1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dcache.c 4 * 5 * Complete reimplementation 6 * (C) 1997 Thomas Schoebel-Theuer, 7 * with heavy changes by Linus Torvalds 8 */ 9 10 /* 11 * Notes on the allocation strategy: 12 * 13 * The dcache is a master of the icache - whenever a dcache entry 14 * exists, the inode will always exist. "iput()" is done either when 15 * the dcache entry is deleted or garbage collected. 16 */ 17 18 #include <linux/ratelimit.h> 19 #include <linux/string.h> 20 #include <linux/mm.h> 21 #include <linux/fs.h> 22 #include <linux/fscrypt.h> 23 #include <linux/fsnotify.h> 24 #include <linux/slab.h> 25 #include <linux/init.h> 26 #include <linux/hash.h> 27 #include <linux/cache.h> 28 #include <linux/export.h> 29 #include <linux/security.h> 30 #include <linux/seqlock.h> 31 #include <linux/memblock.h> 32 #include <linux/bit_spinlock.h> 33 #include <linux/rculist_bl.h> 34 #include <linux/list_lru.h> 35 #include "internal.h" 36 #include "mount.h" 37 38 #include <asm/runtime-const.h> 39 40 /* 41 * Usage: 42 * dcache->d_inode->i_lock protects: 43 * - i_dentry, d_u.d_alias, d_inode of aliases 44 * dcache_hash_bucket lock protects: 45 * - the dcache hash table 46 * s_roots bl list spinlock protects: 47 * - the s_roots list (see __d_drop) 48 * dentry->d_sb->s_dentry_lru_lock protects: 49 * - the dcache lru lists and counters 50 * d_lock protects: 51 * - d_flags 52 * - d_name 53 * - d_lru 54 * - d_count 55 * - d_unhashed() 56 * - d_parent and d_chilren 57 * - childrens' d_sib and d_parent 58 * - d_u.d_alias, d_inode 59 * 60 * Ordering: 61 * dentry->d_inode->i_lock 62 * dentry->d_lock 63 * dentry->d_sb->s_dentry_lru_lock 64 * dcache_hash_bucket lock 65 * s_roots lock 66 * 67 * If there is an ancestor relationship: 68 * dentry->d_parent->...->d_parent->d_lock 69 * ... 70 * dentry->d_parent->d_lock 71 * dentry->d_lock 72 * 73 * If no ancestor relationship: 74 * arbitrary, since it's serialized on rename_lock 75 */ 76 static int sysctl_vfs_cache_pressure __read_mostly = 100; 77 78 unsigned long vfs_pressure_ratio(unsigned long val) 79 { 80 return mult_frac(val, sysctl_vfs_cache_pressure, 100); 81 } 82 EXPORT_SYMBOL_GPL(vfs_pressure_ratio); 83 84 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock); 85 86 EXPORT_SYMBOL(rename_lock); 87 88 static struct kmem_cache *dentry_cache __ro_after_init; 89 90 const struct qstr empty_name = QSTR_INIT("", 0); 91 EXPORT_SYMBOL(empty_name); 92 const struct qstr slash_name = QSTR_INIT("/", 1); 93 EXPORT_SYMBOL(slash_name); 94 const struct qstr dotdot_name = QSTR_INIT("..", 2); 95 EXPORT_SYMBOL(dotdot_name); 96 97 /* 98 * This is the single most critical data structure when it comes 99 * to the dcache: the hashtable for lookups. Somebody should try 100 * to make this good - I've just made it work. 101 * 102 * This hash-function tries to avoid losing too many bits of hash 103 * information, yet avoid using a prime hash-size or similar. 104 * 105 * Marking the variables "used" ensures that the compiler doesn't 106 * optimize them away completely on architectures with runtime 107 * constant infrastructure, this allows debuggers to see their 108 * values. But updating these values has no effect on those arches. 109 */ 110 111 static unsigned int d_hash_shift __ro_after_init __used; 112 113 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used; 114 115 static inline struct hlist_bl_head *d_hash(unsigned long hashlen) 116 { 117 return runtime_const_ptr(dentry_hashtable) + 118 runtime_const_shift_right_32(hashlen, d_hash_shift); 119 } 120 121 #define IN_LOOKUP_SHIFT 10 122 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT]; 123 124 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent, 125 unsigned int hash) 126 { 127 hash += (unsigned long) parent / L1_CACHE_BYTES; 128 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT); 129 } 130 131 struct dentry_stat_t { 132 long nr_dentry; 133 long nr_unused; 134 long age_limit; /* age in seconds */ 135 long want_pages; /* pages requested by system */ 136 long nr_negative; /* # of unused negative dentries */ 137 long dummy; /* Reserved for future use */ 138 }; 139 140 static DEFINE_PER_CPU(long, nr_dentry); 141 static DEFINE_PER_CPU(long, nr_dentry_unused); 142 static DEFINE_PER_CPU(long, nr_dentry_negative); 143 static int dentry_negative_policy; 144 145 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS) 146 /* Statistics gathering. */ 147 static struct dentry_stat_t dentry_stat = { 148 .age_limit = 45, 149 }; 150 151 /* 152 * Here we resort to our own counters instead of using generic per-cpu counters 153 * for consistency with what the vfs inode code does. We are expected to harvest 154 * better code and performance by having our own specialized counters. 155 * 156 * Please note that the loop is done over all possible CPUs, not over all online 157 * CPUs. The reason for this is that we don't want to play games with CPUs going 158 * on and off. If one of them goes off, we will just keep their counters. 159 * 160 * glommer: See cffbc8a for details, and if you ever intend to change this, 161 * please update all vfs counters to match. 162 */ 163 static long get_nr_dentry(void) 164 { 165 int i; 166 long sum = 0; 167 for_each_possible_cpu(i) 168 sum += per_cpu(nr_dentry, i); 169 return sum < 0 ? 0 : sum; 170 } 171 172 static long get_nr_dentry_unused(void) 173 { 174 int i; 175 long sum = 0; 176 for_each_possible_cpu(i) 177 sum += per_cpu(nr_dentry_unused, i); 178 return sum < 0 ? 0 : sum; 179 } 180 181 static long get_nr_dentry_negative(void) 182 { 183 int i; 184 long sum = 0; 185 186 for_each_possible_cpu(i) 187 sum += per_cpu(nr_dentry_negative, i); 188 return sum < 0 ? 0 : sum; 189 } 190 191 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer, 192 size_t *lenp, loff_t *ppos) 193 { 194 dentry_stat.nr_dentry = get_nr_dentry(); 195 dentry_stat.nr_unused = get_nr_dentry_unused(); 196 dentry_stat.nr_negative = get_nr_dentry_negative(); 197 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 198 } 199 200 static const struct ctl_table fs_dcache_sysctls[] = { 201 { 202 .procname = "dentry-state", 203 .data = &dentry_stat, 204 .maxlen = 6*sizeof(long), 205 .mode = 0444, 206 .proc_handler = proc_nr_dentry, 207 }, 208 { 209 .procname = "dentry-negative", 210 .data = &dentry_negative_policy, 211 .maxlen = sizeof(dentry_negative_policy), 212 .mode = 0644, 213 .proc_handler = proc_dointvec_minmax, 214 .extra1 = SYSCTL_ZERO, 215 .extra2 = SYSCTL_ONE, 216 }, 217 }; 218 219 static const struct ctl_table vm_dcache_sysctls[] = { 220 { 221 .procname = "vfs_cache_pressure", 222 .data = &sysctl_vfs_cache_pressure, 223 .maxlen = sizeof(sysctl_vfs_cache_pressure), 224 .mode = 0644, 225 .proc_handler = proc_dointvec_minmax, 226 .extra1 = SYSCTL_ZERO, 227 }, 228 }; 229 230 static int __init init_fs_dcache_sysctls(void) 231 { 232 register_sysctl_init("vm", vm_dcache_sysctls); 233 register_sysctl_init("fs", fs_dcache_sysctls); 234 return 0; 235 } 236 fs_initcall(init_fs_dcache_sysctls); 237 #endif 238 239 /* 240 * Compare 2 name strings, return 0 if they match, otherwise non-zero. 241 * The strings are both count bytes long, and count is non-zero. 242 */ 243 #ifdef CONFIG_DCACHE_WORD_ACCESS 244 245 #include <asm/word-at-a-time.h> 246 /* 247 * NOTE! 'cs' and 'scount' come from a dentry, so it has a 248 * aligned allocation for this particular component. We don't 249 * strictly need the load_unaligned_zeropad() safety, but it 250 * doesn't hurt either. 251 * 252 * In contrast, 'ct' and 'tcount' can be from a pathname, and do 253 * need the careful unaligned handling. 254 */ 255 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 256 { 257 unsigned long a,b,mask; 258 259 for (;;) { 260 a = read_word_at_a_time(cs); 261 b = load_unaligned_zeropad(ct); 262 if (tcount < sizeof(unsigned long)) 263 break; 264 if (unlikely(a != b)) 265 return 1; 266 cs += sizeof(unsigned long); 267 ct += sizeof(unsigned long); 268 tcount -= sizeof(unsigned long); 269 if (!tcount) 270 return 0; 271 } 272 mask = bytemask_from_count(tcount); 273 return unlikely(!!((a ^ b) & mask)); 274 } 275 276 #else 277 278 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount) 279 { 280 do { 281 if (*cs != *ct) 282 return 1; 283 cs++; 284 ct++; 285 tcount--; 286 } while (tcount); 287 return 0; 288 } 289 290 #endif 291 292 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount) 293 { 294 /* 295 * Be careful about RCU walk racing with rename: 296 * use 'READ_ONCE' to fetch the name pointer. 297 * 298 * NOTE! Even if a rename will mean that the length 299 * was not loaded atomically, we don't care. The 300 * RCU walk will check the sequence count eventually, 301 * and catch it. And we won't overrun the buffer, 302 * because we're reading the name pointer atomically, 303 * and a dentry name is guaranteed to be properly 304 * terminated with a NUL byte. 305 * 306 * End result: even if 'len' is wrong, we'll exit 307 * early because the data cannot match (there can 308 * be no NUL in the ct/tcount data) 309 */ 310 const unsigned char *cs = READ_ONCE(dentry->d_name.name); 311 312 return dentry_string_cmp(cs, ct, tcount); 313 } 314 315 /* 316 * long names are allocated separately from dentry and never modified. 317 * Refcounted, freeing is RCU-delayed. See take_dentry_name_snapshot() 318 * for the reason why ->count and ->head can't be combined into a union. 319 * dentry_string_cmp() relies upon ->name[] being word-aligned. 320 */ 321 struct external_name { 322 atomic_t count; 323 struct rcu_head head; 324 unsigned char name[] __aligned(sizeof(unsigned long)); 325 }; 326 327 static inline struct external_name *external_name(struct dentry *dentry) 328 { 329 return container_of(dentry->d_name.name, struct external_name, name[0]); 330 } 331 332 static void __d_free(struct rcu_head *head) 333 { 334 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 335 336 kmem_cache_free(dentry_cache, dentry); 337 } 338 339 static void __d_free_external(struct rcu_head *head) 340 { 341 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu); 342 kfree(external_name(dentry)); 343 kmem_cache_free(dentry_cache, dentry); 344 } 345 346 static inline int dname_external(const struct dentry *dentry) 347 { 348 return dentry->d_name.name != dentry->d_shortname.string; 349 } 350 351 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry) 352 { 353 unsigned seq; 354 const unsigned char *s; 355 356 rcu_read_lock(); 357 retry: 358 seq = read_seqcount_begin(&dentry->d_seq); 359 s = READ_ONCE(dentry->d_name.name); 360 name->name.hash_len = dentry->d_name.hash_len; 361 name->name.name = name->inline_name.string; 362 if (likely(s == dentry->d_shortname.string)) { 363 name->inline_name = dentry->d_shortname; 364 } else { 365 struct external_name *p; 366 p = container_of(s, struct external_name, name[0]); 367 // get a valid reference 368 if (unlikely(!atomic_inc_not_zero(&p->count))) 369 goto retry; 370 name->name.name = s; 371 } 372 if (read_seqcount_retry(&dentry->d_seq, seq)) { 373 release_dentry_name_snapshot(name); 374 goto retry; 375 } 376 rcu_read_unlock(); 377 } 378 EXPORT_SYMBOL(take_dentry_name_snapshot); 379 380 void release_dentry_name_snapshot(struct name_snapshot *name) 381 { 382 if (unlikely(name->name.name != name->inline_name.string)) { 383 struct external_name *p; 384 p = container_of(name->name.name, struct external_name, name[0]); 385 if (unlikely(atomic_dec_and_test(&p->count))) 386 kfree_rcu(p, head); 387 } 388 } 389 EXPORT_SYMBOL(release_dentry_name_snapshot); 390 391 static inline void __d_set_inode_and_type(struct dentry *dentry, 392 struct inode *inode, 393 unsigned type_flags) 394 { 395 unsigned flags; 396 397 dentry->d_inode = inode; 398 flags = READ_ONCE(dentry->d_flags); 399 flags &= ~DCACHE_ENTRY_TYPE; 400 flags |= type_flags; 401 smp_store_release(&dentry->d_flags, flags); 402 } 403 404 static inline void __d_clear_type_and_inode(struct dentry *dentry) 405 { 406 unsigned flags = READ_ONCE(dentry->d_flags); 407 408 flags &= ~DCACHE_ENTRY_TYPE; 409 WRITE_ONCE(dentry->d_flags, flags); 410 dentry->d_inode = NULL; 411 /* 412 * The negative counter only tracks dentries on the LRU. Don't inc if 413 * d_lru is on another list. 414 */ 415 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 416 this_cpu_inc(nr_dentry_negative); 417 } 418 419 static void dentry_free(struct dentry *dentry) 420 { 421 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias)); 422 if (unlikely(dname_external(dentry))) { 423 struct external_name *p = external_name(dentry); 424 if (likely(atomic_dec_and_test(&p->count))) { 425 call_rcu(&dentry->d_u.d_rcu, __d_free_external); 426 return; 427 } 428 } 429 /* if dentry was never visible to RCU, immediate free is OK */ 430 if (dentry->d_flags & DCACHE_NORCU) 431 __d_free(&dentry->d_u.d_rcu); 432 else 433 call_rcu(&dentry->d_u.d_rcu, __d_free); 434 } 435 436 /* 437 * Release the dentry's inode, using the filesystem 438 * d_iput() operation if defined. 