1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/sched.h> 29 #include <linux/sched/signal.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/iomap.h> 36 #include <asm/pgalloc.h> 37 #include "internal.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/fs_dax.h> 41 42 static inline unsigned int pe_order(enum page_entry_size pe_size) 43 { 44 if (pe_size == PE_SIZE_PTE) 45 return PAGE_SHIFT - PAGE_SHIFT; 46 if (pe_size == PE_SIZE_PMD) 47 return PMD_SHIFT - PAGE_SHIFT; 48 if (pe_size == PE_SIZE_PUD) 49 return PUD_SHIFT - PAGE_SHIFT; 50 return ~0; 51 } 52 53 /* We choose 4096 entries - same as per-zone page wait tables */ 54 #define DAX_WAIT_TABLE_BITS 12 55 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 56 57 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 58 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 59 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 60 61 /* The order of a PMD entry */ 62 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 63 64 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 65 66 static int __init init_dax_wait_table(void) 67 { 68 int i; 69 70 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 71 init_waitqueue_head(wait_table + i); 72 return 0; 73 } 74 fs_initcall(init_dax_wait_table); 75 76 /* 77 * DAX pagecache entries use XArray value entries so they can't be mistaken 78 * for pages. We use one bit for locking, one bit for the entry size (PMD) 79 * and two more to tell us if the entry is a zero page or an empty entry that 80 * is just used for locking. In total four special bits. 81 * 82 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 83 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 84 * block allocation. 85 */ 86 #define DAX_SHIFT (4) 87 #define DAX_LOCKED (1UL << 0) 88 #define DAX_PMD (1UL << 1) 89 #define DAX_ZERO_PAGE (1UL << 2) 90 #define DAX_EMPTY (1UL << 3) 91 92 static unsigned long dax_to_pfn(void *entry) 93 { 94 return xa_to_value(entry) >> DAX_SHIFT; 95 } 96 97 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 98 { 99 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 100 } 101 102 static bool dax_is_locked(void *entry) 103 { 104 return xa_to_value(entry) & DAX_LOCKED; 105 } 106 107 static unsigned int dax_entry_order(void *entry) 108 { 109 if (xa_to_value(entry) & DAX_PMD) 110 return PMD_ORDER; 111 return 0; 112 } 113 114 static unsigned long dax_is_pmd_entry(void *entry) 115 { 116 return xa_to_value(entry) & DAX_PMD; 117 } 118 119 static bool dax_is_pte_entry(void *entry) 120 { 121 return !(xa_to_value(entry) & DAX_PMD); 122 } 123 124 static int dax_is_zero_entry(void *entry) 125 { 126 return xa_to_value(entry) & DAX_ZERO_PAGE; 127 } 128 129 static int dax_is_empty_entry(void *entry) 130 { 131 return xa_to_value(entry) & DAX_EMPTY; 132 } 133 134 /* 135 * DAX page cache entry locking 136 */ 137 struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140 }; 141 142 struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145 }; 146 147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 148 void *entry, struct exceptional_entry_key *key) 149 { 150 unsigned long hash; 151 unsigned long index = xas->xa_index; 152 153 /* 154 * If 'entry' is a PMD, align the 'index' that we use for the wait 155 * queue to the start of that PMD. This ensures that all offsets in 156 * the range covered by the PMD map to the same bit lock. 157 */ 158 if (dax_is_pmd_entry(entry)) 159 index &= ~PG_PMD_COLOUR; 160 key->xa = xas->xa; 161 key->entry_start = index; 162 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 164 return wait_table + hash; 165 } 166 167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 168 unsigned int mode, int sync, void *keyp) 169 { 170 struct exceptional_entry_key *key = keyp; 171 struct wait_exceptional_entry_queue *ewait = 172 container_of(wait, struct wait_exceptional_entry_queue, wait); 173 174 if (key->xa != ewait->key.xa || 175 key->entry_start != ewait->key.entry_start) 176 return 0; 177 return autoremove_wake_function(wait, mode, sync, NULL); 178 } 179 180 /* 181 * @entry may no longer be the entry at the index in the mapping. 182 * The important information it's conveying is whether the entry at 183 * this index used to be a PMD entry. 184 */ 185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all) 186 { 187 struct exceptional_entry_key key; 188 wait_queue_head_t *wq; 189 190 wq = dax_entry_waitqueue(xas, entry, &key); 191 192 /* 193 * Checking for locked entry and prepare_to_wait_exclusive() happens 194 * under the i_pages lock, ditto for entry handling in our callers. 195 * So at this point all tasks that could have seen our entry locked 196 * must be in the waitqueue and the following check will see them. 197 */ 198 if (waitqueue_active(wq)) 199 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 200 } 201 202 /* 203 * Look up entry in page cache, wait for it to become unlocked if it 204 * is a DAX entry and return it. The caller must subsequently call 205 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 206 * if it did. 207 * 208 * Must be called with the i_pages lock held. 209 */ 210 static void *get_unlocked_entry(struct xa_state *xas) 211 { 212 void *entry; 213 struct wait_exceptional_entry_queue ewait; 214 wait_queue_head_t *wq; 215 216 init_wait(&ewait.wait); 217 ewait.wait.func = wake_exceptional_entry_func; 218 219 for (;;) { 220 entry = xas_find_conflict(xas); 221 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) || 222 !dax_is_locked(entry)) 223 return entry; 224 225 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 226 prepare_to_wait_exclusive(wq, &ewait.wait, 227 TASK_UNINTERRUPTIBLE); 228 xas_unlock_irq(xas); 229 xas_reset(xas); 230 schedule(); 231 finish_wait(wq, &ewait.wait); 232 xas_lock_irq(xas); 233 } 234 } 235 236 /* 237 * The only thing keeping the address space around is the i_pages lock 238 * (it's cycled in clear_inode() after removing the entries from i_pages) 239 * After we call xas_unlock_irq(), we cannot touch xas->xa. 240 */ 241 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 242 { 243 struct wait_exceptional_entry_queue ewait; 244 wait_queue_head_t *wq; 245 246 init_wait(&ewait.wait); 247 ewait.wait.func = wake_exceptional_entry_func; 248 249 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 