1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/highmem.h> 15 #include <linux/memcontrol.h> 16 #include <linux/mm.h> 17 #include <linux/mutex.h> 18 #include <linux/pagevec.h> 19 #include <linux/sched.h> 20 #include <linux/sched/signal.h> 21 #include <linux/uio.h> 22 #include <linux/vmstat.h> 23 #include <linux/sizes.h> 24 #include <linux/mmu_notifier.h> 25 #include <linux/iomap.h> 26 #include <linux/rmap.h> 27 #include <asm/pgalloc.h> 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/fs_dax.h> 31 32 /* We choose 4096 entries - same as per-zone page wait tables */ 33 #define DAX_WAIT_TABLE_BITS 12 34 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 35 36 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 37 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 38 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 39 40 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 41 42 static int __init init_dax_wait_table(void) 43 { 44 int i; 45 46 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 47 init_waitqueue_head(wait_table + i); 48 return 0; 49 } 50 fs_initcall(init_dax_wait_table); 51 52 /* 53 * DAX pagecache entries use XArray value entries so they can't be mistaken 54 * for pages. We use one bit for locking, one bit for the entry size (PMD) 55 * and two more to tell us if the entry is a zero page or an empty entry that 56 * is just used for locking. In total four special bits. 57 * 58 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 59 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 60 * block allocation. 61 */ 62 #define DAX_SHIFT (4) 63 #define DAX_LOCKED (1UL << 0) 64 #define DAX_PMD (1UL << 1) 65 #define DAX_ZERO_PAGE (1UL << 2) 66 #define DAX_EMPTY (1UL << 3) 67 68 static unsigned long dax_to_pfn(void *entry) 69 { 70 return xa_to_value(entry) >> DAX_SHIFT; 71 } 72 73 static struct folio *dax_to_folio(void *entry) 74 { 75 return page_folio(pfn_to_page(dax_to_pfn(entry))); 76 } 77 78 static void *dax_make_entry(unsigned long pfn, unsigned long flags) 79 { 80 return xa_mk_value(flags | (pfn << DAX_SHIFT)); 81 } 82 83 static bool dax_is_locked(void *entry) 84 { 85 return xa_to_value(entry) & DAX_LOCKED; 86 } 87 88 static unsigned int dax_entry_order(void *entry) 89 { 90 if (xa_to_value(entry) & DAX_PMD) 91 return PMD_ORDER; 92 return 0; 93 } 94 95 static unsigned long dax_is_pmd_entry(void *entry) 96 { 97 return xa_to_value(entry) & DAX_PMD; 98 } 99 100 static bool dax_is_pte_entry(void *entry) 101 { 102 return !(xa_to_value(entry) & DAX_PMD); 103 } 104 105 static int dax_is_zero_entry(void *entry) 106 { 107 return xa_to_value(entry) & DAX_ZERO_PAGE; 108 } 109 110 static int dax_is_empty_entry(void *entry) 111 { 112 return xa_to_value(entry) & DAX_EMPTY; 113 } 114 115 /* 116 * true if the entry that was found is of a smaller order than the entry 117 * we were looking for 118 */ 119 static bool dax_is_conflict(void *entry) 120 { 121 return entry == XA_RETRY_ENTRY; 122 } 123 124 /* 125 * DAX page cache entry locking 126 */ 127 struct exceptional_entry_key { 128 struct xarray *xa; 129 pgoff_t entry_start; 130 }; 131 132 struct wait_exceptional_entry_queue { 133 wait_queue_entry_t wait; 134 struct exceptional_entry_key key; 135 }; 136 137 /** 138 * enum dax_wake_mode: waitqueue wakeup behaviour 139 * @WAKE_ALL: wake all waiters in the waitqueue 140 * @WAKE_NEXT: wake only the first waiter in the waitqueue 141 */ 142 enum dax_wake_mode { 143 WAKE_ALL, 144 WAKE_NEXT, 145 }; 146 147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 148 void *entry, struct exceptional_entry_key *key) 149 { 150 unsigned long hash; 151 unsigned long index = xas->xa_index; 152 153 /* 154 * If 'entry' is a PMD, align the 'index' that we use for