439 */ 440 static void dentry_unlink_inode(struct dentry * dentry) 441 __releases(dentry->d_lock) 442 __releases(dentry->d_inode->i_lock) 443 { 444 struct inode *inode = dentry->d_inode; 445 446 raw_write_seqcount_begin(&dentry->d_seq); 447 __d_clear_type_and_inode(dentry); 448 hlist_del_init(&dentry->d_u.d_alias); 449 raw_write_seqcount_end(&dentry->d_seq); 450 spin_unlock(&dentry->d_lock); 451 spin_unlock(&inode->i_lock); 452 if (!inode->i_nlink) 453 fsnotify_inoderemove(inode); 454 if (dentry->d_op && dentry->d_op->d_iput) 455 dentry->d_op->d_iput(dentry, inode); 456 else 457 iput(inode); 458 } 459 460 /* 461 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry 462 * is in use - which includes both the "real" per-superblock 463 * LRU list _and_ the DCACHE_SHRINK_LIST use. 464 * 465 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is 466 * on the shrink list (ie not on the superblock LRU list). 467 * 468 * The per-cpu "nr_dentry_unused" counters are updated with 469 * the DCACHE_LRU_LIST bit. 470 * 471 * The per-cpu "nr_dentry_negative" counters are only updated 472 * when deleted from or added to the per-superblock LRU list, not 473 * from/to the shrink list. That is to avoid an unneeded dec/inc 474 * pair when moving from LRU to shrink list in select_collect(). 475 * 476 * These helper functions make sure we always follow the 477 * rules. d_lock must be held by the caller. 478 */ 479 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x)) 480 static void d_lru_add(struct dentry *dentry) 481 { 482 D_FLAG_VERIFY(dentry, 0); 483 dentry->d_flags |= DCACHE_LRU_LIST; 484 this_cpu_inc(nr_dentry_unused); 485 if (d_is_negative(dentry)) 486 this_cpu_inc(nr_dentry_negative); 487 WARN_ON_ONCE(!list_lru_add_obj( 488 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 489 } 490 491 static void d_lru_del(struct dentry *dentry) 492 { 493 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 494 dentry->d_flags &= ~DCACHE_LRU_LIST; 495 this_cpu_dec(nr_dentry_unused); 496 if (d_is_negative(dentry)) 497 this_cpu_dec(nr_dentry_negative); 498 WARN_ON_ONCE(!list_lru_del_obj( 499 &dentry->d_sb->s_dentry_lru, &dentry->d_lru)); 500 } 501 502 static void d_shrink_del(struct dentry *dentry) 503 { 504 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 505 list_del_init(&dentry->d_lru); 506 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST); 507 this_cpu_dec(nr_dentry_unused); 508 } 509 510 static void d_shrink_add(struct dentry *dentry, struct list_head *list) 511 { 512 D_FLAG_VERIFY(dentry, 0); 513 list_add(&dentry->d_lru, list); 514 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST; 515 this_cpu_inc(nr_dentry_unused); 516 } 517 518 /* 519 * These can only be called under the global LRU lock, ie during the 520 * callback for freeing the LRU list. "isolate" removes it from the 521 * LRU lists entirely, while shrink_move moves it to the indicated 522 * private list. 523 */ 524 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry) 525 { 526 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 527 dentry->d_flags &= ~DCACHE_LRU_LIST; 528 this_cpu_dec(nr_dentry_unused); 529 if (d_is_negative(dentry)) 530 this_cpu_dec(nr_dentry_negative); 531 list_lru_isolate(lru, &dentry->d_lru); 532 } 533 534 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry, 535 struct list_head *list) 536 { 537 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST); 538 dentry->d_flags |= DCACHE_SHRINK_LIST; 539 if (d_is_negative(dentry)) 540 this_cpu_dec(nr_dentry_negative); 541 list_lru_isolate_move(lru, &dentry->d_lru, list); 542 } 543 544 static void ___d_drop(struct dentry *dentry) 545 { 546 struct hlist_bl_head *b; 547 /* 548 * Hashed dentries are normally on the dentry hashtable, 549 * with the exception of those newly allocated by 550 * d_obtain_root, which are always IS_ROOT: 551 */ 552 if (unlikely(IS_ROOT(dentry))) 553 b = &dentry->d_sb->s_roots; 554 else 555 b = d_hash(dentry->d_name.hash); 556 557 hlist_bl_lock(b); 558 __hlist_bl_del(&dentry->d_hash); 559 hlist_bl_unlock(b); 560 } 561 562 void __d_drop(struct dentry *dentry) 563 { 564 if (!d_unhashed(dentry)) { 565 ___d_drop(dentry); 566 dentry->d_hash.pprev = NULL; 567 write_seqcount_invalidate(&dentry->d_seq); 568 } 569 } 570 EXPORT_SYMBOL(__d_drop); 571 572 /** 573 * d_drop - drop a dentry 574 * @dentry: dentry to drop 575 * 576 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't 577 * be found through a VFS lookup any more. Note that this is different from 578 * deleting the dentry - d_delete will try to mark the dentry negative if 579 * possible, giving a successful _negative_ lookup, while d_drop will 580 * just make the cache lookup fail. 581 * 582 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some 583 * reason (NFS timeouts or autofs deletes). 584 * 585 * __d_drop requires dentry->d_lock 586 * 587 * ___d_drop doesn't mark dentry as "unhashed" 588 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL). 589 */ 590 void d_drop(struct dentry *dentry) 591 { 592 spin_lock(&dentry->d_lock); 593 __d_drop(dentry); 594 spin_unlock(&dentry->d_lock); 595 } 596 EXPORT_SYMBOL(d_drop); 597 598 static inline void dentry_unlist(struct dentry *dentry) 599 { 600 struct dentry *next; 601 /* 602 * Inform d_walk() and shrink_dentry_list() that we are no longer 603 * attached to the dentry tree 604 */ 605 dentry->d_flags |= DCACHE_DENTRY_KILLED; 606 if (unlikely(hlist_unhashed(&dentry->d_sib))) 607 return; 608 __hlist_del(&dentry->d_sib); 609 /* 610 * Cursors can move around the list of children. While we'd been 611 * a normal list member, it didn't matter - ->d_sib.next would've 612 * been updated. However, from now on it won't be and for the 613 * things like d_walk() it might end up with a nasty surprise. 614 * Normally d_walk() doesn't care about cursors moving around - 615 * ->d_lock on parent prevents that and since a cursor has no children 616 * of its own, we get through it without ever unlocking the parent. 617 * There is one exception, though - if we ascend from a child that 618 * gets killed as soon as we unlock it, the next sibling is found 619 * using the value left in its ->d_sib.next. And if _that_ 620 * pointed to a cursor, and cursor got moved (e.g. by lseek()) 621 * before d_walk() regains parent->d_lock, we'll end up skipping 622 * everything the cursor had been moved past. 623 * 624 * Solution: make sure that the pointer left behind in ->d_sib.next 625 * points to something that won't be moving around. I.e. skip the 626 * cursors. 627 */ 628 while (dentry->d_sib.next) { 629 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib); 630 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR))) 631 break; 632 dentry->d_sib.next = next->d_sib.next; 633 } 634 } 635 636 static struct dentry *__dentry_kill(struct dentry *dentry) 637 { 638 struct dentry *parent = NULL; 639 bool can_free = true; 640 641 /* 642 * The dentry is now unrecoverably dead to the world. 643 */ 644 lockref_mark_dead(&dentry->d_lockref); 645 646 /* 647 * inform the fs via d_prune that this dentry is about to be 648 * unhashed and destroyed. 649 */ 650 if (dentry->d_flags & DCACHE_OP_PRUNE) 651 dentry->d_op->d_prune(dentry); 652 653 if (dentry->d_flags & DCACHE_LRU_LIST) { 654 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) 655 d_lru_del(dentry); 656 } 657 /* if it was on the hash then remove it */ 658 __d_drop(dentry); 659 if (dentry->d_inode) 660 dentry_unlink_inode(dentry); 661 else 662 spin_unlock(&dentry->d_lock); 663 this_cpu_dec(nr_dentry); 664 if (dentry->d_op && dentry->d_op->d_release) 665 dentry->d_op->d_release(dentry); 666 667 cond_resched(); 668 /* now that it's negative, ->d_parent is stable */ 669 if (!IS_ROOT(dentry)) { 670 parent = dentry->d_parent; 671 spin_lock(&parent->d_lock); 672 } 673 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 674 dentry_unlist(dentry); 675 if (dentry->d_flags & DCACHE_SHRINK_LIST) 676 can_free = false; 677 spin_unlock(&dentry->d_lock); 678 if (likely(can_free)) 679 dentry_free(dentry); 680 if (parent && --parent->d_lockref.count) { 681 spin_unlock(&parent->d_lock); 682 return NULL; 683 } 684 return parent; 685 } 686 687 /* 688 * Lock a dentry for feeding it to __dentry_kill(). 689 * Called under rcu_read_lock() and dentry->d_lock; the former 690 * guarantees that nothing we access will be freed under us. 691 * Note that dentry is *not* protected from concurrent dentry_kill(), 692 * d_delete(), etc. 693 * 694 * Return false if dentry is busy. Otherwise, return true and have 695 * that dentry's inode locked. 696 */ 697 698 static bool lock_for_kill(struct dentry *dentry) 699 { 700 struct inode *inode = dentry->d_inode; 701 702 if (unlikely(dentry->d_lockref.count)) 703 return false; 704 705 if (!inode || likely(spin_trylock(&inode->i_lock))) 706 return true; 707 708 do { 709 spin_unlock(&dentry->d_lock); 710 spin_lock(&inode->i_lock); 711 spin_lock(&dentry->d_lock); 712 if (likely(inode == dentry->d_inode)) 713 break; 714 spin_unlock(&inode->i_lock); 715 inode = dentry->d_inode; 716 } while (inode); 717 if (likely(!dentry->d_lockref.count)) 718 return true; 719 if (inode) 720 spin_unlock(&inode->i_lock); 721 return false; 722 } 723 724 /* 725 * Decide if dentry is worth retaining. Usually this is called with dentry 726 * locked; if not locked, we are more limited and might not be able to tell 727 * without a lock. False in this case means "punt to locked path and recheck". 728 * 729 * In case we aren't locked, these predicates are not "stable". However, it is 730 * sufficient that at some point after we dropped the reference the dentry was 731 * hashed and the flags had the proper value. Other dentry users may have 732 * re-gotten a reference to the dentry and change that, but our work is done - 733 * we can leave the dentry around with a zero refcount. 734 */ 735 static inline bool retain_dentry(struct dentry *dentry, bool locked) 736 { 737 unsigned int d_flags; 738 739 smp_rmb(); 740 d_flags = READ_ONCE(dentry->d_flags); 741 742 // Unreachable? Nobody would be able to look it up, no point retaining 743 if (unlikely(d_unhashed(dentry))) 744 return false; 745 746 // Same if it's disconnected 747 if (unlikely(d_flags & DCACHE_DISCONNECTED)) 748 return false; 749 750 // ->d_delete() might tell us not to bother, but that requires 751 // ->d_lock; can't decide without it 752 if (unlikely(d_flags & DCACHE_OP_DELETE)) { 753 if (!locked || dentry->d_op->d_delete(dentry)) 754 return false; 755 } 756 757 // Explicitly told not to bother 758 if (unlikely(d_flags & DCACHE_DONTCACHE)) 759 return false; 760 761 // At this point it looks like we ought to keep it. We also might 762 // need to do something - put it on LRU if it wasn't there already 763 // and mark it referenced if it was on LRU, but not marked yet. 764 // Unfortunately, both actions require ->d_lock, so in lockless 765 // case we'd have to punt rather than doing those. 766 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) { 767 if (!locked) 768 return false; 769 d_lru_add(dentry); 770 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) { 771 if (!locked) 772 return false; 773 dentry->d_flags |= DCACHE_REFERENCED; 774 } 775 return true; 776 } 777 778 void d_mark_dontcache(struct inode *inode) 779 { 780 struct dentry *de; 781 782 spin_lock(&inode->i_lock); 783 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) { 784 spin_lock(&de->d_lock); 785 de->d_flags |= DCACHE_DONTCACHE; 786 spin_unlock(&de->d_lock); 787 } 788 inode->i_state |= I_DONTCACHE; 789 spin_unlock(&inode->i_lock); 790 } 791 EXPORT_SYMBOL(d_mark_dontcache); 792 793 /* 794 * Try to do a lockless dput(), and return whether that was successful. 