xref: /linux/fs/dax.c (revision ec63e2a4897075e427c121d863bd89c44578094f)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include <asm/pgalloc.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/fs_dax.h>
41 
42 static inline unsigned int pe_order(enum page_entry_size pe_size)
43 {
44 	if (pe_size == PE_SIZE_PTE)
45 		return PAGE_SHIFT - PAGE_SHIFT;
46 	if (pe_size == PE_SIZE_PMD)
47 		return PMD_SHIFT - PAGE_SHIFT;
48 	if (pe_size == PE_SIZE_PUD)
49 		return PUD_SHIFT - PAGE_SHIFT;
50 	return ~0;
51 }
52 
53 /* We choose 4096 entries - same as per-zone page wait tables */
54 #define DAX_WAIT_TABLE_BITS 12
55 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
56 
57 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
58 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
59 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
60 
61 /* The order of a PMD entry */
62 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
63 
64 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
65 
66 static int __init init_dax_wait_table(void)
67 {
68 	int i;
69 
70 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
71 		init_waitqueue_head(wait_table + i);
72 	return 0;
73 }
74 fs_initcall(init_dax_wait_table);
75 
76 /*
77  * DAX pagecache entries use XArray value entries so they can't be mistaken
78  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
79  * and two more to tell us if the entry is a zero page or an empty entry that
80  * is just used for locking.  In total four special bits.
81  *
82  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
83  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
84  * block allocation.
85  */
86 #define DAX_SHIFT	(4)
87 #define DAX_LOCKED	(1UL << 0)
88 #define DAX_PMD		(1UL << 1)
89 #define DAX_ZERO_PAGE	(1UL << 2)
90 #define DAX_EMPTY	(1UL << 3)
91 
92 static unsigned long dax_to_pfn(void *entry)
93 {
94 	return xa_to_value(entry) >> DAX_SHIFT;
95 }
96 
97 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
98 {
99 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
100 }
101 
102 static bool dax_is_locked(void *entry)
103 {
104 	return xa_to_value(entry) & DAX_LOCKED;
105 }
106 
107 static unsigned int dax_entry_order(void *entry)
108 {
109 	if (xa_to_value(entry) & DAX_PMD)
110 		return PMD_ORDER;
111 	return 0;
112 }
113 
114 static unsigned long dax_is_pmd_entry(void *entry)
115 {
116 	return xa_to_value(entry) & DAX_PMD;
117 }
118 
119 static bool dax_is_pte_entry(void *entry)
120 {
121 	return !(xa_to_value(entry) & DAX_PMD);
122 }
123 
124 static int dax_is_zero_entry(void *entry)
125 {
126 	return xa_to_value(entry) & DAX_ZERO_PAGE;
127 }
128 
129 static int dax_is_empty_entry(void *entry)
130 {
131 	return xa_to_value(entry) & DAX_EMPTY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 		void *entry, struct exceptional_entry_key *key)
149 {
150 	unsigned long hash;
151 	unsigned long index = xas->xa_index;
152 
153 	/*
154 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 	 * queue to the start of that PMD.  This ensures that all offsets in
156 	 * the range covered by the PMD map to the same bit lock.
157 	 */
158 	if (dax_is_pmd_entry(entry))
159 		index &= ~PG_PMD_COLOUR;
160 	key->xa = xas->xa;
161 	key->entry_start = index;
162 
163 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 	return wait_table + hash;
165 }
166 
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 		unsigned int mode, int sync, void *keyp)
169 {
170 	struct exceptional_entry_key *key = keyp;
171 	struct wait_exceptional_entry_queue *ewait =
172 		container_of(wait, struct wait_exceptional_entry_queue, wait);
173 
174 	if (key->xa != ewait->key.xa ||
175 	    key->entry_start != ewait->key.entry_start)
176 		return 0;
177 	return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179 
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187 	struct exceptional_entry_key key;
188 	wait_queue_head_t *wq;
189 
190 	wq = dax_entry_waitqueue(xas, entry, &key);
191 
192 	/*
193 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 	 * under the i_pages lock, ditto for entry handling in our callers.
195 	 * So at this point all tasks that could have seen our entry locked
196 	 * must be in the waitqueue and the following check will see them.
197 	 */
198 	if (waitqueue_active(wq))
199 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201 
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.
207  *
208  * Must be called with the i_pages lock held.
209  */
210 static void *get_unlocked_entry(struct xa_state *xas)
211 {
212 	void *entry;
213 	struct wait_exceptional_entry_queue ewait;
214 	wait_queue_head_t *wq;
215 
216 	init_wait(&ewait.wait);
217 	ewait.wait.func = wake_exceptional_entry_func;
218 
219 	for (;;) {
220 		entry = xas_find_conflict(xas);
221 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) ||
222 				!dax_is_locked(entry))
223 			return entry;
224 
225 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
226 		prepare_to_wait_exclusive(wq, &ewait.wait,
227 					  TASK_UNINTERRUPTIBLE);
228 		xas_unlock_irq(xas);
229 		xas_reset(xas);
230 		schedule();
231 		finish_wait(wq, &ewait.wait);
232 		xas_lock_irq(xas);
233 	}
234 }
235 
236 /*
237  * The only thing keeping the address space around is the i_pages lock
238  * (it's cycled in clear_inode() after removing the entries from i_pages)
239  * After we call xas_unlock_irq(), we cannot touch xas->xa.
240  */
241 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
242 {
243 	struct wait_exceptional_entry_queue ewait;
244 	wait_queue_head_t *wq;
245 
246 	init_wait(&ewait.wait);
247 	ewait.wait.func = wake_exceptional_entry_func;
248 
249 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
250 	/*
251 	 * Unlike get_unlocked_entry() there is no guarantee that this
252 	 * path ever successfully retrieves an unlocked entry before an
253 	 * inode dies. Perform a non-exclusive wait in case this path
254 	 * never successfully performs its own wake up.
255 	 */
256 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
257 	xas_unlock_irq(xas);
258 	schedule();
259 	finish_wait(wq, &ewait.wait);
260 }
261 
262 static void put_unlocked_entry(struct xa_state *xas, void *entry)
263 {
264 	/* If we were the only waiter woken, wake the next one */
265 	if (entry)
266 		dax_wake_entry(xas, entry, false);
267 }
268 
269 /*
270  * We used the xa_state to get the entry, but then we locked the entry and
271  * dropped the xa_lock, so we know the xa_state is stale and must be reset
272  * before use.
