1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/dcache.c
4 *
5 * Complete reimplementation
6 * (C) 1997 Thomas Schoebel-Theuer,
7 * with heavy changes by Linus Torvalds
8 */
9
10 /*
11 * Notes on the allocation strategy:
12 *
13 * The dcache is a master of the icache - whenever a dcache entry
14 * exists, the inode will always exist. "iput()" is done either when
15 * the dcache entry is deleted or garbage collected.
16 */
17
18 #include <linux/ratelimit.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/fs.h>
22 #include <linux/fscrypt.h>
23 #include <linux/fsnotify.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/cache.h>
28 #include <linux/export.h>
29 #include <linux/security.h>
30 #include <linux/seqlock.h>
31 #include <linux/memblock.h>
32 #include <linux/bit_spinlock.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/list_lru.h>
35 #include "internal.h"
36 #include "mount.h"
37
38 #include <asm/runtime-const.h>
39
40 /*
41 * Usage:
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_u.d_alias, d_inode of aliases
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_roots bl list spinlock protects:
47 * - the s_roots list (see __d_drop)
48 * dentry->d_sb->s_dentry_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
54 * - d_count
55 * - d_unhashed()
56 * - d_parent and d_chilren
57 * - childrens' d_sib and d_parent
58 * - d_u.d_alias, d_inode
59 *
60 * Ordering:
61 * dentry->d_inode->i_lock
62 * dentry->d_lock
63 * dentry->d_sb->s_dentry_lru_lock
64 * dcache_hash_bucket lock
65 * s_roots lock
66 *
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
74 * arbitrary, since it's serialized on rename_lock
75 */
76 static int sysctl_vfs_cache_pressure __read_mostly = 100;
77 static int sysctl_vfs_cache_pressure_denom __read_mostly = 100;
78
vfs_pressure_ratio(unsigned long val)79 unsigned long vfs_pressure_ratio(unsigned long val)
80 {
81 return mult_frac(val, sysctl_vfs_cache_pressure, sysctl_vfs_cache_pressure_denom);
82 }
83 EXPORT_SYMBOL_GPL(vfs_pressure_ratio);
84
85 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
86
87 EXPORT_SYMBOL(rename_lock);
88
89 static struct kmem_cache *__dentry_cache __ro_after_init;
90 #define dentry_cache runtime_const_ptr(__dentry_cache)
91
92 const struct qstr empty_name = QSTR_INIT("", 0);
93 EXPORT_SYMBOL(empty_name);
94 const struct qstr slash_name = QSTR_INIT("/", 1);
95 EXPORT_SYMBOL(slash_name);
96 const struct qstr dotdot_name = QSTR_INIT("..", 2);
97 EXPORT_SYMBOL(dotdot_name);
98
99 /*
100 * This is the single most critical data structure when it comes
101 * to the dcache: the hashtable for lookups. Somebody should try
102 * to make this good - I've just made it work.
103 *
104 * This hash-function tries to avoid losing too many bits of hash
105 * information, yet avoid using a prime hash-size or similar.
106 *
107 * Marking the variables "used" ensures that the compiler doesn't
108 * optimize them away completely on architectures with runtime
109 * constant infrastructure, this allows debuggers to see their
110 * values. But updating these values has no effect on those arches.
111 */
112
113 static unsigned int d_hash_shift __ro_after_init __used;
114
115 static struct hlist_bl_head *dentry_hashtable __ro_after_init __used;
116
d_hash(unsigned long hashlen)117 static inline struct hlist_bl_head *d_hash(unsigned long hashlen)
118 {
119 return runtime_const_ptr(dentry_hashtable) +
120 runtime_const_shift_right_32(hashlen, d_hash_shift);
121 }
122
123 #define IN_LOOKUP_SHIFT 10
124 static struct hlist_bl_head in_lookup_hashtable[1 << IN_LOOKUP_SHIFT];
125
in_lookup_hash(const struct dentry * parent,unsigned int hash)126 static inline struct hlist_bl_head *in_lookup_hash(const struct dentry *parent,
127 unsigned int hash)
128 {
129 hash += (unsigned long) parent / L1_CACHE_BYTES;
130 return in_lookup_hashtable + hash_32(hash, IN_LOOKUP_SHIFT);
131 }
132
133 struct dentry_stat_t {
134 long nr_dentry;
135 long nr_unused;
136 long age_limit; /* age in seconds */
137 long want_pages; /* pages requested by system */
138 long nr_negative; /* # of unused negative dentries */
139 long dummy; /* Reserved for future use */
140 };
141
142 static DEFINE_PER_CPU(long, nr_dentry);
143 static DEFINE_PER_CPU(long, nr_dentry_unused);
144 static DEFINE_PER_CPU(long, nr_dentry_negative);
145 static int dentry_negative_policy;
146
147 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
148 /* Statistics gathering. */
149 static struct dentry_stat_t dentry_stat = {
150 .age_limit = 45,
151 };
152
153 /*
154 * Here we resort to our own counters instead of using generic per-cpu counters
155 * for consistency with what the vfs inode code does. We are expected to harvest
156 * better code and performance by having our own specialized counters.
157 *
158 * Please note that the loop is done over all possible CPUs, not over all online
159 * CPUs. The reason for this is that we don't want to play games with CPUs going
160 * on and off. If one of them goes off, we will just keep their counters.
161 *
162 * glommer: See cffbc8a for details, and if you ever intend to change this,
163 * please update all vfs counters to match.
164 */
get_nr_dentry(void)165 static long get_nr_dentry(void)
166 {
167 int i;
168 long sum = 0;
169 for_each_possible_cpu(i)
170 sum += per_cpu(nr_dentry, i);
171 return sum < 0 ? 0 : sum;
172 }
173
get_nr_dentry_unused(void)174 static long get_nr_dentry_unused(void)
175 {
176 int i;
177 long sum = 0;
178 for_each_possible_cpu(i)
179 sum += per_cpu(nr_dentry_unused, i);
180 return sum < 0 ? 0 : sum;
181 }
182
get_nr_dentry_negative(void)183 static long get_nr_dentry_negative(void)
184 {
185 int i;
186 long sum = 0;
187
188 for_each_possible_cpu(i)
189 sum += per_cpu(nr_dentry_negative, i);
190 return sum < 0 ? 0 : sum;
191 }
192
proc_nr_dentry(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)193 static int proc_nr_dentry(const struct ctl_table *table, int write, void *buffer,
194 size_t *lenp, loff_t *ppos)
195 {
196 dentry_stat.nr_dentry = get_nr_dentry();
197 dentry_stat.nr_unused = get_nr_dentry_unused();
198 dentry_stat.nr_negative = get_nr_dentry_negative();
199 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
200 }
201
202 static const struct ctl_table fs_dcache_sysctls[] = {
203 {
204 .procname = "dentry-state",
205 .data = &dentry_stat,
206 .maxlen = 6*sizeof(long),
207 .mode = 0444,
208 .proc_handler = proc_nr_dentry,
209 },
210 {
211 .procname = "dentry-negative",
212 .data = &dentry_negative_policy,
213 .maxlen = sizeof(dentry_negative_policy),
214 .mode = 0644,
215 .proc_handler = proc_dointvec_minmax,
216 .extra1 = SYSCTL_ZERO,
217 .extra2 = SYSCTL_ONE,
218 },
219 };
220
221 static const struct ctl_table vm_dcache_sysctls[] = {
222 {
223 .procname = "vfs_cache_pressure",
224 .data = &sysctl_vfs_cache_pressure,
225 .maxlen = sizeof(sysctl_vfs_cache_pressure),
226 .mode = 0644,
227 .proc_handler = proc_dointvec_minmax,
228 .extra1 = SYSCTL_ZERO,
229 },
230 {
231 .procname = "vfs_cache_pressure_denom",
232 .data = &sysctl_vfs_cache_pressure_denom,
233 .maxlen = sizeof(sysctl_vfs_cache_pressure_denom),
234 .mode = 0644,
235 .proc_handler = proc_dointvec_minmax,
236 .extra1 = SYSCTL_ONE_HUNDRED,
237 },
238 };
239
init_fs_dcache_sysctls(void)240 static int __init init_fs_dcache_sysctls(void)
241 {
242 register_sysctl_init("vm", vm_dcache_sysctls);
243 register_sysctl_init("fs", fs_dcache_sysctls);
244 return 0;
245 }
246 fs_initcall(init_fs_dcache_sysctls);
247 #endif
248
249 /*
250 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
251 * The strings are both count bytes long, and count is non-zero.
252 */
253 #ifdef CONFIG_DCACHE_WORD_ACCESS
254
255 #include <asm/word-at-a-time.h>
256 /*
257 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
258 * aligned allocation for this particular component. We don't
259 * strictly need the load_unaligned_zeropad() safety, but it
260 * doesn't hurt either.
261 *
262 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
263 * need the careful unaligned handling.
264 */
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)265 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
266 {
267 unsigned long a,b,mask;
268
269 for (;;) {
270 a = read_word_at_a_time(cs);
271 b = load_unaligned_zeropad(ct);
272 if (tcount < sizeof(unsigned long))
273 break;
274 if (unlikely(a != b))
275 return 1;
276 cs += sizeof(unsigned long);
277 ct += sizeof(unsigned long);
278 tcount -= sizeof(unsigned long);
279 if (!tcount)
280 return 0;
281 }
282 mask = bytemask_from_count(tcount);
283 return unlikely(!!((a ^ b) & mask));
284 }
285
286 #else
287
dentry_string_cmp(const unsigned char * cs,const unsigned char * ct,unsigned tcount)288 static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
289 {
290 do {
291 if (*cs != *ct)
292 return 1;
293 cs++;
294 ct++;
295 tcount--;
296 } while (tcount);
297 return 0;
298 }
299
300 #endif
301
dentry_cmp(const struct dentry * dentry,const unsigned char * ct,unsigned tcount)302 static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
303 {
304 /*
305 * Be careful about RCU walk racing with rename:
306 * use 'READ_ONCE' to fetch the name pointer.
307 *
308 * NOTE! Even if a rename will mean that the length
309 * was not loaded atomically, we don't care. The
310 * RCU walk will check the sequence count eventually,
311 * and catch it. And we won't overrun the buffer,
312 * because we're reading the name pointer atomically,
313 * and a dentry name is guaranteed to be properly
314 * terminated with a NUL byte.
315 *
316 * End result: even if 'len' is wrong, we'll exit
317 * early because the data cannot match (there can
318 * be no NUL in the ct/tcount data)
319 */
320 const unsigned char *cs = READ_ONCE(dentry->d_name.name);
321
322 return dentry_string_cmp(cs, ct, tcount);
323 }
324
325 /*
326 * long names are allocated separately from dentry and never modified.
327 * Refcounted, freeing is RCU-delayed. See take_dentry_name_snapshot()
328 * for the reason why ->count and ->head can't be combined into a union.
329 * dentry_string_cmp() relies upon ->name[] being word-aligned.
330 */
331 struct external_name {
332 atomic_t count;
333 struct rcu_head head;
334 unsigned char name[] __aligned(sizeof(unsigned long));
335 };
336
external_name(struct dentry * dentry)337 static inline struct external_name *external_name(struct dentry *dentry)
338 {
339 return container_of(dentry->d_name.name, struct external_name, name[0]);
340 }
341
__d_free(struct rcu_head * head)342 static void __d_free(struct rcu_head *head)
343 {
344 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
345
346 kmem_cache_free(dentry_cache, dentry);
347 }
348
__d_free_external(struct rcu_head * head)349 static void __d_free_external(struct rcu_head *head)
350 {
351 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
352 kfree(external_name(dentry));
353 kmem_cache_free(dentry_cache, dentry);
354 }
355
dname_external(const struct dentry * dentry)356 static inline int dname_external(const struct dentry *dentry)
357 {
358 return dentry->d_name.name != dentry->d_shortname.string;
359 }
360
take_dentry_name_snapshot(struct name_snapshot * name,struct dentry * dentry)361 void take_dentry_name_snapshot(struct name_snapshot *name, struct dentry *dentry)
362 {
363 unsigned seq;
364 const unsigned char *s;
365
366 rcu_read_lock();
367 retry:
368 seq = read_seqcount_begin(&dentry->d_seq);
369 s = READ_ONCE(dentry->d_name.name);
370 name->name.hash_len = dentry->d_name.hash_len;
371 name->name.name = name->inline_name.string;
372 if (likely(s == dentry->d_shortname.string)) {
373 name->inline_name = dentry->d_shortname;
374 } else {
375 struct external_name *p;
376 p = container_of(s, struct external_name, name[0]);
377 // get a valid reference
378 if (unlikely(!atomic_inc_not_zero(&p->count)))
379 goto retry;
380 name->name.name = s;
381 }
382 if (read_seqcount_retry(&dentry->d_seq, seq)) {
383 release_dentry_name_snapshot(name);
384 goto retry;
385 }
386 rcu_read_unlock();
387 }
388 EXPORT_SYMBOL(take_dentry_name_snapshot);
389
release_dentry_name_snapshot(struct name_snapshot * name)390 void release_dentry_name_snapshot(struct name_snapshot *name)
391 {
392 if (unlikely(name->name.name != name->inline_name.string)) {
393 struct external_name *p;
394 p = container_of(name->name.name, struct external_name, name[0]);
395 if (unlikely(atomic_dec_and_test(&p->count)))
396 kfree_rcu(p, head);
397 }
398 }
399 EXPORT_SYMBOL(release_dentry_name_snapshot);
400
__d_set_inode_and_type(struct dentry * dentry,struct inode * inode,unsigned type_flags)401 static inline void __d_set_inode_and_type(struct dentry *dentry,
402 struct inode *inode,
403 unsigned type_flags)
404 {
405 unsigned flags;
406
407 dentry->d_inode = inode;
408 flags = READ_ONCE(dentry->d_flags);
409 flags &= ~DCACHE_ENTRY_TYPE;
410 flags |= type_flags;
411 smp_store_release(&dentry->d_flags, flags);
412 }
413
__d_clear_type_and_inode(struct dentry * dentry)414 static inline void __d_clear_type_and_inode(struct dentry *dentry)
415 {
416 unsigned flags = READ_ONCE(dentry->d_flags);
417
418 flags &= ~DCACHE_ENTRY_TYPE;
419 WRITE_ONCE(dentry->d_flags, flags);
420 dentry->d_inode = NULL;
421 /*
422 * The negative counter only tracks dentries on the LRU. Don't inc if
423 * d_lru is on another list.
424 */
425 if ((flags & (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
426 this_cpu_inc(nr_dentry_negative);
427 }
428
dentry_free(struct dentry * dentry)429 static void dentry_free(struct dentry *dentry)
430 {
431 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
432 if (unlikely(dname_external(dentry))) {
433 struct external_name *p = external_name(dentry);
434 if (likely(atomic_dec_and_test(&p->count))) {
435 call_rcu(&dentry->d_u.d_rcu, __d_free_external);
436 return;
437 }
438 }
439 /* if dentry was never visible to RCU, immediate free is OK */
440 if (dentry->d_flags & DCACHE_NORCU)
441 __d_free(&dentry->d_u.d_rcu);
442 else
443 call_rcu(&dentry->d_u.d_rcu, __d_free);
444 }
445
446 /*
447 * Release the dentry's inode, using the filesystem
448 * d_iput() operation if defined.