the wait 155 * queue to the start of that PMD. This ensures that all offsets in 156 * the range covered by the PMD map to the same bit lock. 157 */ 158 if (dax_is_pmd_entry(entry)) 159 index &= ~PG_PMD_COLOUR; 160 key->xa = xas->xa; 161 key->entry_start = index; 162 163 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 164 return wait_table + hash; 165 } 166 167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 168 unsigned int mode, int sync, void *keyp) 169 { 170 struct exceptional_entry_key *key = keyp; 171 struct wait_exceptional_entry_queue *ewait = 172 container_of(wait, struct wait_exceptional_entry_queue, wait); 173 174 if (key->xa != ewait->key.xa || 175 key->entry_start != ewait->key.entry_start) 176 return 0; 177 return autoremove_wake_function(wait, mode, sync, NULL); 178 } 179 180 /* 181 * @entry may no longer be the entry at the index in the mapping. 182 * The important information it's conveying is whether the entry at 183 * this index used to be a PMD entry. 184 */ 185 static void dax_wake_entry(struct xa_state *xas, void *entry, 186 enum dax_wake_mode mode) 187 { 188 struct exceptional_entry_key key; 189 wait_queue_head_t *wq; 190 191 wq = dax_entry_waitqueue(xas, entry, &key); 192 193 /* 194 * Checking for locked entry and prepare_to_wait_exclusive() happens 195 * under the i_pages lock, ditto for entry handling in our callers. 196 * So at this point all tasks that could have seen our entry locked 197 * must be in the waitqueue and the following check will see them. 198 */ 199 if (waitqueue_active(wq)) 200 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); 201 } 202 203 /* 204 * Look up entry in page cache, wait for it to become unlocked if it 205 * is a DAX entry and return it. The caller must subsequently call 206 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 207 * if it did. The entry returned may have a larger order than @order. 208 * If @order is larger than the order of the entry found in i_pages, this 209 * function returns a dax_is_conflict entry. 210 * 211 * Must be called with the i_pages lock held. 212 */ 213 static void *get_next_unlocked_entry(struct xa_state *xas, unsigned int order) 214 { 215 void *entry; 216 struct wait_exceptional_entry_queue ewait; 217 wait_queue_head_t *wq; 218 219 init_wait(&ewait.wait); 220 ewait.wait.func = wake_exceptional_entry_func; 221 222 for (;;) { 223 entry = xas_find_conflict(xas); 224 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 225 return entry; 226 if (dax_entry_order(entry) < order) 227 return XA_RETRY_ENTRY; 228 if (!dax_is_locked(entry)) 229 return entry; 230 231 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 232 prepare_to_wait_exclusive(wq, &ewait.wait, 233 TASK_UNINTERRUPTIBLE); 234 xas_unlock_irq(xas); 235 xas_reset(xas); 236 schedule(); 237 finish_wait(wq, &ewait.wait); 238 xas_lock_irq(xas); 239 } 240 } 241 242 /* 243 * Wait for the given entry to become unlocked. Caller must hold the i_pages 244 * lock and call either put_unlocked_entry() if it did not lock the entry or 245 * dax_unlock_entry() if it did. Returns an unlocked entry if still present. 246 */ 247 static void *wait_entry_unlocked_exclusive(struct xa_state *xas, void *entry) 248 { 249 struct wait_exceptional_entry_queue ewait; 250 wait_queue_head_t *wq; 251 252 init_wait(&ewait.wait); 253 ewait.wait.func = wake_exceptional_entry_func; 254 255 while (unlikely(dax_is_locked(entry))) { 256 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 257 prepare_to_wait_exclusive(wq, &ewait.wait, 258 TASK_UNINTERRUPTIBLE); 259 xas_reset(xas); 260 xas_unlock_irq(xas); 261 schedule(); 262 finish_wait(wq, &ewait.wait); 263 xas_lock_irq(xas); 264 entry = xas_load(xas); 265 } 266 267 if (xa_is_internal(entry)) 