273  */
274 static void dax_unlock_entry(struct xa_state *xas, void *entry)
275 {
276 	void *old;
277 
278 	BUG_ON(dax_is_locked(entry));
279 	xas_reset(xas);
280 	xas_lock_irq(xas);
281 	old = xas_store(xas, entry);
282 	xas_unlock_irq(xas);
283 	BUG_ON(!dax_is_locked(old));
284 	dax_wake_entry(xas, entry, false);
285 }
286 
287 /*
288  * Return: The entry stored at this location before it was locked.
289  */
290 static void *dax_lock_entry(struct xa_state *xas, void *entry)
291 {
292 	unsigned long v = xa_to_value(entry);
293 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
294 }
295 
296 static unsigned long dax_entry_size(void *entry)
297 {
298 	if (dax_is_zero_entry(entry))
299 		return 0;
300 	else if (dax_is_empty_entry(entry))
301 		return 0;
302 	else if (dax_is_pmd_entry(entry))
303 		return PMD_SIZE;
304 	else
305 		return PAGE_SIZE;
306 }
307 
308 static unsigned long dax_end_pfn(void *entry)
309 {
310 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
311 }
312 
313 /*
314  * Iterate through all mapped pfns represented by an entry, i.e. skip
315  * 'empty' and 'zero' entries.
316  */
317 #define for_each_mapped_pfn(entry, pfn) \
318 	for (pfn = dax_to_pfn(entry); \
319 			pfn < dax_end_pfn(entry); pfn++)
320 
321 /*
322  * TODO: for reflink+dax we need a way to associate a single page with
323  * multiple address_space instances at different linear_page_index()
324  * offsets.
325  */
326 static void dax_associate_entry(void *entry, struct address_space *mapping,
327 		struct vm_area_struct *vma, unsigned long address)
328 {
329 	unsigned long size = dax_entry_size(entry), pfn, index;
330 	int i = 0;
331 
332 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
333 		return;
334 
335 	index = linear_page_index(vma, address & ~(size - 1));
336 	for_each_mapped_pfn(entry, pfn) {
337 		struct page *page = pfn_to_page(pfn);
338 
339 		WARN_ON_ONCE(page->mapping);
340 		page->mapping = mapping;
341 		page->index = index + i++;
342 	}
343 }
344 
345 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
346 		bool trunc)
347 {
348 	unsigned long pfn;
349 
350 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
351 		return;
352 
353 	for_each_mapped_pfn(entry, pfn) {
354 		struct page *page = pfn_to_page(pfn);
355 
356 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
357 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
358 		page->mapping = NULL;
359 		page->index = 0;
360 	}
361 }
362 
363 static struct page *dax_busy_page(void *entry)
364 {
365 	unsigned long pfn;
366 
367 	for_each_mapped_pfn(entry, pfn) {
368 		struct page *page = pfn_to_page(pfn);
369 
370 		if (page_ref_count(page) > 1)
371 			return page;
372 	}
373 	return NULL;
374 }
375 
376 /*
377  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
378  * @page: The page whose entry we want to lock
379  *
380  * Context: Process context.
381  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
382  * not be locked.
383  */
384 dax_entry_t dax_lock_page(struct page *page)
385 {
386 	XA_STATE(xas, NULL, 0);
387 	void *entry;
388 
389 	/* Ensure page->mapping isn't freed while we look at it */
390 	rcu_read_lock();
391 	for (;;) {
392 		struct address_space *mapping = READ_ONCE(page->mapping);
393 
394 		entry = NULL;
395 		if (!mapping || !dax_mapping(mapping))
396 			break;
397 
398 		/*
399 		 * In the device-dax case there's no need to lock, a
400 		 * struct dev_pagemap pin is sufficient to keep the
401 		 * inode alive, and we assume we have dev_pagemap pin
402 		 * otherwise we would not have a valid pfn_to_page()
403 		 * translation.
404 		 */
405 		entry = (void *)~0UL;
406 		if (S_ISCHR(mapping->host->i_mode))
407 			break;
408 
409 		xas.xa = &mapping->i_pages;
410 		xas_lock_irq(&xas);
411 		if (mapping != page->mapping) {
412 			xas_unlock_irq(&xas);
413 			continue;
414 		}
415 		xas_set(&xas, page->index);
416 		entry = xas_load(&xas);
417 		if (dax_is_locked(entry)) {
418 			rcu_read_unlock();
419 			wait_entry_unlocked(&xas, entry);
420 			rcu_read_lock();
421 			continue;
422 		}
423 		dax_lock_entry(&xas, entry);
424 		xas_unlock_irq(&xas);
425 		break;
426 	}
427 	rcu_read_unlock();
428 	return (dax_entry_t)entry;
429 }
430 
431 void dax_unlock_page(struct page *page, dax_entry_t cookie)
432 {
433 	struct address_space *mapping = page->mapping;
434 	XA_STATE(xas, &mapping->i_pages, page->index);
435 
436 	if (S_ISCHR(mapping->host->i_mode))
437 		return;
438 
439 	dax_unlock_entry(&xas, (void *)cookie);
440 }
441 
442 /*
443  * Find page cache entry at given index. If it is a DAX entry, return it
444  * with the entry locked. If the page cache doesn't contain an entry at
445  * that index, add a locked empty entry.
446  *
447  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
448  * either return that locked entry or will return VM_FAULT_FALLBACK.
449  * This will happen if there are any PTE entries within the PMD range
450  * that we are requesting.
451  *
452  * We always favor PTE entries over PMD entries. There isn't a flow where we
453  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
454  * insertion will fail if it finds any PTE entries already in the tree, and a
455  * PTE insertion will cause an existing PMD entry to be unmapped and
456  * downgraded to PTE entries.  This happens for both PMD zero pages as
457  * well as PMD empty entries.
458  *
459  * The exception to this downgrade path is for PMD entries that have
460  * real storage backing them.  We will leave these real PMD entries in
461  * the tree, and PTE writes will simply dirty the entire PMD entry.
462  *
463  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
464  * persistent memory the benefit is doubtful. We can add that later if we can
465  * show it helps.
466  *
467  * On error, this function does not return an ERR_PTR.  Instead it returns
468  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
469  * overlap with xarray value entries.
