xref: /linux/fs/dax.c (revision a8fe58cec351c25e09c393bf46117c0c47b5a17c)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36 {
37 	struct request_queue *q = bdev->bd_queue;
38 	long rc = -EIO;
39 
40 	dax->addr = (void __pmem *) ERR_PTR(-EIO);
41 	if (blk_queue_enter(q, true) != 0)
42 		return rc;
43 
44 	rc = bdev_direct_access(bdev, dax);
45 	if (rc < 0) {
46 		dax->addr = (void __pmem *) ERR_PTR(rc);
47 		blk_queue_exit(q);
48 		return rc;
49 	}
50 	return rc;
51 }
52 
53 static void dax_unmap_atomic(struct block_device *bdev,
54 		const struct blk_dax_ctl *dax)
55 {
56 	if (IS_ERR(dax->addr))
57 		return;
58 	blk_queue_exit(bdev->bd_queue);
59 }
60 
61 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
62 {
63 	struct page *page = alloc_pages(GFP_KERNEL, 0);
64 	struct blk_dax_ctl dax = {
65 		.size = PAGE_SIZE,
66 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
67 	};
68 	long rc;
69 
70 	if (!page)
71 		return ERR_PTR(-ENOMEM);
72 
73 	rc = dax_map_atomic(bdev, &dax);
74 	if (rc < 0)
75 		return ERR_PTR(rc);
76 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
77 	dax_unmap_atomic(bdev, &dax);
78 	return page;
79 }
80 
81 /*
82  * dax_clear_blocks() is called from within transaction context from XFS,
83  * and hence this means the stack from this point must follow GFP_NOFS
84  * semantics for all operations.
85  */
86 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
87 {
88 	struct block_device *bdev = inode->i_sb->s_bdev;
89 	struct blk_dax_ctl dax = {
90 		.sector = block << (inode->i_blkbits - 9),
91 		.size = _size,
92 	};
93 
94 	might_sleep();
95 	do {
96 		long count, sz;
97 
98 		count = dax_map_atomic(bdev, &dax);
99 		if (count < 0)
100 			return count;
101 		sz = min_t(long, count, SZ_128K);
102 		clear_pmem(dax.addr, sz);
103 		dax.size -= sz;
104 		dax.sector += sz / 512;
105 		dax_unmap_atomic(bdev, &dax);
106 		cond_resched();
107 	} while (dax.size);
108 
109 	wmb_pmem();
110 	return 0;
111 }
112 EXPORT_SYMBOL_GPL(dax_clear_blocks);
113 
114 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
115 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
116 		loff_t pos, loff_t end)
117 {
118 	loff_t final = end - pos + first; /* The final byte of the buffer */
119 
120 	if (first > 0)
121 		clear_pmem(addr, first);
122 	if (final < size)
123 		clear_pmem(addr + final, size - final);
124 }
125 
126 static bool buffer_written(struct buffer_head *bh)
127 {
128 	return buffer_mapped(bh) && !buffer_unwritten(bh);
129 }
130 
131 /*
132  * When ext4 encounters a hole, it returns without modifying the buffer_head
133  * which means that we can't trust b_size.  To cope with this, we set b_state
134  * to 0 before calling get_block and, if any bit is set, we know we can trust
135  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
136  * and would save us time calling get_block repeatedly.