268 return NULL; 269 270 return entry; 271 } 272 273 /* 274 * The only thing keeping the address space around is the i_pages lock 275 * (it's cycled in clear_inode() after removing the entries from i_pages) 276 * After we call xas_unlock_irq(), we cannot touch xas->xa. 277 */ 278 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 279 { 280 struct wait_exceptional_entry_queue ewait; 281 wait_queue_head_t *wq; 282 283 init_wait(&ewait.wait); 284 ewait.wait.func = wake_exceptional_entry_func; 285 286 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 287 /* 288 * Unlike get_next_unlocked_entry() there is no guarantee that this 289 * path ever successfully retrieves an unlocked entry before an 290 * inode dies. Perform a non-exclusive wait in case this path 291 * never successfully performs its own wake up. 292 */ 293 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 294 xas_unlock_irq(xas); 295 schedule(); 296 finish_wait(wq, &ewait.wait); 297 } 298 299 static void put_unlocked_entry(struct xa_state *xas, void *entry, 300 enum dax_wake_mode mode) 301 { 302 if (entry && !dax_is_conflict(entry)) 303 dax_wake_entry(xas, entry, mode); 304 } 305 306 /* 307 * We used the xa_state to get the entry, but then we locked the entry and 308 * dropped the xa_lock, so we know the xa_state is stale and must be reset 309 * before use. 310 */ 311 static void dax_unlock_entry(struct xa_state *xas, void *entry) 312 { 313 void *old; 314 315 BUG_ON(dax_is_locked(entry)); 316 xas_reset(xas); 317 xas_lock_irq(xas); 318 old = xas_store(xas, entry); 319 xas_unlock_irq(xas); 320 BUG_ON(!dax_is_locked(old)); 321 dax_wake_entry(xas, entry, WAKE_NEXT); 322 } 323 324 /* 325 * Return: The entry stored at this location before it was locked. 326 */ 327 static void *dax_lock_entry(struct xa_state *xas, void *entry) 328 { 329 unsigned long v = xa_to_value(entry); 330 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 331 } 332 333 static unsigned long dax_entry_size(void *entry) 334 { 335 if (dax_is_zero_entry(entry)) 336 return 0; 337 else if (dax_is_empty_entry(entry)) 338 return 0; 339 else if (dax_is_pmd_entry(entry)) 340 return PMD_SIZE; 341 else 342 return PAGE_SIZE; 343 } 344 345 /* 346 * A DAX folio is considered shared if it has no mapping set and ->share (which 347 * shares the ->index field) is non-zero. Note this may return false even if the 348 * page is shared between multiple files but has not yet actually been mapped 349 * into multiple address spaces. 350 */ 351 static inline bool dax_folio_is_shared(struct folio *folio) 352 { 353 return !folio->mapping && folio->share; 354 } 355 356 /* 357 * When it is called by dax_insert_entry(), the shared flag will indicate 358 * whether this entry is shared by multiple files. If the page has not 359 * previously been associated with any mappings the ->mapping and ->index 360 * fields will be set. If it has already been associated with a mapping 361 * the mapping will be cleared and the share count set. It's then up to 362 * reverse map users like memory_failure() to call back into the filesystem to 363 * recover ->mapping and ->index information. For example by implementing 364 * dax_holder_operations. 365 */ 366 static void dax_folio_make_shared(struct folio *folio) 367 { 368 /* 369 * folio is not currently shared so mark it as shared by clearing 370 * folio->mapping. 371 */ 372 folio->mapping = NULL; 373 374 /* 375 * folio has previously been mapped into one address space so set the 376 * share count. 