_cache, dentry);
1217 			return NULL;
1218 		}
1219 	} else  {
1220 		dname = dentry->d_iname;
1221 	}
1222 	dentry->d_name.name = dname;
1223 
1224 	dentry->d_name.len = name->len;
1225 	dentry->d_name.hash = name->hash;
1226 	memcpy(dname, name->name, name->len);
1227 	dname[name->len] = 0;
1228 
1229 	dentry->d_count = 1;
1230 	dentry->d_flags = 0;
1231 	spin_lock_init(&dentry->d_lock);
1232 	seqcount_init(&dentry->d_seq);
1233 	dentry->d_inode = NULL;
1234 	dentry->d_parent = dentry;
1235 	dentry->d_sb = sb;
1236 	dentry->d_op = NULL;
1237 	dentry->d_fsdata = NULL;
1238 	INIT_HLIST_BL_NODE(&dentry->d_hash);
1239 	INIT_LIST_HEAD(&dentry->d_lru);
1240 	INIT_LIST_HEAD(&dentry->d_subdirs);
1241 	INIT_LIST_HEAD(&dentry->d_alias);
1242 	INIT_LIST_HEAD(&dentry->d_u.d_child);
1243 	d_set_d_op(dentry, dentry->d_sb->s_d_op);
1244 
1245 	this_cpu_inc(nr_dentry);
1246 
1247 	return dentry;
1248 }
1249 
1250 /**
1251  * d_alloc	-	allocate a dcache entry
1252  * @parent: parent of entry to allocate
1253  * @name: qstr of the name
1254  *
1255  * Allocates a dentry. It returns %NULL if there is insufficient memory
1256  * available. On a success the dentry is returned. The name passed in is
1257  * copied and the copy passed in may be reused after this call.
1258  */
1259 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1260 {
1261 	struct dentry *dentry = __d_alloc(parent->d_sb, name);
1262 	if (!dentry)
1263 		return NULL;
1264 
1265 	spin_lock(&parent->d_lock);
1266 	/*
1267 	 * don't need child lock because it is not subject
1268 	 * to concurrency here
1269 	 */
1270 	__dget_dlock(parent);
1271 	dentry->d_parent = parent;
1272 	list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1273 	spin_unlock(&parent->d_lock);
1274 
1275 	return dentry;
1276 }
1277 EXPORT_SYMBOL(d_alloc);
1278 
1279 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1280 {
1281 	struct dentry *dentry = __d_alloc(sb, name);
1282 	if (dentry)
1283 		dentry->d_flags |= DCACHE_DISCONNECTED;
1284 	return dentry;
1285 }
1286 EXPORT_SYMBOL(d_alloc_pseudo);
1287 
1288 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1289 {
1290 	struct qstr q;
1291 
1292 	q.name = name;
1293 	q.len = strlen(name);
1294 	q.hash = full_name_hash(q.name, q.len);
1295 	return d_alloc(parent, &q);
1296 }
1297 EXPORT_SYMBOL(d_alloc_name);
1298 
1299 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1300 {
1301 	WARN_ON_ONCE(dentry->d_op);
1302 	WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH	|
1303 				DCACHE_OP_COMPARE	|
1304 				DCACHE_OP_REVALIDATE	|
1305 				DCACHE_OP_DELETE ));
1306 	dentry->d_op = op;
1307 	if (!op)
1308 		return;
1309 	if (op->d_hash)
1310 		dentry->d_flags |= DCACHE_OP_HASH;
1311 	if (op->d_compare)
1312 		dentry->d_flags |= DCACHE_OP_COMPARE;
1313 	if (op->d_revalidate)
1314 		dentry->d_flags |= DCACHE_OP_REVALIDATE;
1315 	if (op->d_delete)
1316 		dentry->d_flags |= DCACHE_OP_DELETE;
1317 	if (op->d_prune)
1318 		dentry->d_flags |= DCACHE_OP_PRUNE;
1319 
1320 }
1321 EXPORT_SYMBOL(d_set_d_op);
1322 
1323 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1324 {
1325 	spin_lock(&dentry->d_lock);
1326 	if (inode) {
1327 		if (unlikely(IS_AUTOMOUNT(inode)))
1328 			dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1329 		list_add(&dentry->d_alias, &inode->i_dentry);
1330 	}
1331 	dentry->d_inode = inode;
1332 	dentry_rcuwalk_barrier(dentry);
1333 	spin_unlock(&dentry->d_lock);
1334 	fsnotify_d_instantiate(dentry, inode);
1335 }
1336 
1337 /**
1338  * d_instantiate - fill in inode information for a dentry
1339  * @entry: dentry to complete
1340  * @inode: inode to attach to this dentry
1341  *
1342  * Fill in inode information in the entry.
1343  *
1344  * This turns negative dentries into productive full members
1345  * of society.
1346  *
1347  * NOTE! This assumes that the inode count has been incremented
1348  * (or otherwise set) by the caller to indicate that it is now
1349  * in use by the dcache.
1350  */
1351 
1352 void d_instantiate(struct dentry *entry, struct inode * inode)
1353 {
1354 	BUG_ON(!list_empty(&entry->d_alias));
1355 	if (inode)
1356 		spin_lock(&inode->i_lock);
1357 	__d_instantiate(entry, inode);
1358 	if (inode)
1359 		spin_unlock(&inode->i_lock);
1360 	security_d_instantiate(entry, inode);
1361 }
1362 EXPORT_SYMBOL(d_instantiate);
1363 
1364 /**
1365  * d_instantiate_unique - instantiate a non-aliased dentry
1366  * @entry: dentry to instantiate
1367  * @inode: inode to attach to this dentry
1368  *
1369  * Fill in inode information in the entry. On success, it returns NULL.
1370  * If an unhashed alias of "entry" already exists, then we return the
1371  * aliased dentry instead and drop one reference to inode.
1372  *
1373  * Note that in order to avoid conflicts with rename() etc, the caller
1374  * had better be holding the parent directory semaphore.
1375  *
1376  * This also assumes that the inode count has been incremented
1377  * (or otherwise set) by the caller to indicate that it is now
1378  * in use by the dcache.
1379  */
1380 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1381 					     struct inode *inode)
1382 {
1383 	struct dentry *alias;
1384 	int len = entry->d_name.len;
1385 	const char *name = entry->d_name.name;
1386 	unsigned int hash = entry->d_name.hash;
1387 
1388 	if (!inode) {
1389 		__d_instantiate(entry, NULL);
1390 		return NULL;
1391 	}
1392 
1393 	list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1394 		struct qstr *qstr = &alias->d_name;
1395 
1396 		/*
1397 		 * Don't need alias->d_lock here, because aliases with
1398 		 * d_parent == entry->d_parent are not subject to name or
1399 		 * parent changes, because the parent inode i_mutex is held.
1400 		 */
1401 		if (qstr->hash != hash)
1402 			continue;
1403 		if (alias->d_parent != entry->d_parent)
1404 			continue;
1405 		if (dentry_cmp(qstr->name, qstr->len, name, len))
1406 			continue;
1407 		__dget(alias);
1408 		return alias;
1409 	}
1410 
1411 	__d_instantiate(entry, inode);
1412 	return NULL;
1413 }
1414 
1415 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1416 {
1417 	struct dentry *result;
1418 
1419 	BUG_ON(!list_empty(&entry->d_alias));
1420 
1421 	if (inode)
1422 		spin_lock(&inode->i_lock);
1423 	result = __d_instantiate_unique(entry, inode);
1424 	if (inode)
1425 		spin_unlock(&inode->i_lock);
1426 
1427 	if (!result) {
1428 		security_d_instantiate(entry, inode);
1429 		return NULL;
1430 	}
1431 
1432 	BUG_ON(!d_unhashed(result));
1433 	iput(inode);
1434 	return result;
1435 }
1436 
1437 EXPORT_SYMBOL(d_instantiate_unique);
1438 
1439 /**
1440  * d_alloc_root - allocate root dentry
1441  * @root_inode: inode to allocate the root for
1442  *
1443  * Allocate a root ("/") dentry for the inode given. The inode is
1444  * instantiated and returned. %NULL is returned if there is insufficient
1445  * memory or the inode passed is %NULL.