470  */
471 static void *grab_mapping_entry(struct xa_state *xas,
472 		struct address_space *mapping, unsigned long size_flag)
473 {
474 	unsigned long index = xas->xa_index;
475 	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
476 	void *entry;
477 
478 retry:
479 	xas_lock_irq(xas);
480 	entry = get_unlocked_entry(xas);
481 
482 	if (entry) {
483 		if (!xa_is_value(entry)) {
484 			xas_set_err(xas, EIO);
485 			goto out_unlock;
486 		}
487 
488 		if (size_flag & DAX_PMD) {
489 			if (dax_is_pte_entry(entry)) {
490 				put_unlocked_entry(xas, entry);
491 				goto fallback;
492 			}
493 		} else { /* trying to grab a PTE entry */
494 			if (dax_is_pmd_entry(entry) &&
495 			    (dax_is_zero_entry(entry) ||
496 			     dax_is_empty_entry(entry))) {
497 				pmd_downgrade = true;
498 			}
499 		}
500 	}
501 
502 	if (pmd_downgrade) {
503 		/*
504 		 * Make sure 'entry' remains valid while we drop
505 		 * the i_pages lock.
506 		 */
507 		dax_lock_entry(xas, entry);
508 
509 		/*
510 		 * Besides huge zero pages the only other thing that gets
511 		 * downgraded are empty entries which don't need to be
512 		 * unmapped.
513 		 */
514 		if (dax_is_zero_entry(entry)) {
515 			xas_unlock_irq(xas);
516 			unmap_mapping_pages(mapping,
517 					xas->xa_index & ~PG_PMD_COLOUR,
518 					PG_PMD_NR, false);
519 			xas_reset(xas);
520 			xas_lock_irq(xas);
521 		}
522 
523 		dax_disassociate_entry(entry, mapping, false);
524 		xas_store(xas, NULL);	/* undo the PMD join */
525 		dax_wake_entry(xas, entry, true);
526 		mapping->nrexceptional--;
527 		entry = NULL;
528 		xas_set(xas, index);
529 	}
530 
531 	if (entry) {
532 		dax_lock_entry(xas, entry);
533 	} else {
534 		entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY);
535 		dax_lock_entry(xas, entry);
536 		if (xas_error(xas))
537 			goto out_unlock;
538 		mapping->nrexceptional++;
539 	}
540 
541 out_unlock:
542 	xas_unlock_irq(xas);
543 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
544 		goto retry;
545 	if (xas->xa_node == XA_ERROR(-ENOMEM))
546 		return xa_mk_internal(VM_FAULT_OOM);
547 	if (xas_error(xas))
548 		return xa_mk_internal(VM_FAULT_SIGBUS);
549 	return entry;
550 fallback:
551 	xas_unlock_irq(xas);
552 	return xa_mk_internal(VM_FAULT_FALLBACK);
553 }
554 
555 /**
556  * dax_layout_busy_page - find first pinned page in @mapping
557  * @mapping: address space to scan for a page with ref count > 1
558  *
559  * DAX requires ZONE_DEVICE mapped pages. These pages are never
560  * 'onlined' to the page allocator so they are considered idle when
561  * page->count == 1. A filesystem uses this interface to determine if
562  * any page in the mapping is busy, i.e. for DMA, or other
563  * get_user_pages() usages.
564  *
565  * It is expected that the filesystem is holding locks to block the
566  * establishment of new mappings in this address_space. I.e. it expects
567  * to be able to run unmap_mapping_range() and subsequently not race
568  * mapping_mapped() becoming true.
569  */
570 struct page *dax_layout_busy_page(struct address_space *mapping)
571 {
572 	XA_STATE(xas, &mapping->i_pages, 0);
573 	void *entry;
574 	unsigned int scanned = 0;
575 	struct page *page = NULL;
576 
577 	/*
578 	 * In the 'limited' case get_user_pages() for dax is disabled.
579 	 */
580 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
581 		return NULL;
582 
583 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
584 		return NULL;
585 
586 	/*
587 	 * If we race get_user_pages_fast() here either we'll see the
588 	 * elevated page count in the iteration and wait, or
589 	 * get_user_pages_fast() will see that the page it took a reference
590 	 * against is no longer mapped in the page tables and bail to the
591 	 * get_user_pages() slow path.  The slow path is protected by
592 	 * pte_lock() and pmd_lock(). New references are not taken without
593 	 * holding those locks, and unmap_mapping_range() will not zero the
594 	 * pte or pmd without holding the respective lock, so we are
595 	 * guaranteed to either see new references or prevent new
596 	 * references from being established.
597 	 */
598 	unmap_mapping_range(mapping, 0, 0, 1);
599 
600 	xas_lock_irq(&xas);
601 	xas_for_each(&xas, entry, ULONG_MAX) {
602 		if (WARN_ON_ONCE(!xa_is_value(entry)))
603 			continue;
604 		if (unlikely(dax_is_locked(entry)))
605 			entry = get_unlocked_entry(&xas);
606 		if (entry)
607 			page = dax_busy_page(entry);
608 		put_unlocked_entry(&xas, entry);
609 		if (page)
610 			break;
611 		if (++scanned % XA_CHECK_SCHED)
612 			continue;
613 
614 		xas_pause(&xas);
615 		xas_unlock_irq(&xas);
616 		cond_resched();
617 		xas_lock_irq(&xas);
618 	}
619 	xas_unlock_irq(&xas);
620 	return page;
621 }
622 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
623 
624 static int __dax_invalidate_entry(struct address_space *mapping,
625 					  pgoff_t index, bool trunc)
626 {
627 	XA_STATE(xas, &mapping->i_pages, index);
628 	int ret = 0;
629 	void *entry;
630 
631 	xas_lock_irq(&xas);
632 	entry = get_unlocked_entry(&xas);
633 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
634 		goto out;
635 	if (!trunc &&
636 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
637 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
638 		goto out;
639 	dax_disassociate_entry(entry, mapping, trunc);
640 	xas_store(&xas, NULL);
641 	mapping->nrexceptional--;
642 	ret = 1;
643 out:
644 	put_unlocked_entry(&xas, entry);
645 	xas_unlock_irq(&xas);
646 	return ret;
647 }
648 
649 /*
650  * Delete DAX entry at @index from @mapping.  Wait for it
651  * to be unlocked before deleting it.
652  */
653 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
654 {
655 	int ret = __dax_invalidate_entry(mapping, index, true);
656 
657 	/*
658 	 * This gets called from truncate / punch_hole path. As such, the caller
659 	 * must hold locks protecting against concurrent modifications of the
660 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
661 	 * caller has seen a DAX entry for this index, we better find it
662 	 * at that index as well...
663 	 */
664 	WARN_ON_ONCE(!ret);
665 	return ret;
666 }
667 
668 /*
669  * Invalidate DAX entry if it is clean.