137  */
138 static bool buffer_size_valid(struct buffer_head *bh)
139 {
140 	return bh->b_state != 0;
141 }
142 
143 
144 static sector_t to_sector(const struct buffer_head *bh,
145 		const struct inode *inode)
146 {
147 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
148 
149 	return sector;
150 }
151 
152 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
153 		      loff_t start, loff_t end, get_block_t get_block,
154 		      struct buffer_head *bh)
155 {
156 	loff_t pos = start, max = start, bh_max = start;
157 	bool hole = false, need_wmb = false;
158 	struct block_device *bdev = NULL;
159 	int rw = iov_iter_rw(iter), rc;
160 	long map_len = 0;
161 	struct blk_dax_ctl dax = {
162 		.addr = (void __pmem *) ERR_PTR(-EIO),
163 	};
164 
165 	if (rw == READ)
166 		end = min(end, i_size_read(inode));
167 
168 	while (pos < end) {
169 		size_t len;
170 		if (pos == max) {
171 			unsigned blkbits = inode->i_blkbits;
172 			long page = pos >> PAGE_SHIFT;
173 			sector_t block = page << (PAGE_SHIFT - blkbits);
174 			unsigned first = pos - (block << blkbits);
175 			long size;
176 
177 			if (pos == bh_max) {
178 				bh->b_size = PAGE_ALIGN(end - pos);
179 				bh->b_state = 0;
180 				rc = get_block(inode, block, bh, rw == WRITE);
181 				if (rc)
182 					break;
183 				if (!buffer_size_valid(bh))
184 					bh->b_size = 1 << blkbits;
185 				bh_max = pos - first + bh->b_size;
186 				bdev = bh->b_bdev;
187 			} else {
188 				unsigned done = bh->b_size -
189 						(bh_max - (pos - first));
190 				bh->b_blocknr += done >> blkbits;
191 				bh->b_size -= done;
192 			}
193 
194 			hole = rw == READ && !buffer_written(bh);
195 			if (hole) {
196 				size = bh->b_size - first;
197 			} else {
198 				dax_unmap_atomic(bdev, &dax);
199 				dax.sector = to_sector(bh, inode);
200 				dax.size = bh->b_size;
201 				map_len = dax_map_atomic(bdev, &dax);
202 				if (map_len < 0) {
203 					rc = map_len;
204 					break;
205 				}
206 				if (buffer_unwritten(bh) || buffer_new(bh)) {
207 					dax_new_buf(dax.addr, map_len, first,
208 							pos, end);
209 					need_wmb = true;
210 				}
211 				dax.addr += first;
212 				size = map_len - first;
213 			}
214 			max = min(pos + size, end);
215 		}
216 
217 		if (iov_iter_rw(iter) == WRITE) {
218 			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
219 			need_wmb = true;
220 		} else if (!hole)
221 			len = copy_to_iter((void __force *) dax.addr, max - pos,
222 					iter);
223 		else
224 			len = iov_iter_zero(max - pos, iter);
225 
226 		if (!len) {
227 			rc = -EFAULT;
228 			break;
229 		}
230 
231 		pos += len;
232 		if (!IS_ERR(dax.addr))
233 			dax.addr += len;
234 	}
235 
236 	if (need_wmb)
237 		wmb_pmem();
238 	dax_unmap_atomic(bdev, &dax);
239 
240 	return (pos == start) ? rc : pos - start;
241 }
242 
243 /**
244  * dax_do_io - Perform I/O to a DAX file
245  * @iocb: The control block for this I/O
246  * @inode: The file which the I/O is directed at
247  * @iter: The addresses to do I/O from or to
248  * @pos: The file offset where the I/O starts
249  * @get_block: The filesystem method used to translate file offsets to blocks
250  * @end_io: A filesystem callback for I/O completion
251  * @flags: See below
252  *
253  * This function uses the same locking scheme as do_blockdev_direct_IO:
254  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255  * caller for writes.  For reads, we take and release the i_mutex ourselves.
256  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258  * is in progress.
259  */
260 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
261 		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
262 		  dio_iodone_t end_io, int flags)
263 {
264 	struct buffer_head bh;
265 	ssize_t retval = -EINVAL;
266 	loff_t end = pos + iov_iter_count(iter);
267 
268 	memset(&bh, 0, sizeof(bh));
269 	bh.b_bdev = inode->i_sb->s_bdev;
270 
271 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
272 		struct address_space *mapping = inode->i_mapping;
273 		inode_lock(inode);
274 		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
275 		if (retval) {
276 			inode_unlock(inode);
277 			goto out;
278 		}
279 	}
280 
281 	/* Protects against truncate */
282 	if (!(flags & DIO_SKIP_DIO_COUNT))
283 		inode_dio_begin(inode);
284 
285 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
286 
287 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
288 		inode_unlock(inode);
289 
290 	if ((retval > 0) && end_io)
291 		end_io(iocb, pos, retval, bh.b_private);
292 
293 	if (!(flags & DIO_SKIP_DIO_COUNT))
294 		inode_dio_end(inode);
295  out:
296 	return retval;
297 }
298 EXPORT_SYMBOL_GPL(dax_do_io);
299 
300 /*
301  * The user has performed a load from a hole in the file.  Allocating
302  * a new page in the file would cause excessive storage usage for
303  * workloads with sparse files.  We allocate a page cache page instead.
304  * We'll kick it out of the page cache if it's ever written to,
305  * otherwise it will simply fall out of the page cache under memory
306  * pressure without ever having been dirtied.