1446  */
1447 
1448 struct dentry * d_alloc_root(struct inode * root_inode)
1449 {
1450 	struct dentry *res = NULL;
1451 
1452 	if (root_inode) {
1453 		static const struct qstr name = { .name = "/", .len = 1 };
1454 
1455 		res = __d_alloc(root_inode->i_sb, &name);
1456 		if (res)
1457 			d_instantiate(res, root_inode);
1458 	}
1459 	return res;
1460 }
1461 EXPORT_SYMBOL(d_alloc_root);
1462 
1463 static struct dentry * __d_find_any_alias(struct inode *inode)
1464 {
1465 	struct dentry *alias;
1466 
1467 	if (list_empty(&inode->i_dentry))
1468 		return NULL;
1469 	alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1470 	__dget(alias);
1471 	return alias;
1472 }
1473 
1474 static struct dentry * d_find_any_alias(struct inode *inode)
1475 {
1476 	struct dentry *de;
1477 
1478 	spin_lock(&inode->i_lock);
1479 	de = __d_find_any_alias(inode);
1480 	spin_unlock(&inode->i_lock);
1481 	return de;
1482 }
1483 
1484 
1485 /**
1486  * d_obtain_alias - find or allocate a dentry for a given inode
1487  * @inode: inode to allocate the dentry for
1488  *
1489  * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1490  * similar open by handle operations.  The returned dentry may be anonymous,
1491  * or may have a full name (if the inode was already in the cache).
1492  *
1493  * When called on a directory inode, we must ensure that the inode only ever
1494  * has one dentry.  If a dentry is found, that is returned instead of
1495  * allocating a new one.
1496  *
1497  * On successful return, the reference to the inode has been transferred
1498  * to the dentry.  In case of an error the reference on the inode is released.
1499  * To make it easier to use in export operations a %NULL or IS_ERR inode may
1500  * be passed in and will be the error will be propagate to the return value,
1501  * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1502  */
1503 struct dentry *d_obtain_alias(struct inode *inode)
1504 {
1505 	static const struct qstr anonstring = { .name = "" };
1506 	struct dentry *tmp;
1507 	struct dentry *res;
1508 
1509 	if (!inode)
1510 		return ERR_PTR(-ESTALE);
1511 	if (IS_ERR(inode))
1512 		return ERR_CAST(inode);
1513 
1514 	res = d_find_any_alias(inode);
1515 	if (res)
1516 		goto out_iput;
1517 
1518 	tmp = __d_alloc(inode->i_sb, &anonstring);
1519 	if (!tmp) {
1520 		res = ERR_PTR(-ENOMEM);
1521 		goto out_iput;
1522 	}
1523 
1524 	spin_lock(&inode->i_lock);
1525 	res = __d_find_any_alias(inode);
1526 	if (res) {
1527 		spin_unlock(&inode->i_lock);
1528 		dput(tmp);
1529 		goto out_iput;
1530 	}
1531 
1532 	/* attach a disconnected dentry */
1533 	spin_lock(&tmp->d_lock);
1534 	tmp->d_inode = inode;
1535 	tmp->d_flags |= DCACHE_DISCONNECTED;
1536 	list_add(&tmp->d_alias, &inode->i_dentry);
1537 	hlist_bl_lock(&tmp->d_sb->s_anon);
1538 	hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1539 	hlist_bl_unlock(&tmp->d_sb->s_anon);
1540 	spin_unlock(&tmp->d_lock);
1541 	spin_unlock(&inode->i_lock);
1542 	security_d_instantiate(tmp, inode);
1543 
1544 	return tmp;
1545 
1546  out_iput:
1547 	if (res && !IS_ERR(res))
1548 		security_d_instantiate(res, inode);
1549 	iput(inode);
1550 	return res;
1551 }
1552 EXPORT_SYMBOL(d_obtain_alias);
1553 
1554 /**
1555  * d_splice_alias - splice a disconnected dentry into the tree if one exists
1556  * @inode:  the inode which may have a disconnected dentry
1557  * @dentry: a negative dentry which we want to point to the inode.
1558  *
1559  * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1560  * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1561  * and return it, else simply d_add the inode to the dentry and return NULL.
1562  *
1563  * This is needed in the lookup routine of any filesystem that is exportable
1564  * (via knfsd) so that we can build dcache paths to directories effectively.
1565  *
1566  * If a dentry was found and moved, then it is returned.  Otherwise NULL
1567  * is returned.  This matches the expected return value of ->lookup.
1568  *
1569  */
1570 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1571 {
1572 	struct dentry *new = NULL;
1573 
1574 	if (IS_ERR(inode))
1575 		return ERR_CAST(inode);
1576 
1577 	if (inode && S_ISDIR(inode->i_mode)) {
1578 		spin_lock(&inode->i_lock);
1579 		new = __d_find_alias(inode, 1);
1580 		if (new) {
1581 			BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1582 			spin_unlock(&inode->i_lock);
1583 			security_d_instantiate(new, inode);
1584 			d_move(new, dentry);
1585 			iput(inode);
1586 		} else {
1587 			/* already taking inode->i_lock, so d_add() by hand */
1588 			__d_instantiate(dentry, inode);
1589 			spin_unlock(&inode->i_lock);
1590 			security_d_instantiate(dentry, inode);
1591 			d_rehash(dentry);
1592 		}
1593 	} else
1594 		d_add(dentry, inode);
1595 	return new;
1596 }
1597 EXPORT_SYMBOL(d_splice_alias);
1598 
1599 /**
1600  * d_add_ci - lookup or allocate new dentry with case-exact name
1601  * @inode:  the inode case-insensitive lookup has found
1602  * @dentry: the negative dentry that was passed to the parent's lookup func
1603  * @name:   the case-exact name to be associated with the returned dentry
1604  *
1605  * This is to avoid filling the dcache with case-insensitive names to the
1606  * same inode, only the actual correct case is stored in the dcache for
1607  * case-insensitive filesystems.
1608  *
1609  * For a case-insensitive lookup match and if the the case-exact dentry
1610  * already exists in in the dcache, use it and return it.
1611  *
1612  * If no entry exists with the exact case name, allocate new dentry with
1613  * the exact case, and return the spliced entry.
1614  */
1615 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1616 			struct qstr *name)
1617 {
1618 	int error;
1619 	struct dentry *found;
1620 	struct dentry *new;
1621 
1622 	/*
1623 	 * First check if a dentry matching the name already exists,
1624 	 * if not go ahead and create it now.
1625 	 */
1626 	found = d_hash_and_lookup(dentry->d_parent, name);
1627 	if (!found) {
1628 		new = d_alloc(dentry->d_parent, name);
1629 		if (!new) {
1630 			error = -ENOMEM;
1631 			goto err_out;
1632 		}
1633 
1634 		found = d_splice_alias(inode, new);
1635 		if (found) {
1636 			dput(new);
1637 			return found;
1638 		}
1639 		return new;
1640 	}
1641 
1642 	/*
1643 	 * If a matching dentry exists, and it's not negative use it.
1644 	 *
1645 	 * Decrement the reference count to balance the iget() done
1646 	 * earlier on.
1647 	 */
1648 	if (found->d_inode) {
1649 		if (unlikely(found->d_inode != inode)) {
1650 			/* This can't happen because bad inodes are unhashed. */
1651 			BUG_ON(!is_bad_inode(inode));
1652 			BUG_ON(!is_bad_inode(found->d_inode));
1653 		}
1654 		iput(inode);
1655 		return found;
1656 	}
1657 
1658 	/*
1659 	 * We are going to instantiate this dentry, unhash it and clear the
1660 	 * lookup flag so we can do that.