670  */
671 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
672 				      pgoff_t index)
673 {
674 	return __dax_invalidate_entry(mapping, index, false);
675 }
676 
677 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
678 		sector_t sector, size_t size, struct page *to,
679 		unsigned long vaddr)
680 {
681 	void *vto, *kaddr;
682 	pgoff_t pgoff;
683 	long rc;
684 	int id;
685 
686 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
687 	if (rc)
688 		return rc;
689 
690 	id = dax_read_lock();
691 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
692 	if (rc < 0) {
693 		dax_read_unlock(id);
694 		return rc;
695 	}
696 	vto = kmap_atomic(to);
697 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
698 	kunmap_atomic(vto);
699 	dax_read_unlock(id);
700 	return 0;
701 }
702 
703 /*
704  * By this point grab_mapping_entry() has ensured that we have a locked entry
705  * of the appropriate size so we don't have to worry about downgrading PMDs to
706  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
707  * already in the tree, we will skip the insertion and just dirty the PMD as
708  * appropriate.
709  */
710 static void *dax_insert_entry(struct xa_state *xas,
711 		struct address_space *mapping, struct vm_fault *vmf,
712 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
713 {
714 	void *new_entry = dax_make_entry(pfn, flags);
715 
716 	if (dirty)
717 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
718 
719 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
720 		unsigned long index = xas->xa_index;
721 		/* we are replacing a zero page with block mapping */
722 		if (dax_is_pmd_entry(entry))
723 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
724 					PG_PMD_NR, false);
725 		else /* pte entry */
726 			unmap_mapping_pages(mapping, index, 1, false);
727 	}
728 
729 	xas_reset(xas);
730 	xas_lock_irq(xas);
731 	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
732 		dax_disassociate_entry(entry, mapping, false);
733 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
734 	}
735 
736 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
737 		/*
738 		 * Only swap our new entry into the page cache if the current
739 		 * entry is a zero page or an empty entry.  If a normal PTE or
740 		 * PMD entry is already in the cache, we leave it alone.  This
741 		 * means that if we are trying to insert a PTE and the
742 		 * existing entry is a PMD, we will just leave the PMD in the
743 		 * tree and dirty it if necessary.
744 		 */
745 		void *old = dax_lock_entry(xas, new_entry);
746 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
747 					DAX_LOCKED));
748 		entry = new_entry;
749 	} else {
750 		xas_load(xas);	/* Walk the xa_state */
751 	}
752 
753 	if (dirty)
754 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
755 
756 	xas_unlock_irq(xas);
757 	return entry;
758 }
759 
760 static inline
761 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
762 {
763 	unsigned long address;
764 
765 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
766 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
767 	return address;
768 }
769 
770 /* Walk all mappings of a given index of a file and writeprotect them */
771 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
772 		unsigned long pfn)
773 {
774 	struct vm_area_struct *vma;
775 	pte_t pte, *ptep = NULL;
776 	pmd_t *pmdp = NULL;
777 	spinlock_t *ptl;
778 
779 	i_mmap_lock_read(mapping);
780 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
781 		struct mmu_notifier_range range;
782 		unsigned long address;
783 
784 		cond_resched();
785 
786 		if (!(vma->vm_flags & VM_SHARED))
787 			continue;
788 
789 		address = pgoff_address(index, vma);
790 
791 		/*
792 		 * Note because we provide range to follow_pte_pmd it will
793 		 * call mmu_notifier_invalidate_range_start() on our behalf
794 		 * before taking any lock.
795 		 */
796 		if (follow_pte_pmd(vma->vm_mm, address, &range,
797 				   &ptep, &pmdp, &ptl))
798 			continue;
799 
800 		/*
801 		 * No need to call mmu_notifier_invalidate_range() as we are
802 		 * downgrading page table protection not changing it to point
803 		 * to a new page.
804 		 *
805 		 * See Documentation/vm/mmu_notifier.rst
806 		 */
807 		if (pmdp) {
808 #ifdef CONFIG_FS_DAX_PMD
809 			pmd_t pmd;
810 
811 			if (pfn != pmd_pfn(*pmdp))
812 				goto unlock_pmd;
813 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
814 				goto unlock_pmd;
815 
816 			flush_cache_page(vma, address, pfn);
817 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
818 			pmd = pmd_wrprotect(pmd);
819 			pmd = pmd_mkclean(pmd);
820 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
821 unlock_pmd:
822 #endif
823 			spin_unlock(ptl);
824 		} else {
825 			if (pfn != pte_pfn(*ptep))
826 				goto unlock_pte;
827 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
828 				goto unlock_pte;
829 
830 			flush_cache_page(vma, address, pfn);
831 			pte = ptep_clear_flush(vma, address, ptep);
832 			pte = pte_wrprotect(pte);
833 			pte = pte_mkclean(pte);
834 			set_pte_at(vma->vm_mm, address, ptep, pte);
835 unlock_pte:
836 			pte_unmap_unlock(ptep, ptl);
837 		}
838 
839 		mmu_notifier_invalidate_range_end(&range);
840 	}
841 	i_mmap_unlock_read(mapping);
842 }
843 
844 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
845 		struct address_space *mapping, void *entry)
846 {
847 	unsigned long pfn, index, count;
848 	long ret = 0;
849 
850 	/*
851 	 * A page got tagged dirty in DAX mapping? Something is seriously
852 	 * wrong.
853 	 */
854 	if (WARN_ON(!xa_is_value(entry)))
855 		return -EIO;
856 
857 	if (unlikely(dax_is_locked(entry))) {
858 		void *old_entry = entry;
859 
860 		entry = get_unlocked_entry(xas);
861 
862 		/* Entry got punched out / reallocated? */
863 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
864 			goto put_unlocked;
865 		/*
866 		 * Entry got reallocated elsewhere? No need to writeback.
867 		 * We have to compare pfns as we must not bail out due to
868 		 * difference in lockbit or entry type.
869 		 */
870 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
871 			goto put_unlocked;
872 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
873 					dax_is_zero_entry(entry))) {
874 			ret = -EIO;
875 			goto put_unlocked;
876 		}
877 
878 		/* Another fsync thread may have already done this entry */
879 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
880 			goto put_unlocked;
881 	}
882 
883 	/* Lock the entry to serialize with page faults */
884 	dax_lock_entry(xas, entry);
885 
886 	/*
887 	 * We can clear the tag now but we have to be careful so that concurrent
888 	 * dax_writeback_one() calls for the same index cannot finish before we
889 	 * actually flush the caches. This is achieved as the calls will look
890 	 * at the entry only under the i_pages lock and once they do that
891 	 * they will see the entry locked and wait for it to unlock.