449 */
dentry_unlink_inode(struct dentry * dentry)450 static void dentry_unlink_inode(struct dentry * dentry)
451 __releases(dentry->d_lock)
452 __releases(dentry->d_inode->i_lock)
453 {
454 struct inode *inode = dentry->d_inode;
455
456 raw_write_seqcount_begin(&dentry->d_seq);
457 __d_clear_type_and_inode(dentry);
458 hlist_del_init(&dentry->d_u.d_alias);
459 raw_write_seqcount_end(&dentry->d_seq);
460 spin_unlock(&dentry->d_lock);
461 spin_unlock(&inode->i_lock);
462 if (!inode->i_nlink)
463 fsnotify_inoderemove(inode);
464 if (dentry->d_op && dentry->d_op->d_iput)
465 dentry->d_op->d_iput(dentry, inode);
466 else
467 iput(inode);
468 }
469
470 /*
471 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
472 * is in use - which includes both the "real" per-superblock
473 * LRU list _and_ the DCACHE_SHRINK_LIST use.
474 *
475 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
476 * on the shrink list (ie not on the superblock LRU list).
477 *
478 * The per-cpu "nr_dentry_unused" counters are updated with
479 * the DCACHE_LRU_LIST bit.
480 *
481 * The per-cpu "nr_dentry_negative" counters are only updated
482 * when deleted from or added to the per-superblock LRU list, not
483 * from/to the shrink list. That is to avoid an unneeded dec/inc
484 * pair when moving from LRU to shrink list in select_collect().
485 *
486 * These helper functions make sure we always follow the
487 * rules. d_lock must be held by the caller.
488 */
489 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
d_lru_add(struct dentry * dentry)490 static void d_lru_add(struct dentry *dentry)
491 {
492 D_FLAG_VERIFY(dentry, 0);
493 dentry->d_flags |= DCACHE_LRU_LIST;
494 this_cpu_inc(nr_dentry_unused);
495 if (d_is_negative(dentry))
496 this_cpu_inc(nr_dentry_negative);
497 WARN_ON_ONCE(!list_lru_add_obj(
498 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
499 }
500
d_lru_del(struct dentry * dentry)501 static void d_lru_del(struct dentry *dentry)
502 {
503 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
504 dentry->d_flags &= ~DCACHE_LRU_LIST;
505 this_cpu_dec(nr_dentry_unused);
506 if (d_is_negative(dentry))
507 this_cpu_dec(nr_dentry_negative);
508 WARN_ON_ONCE(!list_lru_del_obj(
509 &dentry->d_sb->s_dentry_lru, &dentry->d_lru));
510 }
511
d_shrink_del(struct dentry * dentry)512 static void d_shrink_del(struct dentry *dentry)
513 {
514 D_FLAG_VERIFY(dentry, DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
515 list_del_init(&dentry->d_lru);
516 dentry->d_flags &= ~(DCACHE_SHRINK_LIST | DCACHE_LRU_LIST);
517 this_cpu_dec(nr_dentry_unused);
518 }
519
d_shrink_add(struct dentry * dentry,struct list_head * list)520 static void d_shrink_add(struct dentry *dentry, struct list_head *list)
521 {
522 D_FLAG_VERIFY(dentry, 0);
523 list_add(&dentry->d_lru, list);
524 dentry->d_flags |= DCACHE_SHRINK_LIST | DCACHE_LRU_LIST;
525 this_cpu_inc(nr_dentry_unused);
526 }
527
528 /*
529 * These can only be called under the global LRU lock, ie during the
530 * callback for freeing the LRU list. "isolate" removes it from the
531 * LRU lists entirely, while shrink_move moves it to the indicated
532 * private list.
533 */
d_lru_isolate(struct list_lru_one * lru,struct dentry * dentry)534 static void d_lru_isolate(struct list_lru_one *lru, struct dentry *dentry)
535 {
536 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
537 dentry->d_flags &= ~DCACHE_LRU_LIST;
538 this_cpu_dec(nr_dentry_unused);
539 if (d_is_negative(dentry))
540 this_cpu_dec(nr_dentry_negative);
541 list_lru_isolate(lru, &dentry->d_lru);
542 }
543
d_lru_shrink_move(struct list_lru_one * lru,struct dentry * dentry,struct list_head * list)544 static void d_lru_shrink_move(struct list_lru_one *lru, struct dentry *dentry,
545 struct list_head *list)
546 {
547 D_FLAG_VERIFY(dentry, DCACHE_LRU_LIST);
548 dentry->d_flags |= DCACHE_SHRINK_LIST;
549 if (d_is_negative(dentry))
550 this_cpu_dec(nr_dentry_negative);
551 list_lru_isolate_move(lru, &dentry->d_lru, list);
552 }
553
___d_drop(struct dentry * dentry)554 static void ___d_drop(struct dentry *dentry)
555 {
556 struct hlist_bl_head *b;
557 /*
558 * Hashed dentries are normally on the dentry hashtable,
559 * with the exception of those newly allocated by
560 * d_obtain_root, which are always IS_ROOT:
561 */
562 if (unlikely(IS_ROOT(dentry)))
563 b = &dentry->d_sb->s_roots;
564 else
565 b = d_hash(dentry->d_name.hash);
566
567 hlist_bl_lock(b);
568 __hlist_bl_del(&dentry->d_hash);
569 hlist_bl_unlock(b);
570 }
571
__d_drop(struct dentry * dentry)572 void __d_drop(struct dentry *dentry)
573 {
574 if (!d_unhashed(dentry)) {
575 ___d_drop(dentry);
576 dentry->d_hash.pprev = NULL;
577 write_seqcount_invalidate(&dentry->d_seq);
578 }
579 }
580 EXPORT_SYMBOL(__d_drop);
581
582 /**
583 * d_drop - drop a dentry
584 * @dentry: dentry to drop
585 *
586 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
587 * be found through a VFS lookup any more. Note that this is different from
588 * deleting the dentry - d_delete will try to mark the dentry negative if
589 * possible, giving a successful _negative_ lookup, while d_drop will
590 * just make the cache lookup fail.
591 *
592 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
593 * reason (NFS timeouts or autofs deletes).
594 *
595 * __d_drop requires dentry->d_lock
596 *
597 * ___d_drop doesn't mark dentry as "unhashed"
598 * (dentry->d_hash.pprev will be LIST_POISON2, not NULL).
599 */
d_drop(struct dentry * dentry)600 void d_drop(struct dentry *dentry)
601 {
602 spin_lock(&dentry->d_lock);
603 __d_drop(dentry);
604 spin_unlock(&dentry->d_lock);
605 }
606 EXPORT_SYMBOL(d_drop);
607
dentry_unlist(struct dentry * dentry)608 static inline void dentry_unlist(struct dentry *dentry)
609 {
610 struct dentry *next;
611 /*
612 * Inform d_walk() and shrink_dentry_list() that we are no longer
613 * attached to the dentry tree
614 */
615 dentry->d_flags |= DCACHE_DENTRY_KILLED;
616 if (unlikely(hlist_unhashed(&dentry->d_sib)))
617 return;
618 __hlist_del(&dentry->d_sib);
619 /*
620 * Cursors can move around the list of children. While we'd been
621 * a normal list member, it didn't matter - ->d_sib.next would've
622 * been updated. However, from now on it won't be and for the
623 * things like d_walk() it might end up with a nasty surprise.
624 * Normally d_walk() doesn't care about cursors moving around -
625 * ->d_lock on parent prevents that and since a cursor has no children
626 * of its own, we get through it without ever unlocking the parent.
627 * There is one exception, though - if we ascend from a child that
628 * gets killed as soon as we unlock it, the next sibling is found
629 * using the value left in its ->d_sib.next. And if _that_
630 * pointed to a cursor, and cursor got moved (e.g. by lseek())
631 * before d_walk() regains parent->d_lock, we'll end up skipping
632 * everything the cursor had been moved past.
633 *
634 * Solution: make sure that the pointer left behind in ->d_sib.next
635 * points to something that won't be moving around. I.e. skip the
636 * cursors.
637 */
638 while (dentry->d_sib.next) {
639 next = hlist_entry(dentry->d_sib.next, struct dentry, d_sib);
640 if (likely(!(next->d_flags & DCACHE_DENTRY_CURSOR)))
641 break;
642 dentry->d_sib.next = next->d_sib.next;
643 }
644 }
645
__dentry_kill(struct dentry * dentry)646 static struct dentry *__dentry_kill(struct dentry *dentry)
647 {
648 struct dentry *parent = NULL;
649 bool can_free = true;
650
651 /*
652 * The dentry is now unrecoverably dead to the world.
653 */
654 lockref_mark_dead(&dentry->d_lockref);
655
656 /*
657 * inform the fs via d_prune that this dentry is about to be
658 * unhashed and destroyed.
659 */
660 if (dentry->d_flags & DCACHE_OP_PRUNE)
661 dentry->d_op->d_prune(dentry);
662
663 if (dentry->d_flags & DCACHE_LRU_LIST) {
664 if (!(dentry->d_flags & DCACHE_SHRINK_LIST))
665 d_lru_del(dentry);
666 }
667 /* if it was on the hash then remove it */
668 __d_drop(dentry);
669 if (dentry->d_inode)
670 dentry_unlink_inode(dentry);
671 else
672 spin_unlock(&dentry->d_lock);
673 this_cpu_dec(nr_dentry);
674 if (dentry->d_op && dentry->d_op->d_release)
675 dentry->d_op->d_release(dentry);
676
677 cond_resched();
678 /* now that it's negative, ->d_parent is stable */
679 if (!IS_ROOT(dentry)) {
680 parent = dentry->d_parent;
681 spin_lock(&parent->d_lock);
682 }
683 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
684 dentry_unlist(dentry);
685 if (dentry->d_flags & DCACHE_SHRINK_LIST)
686 can_free = false;
687 spin_unlock(&dentry->d_lock);
688 if (likely(can_free))
689 dentry_free(dentry);
690 if (parent && --parent->d_lockref.count) {
691 spin_unlock(&parent->d_lock);
692 return NULL;
693 }
694 return parent;
695 }
696
697 /*
698 * Lock a dentry for feeding it to __dentry_kill().
699 * Called under rcu_read_lock() and dentry->d_lock; the former
700 * guarantees that nothing we access will be freed under us.
701 * Note that dentry is *not* protected from concurrent dentry_kill(),
702 * d_delete(), etc.
703 *
704 * Return false if dentry is busy. Otherwise, return true and have
705 * that dentry's inode locked.
706 */
707
lock_for_kill(struct dentry * dentry)708 static bool lock_for_kill(struct dentry *dentry)
709 {
710 struct inode *inode = dentry->d_inode;
711
712 if (unlikely(dentry->d_lockref.count))
713 return false;
714
715 if (!inode || likely(spin_trylock(&inode->i_lock)))
716 return true;
717
718 do {
719 spin_unlock(&dentry->d_lock);
720 spin_lock(&inode->i_lock);
721 spin_lock(&dentry->d_lock);
722 if (likely(inode == dentry->d_inode))
723 break;
724 spin_unlock(&inode->i_lock);
725 inode = dentry->d_inode;
726 } while (inode);
727 if (likely(!dentry->d_lockref.count))
728 return true;
729 if (inode)
730 spin_unlock(&inode->i_lock);
731 return false;
732 }
733
734 /*
735 * Decide if dentry is worth retaining. Usually this is called with dentry
736 * locked; if not locked, we are more limited and might not be able to tell
737 * without a lock. False in this case means "punt to locked path and recheck".
738 *
739 * In case we aren't locked, these predicates are not "stable". However, it is
740 * sufficient that at some point after we dropped the reference the dentry was
741 * hashed and the flags had the proper value. Other dentry users may have
742 * re-gotten a reference to the dentry and change that, but our work is done -
743 * we can leave the dentry around with a zero refcount.
744 */
retain_dentry(struct dentry * dentry,bool locked)745 static inline bool retain_dentry(struct dentry *dentry, bool locked)
746 {
747 unsigned int d_flags;
748
749 smp_rmb();
750 d_flags = READ_ONCE(dentry->d_flags);
751
752 // Unreachable? Nobody would be able to look it up, no point retaining
753 if (unlikely(d_unhashed(dentry)))
754 return false;
755
756 // Same if it's disconnected
757 if (unlikely(d_flags & DCACHE_DISCONNECTED))
758 return false;
759
760 // ->d_delete() might tell us not to bother, but that requires
761 // ->d_lock; can't decide without it
762 if (unlikely(d_flags & DCACHE_OP_DELETE)) {
763 if (!locked || dentry->d_op->d_delete(dentry))
764 return false;
765 }
766
767 // Explicitly told not to bother
768 if (unlikely(d_flags & DCACHE_DONTCACHE))
769 return false;
770
771 // At this point it looks like we ought to keep it. We also might
772 // need to do something - put it on LRU if it wasn't there already
773 // and mark it referenced if it was on LRU, but not marked yet.
774 // Unfortunately, both actions require ->d_lock, so in lockless
775 // case we'd have to punt rather than doing those.
776 if (unlikely(!(d_flags & DCACHE_LRU_LIST))) {
777 if (!locked)
778 return false;
779 d_lru_add(dentry);
780 } else if (unlikely(!(d_flags & DCACHE_REFERENCED))) {
781 if (!locked)
782 return false;
783 dentry->d_flags |= DCACHE_REFERENCED;
784 }
785 return true;
786 }
787
d_mark_dontcache(struct inode * inode)788 void d_mark_dontcache(struct inode *inode)
789 {
790 struct dentry *de;
791
792 spin_lock(&inode->i_lock);
793 hlist_for_each_entry(de, &inode->i_dentry, d_u.d_alias) {
794 spin_lock(&de->d_lock);
795 de->d_flags |= DCACHE_DONTCACHE;
796 spin_unlock(&de->d_lock);
797 }
798 inode_state_set(inode, I_DONTCACHE);
799 spin_unlock(&inode->i_lock);
800 }
801 EXPORT_SYMBOL(d_mark_dontcache);
802
803 /*
804 * Try to do a lockless dput(), and return whether that was successful.
805 *
806 * If unsuccessful, we return false, having already taken the dentry lock.
807 * In that case refcount is guaranteed to be zero and we have already
808 * decided that it's not worth keeping around.
809 *
810 * The caller needs to hold the RCU read lock, so that the dentry is
811 * guaranteed to stay around even if the refcount goes down to zero!
812 */
fast_dput(struct dentry * dentry)813 static inline bool fast_dput(struct dentry *dentry)
814 {
815 int ret;
816
817 /*
818 * try to decrement the lockref optimistically.
819 */
820 ret = lockref_put_return(&dentry->d_lockref);
821
822 /*
823 * If the lockref_put_return() failed due to the lock being held
824 * by somebody else, the fast path has failed. We will need to
825 * get the lock, and then check the count again.
826 */
827 if (unlikely(ret < 0)) {
828 spin_lock(&dentry->d_lock);
829 if (WARN_ON_ONCE(dentry->d_lockref.count <= 0)) {
830 spin_unlock(&dentry->d_lock);
831 return true;
832 }
833 dentry->d_lockref.count--;
834 goto locked;
835 }
836
837 /*
838 * If we weren't the last ref, we're done.
839 */
840 if (ret)
841 return true;
842
843 /*
844 * Can we decide that decrement of refcount is all we needed without
845 * taking the lock? There's a very common case when it's all we need -
846 * dentry looks like it ought to be retained and there's nothing else
847 * to do.