250 /* 251 * Unlike get_unlocked_entry() there is no guarantee that this 252 * path ever successfully retrieves an unlocked entry before an 253 * inode dies. Perform a non-exclusive wait in case this path 254 * never successfully performs its own wake up. 255 */ 256 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 257 xas_unlock_irq(xas); 258 schedule(); 259 finish_wait(wq, &ewait.wait); 260 } 261 262 static void put_unlocked_entry(struct xa_state *xas, void *entry) 263 { 264 /* If we were the only waiter woken, wake the next one */ 265 if (entry) 266 dax_wake_entry(xas, entry, false); 267 } 268 269 /* 270 * We used the xa_state to get the entry, but then we locked the entry and 271 * dropped the xa_lock, so we know the xa_state is stale and must be reset 272 * before use. 273 */ 274 static void dax_unlock_entry(struct xa_state *xas, void *entry) 275 { 276 void *old; 277 278 BUG_ON(dax_is_locked(entry)); 279 xas_reset(xas); 280 xas_lock_irq(xas); 281 old = xas_store(xas, entry); 282 xas_unlock_irq(xas); 283 BUG_ON(!dax_is_locked(old)); 284 dax_wake_entry(xas, entry, false); 285 } 286 287 /* 288 * Return: The entry stored at this location before it was locked. 289 */ 290 static void *dax_lock_entry(struct xa_state *xas, void *entry) 291 { 292 unsigned long v = xa_to_value(entry); 293 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 294 } 295 296 static unsigned long dax_entry_size(void *entry) 297 { 298 if (dax_is_zero_entry(entry)) 299 return 0; 300 else if (dax_is_empty_entry(entry)) 301 return 0; 302 else if (dax_is_pmd_entry(entry)) 303 return PMD_SIZE; 304 else 305 return PAGE_SIZE; 306 } 307 308 static unsigned long dax_end_pfn(void *entry) 309 { 310 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 311 } 312 313 /* 314 * Iterate through all mapped pfns represented by an entry, i.e. skip 315 * 'empty' and 'zero' entries. 316 */ 317 #define for_each_mapped_pfn(entry, pfn) \ 318 for (pfn = dax_to_pfn(entry); \ 319 pfn < dax_end_pfn(entry); pfn++) 320 321 /* 322 * TODO: for reflink+dax we need a way to associate a single page with 323 * multiple address_space instances at different linear_page_index() 324 * offsets. 325 */ 326 static void dax_associate_entry(void *entry, struct address_space *mapping, 327 struct vm_area_struct *vma, unsigned long address) 328 { 329 unsigned long size = dax_entry_size(entry), pfn, index; 330 int i = 0; 331 332 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 333 return; 334 335 index = linear_page_index(vma, address & ~(size - 1)); 336 for_each_mapped_pfn(entry, pfn) { 337 struct page *page = pfn_to_page(pfn); 338 339 WARN_ON_ONCE(page->mapping); 340 page->mapping = mapping; 341 page->index = index + i++; 342 } 343 } 344 345 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 346 bool trunc) 347 { 348 unsigned long pfn; 349 350 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 351 return; 352 353 for_each_mapped_pfn(entry, pfn) { 354 struct page *page = pfn_to_page(pfn); 355 356 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 357 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 358 page->mapping = NULL; 359 page->index = 0; 360 } 361 } 362 363 static struct page *dax_busy_page(void *entry) 364 { 365 unsigned long pfn; 366 367 for_each_mapped_pfn(entry, pfn) { 368 struct page *page = pfn_to_page(pfn); 369 370 if (page_ref_count(page) > 1) 371 return page; 372 } 373 return NULL; 374 } 375 376 /* 377 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page 378 * @page: The page whose entry we want to lock 379 * 380 * Context: Process context. 381 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 382 * not be locked. 383 */ 384 dax_entry_t dax_lock_page(struct page *page) 385 { 386 XA_STATE(xas, NULL, 0); 387 void *entry; 388 389 /* Ensure page->mapping isn't freed while we look at it */ 390 rcu_read_lock(); 391 for (;;) { 392 struct address_space *mapping = READ_ONCE(page->mapping); 393 394 entry = NULL; 395 if (!mapping || !dax_mapping(mapping)) 396 break; 397 398 /* 399 * In the device-dax case there's no need to lock, a 400 * struct dev_pagemap pin is sufficient to keep the 401 * inode alive, and we assume we have dev_pagemap pin 402 * otherwise we would not have a valid pfn_to_page() 403 * translation. 404 */ 405 entry = (void *)~0UL; 406 if (S_ISCHR(mapping->host->i_mode)) 407 break; 408 409 xas.xa = &mapping->i_pages; 410 xas_lock_irq(&xas); 411 if (mapping != page->mapping) { 412 xas_unlock_irq(&xas); 413 continue; 414 } 415 xas_set(&xas, page->index); 416 entry = xas_load(&xas); 417 if (dax_is_locked(entry)) { 418 rcu_read_unlock(); 419 wait_entry_unlocked(&xas, entry); 420 rcu_read_lock(); 421 continue; 422 } 423 dax_lock_entry(&xas, entry); 424 xas_unlock_irq(&xas); 425 break; 426 } 427 rcu_read_unlock(); 428 return (dax_entry_t)entry; 429 } 430 431 void dax_unlock_page(struct page *page, dax_entry_t cookie) 432 { 433 struct address_space *mapping = page->mapping; 434 XA_STATE(xas, &mapping->i_pages, page->index); 435 436 if (S_ISCHR(mapping->host->i_mode)) 437 return; 438 439 dax_unlock_entry(&xas, (void *)cookie); 440 } 441 442 /* 443 * Find page cache entry at given index. If it is a DAX entry, return it 444 * with the entry locked. If the page cache doesn't contain an entry at 445 * that index, add a locked empty entry. 446 * 447 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 448 * either return that locked entry or will return VM_FAULT_FALLBACK. 449 * This will happen if there are any PTE entries within the PMD range 450 * that we are requesting. 451 * 452 * We always favor PTE entries over PMD entries. There isn't a flow where we 453 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 454 * insertion will fail if it finds any PTE entries already in the tree, and a 455 * PTE insertion will cause an existing PMD entry to be unmapped and 456 * downgraded to PTE entries. This happens for both PMD zero pages as 457 * well as PMD empty entries. 458 * 459 * The exception to this downgrade path is for PMD entries that have 460 * real storage backing them. We will leave these real PMD entries in 461 * the tree, and PTE writes will simply dirty the entire PMD entry. 462 * 463 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 464 * persistent memory the benefit is doubtful. We can add that later if we can 465 * show it helps. 