1661 	 */
1662 	if (unlikely(d_need_lookup(found)))
1663 		d_clear_need_lookup(found);
1664 
1665 	/*
1666 	 * Negative dentry: instantiate it unless the inode is a directory and
1667 	 * already has a dentry.
1668 	 */
1669 	new = d_splice_alias(inode, found);
1670 	if (new) {
1671 		dput(found);
1672 		found = new;
1673 	}
1674 	return found;
1675 
1676 err_out:
1677 	iput(inode);
1678 	return ERR_PTR(error);
1679 }
1680 EXPORT_SYMBOL(d_add_ci);
1681 
1682 /**
1683  * __d_lookup_rcu - search for a dentry (racy, store-free)
1684  * @parent: parent dentry
1685  * @name: qstr of name we wish to find
1686  * @seq: returns d_seq value at the point where the dentry was found
1687  * @inode: returns dentry->d_inode when the inode was found valid.
1688  * Returns: dentry, or NULL
1689  *
1690  * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1691  * resolution (store-free path walking) design described in
1692  * Documentation/filesystems/path-lookup.txt.
1693  *
1694  * This is not to be used outside core vfs.
1695  *
1696  * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1697  * held, and rcu_read_lock held. The returned dentry must not be stored into
1698  * without taking d_lock and checking d_seq sequence count against @seq
1699  * returned here.
1700  *
1701  * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1702  * function.
1703  *
1704  * Alternatively, __d_lookup_rcu may be called again to look up the child of
1705  * the returned dentry, so long as its parent's seqlock is checked after the
1706  * child is looked up. Thus, an interlocking stepping of sequence lock checks
1707  * is formed, giving integrity down the path walk.
1708  */
1709 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1710 				unsigned *seq, struct inode **inode)
1711 {
1712 	unsigned int len = name->len;
1713 	unsigned int hash = name->hash;
1714 	const unsigned char *str = name->name;
1715 	struct hlist_bl_head *b = d_hash(parent, hash);
1716 	struct hlist_bl_node *node;
1717 	struct dentry *dentry;
1718 
1719 	/*
1720 	 * Note: There is significant duplication with __d_lookup_rcu which is
1721 	 * required to prevent single threaded performance regressions
1722 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1723 	 * Keep the two functions in sync.
1724 	 */
1725 
1726 	/*
1727 	 * The hash list is protected using RCU.
1728 	 *
1729 	 * Carefully use d_seq when comparing a candidate dentry, to avoid
1730 	 * races with d_move().
1731 	 *
1732 	 * It is possible that concurrent renames can mess up our list
1733 	 * walk here and result in missing our dentry, resulting in the
1734 	 * false-negative result. d_lookup() protects against concurrent
1735 	 * renames using rename_lock seqlock.
1736 	 *
1737 	 * See Documentation/filesystems/path-lookup.txt for more details.
1738 	 */
1739 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1740 		struct inode *i;
1741 		const char *tname;
1742 		int tlen;
1743 
1744 		if (dentry->d_name.hash != hash)
1745 			continue;
1746 
1747 seqretry:
1748 		*seq = read_seqcount_begin(&dentry->d_seq);
1749 		if (dentry->d_parent != parent)
1750 			continue;
1751 		if (d_unhashed(dentry))
1752 			continue;
1753 		tlen = dentry->d_name.len;
1754 		tname = dentry->d_name.name;
1755 		i = dentry->d_inode;
1756 		prefetch(tname);
1757 		/*
1758 		 * This seqcount check is required to ensure name and
1759 		 * len are loaded atomically, so as not to walk off the
1760 		 * edge of memory when walking. If we could load this
1761 		 * atomically some other way, we could drop this check.
1762 		 */
1763 		if (read_seqcount_retry(&dentry->d_seq, *seq))
1764 			goto seqretry;
1765 		if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
1766 			if (parent->d_op->d_compare(parent, *inode,
1767 						dentry, i,
1768 						tlen, tname, name))
1769 				continue;
1770 		} else {
1771 			if (dentry_cmp(tname, tlen, str, len))
1772 				continue;
1773 		}
1774 		/*
1775 		 * No extra seqcount check is required after the name
1776 		 * compare. The caller must perform a seqcount check in
1777 		 * order to do anything useful with the returned dentry
1778 		 * anyway.
1779 		 */
1780 		*inode = i;
1781 		return dentry;
1782 	}
1783 	return NULL;
1784 }
1785 
1786 /**
1787  * d_lookup - search for a dentry
1788  * @parent: parent dentry
1789  * @name: qstr of name we wish to find
1790  * Returns: dentry, or NULL
1791  *
1792  * d_lookup searches the children of the parent dentry for the name in
1793  * question. If the dentry is found its reference count is incremented and the
1794  * dentry is returned. The caller must use dput to free the entry when it has
1795  * finished using it. %NULL is returned if the dentry does not exist.
1796  */
1797 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1798 {
1799 	struct dentry *dentry;
1800 	unsigned seq;
1801 
1802         do {
1803                 seq = read_seqbegin(&rename_lock);
1804                 dentry = __d_lookup(parent, name);
1805                 if (dentry)
1806 			break;
1807 	} while (read_seqretry(&rename_lock, seq));
1808 	return dentry;
1809 }
1810 EXPORT_SYMBOL(d_lookup);
1811 
1812 /**
1813  * __d_lookup - search for a dentry (racy)
1814  * @parent: parent dentry
1815  * @name: qstr of name we wish to find
1816  * Returns: dentry, or NULL
1817  *
1818  * __d_lookup is like d_lookup, however it may (rarely) return a
1819  * false-negative result due to unrelated rename activity.
1820  *
1821  * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1822  * however it must be used carefully, eg. with a following d_lookup in
1823  * the case of failure.
1824  *
1825  * __d_lookup callers must be commented.
1826  */
1827 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1828 {
1829 	unsigned int len = name->len;
1830 	unsigned int hash = name->hash;
1831 	const unsigned char *str = name->name;
1832 	struct hlist_bl_head *b = d_hash(parent, hash);
1833 	struct hlist_bl_node *node;
1834 	struct dentry *found = NULL;
1835 	struct dentry *dentry;
1836 
1837 	/*
1838 	 * Note: There is significant duplication with __d_lookup_rcu which is
1839 	 * required to prevent single threaded performance regressions
1840 	 * especially on architectures where smp_rmb (in seqcounts) are costly.
1841 	 * Keep the two functions in sync.
1842 	 */
1843 
1844 	/*
1845 	 * The hash list is protected using RCU.
1846 	 *
1847 	 * Take d_lock when comparing a candidate dentry, to avoid races
1848 	 * with d_move().
1849 	 *
1850 	 * It is possible that concurrent renames can mess up our list
1851 	 * walk here and result in missing our dentry, resulting in the
1852 	 * false-negative result. d_lookup() protects against concurrent
1853 	 * renames using rename_lock seqlock.
1854 	 *
1855 	 * See Documentation/filesystems/path-lookup.txt for more details.
1856 	 */
1857 	rcu_read_lock();
1858 
1859 	hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1860 		const char *tname;
1861 		int tlen;
1862 
1863 		if (dentry->d_name.hash != hash)
1864 			continue;
1865 
1866 		spin_lock(&dentry->d_lock);
1867 		if (dentry->d_parent != parent)
1868 			goto next;
1869 		if (d_unhashed(dentry))
1870 			goto next;
1871 
1872 		/*
1873 		 * It is safe to compare names since d_move() cannot
1874 		 * change the qstr (protected by d_lock).