848 */
849 if (retain_dentry(dentry, false))
850 return true;
851
852 /*
853 * Either not worth retaining or we can't tell without the lock.
854 * Get the lock, then. We've already decremented the refcount to 0,
855 * but we'll need to re-check the situation after getting the lock.
856 */
857 spin_lock(&dentry->d_lock);
858
859 /*
860 * Did somebody else grab a reference to it in the meantime, and
861 * we're no longer the last user after all? Alternatively, somebody
862 * else could have killed it and marked it dead. Either way, we
863 * don't need to do anything else.
864 */
865 locked:
866 if (dentry->d_lockref.count || retain_dentry(dentry, true)) {
867 spin_unlock(&dentry->d_lock);
868 return true;
869 }
870 return false;
871 }
872
finish_dput(struct dentry * dentry)873 static void finish_dput(struct dentry *dentry)
874 __releases(dentry->d_lock)
875 __releases(RCU)
876 {
877 while (lock_for_kill(dentry)) {
878 rcu_read_unlock();
879 dentry = __dentry_kill(dentry);
880 if (!dentry)
881 return;
882 if (retain_dentry(dentry, true)) {
883 spin_unlock(&dentry->d_lock);
884 return;
885 }
886 rcu_read_lock();
887 }
888 rcu_read_unlock();
889 spin_unlock(&dentry->d_lock);
890 }
891
892 /*
893 * This is dput
894 *
895 * This is complicated by the fact that we do not want to put
896 * dentries that are no longer on any hash chain on the unused
897 * list: we'd much rather just get rid of them immediately.
898 *
899 * However, that implies that we have to traverse the dentry
900 * tree upwards to the parents which might _also_ now be
901 * scheduled for deletion (it may have been only waiting for
902 * its last child to go away).
903 *
904 * This tail recursion is done by hand as we don't want to depend
905 * on the compiler to always get this right (gcc generally doesn't).
906 * Real recursion would eat up our stack space.
907 */
908
909 /*
910 * dput - release a dentry
911 * @dentry: dentry to release
912 *
913 * Release a dentry. This will drop the usage count and if appropriate
914 * call the dentry unlink method as well as removing it from the queues and
915 * releasing its resources. If the parent dentries were scheduled for release
916 * they too may now get deleted.
917 */
dput(struct dentry * dentry)918 void dput(struct dentry *dentry)
919 {
920 if (!dentry)
921 return;
922 might_sleep();
923 rcu_read_lock();
924 if (likely(fast_dput(dentry))) {
925 rcu_read_unlock();
926 return;
927 }
928 finish_dput(dentry);
929 }
930 EXPORT_SYMBOL(dput);
931
d_make_discardable(struct dentry * dentry)932 void d_make_discardable(struct dentry *dentry)
933 {
934 spin_lock(&dentry->d_lock);
935 WARN_ON(!(dentry->d_flags & DCACHE_PERSISTENT));
936 dentry->d_flags &= ~DCACHE_PERSISTENT;
937 dentry->d_lockref.count--;
938 rcu_read_lock();
939 finish_dput(dentry);
940 }
941 EXPORT_SYMBOL(d_make_discardable);
942
to_shrink_list(struct dentry * dentry,struct list_head * list)943 static void to_shrink_list(struct dentry *dentry, struct list_head *list)
944 __must_hold(&dentry->d_lock)
945 {
946 if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
947 if (dentry->d_flags & DCACHE_LRU_LIST)
948 d_lru_del(dentry);
949 d_shrink_add(dentry, list);
950 }
951 }
952
dput_to_list(struct dentry * dentry,struct list_head * list)953 void dput_to_list(struct dentry *dentry, struct list_head *list)
954 {
955 rcu_read_lock();
956 if (likely(fast_dput(dentry))) {
957 rcu_read_unlock();
958 return;
959 }
960 rcu_read_unlock();
961 to_shrink_list(dentry, list);
962 spin_unlock(&dentry->d_lock);
963 }
964
dget_parent(struct dentry * dentry)965 struct dentry *dget_parent(struct dentry *dentry)
966 {
967 int gotref;
968 struct dentry *ret;
969 unsigned seq;
970
971 /*
972 * Do optimistic parent lookup without any
973 * locking.
974 */
975 rcu_read_lock();
976 seq = raw_seqcount_begin(&dentry->d_seq);
977 ret = READ_ONCE(dentry->d_parent);
978 gotref = lockref_get_not_zero(&ret->d_lockref);
979 rcu_read_unlock();
980 if (likely(gotref)) {
981 if (!read_seqcount_retry(&dentry->d_seq, seq))
982 return ret;
983 dput(ret);
984 }
985
986 repeat:
987 /*
988 * Don't need rcu_dereference because we re-check it was correct under
989 * the lock.
990 */
991 rcu_read_lock();
992 ret = dentry->d_parent;
993 spin_lock(&ret->d_lock);
994 if (unlikely(ret != dentry->d_parent)) {
995 spin_unlock(&ret->d_lock);
996 rcu_read_unlock();
997 goto repeat;
998 }
999 rcu_read_unlock();
1000 BUG_ON(!ret->d_lockref.count);
1001 ret->d_lockref.count++;
1002 spin_unlock(&ret->d_lock);
1003 return ret;
1004 }
1005 EXPORT_SYMBOL(dget_parent);
1006
__d_find_any_alias(struct inode * inode)1007 static struct dentry * __d_find_any_alias(struct inode *inode)
1008 {
1009 struct dentry *alias;
1010
1011 if (hlist_empty(&inode->i_dentry))
1012 return NULL;
1013 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_u.d_alias);
1014 lockref_get(&alias->d_lockref);
1015 return alias;
1016 }
1017
1018 /**
1019 * d_find_any_alias - find any alias for a given inode
1020 * @inode: inode to find an alias for
1021 *
1022 * If any aliases exist for the given inode, take and return a
1023 * reference for one of them. If no aliases exist, return %NULL.
1024 */
d_find_any_alias(struct inode * inode)1025 struct dentry *d_find_any_alias(struct inode *inode)
1026 {
1027 struct dentry *de;
1028
1029 spin_lock(&inode->i_lock);
1030 de = __d_find_any_alias(inode);
1031 spin_unlock(&inode->i_lock);
1032 return de;
1033 }
1034 EXPORT_SYMBOL(d_find_any_alias);
1035
__d_find_alias(struct inode * inode)1036 static struct dentry *__d_find_alias(struct inode *inode)
1037 {
1038 struct dentry *alias;
1039
1040 if (S_ISDIR(inode->i_mode))
1041 return __d_find_any_alias(inode);
1042
1043 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1044 spin_lock(&alias->d_lock);
1045 if (!d_unhashed(alias)) {
1046 dget_dlock(alias);
1047 spin_unlock(&alias->d_lock);
1048 return alias;
1049 }
1050 spin_unlock(&alias->d_lock);
1051 }
1052 return NULL;
1053 }
1054
1055 /**
1056 * d_find_alias - grab a hashed alias of inode
1057 * @inode: inode in question
1058 *
1059 * If inode has a hashed alias, or is a directory and has any alias,
1060 * acquire the reference to alias and return it. Otherwise return NULL.
1061 * Notice that if inode is a directory there can be only one alias and
1062 * it can be unhashed only if it has no children, or if it is the root
1063 * of a filesystem, or if the directory was renamed and d_revalidate
1064 * was the first vfs operation to notice.
1065 *
1066 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1067 * any other hashed alias over that one.
1068 */
d_find_alias(struct inode * inode)1069 struct dentry *d_find_alias(struct inode *inode)
1070 {
1071 struct dentry *de = NULL;
1072
1073 if (!hlist_empty(&inode->i_dentry)) {
1074 spin_lock(&inode->i_lock);
1075 de = __d_find_alias(inode);
1076 spin_unlock(&inode->i_lock);
1077 }
1078 return de;
1079 }
1080 EXPORT_SYMBOL(d_find_alias);
1081
1082 /*
1083 * Caller MUST be holding rcu_read_lock() and be guaranteed
1084 * that inode won't get freed until rcu_read_unlock().
1085 */
d_find_alias_rcu(struct inode * inode)1086 struct dentry *d_find_alias_rcu(struct inode *inode)
1087 {
1088 struct hlist_head *l = &inode->i_dentry;
1089 struct dentry *de = NULL;
1090
1091 spin_lock(&inode->i_lock);
1092 // ->i_dentry and ->i_rcu are colocated, but the latter won't be
1093 // used without having I_FREEING set, which means no aliases left
1094 if (likely(!(inode_state_read(inode) & I_FREEING) && !hlist_empty(l))) {
1095 if (S_ISDIR(inode->i_mode)) {
1096 de = hlist_entry(l->first, struct dentry, d_u.d_alias);
1097 } else {
1098 hlist_for_each_entry(de, l, d_u.d_alias)
1099 if (!d_unhashed(de))
1100 break;
1101 }
1102 }
1103 spin_unlock(&inode->i_lock);
1104 return de;
1105 }
1106
d_dispose_if_unused(struct dentry * dentry,struct list_head * dispose)1107 void d_dispose_if_unused(struct dentry *dentry, struct list_head *dispose)
1108 {
1109 spin_lock(&dentry->d_lock);
1110 if (!dentry->d_lockref.count)
1111 to_shrink_list(dentry, dispose);
1112 spin_unlock(&dentry->d_lock);
1113 }
1114 EXPORT_SYMBOL(d_dispose_if_unused);
1115
1116 /*
1117 * Try to kill dentries associated with this inode.
1118 * WARNING: you must own a reference to inode.
1119 */
d_prune_aliases(struct inode * inode)1120 void d_prune_aliases(struct inode *inode)
1121 {
1122 LIST_HEAD(dispose);
1123 struct dentry *dentry;
1124
1125 spin_lock(&inode->i_lock);
1126 hlist_for_each_entry(dentry, &inode->i_dentry, d_u.d_alias)
1127 d_dispose_if_unused(dentry, &dispose);
1128 spin_unlock(&inode->i_lock);
1129 shrink_dentry_list(&dispose);
1130 }
1131 EXPORT_SYMBOL(d_prune_aliases);
1132
shrink_kill(struct dentry * victim)1133 static inline void shrink_kill(struct dentry *victim)
1134 {
1135 do {
1136 rcu_read_unlock();
1137 victim = __dentry_kill(victim);
1138 rcu_read_lock();
1139 } while (victim && lock_for_kill(victim));
1140 rcu_read_unlock();
1141 if (victim)
1142 spin_unlock(&victim->d_lock);
1143 }
1144
shrink_dentry_list(struct list_head * list)1145 void shrink_dentry_list(struct list_head *list)
1146 {
1147 while (!list_empty(list)) {
1148 struct dentry *dentry;
1149
1150 dentry = list_entry(list->prev, struct dentry, d_lru);
1151 spin_lock(&dentry->d_lock);
1152 rcu_read_lock();
1153 if (!lock_for_kill(dentry)) {
1154 bool can_free;
1155 rcu_read_unlock();
1156 d_shrink_del(dentry);
1157 can_free = dentry->d_flags & DCACHE_DENTRY_KILLED;
1158 spin_unlock(&dentry->d_lock);
1159 if (can_free)
1160 dentry_free(dentry);
1161 continue;
1162 }
1163 d_shrink_del(dentry);
1164 shrink_kill(dentry);
1165 }
1166 }
1167 EXPORT_SYMBOL(shrink_dentry_list);
1168
dentry_lru_isolate(struct list_head * item,struct list_lru_one * lru,void * arg)1169 static enum lru_status dentry_lru_isolate(struct list_head *item,
1170 struct list_lru_one *lru, void *arg)
1171 {
1172 struct list_head *freeable = arg;
1173 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1174
1175
1176 /*
1177 * we are inverting the lru lock/dentry->d_lock here,
1178 * so use a trylock. If we fail to get the lock, just skip
1179 * it
1180 */
1181 if (!spin_trylock(&dentry->d_lock))
1182 return LRU_SKIP;
1183
1184 /*
1185 * Referenced dentries are still in use. If they have active
1186 * counts, just remove them from the LRU. Otherwise give them
1187 * another pass through the LRU.
1188 */
1189 if (dentry->d_lockref.count) {
1190 d_lru_isolate(lru, dentry);
1191 spin_unlock(&dentry->d_lock);
1192 return LRU_REMOVED;
1193 }
1194
1195 if (dentry->d_flags & DCACHE_REFERENCED) {
1196 dentry->d_flags &= ~DCACHE_REFERENCED;
1197 spin_unlock(&dentry->d_lock);
1198
1199 /*
1200 * The list move itself will be made by the common LRU code. At
1201 * this point, we've dropped the dentry->d_lock but keep the
1202 * lru lock. This is safe to do, since every list movement is
1203 * protected by the lru lock even if both locks are held.
1204 *
1205 * This is guaranteed by the fact that all LRU management
1206 * functions are intermediated by the LRU API calls like
1207 * list_lru_add_obj and list_lru_del_obj. List movement in this file
1208 * only ever occur through this functions or through callbacks
1209 * like this one, that are called from the LRU API.
1210 *
1211 * The only exceptions to this are functions like
1212 * shrink_dentry_list, and code that first checks for the
1213 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1214 * operating only with stack provided lists after they are
1215 * properly isolated from the main list. It is thus, always a
1216 * local access.
1217 */
1218 return LRU_ROTATE;
1219 }
1220
1221 d_lru_shrink_move(lru, dentry, freeable);
1222 spin_unlock(&dentry->d_lock);
1223
1224 return LRU_REMOVED;
1225 }
1226
1227 /**
1228 * prune_dcache_sb - shrink the dcache
1229 * @sb: superblock
1230 * @sc: shrink control, passed to list_lru_shrink_walk()
1231 *
1232 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1233 * is done when we need more memory and called from the superblock shrinker
1234 * function.
1235 *
1236 * This function may fail to free any resources if all the dentries are in
1237 * use.
1238 */
prune_dcache_sb(struct super_block * sb,struct shrink_control * sc)1239 long prune_dcache_sb(struct super_block *sb, struct shrink_control *sc)
1240 {
1241 LIST_HEAD(dispose);
1242 long freed;
1243
1244 freed = list_lru_shrink_walk(&sb->s_dentry_lru, sc,
1245 dentry_lru_isolate, &dispose);
1246 shrink_dentry_list(&dispose);
1247 return freed;
1248 }
1249
dentry_lru_isolate_shrink(struct list_head * item,struct list_lru_one * lru,void * arg)1250 static enum lru_status dentry_lru_isolate_shrink(struct list_head *item,
1251 struct list_lru_one *lru, void *arg)
1252 {
1253 struct list_head *freeable = arg;
1254 struct dentry *dentry = container_of(item, struct dentry, d_lru);
1255
1256 /*
1257 * we are inverting the lru lock/dentry->d_lock here,
1258 * so use a trylock. If we fail to get the lock, just skip
1259 * it
1260 */
1261 if (!spin_trylock(&dentry->d_lock))
1262 return LRU_SKIP;
1263
1264 d_lru_shrink_move(lru, dentry, freeable);
1265 spin_unlock(&dentry->d_lock);
1266
1267 return LRU_REMOVED;
1268 }
1269
1270
1271 /**
1272 * shrink_dcache_sb - shrink dcache for a superblock
1273 * @sb: superblock
1274 *
1275 * Shrink the dcache for the specified super block. This is used to free
1276 * the dcache before unmounting a file system.