466 * 467 * On error, this function does not return an ERR_PTR. Instead it returns 468 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 469 * overlap with xarray value entries. 470 */ 471 static void *grab_mapping_entry(struct xa_state *xas, 472 struct address_space *mapping, unsigned long size_flag) 473 { 474 unsigned long index = xas->xa_index; 475 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */ 476 void *entry; 477 478 retry: 479 xas_lock_irq(xas); 480 entry = get_unlocked_entry(xas); 481 482 if (entry) { 483 if (!xa_is_value(entry)) { 484 xas_set_err(xas, EIO); 485 goto out_unlock; 486 } 487 488 if (size_flag & DAX_PMD) { 489 if (dax_is_pte_entry(entry)) { 490 put_unlocked_entry(xas, entry); 491 goto fallback; 492 } 493 } else { /* trying to grab a PTE entry */ 494 if (dax_is_pmd_entry(entry) && 495 (dax_is_zero_entry(entry) || 496 dax_is_empty_entry(entry))) { 497 pmd_downgrade = true; 498 } 499 } 500 } 501 502 if (pmd_downgrade) { 503 /* 504 * Make sure 'entry' remains valid while we drop 505 * the i_pages lock. 506 */ 507 dax_lock_entry(xas, entry); 508 509 /* 510 * Besides huge zero pages the only other thing that gets 511 * downgraded are empty entries which don't need to be 512 * unmapped. 513 */ 514 if (dax_is_zero_entry(entry)) { 515 xas_unlock_irq(xas); 516 unmap_mapping_pages(mapping, 517 xas->xa_index & ~PG_PMD_COLOUR, 518 PG_PMD_NR, false); 519 xas_reset(xas); 520 xas_lock_irq(xas); 521 } 522 523 dax_disassociate_entry(entry, mapping, false); 524 xas_store(xas, NULL); /* undo the PMD join */ 525 dax_wake_entry(xas, entry, true); 526 mapping->nrexceptional--; 527 entry = NULL; 528 xas_set(xas, index); 529 } 530 531 if (entry) { 532 dax_lock_entry(xas, entry); 533 } else { 534 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY); 535 dax_lock_entry(xas, entry); 536 if (xas_error(xas)) 537 goto out_unlock; 538 mapping->nrexceptional++; 539 } 540 541 out_unlock: 542 xas_unlock_irq(xas); 543 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 544 goto retry; 545 if (xas->xa_node == XA_ERROR(-ENOMEM)) 546 return xa_mk_internal(VM_FAULT_OOM); 547 if (xas_error(xas)) 548 return xa_mk_internal(VM_FAULT_SIGBUS); 549 return entry; 550 fallback: 551 xas_unlock_irq(xas); 552 return xa_mk_internal(VM_FAULT_FALLBACK); 553 } 554 555 /** 556 * dax_layout_busy_page - find first pinned page in @mapping 557 * @mapping: address space to scan for a page with ref count > 1 558 * 559 * DAX requires ZONE_DEVICE mapped pages. These pages are never 560 * 'onlined' to the page allocator so they are considered idle when 561 * page->count == 1. A filesystem uses this interface to determine if 562 * any page in the mapping is busy, i.e. for DMA, or other 563 * get_user_pages() usages. 564 * 565 * It is expected that the filesystem is holding locks to block the 566 * establishment of new mappings in this address_space. I.e. it expects 567 * to be able to run unmap_mapping_range() and subsequently not race 568 * mapping_mapped() becoming true. 569 */ 570 struct page *dax_layout_busy_page(struct address_space *mapping) 571 { 572 XA_STATE(xas, &mapping->i_pages, 0); 573 void *entry; 574 unsigned int scanned = 0; 575 struct page *page = NULL; 576 577 /* 578 * In the 'limited' case get_user_pages() for dax is disabled. 579 */ 580 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 581 return NULL; 582 583 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 584 return NULL; 585 586 /* 587 * If we race get_user_pages_fast() here either we'll see the 588 * elevated page count in the iteration and wait, or 589 * get_user_pages_fast() will see that the page it took a reference 590 * against is no longer mapped in the page tables and bail to the 591 * get_user_pages() slow path. The slow path is protected by 592 * pte_lock() and pmd_lock(). New references are not taken without 593 * holding those locks, and unmap_mapping_range() will not zero the 594 * pte or pmd without holding the respective lock, so we are 595 * guaranteed to either see new references or prevent new 596 * references from being established. 597 */ 598 unmap_mapping_range(mapping, 0, 0, 1); 599 600 xas_lock_irq(&xas); 601 xas_for_each(&xas, entry, ULONG_MAX) { 602 if (WARN_ON_ONCE(!xa_is_value(entry))) 603 continue; 604 if (unlikely(dax_is_locked(entry))) 605 entry = get_unlocked_entry(&xas); 606 if (entry) 607 page = dax_busy_page(entry); 608 put_unlocked_entry(&xas, entry); 609 if (page) 610 break; 611 if (++scanned % XA_CHECK_SCHED) 612 continue; 613 614 xas_pause(&xas); 615 xas_unlock_irq(&xas); 616 cond_resched(); 617 xas_lock_irq(&xas); 618 } 619 xas_unlock_irq(&xas); 620 return page; 621 } 622 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 623 624 static int __dax_invalidate_entry(struct address_space *mapping, 625 pgoff_t index, bool trunc) 626 { 627 XA_STATE(xas, &mapping->i_pages, index); 628 int ret = 0; 629 void *entry; 630 631 xas_lock_irq(&xas); 632 entry = get_unlocked_entry(&xas); 633 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 634 goto out; 635 if (!trunc && 636 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 637 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 638 goto out; 639 dax_disassociate_entry(entry, mapping, trunc); 640 xas_store(&xas, NULL); 641 mapping->nrexceptional--; 642 ret = 1; 643 out: 644 put_unlocked_entry(&xas, entry); 645 xas_unlock_irq(&xas); 646 return ret; 647 } 648 649 /* 650 * Delete DAX entry at @index from @mapping. Wait for it 651 * to be unlocked before deleting it. 652 */ 653 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 654 { 655 int ret = __dax_invalidate_entry(mapping, index, true); 656 657 /* 658 * This gets called from truncate / punch_hole path. As such, the caller 659 * must hold locks protecting against concurrent modifications of the 660 * page cache (usually fs-private i_mmap_sem for writing). Since the 661 * caller has seen a DAX entry for this index, we better find it 662 * at that index as well... 663 */ 664 WARN_ON_ONCE(!ret); 665 return ret; 666 } 667 668 /* 669 * Invalidate DAX entry if it is clean. 