377 */ 378 folio->share = 1; 379 } 380 381 static inline unsigned long dax_folio_put(struct folio *folio) 382 { 383 unsigned long ref; 384 int order, i; 385 386 if (!dax_folio_is_shared(folio)) 387 ref = 0; 388 else 389 ref = --folio->share; 390 391 if (ref) 392 return ref; 393 394 folio->mapping = NULL; 395 order = folio_order(folio); 396 if (!order) 397 return 0; 398 folio_reset_order(folio); 399 400 for (i = 0; i < (1UL << order); i++) { 401 struct dev_pagemap *pgmap = page_pgmap(&folio->page); 402 struct page *page = folio_page(folio, i); 403 struct folio *new_folio = (struct folio *)page; 404 405 ClearPageHead(page); 406 clear_compound_head(page); 407 408 new_folio->mapping = NULL; 409 /* 410 * Reset pgmap which was over-written by 411 * prep_compound_page(). 412 */ 413 new_folio->pgmap = pgmap; 414 new_folio->share = 0; 415 WARN_ON_ONCE(folio_ref_count(new_folio)); 416 } 417 418 return ref; 419 } 420 421 static void dax_folio_init(void *entry) 422 { 423 struct folio *folio = dax_to_folio(entry); 424 int order = dax_entry_order(entry); 425 426 /* 427 * Folio should have been split back to order-0 pages in 428 * dax_folio_put() when they were removed from their 429 * final mapping. 430 */ 431 WARN_ON_ONCE(folio_order(folio)); 432 433 if (order > 0) { 434 prep_compound_page(&folio->page, order); 435 if (order > 1) 436 INIT_LIST_HEAD(&folio->_deferred_list); 437 WARN_ON_ONCE(folio_ref_count(folio)); 438 } 439 } 440 441 static void dax_associate_entry(void *entry, struct address_space *mapping, 442 struct vm_area_struct *vma, 443 unsigned long address, bool shared) 444 { 445 unsigned long size = dax_entry_size(entry), index; 446 struct folio *folio = dax_to_folio(entry); 447 448 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) 449 return; 450 451 index = linear_page_index(vma, address & ~(size - 1)); 452 if (shared && (folio->mapping || dax_folio_is_shared(folio))) { 453 if (folio->mapping) 454 dax_folio_make_shared(folio); 455 456 WARN_ON_ONCE(!folio->share); 457 WARN_ON_ONCE(dax_entry_order(entry) != folio_order(folio)); 458 folio->share++; 459 } else { 460 WARN_ON_ONCE(folio->mapping); 461 dax_folio_init(entry); 462 folio = dax_to_folio(entry); 463 folio->mapping = mapping; 464 folio->index = index; 465 } 466 } 467 468 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 469 bool trunc) 470 { 471 struct folio *folio = dax_to_folio(entry); 472 473 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) 474 return; 475 476 dax_folio_put(folio); 477 } 478 479 static struct page *dax_busy_page(void *entry) 480 { 481 struct folio *folio = dax_to_folio(entry); 482 483 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) 484 return NULL; 485 486 if (folio_ref_count(folio) - folio_mapcount(folio)) 487 return &folio->page; 488 else 489 return NULL; 490 } 491 492 /** 493 * dax_lock_folio - Lock the DAX entry corresponding to a folio 494 * @folio: The folio whose entry we want to lock 495 * 496 * Context: Process context. 497 * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could 498 * not be locked. 499 */ 500 dax_entry_t dax_lock_folio(struct folio *folio) 501 { 502 XA_STATE(xas, NULL, 0); 503 void *entry; 504 505 /* Ensure folio->mapping isn't freed while we look at it */ 506 rcu_read_lock(); 507 for (;;) { 508 struct address_space *mapping = READ_ONCE(folio->mapping); 509 510 entry = NULL; 511 if (!mapping || !dax_mapping(mapping)) 512 break; 513 514 /* 515 * In the device-dax case there's no need to lock, a 516 * struct dev_pagemap pin is sufficient to keep the 517 * inode alive, and we assume we have dev_pagemap pin 518 * otherwise we would not have a valid pfn_to_page() 519 * translation. 