1277 */
shrink_dcache_sb(struct super_block * sb)1278 void shrink_dcache_sb(struct super_block *sb)
1279 {
1280 do {
1281 LIST_HEAD(dispose);
1282
1283 list_lru_walk(&sb->s_dentry_lru,
1284 dentry_lru_isolate_shrink, &dispose, 1024);
1285 shrink_dentry_list(&dispose);
1286 } while (list_lru_count(&sb->s_dentry_lru) > 0);
1287 }
1288 EXPORT_SYMBOL(shrink_dcache_sb);
1289
1290 /**
1291 * enum d_walk_ret - action to talke during tree walk
1292 * @D_WALK_CONTINUE: contrinue walk
1293 * @D_WALK_QUIT: quit walk
1294 * @D_WALK_NORETRY: quit when retry is needed
1295 * @D_WALK_SKIP: skip this dentry and its children
1296 */
1297 enum d_walk_ret {
1298 D_WALK_CONTINUE,
1299 D_WALK_QUIT,
1300 D_WALK_NORETRY,
1301 D_WALK_SKIP,
1302 };
1303
1304 /**
1305 * d_walk - walk the dentry tree
1306 * @parent: start of walk
1307 * @data: data passed to @enter() and @finish()
1308 * @enter: callback when first entering the dentry
1309 *
1310 * The @enter() callbacks are called with d_lock held.
1311 */
d_walk(struct dentry * parent,void * data,enum d_walk_ret (* enter)(void *,struct dentry *))1312 static void d_walk(struct dentry *parent, void *data,
1313 enum d_walk_ret (*enter)(void *, struct dentry *))
1314 {
1315 struct dentry *this_parent, *dentry;
1316 unsigned seq = 0;
1317 enum d_walk_ret ret;
1318 bool retry = true;
1319
1320 again:
1321 read_seqbegin_or_lock(&rename_lock, &seq);
1322 this_parent = parent;
1323 spin_lock(&this_parent->d_lock);
1324
1325 ret = enter(data, this_parent);
1326 switch (ret) {
1327 case D_WALK_CONTINUE:
1328 break;
1329 case D_WALK_QUIT:
1330 case D_WALK_SKIP:
1331 goto out_unlock;
1332 case D_WALK_NORETRY:
1333 retry = false;
1334 break;
1335 }
1336 repeat:
1337 dentry = d_first_child(this_parent);
1338 resume:
1339 hlist_for_each_entry_from(dentry, d_sib) {
1340 if (unlikely(dentry->d_flags & DCACHE_DENTRY_CURSOR))
1341 continue;
1342
1343 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1344
1345 ret = enter(data, dentry);
1346 switch (ret) {
1347 case D_WALK_CONTINUE:
1348 break;
1349 case D_WALK_QUIT:
1350 spin_unlock(&dentry->d_lock);
1351 goto out_unlock;
1352 case D_WALK_NORETRY:
1353 retry = false;
1354 break;
1355 case D_WALK_SKIP:
1356 spin_unlock(&dentry->d_lock);
1357 continue;
1358 }
1359
1360 if (!hlist_empty(&dentry->d_children)) {
1361 spin_unlock(&this_parent->d_lock);
1362 spin_release(&dentry->d_lock.dep_map, _RET_IP_);
1363 this_parent = dentry;
1364 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1365 goto repeat;
1366 }
1367 spin_unlock(&dentry->d_lock);
1368 }
1369 /*
1370 * All done at this level ... ascend and resume the search.
1371 */
1372 rcu_read_lock();
1373 ascend:
1374 if (this_parent != parent) {
1375 dentry = this_parent;
1376 this_parent = dentry->d_parent;
1377
1378 spin_unlock(&dentry->d_lock);
1379 spin_lock(&this_parent->d_lock);
1380
1381 /* might go back up the wrong parent if we have had a rename. */
1382 if (need_seqretry(&rename_lock, seq))
1383 goto rename_retry;
1384 /* go into the first sibling still alive */
1385 hlist_for_each_entry_continue(dentry, d_sib) {
1386 if (likely(!(dentry->d_flags & DCACHE_DENTRY_KILLED))) {
1387 rcu_read_unlock();
1388 goto resume;
1389 }
1390 }
1391 goto ascend;
1392 }
1393 if (need_seqretry(&rename_lock, seq))
1394 goto rename_retry;
1395 rcu_read_unlock();
1396
1397 out_unlock:
1398 spin_unlock(&this_parent->d_lock);
1399 done_seqretry(&rename_lock, seq);
1400 return;
1401
1402 rename_retry:
1403 spin_unlock(&this_parent->d_lock);
1404 rcu_read_unlock();
1405 BUG_ON(seq & 1);
1406 if (!retry)
1407 return;
1408 seq = 1;
1409 goto again;
1410 }
1411
1412 struct check_mount {
1413 struct vfsmount *mnt;
1414 unsigned int mounted;
1415 };
1416
1417 /* locks: mount_locked_reader && dentry->d_lock */
path_check_mount(void * data,struct dentry * dentry)1418 static enum d_walk_ret path_check_mount(void *data, struct dentry *dentry)
1419 {
1420 struct check_mount *info = data;
1421 struct path path = { .mnt = info->mnt, .dentry = dentry };
1422
1423 if (likely(!d_mountpoint(dentry)))
1424 return D_WALK_CONTINUE;
1425 if (__path_is_mountpoint(&path)) {
1426 info->mounted = 1;
1427 return D_WALK_QUIT;
1428 }
1429 return D_WALK_CONTINUE;
1430 }
1431
1432 /**
1433 * path_has_submounts - check for mounts over a dentry in the
1434 * current namespace.
1435 * @parent: path to check.
1436 *
1437 * Return true if the parent or its subdirectories contain
1438 * a mount point in the current namespace.
1439 */
path_has_submounts(const struct path * parent)1440 int path_has_submounts(const struct path *parent)
1441 {
1442 struct check_mount data = { .mnt = parent->mnt, .mounted = 0 };
1443
1444 guard(mount_locked_reader)();
1445 d_walk(parent->dentry, &data, path_check_mount);
1446
1447 return data.mounted;
1448 }
1449 EXPORT_SYMBOL(path_has_submounts);
1450
1451 /*
1452 * Called by mount code to set a mountpoint and check if the mountpoint is
1453 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1454 * subtree can become unreachable).
1455 *
1456 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1457 * this reason take rename_lock and d_lock on dentry and ancestors.
1458 */
d_set_mounted(struct dentry * dentry)1459 int d_set_mounted(struct dentry *dentry)
1460 {
1461 struct dentry *p;
1462 int ret = -ENOENT;
1463 read_seqlock_excl(&rename_lock);
1464 for (p = dentry->d_parent; !IS_ROOT(p); p = p->d_parent) {
1465 /* Need exclusion wrt. d_invalidate() */
1466 spin_lock(&p->d_lock);
1467 if (unlikely(d_unhashed(p))) {
1468 spin_unlock(&p->d_lock);
1469 goto out;
1470 }
1471 spin_unlock(&p->d_lock);
1472 }
1473 spin_lock(&dentry->d_lock);
1474 if (!d_unlinked(dentry)) {
1475 ret = -EBUSY;
1476 if (!d_mountpoint(dentry)) {
1477 dentry->d_flags |= DCACHE_MOUNTED;
1478 ret = 0;
1479 }
1480 }
1481 spin_unlock(&dentry->d_lock);
1482 out:
1483 read_sequnlock_excl(&rename_lock);
1484 return ret;
1485 }
1486
1487 /*
1488 * Search the dentry child list of the specified parent,
1489 * and move any unused dentries to the end of the unused
1490 * list for prune_dcache(). We descend to the next level
1491 * whenever the d_children list is non-empty and continue
1492 * searching.
1493 *
1494 * It returns zero iff there are no unused children,
1495 * otherwise it returns the number of children moved to
1496 * the end of the unused list. This may not be the total
1497 * number of unused children, because select_parent can
1498 * drop the lock and return early due to latency
1499 * constraints.
1500 */
1501
1502 struct select_data {
1503 struct dentry *start;
1504 union {
1505 long found;
1506 struct dentry *victim;
1507 };
1508 struct list_head dispose;
1509 };
1510
select_collect(void * _data,struct dentry * dentry)1511 static enum d_walk_ret select_collect(void *_data, struct dentry *dentry)
1512 {
1513 struct select_data *data = _data;
1514 enum d_walk_ret ret = D_WALK_CONTINUE;
1515
1516 if (data->start == dentry)
1517 goto out;
1518
1519 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1520 data->found++;
1521 } else if (!dentry->d_lockref.count) {
1522 to_shrink_list(dentry, &data->dispose);
1523 data->found++;
1524 } else if (dentry->d_lockref.count < 0) {
1525 data->found++;
1526 }
1527 /*
1528 * We can return to the caller if we have found some (this
1529 * ensures forward progress). We'll be coming back to find
1530 * the rest.
1531 */
1532 if (!list_empty(&data->dispose))
1533 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1534 out:
1535 return ret;
1536 }
1537
select_collect_umount(void * _data,struct dentry * dentry)1538 static enum d_walk_ret select_collect_umount(void *_data, struct dentry *dentry)
1539 {
1540 if (dentry->d_flags & DCACHE_PERSISTENT) {
1541 dentry->d_flags &= ~DCACHE_PERSISTENT;
1542 dentry->d_lockref.count--;
1543 }
1544 return select_collect(_data, dentry);
1545 }
1546
select_collect2(void * _data,struct dentry * dentry)1547 static enum d_walk_ret select_collect2(void *_data, struct dentry *dentry)
1548 {
1549 struct select_data *data = _data;
1550 enum d_walk_ret ret = D_WALK_CONTINUE;
1551
1552 if (data->start == dentry)
1553 goto out;
1554
1555 if (!dentry->d_lockref.count) {
1556 if (dentry->d_flags & DCACHE_SHRINK_LIST) {
1557 rcu_read_lock();
1558 data->victim = dentry;
1559 return D_WALK_QUIT;
1560 }
1561 to_shrink_list(dentry, &data->dispose);
1562 }
1563 /*
1564 * We can return to the caller if we have found some (this
1565 * ensures forward progress). We'll be coming back to find
1566 * the rest.
1567 */
1568 if (!list_empty(&data->dispose))
1569 ret = need_resched() ? D_WALK_QUIT : D_WALK_NORETRY;
1570 out:
1571 return ret;
1572 }
1573
1574 /**
1575 * shrink_dcache_tree - prune dcache
1576 * @parent: parent of entries to prune
1577 * @for_umount: true if we want to unpin the persistent ones
1578 *
1579 * Prune the dcache to remove unused children of the parent dentry.
1580 */
shrink_dcache_tree(struct dentry * parent,bool for_umount)1581 static void shrink_dcache_tree(struct dentry *parent, bool for_umount)
1582 {
1583 for (;;) {
1584 struct select_data data = {.start = parent};
1585
1586 INIT_LIST_HEAD(&data.dispose);
1587 d_walk(parent, &data,
1588 for_umount ? select_collect_umount : select_collect);
1589
1590 if (!list_empty(&data.dispose)) {
1591 shrink_dentry_list(&data.dispose);
1592 continue;
1593 }
1594
1595 cond_resched();
1596 if (!data.found)
1597 break;
1598 data.victim = NULL;
1599 d_walk(parent, &data, select_collect2);
1600 if (data.victim) {
1601 spin_lock(&data.victim->d_lock);
1602 if (!lock_for_kill(data.victim)) {
1603 spin_unlock(&data.victim->d_lock);
1604 rcu_read_unlock();
1605 } else {
1606 shrink_kill(data.victim);
1607 }
1608 }
1609 if (!list_empty(&data.dispose))
1610 shrink_dentry_list(&data.dispose);
1611 }
1612 }
1613
shrink_dcache_parent(struct dentry * parent)1614 void shrink_dcache_parent(struct dentry *parent)
1615 {
1616 shrink_dcache_tree(parent, false);
1617 }
1618 EXPORT_SYMBOL(shrink_dcache_parent);
1619
umount_check(void * _data,struct dentry * dentry)1620 static enum d_walk_ret umount_check(void *_data, struct dentry *dentry)
1621 {
1622 /* it has busy descendents; complain about those instead */
1623 if (!hlist_empty(&dentry->d_children))
1624 return D_WALK_CONTINUE;
1625
1626 /* root with refcount 1 is fine */
1627 if (dentry == _data && dentry->d_lockref.count == 1)
1628 return D_WALK_CONTINUE;
1629
1630 WARN(1, "BUG: Dentry %p{i=%lx,n=%pd} "
1631 " still in use (%d) [unmount of %s %s]\n",
1632 dentry,
1633 dentry->d_inode ?
1634 dentry->d_inode->i_ino : 0UL,
1635 dentry,
1636 dentry->d_lockref.count,
1637 dentry->d_sb->s_type->name,
1638 dentry->d_sb->s_id);
1639 return D_WALK_CONTINUE;
1640 }
1641
do_one_tree(struct dentry * dentry)1642 static void do_one_tree(struct dentry *dentry)
1643 {
1644 shrink_dcache_tree(dentry, true);
1645 d_walk(dentry, dentry, umount_check);
1646 d_drop(dentry);
1647 dput(dentry);
1648 }
1649
1650 /*
1651 * destroy the dentries attached to a superblock on unmounting
1652 */
shrink_dcache_for_umount(struct super_block * sb)1653 void shrink_dcache_for_umount(struct super_block *sb)
1654 {
1655 struct dentry *dentry;
1656
1657 rwsem_assert_held_write(&sb->s_umount);
1658
1659 dentry = sb->s_root;
1660 sb->s_root = NULL;
1661 do_one_tree(dentry);
1662
1663 while (!hlist_bl_empty(&sb->s_roots)) {
1664 dentry = dget(hlist_bl_entry(hlist_bl_first(&sb->s_roots), struct dentry, d_hash));
1665 do_one_tree(dentry);
1666 }
1667 }
1668
find_submount(void * _data,struct dentry * dentry)1669 static enum d_walk_ret find_submount(void *_data, struct dentry *dentry)
1670 {
1671 struct dentry **victim = _data;
1672 if (d_mountpoint(dentry)) {
1673 *victim = dget_dlock(dentry);
1674 return D_WALK_QUIT;
1675 }
1676 return D_WALK_CONTINUE;
1677 }
1678
1679 /**
1680 * d_invalidate - detach submounts, prune dcache, and drop
1681 * @dentry: dentry to invalidate (aka detach, prune and drop)
1682 */
d_invalidate(struct dentry * dentry)1683 void d_invalidate(struct dentry *dentry)
1684 {
1685 bool had_submounts = false;
1686 spin_lock(&dentry->d_lock);
1687 if (d_unhashed(dentry)) {
1688 spin_unlock(&dentry->d_lock);
1689 return;
1690 }
1691 __d_drop(dentry);
1692 spin_unlock(&dentry->d_lock);
1693
1694 /* Negative dentries can be dropped without further checks */
1695 if (!dentry->d_inode)
1696 return;
1697
1698 shrink_dcache_parent(dentry);
1699 for (;;) {
1700 struct dentry *victim = NULL;
1701 d_walk(dentry, &victim, find_submount);
1702 if (!victim) {
1703 if (had_submounts)
1704 shrink_dcache_parent(dentry);
1705 return;
1706 }
1707 had_submounts = true;
1708 detach_mounts(victim);
1709 dput(victim);
1710 }
1711 }
1712 EXPORT_SYMBOL(d_invalidate);
1713
1714 /**
1715 * __d_alloc - allocate a dcache entry
1716 * @sb: filesystem it will belong to
1717 * @name: qstr of the name
1718 *
1719 * Allocates a dentry. It returns %NULL if there is insufficient memory
1720 * available. On a success the dentry is returned. The name passed in is
1721 * copied and the copy passed in may be reused after this call.