670 */ 671 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 672 pgoff_t index) 673 { 674 return __dax_invalidate_entry(mapping, index, false); 675 } 676 677 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, 678 sector_t sector, size_t size, struct page *to, 679 unsigned long vaddr) 680 { 681 void *vto, *kaddr; 682 pgoff_t pgoff; 683 long rc; 684 int id; 685 686 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); 687 if (rc) 688 return rc; 689 690 id = dax_read_lock(); 691 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL); 692 if (rc < 0) { 693 dax_read_unlock(id); 694 return rc; 695 } 696 vto = kmap_atomic(to); 697 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 698 kunmap_atomic(vto); 699 dax_read_unlock(id); 700 return 0; 701 } 702 703 /* 704 * By this point grab_mapping_entry() has ensured that we have a locked entry 705 * of the appropriate size so we don't have to worry about downgrading PMDs to 706 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 707 * already in the tree, we will skip the insertion and just dirty the PMD as 708 * appropriate. 709 */ 710 static void *dax_insert_entry(struct xa_state *xas, 711 struct address_space *mapping, struct vm_fault *vmf, 712 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 713 { 714 void *new_entry = dax_make_entry(pfn, flags); 715 716 if (dirty) 717 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 718 719 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 720 unsigned long index = xas->xa_index; 721 /* we are replacing a zero page with block mapping */ 722 if (dax_is_pmd_entry(entry)) 723 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 724 PG_PMD_NR, false); 725 else /* pte entry */ 726 unmap_mapping_pages(mapping, index, 1, false); 727 } 728 729 xas_reset(xas); 730 xas_lock_irq(xas); 731 if (dax_entry_size(entry) != dax_entry_size(new_entry)) { 732 dax_disassociate_entry(entry, mapping, false); 733 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 734 } 735 736 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 737 /* 738 * Only swap our new entry into the page cache if the current 739 * entry is a zero page or an empty entry. If a normal PTE or 740 * PMD entry is already in the cache, we leave it alone. This 741 * means that if we are trying to insert a PTE and the 742 * existing entry is a PMD, we will just leave the PMD in the 743 * tree and dirty it if necessary. 744 */ 745 void *old = dax_lock_entry(xas, new_entry); 746 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 747 DAX_LOCKED)); 748 entry = new_entry; 749 } else { 750 xas_load(xas); /* Walk the xa_state */ 751 } 752 753 if (dirty) 754 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 755 756 xas_unlock_irq(xas); 757 return entry; 758 } 759 760 static inline 761 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 762 { 763 unsigned long address; 764 765 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 766 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 767 return address; 768 } 769 770 /* Walk all mappings of a given index of a file and writeprotect them */ 771 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 772 unsigned long pfn) 773 { 774 struct vm_area_struct *vma; 775 pte_t pte, *ptep = NULL; 776 pmd_t *pmdp = NULL; 777 spinlock_t *ptl; 778 779 i_mmap_lock_read(mapping); 780 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 781 struct mmu_notifier_range range; 782 unsigned long address; 783 784 cond_resched(); 785 786 if (!(vma->vm_flags & VM_SHARED)) 787 continue; 788 789 address = pgoff_address(index, vma); 790 791 /* 792 * Note because we provide range to follow_pte_pmd it will 793 * call mmu_notifier_invalidate_range_start() on our behalf 794 * before taking any lock. 795 */ 796 if (follow_pte_pmd(vma->vm_mm, address, &range, 797 &ptep, &pmdp, &ptl)) 798 continue; 799 800 /* 801 * No need to call mmu_notifier_invalidate_range() as we are 802 * downgrading page table protection not changing it to point 803 * to a new page. 804 * 805 * See Documentation/vm/mmu_notifier.rst 806 */ 807 if (pmdp) { 808 #ifdef CONFIG_FS_DAX_PMD 809 pmd_t pmd; 810 811 if (pfn != pmd_pfn(*pmdp)) 812 goto unlock_pmd; 813 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 814 goto unlock_pmd; 815 816 flush_cache_page(vma, address, pfn); 817 pmd = pmdp_huge_clear_flush(vma, address, pmdp); 818 pmd = pmd_wrprotect(pmd); 819 pmd = pmd_mkclean(pmd); 820 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 821 unlock_pmd: 822 #endif 823 spin_unlock(ptl); 824 } else { 825 if (pfn != pte_pfn(*ptep)) 826 goto unlock_pte; 827 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 828 goto unlock_pte; 829 830 flush_cache_page(vma, address, pfn); 831 pte = ptep_clear_flush(vma, address, ptep); 832 pte = pte_wrprotect(pte); 833 pte = pte_mkclean(pte); 834 set_pte_at(vma->vm_mm, address, ptep, pte); 835 unlock_pte: 836 pte_unmap_unlock(ptep, ptl); 837 } 838 839 mmu_notifier_invalidate_range_end(&range); 840 } 841 i_mmap_unlock_read(mapping); 842 } 843 844 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 845 struct address_space *mapping, void *entry) 846 { 847 unsigned long pfn, index, count; 848 long ret = 0; 849 850 /* 851 * A page got tagged dirty in DAX mapping? Something is seriously 852 * wrong. 853 */ 854 if (WARN_ON(!xa_is_value(entry))) 855 return -EIO; 856 857 if (unlikely(dax_is_locked(entry))) { 858 void *old_entry = entry; 859 860 entry = get_unlocked_entry(xas); 861 862 /* Entry got punched out / reallocated? */ 863 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 864 goto put_unlocked; 865 /* 866 * Entry got reallocated elsewhere? No need to writeback. 867 * We have to compare pfns as we must not bail out due to 868 * difference in lockbit or entry type. 869 */ 870 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 871 goto put_unlocked; 872 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 873 dax_is_zero_entry(entry))) { 874 ret = -EIO; 875 goto put_unlocked; 876 } 877 878 /* Another fsync thread may have already done this entry */ 879 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 880 goto put_unlocked; 881 } 882 883 /* Lock the entry to serialize with page faults */ 884 dax_lock_entry(xas, entry); 885 886 /* 887 * We can clear the tag now but we have to be careful so that concurrent 888 * dax_writeback_one() calls for the same index cannot finish before we 889 * actually flush the caches. This is achieved as the calls will look 890 * at the entry only under the i_pages lock and once they do that 891 * they will see the entry locked and wait for it to unlock. 