892 	 */
893 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
894 	xas_unlock_irq(xas);
895 
896 	/*
897 	 * If dax_writeback_mapping_range() was given a wbc->range_start
898 	 * in the middle of a PMD, the 'index' we use needs to be
899 	 * aligned to the start of the PMD.
900 	 * This allows us to flush for PMD_SIZE and not have to worry about
901 	 * partial PMD writebacks.
902 	 */
903 	pfn = dax_to_pfn(entry);
904 	count = 1UL << dax_entry_order(entry);
905 	index = xas->xa_index & ~(count - 1);
906 
907 	dax_entry_mkclean(mapping, index, pfn);
908 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
909 	/*
910 	 * After we have flushed the cache, we can clear the dirty tag. There
911 	 * cannot be new dirty data in the pfn after the flush has completed as
912 	 * the pfn mappings are writeprotected and fault waits for mapping
913 	 * entry lock.
914 	 */
915 	xas_reset(xas);
916 	xas_lock_irq(xas);
917 	xas_store(xas, entry);
918 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
919 	dax_wake_entry(xas, entry, false);
920 
921 	trace_dax_writeback_one(mapping->host, index, count);
922 	return ret;
923 
924  put_unlocked:
925 	put_unlocked_entry(xas, entry);
926 	return ret;
927 }
928 
929 /*
930  * Flush the mapping to the persistent domain within the byte range of [start,
931  * end]. This is required by data integrity operations to ensure file data is
932  * on persistent storage prior to completion of the operation.
933  */
934 int dax_writeback_mapping_range(struct address_space *mapping,
935 		struct block_device *bdev, struct writeback_control *wbc)
936 {
937 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
938 	struct inode *inode = mapping->host;
939 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
940 	struct dax_device *dax_dev;
941 	void *entry;
942 	int ret = 0;
943 	unsigned int scanned = 0;
944 
945 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
946 		return -EIO;
947 
948 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
949 		return 0;
950 
951 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
952 	if (!dax_dev)
953 		return -EIO;
954 
955 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
956 
957 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
958 
959 	xas_lock_irq(&xas);
960 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
961 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
962 		if (ret < 0) {
963 			mapping_set_error(mapping, ret);
964 			break;
965 		}
966 		if (++scanned % XA_CHECK_SCHED)
967 			continue;
968 
969 		xas_pause(&xas);
970 		xas_unlock_irq(&xas);
971 		cond_resched();
972 		xas_lock_irq(&xas);
973 	}
974 	xas_unlock_irq(&xas);
975 	put_dax(dax_dev);
976 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
977 	return ret;
978 }
979 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
980 
981 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
982 {
983 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
984 }
985 
986 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
987 			 pfn_t *pfnp)
988 {
989 	const sector_t sector = dax_iomap_sector(iomap, pos);
990 	pgoff_t pgoff;
991 	int id, rc;
992 	long length;
993 
994 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
995 	if (rc)
996 		return rc;
997 	id = dax_read_lock();
998 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
999 				   NULL, pfnp);
1000 	if (length < 0) {
1001 		rc = length;
1002 		goto out;
1003 	}
1004 	rc = -EINVAL;
1005 	if (PFN_PHYS(length) < size)
1006 		goto out;
1007 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1008 		goto out;
1009 	/* For larger pages we need devmap */
1010 	if (length > 1 && !pfn_t_devmap(*pfnp))
1011 		goto out;
1012 	rc = 0;
1013 out:
1014 	dax_read_unlock(id);
1015 	return rc;
1016 }
1017 
1018 /*
1019  * The user has performed a load from a hole in the file.  Allocating a new
1020  * page in the file would cause excessive storage usage for workloads with
1021  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1022  * If this page is ever written to we will re-fault and change the mapping to
1023  * point to real DAX storage instead.
1024  */
1025 static vm_fault_t dax_load_hole(struct xa_state *xas,
1026 		struct address_space *mapping, void **entry,
1027 		struct vm_fault *vmf)
1028 {
1029 	struct inode *inode = mapping->host;
1030 	unsigned long vaddr = vmf->address;
1031 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1032 	vm_fault_t ret;
1033 
1034 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1035 			DAX_ZERO_PAGE, false);
1036 
1037 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1038 	trace_dax_load_hole(inode, vmf, ret);
1039 	return ret;
1040 }
1041 
1042 static bool dax_range_is_aligned(struct block_device *bdev,
1043 				 unsigned int offset, unsigned int length)
1044 {
1045 	unsigned short sector_size = bdev_logical_block_size(bdev);
1046 
1047 	if (!IS_ALIGNED(offset, sector_size))
1048 		return false;
1049 	if (!IS_ALIGNED(length, sector_size))
1050 		return false;
1051 
1052 	return true;
1053 }
1054 
1055 int __dax_zero_page_range(struct block_device *bdev,
1056 		struct dax_device *dax_dev, sector_t sector,
1057 		unsigned int offset, unsigned int size)
1058 {
1059 	if (dax_range_is_aligned(bdev, offset, size)) {
1060 		sector_t start_sector = sector + (offset >> 9);
1061 
1062 		return blkdev_issue_zeroout(bdev, start_sector,
1063 				size >> 9, GFP_NOFS, 0);
1064 	} else {
1065 		pgoff_t pgoff;
1066 		long rc, id;
1067 		void *kaddr;
1068 
1069 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1070 		if (rc)
1071 			return rc;
1072 
1073 		id = dax_read_lock();
1074 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1075 		if (rc < 0) {
1076 			dax_read_unlock(id);
1077 			return rc;
1078 		}
1079 		memset(kaddr + offset, 0, size);
1080 		dax_flush(dax_dev, kaddr + offset, size);
1081 		dax_read_unlock(id);
1082 	}
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1086 
1087 static loff_t
1088 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1089 		struct iomap *iomap)
1090 {
1091 	struct block_device *bdev = iomap->bdev;
1092 	struct dax_device *dax_dev = iomap->dax_dev;
1093 	struct iov_iter *iter = data;
1094 	loff_t end = pos + length, done = 0;
1095 	ssize_t ret = 0;
1096 	size_t xfer;
1097 	int id;
1098 
1099 	if (iov_iter_rw(iter) == READ) {
1100 		end = min(end, i_size_read(inode));
1101 		if (pos >= end)
1102 			return 0;
1103 
1104 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1105 			return iov_iter_zero(min(length, end - pos), iter);
1106 	}
1107 
1108 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1109 		return -EIO;
1110 
1111 	/*
1112 	 * Write can allocate block for an area which has a hole page mapped
1113 	 * into page tables. We have to tear down these mappings so that data
1114 	 * written by write(2) is visible in mmap.