307  */
308 static int dax_load_hole(struct address_space *mapping, struct page *page,
309 							struct vm_fault *vmf)
310 {
311 	unsigned long size;
312 	struct inode *inode = mapping->host;
313 	if (!page)
314 		page = find_or_create_page(mapping, vmf->pgoff,
315 						GFP_KERNEL | __GFP_ZERO);
316 	if (!page)
317 		return VM_FAULT_OOM;
318 	/* Recheck i_size under page lock to avoid truncate race */
319 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
320 	if (vmf->pgoff >= size) {
321 		unlock_page(page);
322 		page_cache_release(page);
323 		return VM_FAULT_SIGBUS;
324 	}
325 
326 	vmf->page = page;
327 	return VM_FAULT_LOCKED;
328 }
329 
330 static int copy_user_bh(struct page *to, struct inode *inode,
331 		struct buffer_head *bh, unsigned long vaddr)
332 {
333 	struct blk_dax_ctl dax = {
334 		.sector = to_sector(bh, inode),
335 		.size = bh->b_size,
336 	};
337 	struct block_device *bdev = bh->b_bdev;
338 	void *vto;
339 
340 	if (dax_map_atomic(bdev, &dax) < 0)
341 		return PTR_ERR(dax.addr);
342 	vto = kmap_atomic(to);
343 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
344 	kunmap_atomic(vto);
345 	dax_unmap_atomic(bdev, &dax);
346 	return 0;
347 }
348 
349 #define NO_SECTOR -1
350 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
351 
352 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
353 		sector_t sector, bool pmd_entry, bool dirty)
354 {
355 	struct radix_tree_root *page_tree = &mapping->page_tree;
356 	pgoff_t pmd_index = DAX_PMD_INDEX(index);
357 	int type, error = 0;
358 	void *entry;
359 
360 	WARN_ON_ONCE(pmd_entry && !dirty);
361 	if (dirty)
362 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
363 
364 	spin_lock_irq(&mapping->tree_lock);
365 
366 	entry = radix_tree_lookup(page_tree, pmd_index);
367 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
368 		index = pmd_index;
369 		goto dirty;
370 	}
371 
372 	entry = radix_tree_lookup(page_tree, index);
373 	if (entry) {
374 		type = RADIX_DAX_TYPE(entry);
375 		if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
376 					type != RADIX_DAX_PMD)) {
377 			error = -EIO;
378 			goto unlock;
379 		}
380 
381 		if (!pmd_entry || type == RADIX_DAX_PMD)
382 			goto dirty;
383 
384 		/*
385 		 * We only insert dirty PMD entries into the radix tree.  This
386 		 * means we don't need to worry about removing a dirty PTE
387 		 * entry and inserting a clean PMD entry, thus reducing the
388 		 * range we would flush with a follow-up fsync/msync call.
389 		 */
390 		radix_tree_delete(&mapping->page_tree, index);
391 		mapping->nrexceptional--;
392 	}
393 
394 	if (sector == NO_SECTOR) {
395 		/*
396 		 * This can happen during correct operation if our pfn_mkwrite
397 		 * fault raced against a hole punch operation.  If this
398 		 * happens the pte that was hole punched will have been
399 		 * unmapped and the radix tree entry will have been removed by
400 		 * the time we are called, but the call will still happen.  We
401 		 * will return all the way up to wp_pfn_shared(), where the
402 		 * pte_same() check will fail, eventually causing page fault
403 		 * to be retried by the CPU.
404 		 */
405 		goto unlock;
406 	}
407 
408 	error = radix_tree_insert(page_tree, index,
409 			RADIX_DAX_ENTRY(sector, pmd_entry));
410 	if (error)
411 		goto unlock;
412 
413 	mapping->nrexceptional++;
414  dirty:
415 	if (dirty)
416 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
417  unlock:
418 	spin_unlock_irq(&mapping->tree_lock);
419 	return error;
420 }
421 
422 static int dax_writeback_one(struct block_device *bdev,
423 		struct address_space *mapping, pgoff_t index, void *entry)
424 {
425 	struct radix_tree_root *page_tree = &mapping->page_tree;
426 	int type = RADIX_DAX_TYPE(entry);
427 	struct radix_tree_node *node;
428 	struct blk_dax_ctl dax;
429 	void **slot;
430 	int ret = 0;
431 
432 	spin_lock_irq(&mapping->tree_lock);
433 	/*
434 	 * Regular page slots are stabilized by the page lock even
435 	 * without the tree itself locked.  These unlocked entries
436 	 * need verification under the tree lock.
437 	 */
438 	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
439 		goto unlock;
440 	if (*slot != entry)
441 		goto unlock;
442 
443 	/* another fsync thread may have already written back this entry */
444 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
445 		goto unlock;
446 
447 	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
448 		ret = -EIO;
449 		goto unlock;
450 	}
451 
452 	dax.sector = RADIX_DAX_SECTOR(entry);
453 	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
454 	spin_unlock_irq(&mapping->tree_lock);
455 
456 	/*
457 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
458 	 * eventually calls cond_resched().