892 */ 893 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 894 xas_unlock_irq(xas); 895 896 /* 897 * If dax_writeback_mapping_range() was given a wbc->range_start 898 * in the middle of a PMD, the 'index' we use needs to be 899 * aligned to the start of the PMD. 900 * This allows us to flush for PMD_SIZE and not have to worry about 901 * partial PMD writebacks. 902 */ 903 pfn = dax_to_pfn(entry); 904 count = 1UL << dax_entry_order(entry); 905 index = xas->xa_index & ~(count - 1); 906 907 dax_entry_mkclean(mapping, index, pfn); 908 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 909 /* 910 * After we have flushed the cache, we can clear the dirty tag. There 911 * cannot be new dirty data in the pfn after the flush has completed as 912 * the pfn mappings are writeprotected and fault waits for mapping 913 * entry lock. 914 */ 915 xas_reset(xas); 916 xas_lock_irq(xas); 917 xas_store(xas, entry); 918 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 919 dax_wake_entry(xas, entry, false); 920 921 trace_dax_writeback_one(mapping->host, index, count); 922 return ret; 923 924 put_unlocked: 925 put_unlocked_entry(xas, entry); 926 return ret; 927 } 928 929 /* 930 * Flush the mapping to the persistent domain within the byte range of [start, 931 * end]. This is required by data integrity operations to ensure file data is 932 * on persistent storage prior to completion of the operation. 933 */ 934 int dax_writeback_mapping_range(struct address_space *mapping, 935 struct block_device *bdev, struct writeback_control *wbc) 936 { 937 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 938 struct inode *inode = mapping->host; 939 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 940 struct dax_device *dax_dev; 941 void *entry; 942 int ret = 0; 943 unsigned int scanned = 0; 944 945 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 946 return -EIO; 947 948 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 949 return 0; 950 951 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 952 if (!dax_dev) 953 return -EIO; 954 955 trace_dax_writeback_range(inode, xas.xa_index, end_index); 956 957 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 958 959 xas_lock_irq(&xas); 960 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 961 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 962 if (ret < 0) { 963 mapping_set_error(mapping, ret); 964 break; 965 } 966 if (++scanned % XA_CHECK_SCHED) 967 continue; 968 969 xas_pause(&xas); 970 xas_unlock_irq(&xas); 971 cond_resched(); 972 xas_lock_irq(&xas); 973 } 974 xas_unlock_irq(&xas); 975 put_dax(dax_dev); 976 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 977 return ret; 978 } 979 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 980 981 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 982 { 983 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 984 } 985 986 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 987 pfn_t *pfnp) 988 { 989 const sector_t sector = dax_iomap_sector(iomap, pos); 990 pgoff_t pgoff; 991 int id, rc; 992 long length; 993 994 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 995 if (rc) 996 return rc; 997 id = dax_read_lock(); 998 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 999 NULL, pfnp); 1000 if (length < 0) { 1001 rc = length; 1002 goto out; 1003 } 1004 rc = -EINVAL; 1005 if (PFN_PHYS(length) < size) 1006 goto out; 1007 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1008 goto out; 1009 /* For larger pages we need devmap */ 1010 if (length > 1 && !pfn_t_devmap(*pfnp)) 1011 goto out; 1012 rc = 0; 1013 out: 1014 dax_read_unlock(id); 1015 return rc; 1016 } 1017 1018 /* 1019 * The user has performed a load from a hole in the file. Allocating a new 1020 * page in the file would cause excessive storage usage for workloads with 1021 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1022 * If this page is ever written to we will re-fault and change the mapping to 1023 * point to real DAX storage instead. 1024 */ 1025 static vm_fault_t dax_load_hole(struct xa_state *xas, 1026 struct address_space *mapping, void **entry, 1027 struct vm_fault *vmf) 1028 { 1029 struct inode *inode = mapping->host; 1030 unsigned long vaddr = vmf->address; 1031 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1032 vm_fault_t ret; 1033 1034 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1035 DAX_ZERO_PAGE, false); 1036 1037 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1038 trace_dax_load_hole(inode, vmf, ret); 1039 return ret; 1040 } 1041 1042 static bool dax_range_is_aligned(struct block_device *bdev, 1043 unsigned int offset, unsigned int length) 1044 { 1045 unsigned short sector_size = bdev_logical_block_size(bdev); 1046 1047 if (!IS_ALIGNED(offset, sector_size)) 1048 return false; 1049 if (!IS_ALIGNED(length, sector_size)) 1050 return false; 1051 1052 return true; 1053 } 1054 1055 int __dax_zero_page_range(struct block_device *bdev, 1056 struct dax_device *dax_dev, sector_t sector, 1057 unsigned int offset, unsigned int size) 1058 { 1059 if (dax_range_is_aligned(bdev, offset, size)) { 1060 sector_t start_sector = sector + (offset >> 9); 1061 1062 return blkdev_issue_zeroout(bdev, start_sector, 1063 size >> 9, GFP_NOFS, 0); 1064 } else { 1065 pgoff_t pgoff; 1066 long rc, id; 1067 void *kaddr; 1068 1069 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 1070 if (rc) 1071 return rc; 1072 1073 id = dax_read_lock(); 1074 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); 1075 if (rc < 0) { 1076 dax_read_unlock(id); 1077 return rc; 1078 } 1079 memset(kaddr + offset, 0, size); 1080 dax_flush(dax_dev, kaddr + offset, size); 1081 dax_read_unlock(id); 1082 } 1083 return 0; 1084 } 1085 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 1086 1087 static loff_t 1088 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1089 struct iomap *iomap) 1090 { 1091 struct block_device *bdev = iomap->bdev; 1092 struct dax_device *dax_dev = iomap->dax_dev; 1093 struct iov_iter *iter = data; 1094 loff_t end = pos + length, done = 0; 1095 ssize_t ret = 0; 1096 