1115 	 */
1116 	if (iomap->flags & IOMAP_F_NEW) {
1117 		invalidate_inode_pages2_range(inode->i_mapping,
1118 					      pos >> PAGE_SHIFT,
1119 					      (end - 1) >> PAGE_SHIFT);
1120 	}
1121 
1122 	id = dax_read_lock();
1123 	while (pos < end) {
1124 		unsigned offset = pos & (PAGE_SIZE - 1);
1125 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1126 		const sector_t sector = dax_iomap_sector(iomap, pos);
1127 		ssize_t map_len;
1128 		pgoff_t pgoff;
1129 		void *kaddr;
1130 
1131 		if (fatal_signal_pending(current)) {
1132 			ret = -EINTR;
1133 			break;
1134 		}
1135 
1136 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1137 		if (ret)
1138 			break;
1139 
1140 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1141 				&kaddr, NULL);
1142 		if (map_len < 0) {
1143 			ret = map_len;
1144 			break;
1145 		}
1146 
1147 		map_len = PFN_PHYS(map_len);
1148 		kaddr += offset;
1149 		map_len -= offset;
1150 		if (map_len > end - pos)
1151 			map_len = end - pos;
1152 
1153 		/*
1154 		 * The userspace address for the memory copy has already been
1155 		 * validated via access_ok() in either vfs_read() or
1156 		 * vfs_write(), depending on which operation we are doing.
1157 		 */
1158 		if (iov_iter_rw(iter) == WRITE)
1159 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1160 					map_len, iter);
1161 		else
1162 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1163 					map_len, iter);
1164 
1165 		pos += xfer;
1166 		length -= xfer;
1167 		done += xfer;
1168 
1169 		if (xfer == 0)
1170 			ret = -EFAULT;
1171 		if (xfer < map_len)
1172 			break;
1173 	}
1174 	dax_read_unlock(id);
1175 
1176 	return done ? done : ret;
1177 }
1178 
1179 /**
1180  * dax_iomap_rw - Perform I/O to a DAX file
1181  * @iocb:	The control block for this I/O
1182  * @iter:	The addresses to do I/O from or to
1183  * @ops:	iomap ops passed from the file system
1184  *
1185  * This function performs read and write operations to directly mapped
1186  * persistent memory.  The callers needs to take care of read/write exclusion
1187  * and evicting any page cache pages in the region under I/O.
1188  */
1189 ssize_t
1190 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1191 		const struct iomap_ops *ops)
1192 {
1193 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1194 	struct inode *inode = mapping->host;
1195 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1196 	unsigned flags = 0;
1197 
1198 	if (iov_iter_rw(iter) == WRITE) {
1199 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1200 		flags |= IOMAP_WRITE;
1201 	} else {
1202 		lockdep_assert_held(&inode->i_rwsem);
1203 	}
1204 
1205 	while (iov_iter_count(iter)) {
1206 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1207 				iter, dax_iomap_actor);
1208 		if (ret <= 0)
1209 			break;
1210 		pos += ret;
1211 		done += ret;
1212 	}
1213 
1214 	iocb->ki_pos += done;
1215 	return done ? done : ret;
1216 }
1217 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1218 
1219 static vm_fault_t dax_fault_return(int error)
1220 {
1221 	if (error == 0)
1222 		return VM_FAULT_NOPAGE;
1223 	return vmf_error(error);
1224 }
1225 
1226 /*
1227  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1228  * flushed on write-faults (non-cow), but not read-faults.
1229  */
1230 static bool dax_fault_is_synchronous(unsigned long flags,
1231 		struct vm_area_struct *vma, struct iomap *iomap)
1232 {
1233 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1234 		&& (iomap->flags & IOMAP_F_DIRTY);
1235 }
1236 
1237 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1238 			       int *iomap_errp, const struct iomap_ops *ops)
1239 {
1240 	struct vm_area_struct *vma = vmf->vma;
1241 	struct address_space *mapping = vma->vm_file->f_mapping;
1242 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1243 	struct inode *inode = mapping->host;
1244 	unsigned long vaddr = vmf->address;
1245 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1246 	struct iomap iomap = { 0 };
1247 	unsigned flags = IOMAP_FAULT;
1248 	int error, major = 0;
1249 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1250 	bool sync;
1251 	vm_fault_t ret = 0;
1252 	void *entry;
1253 	pfn_t pfn;
1254 
1255 	trace_dax_pte_fault(inode, vmf, ret);
1256 	/*
1257 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1258 	 * to hold locks serializing us with truncate / punch hole so this is
1259 	 * a reliable test.
1260 	 */
1261 	if (pos >= i_size_read(inode)) {
1262 		ret = VM_FAULT_SIGBUS;
1263 		goto out;
1264 	}
1265 
1266 	if (write && !vmf->cow_page)
1267 		flags |= IOMAP_WRITE;
1268 
1269 	entry = grab_mapping_entry(&xas, mapping, 0);
1270 	if (xa_is_internal(entry)) {
1271 		ret = xa_to_internal(entry);
1272 		goto out;
1273 	}
1274 
1275 	/*
1276 	 * It is possible, particularly with mixed reads & writes to private
1277 	 * mappings, that we have raced with a PMD fault that overlaps with
1278 	 * the PTE we need to set up.  If so just return and the fault will be
1279 	 * retried.
1280 	 */
1281 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1282 		ret = VM_FAULT_NOPAGE;
1283 		goto unlock_entry;
1284 	}
1285 
1286 	/*
1287 	 * Note that we don't bother to use iomap_apply here: DAX required
1288 	 * the file system block size to be equal the page size, which means
1289 	 * that we never have to deal with more than a single extent here.