459 	 */
460 	ret = dax_map_atomic(bdev, &dax);
461 	if (ret < 0)
462 		return ret;
463 
464 	if (WARN_ON_ONCE(ret < dax.size)) {
465 		ret = -EIO;
466 		goto unmap;
467 	}
468 
469 	wb_cache_pmem(dax.addr, dax.size);
470 
471 	spin_lock_irq(&mapping->tree_lock);
472 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
473 	spin_unlock_irq(&mapping->tree_lock);
474  unmap:
475 	dax_unmap_atomic(bdev, &dax);
476 	return ret;
477 
478  unlock:
479 	spin_unlock_irq(&mapping->tree_lock);
480 	return ret;
481 }
482 
483 /*
484  * Flush the mapping to the persistent domain within the byte range of [start,
485  * end]. This is required by data integrity operations to ensure file data is
486  * on persistent storage prior to completion of the operation.
487  */
488 int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
489 		loff_t end)
490 {
491 	struct inode *inode = mapping->host;
492 	struct block_device *bdev = inode->i_sb->s_bdev;
493 	pgoff_t start_index, end_index, pmd_index;
494 	pgoff_t indices[PAGEVEC_SIZE];
495 	struct pagevec pvec;
496 	bool done = false;
497 	int i, ret = 0;
498 	void *entry;
499 
500 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
501 		return -EIO;
502 
503 	start_index = start >> PAGE_CACHE_SHIFT;
504 	end_index = end >> PAGE_CACHE_SHIFT;
505 	pmd_index = DAX_PMD_INDEX(start_index);
506 
507 	rcu_read_lock();
508 	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
509 	rcu_read_unlock();
510 
511 	/* see if the start of our range is covered by a PMD entry */
512 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
513 		start_index = pmd_index;
514 
515 	tag_pages_for_writeback(mapping, start_index, end_index);
516 
517 	pagevec_init(&pvec, 0);
518 	while (!done) {
519 		pvec.nr = find_get_entries_tag(mapping, start_index,
520 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
521 				pvec.pages, indices);
522 
523 		if (pvec.nr == 0)
524 			break;
525 
526 		for (i = 0; i < pvec.nr; i++) {
527 			if (indices[i] > end_index) {
528 				done = true;
529 				break;
530 			}
531 
532 			ret = dax_writeback_one(bdev, mapping, indices[i],
533 					pvec.pages[i]);
534 			if (ret < 0)
535 				return ret;
536 		}
537 	}
538 	wmb_pmem();
539 	return 0;
540 }
541 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
542 
543 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
544 			struct vm_area_struct *vma, struct vm_fault *vmf)
545 {
546 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
547 	struct address_space *mapping = inode->i_mapping;
548 	struct block_device *bdev = bh->b_bdev;
549 	struct blk_dax_ctl dax = {
550 		.sector = to_sector(bh, inode),
551 		.size = bh->b_size,
552 	};
553 	pgoff_t size;
554 	int error;
555 
556 	i_mmap_lock_read(mapping);
557 
558 	/*
559 	 * Check truncate didn't happen while we were allocating a block.
560 	 * If it did, this block may or may not be still allocated to the
561 	 * file.  We can't tell the filesystem to free it because we can't
562 	 * take i_mutex here.  In the worst case, the file still has blocks
563 	 * allocated past the end of the file.
564 	 */
565 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
566 	if (unlikely(vmf->pgoff >= size)) {
567 		error = -EIO;
568 		goto out;
569 	}
570 
571 	if (dax_map_atomic(bdev, &dax) < 0) {
572 		error = PTR_ERR(dax.addr);
573 		goto out;
574 	}
575 
576 	if (buffer_unwritten(bh) || buffer_new(bh)) {
577 		clear_pmem(dax.addr, PAGE_SIZE);
578 		wmb_pmem();
579 	}
580 	dax_unmap_atomic(bdev, &dax);
581 
582 	error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
583 			vmf->flags & FAULT_FLAG_WRITE);
584 	if (error)
585 		goto out;
586 
587 	error = vm_insert_mixed(vma, vaddr, dax.pfn);
588 
589  out:
590 	i_mmap_unlock_read(mapping);
591 
592 	return error;
593 }
594 
595 /**
596  * __dax_fault - handle a page fault on a DAX file
597  * @vma: The virtual memory area where the fault occurred
598  * @vmf: The description of the fault
599  * @get_block: The filesystem method used to translate file offsets to blocks
600  * @complete_unwritten: The filesystem method used to convert unwritten blocks
601  *	to written so the data written to them is exposed. This is required for
602  *	required by write faults for filesystems that will return unwritten
603  *	extent mappings from @get_block, but it is optional for reads as
604  *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
605  *	not support unwritten extents, the it should pass NULL.