1722 */
1723
__d_alloc(struct super_block * sb,const struct qstr * name)1724 static struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1725 {
1726 struct dentry *dentry;
1727 char *dname;
1728 int err;
1729
1730 dentry = kmem_cache_alloc_lru(dentry_cache, &sb->s_dentry_lru,
1731 GFP_KERNEL);
1732 if (!dentry)
1733 return NULL;
1734
1735 /*
1736 * We guarantee that the inline name is always NUL-terminated.
1737 * This way the memcpy() done by the name switching in rename
1738 * will still always have a NUL at the end, even if we might
1739 * be overwriting an internal NUL character
1740 */
1741 dentry->d_shortname.string[DNAME_INLINE_LEN-1] = 0;
1742 if (unlikely(!name)) {
1743 name = &slash_name;
1744 dname = dentry->d_shortname.string;
1745 } else if (name->len > DNAME_INLINE_LEN-1) {
1746 size_t size = offsetof(struct external_name, name[1]);
1747 struct external_name *p = kmalloc(size + name->len,
1748 GFP_KERNEL_ACCOUNT |
1749 __GFP_RECLAIMABLE);
1750 if (!p) {
1751 kmem_cache_free(dentry_cache, dentry);
1752 return NULL;
1753 }
1754 atomic_set(&p->count, 1);
1755 dname = p->name;
1756 } else {
1757 dname = dentry->d_shortname.string;
1758 }
1759
1760 dentry->__d_name.len = name->len;
1761 dentry->__d_name.hash = name->hash;
1762 memcpy(dname, name->name, name->len);
1763 dname[name->len] = 0;
1764
1765 /* Make sure we always see the terminating NUL character */
1766 smp_store_release(&dentry->__d_name.name, dname); /* ^^^ */
1767
1768 dentry->d_flags = 0;
1769 lockref_init(&dentry->d_lockref);
1770 seqcount_spinlock_init(&dentry->d_seq, &dentry->d_lock);
1771 dentry->d_inode = NULL;
1772 dentry->d_parent = dentry;
1773 dentry->d_sb = sb;
1774 dentry->d_op = sb->__s_d_op;
1775 dentry->d_flags = sb->s_d_flags;
1776 dentry->d_fsdata = NULL;
1777 INIT_HLIST_BL_NODE(&dentry->d_hash);
1778 INIT_LIST_HEAD(&dentry->d_lru);
1779 INIT_HLIST_HEAD(&dentry->d_children);
1780 INIT_HLIST_NODE(&dentry->d_u.d_alias);
1781 INIT_HLIST_NODE(&dentry->d_sib);
1782
1783 if (dentry->d_op && dentry->d_op->d_init) {
1784 err = dentry->d_op->d_init(dentry);
1785 if (err) {
1786 if (dname_external(dentry))
1787 kfree(external_name(dentry));
1788 kmem_cache_free(dentry_cache, dentry);
1789 return NULL;
1790 }
1791 }
1792
1793 this_cpu_inc(nr_dentry);
1794
1795 return dentry;
1796 }
1797
1798 /**
1799 * d_alloc - allocate a dcache entry
1800 * @parent: parent of entry to allocate
1801 * @name: qstr of the name
1802 *
1803 * Allocates a dentry. It returns %NULL if there is insufficient memory
1804 * available. On a success the dentry is returned. The name passed in is
1805 * copied and the copy passed in may be reused after this call.
1806 */
d_alloc(struct dentry * parent,const struct qstr * name)1807 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1808 {
1809 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1810 if (!dentry)
1811 return NULL;
1812 spin_lock(&parent->d_lock);
1813 /*
1814 * don't need child lock because it is not subject
1815 * to concurrency here
1816 */
1817 dentry->d_parent = dget_dlock(parent);
1818 hlist_add_head(&dentry->d_sib, &parent->d_children);
1819 spin_unlock(&parent->d_lock);
1820
1821 return dentry;
1822 }
1823 EXPORT_SYMBOL(d_alloc);
1824
d_alloc_anon(struct super_block * sb)1825 struct dentry *d_alloc_anon(struct super_block *sb)
1826 {
1827 return __d_alloc(sb, NULL);
1828 }
1829 EXPORT_SYMBOL(d_alloc_anon);
1830
d_alloc_cursor(struct dentry * parent)1831 struct dentry *d_alloc_cursor(struct dentry * parent)
1832 {
1833 struct dentry *dentry = d_alloc_anon(parent->d_sb);
1834 if (dentry) {
1835 dentry->d_flags |= DCACHE_DENTRY_CURSOR;
1836 dentry->d_parent = dget(parent);
1837 }
1838 return dentry;
1839 }
1840
1841 /**
1842 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1843 * @sb: the superblock
1844 * @name: qstr of the name
1845 *
1846 * For a filesystem that just pins its dentries in memory and never
1847 * performs lookups at all, return an unhashed IS_ROOT dentry.
1848 * This is used for pipes, sockets et.al. - the stuff that should
1849 * never be anyone's children or parents. Unlike all other
1850 * dentries, these will not have RCU delay between dropping the
1851 * last reference and freeing them.
1852 *
1853 * The only user is alloc_file_pseudo() and that's what should
1854 * be considered a public interface. Don't use directly.
1855 */
d_alloc_pseudo(struct super_block * sb,const struct qstr * name)1856 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1857 {
1858 static const struct dentry_operations anon_ops = {
1859 .d_dname = simple_dname
1860 };
1861 struct dentry *dentry = __d_alloc(sb, name);
1862 if (likely(dentry)) {
1863 dentry->d_flags |= DCACHE_NORCU;
1864 /* d_op_flags(&anon_ops) is 0 */
1865 if (!dentry->d_op)
1866 dentry->d_op = &anon_ops;
1867 }
1868 return dentry;
1869 }
1870
d_alloc_name(struct dentry * parent,const char * name)1871 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1872 {
1873 struct qstr q;
1874
1875 q.name = name;
1876 q.hash_len = hashlen_string(parent, name);
1877 return d_alloc(parent, &q);
1878 }
1879 EXPORT_SYMBOL(d_alloc_name);
1880
1881 #define DCACHE_OP_FLAGS \
1882 (DCACHE_OP_HASH | DCACHE_OP_COMPARE | DCACHE_OP_REVALIDATE | \
1883 DCACHE_OP_WEAK_REVALIDATE | DCACHE_OP_DELETE | DCACHE_OP_PRUNE | \
1884 DCACHE_OP_REAL)
1885
d_op_flags(const struct dentry_operations * op)1886 static unsigned int d_op_flags(const struct dentry_operations *op)
1887 {
1888 unsigned int flags = 0;
1889 if (op) {
1890 if (op->d_hash)
1891 flags |= DCACHE_OP_HASH;
1892 if (op->d_compare)
1893 flags |= DCACHE_OP_COMPARE;
1894 if (op->d_revalidate)
1895 flags |= DCACHE_OP_REVALIDATE;
1896 if (op->d_weak_revalidate)
1897 flags |= DCACHE_OP_WEAK_REVALIDATE;
1898 if (op->d_delete)
1899 flags |= DCACHE_OP_DELETE;
1900 if (op->d_prune)
1901 flags |= DCACHE_OP_PRUNE;
1902 if (op->d_real)
1903 flags |= DCACHE_OP_REAL;
1904 }
1905 return flags;
1906 }
1907
d_set_d_op(struct dentry * dentry,const struct dentry_operations * op)1908 static void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1909 {
1910 unsigned int flags = d_op_flags(op);
1911 WARN_ON_ONCE(dentry->d_op);
1912 WARN_ON_ONCE(dentry->d_flags & DCACHE_OP_FLAGS);
1913 dentry->d_op = op;
1914 if (flags)
1915 dentry->d_flags |= flags;
1916 }
1917
set_default_d_op(struct super_block * s,const struct dentry_operations * ops)1918 void set_default_d_op(struct super_block *s, const struct dentry_operations *ops)
1919 {
1920 unsigned int flags = d_op_flags(ops);
1921 s->__s_d_op = ops;
1922 s->s_d_flags = (s->s_d_flags & ~DCACHE_OP_FLAGS) | flags;
1923 }
1924 EXPORT_SYMBOL(set_default_d_op);
1925
d_flags_for_inode(struct inode * inode)1926 static unsigned d_flags_for_inode(struct inode *inode)
1927 {
1928 unsigned add_flags = DCACHE_REGULAR_TYPE;
1929
1930 if (!inode)
1931 return DCACHE_MISS_TYPE;
1932
1933 if (S_ISDIR(inode->i_mode)) {
1934 add_flags = DCACHE_DIRECTORY_TYPE;
1935 if (unlikely(!(inode->i_opflags & IOP_LOOKUP))) {
1936 if (unlikely(!inode->i_op->lookup))
1937 add_flags = DCACHE_AUTODIR_TYPE;
1938 else
1939 inode->i_opflags |= IOP_LOOKUP;
1940 }
1941 goto type_determined;
1942 }
1943
1944 if (unlikely(!(inode->i_opflags & IOP_NOFOLLOW))) {
1945 if (unlikely(inode->i_op->get_link)) {
1946 add_flags = DCACHE_SYMLINK_TYPE;
1947 goto type_determined;
1948 }
1949 inode->i_opflags |= IOP_NOFOLLOW;
1950 }
1951
1952 if (unlikely(!S_ISREG(inode->i_mode)))
1953 add_flags = DCACHE_SPECIAL_TYPE;
1954
1955 type_determined:
1956 if (unlikely(IS_AUTOMOUNT(inode)))
1957 add_flags |= DCACHE_NEED_AUTOMOUNT;
1958 return add_flags;
1959 }
1960
__d_instantiate(struct dentry * dentry,struct inode * inode)1961 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1962 {
1963 unsigned add_flags = d_flags_for_inode(inode);
1964 WARN_ON(d_in_lookup(dentry));
1965
1966 /*
1967 * The negative counter only tracks dentries on the LRU. Don't dec if
1968 * d_lru is on another list.
1969 */
1970 if ((dentry->d_flags &
1971 (DCACHE_LRU_LIST|DCACHE_SHRINK_LIST)) == DCACHE_LRU_LIST)
1972 this_cpu_dec(nr_dentry_negative);
1973 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
1974 raw_write_seqcount_begin(&dentry->d_seq);
1975 __d_set_inode_and_type(dentry, inode, add_flags);
1976 raw_write_seqcount_end(&dentry->d_seq);
1977 fsnotify_update_flags(dentry);
1978 }
1979
1980 /**
1981 * d_instantiate - fill in inode information for a dentry
1982 * @entry: dentry to complete
1983 * @inode: inode to attach to this dentry
1984 *
1985 * Fill in inode information in the entry.
1986 *
1987 * This turns negative dentries into productive full members
1988 * of society.
1989 *
1990 * NOTE! This assumes that the inode count has been incremented
1991 * (or otherwise set) by the caller to indicate that it is now
1992 * in use by the dcache.
1993 */
1994
d_instantiate(struct dentry * entry,struct inode * inode)1995 void d_instantiate(struct dentry *entry, struct inode * inode)
1996 {
1997 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
1998 if (inode) {
1999 security_d_instantiate(entry, inode);
2000 spin_lock(&inode->i_lock);
2001 spin_lock(&entry->d_lock);
2002 __d_instantiate(entry, inode);
2003 spin_unlock(&entry->d_lock);
2004 spin_unlock(&inode->i_lock);
2005 }
2006 }
2007 EXPORT_SYMBOL(d_instantiate);
2008
2009 /*
2010 * This should be equivalent to d_instantiate() + unlock_new_inode(),
2011 * with lockdep-related part of unlock_new_inode() done before
2012 * anything else. Use that instead of open-coding d_instantiate()/
2013 * unlock_new_inode() combinations.
2014 */
d_instantiate_new(struct dentry * entry,struct inode * inode)2015 void d_instantiate_new(struct dentry *entry, struct inode *inode)
2016 {
2017 BUG_ON(!hlist_unhashed(&entry->d_u.d_alias));
2018 BUG_ON(!inode);
2019 lockdep_annotate_inode_mutex_key(inode);
2020 security_d_instantiate(entry, inode);
2021 spin_lock(&inode->i_lock);
2022 spin_lock(&entry->d_lock);
2023 __d_instantiate(entry, inode);
2024 spin_unlock(&entry->d_lock);
2025 WARN_ON(!(inode_state_read(inode) & I_NEW));
2026 inode_state_clear(inode, I_NEW | I_CREATING);
2027 inode_wake_up_bit(inode, __I_NEW);
2028 spin_unlock(&inode->i_lock);
2029 }
2030 EXPORT_SYMBOL(d_instantiate_new);
2031
d_make_root(struct inode * root_inode)2032 struct dentry *d_make_root(struct inode *root_inode)
2033 {
2034 struct dentry *res = NULL;
2035
2036 if (root_inode) {
2037 res = d_alloc_anon(root_inode->i_sb);
2038 if (res)
2039 d_instantiate(res, root_inode);
2040 else
2041 iput(root_inode);
2042 }
2043 return res;
2044 }
2045 EXPORT_SYMBOL(d_make_root);
2046
__d_obtain_alias(struct inode * inode,bool disconnected)2047 static struct dentry *__d_obtain_alias(struct inode *inode, bool disconnected)
2048 {
2049 struct super_block *sb;
2050 struct dentry *new, *res;
2051
2052 if (!inode)
2053 return ERR_PTR(-ESTALE);
2054 if (IS_ERR(inode))
2055 return ERR_CAST(inode);
2056
2057 sb = inode->i_sb;
2058
2059 res = d_find_any_alias(inode); /* existing alias? */
2060 if (res)
2061 goto out;
2062
2063 new = d_alloc_anon(sb);
2064 if (!new) {
2065 res = ERR_PTR(-ENOMEM);
2066 goto out;
2067 }
2068
2069 security_d_instantiate(new, inode);
2070 spin_lock(&inode->i_lock);
2071 res = __d_find_any_alias(inode); /* recheck under lock */
2072 if (likely(!res)) { /* still no alias, attach a disconnected dentry */
2073 unsigned add_flags = d_flags_for_inode(inode);
2074
2075 if (disconnected)
2076 add_flags |= DCACHE_DISCONNECTED;
2077
2078 spin_lock(&new->d_lock);
2079 __d_set_inode_and_type(new, inode, add_flags);
2080 hlist_add_head(&new->d_u.d_alias, &inode->i_dentry);
2081 if (!disconnected) {
2082 hlist_bl_lock(&sb->s_roots);
2083 hlist_bl_add_head(&new->d_hash, &sb->s_roots);
2084 hlist_bl_unlock(&sb->s_roots);
2085 }
2086 spin_unlock(&new->d_lock);
2087 spin_unlock(&inode->i_lock);
2088 inode = NULL; /* consumed by new->d_inode */
2089 res = new;
2090 } else {
2091 spin_unlock(&inode->i_lock);
2092 dput(new);
2093 }
2094
2095 out:
2096 iput(inode);
2097 return res;
2098 }
2099
2100 /**
2101 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
2102 * @inode: inode to allocate the dentry for
2103 *
2104 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
2105 * similar open by handle operations. The returned dentry may be anonymous,
2106 * or may have a full name (if the inode was already in the cache).