795 * 796 * If unsuccessful, we return false, having already taken the dentry lock. 797 * In that case refcount is guaranteed to be zero and we have already 798 * decided that it's not worth keeping around. 799 * 800 * The caller needs to hold the RCU read lock, so that the dentry is 801 * guaranteed to stay around even if the refcount goes down to zero! 802 */ 803 static inline bool fast_dput(struct dentry *dentry) 804 { 805 int ret; 806 807 /* 808 * try to decrement the lockref optimistically. 809 */ 810 ret = lockref_put_return(&dentry->d_lockref); 811 812 /* 813 * If the lockref_put_return() failed due to the lock being held 814 * by somebody else, the fast path has failed. We will need to 815 * get the lock, and then check the count again. 816 */ 817 if (unlikely(ret < 0)) { 818 spin_lock(&dentry->d_lock); 819 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) { 820 spin_unlock(&dentry->d_lock); 821 return true; 822 } 823 dentry->d_lockref.count--; 824 goto locked; 825 } 826 827 /* 828 * If we weren't the last ref, we're done. 829 */ 830 if (ret) 831 return true; 832 833 /* 834 * Can we decide that decrement of refcount is all we needed without 835 * taking the lock? There's a very common case when it's all we need - 836 * dentry looks like it ought to be retained and there's nothing else 837 * to do. 838 */ 839 if (retain_dentry(dentry, false)) 840 return true; 841 842 /* 843 * Either not worth retaining or we can't tell without the lock. 844 * Get the lock, then. We've already decremented the refcount to 0, 845 * but we'll need to re-check the situation after getting the lock. 846 */ 847 spin_lock(&dentry->d_lock); 848 849 /* 850 * Did somebody else grab a reference to it in the meantime, and 851 * we're no longer the last user after all? Alternatively, somebody 852 * else could have killed it and marked it dead. Either way, we 853 * don't need to do anything else. 854 */ 855 locked: 856 if (dentry->d_lockref.count || retain_dentry(dentry, true)) { 857 spin_unlock(&dentry->d_lock); 858 return true; 859 } 860 return false; 861 } 862 863 864 /* 865 * This is dput 866 * 867 * This is complicated by the fact that we do not want to put 868 * dentries that are no longer on any hash chain on the unused 869 * list: we'd much rather just get rid of them immediately. 870 * 871 * However, that implies that we have to traverse the dentry 872 * tree upwards to the parents which might _also_ now be 873 * scheduled for deletion (it may have been only waiting for 874 * its last child to go away). 875 * 876 * This tail recursion is done by hand as we don't want to depend 877 * on the compiler to always get this right (gcc generally doesn't). 878 * Real recursion would eat up our stack space. 879 */ 880 881 /* 882 * dput - release a dentry 883 * @dentry: dentry to release 884 * 885 * Release a dentry. This will drop the usage count and if appropriate 886 * call the dentry unlink method as well as removing it from the queues and 887 * releasing its resources. If the parent dentries were scheduled for release 888 * they too may now get deleted. 889 */ 890 void dput(struct dentry *dentry) 891 { 892 if (!dentry) 893 return; 894 might_sleep(); 895 rcu_read_lock(); 896 if (likely(fast_dput(dentry))) { 897 rcu_read_unlock(); 898 return; 899 } 900 while (lock_for_kill(dentry)) { 901 rcu_read_unlock(); 902 dentry = __dentry_kill(dentry); 903 if (!dentry) 904 return; 905 if (retain_dentry(dentry, true)) { 906 spin_unlock(&dentry->d_lock); 907 return; 908 } 909 rcu_read_lock(); 910 } 911 rcu_read_unlock(); 912 spin_unlock(&dentry->d_lock); 913 } 914 EXPORT_SYMBOL(dput); 915 916 static void to_shrink_list(struct dentry *dentry, struct list_head *list) 917 __must_hold(&dentry->d_lock) 918 { 919 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) { 920 if (dentry->d_flags & DCACHE_LRU_LIST) 921 d_lru_del(dentry); 922 d_shrink_add(dentry, list); 923 } 924 } 925 926 void dput_to_list(struct dentry *dentry, struct list_head *list) 927 { 928 rcu_read_lock(); 929 if (likely(fast_dput(dentry))) { 930 rcu_read_unlock(); 931 return; 932 } 933 rcu_read_unlock(); 934 to_shrink_list(dentry, list); 935 spin_unlock(&dentry->d_lock); 936 } 937 938 struct dentry *dget_parent(struct dentry *dentry) 939 { 940 int gotref; 941 struct dentry *ret; 942 unsigned seq; 943 944 /* 945 * Do optimistic parent lookup without any 946 * locking. 947 */ 948 rcu_read_lock(); 949 seq = raw_seqcount_begin(&dentry->d_seq); 950 ret = READ_ONCE(dentry->d_parent); 951 gotref = lockref_get_not_zero(&ret->d_lockref); 952 rcu_read_unlock(); 953 if (likely(gotref)) { 954 if (!read_seqcount_retry(&dentry->d_seq, seq)) 955 return ret; 956 dput(ret); 957 } 958 959 repeat: 960 /* 961 * Don't need rcu_dereference because we re-check it was correct under 962 * the lock. 963 */ 964 rcu_read_lock(); 965 ret = dentry->d_parent; 966 spin_lock(&ret->d_lock); 967 if (unlikely(ret != dentry->d_parent)) { 968 spin_unlock(&ret->d_lock); 969 rcu_read_unlock(); 970 goto repeat; 971 } 972 rcu_read_unlock(); 973 BUG_ON(!ret->d_lockref.count); 974 ret->d_lockref.count++; 975 spin_unlock(&ret->d_lock); 976 return ret; 977 } 978 EXPORT_SYMBOL(dget_parent); 979 980 static struct dentry * __d_find_any_alias(struct inode *inode) 981 { 982 struct dentry *alias; 983 984 if (hlist_empty(&inode->i_dentry)) 985 return NULL; 986 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias); 987 lockref_get(&alias->d_lockref); 988 return alias; 989 } 990 991 /** 992 * d_find_any_alias - find any alias for a given inode 993 * @inode: inode to find an alias for 994 * 995 * If any aliases exist for the given inode, take and return a 996 * reference for one of them. If no aliases exist, return %NULL. 997 */ 998 struct dentry *d_find_any_alias(struct inode *inode) 999 { 1000 struct dentry *de; 1001 1002 spin_lock(&inode->i_lock); 1003 de = __d_find_any_alias(inode); 1004 spin_unlock(&inode->i_lock); 1005 return de; 1006 } 1007 EXPORT_SYMBOL(d_find_any_alias); 1008 1009 static struct dentry *__d_find_alias(struct inode *inode) 1010 { 1011 struct dentry *alias; 1012 1013 if (S_ISDIR(inode->i_mode)) 1014 return __d_find_any_alias(inode); 1015 1016 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1017 spin_lock(&alias->d_lock); 1018 if (!d_unhashed(alias)) { 1019 dget_dlock(alias); 1020 spin_unlock(&alias->d_lock); 1021 return alias; 1022 } 1023 spin_unlock(&alias->d_lock); 1024 } 1025 return NULL; 1026 } 1027 1028 /** 1029 * d_find_alias - grab a hashed alias of inode 1030 * @inode: inode in question 1031 * 1032 * If inode has a hashed alias, or is a directory and has any alias, 1033 * acquire the reference to alias and return it. Otherwise return NULL. 1034 * Notice that if inode is a directory there can be only one alias and 1035 * it can be unhashed only if it has no children, or if it is the root 1036 * of a filesystem, or if the directory was renamed and d_revalidate 1037 * was the first vfs operation to notice. 1038 * 1039 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer 1040 * any other hashed alias over that one. 1041 */ 1042 struct dentry *d_find_alias(struct inode *inode) 1043 { 1044 struct dentry *de = NULL; 1045 1046 if (!hlist_empty(&inode->i_dentry)) { 1047 spin_lock(&inode->i_lock); 1048 de = __d_find_alias(inode); 1049 spin_unlock(&inode->i_lock); 1050 } 1051 return de; 1052 } 1053 EXPORT_SYMBOL(d_find_alias); 1054 1055 /* 1056 * Caller MUST be holding rcu_read_lock() and be guaranteed 1057 * that inode won't get freed until rcu_read_unlock(). 1058 */ 1059 struct dentry *d_find_alias_rcu(struct inode *inode) 1060 { 1061 struct hlist_head *l = &inode->i_dentry; 1062 struct dentry *de = NULL; 1063 1064 spin_lock(&inode->i_lock); 1065 // ->i_dentry and ->i_rcu are colocated, but the latter won't be 1066 // used without having I_FREEING set, which means no aliases left 1067 if (likely(!(inode->i_state & I_FREEING) && !hlist_empty(l))) { 1068 if (S_ISDIR(inode->i_mode)) { 1069 de = hlist_entry(l->first, struct dentry, d_u.d_alias); 1070 } else { 1071 hlist_for_each_entry(de, l, d_u.d_alias) 1072 if (!d_unhashed(de)) 1073 break; 1074 } 1075 } 1076 spin_unlock(&inode->i_lock); 1077 return de; 1078 } 1079 1080 /* 1081 * Try to kill dentries associated with this inode. 1082 * WARNING: you must own a reference to inode. 1083 */ 1084 void d_prune_aliases(struct inode *inode) 1085 { 1086 LIST_HEAD(dispose); 1087 struct dentry *dentry; 1088 1089 spin_lock(&inode->i_lock); 1090 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias) { 1091 spin_lock(&dentry->d_lock); 1092 if (!dentry->d_lockref.count) 1093 to_shrink_list(dentry, &dispose); 1094 spin_unlock(&dentry->d_lock); 1095 } 1096 spin_unlock(&inode->i_lock); 1097 shrink_dentry_list(&dispose); 1098 } 1099 EXPORT_SYMBOL(d_prune_aliases); 1100 1101 static inline void shrink_kill(struct dentry *victim) 1102 { 1103 do { 1104 rcu_read_unlock(); 1105 victim = __dentry_kill(victim); 1106 rcu_read_lock(); 1107 } while (victim && lock_for_kill(victim)); 1108 rcu_read_unlock(); 1109 if (victim) 1110 spin_unlock(&victim->d_lock); 1111 } 1112 1113 void shrink_dentry_list(struct list_head *list) 1114 { 1115 while (!list_empty(list)) { 1116 struct dentry *dentry; 1117 1118 dentry = list_entry(list->prev, struct dentry, d_lru); 1119 spin_lock(&dentry->d_lock); 1120 rcu_read_lock(); 1121 if (!lock_for_kill(dentry)) { 1122 bool can_free; 1123 rcu_read_unlock(); 1124 d_shrink_del(dentry); 1125 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED; 1126 spin_unlock(&dentry->d_lock); 1127 if (can_free) 1128 dentry_free(dentry); 1129 continue; 1130 } 1131 d_shrink_del(dentry); 1132 shrink_kill(dentry); 1133 } 1134 } 1135 1136 static enum lru_status dentry_lru_isolate(struct list_head *item, 1137 struct list_lru_one *lru, void *arg) 1138 { 1139 struct list_head *freeable = arg; 1140 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1141 1142 1143 /* 1144 * we are inverting the lru lock/dentry->d_lock here, 1145 * so use a trylock. If we fail to get the lock, just skip 1146 * it 1147 */ 1148 if (!spin_trylock(&dentry->d_lock)) 1149 return LRU_SKIP; 1150 1151 /* 1152 * Referenced dentries are still in use. If they have active 1153 * counts, just remove them from the LRU. Otherwise give them 1154 * another pass through the LRU. 1155 */ 1156 if (dentry->d_lockref.count) { 1157 d_lru_isolate(lru, dentry); 1158 spin_unlock(&dentry->d_lock); 1159 return LRU_REMOVED; 1160 } 1161 1162 if (dentry->d_flags & DCACHE_REFERENCED) { 1163 dentry->d_flags &= ~DCACHE_REFERENCED; 1164 spin_unlock(&dentry->d_lock); 1165 1166 /* 1167 * The list move itself will be made by the common LRU code. At 1168 * this point, we've dropped the dentry->d_lock but keep the 1169 * lru lock. This is safe to do, since every list movement is 1170 * protected by the lru lock even if both locks are held. 1171 * 1172 * This is guaranteed by the fact that all LRU management 1173 * functions are intermediated by the LRU API calls like 1174 * list_lru_add_obj and list_lru_del_obj. List movement in this file 1175 * only ever occur through this functions or through callbacks 1176 * like this one, that are called from the LRU API. 1177 * 1178 * The only exceptions to this are functions like 1179 * shrink_dentry_list, and code that first checks for the 1180 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be 1181 * operating only with stack provided lists after they are 1182 * properly isolated from the main list. It is thus, always a 1183 * local access. 1184 */ 1185 return LRU_ROTATE; 1186 } 1187 1188 d_lru_shrink_move(lru, dentry, freeable); 1189 spin_unlock(&dentry->d_lock); 1190 1191 return LRU_REMOVED; 1192 } 1193 1194 /** 1195 * prune_dcache_sb - shrink the dcache 1196 * @sb: superblock 1197 * @sc: shrink control, passed to list_lru_shrink_walk() 1198 * 1199 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This 1200 * is done when we need more memory and called from the superblock shrinker 1201 * function. 