1875 		 */
1876 		tlen = dentry->d_name.len;
1877 		tname = dentry->d_name.name;
1878 		if (parent->d_flags & DCACHE_OP_COMPARE) {
1879 			if (parent->d_op->d_compare(parent, parent->d_inode,
1880 						dentry, dentry->d_inode,
1881 						tlen, tname, name))
1882 				goto next;
1883 		} else {
1884 			if (dentry_cmp(tname, tlen, str, len))
1885 				goto next;
1886 		}
1887 
1888 		dentry->d_count++;
1889 		found = dentry;
1890 		spin_unlock(&dentry->d_lock);
1891 		break;
1892 next:
1893 		spin_unlock(&dentry->d_lock);
1894  	}
1895  	rcu_read_unlock();
1896 
1897  	return found;
1898 }
1899 
1900 /**
1901  * d_hash_and_lookup - hash the qstr then search for a dentry
1902  * @dir: Directory to search in
1903  * @name: qstr of name we wish to find
1904  *
1905  * On hash failure or on lookup failure NULL is returned.
1906  */
1907 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1908 {
1909 	struct dentry *dentry = NULL;
1910 
1911 	/*
1912 	 * Check for a fs-specific hash function. Note that we must
1913 	 * calculate the standard hash first, as the d_op->d_hash()
1914 	 * routine may choose to leave the hash value unchanged.
1915 	 */
1916 	name->hash = full_name_hash(name->name, name->len);
1917 	if (dir->d_flags & DCACHE_OP_HASH) {
1918 		if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1919 			goto out;
1920 	}
1921 	dentry = d_lookup(dir, name);
1922 out:
1923 	return dentry;
1924 }
1925 
1926 /**
1927  * d_validate - verify dentry provided from insecure source (deprecated)
1928  * @dentry: The dentry alleged to be valid child of @dparent
1929  * @dparent: The parent dentry (known to be valid)
1930  *
1931  * An insecure source has sent us a dentry, here we verify it and dget() it.
1932  * This is used by ncpfs in its readdir implementation.
1933  * Zero is returned in the dentry is invalid.
1934  *
1935  * This function is slow for big directories, and deprecated, do not use it.
1936  */
1937 int d_validate(struct dentry *dentry, struct dentry *dparent)
1938 {
1939 	struct dentry *child;
1940 
1941 	spin_lock(&dparent->d_lock);
1942 	list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1943 		if (dentry == child) {
1944 			spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1945 			__dget_dlock(dentry);
1946 			spin_unlock(&dentry->d_lock);
1947 			spin_unlock(&dparent->d_lock);
1948 			return 1;
1949 		}
1950 	}
1951 	spin_unlock(&dparent->d_lock);
1952 
1953 	return 0;
1954 }
1955 EXPORT_SYMBOL(d_validate);
1956 
1957 /*
1958  * When a file is deleted, we have two options:
1959  * - turn this dentry into a negative dentry
1960  * - unhash this dentry and free it.
1961  *
1962  * Usually, we want to just turn this into
1963  * a negative dentry, but if anybody else is
1964  * currently using the dentry or the inode
1965  * we can't do that and we fall back on removing
1966  * it from the hash queues and waiting for
1967  * it to be deleted later when it has no users
1968  */
1969 
1970 /**
1971  * d_delete - delete a dentry
1972  * @dentry: The dentry to delete
1973  *
1974  * Turn the dentry into a negative dentry if possible, otherwise
1975  * remove it from the hash queues so it can be deleted later
1976  */
1977 
1978 void d_delete(struct dentry * dentry)
1979 {
1980 	struct inode *inode;
1981 	int isdir = 0;
1982 	/*
1983 	 * Are we the only user?
1984 	 */
1985 again:
1986 	spin_lock(&dentry->d_lock);
1987 	inode = dentry->d_inode;
1988 	isdir = S_ISDIR(inode->i_mode);
1989 	if (dentry->d_count == 1) {
1990 		if (inode && !spin_trylock(&inode->i_lock)) {
1991 			spin_unlock(&dentry->d_lock);
1992 			cpu_relax();
1993 			goto again;
1994 		}
1995 		dentry->d_flags &= ~DCACHE_CANT_MOUNT;
1996 		dentry_unlink_inode(dentry);
1997 		fsnotify_nameremove(dentry, isdir);
1998 		return;
1999 	}
2000 
2001 	if (!d_unhashed(dentry))
2002 		__d_drop(dentry);
2003 
2004 	spin_unlock(&dentry->d_lock);
2005 
2006 	fsnotify_nameremove(dentry, isdir);
2007 }
2008 EXPORT_SYMBOL(d_delete);
2009 
2010 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2011 {
2012 	BUG_ON(!d_unhashed(entry));
2013 	hlist_bl_lock(b);
2014 	entry->d_flags |= DCACHE_RCUACCESS;
2015 	hlist_bl_add_head_rcu(&entry->d_hash, b);
2016 	hlist_bl_unlock(b);
2017 }
2018 
2019 static void _d_rehash(struct dentry * entry)
2020 {
2021 	__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2022 }
2023 
2024 /**
2025  * d_rehash	- add an entry back to the hash
2026  * @entry: dentry to add to the hash
2027  *
2028  * Adds a dentry to the hash according to its name.
2029  */
2030 
2031 void d_rehash(struct dentry * entry)
2032 {
2033 	spin_lock(&entry->d_lock);
2034 	_d_rehash(entry);
2035 	spin_unlock(&entry->d_lock);
2036 }
2037 EXPORT_SYMBOL(d_rehash);
2038 
2039 /**
2040  * dentry_update_name_case - update case insensitive dentry with a new name
2041  * @dentry: dentry to be updated
2042  * @name: new name
2043  *
2044  * Update a case insensitive dentry with new case of name.
2045  *
2046  * dentry must have been returned by d_lookup with name @name. Old and new
2047  * name lengths must match (ie. no d_compare which allows mismatched name
2048  * lengths).
2049  *
2050  * Parent inode i_mutex must be held over d_lookup and into this call (to
2051  * keep renames and concurrent inserts, and readdir(2) away).
2052  */
2053 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2054 {
2055 	BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2056 	BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2057 
2058 	spin_lock(&dentry->d_lock);
2059 	write_seqcount_begin(&dentry->d_seq);
2060 	memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2061 	write_seqcount_end(&dentry->d_seq);
2062 	spin_unlock(&dentry->d_lock);
2063 }
2064 EXPORT_SYMBOL(dentry_update_name_case);
2065 
2066 static void switch_names(struct dentry *dentry, struct dentry *target)
2067 {
2068 	if (dname_external(target)) {
2069 		if (dname_external(dentry)) {
2070 			/*
2071 			 * Both external: swap the pointers
2072 			 */
2073 			swap(target->d_name.name, dentry->d_name.name);
2074 		} else {
2075 			/*
2076 			 * dentry:internal, target:external.  Steal target's
2077 			 * storage and make target internal.
2078 			 */
2079 			memcpy(target->d_iname, dentry->d_name.name,
2080 					dentry->d_name.len + 1);
2081 			dentry->d_name.name = target->d_name.name;
2082 			target->d_name.name = target->d_iname;
2083 		}
2084 	} else {
2085 		if (dname_external(dentry)) {
2086 			/*
2087 			 * dentry:external, target:internal.  Give dentry's
2088 			 * storage to target and make dentry internal
2089 			 */
2090 			memcpy(dentry->d_iname, target->d_name.name,
2091 					target->d_name.len + 1);
2092 			target->d_name.name = dentry->d_name.name;
2093 			dentry->d_name.name = dentry->d_iname;
2094 		} else {
2095 			/*
2096 			 * Both are internal.  Just copy target to dentry
2097 			 */
2098 			memcpy(dentry->d_iname, target->d_name.name,
2099 					target->d_name.len + 1);
2100 			dentry->d_name.len = target->d_name.len;
2101 			return;
2102 		}
2103 	}
2104 	swap(dentry->d_name.len, target->d_name.len);
2105 }
2106 
2107 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2108 {
2109 	/*
2110 	 * XXXX: do we really need to take target->d_lock?