size_t xfer; 1097 int id; 1098 1099 if (iov_iter_rw(iter) == READ) { 1100 end = min(end, i_size_read(inode)); 1101 if (pos >= end) 1102 return 0; 1103 1104 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1105 return iov_iter_zero(min(length, end - pos), iter); 1106 } 1107 1108 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1109 return -EIO; 1110 1111 /* 1112 * Write can allocate block for an area which has a hole page mapped 1113 * into page tables. We have to tear down these mappings so that data 1114 * written by write(2) is visible in mmap. 1115 */ 1116 if (iomap->flags & IOMAP_F_NEW) { 1117 invalidate_inode_pages2_range(inode->i_mapping, 1118 pos >> PAGE_SHIFT, 1119 (end - 1) >> PAGE_SHIFT); 1120 } 1121 1122 id = dax_read_lock(); 1123 while (pos < end) { 1124 unsigned offset = pos & (PAGE_SIZE - 1); 1125 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1126 const sector_t sector = dax_iomap_sector(iomap, pos); 1127 ssize_t map_len; 1128 pgoff_t pgoff; 1129 void *kaddr; 1130 1131 if (fatal_signal_pending(current)) { 1132 ret = -EINTR; 1133 break; 1134 } 1135 1136 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1137 if (ret) 1138 break; 1139 1140 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1141 &kaddr, NULL); 1142 if (map_len < 0) { 1143 ret = map_len; 1144 break; 1145 } 1146 1147 map_len = PFN_PHYS(map_len); 1148 kaddr += offset; 1149 map_len -= offset; 1150 if (map_len > end - pos) 1151 map_len = end - pos; 1152 1153 /* 1154 * The userspace address for the memory copy has already been 1155 * validated via access_ok() in either vfs_read() or 1156 * vfs_write(), depending on which operation we are doing. 1157 */ 1158 if (iov_iter_rw(iter) == WRITE) 1159 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1160 map_len, iter); 1161 else 1162 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1163 map_len, iter); 1164 1165 pos += xfer; 1166 length -= xfer; 1167 done += xfer; 1168 1169 if (xfer == 0) 1170 ret = -EFAULT; 1171 if (xfer < map_len) 1172 break; 1173 } 1174 dax_read_unlock(id); 1175 1176 return done ? done : ret; 1177 } 1178 1179 /** 1180 * dax_iomap_rw - Perform I/O to a DAX file 1181 * @iocb: The control block for this I/O 1182 * @iter: The addresses to do I/O from or to 1183 * @ops: iomap ops passed from the file system 1184 * 1185 * This function performs read and write operations to directly mapped 1186 * persistent memory. The callers needs to take care of read/write exclusion 1187 * and evicting any page cache pages in the region under I/O. 1188 */ 1189 ssize_t 1190 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1191 const struct iomap_ops *ops) 1192 { 1193 struct address_space *mapping = iocb->ki_filp->f_mapping; 1194 struct inode *inode = mapping->host; 1195 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1196 unsigned flags = 0; 1197 1198 if (iov_iter_rw(iter) == WRITE) { 1199 lockdep_assert_held_exclusive(&inode->i_rwsem); 1200 flags |= IOMAP_WRITE; 1201 } else { 1202 lockdep_assert_held(&inode->i_rwsem); 1203 } 1204 1205 while (iov_iter_count(iter)) { 1206 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1207 iter, dax_iomap_actor); 1208 if (ret <= 0) 1209 break; 1210 pos += ret; 1211 done += ret; 1212 } 1213 1214 iocb->ki_pos += done; 1215 return done ? done : ret; 1216 } 1217 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1218 1219 static vm_fault_t dax_fault_return(int error) 1220 { 1221 if (error == 0) 1222 return VM_FAULT_NOPAGE; 1223 return vmf_error(error); 1224 } 1225 1226 /* 1227 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1228 * flushed on write-faults (non-cow), but not read-faults. 1229 */ 1230 static bool dax_fault_is_synchronous(unsigned long flags, 1231 struct vm_area_struct *vma, struct iomap *iomap) 1232 { 1233 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1234 && (iomap->flags & IOMAP_F_DIRTY); 1235 } 1236 1237 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1238 int *iomap_errp, const struct iomap_ops *ops) 1239 { 1240 struct vm_area_struct *vma = vmf->vma; 1241 struct address_space *mapping = vma->vm_file->f_mapping; 1242 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1243 struct inode *inode = mapping->host; 1244 unsigned long vaddr = vmf->address; 1245 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1246 struct iomap iomap = { 0 }; 1247 unsigned flags = IOMAP_FAULT; 1248 int error, major = 0; 1249 bool write = vmf->flags & FAULT_FLAG_WRITE; 1250 bool sync; 1251 vm_fault_t ret = 0; 1252 void *entry; 1253 pfn_t pfn; 1254 1255 trace_dax_pte_fault(inode, vmf, ret); 1256 /* 1257 * Check whether offset isn't beyond end of file now. Caller is supposed 1258 * to hold locks serializing us with truncate / punch hole so this is 1259 * a reliable test. 1260 */ 1261 if (pos >= i_size_read(inode)) { 1262 ret = VM_FAULT_SIGBUS; 1263 goto out; 1264 } 1265 1266 if (write && !vmf->cow_page) 1267 flags |= IOMAP_WRITE; 1268 1269 entry = grab_mapping_entry(&xas, mapping, 0); 1270 if (xa_is_internal(entry)) { 1271 ret = xa_to_internal(entry); 1272 goto out; 1273 } 1274 1275 /* 1276 * It is possible, particularly with mixed reads & writes to private 1277 * mappings, that we have raced with a PMD fault that overlaps with 1278 * the PTE we need to set up. If so just return and the fault will be 1279 * retried. 1280 */ 1281 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1282 ret = VM_FAULT_NOPAGE; 1283 goto unlock_entry; 1284 } 1285 1286 /* 1287 * Note that we don't bother to use iomap_apply here: DAX required 1288 * the file system block size to be equal the page size, which means 1289 * that we never have to deal with more than a single extent here. 1290 */ 1291 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1292 if (iomap_errp) 1293 *iomap_errp = error; 1294 if (error) { 1295 ret = dax_fault_return(error); 1296 goto unlock_entry; 1297 } 1298 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1299 error = -EIO; /* fs corruption? */ 1300 goto error_finish_iomap; 1301 } 1302 1303 if (vmf->cow_page) { 1304 sector_t sector = dax_iomap_sector(&iomap, pos); 1305 1306 switch (iomap.type) { 1307 case IOMAP_HOLE: 1308 case IOMAP_UNWRITTEN: 1309 clear_user_highpage(vmf->cow_page, vaddr); 1310 break; 1311 case IOMAP_MAPPED: 1312 error = copy_user_dax(iomap.bdev, iomap.dax_dev, 1313 sector, PAGE_SIZE, vmf->cow_page, vaddr); 1314 break; 1315 default: 1316 WARN_ON_ONCE(1); 1317 error = -EIO; 1318 break; 1319 } 1320 1321 if (error) 1322 goto error_finish_iomap; 1323 1324 __SetPageUptodate(vmf->cow_page); 1325 ret = finish_fault(vmf); 1326 if (!ret) 1327 ret = VM_FAULT_DONE_COW; 1328 goto finish_iomap; 1329 } 1330 1331 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1332 1333 switch (iomap.type) { 1334 case IOMAP_MAPPED: 1335 if (iomap.flags & IOMAP_F_NEW) { 1336 count_vm_event(PGMAJFAULT); 1337 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1338 major = VM_FAULT_MAJOR; 1339 } 1340 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1341 if (error < 0) 1342 goto error_finish_iomap; 1343 1344 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1345 0, write && !sync); 1346 1347 /* 1348 * If we are doing synchronous page fault and inode needs fsync, 1349 * we can insert PTE into page tables only after that happens. 1350 * Skip insertion for now and return the pfn so that caller can 1351 * insert it after fsync is done. 1352 */ 1353 if (sync) { 1354 if (WARN_ON_ONCE(!pfnp)) { 1355 error = -EIO; 1356 goto error_finish_iomap; 1357 } 1358 *pfnp = pfn; 1359 ret = VM_FAULT_NEEDDSYNC | major; 1360 goto finish_iomap; 1361 } 1362 trace_dax_insert_mapping(inode, vmf, entry); 1363 if (write) 1364 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); 1365 else 1366 ret = vmf_insert_mixed(vma, vaddr, pfn); 1367 1368 goto finish_iomap; 1369 case IOMAP_UNWRITTEN: 1370 case IOMAP_HOLE: 1371 if (!write) { 1372 ret = dax_load_hole(&xas, mapping, &entry, vmf); 1373 goto finish_iomap; 1374 } 1375 /*FALLTHRU*/ 1376 default: 1377 WARN_ON_ONCE(1); 1378 error = -EIO; 1379 break; 1380 } 1381 1382 error_finish_iomap: 1383 ret = dax_fault_return(error); 1384 finish_iomap: 1385 if (ops->iomap_end) { 1386 int copied = PAGE_SIZE; 1387 1388 if (ret & VM_FAULT_ERROR) 1389 copied = 0; 1390 /* 1391 * The fault is done by now and there's no way back (other 1392 * thread may be already happily using PTE we have installed). 1393 * Just ignore error from ->iomap_end since we cannot do much 1394 * with it. 1395 */ 1396 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1397 } 1398 unlock_entry: 1399 dax_unlock_entry(&xas, entry); 1400 out: 1401 trace_dax_pte_fault_done(inode, vmf, ret); 1402 return ret | major; 1403 } 1404 1405 #ifdef CONFIG_FS_DAX_PMD 1406 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1407 struct iomap *iomap, void **entry) 1408 { 1409 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1410 unsigned long pmd_addr = vmf->address & PMD_MASK; 1411 struct vm_area_struct *vma = vmf->vma; 1412 struct inode *inode = mapping->host; 1413 pgtable_t pgtable = NULL; 1414 struct page *zero_page; 1415 spinlock_t *ptl; 1416 pmd_t pmd_entry; 1417 pfn_t pfn; 1418 1419 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1420 1421 if (unlikely(!zero_page)) 1422 goto fallback; 1423 1424 pfn = page_to_pfn_t(zero_page); 1425 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1426 DAX_PMD | DAX_ZERO_PAGE, false); 1427 1428 if (arch_needs_pgtable_deposit()) { 1429 pgtable = pte_alloc_one(vma->vm_mm); 1430 if (!pgtable) 1431 return VM_FAULT_OOM; 1432 } 1433 1434 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1435 if (!pmd_none(*(vmf->pmd))) { 1436 spin_unlock(ptl); 1437 goto fallback; 1438 } 1439 1440 if (pgtable) { 1441 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1442 mm_inc_nr_ptes(vma->vm_mm); 1443 } 1444 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1445 pmd_entry = pmd_mkhuge(pmd_entry); 1446 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1447 spin_unlock(ptl); 1448 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1449 return VM_FAULT_NOPAGE; 1450 1451 fallback: 1452 if (pgtable) 1453 pte_free(vma->vm_mm, pgtable); 1454 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1455 return VM_FAULT_FALLBACK; 1456 } 1457 1458 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1459 const struct iomap_ops *ops) 1460 { 1461 struct vm_area_struct *vma = vmf->vma; 1462 struct address_space *mapping = vma->vm_file->f_mapping; 1463 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1464 unsigned long pmd_addr = vmf->address & PMD_MASK; 1465 bool write = vmf->flags & FAULT_FLAG_WRITE; 1466 bool sync; 1467 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1468 struct inode *inode = mapping->host; 1469 vm_fault_t result = VM_FAULT_FALLBACK; 1470 struct iomap iomap = { 0 }; 1471 pgoff_t max_pgoff; 1472 void *entry; 1473 loff_t pos; 1474 int error; 1475 pfn_t pfn; 1476 1477 /* 1478 * Check whether offset isn't beyond end of file now. Caller is 1479 * supposed to hold locks serializing us with truncate / punch hole so 1480 * this is a reliable test. 1481 */ 1482 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1483 1484 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1485 1486 /* 1487 * Make sure that the faulting address's PMD offset (color) matches 1488 * the PMD offset from the start of the file. This is necessary so 1489 * that a PMD range in the page table overlaps exactly with a PMD 1490 * range in the page cache. 1491 */ 1492 if ((vmf->pgoff & PG_PMD_COLOUR) != 1493 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1494 goto fallback; 1495 1496 /* Fall back to PTEs if we're going to COW */ 1497 if (write && !(vma->vm_flags & VM_SHARED)) 1498 goto fallback; 1499 1500 /* If the PMD would extend outside the VMA */ 1501 if (pmd_addr < vma->vm_start) 1502 goto fallback; 1503 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1504 goto fallback; 1505 1506 if (xas.xa_index >= max_pgoff) { 1507 result = VM_FAULT_SIGBUS; 1508 goto out; 1509 } 1510 1511 /* If the PMD would extend beyond the file size */ 1512 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) 1513 goto fallback; 1514 1515 /* 1516 * grab_mapping_entry() will make sure we get an empty PMD entry, 1517 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1518 * entry is already in the array, for instance), it will return 1519 * VM_FAULT_FALLBACK. 