520 */ 521 entry = (void *)~0UL; 522 if (S_ISCHR(mapping->host->i_mode)) 523 break; 524 525 xas.xa = &mapping->i_pages; 526 xas_lock_irq(&xas); 527 if (mapping != folio->mapping) { 528 xas_unlock_irq(&xas); 529 continue; 530 } 531 xas_set(&xas, folio->index); 532 entry = xas_load(&xas); 533 if (dax_is_locked(entry)) { 534 rcu_read_unlock(); 535 wait_entry_unlocked(&xas, entry); 536 rcu_read_lock(); 537 continue; 538 } 539 dax_lock_entry(&xas, entry); 540 xas_unlock_irq(&xas); 541 break; 542 } 543 rcu_read_unlock(); 544 return (dax_entry_t)entry; 545 } 546 547 void dax_unlock_folio(struct folio *folio, dax_entry_t cookie) 548 { 549 struct address_space *mapping = folio->mapping; 550 XA_STATE(xas, &mapping->i_pages, folio->index); 551 552 if (S_ISCHR(mapping->host->i_mode)) 553 return; 554 555 dax_unlock_entry(&xas, (void *)cookie); 556 } 557 558 /* 559 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping 560 * @mapping: the file's mapping whose entry we want to lock 561 * @index: the offset within this file 562 * @page: output the dax page corresponding to this dax entry 563 * 564 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry 565 * could not be locked. 566 */ 567 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index, 568 struct page **page) 569 { 570 XA_STATE(xas, NULL, 0); 571 void *entry; 572 573 rcu_read_lock(); 574 for (;;) { 575 entry = NULL; 576 if (!dax_mapping(mapping)) 577 break; 578 579 xas.xa = &mapping->i_pages; 580 xas_lock_irq(&xas); 581 xas_set(&xas, index); 582 entry = xas_load(&xas); 583 if (dax_is_locked(entry)) { 584 rcu_read_unlock(); 585 wait_entry_unlocked(&xas, entry); 586 rcu_read_lock(); 587 continue; 588 } 589 if (!entry || 590 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 591 /* 592 * Because we are looking for entry from file's mapping 593 * and index, so the entry may not be inserted for now, 594 * or even a zero/empty entry. We don't think this is 595 * an error case. So, return a special value and do 596 * not output @page. 597 */ 598 entry = (void *)~0UL; 599 } else { 600 *page = pfn_to_page(dax_to_pfn(entry)); 601 dax_lock_entry(&xas, entry); 602 } 603 xas_unlock_irq(&xas); 604 break; 605 } 606 rcu_read_unlock(); 607 return (dax_entry_t)entry; 608 } 609 610 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index, 611 dax_entry_t cookie) 612 { 613 XA_STATE(xas, &mapping->i_pages, index); 614 615 if (cookie == ~0UL) 616 return; 617 618 dax_unlock_entry(&xas, (void *)cookie); 619 } 620 621 /* 622 * Find page cache entry at given index. If it is a DAX entry, return it 623 * with the entry locked. If the page cache doesn't contain an entry at 624 * that index, add a locked empty entry. 625 * 626 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 627 * either return that locked entry or will return VM_FAULT_FALLBACK. 628 * This will happen if there are any PTE entries within the PMD range 629 * that we are requesting. 630 * 631 * We always favor PTE entries over PMD entries. There isn't a flow where we 632 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 633 * insertion will fail if it finds any PTE entries already in the tree, and a 634 * PTE insertion will cause an existing PMD entry to be unmapped and 635 * downgraded to PTE entries. This happens for both PMD zero pages as 636 * well as PMD empty entries. 637 * 638 * The exception to this downgrade path is for PMD entries that have 639 * real storage backing them. We will leave these real PMD entries in 640 * the tree, and PTE writes will simply dirty the entire PMD entry. 641 * 642 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 643 * persistent memory the benefit is doubtful. We can add that later if we can 644 * show it helps. 645 * 646 * On error, this function does not return an ERR_PTR. Instead it returns 647 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 648 * overlap with xarray value entries. 