1290 	 */
1291 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1292 	if (iomap_errp)
1293 		*iomap_errp = error;
1294 	if (error) {
1295 		ret = dax_fault_return(error);
1296 		goto unlock_entry;
1297 	}
1298 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1299 		error = -EIO;	/* fs corruption? */
1300 		goto error_finish_iomap;
1301 	}
1302 
1303 	if (vmf->cow_page) {
1304 		sector_t sector = dax_iomap_sector(&iomap, pos);
1305 
1306 		switch (iomap.type) {
1307 		case IOMAP_HOLE:
1308 		case IOMAP_UNWRITTEN:
1309 			clear_user_highpage(vmf->cow_page, vaddr);
1310 			break;
1311 		case IOMAP_MAPPED:
1312 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1313 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1314 			break;
1315 		default:
1316 			WARN_ON_ONCE(1);
1317 			error = -EIO;
1318 			break;
1319 		}
1320 
1321 		if (error)
1322 			goto error_finish_iomap;
1323 
1324 		__SetPageUptodate(vmf->cow_page);
1325 		ret = finish_fault(vmf);
1326 		if (!ret)
1327 			ret = VM_FAULT_DONE_COW;
1328 		goto finish_iomap;
1329 	}
1330 
1331 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1332 
1333 	switch (iomap.type) {
1334 	case IOMAP_MAPPED:
1335 		if (iomap.flags & IOMAP_F_NEW) {
1336 			count_vm_event(PGMAJFAULT);
1337 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1338 			major = VM_FAULT_MAJOR;
1339 		}
1340 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1341 		if (error < 0)
1342 			goto error_finish_iomap;
1343 
1344 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1345 						 0, write && !sync);
1346 
1347 		/*
1348 		 * If we are doing synchronous page fault and inode needs fsync,
1349 		 * we can insert PTE into page tables only after that happens.
1350 		 * Skip insertion for now and return the pfn so that caller can
1351 		 * insert it after fsync is done.
1352 		 */
1353 		if (sync) {
1354 			if (WARN_ON_ONCE(!pfnp)) {
1355 				error = -EIO;
1356 				goto error_finish_iomap;
1357 			}
1358 			*pfnp = pfn;
1359 			ret = VM_FAULT_NEEDDSYNC | major;
1360 			goto finish_iomap;
1361 		}
1362 		trace_dax_insert_mapping(inode, vmf, entry);
1363 		if (write)
1364 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1365 		else
1366 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1367 
1368 		goto finish_iomap;
1369 	case IOMAP_UNWRITTEN:
1370 	case IOMAP_HOLE:
1371 		if (!write) {
1372 			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1373 			goto finish_iomap;
1374 		}
1375 		/*FALLTHRU*/
1376 	default:
1377 		WARN_ON_ONCE(1);
1378 		error = -EIO;
1379 		break;
1380 	}
1381 
1382  error_finish_iomap:
1383 	ret = dax_fault_return(error);
1384  finish_iomap:
1385 	if (ops->iomap_end) {
1386 		int copied = PAGE_SIZE;
1387 
1388 		if (ret & VM_FAULT_ERROR)
1389 			copied = 0;
1390 		/*
1391 		 * The fault is done by now and there's no way back (other
1392 		 * thread may be already happily using PTE we have installed).
1393 		 * Just ignore error from ->iomap_end since we cannot do much
1394 		 * with it.
1395 		 */
1396 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1397 	}
1398  unlock_entry:
1399 	dax_unlock_entry(&xas, entry);
1400  out:
1401 	trace_dax_pte_fault_done(inode, vmf, ret);
1402 	return ret | major;
1403 }
1404 
1405 #ifdef CONFIG_FS_DAX_PMD
1406 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1407 		struct iomap *iomap, void **entry)
1408 {
1409 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1410 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1411 	struct vm_area_struct *vma = vmf->vma;
1412 	struct inode *inode = mapping->host;
1413 	pgtable_t pgtable = NULL;
1414 	struct page *zero_page;
1415 	spinlock_t *ptl;
1416 	pmd_t pmd_entry;
1417 	pfn_t pfn;
1418 
1419 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1420 
1421 	if (unlikely(!zero_page))
1422 		goto fallback;
1423 
1424 	pfn = page_to_pfn_t(zero_page);
1425 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1426 			DAX_PMD | DAX_ZERO_PAGE, false);
1427 
1428 	if (arch_needs_pgtable_deposit()) {
1429 		pgtable = pte_alloc_one(vma->vm_mm);
1430 		if (!pgtable)
1431 			return VM_FAULT_OOM;
1432 	}
1433 
1434 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1435 	if (!pmd_none(*(vmf->pmd))) {
1436 		spin_unlock(ptl);
1437 		goto fallback;
1438 	}
1439 
1440 	if (pgtable) {
1441 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1442 		mm_inc_nr_ptes(vma->vm_mm);
1443 	}
1444 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1445 	pmd_entry = pmd_mkhuge(pmd_entry);
1446 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1447 	spin_unlock(ptl);
1448 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1449 	return VM_FAULT_NOPAGE;
1450 
1451 fallback:
1452 	if (pgtable)
1453 		pte_free(vma->vm_mm, pgtable);
1454 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1455 	return VM_FAULT_FALLBACK;
1456 }
1457 
1458 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1459 			       const struct iomap_ops *ops)
1460 {
1461 	struct vm_area_struct *vma = vmf->vma;
1462 	struct address_space *mapping = vma->vm_file->f_mapping;
1463 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1464 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1465 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1466 	bool sync;
1467 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1468 	struct inode *inode = mapping->host;
1469 	vm_fault_t result = VM_FAULT_FALLBACK;
1470 	struct iomap iomap = { 0 };
1471 	pgoff_t max_pgoff;
1472 	void *entry;
1473 	loff_t pos;
1474 	int error;
1475 	pfn_t pfn;
1476 
1477 	/*
1478 	 * Check whether offset isn't beyond end of file now. Caller is
1479 	 * supposed to hold locks serializing us with truncate / punch hole so
1480 	 * this is a reliable test.
1481 	 */
1482 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1483 
1484 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1485 
1486 	/*
1487 	 * Make sure that the faulting address's PMD offset (color) matches
1488 	 * the PMD offset from the start of the file.  This is necessary so
1489 	 * that a PMD range in the page table overlaps exactly with a PMD
1490 	 * range in the page cache.
1491 	 */
1492 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1493 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1494 		goto fallback;
1495 
1496 	/* Fall back to PTEs if we're going to COW */
1497 	if (write && !(vma->vm_flags & VM_SHARED))
1498 		goto fallback;
1499 
1500 	/* If the PMD would extend outside the VMA */
1501 	if (pmd_addr < vma->vm_start)
1502 		goto fallback;
1503 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1504 		goto fallback;
1505 
1506 	if (xas.xa_index >= max_pgoff) {
1507 		result = VM_FAULT_SIGBUS;
1508 		goto out;
1509 	}
1510 
1511 	/* If the PMD would extend beyond the file size */
1512 	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1513 		goto fallback;
1514 
1515 	/*
1516 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1517 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1518 	 * entry is already in the array, for instance), it will return
1519 	 * VM_FAULT_FALLBACK.