2107 *
2108 * When called on a directory inode, we must ensure that the inode only ever
2109 * has one dentry. If a dentry is found, that is returned instead of
2110 * allocating a new one.
2111 *
2112 * On successful return, the reference to the inode has been transferred
2113 * to the dentry. In case of an error the reference on the inode is released.
2114 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2115 * be passed in and the error will be propagated to the return value,
2116 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2117 */
d_obtain_alias(struct inode * inode)2118 struct dentry *d_obtain_alias(struct inode *inode)
2119 {
2120 return __d_obtain_alias(inode, true);
2121 }
2122 EXPORT_SYMBOL(d_obtain_alias);
2123
2124 /**
2125 * d_obtain_root - find or allocate a dentry for a given inode
2126 * @inode: inode to allocate the dentry for
2127 *
2128 * Obtain an IS_ROOT dentry for the root of a filesystem.
2129 *
2130 * We must ensure that directory inodes only ever have one dentry. If a
2131 * dentry is found, that is returned instead of allocating a new one.
2132 *
2133 * On successful return, the reference to the inode has been transferred
2134 * to the dentry. In case of an error the reference on the inode is
2135 * released. A %NULL or IS_ERR inode may be passed in and will be the
2136 * error will be propagate to the return value, with a %NULL @inode
2137 * replaced by ERR_PTR(-ESTALE).
2138 */
d_obtain_root(struct inode * inode)2139 struct dentry *d_obtain_root(struct inode *inode)
2140 {
2141 return __d_obtain_alias(inode, false);
2142 }
2143 EXPORT_SYMBOL(d_obtain_root);
2144
2145 /**
2146 * d_add_ci - lookup or allocate new dentry with case-exact name
2147 * @dentry: the negative dentry that was passed to the parent's lookup func
2148 * @inode: the inode case-insensitive lookup has found
2149 * @name: the case-exact name to be associated with the returned dentry
2150 *
2151 * This is to avoid filling the dcache with case-insensitive names to the
2152 * same inode, only the actual correct case is stored in the dcache for
2153 * case-insensitive filesystems.
2154 *
2155 * For a case-insensitive lookup match and if the case-exact dentry
2156 * already exists in the dcache, use it and return it.
2157 *
2158 * If no entry exists with the exact case name, allocate new dentry with
2159 * the exact case, and return the spliced entry.
2160 */
d_add_ci(struct dentry * dentry,struct inode * inode,struct qstr * name)2161 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
2162 struct qstr *name)
2163 {
2164 struct dentry *found, *res;
2165
2166 /*
2167 * First check if a dentry matching the name already exists,
2168 * if not go ahead and create it now.
2169 */
2170 found = d_hash_and_lookup(dentry->d_parent, name);
2171 if (found) {
2172 iput(inode);
2173 return found;
2174 }
2175 if (d_in_lookup(dentry)) {
2176 found = d_alloc_parallel(dentry->d_parent, name,
2177 dentry->d_wait);
2178 if (IS_ERR(found) || !d_in_lookup(found)) {
2179 iput(inode);
2180 return found;
2181 }
2182 } else {
2183 found = d_alloc(dentry->d_parent, name);
2184 if (!found) {
2185 iput(inode);
2186 return ERR_PTR(-ENOMEM);
2187 }
2188 }
2189 res = d_splice_alias(inode, found);
2190 if (res) {
2191 d_lookup_done(found);
2192 dput(found);
2193 return res;
2194 }
2195 return found;
2196 }
2197 EXPORT_SYMBOL(d_add_ci);
2198
2199 /**
2200 * d_same_name - compare dentry name with case-exact name
2201 * @dentry: the negative dentry that was passed to the parent's lookup func
2202 * @parent: parent dentry
2203 * @name: the case-exact name to be associated with the returned dentry
2204 *
2205 * Return: true if names are same, or false
2206 */
d_same_name(const struct dentry * dentry,const struct dentry * parent,const struct qstr * name)2207 bool d_same_name(const struct dentry *dentry, const struct dentry *parent,
2208 const struct qstr *name)
2209 {
2210 if (likely(!(parent->d_flags & DCACHE_OP_COMPARE))) {
2211 if (dentry->d_name.len != name->len)
2212 return false;
2213 return dentry_cmp(dentry, name->name, name->len) == 0;
2214 }
2215 return parent->d_op->d_compare(dentry,
2216 dentry->d_name.len, dentry->d_name.name,
2217 name) == 0;
2218 }
2219 EXPORT_SYMBOL_GPL(d_same_name);
2220
2221 /*
2222 * This is __d_lookup_rcu() when the parent dentry has
2223 * DCACHE_OP_COMPARE, which makes things much nastier.
2224 */
__d_lookup_rcu_op_compare(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2225 static noinline struct dentry *__d_lookup_rcu_op_compare(
2226 const struct dentry *parent,
2227 const struct qstr *name,
2228 unsigned *seqp)
2229 {
2230 u64 hashlen = name->hash_len;
2231 struct hlist_bl_head *b = d_hash(hashlen);
2232 struct hlist_bl_node *node;
2233 struct dentry *dentry;
2234
2235 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2236 int tlen;
2237 const char *tname;
2238 unsigned seq;
2239
2240 seqretry:
2241 seq = raw_seqcount_begin(&dentry->d_seq);
2242 if (dentry->d_parent != parent)
2243 continue;
2244 if (d_unhashed(dentry))
2245 continue;
2246 if (dentry->d_name.hash != hashlen_hash(hashlen))
2247 continue;
2248 tlen = dentry->d_name.len;
2249 tname = dentry->d_name.name;
2250 /* we want a consistent (name,len) pair */
2251 if (read_seqcount_retry(&dentry->d_seq, seq)) {
2252 cpu_relax();
2253 goto seqretry;
2254 }
2255 if (parent->d_op->d_compare(dentry, tlen, tname, name) != 0)
2256 continue;
2257 *seqp = seq;
2258 return dentry;
2259 }
2260 return NULL;
2261 }
2262
2263 /**
2264 * __d_lookup_rcu - search for a dentry (racy, store-free)
2265 * @parent: parent dentry
2266 * @name: qstr of name we wish to find
2267 * @seqp: returns d_seq value at the point where the dentry was found
2268 * Returns: dentry, or NULL
2269 *
2270 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2271 * resolution (store-free path walking) design described in
2272 * Documentation/filesystems/path-lookup.txt.
2273 *
2274 * This is not to be used outside core vfs.
2275 *
2276 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2277 * held, and rcu_read_lock held. The returned dentry must not be stored into
2278 * without taking d_lock and checking d_seq sequence count against @seq
2279 * returned here.
2280 *
2281 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2282 * the returned dentry, so long as its parent's seqlock is checked after the
2283 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2284 * is formed, giving integrity down the path walk.
2285 *
2286 * NOTE! The caller *has* to check the resulting dentry against the sequence
2287 * number we've returned before using any of the resulting dentry state!
2288 */
__d_lookup_rcu(const struct dentry * parent,const struct qstr * name,unsigned * seqp)2289 struct dentry *__d_lookup_rcu(const struct dentry *parent,
2290 const struct qstr *name,
2291 unsigned *seqp)
2292 {
2293 u64 hashlen = name->hash_len;
2294 const unsigned char *str = name->name;
2295 struct hlist_bl_head *b = d_hash(hashlen);
2296 struct hlist_bl_node *node;
2297 struct dentry *dentry;
2298
2299 /*
2300 * Note: There is significant duplication with __d_lookup_rcu which is
2301 * required to prevent single threaded performance regressions
2302 * especially on architectures where smp_rmb (in seqcounts) are costly.
2303 * Keep the two functions in sync.
2304 */
2305
2306 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE))
2307 return __d_lookup_rcu_op_compare(parent, name, seqp);
2308
2309 /*
2310 * The hash list is protected using RCU.
2311 *
2312 * Carefully use d_seq when comparing a candidate dentry, to avoid
2313 * races with d_move().
2314 *
2315 * It is possible that concurrent renames can mess up our list
2316 * walk here and result in missing our dentry, resulting in the
2317 * false-negative result. d_lookup() protects against concurrent
2318 * renames using rename_lock seqlock.
2319 *
2320 * See Documentation/filesystems/path-lookup.txt for more details.
2321 */
2322 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2323 unsigned seq;
2324
2325 /*
2326 * The dentry sequence count protects us from concurrent
2327 * renames, and thus protects parent and name fields.
2328 *
2329 * The caller must perform a seqcount check in order
2330 * to do anything useful with the returned dentry.
2331 *
2332 * NOTE! We do a "raw" seqcount_begin here. That means that
2333 * we don't wait for the sequence count to stabilize if it
2334 * is in the middle of a sequence change. If we do the slow
2335 * dentry compare, we will do seqretries until it is stable,
2336 * and if we end up with a successful lookup, we actually
2337 * want to exit RCU lookup anyway.
2338 *
2339 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2340 * we are still guaranteed NUL-termination of ->d_name.name.
2341 */
2342 seq = raw_seqcount_begin(&dentry->d_seq);
2343 if (dentry->d_parent != parent)
2344 continue;
2345 if (dentry->d_name.hash_len != hashlen)
2346 continue;
2347 if (unlikely(dentry_cmp(dentry, str, hashlen_len(hashlen)) != 0))
2348 continue;
2349 /*
2350 * Check for the dentry being unhashed.
2351 *
2352 * As tempting as it is, we *can't* skip it because of a race window
2353 * between us finding the dentry before it gets unhashed and loading
2354 * the sequence counter after unhashing is finished.
2355 *
2356 * We can at least predict on it.
2357 */
2358 if (unlikely(d_unhashed(dentry)))
2359 continue;
2360 *seqp = seq;
2361 return dentry;
2362 }
2363 return NULL;
2364 }
2365
2366 /**
2367 * d_lookup - search for a dentry
2368 * @parent: parent dentry
2369 * @name: qstr of name we wish to find
2370 * Returns: dentry, or NULL
2371 *
2372 * d_lookup searches the children of the parent dentry for the name in
2373 * question. If the dentry is found its reference count is incremented and the
2374 * dentry is returned. The caller must use dput to free the entry when it has
2375 * finished using it. %NULL is returned if the dentry does not exist.
2376 */
d_lookup(const struct dentry * parent,const struct qstr * name)2377 struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
2378 {
2379 struct dentry *dentry;
2380 unsigned seq;
2381
2382 do {
2383 seq = read_seqbegin(&rename_lock);
2384 dentry = __d_lookup(parent, name);
2385 if (dentry)
2386 break;
2387 } while (read_seqretry(&rename_lock, seq));
2388 return dentry;
2389 }
2390 EXPORT_SYMBOL(d_lookup);
2391
2392 /**
2393 * __d_lookup - search for a dentry (racy)
2394 * @parent: parent dentry
2395 * @name: qstr of name we wish to find
2396 * Returns: dentry, or NULL
2397 *
2398 * __d_lookup is like d_lookup, however it may (rarely) return a
2399 * false-negative result due to unrelated rename activity.
2400 *
2401 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2402 * however it must be used carefully, eg. with a following d_lookup in
2403 * the case of failure.
2404 *
2405 * __d_lookup callers must be commented.
2406 */
__d_lookup(const struct dentry * parent,const struct qstr * name)2407 struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
2408 {
2409 unsigned int hash = name->hash;
2410 struct hlist_bl_head *b = d_hash(hash);
2411 struct hlist_bl_node *node;
2412 struct dentry *found = NULL;
2413 struct dentry *dentry;
2414
2415 /*
2416 * Note: There is significant duplication with __d_lookup_rcu which is
2417 * required to prevent single threaded performance regressions
2418 * especially on architectures where smp_rmb (in seqcounts) are costly.
2419 * Keep the two functions in sync.
2420 */
2421
2422 /*
2423 * The hash list is protected using RCU.
2424 *
2425 * Take d_lock when comparing a candidate dentry, to avoid races
2426 * with d_move().
2427 *
2428 * It is possible that concurrent renames can mess up our list
2429 * walk here and result in missing our dentry, resulting in the
2430 * false-negative result. d_lookup() protects against concurrent
2431 * renames using rename_lock seqlock.
2432 *
2433 * See Documentation/filesystems/path-lookup.txt for more details.
2434 */
2435 rcu_read_lock();
2436
2437 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
2438
2439 if (dentry->d_name.hash != hash)
2440 continue;
2441
2442 spin_lock(&dentry->d_lock);
2443 if (dentry->d_parent != parent)
2444 goto next;
2445 if (d_unhashed(dentry))
2446 goto next;
2447
2448 if (!d_same_name(dentry, parent, name))
2449 goto next;
2450
2451 dentry->d_lockref.count++;
2452 found = dentry;
2453 spin_unlock(&dentry->d_lock);
2454 break;
2455 next:
2456 spin_unlock(&dentry->d_lock);
2457 }
2458 rcu_read_unlock();
2459
2460 return found;
2461 }
2462
2463 /**
2464 * d_hash_and_lookup - hash the qstr then search for a dentry
2465 * @dir: Directory to search in
2466 * @name: qstr of name we wish to find
2467 *
2468 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2469 */
d_hash_and_lookup(struct dentry * dir,struct qstr * name)2470 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2471 {
2472 /*
2473 * Check for a fs-specific hash function. Note that we must
2474 * calculate the standard hash first, as the d_op->d_hash()
2475 * routine may choose to leave the hash value unchanged.
2476 */
2477 name->hash = full_name_hash(dir, name->name, name->len);
2478 if (dir->d_flags & DCACHE_OP_HASH) {
2479 int err = dir->d_op->d_hash(dir, name);
2480 if (unlikely(err < 0))
2481 return ERR_PTR(err);
2482 }
2483 return d_lookup(dir, name);
2484 }
2485
2486 /*
2487 * When a file is deleted, we have two options:
2488 * - turn this dentry into a negative dentry
2489 * - unhash this dentry and free it.
2490 *
2491 * Usually, we want to just turn this into
2492 * a negative dentry, but if anybody else is
2493 * currently using the dentry or the inode
2494 * we can't do that and we fall back on removing
2495 * it from the hash queues and waiting for
2496 * it to be deleted later when it has no users
2497 */
2498
2499 /**
2500 * d_delete - delete a dentry
2501 * @dentry: The dentry to delete
2502 *
2503 * Turn the dentry into a negative dentry if possible, otherwise
2504 * remove it from the hash queues so it can be deleted later
2505 */
2506
d_delete(struct dentry * dentry)2507 void d_delete(struct dentry * dentry)
2508 {
2509 struct inode *inode = dentry->d_inode;
2510
2511 spin_lock(&inode->i_lock);
2512 spin_lock(&dentry->d_lock);
2513 /*
2514 * Are we the only user?
2515 */
2516 if (dentry->d_lockref.count == 1) {
2517 if (dentry_negative_policy)
2518 __d_drop(dentry);
2519 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2520 dentry_unlink_inode(dentry);
2521 } else {
2522 __d_drop(dentry);
2523 spin_unlock(&dentry->d_lock);
2524 spin_unlock(&inode->i_lock);
2525 }
2526 }
2527 EXPORT_SYMBOL(d_delete);
2528
__d_rehash(struct dentry * entry)2529 static void __d_rehash(struct dentry *entry)
2530 {
2531 struct hlist_bl_head *b = d_hash(entry->d_name.hash);
2532
2533 hlist_bl_lock(b);
2534 hlist_bl_add_head_rcu(&entry->d_hash, b);
2535 hlist_bl_unlock(b);
2536 }
2537
2538 /**
2539 * d_rehash - add an entry back to the hash
2540 * @entry: dentry to add to the hash
2541 *
2542 * Adds a dentry to the hash according to its name.