2111 	 */
2112 	if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2113 		spin_lock(&target->d_parent->d_lock);
2114 	else {
2115 		if (d_ancestor(dentry->d_parent, target->d_parent)) {
2116 			spin_lock(&dentry->d_parent->d_lock);
2117 			spin_lock_nested(&target->d_parent->d_lock,
2118 						DENTRY_D_LOCK_NESTED);
2119 		} else {
2120 			spin_lock(&target->d_parent->d_lock);
2121 			spin_lock_nested(&dentry->d_parent->d_lock,
2122 						DENTRY_D_LOCK_NESTED);
2123 		}
2124 	}
2125 	if (target < dentry) {
2126 		spin_lock_nested(&target->d_lock, 2);
2127 		spin_lock_nested(&dentry->d_lock, 3);
2128 	} else {
2129 		spin_lock_nested(&dentry->d_lock, 2);
2130 		spin_lock_nested(&target->d_lock, 3);
2131 	}
2132 }
2133 
2134 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2135 					struct dentry *target)
2136 {
2137 	if (target->d_parent != dentry->d_parent)
2138 		spin_unlock(&dentry->d_parent->d_lock);
2139 	if (target->d_parent != target)
2140 		spin_unlock(&target->d_parent->d_lock);
2141 }
2142 
2143 /*
2144  * When switching names, the actual string doesn't strictly have to
2145  * be preserved in the target - because we're dropping the target
2146  * anyway. As such, we can just do a simple memcpy() to copy over
2147  * the new name before we switch.
2148  *
2149  * Note that we have to be a lot more careful about getting the hash
2150  * switched - we have to switch the hash value properly even if it
2151  * then no longer matches the actual (corrupted) string of the target.
2152  * The hash value has to match the hash queue that the dentry is on..
2153  */
2154 /*
2155  * __d_move - move a dentry
2156  * @dentry: entry to move
2157  * @target: new dentry
2158  *
2159  * Update the dcache to reflect the move of a file name. Negative
2160  * dcache entries should not be moved in this way. Caller must hold
2161  * rename_lock, the i_mutex of the source and target directories,
2162  * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2163  */
2164 static void __d_move(struct dentry * dentry, struct dentry * target)
2165 {
2166 	if (!dentry->d_inode)
2167 		printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2168 
2169 	BUG_ON(d_ancestor(dentry, target));
2170 	BUG_ON(d_ancestor(target, dentry));
2171 
2172 	dentry_lock_for_move(dentry, target);
2173 
2174 	write_seqcount_begin(&dentry->d_seq);
2175 	write_seqcount_begin(&target->d_seq);
2176 
2177 	/* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2178 
2179 	/*
2180 	 * Move the dentry to the target hash queue. Don't bother checking
2181 	 * for the same hash queue because of how unlikely it is.
2182 	 */
2183 	__d_drop(dentry);
2184 	__d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2185 
2186 	/* Unhash the target: dput() will then get rid of it */
2187 	__d_drop(target);
2188 
2189 	list_del(&dentry->d_u.d_child);
2190 	list_del(&target->d_u.d_child);
2191 
2192 	/* Switch the names.. */
2193 	switch_names(dentry, target);
2194 	swap(dentry->d_name.hash, target->d_name.hash);
2195 
2196 	/* ... and switch the parents */
2197 	if (IS_ROOT(dentry)) {
2198 		dentry->d_parent = target->d_parent;
2199 		target->d_parent = target;
2200 		INIT_LIST_HEAD(&target->d_u.d_child);
2201 	} else {
2202 		swap(dentry->d_parent, target->d_parent);
2203 
2204 		/* And add them back to the (new) parent lists */
2205 		list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2206 	}
2207 
2208 	list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2209 
2210 	write_seqcount_end(&target->d_seq);
2211 	write_seqcount_end(&dentry->d_seq);
2212 
2213 	dentry_unlock_parents_for_move(dentry, target);
2214 	spin_unlock(&target->d_lock);
2215 	fsnotify_d_move(dentry);
2216 	spin_unlock(&dentry->d_lock);
2217 }
2218 
2219 /*
2220  * d_move - move a dentry
2221  * @dentry: entry to move
2222  * @target: new dentry
2223  *
2224  * Update the dcache to reflect the move of a file name. Negative
2225  * dcache entries should not be moved in this way. See the locking
2226  * requirements for __d_move.
2227  */
2228 void d_move(struct dentry *dentry, struct dentry *target)
2229 {
2230 	write_seqlock(&rename_lock);
2231 	__d_move(dentry, target);
2232 	write_sequnlock(&rename_lock);
2233 }
2234 EXPORT_SYMBOL(d_move);
2235 
2236 /**
2237  * d_ancestor - search for an ancestor
2238  * @p1: ancestor dentry
2239  * @p2: child dentry
2240  *
2241  * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2242  * an ancestor of p2, else NULL.
2243  */
2244 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2245 {
2246 	struct dentry *p;
2247 
2248 	for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2249 		if (p->d_parent == p1)
2250 			return p;
2251 	}
2252 	return NULL;
2253 }
2254 
2255 /*
2256  * This helper attempts to cope with remotely renamed directories
2257  *
2258  * It assumes that the caller is already holding
2259  * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2260  *
2261  * Note: If ever the locking in lock_rename() changes, then please
2262  * remember to update this too...
2263  */
2264 static struct dentry *__d_unalias(struct inode *inode,
2265 		struct dentry *dentry, struct dentry *alias)
2266 {
2267 	struct mutex *m1 = NULL, *m2 = NULL;
2268 	struct dentry *ret;
2269 
2270 	/* If alias and dentry share a parent, then no extra locks required */
2271 	if (alias->d_parent == dentry->d_parent)
2272 		goto out_unalias;
2273 
2274 	/* See lock_rename() */
2275 	ret = ERR_PTR(-EBUSY);
2276 	if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2277 		goto out_err;
2278 	m1 = &dentry->d_sb->s_vfs_rename_mutex;
2279 	if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2280 		goto out_err;
2281 	m2 = &alias->d_parent->d_inode->i_mutex;
2282 out_unalias:
2283 	__d_move(alias, dentry);
2284 	ret = alias;
2285 out_err:
2286 	spin_unlock(&inode->i_lock);
2287 	if (m2)
2288 		mutex_unlock(m2);
2289 	if (m1)
2290 		mutex_unlock(m1);
2291 	return ret;
2292 }
2293 
2294 /*
2295  * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2296  * named dentry in place of the dentry to be replaced.
2297  * returns with anon->d_lock held!
2298  */
2299 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2300 {
2301 	struct dentry *dparent, *aparent;
2302 
2303 	dentry_lock_for_move(anon, dentry);
2304 
2305 	write_seqcount_begin(&dentry->d_seq);
2306 	write_seqcount_begin(&anon->d_seq);
2307 
2308 	dparent = dentry->d_parent;
2309 	aparent = anon->d_parent;
2310 
2311 	switch_names(dentry, anon);
2312 	swap(dentry->d_name.hash, anon->d_name.hash);
2313 
2314 	dentry->d_parent = (aparent == anon) ? dentry : aparent;
2315 	list_del(&dentry->d_u.d_child);
2316 	if (!IS_ROOT(dentry))
2317 		list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2318 	else
2319 		INIT_LIST_HEAD(&dentry->d_u.d_child);
2320 
2321 	anon->d_parent = (dparent == dentry) ? anon : dparent;
2322 	list_del(&anon->d_u.d_child);
2323 	if (!IS_ROOT(anon))
2324 		list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2325 	else
2326 		INIT_LIST_HEAD(&anon->d_u.d_child);
2327 
2328 	write_seqcount_end(&dentry->d_seq);
2329 	write_seqcount_end(&anon->d_seq);
2330 
2331 	dentry_unlock_parents_for_move(anon, dentry);
2332 	spin_unlock(&dentry->d_lock);
2333 
2334 	/* anon->d_lock still locked, returns locked */
2335 	anon->d_flags &= ~DCACHE_DISCONNECTED;
2336 }
2337 
2338 /**
2339  * d_materialise_unique - introduce an inode into the tree
2340  * @dentry: candidate dentry
2341  * @inode: inode to bind to the dentry, to which aliases may be attached
2342  *
2343  * Introduces an dentry into the tree, substituting an extant disconnected
2344  * root directory alias in its place if there is one. Caller must hold the
2345  * i_mutex of the parent directory.