606  *
607  * When a page fault occurs, filesystems may call this helper in their
608  * fault handler for DAX files. __dax_fault() assumes the caller has done all
609  * the necessary locking for the page fault to proceed successfully.
610  */
611 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
612 			get_block_t get_block, dax_iodone_t complete_unwritten)
613 {
614 	struct file *file = vma->vm_file;
615 	struct address_space *mapping = file->f_mapping;
616 	struct inode *inode = mapping->host;
617 	struct page *page;
618 	struct buffer_head bh;
619 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
620 	unsigned blkbits = inode->i_blkbits;
621 	sector_t block;
622 	pgoff_t size;
623 	int error;
624 	int major = 0;
625 
626 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
627 	if (vmf->pgoff >= size)
628 		return VM_FAULT_SIGBUS;
629 
630 	memset(&bh, 0, sizeof(bh));
631 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
632 	bh.b_bdev = inode->i_sb->s_bdev;
633 	bh.b_size = PAGE_SIZE;
634 
635  repeat:
636 	page = find_get_page(mapping, vmf->pgoff);
637 	if (page) {
638 		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
639 			page_cache_release(page);
640 			return VM_FAULT_RETRY;
641 		}
642 		if (unlikely(page->mapping != mapping)) {
643 			unlock_page(page);
644 			page_cache_release(page);
645 			goto repeat;
646 		}
647 		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
648 		if (unlikely(vmf->pgoff >= size)) {
649 			/*
650 			 * We have a struct page covering a hole in the file
651 			 * from a read fault and we've raced with a truncate
652 			 */
653 			error = -EIO;
654 			goto unlock_page;
655 		}
656 	}
657 
658 	error = get_block(inode, block, &bh, 0);
659 	if (!error && (bh.b_size < PAGE_SIZE))
660 		error = -EIO;		/* fs corruption? */
661 	if (error)
662 		goto unlock_page;
663 
664 	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
665 		if (vmf->flags & FAULT_FLAG_WRITE) {
666 			error = get_block(inode, block, &bh, 1);
667 			count_vm_event(PGMAJFAULT);
668 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
669 			major = VM_FAULT_MAJOR;
670 			if (!error && (bh.b_size < PAGE_SIZE))
671 				error = -EIO;
672 			if (error)
673 				goto unlock_page;
674 		} else {
675 			return dax_load_hole(mapping, page, vmf);
676 		}
677 	}
678 
679 	if (vmf->cow_page) {
680 		struct page *new_page = vmf->cow_page;
681 		if (buffer_written(&bh))
682 			error = copy_user_bh(new_page, inode, &bh, vaddr);
683 		else
684 			clear_user_highpage(new_page, vaddr);
685 		if (error)
686 			goto unlock_page;
687 		vmf->page = page;
688 		if (!page) {
689 			i_mmap_lock_read(mapping);
690 			/* Check we didn't race with truncate */
691 			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
692 								PAGE_SHIFT;
693 			if (vmf->pgoff >= size) {
694 				i_mmap_unlock_read(mapping);
695 				error = -EIO;
696 				goto out;
697 			}
698 		}
699 		return VM_FAULT_LOCKED;
700 	}
701 
702 	/* Check we didn't race with a read fault installing a new page */
703 	if (!page && major)
704 		page = find_lock_page(mapping, vmf->pgoff);
705 
706 	if (page) {
707 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
708 							PAGE_CACHE_SIZE, 0);
709 		delete_from_page_cache(page);
710 		unlock_page(page);
711 		page_cache_release(page);
712 		page = NULL;
713 	}
714 
715 	/*
716 	 * If we successfully insert the new mapping over an unwritten extent,
717 	 * we need to ensure we convert the unwritten extent. If there is an
718 	 * error inserting the mapping, the filesystem needs to leave it as
719 	 * unwritten to prevent exposure of the stale underlying data to
720 	 * userspace, but we still need to call the completion function so
721 	 * the private resources on the mapping buffer can be released. We
722 	 * indicate what the callback should do via the uptodate variable, same
723 	 * as for normal BH based IO completions.