1520 */ 1521 entry = grab_mapping_entry(&xas, mapping, DAX_PMD); 1522 if (xa_is_internal(entry)) { 1523 result = xa_to_internal(entry); 1524 goto fallback; 1525 } 1526 1527 /* 1528 * It is possible, particularly with mixed reads & writes to private 1529 * mappings, that we have raced with a PTE fault that overlaps with 1530 * the PMD we need to set up. If so just return and the fault will be 1531 * retried. 1532 */ 1533 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1534 !pmd_devmap(*vmf->pmd)) { 1535 result = 0; 1536 goto unlock_entry; 1537 } 1538 1539 /* 1540 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1541 * setting up a mapping, so really we're using iomap_begin() as a way 1542 * to look up our filesystem block. 1543 */ 1544 pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1545 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1546 if (error) 1547 goto unlock_entry; 1548 1549 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1550 goto finish_iomap; 1551 1552 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1553 1554 switch (iomap.type) { 1555 case IOMAP_MAPPED: 1556 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1557 if (error < 0) 1558 goto finish_iomap; 1559 1560 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1561 DAX_PMD, write && !sync); 1562 1563 /* 1564 * If we are doing synchronous page fault and inode needs fsync, 1565 * we can insert PMD into page tables only after that happens. 1566 * Skip insertion for now and return the pfn so that caller can 1567 * insert it after fsync is done. 1568 */ 1569 if (sync) { 1570 if (WARN_ON_ONCE(!pfnp)) 1571 goto finish_iomap; 1572 *pfnp = pfn; 1573 result = VM_FAULT_NEEDDSYNC; 1574 goto finish_iomap; 1575 } 1576 1577 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1578 result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn, 1579 write); 1580 break; 1581 case IOMAP_UNWRITTEN: 1582 case IOMAP_HOLE: 1583 if (WARN_ON_ONCE(write)) 1584 break; 1585 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); 1586 break; 1587 default: 1588 WARN_ON_ONCE(1); 1589 break; 1590 } 1591 1592 finish_iomap: 1593 if (ops->iomap_end) { 1594 int copied = PMD_SIZE; 1595 1596 if (result == VM_FAULT_FALLBACK) 1597 copied = 0; 1598 /* 1599 * The fault is done by now and there's no way back (other 1600 * thread may be already happily using PMD we have installed). 1601 * Just ignore error from ->iomap_end since we cannot do much 1602 * with it. 1603 */ 1604 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1605 &iomap); 1606 } 1607 unlock_entry: 1608 dax_unlock_entry(&xas, entry); 1609 fallback: 1610 if (result == VM_FAULT_FALLBACK) { 1611 split_huge_pmd(vma, vmf->pmd, vmf->address); 1612 count_vm_event(THP_FAULT_FALLBACK); 1613 } 1614 out: 1615 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1616 return result; 1617 } 1618 #else 1619 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1620 const struct iomap_ops *ops) 1621 { 1622 return VM_FAULT_FALLBACK; 1623 } 1624 #endif /* CONFIG_FS_DAX_PMD */ 1625 1626 /** 1627 * dax_iomap_fault - handle a page fault on a DAX file 1628 * @vmf: The description of the fault 1629 * @pe_size: Size of the page to fault in 1630 * @pfnp: PFN to insert for synchronous faults if fsync is required 1631 * @iomap_errp: Storage for detailed error code in case of error 1632 * @ops: Iomap ops passed from the file system 1633 * 1634 * When a page fault occurs, filesystems may call this helper in 1635 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1636 * has done all the necessary locking for page fault to proceed 1637 * successfully. 1638 */ 1639 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1640 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1641 { 1642 switch (pe_size) { 1643 case PE_SIZE_PTE: 1644 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1645 case PE_SIZE_PMD: 1646 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1647 default: 1648 return VM_FAULT_FALLBACK; 1649 } 1650 } 1651 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1652 1653 /* 1654 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1655 * @vmf: The description of the fault 1656 * @pfn: PFN to insert 1657 * @order: Order of entry to insert. 1658 * 1659 * This function inserts a writeable PTE or PMD entry into the page tables 1660 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1661 */ 1662 static vm_fault_t 1663 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1664 { 1665 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1666 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1667 void *entry; 1668 vm_fault_t ret; 1669 1670 xas_lock_irq(&xas); 1671 entry = get_unlocked_entry(&xas); 1672 /* Did we race with someone splitting entry or so? */ 1673 if (!entry || 1674 (order == 0 && !dax_is_pte_entry(entry)) || 1675 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) { 1676 put_unlocked_entry(&xas, entry); 1677 xas_unlock_irq(&xas); 1678 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1679 VM_FAULT_NOPAGE); 1680 return VM_FAULT_NOPAGE; 1681 } 1682 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1683 dax_lock_entry(&xas, entry); 1684 xas_unlock_irq(&xas); 1685 if (order == 0) 1686 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1687 #ifdef CONFIG_FS_DAX_PMD 1688 else if (order == PMD_ORDER) 1689 ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd, 1690 pfn, true); 1691 #endif 1692 else 1693 ret = VM_FAULT_FALLBACK; 1694 dax_unlock_entry(&xas, entry); 1695 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1696 return ret; 1697 } 1698 1699 /** 1700 * dax_finish_sync_fault - finish synchronous page fault 1701 * @vmf: The description of the fault 1702 * @pe_size: Size of entry to be inserted 1703 * @pfn: PFN to insert 1704 * 1705 * This function ensures that the file range touched by the page fault is 1706 * stored persistently on the media and handles inserting of appropriate page 1707 * table entry. 1708 */ 1709 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1710 enum page_entry_size pe_size, pfn_t pfn) 1711 { 1712 int err; 1713 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1714 unsigned int order = pe_order(pe_size); 1715 size_t len = PAGE_SIZE << order; 1716 1717 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1718 if (err) 1719 return VM_FAULT_SIGBUS; 1720 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1721 } 1722 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1723