2346  */
2347 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2348 {
2349 	struct dentry *actual;
2350 
2351 	BUG_ON(!d_unhashed(dentry));
2352 
2353 	if (!inode) {
2354 		actual = dentry;
2355 		__d_instantiate(dentry, NULL);
2356 		d_rehash(actual);
2357 		goto out_nolock;
2358 	}
2359 
2360 	spin_lock(&inode->i_lock);
2361 
2362 	if (S_ISDIR(inode->i_mode)) {
2363 		struct dentry *alias;
2364 
2365 		/* Does an aliased dentry already exist? */
2366 		alias = __d_find_alias(inode, 0);
2367 		if (alias) {
2368 			actual = alias;
2369 			write_seqlock(&rename_lock);
2370 
2371 			if (d_ancestor(alias, dentry)) {
2372 				/* Check for loops */
2373 				actual = ERR_PTR(-ELOOP);
2374 			} else if (IS_ROOT(alias)) {
2375 				/* Is this an anonymous mountpoint that we
2376 				 * could splice into our tree? */
2377 				__d_materialise_dentry(dentry, alias);
2378 				write_sequnlock(&rename_lock);
2379 				__d_drop(alias);
2380 				goto found;
2381 			} else {
2382 				/* Nope, but we must(!) avoid directory
2383 				 * aliasing */
2384 				actual = __d_unalias(inode, dentry, alias);
2385 			}
2386 			write_sequnlock(&rename_lock);
2387 			if (IS_ERR(actual)) {
2388 				if (PTR_ERR(actual) == -ELOOP)
2389 					pr_warn_ratelimited(
2390 						"VFS: Lookup of '%s' in %s %s"
2391 						" would have caused loop\n",
2392 						dentry->d_name.name,
2393 						inode->i_sb->s_type->name,
2394 						inode->i_sb->s_id);
2395 				dput(alias);
2396 			}
2397 			goto out_nolock;
2398 		}
2399 	}
2400 
2401 	/* Add a unique reference */
2402 	actual = __d_instantiate_unique(dentry, inode);
2403 	if (!actual)
2404 		actual = dentry;
2405 	else
2406 		BUG_ON(!d_unhashed(actual));
2407 
2408 	spin_lock(&actual->d_lock);
2409 found:
2410 	_d_rehash(actual);
2411 	spin_unlock(&actual->d_lock);
2412 	spin_unlock(&inode->i_lock);
2413 out_nolock:
2414 	if (actual == dentry) {
2415 		security_d_instantiate(dentry, inode);
2416 		return NULL;
2417 	}
2418 
2419 	iput(inode);
2420 	return actual;
2421 }
2422 EXPORT_SYMBOL_GPL(d_materialise_unique);
2423 
2424 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2425 {
2426 	*buflen -= namelen;
2427 	if (*buflen < 0)
2428 		return -ENAMETOOLONG;
2429 	*buffer -= namelen;
2430 	memcpy(*buffer, str, namelen);
2431 	return 0;
2432 }
2433 
2434 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2435 {
2436 	return prepend(buffer, buflen, name->name, name->len);
2437 }
2438 
2439 /**
2440  * prepend_path - Prepend path string to a buffer
2441  * @path: the dentry/vfsmount to report
2442  * @root: root vfsmnt/dentry (may be modified by this function)
2443  * @buffer: pointer to the end of the buffer
2444  * @buflen: pointer to buffer length
2445  *
2446  * Caller holds the rename_lock.
2447  *
2448  * If path is not reachable from the supplied root, then the value of
2449  * root is changed (without modifying refcounts).
2450  */
2451 static int prepend_path(const struct path *path, struct path *root,
2452 			char **buffer, int *buflen)
2453 {
2454 	struct dentry *dentry = path->dentry;
2455 	struct vfsmount *vfsmnt = path->mnt;
2456 	bool slash = false;
2457 	int error = 0;
2458 
2459 	br_read_lock(vfsmount_lock);
2460 	while (dentry != root->dentry || vfsmnt != root->mnt) {
2461 		struct dentry * parent;
2462 
2463 		if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2464 			/* Global root? */
2465 			if (vfsmnt->mnt_parent == vfsmnt) {
2466 				goto global_root;
2467 			}
2468 			dentry = vfsmnt->mnt_mountpoint;
2469 			vfsmnt = vfsmnt->mnt_parent;
2470 			continue;
2471 		}
2472 		parent = dentry->d_parent;
2473 		prefetch(parent);
2474 		spin_lock(&dentry->d_lock);
2475 		error = prepend_name(buffer, buflen, &dentry->d_name);
2476 		spin_unlock(&dentry->d_lock);
2477 		if (!error)
2478 			error = prepend(buffer, buflen, "/", 1);
2479 		if (error)
2480 			break;
2481 
2482 		slash = true;
2483 		dentry = parent;
2484 	}
2485 
2486 out:
2487 	if (!error && !slash)
2488 		error = prepend(buffer, buflen, "/", 1);
2489 
2490 	br_read_unlock(vfsmount_lock);
2491 	return error;
2492 
2493 global_root:
2494 	/*
2495 	 * Filesystems needing to implement special "root names"
2496 	 * should do so with ->d_dname()
2497 	 */
2498 	if (IS_ROOT(dentry) &&
2499 	    (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2500 		WARN(1, "Root dentry has weird name <%.*s>\n",
2501 		     (int) dentry->d_name.len, dentry->d_name.name);
2502 	}
2503 	root->mnt = vfsmnt;
2504 	root->dentry = dentry;
2505 	goto out;
2506 }
2507 
2508 /**
2509  * __d_path - return the path of a dentry
2510  * @path: the dentry/vfsmount to report
2511  * @root: root vfsmnt/dentry (may be modified by this function)
2512  * @buf: buffer to return value in
2513  * @buflen: buffer length
2514  *
2515  * Convert a dentry into an ASCII path name.
2516  *
2517  * Returns a pointer into the buffer or an error code if the
2518  * path was too long.
2519  *
2520  * "buflen" should be positive.
2521  *
2522  * If path is not reachable from the supplied root, then the value of
2523  * root is changed (without modifying refcounts).
2524  */
2525 char *__d_path(const struct path *path, struct path *root,
2526 	       char *buf, int buflen)
2527 {
2528 	char *res = buf + buflen;
2529 	int error;
2530 
2531 	prepend(&res, &buflen, "\0", 1);
2532 	write_seqlock(&rename_lock);
2533 	error = prepend_path(path, root, &res, &buflen);
2534 	write_sequnlock(&rename_lock);
2535 
2536 	if (error)
2537 		return ERR_PTR(error);
2538 	return res;
2539 }
2540 
2541 /*
2542  * same as __d_path but appends "(deleted)" for unlinked files.