724 	 */
725 	error = dax_insert_mapping(inode, &bh, vma, vmf);
726 	if (buffer_unwritten(&bh)) {
727 		if (complete_unwritten)
728 			complete_unwritten(&bh, !error);
729 		else
730 			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
731 	}
732 
733  out:
734 	if (error == -ENOMEM)
735 		return VM_FAULT_OOM | major;
736 	/* -EBUSY is fine, somebody else faulted on the same PTE */
737 	if ((error < 0) && (error != -EBUSY))
738 		return VM_FAULT_SIGBUS | major;
739 	return VM_FAULT_NOPAGE | major;
740 
741  unlock_page:
742 	if (page) {
743 		unlock_page(page);
744 		page_cache_release(page);
745 	}
746 	goto out;
747 }
748 EXPORT_SYMBOL(__dax_fault);
749 
750 /**
751  * dax_fault - handle a page fault on a DAX file
752  * @vma: The virtual memory area where the fault occurred
753  * @vmf: The description of the fault
754  * @get_block: The filesystem method used to translate file offsets to blocks
755  *
756  * When a page fault occurs, filesystems may call this helper in their
757  * fault handler for DAX files.
758  */
759 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
760 	      get_block_t get_block, dax_iodone_t complete_unwritten)
761 {
762 	int result;
763 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
764 
765 	if (vmf->flags & FAULT_FLAG_WRITE) {
766 		sb_start_pagefault(sb);
767 		file_update_time(vma->vm_file);
768 	}
769 	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
770 	if (vmf->flags & FAULT_FLAG_WRITE)
771 		sb_end_pagefault(sb);
772 
773 	return result;
774 }
775 EXPORT_SYMBOL_GPL(dax_fault);
776 
777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
778 /*
779  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
780  * more often than one might expect in the below function.
781  */
782 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
783 
784 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
785 		const char *reason, const char *fn)
786 {
787 	if (bh) {
788 		char bname[BDEVNAME_SIZE];
789 		bdevname(bh->b_bdev, bname);
790 		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
791 			"length %zd fallback: %s\n", fn, current->comm,
792 			address, bname, bh->b_state, (u64)bh->b_blocknr,
793 			bh->b_size, reason);
794 	} else {
795 		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
796 			current->comm, address, reason);
797 	}
798 }
799 
800 #define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")
801 
802 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
803 		pmd_t *pmd, unsigned int flags, get_block_t get_block,
804 		dax_iodone_t complete_unwritten)
805 {
806 	struct file *file = vma->vm_file;
807 	struct address_space *mapping = file->f_mapping;
808 	struct inode *inode = mapping->host;
809 	struct buffer_head bh;
810 	unsigned blkbits = inode->i_blkbits;
811 	unsigned long pmd_addr = address & PMD_MASK;
812 	bool write = flags & FAULT_FLAG_WRITE;
813 	struct block_device *bdev;
814 	pgoff_t size, pgoff;
815 	sector_t block;
816 	int error, result = 0;
817 	bool alloc = false;
818 
819 	/* dax pmd mappings require pfn_t_devmap() */
820 	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
821 		return VM_FAULT_FALLBACK;
822 
823 	/* Fall back to PTEs if we're going to COW */
824 	if (write && !(vma->vm_flags & VM_SHARED)) {
825 		split_huge_pmd(vma, pmd, address);
826 		dax_pmd_dbg(NULL, address, "cow write");
827 		return VM_FAULT_FALLBACK;
828 	}
829 	/* If the PMD would extend outside the VMA */
830 	if (pmd_addr < vma->vm_start) {
831 		dax_pmd_dbg(NULL, address, "vma start unaligned");
832 		return VM_FAULT_FALLBACK;
833 	}
834 	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
835 		dax_pmd_dbg(NULL, address, "vma end unaligned");
836 		return VM_FAULT_FALLBACK;
837 	}
838 
839 	pgoff = linear_page_index(vma, pmd_addr);
840 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
841 	if (pgoff >= size)
842 		return VM_FAULT_SIGBUS;
843 	/* If the PMD would cover blocks out of the file */
844 	if ((pgoff | PG_PMD_COLOUR) >= size) {
845 		dax_pmd_dbg(NULL, address,
846 				"offset + huge page size > file size");
847 		return VM_FAULT_FALLBACK;
848 	}
849 
850 	memset(&bh, 0, sizeof(bh));
851 	bh.b_bdev = inode->i_sb->s_bdev;
852 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
853 
854 	bh.b_size = PMD_SIZE;
855 
856 	if (get_block(inode, block, &bh, 0) != 0)
857 		return VM_FAULT_SIGBUS;
858 
859 	if (!buffer_mapped(&bh) && write) {
860 		if (get_block(inode, block, &bh, 1) != 0)
861 			return VM_FAULT_SIGBUS;
862 		alloc = true;
863 	}
864 
865 	bdev = bh.b_bdev;
866 
867 	/*
868 	 * If the filesystem isn't willing to tell us the length of a hole,
869 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
870 	 * would be silly.