1202 * 1203 * This function may fail to free any resources if all the dentries are in 1204 * use. 1205 */ 1206 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc) 1207 { 1208 LIST_HEAD(dispose); 1209 long freed; 1210 1211 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc, 1212 dentry_lru_isolate, &dispose); 1213 shrink_dentry_list(&dispose); 1214 return freed; 1215 } 1216 1217 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item, 1218 struct list_lru_one *lru, void *arg) 1219 { 1220 struct list_head *freeable = arg; 1221 struct dentry *dentry = container_of(item, struct dentry, d_lru); 1222 1223 /* 1224 * we are inverting the lru lock/dentry->d_lock here, 1225 * so use a trylock. If we fail to get the lock, just skip 1226 * it 1227 */ 1228 if (!spin_trylock(&dentry->d_lock)) 1229 return LRU_SKIP; 1230 1231 d_lru_shrink_move(lru, dentry, freeable); 1232 spin_unlock(&dentry->d_lock); 1233 1234 return LRU_REMOVED; 1235 } 1236 1237 1238 /** 1239 * shrink_dcache_sb - shrink dcache for a superblock 1240 * @sb: superblock 1241 * 1242 * Shrink the dcache for the specified super block. This is used to free 1243 * the dcache before unmounting a file system. 1244 */ 1245 void shrink_dcache_sb(struct super_block *sb) 1246 { 1247 do { 1248 LIST_HEAD(dispose); 1249 1250 list_lru_walk(&sb->s_dentry_lru, 1251 dentry_lru_isolate_shrink, &dispose, 1024); 1252 shrink_dentry_list(&dispose); 1253 } while (list_lru_count(&sb->s_dentry_lru) > 0); 1254 } 1255 EXPORT_SYMBOL(shrink_dcache_sb); 1256 1257 /** 1258 * enum d_walk_ret - action to talke during tree walk 1259 * @D_WALK_CONTINUE: contrinue walk 1260 * @D_WALK_QUIT: quit walk 1261 * @D_WALK_NORETRY: quit when retry is needed 1262 * @D_WALK_SKIP: skip this dentry and its children 1263 */ 1264 enum d_walk_ret { 1265 D_WALK_CONTINUE, 1266 D_WALK_QUIT, 1267 D_WALK_NORETRY, 1268 D_WALK_SKIP, 1269 }; 1270 1271 /** 1272 * d_walk - walk the dentry tree 1273 * @parent: start of walk 1274 * @data: data passed to @enter() and @finish() 1275 * @enter: callback when first entering the dentry 1276 * 1277 * The @enter() callbacks are called with d_lock held. 1278 */ 1279 static void d_walk(struct dentry *parent, void *data, 1280 enum d_walk_ret (*enter)(void *, struct dentry *)) 1281 { 1282 struct dentry *this_parent, *dentry; 1283 unsigned seq = 0; 1284 enum d_walk_ret ret; 1285 bool retry = true; 1286 1287 again: 1288 read_seqbegin_or_lock(&rename_lock, &seq); 1289 this_parent = parent; 1290 spin_lock(&this_parent->d_lock); 1291 1292 ret = enter(data, this_parent); 1293 switch (ret) { 1294 case D_WALK_CONTINUE: 1295 break; 1296 case D_WALK_QUIT: 1297 case D_WALK_SKIP: 1298 goto out_unlock; 1299 case D_WALK_NORETRY: 1300 retry = false; 1301 break; 1302 } 1303 repeat: 1304 dentry = d_first_child(this_parent); 1305 resume: 1306 hlist_for_each_entry_from(dentry, d_sib) { 1307 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR)) 1308 continue; 1309 1310 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 1311 1312 ret = enter(data, dentry); 1313 switch (ret) { 1314 case D_WALK_CONTINUE: 1315 break; 1316 case D_WALK_QUIT: 1317 spin_unlock(&dentry->d_lock); 1318 goto out_unlock; 1319 case D_WALK_NORETRY: 1320 retry = false; 1321 break; 1322 case D_WALK_SKIP: 1323 spin_unlock(&dentry->d_lock); 1324 continue; 1325 } 1326 1327 if (!hlist_empty(&dentry->d_children)) { 1328 spin_unlock(&this_parent->d_lock); 1329 spin_release(&dentry->d_lock.dep_map, _RET_IP_); 1330 this_parent = dentry; 1331 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_); 1332 goto repeat; 1333 } 1334 spin_unlock(&dentry->d_lock); 1335 } 1336 /* 1337 * All done at this level ... ascend and resume the search. 1338 */ 1339 rcu_read_lock(); 1340 ascend: 1341 if (this_parent != parent) { 1342 dentry = this_parent; 1343 this_parent = dentry->d_parent; 1344 1345 spin_unlock(&dentry->d_lock); 1346 spin_lock(&this_parent->d_lock); 1347 1348 /* might go back up the wrong parent if we have had a rename. */ 1349 if (need_seqretry(&rename_lock, seq)) 1350 goto rename_retry; 1351 /* go into the first sibling still alive */ 1352 hlist_for_each_entry_continue(dentry, d_sib) { 1353 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) { 1354 rcu_read_unlock(); 1355 goto resume; 1356 } 1357 } 1358 goto ascend; 1359 } 1360 if (need_seqretry(&rename_lock, seq)) 1361 goto rename_retry; 1362 rcu_read_unlock(); 1363 1364 out_unlock: 1365 spin_unlock(&this_parent->d_lock); 1366 done_seqretry(&rename_lock, seq); 1367 return; 1368 1369 rename_retry: 1370 spin_unlock(&this_parent->d_lock); 1371 rcu_read_unlock(); 1372 BUG_ON(seq & 1); 1373 if (!retry) 1374 return; 1375 seq = 1; 1376 goto again; 1377 } 1378 1379 struct check_mount { 1380 struct vfsmount *mnt; 1381 unsigned int mounted; 1382 }; 1383 1384 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry) 1385 { 1386 struct check_mount *info = data; 1387 struct path path = { .mnt = info->mnt, .dentry = dentry }; 1388 1389 if (likely(!d_mountpoint(dentry))) 1390 return D_WALK_CONTINUE; 1391 if (__path_is_mountpoint(&path)) { 1392 info->mounted = 1; 1393 return D_WALK_QUIT; 1394 } 1395 return D_WALK_CONTINUE; 1396 } 1397 1398 /** 1399 * path_has_submounts - check for mounts over a dentry in the 1400 * current namespace. 1401 * @parent: path to check. 1402 * 1403 * Return true if the parent or its subdirectories contain 1404 * a mount point in the current namespace. 1405 */ 1406 int path_has_submounts(const struct path *parent) 1407 { 1408 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 }; 1409 1410 read_seqlock_excl(&mount_lock); 1411 d_walk(parent->dentry, &data, path_check_mount); 1412 read_sequnlock_excl(&mount_lock); 1413 1414 return data.mounted; 1415 } 1416 EXPORT_SYMBOL(path_has_submounts); 1417 1418 /* 1419 * Called by mount code to set a mountpoint and check if the mountpoint is 1420 * reachable (e.g. NFS can unhash a directory dentry and then the complete 1421 * subtree can become unreachable). 1422 * 1423 * Only one of d_invalidate() and d_set_mounted() must succeed. For 1424 * this reason take rename_lock and d_lock on dentry and ancestors. 1425 */ 1426 int d_set_mounted(struct dentry *dentry) 1427 { 1428 struct dentry *p; 1429 int ret = -ENOENT; 1430 write_seqlock(&rename_lock); 1431 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) { 1432 /* Need exclusion wrt. d_invalidate() */ 1433 spin_lock(&p->d_lock); 1434 if (unlikely(d_unhashed(p))) { 1435 spin_unlock(&p->d_lock); 1436 goto out; 1437 } 1438 spin_unlock(&p->d_lock); 1439 } 1440 spin_lock(&dentry->d_lock); 1441 if (!d_unlinked(dentry)) { 1442 ret = -EBUSY; 1443 if (!d_mountpoint(dentry)) { 1444 dentry->d_flags |= DCACHE_MOUNTED; 1445 ret = 0; 1446 } 1447 } 1448 spin_unlock(&dentry->d_lock); 1449 out: 1450 write_sequnlock(&rename_lock); 1451 return ret; 1452 } 1453 1454 /* 1455 * Search the dentry child list of the specified parent, 1456 * and move any unused dentries to the end of the unused 1457 * list for prune_dcache(). We descend to the next level 1458 * whenever the d_children list is non-empty and continue 1459 * searching. 1460 * 1461 * It returns zero iff there are no unused children, 1462 * otherwise it returns the number of children moved to 1463 * the end of the unused list. This may not be the total 1464 * number of unused children, because select_parent can 1465 * drop the lock and return early due to latency 1466 * constraints. 1467 */ 1468 1469 struct select_data { 1470 struct dentry *start; 1471 union { 1472 long found; 1473 struct dentry *victim; 1474 }; 1475 struct list_head dispose; 1476 }; 1477 1478 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry) 1479 { 1480 struct select_data *data = _data; 1481 enum d_walk_ret ret = D_WALK_CONTINUE; 1482 1483 if (data->start == dentry) 1484 goto out; 1485 1486 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1487 data->found++; 1488 } else if (!dentry->d_lockref.count) { 1489 to_shrink_list(dentry, &data->dispose); 1490 data->found++; 1491 } else if (dentry->d_lockref.count < 0) { 1492 data->found++; 1493 } 1494 /* 1495 * We can return to the caller if we have found some (this 1496 * ensures forward progress). We'll be coming back to find 1497 * the rest. 1498 */ 1499 if (!list_empty(&data->dispose)) 1500 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1501 out: 1502 return ret; 1503 } 1504 1505 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry) 1506 { 1507 struct select_data *data = _data; 1508 enum d_walk_ret ret = D_WALK_CONTINUE; 1509 1510 if (data->start == dentry) 1511 goto out; 1512 1513 if (!dentry->d_lockref.count) { 1514 if (dentry->d_flags & DCACHE_SHRINK_LIST) { 1515 rcu_read_lock(); 1516 data->victim = dentry; 1517 return D_WALK_QUIT; 1518 } 1519 to_shrink_list(dentry, &data->dispose); 1520 } 1521 /* 1522 * We can return to the caller if we have found some (this 1523 * ensures forward progress). We'll be coming back to find 1524 * the rest. 1525 */ 1526 if (!list_empty(&data->dispose)) 1527 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY; 1528 out: 1529 return ret; 1530 } 1531 1532 /** 1533 * shrink_dcache_parent - prune dcache 1534 * @parent: parent of entries to prune 1535 * 1536 * Prune the dcache to remove unused children of the parent dentry. 1537 */ 1538 void shrink_dcache_parent(struct dentry *parent) 1539 { 1540 for (;;) { 1541 struct select_data data = {.start = parent}; 1542 1543 INIT_LIST_HEAD(&data.dispose); 1544 d_walk(parent, &data, select_collect); 1545 1546 if (!list_empty(&data.dispose)) { 1547 shrink_dentry_list(&data.dispose); 1548 continue; 1549 } 1550 1551 cond_resched(); 1552 if (!data.found) 1553 break; 1554 data.victim = NULL; 1555 d_walk(parent, &data, select_collect2); 1556 if (data.victim) { 1557 spin_lock(&data.victim->d_lock); 1558 if (!lock_for_kill(data.victim)) { 1559 spin_unlock(&data.victim->d_lock); 1560 rcu_read_unlock(); 1561 } else { 1562 shrink_kill(data.victim); 1563 } 1564 } 1565 if (!list_empty(&data.dispose)) 1566 shrink_dentry_list(&data.dispose); 1567 } 1568 } 1569 EXPORT_SYMBOL(shrink_dcache_parent); 1570 1571 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry) 1572 { 1573 /* it has busy descendents; complain about those instead */ 1574 if (!hlist_empty(&dentry->d_children)) 1575 return D_WALK_CONTINUE; 1576 1577 /* root with refcount 1 is fine */ 1578 if (dentry == _data && dentry->d_lockref.count == 1) 1579 return D_WALK_CONTINUE; 1580 1581 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} " 1582 " still in use (%d) [unmount of %s %s]\n", 1583 dentry, 1584 dentry->d_inode ? 1585 dentry->d_inode->i_ino : 0UL, 1586 dentry, 1587 dentry->d_lockref.count, 1588 dentry->d_sb->s_type->name, 1589 dentry->d_sb->s_id); 1590 return D_WALK_CONTINUE; 1591 } 1592 1593 static void do_one_tree(struct dentry *dentry) 1594 { 1595 shrink_dcache_parent(dentry); 1596 d_walk(dentry, dentry, umount_check); 1597 d_drop(dentry); 1598 dput(dentry); 1599 } 1600 1601 /* 1602 * destroy the dentries attached to a superblock on unmounting 1603 */ 1604 void shrink_dcache_for_umount(struct super_block *sb) 1605 { 1606 struct dentry *dentry; 1607 1608 rwsem_assert_held_write(&sb->s_umount); 1609 1610 dentry = sb->s_root; 1611 sb->s_root = NULL; 1612 do_one_tree(dentry); 1613 1614 while (!hlist_bl_empty(&sb->s_roots)) { 1615 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash)); 1616 do_one_tree(dentry); 1617 } 1618 } 1619 1620 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry) 1621 { 1622 struct dentry **victim = _data; 1623 if (d_mountpoint(dentry)) { 1624 *victim = dget_dlock(dentry); 1625 return D_WALK_QUIT; 1626 } 1627 return D_WALK_CONTINUE; 1628 } 1629 1630 /** 1631 * d_invalidate - detach submounts, prune dcache, and drop 1632 * @dentry: dentry to invalidate (aka detach, prune and drop) 1633 */ 1634 void d_invalidate(struct dentry *dentry) 1635 { 1636 bool had_submounts = false; 1637 spin_lock(&dentry->d_lock); 1638 if (d_unhashed(dentry)) { 1639 spin_unlock(&dentry->d_lock); 1640 return; 1641 } 1642 __d_drop(dentry); 1643 spin_unlock(&dentry->d_lock); 1644 1645 /* Negative dentries can be dropped without further checks */ 1646 if (!dentry->d_inode) 1647 return; 1648 1649 shrink_dcache_parent(dentry); 1650 for (;;) { 1651 struct dentry *victim = NULL; 1652 d_walk(dentry, &victim, find_submount); 1653 if (!victim) { 1654 if (had_submounts) 1655 shrink_dcache_parent(dentry); 1656 return; 1657 } 1658 had_submounts = true; 1659 detach_mounts(victim); 1660 dput(victim); 1661 } 1662 } 1663 EXPORT_SYMBOL(d_invalidate); 1664 1665 /** 1666 * __d_alloc - allocate a dcache entry 1667 * @sb: filesystem it will belong to 1668 * @name: qstr of the name 1669 * 1670 * Allocates a dentry. It returns %NULL if there is insufficient memory 1671 * available. On a success the dentry is returned. The name passed in is 1672 * copied and the copy passed in may be reused after this call. 1673 */ 1674 1675 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name) 1676 { 1677 struct dentry *dentry; 1678 char *dname; 1679 int err; 1680 1681 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru, 1682 GFP_KERNEL); 1683 if (!dentry) 1684 return NULL; 1685 1686 /* 1687 * We guarantee that the inline name is always NUL-terminated. 