1520 	 */
1521 	entry = grab_mapping_entry(&xas, mapping, DAX_PMD);
1522 	if (xa_is_internal(entry)) {
1523 		result = xa_to_internal(entry);
1524 		goto fallback;
1525 	}
1526 
1527 	/*
1528 	 * It is possible, particularly with mixed reads & writes to private
1529 	 * mappings, that we have raced with a PTE fault that overlaps with
1530 	 * the PMD we need to set up.  If so just return and the fault will be
1531 	 * retried.
1532 	 */
1533 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1534 			!pmd_devmap(*vmf->pmd)) {
1535 		result = 0;
1536 		goto unlock_entry;
1537 	}
1538 
1539 	/*
1540 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1541 	 * setting up a mapping, so really we're using iomap_begin() as a way
1542 	 * to look up our filesystem block.
1543 	 */
1544 	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1545 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1546 	if (error)
1547 		goto unlock_entry;
1548 
1549 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1550 		goto finish_iomap;
1551 
1552 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1553 
1554 	switch (iomap.type) {
1555 	case IOMAP_MAPPED:
1556 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1557 		if (error < 0)
1558 			goto finish_iomap;
1559 
1560 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1561 						DAX_PMD, write && !sync);
1562 
1563 		/*
1564 		 * If we are doing synchronous page fault and inode needs fsync,
1565 		 * we can insert PMD into page tables only after that happens.
1566 		 * Skip insertion for now and return the pfn so that caller can
1567 		 * insert it after fsync is done.
1568 		 */
1569 		if (sync) {
1570 			if (WARN_ON_ONCE(!pfnp))
1571 				goto finish_iomap;
1572 			*pfnp = pfn;
1573 			result = VM_FAULT_NEEDDSYNC;
1574 			goto finish_iomap;
1575 		}
1576 
1577 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1578 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1579 					    write);
1580 		break;
1581 	case IOMAP_UNWRITTEN:
1582 	case IOMAP_HOLE:
1583 		if (WARN_ON_ONCE(write))
1584 			break;
1585 		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1586 		break;
1587 	default:
1588 		WARN_ON_ONCE(1);
1589 		break;
1590 	}
1591 
1592  finish_iomap:
1593 	if (ops->iomap_end) {
1594 		int copied = PMD_SIZE;
1595 
1596 		if (result == VM_FAULT_FALLBACK)
1597 			copied = 0;
1598 		/*
1599 		 * The fault is done by now and there's no way back (other
1600 		 * thread may be already happily using PMD we have installed).
1601 		 * Just ignore error from ->iomap_end since we cannot do much
1602 		 * with it.
1603 		 */
1604 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1605 				&iomap);
1606 	}
1607  unlock_entry:
1608 	dax_unlock_entry(&xas, entry);
1609  fallback:
1610 	if (result == VM_FAULT_FALLBACK) {
1611 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1612 		count_vm_event(THP_FAULT_FALLBACK);
1613 	}
1614 out:
1615 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1616 	return result;
1617 }
1618 #else
1619 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1620 			       const struct iomap_ops *ops)
1621 {
1622 	return VM_FAULT_FALLBACK;
1623 }
1624 #endif /* CONFIG_FS_DAX_PMD */
1625 
1626 /**
1627  * dax_iomap_fault - handle a page fault on a DAX file
1628  * @vmf: The description of the fault
1629  * @pe_size: Size of the page to fault in
1630  * @pfnp: PFN to insert for synchronous faults if fsync is required
1631  * @iomap_errp: Storage for detailed error code in case of error
1632  * @ops: Iomap ops passed from the file system
1633  *
1634  * When a page fault occurs, filesystems may call this helper in
1635  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1636  * has done all the necessary locking for page fault to proceed
1637  * successfully.
1638  */
1639 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1640 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1641 {
1642 	switch (pe_size) {
1643 	case PE_SIZE_PTE:
1644 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1645 	case PE_SIZE_PMD:
1646 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1647 	default:
1648 		return VM_FAULT_FALLBACK;
1649 	}
1650 }
1651 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1652 
1653 /*
1654  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1655  * @vmf: The description of the fault
1656  * @pfn: PFN to insert
1657  * @order: Order of entry to insert.
1658  *
1659  * This function inserts a writeable PTE or PMD entry into the page tables
1660  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1661  */
1662 static vm_fault_t
1663 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1664 {
1665 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1666 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1667 	void *entry;
1668 	vm_fault_t ret;
1669 
1670 	xas_lock_irq(&xas);
1671 	entry = get_unlocked_entry(&xas);
1672 	/* Did we race with someone splitting entry or so? */
1673 	if (!entry ||
1674 	    (order == 0 && !dax_is_pte_entry(entry)) ||
1675 	    (order == PMD_ORDER && !dax_is_pmd_entry(entry))) {
1676 		put_unlocked_entry(&xas, entry);
1677 		xas_unlock_irq(&xas);
1678 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1679 						      VM_FAULT_NOPAGE);
1680 		return VM_FAULT_NOPAGE;
1681 	}
1682 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1683 	dax_lock_entry(&xas, entry);
1684 	xas_unlock_irq(&xas);
1685 	if (order == 0)
1686 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1687 #ifdef CONFIG_FS_DAX_PMD
1688 	else if (order == PMD_ORDER)
1689 		ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1690 			pfn, true);
1691 #endif
1692 	else
1693 		ret = VM_FAULT_FALLBACK;
1694 	dax_unlock_entry(&xas, entry);
1695 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1696 	return ret;
1697 }
1698 
1699 /**
1700  * dax_finish_sync_fault - finish synchronous page fault
1701  * @vmf: The description of the fault
1702  * @pe_size: Size of entry to be inserted
1703  * @pfn: PFN to insert
1704  *
1705  * This function ensures that the file range touched by the page fault is
1706  * stored persistently on the media and handles inserting of appropriate page
1707  * table entry.
1708  */
1709 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1710 		enum page_entry_size pe_size, pfn_t pfn)
1711 {
1712 	int err;
1713 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1714 	unsigned int order = pe_order(pe_size);
1715 	size_t len = PAGE_SIZE << order;
1716 
1717 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1718 	if (err)
1719 		return VM_FAULT_SIGBUS;
1720 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1721 }
1722 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1723