2543 */
2544
d_rehash(struct dentry * entry)2545 void d_rehash(struct dentry * entry)
2546 {
2547 spin_lock(&entry->d_lock);
2548 __d_rehash(entry);
2549 spin_unlock(&entry->d_lock);
2550 }
2551 EXPORT_SYMBOL(d_rehash);
2552
start_dir_add(struct inode * dir)2553 static inline unsigned start_dir_add(struct inode *dir)
2554 {
2555 preempt_disable_nested();
2556 for (;;) {
2557 unsigned n = READ_ONCE(dir->i_dir_seq);
2558 if (!(n & 1) && try_cmpxchg(&dir->i_dir_seq, &n, n + 1))
2559 return n;
2560 cpu_relax();
2561 }
2562 }
2563
end_dir_add(struct inode * dir,unsigned int n,wait_queue_head_t * d_wait)2564 static inline void end_dir_add(struct inode *dir, unsigned int n,
2565 wait_queue_head_t *d_wait)
2566 {
2567 smp_store_release(&dir->i_dir_seq, n + 2);
2568 preempt_enable_nested();
2569 if (wq_has_sleeper(d_wait))
2570 wake_up_all(d_wait);
2571 }
2572
d_wait_lookup(struct dentry * dentry)2573 static void d_wait_lookup(struct dentry *dentry)
2574 {
2575 if (d_in_lookup(dentry)) {
2576 DECLARE_WAITQUEUE(wait, current);
2577 add_wait_queue(dentry->d_wait, &wait);
2578 do {
2579 set_current_state(TASK_UNINTERRUPTIBLE);
2580 spin_unlock(&dentry->d_lock);
2581 schedule();
2582 spin_lock(&dentry->d_lock);
2583 } while (d_in_lookup(dentry));
2584 }
2585 }
2586
d_alloc_parallel(struct dentry * parent,const struct qstr * name,wait_queue_head_t * wq)2587 struct dentry *d_alloc_parallel(struct dentry *parent,
2588 const struct qstr *name,
2589 wait_queue_head_t *wq)
2590 {
2591 unsigned int hash = name->hash;
2592 struct hlist_bl_head *b = in_lookup_hash(parent, hash);
2593 struct hlist_bl_node *node;
2594 struct dentry *new = __d_alloc(parent->d_sb, name);
2595 struct dentry *dentry;
2596 unsigned seq, r_seq, d_seq;
2597
2598 if (unlikely(!new))
2599 return ERR_PTR(-ENOMEM);
2600
2601 new->d_flags |= DCACHE_PAR_LOOKUP;
2602 spin_lock(&parent->d_lock);
2603 new->d_parent = dget_dlock(parent);
2604 hlist_add_head(&new->d_sib, &parent->d_children);
2605 if (parent->d_flags & DCACHE_DISCONNECTED)
2606 new->d_flags |= DCACHE_DISCONNECTED;
2607 spin_unlock(&parent->d_lock);
2608
2609 retry:
2610 rcu_read_lock();
2611 seq = smp_load_acquire(&parent->d_inode->i_dir_seq);
2612 r_seq = read_seqbegin(&rename_lock);
2613 dentry = __d_lookup_rcu(parent, name, &d_seq);
2614 if (unlikely(dentry)) {
2615 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2616 rcu_read_unlock();
2617 goto retry;
2618 }
2619 if (read_seqcount_retry(&dentry->d_seq, d_seq)) {
2620 rcu_read_unlock();
2621 dput(dentry);
2622 goto retry;
2623 }
2624 rcu_read_unlock();
2625 dput(new);
2626 return dentry;
2627 }
2628 if (unlikely(read_seqretry(&rename_lock, r_seq))) {
2629 rcu_read_unlock();
2630 goto retry;
2631 }
2632
2633 if (unlikely(seq & 1)) {
2634 rcu_read_unlock();
2635 goto retry;
2636 }
2637
2638 hlist_bl_lock(b);
2639 if (unlikely(READ_ONCE(parent->d_inode->i_dir_seq) != seq)) {
2640 hlist_bl_unlock(b);
2641 rcu_read_unlock();
2642 goto retry;
2643 }
2644 /*
2645 * No changes for the parent since the beginning of d_lookup().
2646 * Since all removals from the chain happen with hlist_bl_lock(),
2647 * any potential in-lookup matches are going to stay here until
2648 * we unlock the chain. All fields are stable in everything
2649 * we encounter.
2650 */
2651 hlist_bl_for_each_entry(dentry, node, b, d_u.d_in_lookup_hash) {
2652 if (dentry->d_name.hash != hash)
2653 continue;
2654 if (dentry->d_parent != parent)
2655 continue;
2656 if (!d_same_name(dentry, parent, name))
2657 continue;
2658 hlist_bl_unlock(b);
2659 /* now we can try to grab a reference */
2660 if (!lockref_get_not_dead(&dentry->d_lockref)) {
2661 rcu_read_unlock();
2662 goto retry;
2663 }
2664
2665 rcu_read_unlock();
2666 /*
2667 * somebody is likely to be still doing lookup for it;
2668 * wait for them to finish
2669 */
2670 spin_lock(&dentry->d_lock);
2671 d_wait_lookup(dentry);
2672 /*
2673 * it's not in-lookup anymore; in principle we should repeat
2674 * everything from dcache lookup, but it's likely to be what
2675 * d_lookup() would've found anyway. If it is, just return it;
2676 * otherwise we really have to repeat the whole thing.
2677 */
2678 if (unlikely(dentry->d_name.hash != hash))
2679 goto mismatch;
2680 if (unlikely(dentry->d_parent != parent))
2681 goto mismatch;
2682 if (unlikely(d_unhashed(dentry)))
2683 goto mismatch;
2684 if (unlikely(!d_same_name(dentry, parent, name)))
2685 goto mismatch;
2686 /* OK, it *is* a hashed match; return it */
2687 spin_unlock(&dentry->d_lock);
2688 dput(new);
2689 return dentry;
2690 }
2691 rcu_read_unlock();
2692 new->d_wait = wq;
2693 hlist_bl_add_head(&new->d_u.d_in_lookup_hash, b);
2694 hlist_bl_unlock(b);
2695 return new;
2696 mismatch:
2697 spin_unlock(&dentry->d_lock);
2698 dput(dentry);
2699 goto retry;
2700 }
2701 EXPORT_SYMBOL(d_alloc_parallel);
2702
2703 /*
2704 * - Unhash the dentry
2705 * - Retrieve and clear the waitqueue head in dentry
2706 * - Return the waitqueue head
2707 */
__d_lookup_unhash(struct dentry * dentry)2708 static wait_queue_head_t *__d_lookup_unhash(struct dentry *dentry)
2709 {
2710 wait_queue_head_t *d_wait;
2711 struct hlist_bl_head *b;
2712
2713 lockdep_assert_held(&dentry->d_lock);
2714
2715 b = in_lookup_hash(dentry->d_parent, dentry->d_name.hash);
2716 hlist_bl_lock(b);
2717 dentry->d_flags &= ~DCACHE_PAR_LOOKUP;
2718 __hlist_bl_del(&dentry->d_u.d_in_lookup_hash);
2719 d_wait = dentry->d_wait;
2720 dentry->d_wait = NULL;
2721 hlist_bl_unlock(b);
2722 INIT_HLIST_NODE(&dentry->d_u.d_alias);
2723 INIT_LIST_HEAD(&dentry->d_lru);
2724 return d_wait;
2725 }
2726
__d_lookup_unhash_wake(struct dentry * dentry)2727 void __d_lookup_unhash_wake(struct dentry *dentry)
2728 {
2729 spin_lock(&dentry->d_lock);
2730 wake_up_all(__d_lookup_unhash(dentry));
2731 spin_unlock(&dentry->d_lock);
2732 }
2733 EXPORT_SYMBOL(__d_lookup_unhash_wake);
2734
2735 /* inode->i_lock held if inode is non-NULL */
2736
__d_add(struct dentry * dentry,struct inode * inode,const struct dentry_operations * ops)2737 static inline void __d_add(struct dentry *dentry, struct inode *inode,
2738 const struct dentry_operations *ops)
2739 {
2740 wait_queue_head_t *d_wait;
2741 struct inode *dir = NULL;
2742 unsigned n;
2743 spin_lock(&dentry->d_lock);
2744 if (unlikely(d_in_lookup(dentry))) {
2745 dir = dentry->d_parent->d_inode;
2746 n = start_dir_add(dir);
2747 d_wait = __d_lookup_unhash(dentry);
2748 }
2749 if (unlikely(ops))
2750 d_set_d_op(dentry, ops);
2751 if (inode) {
2752 unsigned add_flags = d_flags_for_inode(inode);
2753 hlist_add_head(&dentry->d_u.d_alias, &inode->i_dentry);
2754 raw_write_seqcount_begin(&dentry->d_seq);
2755 __d_set_inode_and_type(dentry, inode, add_flags);
2756 raw_write_seqcount_end(&dentry->d_seq);
2757 fsnotify_update_flags(dentry);
2758 }
2759 __d_rehash(dentry);
2760 if (dir)
2761 end_dir_add(dir, n, d_wait);
2762 spin_unlock(&dentry->d_lock);
2763 if (inode)
2764 spin_unlock(&inode->i_lock);
2765 }
2766
2767 /**
2768 * d_add - add dentry to hash queues
2769 * @entry: dentry to add
2770 * @inode: The inode to attach to this dentry
2771 *
2772 * This adds the entry to the hash queues and initializes @inode.
2773 * The entry was actually filled in earlier during d_alloc().
2774 */
2775
d_add(struct dentry * entry,struct inode * inode)2776 void d_add(struct dentry *entry, struct inode *inode)
2777 {
2778 if (inode) {
2779 security_d_instantiate(entry, inode);
2780 spin_lock(&inode->i_lock);
2781 }
2782 __d_add(entry, inode, NULL);
2783 }
2784 EXPORT_SYMBOL(d_add);
2785
d_make_persistent(struct dentry * dentry,struct inode * inode)2786 struct dentry *d_make_persistent(struct dentry *dentry, struct inode *inode)
2787 {
2788 WARN_ON(!hlist_unhashed(&dentry->d_u.d_alias));
2789 WARN_ON(!inode);
2790 security_d_instantiate(dentry, inode);
2791 spin_lock(&inode->i_lock);
2792 spin_lock(&dentry->d_lock);
2793 __d_instantiate(dentry, inode);
2794 dentry->d_flags |= DCACHE_PERSISTENT;
2795 dget_dlock(dentry);
2796 if (d_unhashed(dentry))
2797 __d_rehash(dentry);
2798 spin_unlock(&dentry->d_lock);
2799 spin_unlock(&inode->i_lock);
2800 return dentry;
2801 }
2802 EXPORT_SYMBOL(d_make_persistent);
2803
swap_names(struct dentry * dentry,struct dentry * target)2804 static void swap_names(struct dentry *dentry, struct dentry *target)
2805 {
2806 if (unlikely(dname_external(target))) {
2807 if (unlikely(dname_external(dentry))) {
2808 /*
2809 * Both external: swap the pointers
2810 */
2811 swap(target->__d_name.name, dentry->__d_name.name);
2812 } else {
2813 /*
2814 * dentry:internal, target:external. Steal target's
2815 * storage and make target internal.
2816 */
2817 dentry->__d_name.name = target->__d_name.name;
2818 target->d_shortname = dentry->d_shortname;
2819 target->__d_name.name = target->d_shortname.string;
2820 }
2821 } else {
2822 if (unlikely(dname_external(dentry))) {
2823 /*
2824 * dentry:external, target:internal. Give dentry's
2825 * storage to target and make dentry internal
2826 */
2827 target->__d_name.name = dentry->__d_name.name;
2828 dentry->d_shortname = target->d_shortname;
2829 dentry->__d_name.name = dentry->d_shortname.string;
2830 } else {
2831 /*
2832 * Both are internal.
2833 */
2834 for (int i = 0; i < DNAME_INLINE_WORDS; i++)
2835 swap(dentry->d_shortname.words[i],
2836 target->d_shortname.words[i]);
2837 }
2838 }
2839 swap(dentry->__d_name.hash_len, target->__d_name.hash_len);
2840 }
2841
copy_name(struct dentry * dentry,struct dentry * target)2842 static void copy_name(struct dentry *dentry, struct dentry *target)
2843 {
2844 struct external_name *old_name = NULL;
2845 if (unlikely(dname_external(dentry)))
2846 old_name = external_name(dentry);
2847 if (unlikely(dname_external(target))) {
2848 atomic_inc(&external_name(target)->count);
2849 dentry->__d_name = target->__d_name;
2850 } else {
2851 dentry->d_shortname = target->d_shortname;
2852 dentry->__d_name.name = dentry->d_shortname.string;
2853 dentry->__d_name.hash_len = target->__d_name.hash_len;
2854 }
2855 if (old_name && likely(atomic_dec_and_test(&old_name->count)))
2856 kfree_rcu(old_name, head);
2857 }
2858
2859 /*
2860 * __d_move - move a dentry
2861 * @dentry: entry to move
2862 * @target: new dentry
2863 * @exchange: exchange the two dentries
2864 *
2865 * Update the dcache to reflect the move of a file name. Negative dcache
2866 * entries should not be moved in this way. Caller must hold rename_lock, the
2867 * i_rwsem of the source and target directories (exclusively), and the sb->
2868 * s_vfs_rename_mutex if they differ. See lock_rename().