649 */ 650 static void *grab_mapping_entry(struct xa_state *xas, 651 struct address_space *mapping, unsigned int order) 652 { 653 unsigned long index = xas->xa_index; 654 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ 655 void *entry; 656 657 retry: 658 pmd_downgrade = false; 659 xas_lock_irq(xas); 660 entry = get_next_unlocked_entry(xas, order); 661 662 if (entry) { 663 if (dax_is_conflict(entry)) 664 goto fallback; 665 if (!xa_is_value(entry)) { 666 xas_set_err(xas, -EIO); 667 goto out_unlock; 668 } 669 670 if (order == 0) { 671 if (dax_is_pmd_entry(entry) && 672 (dax_is_zero_entry(entry) || 673 dax_is_empty_entry(entry))) { 674 pmd_downgrade = true; 675 } 676 } 677 } 678 679 if (pmd_downgrade) { 680 /* 681 * Make sure 'entry' remains valid while we drop 682 * the i_pages lock. 683 */ 684 dax_lock_entry(xas, entry); 685 686 /* 687 * Besides huge zero pages the only other thing that gets 688 * downgraded are empty entries which don't need to be 689 * unmapped. 690 */ 691 if (dax_is_zero_entry(entry)) { 692 xas_unlock_irq(xas); 693 unmap_mapping_pages(mapping, 694 xas->xa_index & ~PG_PMD_COLOUR, 695 PG_PMD_NR, false); 696 xas_reset(xas); 697 xas_lock_irq(xas); 698 } 699 700 dax_disassociate_entry(entry, mapping, false); 701 xas_store(xas, NULL); /* undo the PMD join */ 702 dax_wake_entry(xas, entry, WAKE_ALL); 703 mapping->nrpages -= PG_PMD_NR; 704 entry = NULL; 705 xas_set(xas, index); 706 } 707 708 if (entry) { 709 dax_lock_entry(xas, entry); 710 } else { 711 unsigned long flags = DAX_EMPTY; 712 713 if (order > 0) 714 flags |= DAX_PMD; 715 entry = dax_make_entry(0, flags); 716 dax_lock_entry(xas, entry); 717 if (xas_error(xas)) 718 goto out_unlock; 719 mapping->nrpages += 1UL << order; 720 } 721 722 out_unlock: 723 xas_unlock_irq(xas); 724 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 725 goto retry; 726 if (xas->xa_node == XA_ERROR(-ENOMEM)) 727 return xa_mk_internal(VM_FAULT_OOM); 728 if (xas_error(xas)) 729 return xa_mk_internal(VM_FAULT_SIGBUS); 730 return entry; 731 fallback: 732 xas_unlock_irq(xas); 733 return xa_mk_internal(VM_FAULT_FALLBACK); 734 } 735 736 /** 737 * dax_layout_busy_page_range - find first pinned page in @mapping 738 * @mapping: address space to scan for a page with ref count > 1 739 * @start: Starting offset. Page containing 'start' is included. 740 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, 741 * pages from 'start' till the end of file are included. 742 * 743 * DAX requires ZONE_DEVICE mapped pages. These pages are never 744 * 'onlined' to the page allocator so they are considered idle when 745 * page->count == 1. A filesystem uses this interface to determine if 746 * any page in the mapping is busy, i.e. for DMA, or other 747 * get_user_pages() usages. 748 * 749 * It is expected that the filesystem is holding locks to block the 750 * establishment of new mappings in this address_space. I.e. it expects 751 * to be able to run unmap_mapping_range() and subsequently not race 752 * mapping_mapped() becoming true. 753 */ 754 struct page *dax_layout_busy_page_range(struct address_space *mapping, 755 loff_t start, loff_t end) 756 { 757 void *entry; 758 unsigned int scanned = 0; 759 struct page *page = NULL; 760 pgoff_t start_idx = start >> PAGE_SHIFT; 761 pgoff_t end_idx; 762 XA_STATE(xas, &mapping->i_pages, start_idx); 763 764 if (!dax_mapping(mapping)) 765 return NULL; 766 767 /* If end == LLONG_MAX, all pages from start to till end of file */ 768 if (end == LLONG_MAX) 769 end_idx = ULONG_MAX; 770 else 771 end_idx = end >> PAGE_SHIFT; 772 /* 773 * If we race get_user_pages_fast() here either we'll see the 774 * elevated page count in the iteration and wait, or 775 * get_user_pages_fast() will see that the page it took a reference 776 * against is no longer mapped in the page tables and bail to the 777 * get_user_pages() slow path. The slow path is protected by 778 * pte_lock() and pmd_lock(). New references are not taken without 779 * holding those locks, and unmap_mapping_pages() will not zero the 780 * pte or pmd without holding the respective lock, so we are 781 * guaranteed to either see new references or prevent new 782 * references from being established. 