1688 * This way the memcpy() done by the name switching in rename 1689 * will still always have a NUL at the end, even if we might 1690 * be overwriting an internal NUL character 1691 */ 1692 dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0; 1693 if (unlikely(!name)) { 1694 name = &slash_name; 1695 dname = dentry->d_shortname.string; 1696 } else if (name->len > DNAME_INLINE_LEN-1) { 1697 size_t size = offsetof(struct external_name, name[1]); 1698 struct external_name *p = kmalloc(size + name->len, 1699 GFP_KERNEL_ACCOUNT | 1700 __GFP_RECLAIMABLE); 1701 if (!p) { 1702 kmem_cache_free(dentry_cache, dentry); 1703 return NULL; 1704 } 1705 atomic_set(&p->count, 1); 1706 dname = p->name; 1707 } else { 1708 dname = dentry->d_shortname.string; 1709 } 1710 1711 dentry->d_name.len = name->len; 1712 dentry->d_name.hash = name->hash; 1713 memcpy(dname, name->name, name->len); 1714 dname[name->len] = 0; 1715 1716 /* Make sure we always see the terminating NUL character */ 1717 smp_store_release(&dentry->d_name.name, dname); /* ^^^ */ 1718 1719 dentry->d_flags = 0; 1720 lockref_init(&dentry->d_lockref); 1721 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock); 1722 dentry->d_inode = NULL; 1723 dentry->d_parent = dentry; 1724 dentry->d_sb = sb; 1725 dentry->d_op = NULL; 1726 dentry->d_fsdata = NULL; 1727 INIT_HLIST_BL_NODE(&dentry->d_hash); 1728 INIT_LIST_HEAD(&dentry->d_lru); 1729 INIT_HLIST_HEAD(&dentry->d_children); 1730 INIT_HLIST_NODE(&dentry->d_u.d_alias); 1731 INIT_HLIST_NODE(&dentry->d_sib); 1732 d_set_d_op(dentry, dentry->d_sb->s_d_op); 1733 1734 if (dentry->d_op && dentry->d_op->d_init) { 1735 err = dentry->d_op->d_init(dentry); 1736 if (err) { 1737 if (dname_external(dentry)) 1738 kfree(external_name(dentry)); 1739 kmem_cache_free(dentry_cache, dentry); 1740 return NULL; 1741 } 1742 } 1743 1744 this_cpu_inc(nr_dentry); 1745 1746 return dentry; 1747 } 1748 1749 /** 1750 * d_alloc - allocate a dcache entry 1751 * @parent: parent of entry to allocate 1752 * @name: qstr of the name 1753 * 1754 * Allocates a dentry. It returns %NULL if there is insufficient memory 1755 * available. On a success the dentry is returned. The name passed in is 1756 * copied and the copy passed in may be reused after this call. 1757 */ 1758 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name) 1759 { 1760 struct dentry *dentry = __d_alloc(parent->d_sb, name); 1761 if (!dentry) 1762 return NULL; 1763 spin_lock(&parent->d_lock); 1764 /* 1765 * don't need child lock because it is not subject 1766 * to concurrency here 1767 */ 1768 dentry->d_parent = dget_dlock(parent); 1769 hlist_add_head(&dentry->d_sib, &parent->d_children); 1770 spin_unlock(&parent->d_lock); 1771 1772 return dentry; 1773 } 1774 EXPORT_SYMBOL(d_alloc); 1775 1776 struct dentry *d_alloc_anon(struct super_block *sb) 1777 { 1778 return __d_alloc(sb, NULL); 1779 } 1780 EXPORT_SYMBOL(d_alloc_anon); 1781 1782 struct dentry *d_alloc_cursor(struct dentry * parent) 1783 { 1784 struct dentry *dentry = d_alloc_anon(parent->d_sb); 1785 if (dentry) { 1786 dentry->d_flags |= DCACHE_DENTRY_CURSOR; 1787 dentry->d_parent = dget(parent); 1788 } 1789 return dentry; 1790 } 1791 1792 /** 1793 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems) 1794 * @sb: the superblock 1795 * @name: qstr of the name 1796 * 1797 * For a filesystem that just pins its dentries in memory and never 1798 * performs lookups at all, return an unhashed IS_ROOT dentry. 1799 * This is used for pipes, sockets et.al. - the stuff that should 1800 * never be anyone's children or parents. Unlike all other 1801 * dentries, these will not have RCU delay between dropping the 1802 * last reference and freeing them. 1803 * 1804 * The only user is alloc_file_pseudo() and that's what should 1805 * be considered a public interface. Don't use directly. 1806 */ 1807 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name) 1808 { 1809 static const struct dentry_operations anon_ops = { 1810 .d_dname = simple_dname 1811 }; 1812 struct dentry *dentry = __d_alloc(sb, name); 1813 if (likely(dentry)) { 1814 dentry->d_flags |= DCACHE_NORCU; 1815 if (!sb->s_d_op) 1816 d_set_d_op(dentry, &anon_ops); 1817 } 1818 return dentry; 1819 } 1820 1821 struct dentry *d_alloc_name(struct dentry *parent, const char *name) 1822 { 1823 struct qstr q; 1824 1825 q.name = name; 1826 q.hash_len = hashlen_string(parent, name); 1827 return d_alloc(parent, &q); 1828 } 1829 EXPORT_SYMBOL(d_alloc_name); 1830 1831 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op) 1832 { 1833 WARN_ON_ONCE(dentry->d_op); 1834 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH | 1835 DCACHE_OP_COMPARE | 1836 DCACHE_OP_REVALIDATE | 1837 DCACHE_OP_WEAK_REVALIDATE | 1838 DCACHE_OP_DELETE | 1839 DCACHE_OP_REAL)); 1840 dentry->d_op = op; 1841 if (!op) 1842 return; 1843 if (op->d_hash) 1844 dentry->d_flags |= DCACHE_OP_HASH; 1845 if (op->d_compare) 1846 dentry->d_flags |= DCACHE_OP_COMPARE; 1847 if (op->d_revalidate) 1848 dentry->d_flags |= DCACHE_OP_REVALIDATE; 1849 if (op->d_weak_revalidate) 1850 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE; 1851 if (op->d_delete) 1852 dentry->d_flags |= DCACHE_OP_DELETE; 1853 if (op->d_prune) 1854 dentry->d_flags |= DCACHE_OP_PRUNE; 1855 if (op->d_real) 1856 dentry->d_flags |= DCACHE_OP_REAL; 1857 1858 } 1859 EXPORT_SYMBOL(d_set_d_op); 1860 1861 static unsigned d_flags_for_inode(struct inode *inode) 1862 { 1863 unsigned add_flags = DCACHE_REGULAR_TYPE; 1864 1865 if (!inode) 1866 return DCACHE_MISS_TYPE; 1867 1868 if (S_ISDIR(inode->i_mode)) { 1869 add_flags = DCACHE_DIRECTORY_TYPE; 1870 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) { 1871 if (unlikely(!inode->i_op->lookup)) 1872 add_flags = DCACHE_AUTODIR_TYPE; 1873 else 1874 inode->i_opflags |= IOP_LOOKUP; 1875 } 1876 goto type_determined; 1877 } 1878 1879 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) { 1880 if (unlikely(inode->i_op->get_link)) { 1881 add_flags = DCACHE_SYMLINK_TYPE; 1882 goto type_determined; 1883 } 1884 inode->i_opflags |= IOP_NOFOLLOW; 1885 } 1886 1887 if (unlikely(!S_ISREG(inode->i_mode))) 1888 add_flags = DCACHE_SPECIAL_TYPE; 1889 1890 type_determined: 1891 if (unlikely(IS_AUTOMOUNT(inode))) 1892 add_flags |= DCACHE_NEED_AUTOMOUNT; 1893 return add_flags; 1894 } 1895 1896 static void __d_instantiate(struct dentry *dentry, struct inode *inode) 1897 { 1898 unsigned add_flags = d_flags_for_inode(inode); 1899 WARN_ON(d_in_lookup(dentry)); 1900 1901 spin_lock(&dentry->d_lock); 1902 /* 1903 * The negative counter only tracks dentries on the LRU. Don't dec if 1904 * d_lru is on another list. 1905 */ 1906 if ((dentry->d_flags & 1907 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST) 1908 this_cpu_dec(nr_dentry_negative); 1909 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 1910 raw_write_seqcount_begin(&dentry->d_seq); 1911 __d_set_inode_and_type(dentry, inode, add_flags); 1912 raw_write_seqcount_end(&dentry->d_seq); 1913 fsnotify_update_flags(dentry); 1914 spin_unlock(&dentry->d_lock); 1915 } 1916 1917 /** 1918 * d_instantiate - fill in inode information for a dentry 1919 * @entry: dentry to complete 1920 * @inode: inode to attach to this dentry 1921 * 1922 * Fill in inode information in the entry. 1923 * 1924 * This turns negative dentries into productive full members 1925 * of society. 1926 * 1927 * NOTE! This assumes that the inode count has been incremented 1928 * (or otherwise set) by the caller to indicate that it is now 1929 * in use by the dcache. 1930 */ 1931 1932 void d_instantiate(struct dentry *entry, struct inode * inode) 1933 { 1934 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1935 if (inode) { 1936 security_d_instantiate(entry, inode); 1937 spin_lock(&inode->i_lock); 1938 __d_instantiate(entry, inode); 1939 spin_unlock(&inode->i_lock); 1940 } 1941 } 1942 EXPORT_SYMBOL(d_instantiate); 1943 1944 /* 1945 * This should be equivalent to d_instantiate() + unlock_new_inode(), 1946 * with lockdep-related part of unlock_new_inode() done before 1947 * anything else. Use that instead of open-coding d_instantiate()/ 1948 * unlock_new_inode() combinations. 1949 */ 1950 void d_instantiate_new(struct dentry *entry, struct inode *inode) 1951 { 1952 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias)); 1953 BUG_ON(!inode); 1954 lockdep_annotate_inode_mutex_key(inode); 1955 security_d_instantiate(entry, inode); 1956 spin_lock(&inode->i_lock); 1957 __d_instantiate(entry, inode); 1958 WARN_ON(!(inode->i_state & I_NEW)); 1959 inode->i_state &= ~I_NEW & ~I_CREATING; 1960 /* 1961 * Pairs with the barrier in prepare_to_wait_event() to make sure 1962 * ___wait_var_event() either sees the bit cleared or 1963 * waitqueue_active() check in wake_up_var() sees the waiter. 1964 */ 1965 smp_mb(); 1966 inode_wake_up_bit(inode, __I_NEW); 1967 spin_unlock(&inode->i_lock); 1968 } 1969 EXPORT_SYMBOL(d_instantiate_new); 1970 1971 struct dentry *d_make_root(struct inode *root_inode) 1972 { 1973 struct dentry *res = NULL; 1974 1975 if (root_inode) { 1976 res = d_alloc_anon(root_inode->i_sb); 1977 if (res) 1978 d_instantiate(res, root_inode); 1979 else 1980 iput(root_inode); 1981 } 1982 return res; 1983 } 1984 EXPORT_SYMBOL(d_make_root); 1985 1986 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected) 1987 { 1988 struct super_block *sb; 1989 struct dentry *new, *res; 1990 1991 if (!inode) 1992 return ERR_PTR(-ESTALE); 1993 if (IS_ERR(inode)) 1994 return ERR_CAST(inode); 1995 1996 sb = inode->i_sb; 1997 1998 res = d_find_any_alias(inode); /* existing alias? */ 1999 if (res) 2000 goto out; 2001 2002 new = d_alloc_anon(sb); 2003 if (!new) { 2004 res = ERR_PTR(-ENOMEM); 2005 goto out; 2006 } 2007 2008 security_d_instantiate(new, inode); 2009 spin_lock(&inode->i_lock); 2010 res = __d_find_any_alias(inode); /* recheck under lock */ 2011 if (likely(!res)) { /* still no alias, attach a disconnected dentry */ 2012 unsigned add_flags = d_flags_for_inode(inode); 2013 2014 if (disconnected) 2015 add_flags |= DCACHE_DISCONNECTED; 2016 2017 spin_lock(&new->d_lock); 2018 __d_set_inode_and_type(new, inode, add_flags); 2019 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry); 2020 if (!disconnected) { 2021 hlist_bl_lock(&sb->s_roots); 2022 hlist_bl_add_head(&new->d_hash, &sb->s_roots); 2023 hlist_bl_unlock(&sb->s_roots); 2024 } 2025 spin_unlock(&new->d_lock); 2026 spin_unlock(&inode->i_lock); 2027 inode = NULL; /* consumed by new->d_inode */ 2028 res = new; 2029 } else { 2030 spin_unlock(&inode->i_lock); 2031 dput(new); 2032 } 2033 2034 out: 2035 iput(inode); 2036 return res; 2037 } 2038 2039 /** 2040 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode 2041 * @inode: inode to allocate the dentry for 2042 * 2043 * Obtain a dentry for an inode resulting from NFS filehandle conversion or 2044 * similar open by handle operations. The returned dentry may be anonymous, 2045 * or may have a full name (if the inode was already in the cache). 