2543  */
2544 static int path_with_deleted(const struct path *path, struct path *root,
2545 				 char **buf, int *buflen)
2546 {
2547 	prepend(buf, buflen, "\0", 1);
2548 	if (d_unlinked(path->dentry)) {
2549 		int error = prepend(buf, buflen, " (deleted)", 10);
2550 		if (error)
2551 			return error;
2552 	}
2553 
2554 	return prepend_path(path, root, buf, buflen);
2555 }
2556 
2557 static int prepend_unreachable(char **buffer, int *buflen)
2558 {
2559 	return prepend(buffer, buflen, "(unreachable)", 13);
2560 }
2561 
2562 /**
2563  * d_path - return the path of a dentry
2564  * @path: path to report
2565  * @buf: buffer to return value in
2566  * @buflen: buffer length
2567  *
2568  * Convert a dentry into an ASCII path name. If the entry has been deleted
2569  * the string " (deleted)" is appended. Note that this is ambiguous.
2570  *
2571  * Returns a pointer into the buffer or an error code if the path was
2572  * too long. Note: Callers should use the returned pointer, not the passed
2573  * in buffer, to use the name! The implementation often starts at an offset
2574  * into the buffer, and may leave 0 bytes at the start.
2575  *
2576  * "buflen" should be positive.
2577  */
2578 char *d_path(const struct path *path, char *buf, int buflen)
2579 {
2580 	char *res = buf + buflen;
2581 	struct path root;
2582 	struct path tmp;
2583 	int error;
2584 
2585 	/*
2586 	 * We have various synthetic filesystems that never get mounted.  On
2587 	 * these filesystems dentries are never used for lookup purposes, and
2588 	 * thus don't need to be hashed.  They also don't need a name until a
2589 	 * user wants to identify the object in /proc/pid/fd/.  The little hack
2590 	 * below allows us to generate a name for these objects on demand:
2591 	 */
2592 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2593 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2594 
2595 	get_fs_root(current->fs, &root);
2596 	write_seqlock(&rename_lock);
2597 	tmp = root;
2598 	error = path_with_deleted(path, &tmp, &res, &buflen);
2599 	if (error)
2600 		res = ERR_PTR(error);
2601 	write_sequnlock(&rename_lock);
2602 	path_put(&root);
2603 	return res;
2604 }
2605 EXPORT_SYMBOL(d_path);
2606 
2607 /**
2608  * d_path_with_unreachable - return the path of a dentry
2609  * @path: path to report
2610  * @buf: buffer to return value in
2611  * @buflen: buffer length
2612  *
2613  * The difference from d_path() is that this prepends "(unreachable)"
2614  * to paths which are unreachable from the current process' root.
2615  */
2616 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2617 {
2618 	char *res = buf + buflen;
2619 	struct path root;
2620 	struct path tmp;
2621 	int error;
2622 
2623 	if (path->dentry->d_op && path->dentry->d_op->d_dname)
2624 		return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2625 
2626 	get_fs_root(current->fs, &root);
2627 	write_seqlock(&rename_lock);
2628 	tmp = root;
2629 	error = path_with_deleted(path, &tmp, &res, &buflen);
2630 	if (!error && !path_equal(&tmp, &root))
2631 		error = prepend_unreachable(&res, &buflen);
2632 	write_sequnlock(&rename_lock);
2633 	path_put(&root);
2634 	if (error)
2635 		res =  ERR_PTR(error);
2636 
2637 	return res;
2638 }
2639 
2640 /*
2641  * Helper function for dentry_operations.d_dname() members
2642  */
2643 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2644 			const char *fmt, ...)
2645 {
2646 	va_list args;
2647 	char temp[64];
2648 	int sz;
2649 
2650 	va_start(args, fmt);
2651 	sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2652 	va_end(args);
2653 
2654 	if (sz > sizeof(temp) || sz > buflen)
2655 		return ERR_PTR(-ENAMETOOLONG);
2656 
2657 	buffer += buflen - sz;
2658 	return memcpy(buffer, temp, sz);
2659 }
2660 
2661 /*
2662  * Write full pathname from the root of the filesystem into the buffer.
2663  */
2664 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2665 {
2666 	char *end = buf + buflen;
2667 	char *retval;
2668 
2669 	prepend(&end, &buflen, "\0", 1);
2670 	if (buflen < 1)
2671 		goto Elong;
2672 	/* Get '/' right */
2673 	retval = end-1;
2674 	*retval = '/';
2675 
2676 	while (!IS_ROOT(dentry)) {
2677 		struct dentry *parent = dentry->d_parent;
2678 		int error;
2679 
2680 		prefetch(parent);
2681 		spin_lock(&dentry->d_lock);
2682 		error = prepend_name(&end, &buflen, &dentry->d_name);
2683 		spin_unlock(&dentry->d_lock);
2684 		if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2685 			goto Elong;
2686 
2687 		retval = end;
2688 		dentry = parent;
2689 	}
2690 	return retval;
2691 Elong:
2692 	return ERR_PTR(-ENAMETOOLONG);
2693 }
2694 
2695 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2696 {
2697 	char *retval;
2698 
2699 	write_seqlock(&rename_lock);
2700 	retval = __dentry_path(dentry, buf, buflen);
2701 	write_sequnlock(&rename_lock);
2702 
2703 	return retval;
2704 }
2705 EXPORT_SYMBOL(dentry_path_raw);
2706 
2707 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2708 {
2709 	char *p = NULL;
2710 	char *retval;
2711 
2712 	write_seqlock(&rename_lock);
2713 	if (d_unlinked(dentry)) {
2714 		p = buf + buflen;
2715 		if (prepend(&p, &buflen, "//deleted", 10) != 0)
2716 			goto Elong;
2717 		buflen++;
2718 	}
2719 	retval = __dentry_path(dentry, buf, buflen);
2720 	write_sequnlock(&rename_lock);
2721 	if (!IS_ERR(retval) && p)
2722 		*p = '/';	/* restore '/' overriden with '\0' */
2723 	return retval;
2724 Elong:
2725 	return ERR_PTR(-ENAMETOOLONG);
2726 }
2727 
2728 /*
2729  * NOTE! The user-level library version returns a
2730  * character pointer. The kernel system call just
2731  * returns the length of the buffer filled (which
2732  * includes the ending '\0' character), or a negative
2733  * error value. So libc would do something like
2734  *
2735  *	char *getcwd(char * buf, size_t size)
2736  *	{
2737  *		int retval;
2738  *
2739  *		retval = sys_getcwd(buf, size);
2740  *		if (retval >= 0)
2741  *			return buf;
2742  *		errno = -retval;
2743  *		return NULL;
2744  *	}
2745  */
2746 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2747 {
2748 	int error;
2749 	struct path pwd, root;
2750 	char *page = (char *) __get_free_page(GFP_USER);
2751 
2752 	if (!page)
2753 		return -ENOMEM;
2754 
2755 	get_fs_root_and_pwd(current->fs, &root, &pwd);
2756 
2757 	error = -ENOENT;
2758 	write_seqlock(&rename_lock);
2759 	if (!d_unlinked(pwd.dentry)) {
2760 		unsigned long len;
2761 		struct path tmp = root;
2762 		char *cwd = page + PAGE_SIZE;
2763 		int buflen = PAGE_SIZE;
2764 
2765 		prepend(&cwd, &buflen, "\0", 1);
2766 		error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2767 		write_sequnlock(&rename_lock);
2768 
2769 		if (error)
2770 			goto out;
2771 
2772 		/* Unreachable from current root */
2773 		if (!path_equal(&tmp, &root)) {
2774 			error = prepend_unreachable(&cwd, &buflen);
2775 			if (error)
2776 				goto out;
2777 		}
2778 
2779 		error = -ERANGE;
2780 		len = PAGE_SIZE + page - cwd;
2781 		if (len <= size) {
2782 			error = len;
2783 			if (copy_to_user(buf, cwd, len))
2784 				error = -EFAULT;
2785 		}
2786 	} else {
2787 		write_sequnlock(&rename_lock);
2788 	}
2789 
2790 out:
2791 	path_put(&pwd);
2792 	path_put(&root);
2793 	free_page((unsigned long) page);
2794 	return error;
2795 }
2796 
2797 /*
2798  * Test whether new_dentry is a subdirectory of old_dentry.