783 */ 784 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); 785 786 xas_lock_irq(&xas); 787 xas_for_each(&xas, entry, end_idx) { 788 if (WARN_ON_ONCE(!xa_is_value(entry))) 789 continue; 790 entry = wait_entry_unlocked_exclusive(&xas, entry); 791 if (entry) 792 page = dax_busy_page(entry); 793 put_unlocked_entry(&xas, entry, WAKE_NEXT); 794 if (page) 795 break; 796 if (++scanned % XA_CHECK_SCHED) 797 continue; 798 799 xas_pause(&xas); 800 xas_unlock_irq(&xas); 801 cond_resched(); 802 xas_lock_irq(&xas); 803 } 804 xas_unlock_irq(&xas); 805 return page; 806 } 807 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 808 809 struct page *dax_layout_busy_page(struct address_space *mapping) 810 { 811 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); 812 } 813 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 814 815 static int __dax_invalidate_entry(struct address_space *mapping, 816 pgoff_t index, bool trunc) 817 { 818 XA_STATE(xas, &mapping->i_pages, index); 819 int ret = 0; 820 void *entry; 821 822 xas_lock_irq(&xas); 823 entry = get_next_unlocked_entry(&xas, 0); 824 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 825 goto out; 826 if (!trunc && 827 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 828 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 829 goto out; 830 dax_disassociate_entry(entry, mapping, trunc); 831 xas_store(&xas, NULL); 832 mapping->nrpages -= 1UL << dax_entry_order(entry); 833 ret = 1; 834 out: 835 put_unlocked_entry(&xas, entry, WAKE_ALL); 836 xas_unlock_irq(&xas); 837 return ret; 838 } 839 840 static int __dax_clear_dirty_range(struct address_space *mapping, 841 pgoff_t start, pgoff_t end) 842 { 843 XA_STATE(xas, &mapping->i_pages, start); 844 unsigned int scanned = 0; 845 void *entry; 846 847 xas_lock_irq(&xas); 848 xas_for_each(&xas, entry, end) { 849 entry = wait_entry_unlocked_exclusive(&xas, entry); 850 if (!entry) 851 continue; 852 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 853 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 854 put_unlocked_entry(&xas, entry, WAKE_NEXT); 855 856 if (++scanned % XA_CHECK_SCHED) 857 continue; 858 859 xas_pause(&xas); 860 xas_unlock_irq(&xas); 861 cond_resched(); 862 xas_lock_irq(&xas); 863 } 864 xas_unlock_irq(&xas); 865 866 return 0; 867 } 868 869 /* 870 * Delete DAX entry at @index from @mapping. Wait for it 871 * to be unlocked before deleting it. 872 */ 873 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 874 { 875 int ret = __dax_invalidate_entry(mapping, index, true); 876 877 /* 878 * This gets called from truncate / punch_hole path. As such, the caller 879 * must hold locks protecting against concurrent modifications of the 880 * page cache (usually fs-private i_mmap_sem for writing). Since the 881 * caller has seen a DAX entry for this index, we better find it 882 * at that index as well... 883 */ 884 WARN_ON_ONCE(!ret); 885 return ret; 886 } 887 888 void dax_delete_mapping_range(struct address_space *mapping, 889 loff_t start, loff_t end) 890 { 891 void *entry; 892 pgoff_t start_idx = start >> PAGE_SHIFT; 893 pgoff_t end_idx; 894 XA_STATE(xas, &mapping->i_pages, start_idx); 895 896 /* If end == LLONG_MAX, all pages from start to till end of file */ 897 if (end == LLONG_MAX) 898 end_idx = ULONG_MAX; 899 else 900 end_idx = end >> PAGE_SHIFT; 901 902 xas_lock_irq(&xas); 903 xas_for_each(&xas, entry, end_idx) { 