2869 */
__d_move(struct dentry * dentry,struct dentry * target,bool exchange)2870 static void __d_move(struct dentry *dentry, struct dentry *target,
2871 bool exchange)
2872 {
2873 struct dentry *old_parent, *p;
2874 wait_queue_head_t *d_wait;
2875 struct inode *dir = NULL;
2876 unsigned n;
2877
2878 WARN_ON(!dentry->d_inode);
2879 if (WARN_ON(dentry == target))
2880 return;
2881
2882 BUG_ON(d_ancestor(target, dentry));
2883 old_parent = dentry->d_parent;
2884 p = d_ancestor(old_parent, target);
2885 if (IS_ROOT(dentry)) {
2886 BUG_ON(p);
2887 spin_lock(&target->d_parent->d_lock);
2888 } else if (!p) {
2889 /* target is not a descendent of dentry->d_parent */
2890 spin_lock(&target->d_parent->d_lock);
2891 spin_lock_nested(&old_parent->d_lock, DENTRY_D_LOCK_NESTED);
2892 } else {
2893 BUG_ON(p == dentry);
2894 spin_lock(&old_parent->d_lock);
2895 if (p != target)
2896 spin_lock_nested(&target->d_parent->d_lock,
2897 DENTRY_D_LOCK_NESTED);
2898 }
2899 spin_lock_nested(&dentry->d_lock, 2);
2900 spin_lock_nested(&target->d_lock, 3);
2901
2902 if (unlikely(d_in_lookup(target))) {
2903 dir = target->d_parent->d_inode;
2904 n = start_dir_add(dir);
2905 d_wait = __d_lookup_unhash(target);
2906 }
2907
2908 write_seqcount_begin(&dentry->d_seq);
2909 write_seqcount_begin_nested(&target->d_seq, DENTRY_D_LOCK_NESTED);
2910
2911 /* unhash both */
2912 if (!d_unhashed(dentry))
2913 ___d_drop(dentry);
2914 if (!d_unhashed(target))
2915 ___d_drop(target);
2916
2917 /* ... and switch them in the tree */
2918 dentry->d_parent = target->d_parent;
2919 if (!exchange) {
2920 copy_name(dentry, target);
2921 target->d_hash.pprev = NULL;
2922 dentry->d_parent->d_lockref.count++;
2923 if (dentry != old_parent) /* wasn't IS_ROOT */
2924 WARN_ON(!--old_parent->d_lockref.count);
2925 } else {
2926 target->d_parent = old_parent;
2927 swap_names(dentry, target);
2928 if (!hlist_unhashed(&target->d_sib))
2929 __hlist_del(&target->d_sib);
2930 hlist_add_head(&target->d_sib, &target->d_parent->d_children);
2931 __d_rehash(target);
2932 fsnotify_update_flags(target);
2933 }
2934 if (!hlist_unhashed(&dentry->d_sib))
2935 __hlist_del(&dentry->d_sib);
2936 hlist_add_head(&dentry->d_sib, &dentry->d_parent->d_children);
2937 __d_rehash(dentry);
2938 fsnotify_update_flags(dentry);
2939 fscrypt_handle_d_move(dentry);
2940
2941 write_seqcount_end(&target->d_seq);
2942 write_seqcount_end(&dentry->d_seq);
2943
2944 if (dir)
2945 end_dir_add(dir, n, d_wait);
2946
2947 if (dentry->d_parent != old_parent)
2948 spin_unlock(&dentry->d_parent->d_lock);
2949 if (dentry != old_parent)
2950 spin_unlock(&old_parent->d_lock);
2951 spin_unlock(&target->d_lock);
2952 spin_unlock(&dentry->d_lock);
2953 }
2954
2955 /*
2956 * d_move - move a dentry
2957 * @dentry: entry to move
2958 * @target: new dentry
2959 *
2960 * Update the dcache to reflect the move of a file name. Negative
2961 * dcache entries should not be moved in this way. See the locking
2962 * requirements for __d_move.
2963 */
d_move(struct dentry * dentry,struct dentry * target)2964 void d_move(struct dentry *dentry, struct dentry *target)
2965 {
2966 write_seqlock(&rename_lock);
2967 __d_move(dentry, target, false);
2968 write_sequnlock(&rename_lock);
2969 }
2970 EXPORT_SYMBOL(d_move);
2971
2972 /*
2973 * d_exchange - exchange two dentries
2974 * @dentry1: first dentry
2975 * @dentry2: second dentry
2976 */
d_exchange(struct dentry * dentry1,struct dentry * dentry2)2977 void d_exchange(struct dentry *dentry1, struct dentry *dentry2)
2978 {
2979 write_seqlock(&rename_lock);
2980
2981 WARN_ON(!dentry1->d_inode);
2982 WARN_ON(!dentry2->d_inode);
2983 WARN_ON(IS_ROOT(dentry1));
2984 WARN_ON(IS_ROOT(dentry2));
2985
2986 __d_move(dentry1, dentry2, true);
2987
2988 write_sequnlock(&rename_lock);
2989 }
2990 EXPORT_SYMBOL(d_exchange);
2991
2992 /**
2993 * d_ancestor - search for an ancestor
2994 * @p1: ancestor dentry
2995 * @p2: child dentry
2996 *
2997 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2998 * an ancestor of p2, else NULL.
2999 */
d_ancestor(struct dentry * p1,struct dentry * p2)3000 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
3001 {
3002 struct dentry *p;
3003
3004 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
3005 if (p->d_parent == p1)
3006 return p;
3007 }
3008 return NULL;
3009 }
3010
3011 /*
3012 * This helper attempts to cope with remotely renamed directories
3013 *
3014 * It assumes that the caller is already holding
3015 * dentry->d_parent->d_inode->i_rwsem, and rename_lock
3016 *
3017 * Note: If ever the locking in lock_rename() changes, then please
3018 * remember to update this too...
3019 */
__d_unalias(struct dentry * dentry,struct dentry * alias)3020 static int __d_unalias(struct dentry *dentry, struct dentry *alias)
3021 {
3022 struct mutex *m1 = NULL;
3023 struct rw_semaphore *m2 = NULL;
3024 int ret = -ESTALE;
3025
3026 /* If alias and dentry share a parent, then no extra locks required */
3027 if (alias->d_parent == dentry->d_parent)
3028 goto out_unalias;
3029
3030 /* See lock_rename() */
3031 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
3032 goto out_err;
3033 m1 = &dentry->d_sb->s_vfs_rename_mutex;
3034 if (!inode_trylock_shared(alias->d_parent->d_inode))
3035 goto out_err;
3036 m2 = &alias->d_parent->d_inode->i_rwsem;
3037 out_unalias:
3038 if (alias->d_op && alias->d_op->d_unalias_trylock &&
3039 !alias->d_op->d_unalias_trylock(alias))
3040 goto out_err;
3041 __d_move(alias, dentry, false);
3042 if (alias->d_op && alias->d_op->d_unalias_unlock)
3043 alias->d_op->d_unalias_unlock(alias);
3044 ret = 0;
3045 out_err:
3046 if (m2)
3047 up_read(m2);
3048 if (m1)
3049 mutex_unlock(m1);
3050 return ret;
3051 }
3052
d_splice_alias_ops(struct inode * inode,struct dentry * dentry,const struct dentry_operations * ops)3053 struct dentry *d_splice_alias_ops(struct inode *inode, struct dentry *dentry,
3054 const struct dentry_operations *ops)
3055 {
3056 if (IS_ERR(inode))
3057 return ERR_CAST(inode);
3058
3059 BUG_ON(!d_unhashed(dentry));
3060
3061 if (!inode)
3062 goto out;
3063
3064 security_d_instantiate(dentry, inode);
3065 spin_lock(&inode->i_lock);
3066 if (S_ISDIR(inode->i_mode)) {
3067 struct dentry *new = __d_find_any_alias(inode);
3068 if (unlikely(new)) {
3069 /* The reference to new ensures it remains an alias */
3070 spin_unlock(&inode->i_lock);
3071 write_seqlock(&rename_lock);
3072 if (unlikely(d_ancestor(new, dentry))) {
3073 write_sequnlock(&rename_lock);
3074 dput(new);
3075 new = ERR_PTR(-ELOOP);
3076 pr_warn_ratelimited(
3077 "VFS: Lookup of '%s' in %s %s"
3078 " would have caused loop\n",
3079 dentry->d_name.name,
3080 inode->i_sb->s_type->name,
3081 inode->i_sb->s_id);
3082 } else if (!IS_ROOT(new)) {
3083 struct dentry *old_parent = dget(new->d_parent);
3084 int err = __d_unalias(dentry, new);
3085 write_sequnlock(&rename_lock);
3086 if (err) {
3087 dput(new);
3088 new = ERR_PTR(err);
3089 }
3090 dput(old_parent);
3091 } else {
3092 __d_move(new, dentry, false);
3093 write_sequnlock(&rename_lock);
3094 }
3095 iput(inode);
3096 return new;
3097 }
3098 }
3099 out:
3100 __d_add(dentry, inode, ops);
3101 return NULL;
3102 }
3103
3104 /**
3105 * d_splice_alias - splice a disconnected dentry into the tree if one exists
3106 * @inode: the inode which may have a disconnected dentry
3107 * @dentry: a negative dentry which we want to point to the inode.
3108 *
3109 * If inode is a directory and has an IS_ROOT alias, then d_move that in
3110 * place of the given dentry and return it, else simply d_add the inode
3111 * to the dentry and return NULL.
3112 *
3113 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
3114 * we should error out: directories can't have multiple aliases.
3115 *
3116 * This is needed in the lookup routine of any filesystem that is exportable
3117 * (via knfsd) so that we can build dcache paths to directories effectively.
3118 *
3119 * If a dentry was found and moved, then it is returned. Otherwise NULL
3120 * is returned. This matches the expected return value of ->lookup.
3121 *
3122 * Cluster filesystems may call this function with a negative, hashed dentry.
3123 * In that case, we know that the inode will be a regular file, and also this
3124 * will only occur during atomic_open. So we need to check for the dentry
3125 * being already hashed only in the final case.
3126 */
d_splice_alias(struct inode * inode,struct dentry * dentry)3127 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
3128 {
3129 return d_splice_alias_ops(inode, dentry, NULL);
3130 }
3131 EXPORT_SYMBOL(d_splice_alias);
3132
3133 /*
3134 * Test whether new_dentry is a subdirectory of old_dentry.
3135 *
3136 * Trivially implemented using the dcache structure
3137 */
3138
3139 /**
3140 * is_subdir - is new dentry a subdirectory of old_dentry
3141 * @new_dentry: new dentry
3142 * @old_dentry: old dentry
3143 *
3144 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3145 * Returns false otherwise.
3146 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3147 */
3148
is_subdir(struct dentry * new_dentry,struct dentry * old_dentry)3149 bool is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
3150 {
3151 bool subdir;
3152 unsigned seq;
3153
3154 if (new_dentry == old_dentry)
3155 return true;
3156
3157 /* Access d_parent under rcu as d_move() may change it. */
3158 rcu_read_lock();
3159 seq = read_seqbegin(&rename_lock);
3160 subdir = d_ancestor(old_dentry, new_dentry);
3161 /* Try lockless once... */
3162 if (read_seqretry(&rename_lock, seq)) {
3163 /* ...else acquire lock for progress even on deep chains. */
3164 read_seqlock_excl(&rename_lock);
3165 subdir = d_ancestor(old_dentry, new_dentry);
3166 read_sequnlock_excl(&rename_lock);
3167 }
3168 rcu_read_unlock();
3169 return subdir;
3170 }
3171 EXPORT_SYMBOL(is_subdir);
3172
d_mark_tmpfile(struct file * file,struct inode * inode)3173 void d_mark_tmpfile(struct file *file, struct inode *inode)
3174 {
3175 struct dentry *dentry = file->f_path.dentry;
3176
3177 BUG_ON(dname_external(dentry) ||
3178 !hlist_unhashed(&dentry->d_u.d_alias) ||
3179 !d_unlinked(dentry));
3180 spin_lock(&dentry->d_parent->d_lock);
3181 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3182 dentry->__d_name.len = sprintf(dentry->d_shortname.string, "#%llu",
3183 (unsigned long long)inode->i_ino);
3184 spin_unlock(&dentry->d_lock);
3185 spin_unlock(&dentry->d_parent->d_lock);
3186 }
3187 EXPORT_SYMBOL(d_mark_tmpfile);
3188
d_tmpfile(struct file * file,struct inode * inode)3189 void d_tmpfile(struct file *file, struct inode *inode)
3190 {
3191 struct dentry *dentry = file->f_path.dentry;
3192
3193 inode_dec_link_count(inode);
3194 d_mark_tmpfile(file, inode);
3195 d_instantiate(dentry, inode);
3196 }
3197 EXPORT_SYMBOL(d_tmpfile);
3198
3199 /*
3200 * Obtain inode number of the parent dentry.
3201 */
d_parent_ino(struct dentry * dentry)3202 ino_t d_parent_ino(struct dentry *dentry)
3203 {
3204 struct dentry *parent;
3205 struct inode *iparent;
3206 unsigned seq;
3207 ino_t ret;
3208
3209 scoped_guard(rcu) {
3210 seq = raw_seqcount_begin(&dentry->d_seq);
3211 parent = READ_ONCE(dentry->d_parent);
3212 iparent = d_inode_rcu(parent);
3213 if (likely(iparent)) {
3214 ret = iparent->i_ino;
3215 if (!read_seqcount_retry(&dentry->d_seq, seq))
3216 return ret;
3217 }
3218 }
3219
3220 spin_lock(&dentry->d_lock);
3221 ret = dentry->d_parent->d_inode->i_ino;
3222 spin_unlock(&dentry->d_lock);
3223 return ret;
3224 }
3225 EXPORT_SYMBOL(d_parent_ino);
3226
3227 static __initdata unsigned long dhash_entries;
set_dhash_entries(char * str)3228 static int __init set_dhash_entries(char *str)
3229 {
3230 if (!str)
3231 return 0;
3232 dhash_entries = simple_strtoul(str, &str, 0);
3233 return 1;
3234 }
3235 __setup("dhash_entries=", set_dhash_entries);
3236
dcache_init_early(void)3237 static void __init dcache_init_early(void)
3238 {
3239 /* If hashes are distributed across NUMA nodes, defer
3240 * hash allocation until vmalloc space is available.
3241 */
3242 if (hashdist)
3243 return;
3244
3245 dentry_hashtable =
3246 alloc_large_system_hash("Dentry cache",
3247 sizeof(struct hlist_bl_head),
3248 dhash_entries,
3249 13,
3250 HASH_EARLY | HASH_ZERO,
3251 &d_hash_shift,
3252 NULL,
3253 0,
3254 0);
3255 d_hash_shift = 32 - d_hash_shift;
3256
3257 runtime_const_init(shift, d_hash_shift);
3258 runtime_const_init(ptr, dentry_hashtable);
3259 }
3260
dcache_init(void)3261 static void __init dcache_init(void)
3262 {
3263 /*
3264 * A constructor could be added for stable state like the lists,
3265 * but it is probably not worth it because of the cache nature
3266 * of the dcache.
3267 */
3268 __dentry_cache = KMEM_CACHE_USERCOPY(dentry,
3269 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_ACCOUNT,
3270 d_shortname.string);
3271 runtime_const_init(ptr, __dentry_cache);
3272
3273 /* Hash may have been set up in dcache_init_early */
3274 if (!hashdist)
3275 return;
3276
3277 dentry_hashtable =
3278 alloc_large_system_hash("Dentry cache",
3279 sizeof(struct hlist_bl_head),
3280 dhash_entries,
3281 13,
3282 HASH_ZERO,
3283 &d_hash_shift,
3284 NULL,
3285 0,
3286 0);
3287 d_hash_shift = 32 - d_hash_shift;
3288
3289 runtime_const_init(shift, d_hash_shift);
3290 runtime_const_init(ptr, dentry_hashtable);
3291 }
3292
3293 /* SLAB cache for __getname() consumers */
3294 struct kmem_cache *names_cachep __ro_after_init;
3295 EXPORT_SYMBOL(names_cachep);
3296
vfs_caches_init_early(void)3297 void __init vfs_caches_init_early(void)
3298 {
3299 int i;
3300
3301 for (i = 0; i < ARRAY_SIZE(in_lookup_hashtable); i++)
3302 INIT_HLIST_BL_HEAD(&in_lookup_hashtable[i]);
3303
3304 dcache_init_early();
3305 inode_init_early();
3306 }
3307
vfs_caches_init(void)3308 void __init vfs_caches_init(void)
3309 {
3310 names_cachep = kmem_cache_create_usercopy("names_cache", PATH_MAX, 0,
3311 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 0, PATH_MAX, NULL);
3312
3313 dcache_init();
3314 inode_init();
3315 files_init();
3316 files_maxfiles_init();
3317 mnt_init();
3318 bdev_cache_init();
3319 chrdev_init();
3320 }
3321