2046 * 2047 * When called on a directory inode, we must ensure that the inode only ever 2048 * has one dentry. If a dentry is found, that is returned instead of 2049 * allocating a new one. 2050 * 2051 * On successful return, the reference to the inode has been transferred 2052 * to the dentry. In case of an error the reference on the inode is released. 2053 * To make it easier to use in export operations a %NULL or IS_ERR inode may 2054 * be passed in and the error will be propagated to the return value, 2055 * with a %NULL @inode replaced by ERR_PTR(-ESTALE). 2056 */ 2057 struct dentry *d_obtain_alias(struct inode *inode) 2058 { 2059 return __d_obtain_alias(inode, true); 2060 } 2061 EXPORT_SYMBOL(d_obtain_alias); 2062 2063 /** 2064 * d_obtain_root - find or allocate a dentry for a given inode 2065 * @inode: inode to allocate the dentry for 2066 * 2067 * Obtain an IS_ROOT dentry for the root of a filesystem. 2068 * 2069 * We must ensure that directory inodes only ever have one dentry. If a 2070 * dentry is found, that is returned instead of allocating a new one. 2071 * 2072 * On successful return, the reference to the inode has been transferred 2073 * to the dentry. In case of an error the reference on the inode is 2074 * released. A %NULL or IS_ERR inode may be passed in and will be the 2075 * error will be propagate to the return value, with a %NULL @inode 2076 * replaced by ERR_PTR(-ESTALE). 2077 */ 2078 struct dentry *d_obtain_root(struct inode *inode) 2079 { 2080 return __d_obtain_alias(inode, false); 2081 } 2082 EXPORT_SYMBOL(d_obtain_root); 2083 2084 /** 2085 * d_add_ci - lookup or allocate new dentry with case-exact name 2086 * @dentry: the negative dentry that was passed to the parent's lookup func 2087 * @inode: the inode case-insensitive lookup has found 2088 * @name: the case-exact name to be associated with the returned dentry 2089 * 2090 * This is to avoid filling the dcache with case-insensitive names to the 2091 * same inode, only the actual correct case is stored in the dcache for 2092 * case-insensitive filesystems. 2093 * 2094 * For a case-insensitive lookup match and if the case-exact dentry 2095 * already exists in the dcache, use it and return it. 2096 * 2097 * If no entry exists with the exact case name, allocate new dentry with 2098 * the exact case, and return the spliced entry. 2099 */ 2100 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode, 2101 struct qstr *name) 2102 { 2103 struct dentry *found, *res; 2104 2105 /* 2106 * First check if a dentry matching the name already exists, 2107 * if not go ahead and create it now. 2108 */ 2109 found = d_hash_and_lookup(dentry->d_parent, name); 2110 if (found) { 2111 iput(inode); 2112 return found; 2113 } 2114 if (d_in_lookup(dentry)) { 2115 found = d_alloc_parallel(dentry->d_parent, name, 2116 dentry->d_wait); 2117 if (IS_ERR(found) || !d_in_lookup(found)) { 2118 iput(inode); 2119 return found; 2120 } 2121 } else { 2122 found = d_alloc(dentry->d_parent, name); 2123 if (!found) { 2124 iput(inode); 2125 return ERR_PTR(-ENOMEM); 2126 } 2127 } 2128 res = d_splice_alias(inode, found); 2129 if (res) { 2130 d_lookup_done(found); 2131 dput(found); 2132 return res; 2133 } 2134 return found; 2135 } 2136 EXPORT_SYMBOL(d_add_ci); 2137 2138 /** 2139 * d_same_name - compare dentry name with case-exact name 2140 * @dentry: the negative dentry that was passed to the parent's lookup func 2141 * @parent: parent dentry 2142 * @name: the case-exact name to be associated with the returned dentry 2143 * 2144 * Return: true if names are same, or false 2145 */ 2146 bool d_same_name(const struct dentry *dentry, const struct dentry *parent, 2147 const struct qstr *name) 2148 { 2149 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) { 2150 if (dentry->d_name.len != name->len) 2151 return false; 2152 return dentry_cmp(dentry, name->name, name->len) == 0; 2153 } 2154 return parent->d_op->d_compare(dentry, 2155 dentry->d_name.len, dentry->d_name.name, 2156 name) == 0; 2157 } 2158 EXPORT_SYMBOL_GPL(d_same_name); 2159 2160 /* 2161 * This is __d_lookup_rcu() when the parent dentry has 2162 * DCACHE_OP_COMPARE, which makes things much nastier. 2163 */ 2164 static noinline struct dentry *__d_lookup_rcu_op_compare( 2165 const struct dentry *parent, 2166 const struct qstr *name, 2167 unsigned *seqp) 2168 { 2169 u64 hashlen = name->hash_len; 2170 struct hlist_bl_head *b = d_hash(hashlen); 2171 struct hlist_bl_node *node; 2172 struct dentry *dentry; 2173 2174 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2175 int tlen; 2176 const char *tname; 2177 unsigned seq; 2178 2179 seqretry: 2180 seq = raw_seqcount_begin(&dentry->d_seq); 2181 if (dentry->d_parent != parent) 2182 continue; 2183 if (d_unhashed(dentry)) 2184 continue; 2185 if (dentry->d_name.hash != hashlen_hash(hashlen)) 2186 continue; 2187 tlen = dentry->d_name.len; 2188 tname = dentry->d_name.name; 2189 /* we want a consistent (name,len) pair */ 2190 if (read_seqcount_retry(&dentry->d_seq, seq)) { 2191 cpu_relax(); 2192 goto seqretry; 2193 } 2194 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0) 2195 continue; 2196 *seqp = seq; 2197 return dentry; 2198 } 2199 return NULL; 2200 } 2201 2202 /** 2203 * __d_lookup_rcu - search for a dentry (racy, store-free) 2204 * @parent: parent dentry 2205 * @name: qstr of name we wish to find 2206 * @seqp: returns d_seq value at the point where the dentry was found 2207 * Returns: dentry, or NULL 2208 * 2209 * __d_lookup_rcu is the dcache lookup function for rcu-walk name 2210 * resolution (store-free path walking) design described in 2211 * Documentation/filesystems/path-lookup.txt. 2212 * 2213 * This is not to be used outside core vfs. 2214 * 2215 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock 2216 * held, and rcu_read_lock held. The returned dentry must not be stored into 2217 * without taking d_lock and checking d_seq sequence count against @seq 2218 * returned here. 2219 * 2220 * Alternatively, __d_lookup_rcu may be called again to look up the child of 2221 * the returned dentry, so long as its parent's seqlock is checked after the 2222 * child is looked up. Thus, an interlocking stepping of sequence lock checks 2223 * is formed, giving integrity down the path walk. 2224 * 2225 * NOTE! The caller *has* to check the resulting dentry against the sequence 2226 * number we've returned before using any of the resulting dentry state! 2227 */ 2228 struct dentry *__d_lookup_rcu(const struct dentry *parent, 2229 const struct qstr *name, 2230 unsigned *seqp) 2231 { 2232 u64 hashlen = name->hash_len; 2233 const unsigned char *str = name->name; 2234 struct hlist_bl_head *b = d_hash(hashlen); 2235 struct hlist_bl_node *node; 2236 struct dentry *dentry; 2237 2238 /* 2239 * Note: There is significant duplication with __d_lookup_rcu which is 2240 * required to prevent single threaded performance regressions 2241 * especially on architectures where smp_rmb (in seqcounts) are costly. 2242 * Keep the two functions in sync. 2243 */ 2244 2245 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) 2246 return __d_lookup_rcu_op_compare(parent, name, seqp); 2247 2248 /* 2249 * The hash list is protected using RCU. 2250 * 2251 * Carefully use d_seq when comparing a candidate dentry, to avoid 2252 * races with d_move(). 2253 * 2254 * It is possible that concurrent renames can mess up our list 2255 * walk here and result in missing our dentry, resulting in the 2256 * false-negative result. d_lookup() protects against concurrent 2257 * renames using rename_lock seqlock. 2258 * 2259 * See Documentation/filesystems/path-lookup.txt for more details. 2260 */ 2261 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2262 unsigned seq; 2263 2264 /* 2265 * The dentry sequence count protects us from concurrent 2266 * renames, and thus protects parent and name fields. 2267 * 2268 * The caller must perform a seqcount check in order 2269 * to do anything useful with the returned dentry. 2270 * 2271 * NOTE! We do a "raw" seqcount_begin here. That means that 2272 * we don't wait for the sequence count to stabilize if it 2273 * is in the middle of a sequence change. If we do the slow 2274 * dentry compare, we will do seqretries until it is stable, 2275 * and if we end up with a successful lookup, we actually 2276 * want to exit RCU lookup anyway. 2277 * 2278 * Note that raw_seqcount_begin still *does* smp_rmb(), so 2279 * we are still guaranteed NUL-termination of ->d_name.name. 2280 */ 2281 seq = raw_seqcount_begin(&dentry->d_seq); 2282 if (dentry->d_parent != parent) 2283 continue; 2284 if (d_unhashed(dentry)) 2285 continue; 2286 if (dentry->d_name.hash_len != hashlen) 2287 continue; 2288 if (dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0) 2289 continue; 2290 *seqp = seq; 2291 return dentry; 2292 } 2293 return NULL; 2294 } 2295 2296 /** 2297 * d_lookup - search for a dentry 2298 * @parent: parent dentry 2299 * @name: qstr of name we wish to find 2300 * Returns: dentry, or NULL 2301 * 2302 * d_lookup searches the children of the parent dentry for the name in 2303 * question. If the dentry is found its reference count is incremented and the 2304 * dentry is returned. The caller must use dput to free the entry when it has 2305 * finished using it. %NULL is returned if the dentry does not exist. 2306 */ 2307 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name) 2308 { 2309 struct dentry *dentry; 2310 unsigned seq; 2311 2312 do { 2313 seq = read_seqbegin(&rename_lock); 2314 dentry = __d_lookup(parent, name); 2315 if (dentry) 2316 break; 2317 } while (read_seqretry(&rename_lock, seq)); 2318 return dentry; 2319 } 2320 EXPORT_SYMBOL(d_lookup); 2321 2322 /** 2323 * __d_lookup - search for a dentry (racy) 2324 * @parent: parent dentry 2325 * @name: qstr of name we wish to find 2326 * Returns: dentry, or NULL 2327 * 2328 * __d_lookup is like d_lookup, however it may (rarely) return a 2329 * false-negative result due to unrelated rename activity. 2330 * 2331 * __d_lookup is slightly faster by avoiding rename_lock read seqlock, 2332 * however it must be used carefully, eg. with a following d_lookup in 2333 * the case of failure. 2334 * 2335 * __d_lookup callers must be commented. 2336 */ 2337 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name) 2338 { 2339 unsigned int hash = name->hash; 2340 struct hlist_bl_head *b = d_hash(hash); 2341 struct hlist_bl_node *node; 2342 struct dentry *found = NULL; 2343 struct dentry *dentry; 2344 2345 /* 2346 * Note: There is significant duplication with __d_lookup_rcu which is 2347 * required to prevent single threaded performance regressions 2348 * especially on architectures where smp_rmb (in seqcounts) are costly. 2349 * Keep the two functions in sync. 2350 */ 2351 2352 /* 2353 * The hash list is protected using RCU. 2354 * 2355 * Take d_lock when comparing a candidate dentry, to avoid races 2356 * with d_move(). 2357 * 2358 * It is possible that concurrent renames can mess up our list 2359 * walk here and result in missing our dentry, resulting in the 2360 * false-negative result. d_lookup() protects against concurrent 2361 * renames using rename_lock seqlock. 2362 * 2363 * See Documentation/filesystems/path-lookup.txt for more details. 2364 */ 2365 rcu_read_lock(); 2366 2367 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) { 2368 2369 if (dentry->d_name.hash != hash) 2370 continue; 2371 2372 spin_lock(&dentry->d_lock); 2373 if (dentry->d_parent != parent) 2374 goto next; 2375 if (d_unhashed(dentry)) 2376 goto next; 2377 2378 if (!d_same_name(dentry, parent, name)) 2379 goto next; 2380 2381 dentry->d_lockref.count++; 2382 found = dentry; 2383 spin_unlock(&dentry->d_lock); 2384 break; 2385 next: 2386 spin_unlock(&dentry->d_lock); 2387 } 2388 rcu_read_unlock(); 2389 2390 return found; 2391 } 2392 2393 /** 2394 * d_hash_and_lookup - hash the qstr then search for a dentry 2395 * @dir: Directory to search in 2396 * @name: qstr of name we wish to find 2397 * 2398 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error) 2399 */ 2400 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name) 2401 { 2402 /* 2403 * Check for a fs-specific hash function. Note that we must 2404 * calculate the standard hash first, as the d_op->d_hash() 2405 * routine may choose to leave the hash value unchanged. 