2799  *
2800  * Trivially implemented using the dcache structure
2801  */
2802 
2803 /**
2804  * is_subdir - is new dentry a subdirectory of old_dentry
2805  * @new_dentry: new dentry
2806  * @old_dentry: old dentry
2807  *
2808  * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2809  * Returns 0 otherwise.
2810  * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2811  */
2812 
2813 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2814 {
2815 	int result;
2816 	unsigned seq;
2817 
2818 	if (new_dentry == old_dentry)
2819 		return 1;
2820 
2821 	do {
2822 		/* for restarting inner loop in case of seq retry */
2823 		seq = read_seqbegin(&rename_lock);
2824 		/*
2825 		 * Need rcu_readlock to protect against the d_parent trashing
2826 		 * due to d_move
2827 		 */
2828 		rcu_read_lock();
2829 		if (d_ancestor(old_dentry, new_dentry))
2830 			result = 1;
2831 		else
2832 			result = 0;
2833 		rcu_read_unlock();
2834 	} while (read_seqretry(&rename_lock, seq));
2835 
2836 	return result;
2837 }
2838 
2839 int path_is_under(struct path *path1, struct path *path2)
2840 {
2841 	struct vfsmount *mnt = path1->mnt;
2842 	struct dentry *dentry = path1->dentry;
2843 	int res;
2844 
2845 	br_read_lock(vfsmount_lock);
2846 	if (mnt != path2->mnt) {
2847 		for (;;) {
2848 			if (mnt->mnt_parent == mnt) {
2849 				br_read_unlock(vfsmount_lock);
2850 				return 0;
2851 			}
2852 			if (mnt->mnt_parent == path2->mnt)
2853 				break;
2854 			mnt = mnt->mnt_parent;
2855 		}
2856 		dentry = mnt->mnt_mountpoint;
2857 	}
2858 	res = is_subdir(dentry, path2->dentry);
2859 	br_read_unlock(vfsmount_lock);
2860 	return res;
2861 }
2862 EXPORT_SYMBOL(path_is_under);
2863 
2864 void d_genocide(struct dentry *root)
2865 {
2866 	struct dentry *this_parent;
2867 	struct list_head *next;
2868 	unsigned seq;
2869 	int locked = 0;
2870 
2871 	seq = read_seqbegin(&rename_lock);
2872 again:
2873 	this_parent = root;
2874 	spin_lock(&this_parent->d_lock);
2875 repeat:
2876 	next = this_parent->d_subdirs.next;
2877 resume:
2878 	while (next != &this_parent->d_subdirs) {
2879 		struct list_head *tmp = next;
2880 		struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2881 		next = tmp->next;
2882 
2883 		spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2884 		if (d_unhashed(dentry) || !dentry->d_inode) {
2885 			spin_unlock(&dentry->d_lock);
2886 			continue;
2887 		}
2888 		if (!list_empty(&dentry->d_subdirs)) {
2889 			spin_unlock(&this_parent->d_lock);
2890 			spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2891 			this_parent = dentry;
2892 			spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2893 			goto repeat;
2894 		}
2895 		if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2896 			dentry->d_flags |= DCACHE_GENOCIDE;
2897 			dentry->d_count--;
2898 		}
2899 		spin_unlock(&dentry->d_lock);
2900 	}
2901 	if (this_parent != root) {
2902 		struct dentry *child = this_parent;
2903 		if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2904 			this_parent->d_flags |= DCACHE_GENOCIDE;
2905 			this_parent->d_count--;
2906 		}
2907 		this_parent = try_to_ascend(this_parent, locked, seq);
2908 		if (!this_parent)
2909 			goto rename_retry;
2910 		next = child->d_u.d_child.next;
2911 		goto resume;
2912 	}
2913 	spin_unlock(&this_parent->d_lock);
2914 	if (!locked && read_seqretry(&rename_lock, seq))
2915 		goto rename_retry;
2916 	if (locked)
2917 		write_sequnlock(&rename_lock);
2918 	return;
2919 
2920 rename_retry:
2921 	locked = 1;
2922 	write_seqlock(&rename_lock);
2923 	goto again;
2924 }
2925 
2926 /**
2927  * find_inode_number - check for dentry with name
2928  * @dir: directory to check
2929  * @name: Name to find.
2930  *
2931  * Check whether a dentry already exists for the given name,
2932  * and return the inode number if it has an inode. Otherwise
2933  * 0 is returned.
2934  *
2935  * This routine is used to post-process directory listings for
2936  * filesystems using synthetic inode numbers, and is necessary
2937  * to keep getcwd() working.
2938  */
2939 
2940 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2941 {
2942 	struct dentry * dentry;
2943 	ino_t ino = 0;
2944 
2945 	dentry = d_hash_and_lookup(dir, name);
2946 	if (dentry) {
2947 		if (dentry->d_inode)
2948 			ino = dentry->d_inode->i_ino;
2949 		dput(dentry);
2950 	}
2951 	return ino;
2952 }
2953 EXPORT_SYMBOL(find_inode_number);
2954 
2955 static __initdata unsigned long dhash_entries;
2956 static int __init set_dhash_entries(char *str)
2957 {
2958 	if (!str)
2959 		return 0;
2960 	dhash_entries = simple_strtoul(str, &str, 0);
2961 	return 1;
2962 }
2963 __setup("dhash_entries=", set_dhash_entries);
2964 
2965 static void __init dcache_init_early(void)
2966 {
2967 	int loop;
2968 
2969 	/* If hashes are distributed across NUMA nodes, defer
2970 	 * hash allocation until vmalloc space is available.
2971 	 */
2972 	if (hashdist)
2973 		return;
2974 
2975 	dentry_hashtable =
2976 		alloc_large_system_hash("Dentry cache",
2977 					sizeof(struct hlist_bl_head),
2978 					dhash_entries,
2979 					13,
2980 					HASH_EARLY,
2981 					&d_hash_shift,
2982 					&d_hash_mask,
2983 					0);
2984 
2985 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
2986 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
2987 }
2988 
2989 static void __init dcache_init(void)
2990 {
2991 	int loop;
2992 
2993 	/*
2994 	 * A constructor could be added for stable state like the lists,
2995 	 * but it is probably not worth it because of the cache nature
2996 	 * of the dcache.
2997 	 */
2998 	dentry_cache = KMEM_CACHE(dentry,
2999 		SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3000 
3001 	/* Hash may have been set up in dcache_init_early */
3002 	if (!hashdist)
3003 		return;
3004 
3005 	dentry_hashtable =
3006 		alloc_large_system_hash("Dentry cache",
3007 					sizeof(struct hlist_bl_head),
3008 					dhash_entries,
3009 					13,
3010 					0,
3011 					&d_hash_shift,
3012 					&d_hash_mask,
3013 					0);
3014 
3015 	for (loop = 0; loop < (1 << d_hash_shift); loop++)
3016 		INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3017 }
3018 
3019 /* SLAB cache for __getname() consumers */
3020 struct kmem_cache *names_cachep __read_mostly;
3021 EXPORT_SYMBOL(names_cachep);
3022 
3023 EXPORT_SYMBOL(d_genocide);
3024 
3025 void __init vfs_caches_init_early(void)
3026 {
3027 	dcache_init_early();
3028 	inode_init_early();
3029 }
3030 
3031 void __init vfs_caches_init(unsigned long mempages)
3032 {
3033 	unsigned long reserve;
3034 
3035 	/* Base hash sizes on available memory, with a reserve equal to
3036            150% of current kernel size */
3037 
3038 	reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3039 	mempages -= reserve;
3040 
3041 	names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3042 			SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3043 
3044 	dcache_init();
3045 	inode_init();
3046 	files_init(mempages);
3047 	mnt_init();
3048 	bdev_cache_init();
3049 	chrdev_init();
3050 }
3051