871 	 */
872 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
873 		dax_pmd_dbg(&bh, address, "allocated block too small");
874 		return VM_FAULT_FALLBACK;
875 	}
876 
877 	/*
878 	 * If we allocated new storage, make sure no process has any
879 	 * zero pages covering this hole
880 	 */
881 	if (alloc) {
882 		loff_t lstart = pgoff << PAGE_SHIFT;
883 		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
884 
885 		truncate_pagecache_range(inode, lstart, lend);
886 	}
887 
888 	i_mmap_lock_read(mapping);
889 
890 	/*
891 	 * If a truncate happened while we were allocating blocks, we may
892 	 * leave blocks allocated to the file that are beyond EOF.  We can't
893 	 * take i_mutex here, so just leave them hanging; they'll be freed
894 	 * when the file is deleted.
895 	 */
896 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
897 	if (pgoff >= size) {
898 		result = VM_FAULT_SIGBUS;
899 		goto out;
900 	}
901 	if ((pgoff | PG_PMD_COLOUR) >= size) {
902 		dax_pmd_dbg(&bh, address,
903 				"offset + huge page size > file size");
904 		goto fallback;
905 	}
906 
907 	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
908 		spinlock_t *ptl;
909 		pmd_t entry;
910 		struct page *zero_page = get_huge_zero_page();
911 
912 		if (unlikely(!zero_page)) {
913 			dax_pmd_dbg(&bh, address, "no zero page");
914 			goto fallback;
915 		}
916 
917 		ptl = pmd_lock(vma->vm_mm, pmd);
918 		if (!pmd_none(*pmd)) {
919 			spin_unlock(ptl);
920 			dax_pmd_dbg(&bh, address, "pmd already present");
921 			goto fallback;
922 		}
923 
924 		dev_dbg(part_to_dev(bdev->bd_part),
925 				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
926 				__func__, current->comm, address,
927 				(unsigned long long) to_sector(&bh, inode));
928 
929 		entry = mk_pmd(zero_page, vma->vm_page_prot);
930 		entry = pmd_mkhuge(entry);
931 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
932 		result = VM_FAULT_NOPAGE;
933 		spin_unlock(ptl);
934 	} else {
935 		struct blk_dax_ctl dax = {
936 			.sector = to_sector(&bh, inode),
937 			.size = PMD_SIZE,
938 		};
939 		long length = dax_map_atomic(bdev, &dax);
940 
941 		if (length < 0) {
942 			result = VM_FAULT_SIGBUS;
943 			goto out;
944 		}
945 		if (length < PMD_SIZE) {
946 			dax_pmd_dbg(&bh, address, "dax-length too small");
947 			dax_unmap_atomic(bdev, &dax);
948 			goto fallback;
949 		}
950 		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
951 			dax_pmd_dbg(&bh, address, "pfn unaligned");
952 			dax_unmap_atomic(bdev, &dax);
953 			goto fallback;
954 		}
955 
956 		if (!pfn_t_devmap(dax.pfn)) {
957 			dax_unmap_atomic(bdev, &dax);
958 			dax_pmd_dbg(&bh, address, "pfn not in memmap");
959 			goto fallback;
960 		}
961 
962 		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
963 			clear_pmem(dax.addr, PMD_SIZE);
964 			wmb_pmem();
965 			count_vm_event(PGMAJFAULT);
966 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
967 			result |= VM_FAULT_MAJOR;
968 		}
969 		dax_unmap_atomic(bdev, &dax);
970 
971 		/*
972 		 * For PTE faults we insert a radix tree entry for reads, and
973 		 * leave it clean.  Then on the first write we dirty the radix
974 		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
975 		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
976 		 * call into get_block() to translate the pgoff to a sector in
977 		 * order to be able to create a new radix tree entry.
978 		 *
979 		 * The PMD path doesn't have an equivalent to
980 		 * dax_pfn_mkwrite(), though, so for a read followed by a
981 		 * write we traverse all the way through __dax_pmd_fault()
982 		 * twice.  This means we can just skip inserting a radix tree
983 		 * entry completely on the initial read and just wait until
984 		 * the write to insert a dirty entry.
985 		 */
986 		if (write) {
987 			error = dax_radix_entry(mapping, pgoff, dax.sector,
988 					true, true);
989 			if (error) {
990 				dax_pmd_dbg(&bh, address,
991 						"PMD radix insertion failed");
992 				goto fallback;
993 			}
994 		}
995 
996 		dev_dbg(part_to_dev(bdev->bd_part),
997 				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
998 				__func__, current->comm, address,
999 				pfn_t_to_pfn(dax.pfn),
1000 				(unsigned long long) dax.sector);
1001 		result |= vmf_insert_pfn_pmd(vma, address, pmd,
1002 				dax.pfn, write);
1003 	}
1004 
1005  out:
1006 	i_mmap_unlock_read(mapping);
1007 
1008 	if (buffer_unwritten(&bh))
1009 		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1010 
1011 	return result;
1012 
1013  fallback:
1014 	count_vm_event(THP_FAULT_FALLBACK);
1015 	result = VM_FAULT_FALLBACK;
1016 	goto out;
1017 }
1018 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1019 
1020 /**
1021  * dax_pmd_fault - handle a PMD fault on a DAX file
1022  * @vma: The virtual memory area where the fault occurred
1023  * @vmf: The description of the fault
1024  * @get_block: The filesystem method used to translate file offsets to blocks
1025  *
1026  * When a page fault occurs, filesystems may call this helper in their
1027  * pmd_fault handler for DAX files.