2406 */ 2407 name->hash = full_name_hash(dir, name->name, name->len); 2408 if (dir->d_flags & DCACHE_OP_HASH) { 2409 int err = dir->d_op->d_hash(dir, name); 2410 if (unlikely(err < 0)) 2411 return ERR_PTR(err); 2412 } 2413 return d_lookup(dir, name); 2414 } 2415 EXPORT_SYMBOL(d_hash_and_lookup); 2416 2417 /* 2418 * When a file is deleted, we have two options: 2419 * - turn this dentry into a negative dentry 2420 * - unhash this dentry and free it. 2421 * 2422 * Usually, we want to just turn this into 2423 * a negative dentry, but if anybody else is 2424 * currently using the dentry or the inode 2425 * we can't do that and we fall back on removing 2426 * it from the hash queues and waiting for 2427 * it to be deleted later when it has no users 2428 */ 2429 2430 /** 2431 * d_delete - delete a dentry 2432 * @dentry: The dentry to delete 2433 * 2434 * Turn the dentry into a negative dentry if possible, otherwise 2435 * remove it from the hash queues so it can be deleted later 2436 */ 2437 2438 void d_delete(struct dentry * dentry) 2439 { 2440 struct inode *inode = dentry->d_inode; 2441 2442 spin_lock(&inode->i_lock); 2443 spin_lock(&dentry->d_lock); 2444 /* 2445 * Are we the only user? 2446 */ 2447 if (dentry->d_lockref.count == 1) { 2448 if (dentry_negative_policy) 2449 __d_drop(dentry); 2450 dentry->d_flags &= ~DCACHE_CANT_MOUNT; 2451 dentry_unlink_inode(dentry); 2452 } else { 2453 __d_drop(dentry); 2454 spin_unlock(&dentry->d_lock); 2455 spin_unlock(&inode->i_lock); 2456 } 2457 } 2458 EXPORT_SYMBOL(d_delete); 2459 2460 static void __d_rehash(struct dentry *entry) 2461 { 2462 struct hlist_bl_head *b = d_hash(entry->d_name.hash); 2463 2464 hlist_bl_lock(b); 2465 hlist_bl_add_head_rcu(&entry->d_hash, b); 2466 hlist_bl_unlock(b); 2467 } 2468 2469 /** 2470 * d_rehash - add an entry back to the hash 2471 * @entry: dentry to add to the hash 2472 * 2473 * Adds a dentry to the hash according to its name. 2474 */ 2475 2476 void d_rehash(struct dentry * entry) 2477 { 2478 spin_lock(&entry->d_lock); 2479 __d_rehash(entry); 2480 spin_unlock(&entry->d_lock); 2481 } 2482 EXPORT_SYMBOL(d_rehash); 2483 2484 static inline unsigned start_dir_add(struct inode *dir) 2485 { 2486 preempt_disable_nested(); 2487 for (;;) { 2488 unsigned n = dir->i_dir_seq; 2489 if (!(n & 1) && cmpxchg(&dir->i_dir_seq, n, n + 1) == n) 2490 return n; 2491 cpu_relax(); 2492 } 2493 } 2494 2495 static inline void end_dir_add(struct inode *dir, unsigned int n, 2496 wait_queue_head_t *d_wait) 2497 { 2498 smp_store_release(&dir->i_dir_seq, n + 2); 2499 preempt_enable_nested(); 2500 if (wq_has_sleeper(d_wait)) 2501 wake_up_all(d_wait); 2502 } 2503 2504 static void d_wait_lookup(struct dentry *dentry) 2505 { 2506 if (d_in_lookup(dentry)) { 2507 DECLARE_WAITQUEUE(wait, current); 2508 add_wait_queue(dentry->d_wait, &wait); 2509 do { 2510 set_current_state(TASK_UNINTERRUPTIBLE); 2511 spin_unlock(&dentry->d_lock); 2512 schedule(); 2513 spin_lock(&dentry->d_lock); 2514 } while (d_in_lookup(dentry)); 2515 } 2516 } 2517 2518 struct dentry *d_alloc_parallel(struct dentry *parent, 2519 const struct qstr *name, 2520 wait_queue_head_t *wq) 2521 { 2522 unsigned int hash = name->hash; 2523 struct hlist_bl_head *b = in_lookup_hash(parent, hash); 2524 struct hlist_bl_node *node; 2525 struct dentry *new = d_alloc(parent, name); 2526 struct dentry *dentry; 2527 unsigned seq, r_seq, d_seq; 2528 2529 if (unlikely(!new)) 2530 return ERR_PTR(-ENOMEM); 2531 2532 retry: 2533 rcu_read_lock(); 2534 seq = smp_load_acquire(&parent->d_inode->i_dir_seq); 2535 r_seq = read_seqbegin(&rename_lock); 2536 dentry = __d_lookup_rcu(parent, name, &d_seq); 2537 if (unlikely(dentry)) { 2538 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2539 rcu_read_unlock(); 2540 goto retry; 2541 } 2542 if (read_seqcount_retry(&dentry->d_seq, d_seq)) { 2543 rcu_read_unlock(); 2544 dput(dentry); 2545 goto retry; 2546 } 2547 rcu_read_unlock(); 2548 dput(new); 2549 return dentry; 2550 } 2551 if (unlikely(read_seqretry(&rename_lock, r_seq))) { 2552 rcu_read_unlock(); 2553 goto retry; 2554 } 2555 2556 if (unlikely(seq & 1)) { 2557 rcu_read_unlock(); 2558 goto retry; 2559 } 2560 2561 hlist_bl_lock(b); 2562 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) { 2563 hlist_bl_unlock(b); 2564 rcu_read_unlock(); 2565 goto retry; 2566 } 2567 /* 2568 * No changes for the parent since the beginning of d_lookup(). 2569 * Since all removals from the chain happen with hlist_bl_lock(), 2570 * any potential in-lookup matches are going to stay here until 2571 * we unlock the chain. All fields are stable in everything 2572 * we encounter. 2573 */ 2574 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) { 2575 if (dentry->d_name.hash != hash) 2576 continue; 2577 if (dentry->d_parent != parent) 2578 continue; 2579 if (!d_same_name(dentry, parent, name)) 2580 continue; 2581 hlist_bl_unlock(b); 2582 /* now we can try to grab a reference */ 2583 if (!lockref_get_not_dead(&dentry->d_lockref)) { 2584 rcu_read_unlock(); 2585 goto retry; 2586 } 2587 2588 rcu_read_unlock(); 2589 /* 2590 * somebody is likely to be still doing lookup for it; 2591 * wait for them to finish 2592 */ 2593 spin_lock(&dentry->d_lock); 2594 d_wait_lookup(dentry); 2595 /* 2596 * it's not in-lookup anymore; in principle we should repeat 2597 * everything from dcache lookup, but it's likely to be what 2598 * d_lookup() would've found anyway. If it is, just return it; 2599 * otherwise we really have to repeat the whole thing. 2600 */ 2601 if (unlikely(dentry->d_name.hash != hash)) 2602 goto mismatch; 2603 if (unlikely(dentry->d_parent != parent)) 2604 goto mismatch; 2605 if (unlikely(d_unhashed(dentry))) 2606 goto mismatch; 2607 if (unlikely(!d_same_name(dentry, parent, name))) 2608 goto mismatch; 2609 /* OK, it *is* a hashed match; return it */ 2610 spin_unlock(&dentry->d_lock); 2611 dput(new); 2612 return dentry; 2613 } 2614 rcu_read_unlock(); 2615 /* we can't take ->d_lock here; it's OK, though. */ 2616 new->d_flags |= DCACHE_PAR_LOOKUP; 2617 new->d_wait = wq; 2618 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b); 2619 hlist_bl_unlock(b); 2620 return new; 2621 mismatch: 2622 spin_unlock(&dentry->d_lock); 2623 dput(dentry); 2624 goto retry; 2625 } 2626 EXPORT_SYMBOL(d_alloc_parallel); 2627 2628 /* 2629 * - Unhash the dentry 2630 * - Retrieve and clear the waitqueue head in dentry 2631 * - Return the waitqueue head 2632 */ 2633 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry) 2634 { 2635 wait_queue_head_t *d_wait; 2636 struct hlist_bl_head *b; 2637 2638 lockdep_assert_held(&dentry->d_lock); 2639 2640 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash); 2641 hlist_bl_lock(b); 2642 dentry->d_flags &= ~DCACHE_PAR_LOOKUP; 2643 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash); 2644 d_wait = dentry->d_wait; 2645 dentry->d_wait = NULL; 2646 hlist_bl_unlock(b); 2647 INIT_HLIST_NODE(&dentry->d_u.d_alias); 2648 INIT_LIST_HEAD(&dentry->d_lru); 2649 return d_wait; 2650 } 2651 2652 void __d_lookup_unhash_wake(struct dentry *dentry) 2653 { 2654 spin_lock(&dentry->d_lock); 2655 wake_up_all(__d_lookup_unhash(dentry)); 2656 spin_unlock(&dentry->d_lock); 2657 } 2658 EXPORT_SYMBOL(__d_lookup_unhash_wake); 2659 2660 /* inode->i_lock held if inode is non-NULL */ 2661 2662 static inline void __d_add(struct dentry *dentry, struct inode *inode) 2663 { 2664 wait_queue_head_t *d_wait; 2665 struct inode *dir = NULL; 2666 unsigned n; 2667 spin_lock(&dentry->d_lock); 2668 if (unlikely(d_in_lookup(dentry))) { 2669 dir = dentry->d_parent->d_inode; 2670 n = start_dir_add(dir); 2671 d_wait = __d_lookup_unhash(dentry); 2672 } 2673 if (inode) { 2674 unsigned add_flags = d_flags_for_inode(inode); 2675 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry); 2676 raw_write_seqcount_begin(&dentry->d_seq); 2677 __d_set_inode_and_type(dentry, inode, add_flags); 2678 raw_write_seqcount_end(&dentry->d_seq); 2679 fsnotify_update_flags(dentry); 2680 } 2681 __d_rehash(dentry); 2682 if (dir) 2683 end_dir_add(dir, n, d_wait); 2684 spin_unlock(&dentry->d_lock); 2685 if (inode) 2686 spin_unlock(&inode->i_lock); 2687 } 2688 2689 /** 2690 * d_add - add dentry to hash queues 2691 * @entry: dentry to add 2692 * @inode: The inode to attach to this dentry 2693 * 2694 * This adds the entry to the hash queues and initializes @inode. 2695 * The entry was actually filled in earlier during d_alloc(). 2696 */ 2697 2698 void d_add(struct dentry *entry, struct inode *inode) 2699 { 2700 if (inode) { 2701 security_d_instantiate(entry, inode); 2702 spin_lock(&inode->i_lock); 2703 } 2704 __d_add(entry, inode); 2705 } 2706 EXPORT_SYMBOL(d_add); 2707 2708 static void swap_names(struct dentry *dentry, struct dentry *target) 2709 { 2710 if (unlikely(dname_external(target))) { 2711 if (unlikely(dname_external(dentry))) { 2712 /* 2713 * Both external: swap the pointers 2714 */ 2715 swap(target->d_name.name, dentry->d_name.name); 2716 } else { 2717 /* 2718 * dentry:internal, target:external. Steal target's 2719 * storage and make target internal. 2720 */ 2721 dentry->d_name.name = target->d_name.name; 2722 target->d_shortname = dentry->d_shortname; 2723 target->d_name.name = target->d_shortname.string; 2724 } 2725 } else { 2726 if (unlikely(dname_external(dentry))) { 2727 /* 2728 * dentry:external, target:internal. Give dentry's 2729 * storage to target and make dentry internal 2730 */ 2731 target->d_name.name = dentry->d_name.name; 2732 dentry->d_shortname = target->d_shortname; 2733 dentry->d_name.name = dentry->d_shortname.string; 2734 } else { 2735 /* 2736 * Both are internal. 2737 */ 2738 for (int i = 0; i < DNAME_INLINE_WORDS; i++) 2739 swap(dentry->d_shortname.words[i], 2740 target->d_shortname.words[i]); 2741 } 2742 } 2743 swap(dentry->d_name.hash_len, target->d_name.hash_len); 2744 } 2745 2746 static void copy_name(struct dentry *dentry, struct dentry *target) 2747 { 2748 struct external_name *old_name = NULL; 2749 if (unlikely(dname_external(dentry))) 2750 old_name = external_name(dentry); 2751 if (unlikely(dname_external(target))) { 2752 atomic_inc(&external_name(target)->count); 2753 dentry->d_name = target->d_name; 2754 } else { 2755 dentry->d_shortname = target->d_shortname; 2756 dentry->d_name.name = dentry->d_shortname.string; 2757 dentry->d_name.hash_len = target->d_name.hash_len; 2758 } 2759 if (old_name && likely(atomic_dec_and_test(&old_name->count))) 2760 kfree_rcu(old_name, head); 2761 } 2762 2763 /* 2764 * __d_move - move a dentry 2765 * @dentry: entry to move 2766 * @target: new dentry 2767 * @exchange: exchange the two dentries 2768 * 2769 * Update the dcache to reflect the move of a file name. Negative 2770 * dcache entries should not be moved in this way. Caller must hold 2771 * rename_lock, the i_mutex of the source and target directories, 2772 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename(). 2773 */ 2774 static void __d_move(struct dentry *dentry, struct dentry *target, 2775 bool exchange) 2776 { 2777 struct dentry *old_parent, *p; 2778 wait_queue_head_t *d_wait; 2779 struct inode *dir = NULL; 2780 unsigned n; 2781 2782 WARN_ON(!dentry->d_inode); 2783 if (WARN_ON(dentry == target)) 2784 return; 2785 2786 BUG_ON(d_ancestor(target, dentry)); 2787 old_parent = dentry->d_parent; 2788 p = d_ancestor(old_parent, target); 2789 if (IS_ROOT(dentry)) { 2790 BUG_ON(p); 2791 spin_lock(&target->d_parent->d_lock); 2792 } else if (!p) { 2793 /* target is not a descendent of dentry->d_parent */ 2794 spin_lock(&target->d_parent->d_lock); 2795 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED); 2796 } else { 2797 BUG_ON(p == dentry); 2798 spin_lock(&old_parent->d_lock); 2799 if (p != target) 2800 spin_lock_nested(&target->d_parent->d_lock, 2801 DENTRY_D_LOCK_NESTED); 2802 } 2803 spin_lock_nested(&dentry->d_lock, 2); 2804 spin_lock_nested(&target->d_lock, 3); 2805 2806 if (unlikely(d_in_lookup(target))) { 2807 dir = target->d_parent->d_inode; 2808 n = start_dir_add(dir); 2809 d_wait = __d_lookup_unhash(target); 2810 } 2811 2812 write_seqcount_begin(&dentry->d_seq); 2813 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED); 2814 2815 /* unhash both */ 2816 if (!d_unhashed(dentry)) 2817 ___d_drop(dentry); 2818 if (!d_unhashed(target)) 2819 ___d_drop(target); 2820 2821 /* ... and switch them in the tree */ 2822 dentry->d_parent = target->d_parent; 2823 if (!exchange) { 2824 copy_name(dentry, target); 2825 target->d_hash.pprev = NULL; 2826 dentry->d_parent->d_lockref.count++; 2827 if (dentry != old_parent) /* wasn't IS_ROOT */ 2828 WARN_ON(!