1028  */
1029 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1030 			pmd_t *pmd, unsigned int flags, get_block_t get_block,
1031 			dax_iodone_t complete_unwritten)
1032 {
1033 	int result;
1034 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1035 
1036 	if (flags & FAULT_FLAG_WRITE) {
1037 		sb_start_pagefault(sb);
1038 		file_update_time(vma->vm_file);
1039 	}
1040 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1041 				complete_unwritten);
1042 	if (flags & FAULT_FLAG_WRITE)
1043 		sb_end_pagefault(sb);
1044 
1045 	return result;
1046 }
1047 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1048 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1049 
1050 /**
1051  * dax_pfn_mkwrite - handle first write to DAX page
1052  * @vma: The virtual memory area where the fault occurred
1053  * @vmf: The description of the fault
1054  */
1055 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1056 {
1057 	struct file *file = vma->vm_file;
1058 
1059 	/*
1060 	 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1061 	 * RADIX_DAX_PTE entry already exists in the radix tree from a
1062 	 * previous call to __dax_fault().  We just want to look up that PTE
1063 	 * entry using vmf->pgoff and make sure the dirty tag is set.  This
1064 	 * saves us from having to make a call to get_block() here to look
1065 	 * up the sector.
1066 	 */
1067 	dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1068 	return VM_FAULT_NOPAGE;
1069 }
1070 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1071 
1072 /**
1073  * dax_zero_page_range - zero a range within a page of a DAX file
1074  * @inode: The file being truncated
1075  * @from: The file offset that is being truncated to
1076  * @length: The number of bytes to zero
1077  * @get_block: The filesystem method used to translate file offsets to blocks
1078  *
1079  * This function can be called by a filesystem when it is zeroing part of a
1080  * page in a DAX file.  This is intended for hole-punch operations.  If
1081  * you are truncating a file, the helper function dax_truncate_page() may be
1082  * more convenient.
1083  *
1084  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1085  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1086  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1087  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1088  * since the file might be mmapped.
1089  */
1090 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1091 							get_block_t get_block)
1092 {
1093 	struct buffer_head bh;
1094 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
1095 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1096 	int err;
1097 
1098 	/* Block boundary? Nothing to do */
1099 	if (!length)
1100 		return 0;
1101 	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1102 
1103 	memset(&bh, 0, sizeof(bh));
1104 	bh.b_bdev = inode->i_sb->s_bdev;
1105 	bh.b_size = PAGE_CACHE_SIZE;
1106 	err = get_block(inode, index, &bh, 0);
1107 	if (err < 0)
1108 		return err;
1109 	if (buffer_written(&bh)) {
1110 		struct block_device *bdev = bh.b_bdev;
1111 		struct blk_dax_ctl dax = {
1112 			.sector = to_sector(&bh, inode),
1113 			.size = PAGE_CACHE_SIZE,
1114 		};
1115 
1116 		if (dax_map_atomic(bdev, &dax) < 0)
1117 			return PTR_ERR(dax.addr);
1118 		clear_pmem(dax.addr + offset, length);
1119 		wmb_pmem();
1120 		dax_unmap_atomic(bdev, &dax);
1121 	}
1122 
1123 	return 0;
1124 }
1125 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1126 
1127 /**
1128  * dax_truncate_page - handle a partial page being truncated in a DAX file
1129  * @inode: The file being truncated
1130  * @from: The file offset that is being truncated to
1131  * @get_block: The filesystem method used to translate file offsets to blocks
1132  *
1133  * Similar to block_truncate_page(), this function can be called by a
1134  * filesystem when it is truncating a DAX file to handle the partial page.
1135  *
1136  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1137  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1138  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1139  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1140  * since the file might be mmapped.
1141  */
1142 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1143 {
1144 	unsigned length = PAGE_CACHE_ALIGN(from) - from;
1145 	return dax_zero_page_range(inode, from, length, get_block);
1146 }
1147 EXPORT_SYMBOL_GPL(dax_truncate_page);
1148