--old_parent->d_lockref.count); 2829 } else { 2830 target->d_parent = old_parent; 2831 swap_names(dentry, target); 2832 if (!hlist_unhashed(&target->d_sib)) 2833 __hlist_del(&target->d_sib); 2834 hlist_add_head(&target->d_sib, &target->d_parent->d_children); 2835 __d_rehash(target); 2836 fsnotify_update_flags(target); 2837 } 2838 if (!hlist_unhashed(&dentry->d_sib)) 2839 __hlist_del(&dentry->d_sib); 2840 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children); 2841 __d_rehash(dentry); 2842 fsnotify_update_flags(dentry); 2843 fscrypt_handle_d_move(dentry); 2844 2845 write_seqcount_end(&target->d_seq); 2846 write_seqcount_end(&dentry->d_seq); 2847 2848 if (dir) 2849 end_dir_add(dir, n, d_wait); 2850 2851 if (dentry->d_parent != old_parent) 2852 spin_unlock(&dentry->d_parent->d_lock); 2853 if (dentry != old_parent) 2854 spin_unlock(&old_parent->d_lock); 2855 spin_unlock(&target->d_lock); 2856 spin_unlock(&dentry->d_lock); 2857 } 2858 2859 /* 2860 * d_move - move a dentry 2861 * @dentry: entry to move 2862 * @target: new dentry 2863 * 2864 * Update the dcache to reflect the move of a file name. Negative 2865 * dcache entries should not be moved in this way. See the locking 2866 * requirements for __d_move. 2867 */ 2868 void d_move(struct dentry *dentry, struct dentry *target) 2869 { 2870 write_seqlock(&rename_lock); 2871 __d_move(dentry, target, false); 2872 write_sequnlock(&rename_lock); 2873 } 2874 EXPORT_SYMBOL(d_move); 2875 2876 /* 2877 * d_exchange - exchange two dentries 2878 * @dentry1: first dentry 2879 * @dentry2: second dentry 2880 */ 2881 void d_exchange(struct dentry *dentry1, struct dentry *dentry2) 2882 { 2883 write_seqlock(&rename_lock); 2884 2885 WARN_ON(!dentry1->d_inode); 2886 WARN_ON(!dentry2->d_inode); 2887 WARN_ON(IS_ROOT(dentry1)); 2888 WARN_ON(IS_ROOT(dentry2)); 2889 2890 __d_move(dentry1, dentry2, true); 2891 2892 write_sequnlock(&rename_lock); 2893 } 2894 2895 /** 2896 * d_ancestor - search for an ancestor 2897 * @p1: ancestor dentry 2898 * @p2: child dentry 2899 * 2900 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is 2901 * an ancestor of p2, else NULL. 2902 */ 2903 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2) 2904 { 2905 struct dentry *p; 2906 2907 for (p = p2; !IS_ROOT(p); p = p->d_parent) { 2908 if (p->d_parent == p1) 2909 return p; 2910 } 2911 return NULL; 2912 } 2913 2914 /* 2915 * This helper attempts to cope with remotely renamed directories 2916 * 2917 * It assumes that the caller is already holding 2918 * dentry->d_parent->d_inode->i_mutex, and rename_lock 2919 * 2920 * Note: If ever the locking in lock_rename() changes, then please 2921 * remember to update this too... 2922 */ 2923 static int __d_unalias(struct dentry *dentry, struct dentry *alias) 2924 { 2925 struct mutex *m1 = NULL; 2926 struct rw_semaphore *m2 = NULL; 2927 int ret = -ESTALE; 2928 2929 /* If alias and dentry share a parent, then no extra locks required */ 2930 if (alias->d_parent == dentry->d_parent) 2931 goto out_unalias; 2932 2933 /* See lock_rename() */ 2934 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex)) 2935 goto out_err; 2936 m1 = &dentry->d_sb->s_vfs_rename_mutex; 2937 if (!inode_trylock_shared(alias->d_parent->d_inode)) 2938 goto out_err; 2939 m2 = &alias->d_parent->d_inode->i_rwsem; 2940 out_unalias: 2941 if (alias->d_op && alias->d_op->d_unalias_trylock && 2942 !alias->d_op->d_unalias_trylock(alias)) 2943 goto out_err; 2944 __d_move(alias, dentry, false); 2945 if (alias->d_op && alias->d_op->d_unalias_unlock) 2946 alias->d_op->d_unalias_unlock(alias); 2947 ret = 0; 2948 out_err: 2949 if (m2) 2950 up_read(m2); 2951 if (m1) 2952 mutex_unlock(m1); 2953 return ret; 2954 } 2955 2956 /** 2957 * d_splice_alias - splice a disconnected dentry into the tree if one exists 2958 * @inode: the inode which may have a disconnected dentry 2959 * @dentry: a negative dentry which we want to point to the inode. 2960 * 2961 * If inode is a directory and has an IS_ROOT alias, then d_move that in 2962 * place of the given dentry and return it, else simply d_add the inode 2963 * to the dentry and return NULL. 2964 * 2965 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and 2966 * we should error out: directories can't have multiple aliases. 2967 * 2968 * This is needed in the lookup routine of any filesystem that is exportable 2969 * (via knfsd) so that we can build dcache paths to directories effectively. 2970 * 2971 * If a dentry was found and moved, then it is returned. Otherwise NULL 2972 * is returned. This matches the expected return value of ->lookup. 2973 * 2974 * Cluster filesystems may call this function with a negative, hashed dentry. 2975 * In that case, we know that the inode will be a regular file, and also this 2976 * will only occur during atomic_open. So we need to check for the dentry 2977 * being already hashed only in the final case. 2978 */ 2979 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry) 2980 { 2981 if (IS_ERR(inode)) 2982 return ERR_CAST(inode); 2983 2984 BUG_ON(!d_unhashed(dentry)); 2985 2986 if (!inode) 2987 goto out; 2988 2989 security_d_instantiate(dentry, inode); 2990 spin_lock(&inode->i_lock); 2991 if (S_ISDIR(inode->i_mode)) { 2992 struct dentry *new = __d_find_any_alias(inode); 2993 if (unlikely(new)) { 2994 /* The reference to new ensures it remains an alias */ 2995 spin_unlock(&inode->i_lock); 2996 write_seqlock(&rename_lock); 2997 if (unlikely(d_ancestor(new, dentry))) { 2998 write_sequnlock(&rename_lock); 2999 dput(new); 3000 new = ERR_PTR(-ELOOP); 3001 pr_warn_ratelimited( 3002 "VFS: Lookup of '%s' in %s %s" 3003 " would have caused loop\n", 3004 dentry->d_name.name, 3005 inode->i_sb->s_type->name, 3006 inode->i_sb->s_id); 3007 } else if (!IS_ROOT(new)) { 3008 struct dentry *old_parent = dget(new->d_parent); 3009 int err = __d_unalias(dentry, new); 3010 write_sequnlock(&rename_lock); 3011 if (err) { 3012 dput(new); 3013 new = ERR_PTR(err); 3014 } 3015 dput(old_parent); 3016 } else { 3017 __d_move(new, dentry, false); 3018 write_sequnlock(&rename_lock); 3019 } 3020 iput(inode); 3021 return new; 3022 } 3023 } 3024 out: 3025 __d_add(dentry, inode); 3026 return NULL; 3027 } 3028 EXPORT_SYMBOL(d_splice_alias); 3029 3030 /* 3031 * Test whether new_dentry is a subdirectory of old_dentry. 3032 * 3033 * Trivially implemented using the dcache structure 3034 */ 3035 3036 /** 3037 * is_subdir - is new dentry a subdirectory of old_dentry 3038 * @new_dentry: new dentry 3039 * @old_dentry: old dentry 3040 * 3041 * Returns true if new_dentry is a subdirectory of the parent (at any depth). 3042 * Returns false otherwise. 3043 * Caller must ensure that "new_dentry" is pinned before calling is_subdir() 3044 */ 3045 3046 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry) 3047 { 3048 bool subdir; 3049 unsigned seq; 3050 3051 if (new_dentry == old_dentry) 3052 return true; 3053 3054 /* Access d_parent under rcu as d_move() may change it. */ 3055 rcu_read_lock(); 3056 seq = read_seqbegin(&rename_lock); 3057 subdir = d_ancestor(old_dentry, new_dentry); 3058 /* Try lockless once... */ 3059 if (read_seqretry(&rename_lock, seq)) { 3060 /* ...else acquire lock for progress even on deep chains. */ 3061 read_seqlock_excl(&rename_lock); 3062 subdir = d_ancestor(old_dentry, new_dentry); 3063 read_sequnlock_excl(&rename_lock); 3064 } 3065 rcu_read_unlock(); 3066 return subdir; 3067 } 3068 EXPORT_SYMBOL(is_subdir); 3069 3070 static enum d_walk_ret d_genocide_kill(void *data, struct dentry *dentry) 3071 { 3072 struct dentry *root = data; 3073 if (dentry != root) { 3074 if (d_unhashed(dentry) || !dentry->d_inode) 3075 return D_WALK_SKIP; 3076 3077 if (!(dentry->d_flags & DCACHE_GENOCIDE)) { 3078 dentry->d_flags |= DCACHE_GENOCIDE; 3079 dentry->d_lockref.count--; 3080 } 3081 } 3082 return D_WALK_CONTINUE; 3083 } 3084 3085 void d_genocide(struct dentry *parent) 3086 { 3087 d_walk(parent, parent, d_genocide_kill); 3088 } 3089 3090 void d_mark_tmpfile(struct file *file, struct inode *inode) 3091 { 3092 struct dentry *dentry = file->f_path.dentry; 3093 3094 BUG_ON(dname_external(dentry) || 3095 !hlist_unhashed(&dentry->d_u.d_alias) || 3096 !d_unlinked(dentry)); 3097 spin_lock(&dentry->d_parent->d_lock); 3098 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED); 3099 dentry->d_name.len = sprintf(dentry->d_shortname.string, "#%llu", 3100 (unsigned long long)inode->i_ino); 3101 spin_unlock(&dentry->d_lock); 3102 spin_unlock(&dentry->d_parent->d_lock); 3103 } 3104 EXPORT_SYMBOL(d_mark_tmpfile); 3105 3106 void d_tmpfile(struct file *file, struct inode *inode) 3107 { 3108 struct dentry *dentry = file->f_path.dentry; 3109 3110 inode_dec_link_count(inode); 3111 d_mark_tmpfile(file, inode); 3112 d_instantiate(dentry, inode); 3113 } 3114 EXPORT_SYMBOL(d_tmpfile); 3115 3116 /* 3117 * Obtain inode number of the parent dentry. 3118 */ 3119 ino_t d_parent_ino(struct dentry *dentry) 3120 { 3121 struct dentry *parent; 3122 struct inode *iparent; 3123 unsigned seq; 3124 ino_t ret; 3125 3126 scoped_guard(rcu) { 3127 seq = raw_seqcount_begin(&dentry->d_seq); 3128 parent = READ_ONCE(dentry->d_parent); 3129 iparent = d_inode_rcu(parent); 3130 if (likely(iparent)) { 3131 ret = iparent->i_ino; 3132 if (!read_seqcount_retry(&dentry->d_seq, seq)) 3133 return ret; 3134 } 3135 } 3136 3137 spin_lock(&dentry->d_lock); 3138 ret = dentry->d_parent->d_inode->i_ino; 3139 spin_unlock(&dentry->d_lock); 3140 return ret; 3141 } 3142 EXPORT_SYMBOL(d_parent_ino); 3143 3144 static __initdata unsigned long dhash_entries; 3145 static int __init set_dhash_entries(char *str) 3146 { 3147 if (!str) 3148 return 0; 3149 dhash_entries = simple_strtoul(str, &str, 0); 3150 return 1; 3151 } 3152 __setup("dhash_entries=", set_dhash_entries); 3153 3154 static void __init dcache_init_early(void) 3155 { 3156 /* If hashes are distributed across NUMA nodes, defer 3157 * hash allocation until vmalloc space is available. 3158 */ 3159 if (hashdist) 3160 return; 3161 3162 dentry_hashtable = 3163 alloc_large_system_hash("Dentry cache", 3164 sizeof(struct hlist_bl_head), 3165 dhash_entries, 3166 13, 3167 HASH_EARLY | HASH_ZERO, 3168 &d_hash_shift, 3169 NULL, 3170 0, 3171 0); 3172 d_hash_shift = 32 - d_hash_shift; 3173 3174 runtime_const_init(shift, d_hash_shift); 3175 runtime_const_init(ptr, dentry_hashtable); 3176 } 3177 3178 static void __init dcache_init(void) 3179 { 3180 /* 3181 * A constructor could be added for stable state like the lists, 3182 * but it is probably not worth it because of the cache nature 3183 * of the dcache. 3184 */ 3185 dentry_cache = KMEM_CACHE_USERCOPY(dentry, 3186 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT, 3187 d_shortname.string); 3188 3189 /* Hash may have been set up in dcache_init_early */ 3190 if (!hashdist) 3191 return; 3192 3193 dentry_hashtable = 3194 alloc_large_system_hash("Dentry cache", 3195 sizeof(struct hlist_bl_head), 3196 dhash_entries, 3197 13, 3198 HASH_ZERO, 3199 &d_hash_shift, 3200 NULL, 3201 0, 3202 0); 3203 d_hash_shift = 32 - d_hash_shift; 3204 3205 runtime_const_init(shift, d_hash_shift); 3206 runtime_const_init(ptr, dentry_hashtable); 3207 } 3208 3209 /* SLAB cache for __getname() consumers */ 3210 struct kmem_cache *names_cachep __ro_after_init; 3211 EXPORT_SYMBOL(names_cachep); 3212 3213 void __init vfs_caches_init_early(void) 3214 { 3215 int i; 3216 3217 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++) 3218 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]); 3219 3220 dcache_init_early(); 3221 inode_init_early(); 3222 } 3223 3224 void __init vfs_caches_init(void) 3225 { 3226 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0, 3227 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL); 3228 3229 dcache_init(); 3230 inode_init(); 3231 files_init(); 3232 files_maxfiles_init(); 3233 mnt_init(); 3234 bdev_cache_init(); 3235 chrdev_init(); 3236 } 3237