904 if (!xa_is_value(entry)) 905 continue; 906 entry = wait_entry_unlocked_exclusive(&xas, entry); 907 if (!entry) 908 continue; 909 dax_disassociate_entry(entry, mapping, true); 910 xas_store(&xas, NULL); 911 mapping->nrpages -= 1UL << dax_entry_order(entry); 912 put_unlocked_entry(&xas, entry, WAKE_ALL); 913 } 914 xas_unlock_irq(&xas); 915 } 916 EXPORT_SYMBOL_GPL(dax_delete_mapping_range); 917 918 static int wait_page_idle(struct page *page, 919 void (cb)(struct inode *), 920 struct inode *inode) 921 { 922 return ___wait_var_event(page, dax_page_is_idle(page), 923 TASK_INTERRUPTIBLE, 0, 0, cb(inode)); 924 } 925 926 static void wait_page_idle_uninterruptible(struct page *page, 927 struct inode *inode) 928 { 929 ___wait_var_event(page, dax_page_is_idle(page), 930 TASK_UNINTERRUPTIBLE, 0, 0, schedule()); 931 } 932 933 /* 934 * Unmaps the inode and waits for any DMA to complete prior to deleting the 935 * DAX mapping entries for the range. 936 * 937 * For NOWAIT behavior, pass @cb as NULL to early-exit on first found 938 * busy page 939 */ 940 int dax_break_layout(struct inode *inode, loff_t start, loff_t end, 941 void (cb)(struct inode *)) 942 { 943 struct page *page; 944 int error = 0; 945 946 if (!dax_mapping(inode->i_mapping)) 947 return 0; 948 949 do { 950 page = dax_layout_busy_page_range(inode->i_mapping, start, end); 951 if (!page) 952 break; 953 if (!cb) { 954 error = -ERESTARTSYS; 955 break; 956 } 957 958 error = wait_page_idle(page, cb, inode); 959 } while (error == 0); 960 961 if (!page) 962 dax_delete_mapping_range(inode->i_mapping, start, end); 963 964 return error; 965 } 966 EXPORT_SYMBOL_GPL(dax_break_layout); 967 968 void dax_break_layout_final(struct inode *inode) 969 { 970 struct page *page; 971 972 if (!dax_mapping(inode->i_mapping)) 973 return; 974 975 do { 976 page = dax_layout_busy_page_range(inode->i_mapping, 0, 977 LLONG_MAX); 978 if (!page) 979 break; 980 981 wait_page_idle_uninterruptible(page, inode); 982 } while (true); 983 984 if (!page) 985 dax_delete_mapping_range(inode->i_mapping, 0, LLONG_MAX); 986 } 987 EXPORT_SYMBOL_GPL(dax_break_layout_final); 988 989 /* 990 * Invalidate DAX entry if it is clean. 991 */ 992 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 993 pgoff_t index) 994 { 995 return __dax_invalidate_entry(mapping, index, false); 996 } 997 998 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) 999 { 1000 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); 1001 } 1002 1003 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) 1004 { 1005 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); 1006 void *vto, *kaddr; 1007 long rc; 1008 int id; 1009 1010 id = dax_read_lock(); 1011 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS, 1012 &kaddr, NULL); 1013 if (rc < 0) { 1014 dax_read_unlock(id); 1015 return rc; 1016 } 1017 vto = kmap_atomic(vmf->cow_page); 1018 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); 1019 kunmap_atomic(vto); 1020 dax_read_unlock(id); 1021 return 0; 1022 } 1023 1024 /* 1025 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1026 * flushed on write-faults (non-cow), but not read-faults. 1027 */ 1028 static bool dax_fault_is_synchronous(const struct iomap_iter *iter, 1029 struct vm_area_struct *vma) 1030 { 1031 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) && 1032 (iter->iomap.flags & IOMAP_F_DIRTY); 1033 } 1034 1035 /* 1036 * By this point grab_mapping_entry() has ensured that we have a locked entry 1037 * of the appropriate size so we don't have to worry about downgrading PMDs to 1038 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 1039 * already in the tree, we will skip the insertion and just dirty the PMD as 1040 * appropriate. 1041 */ 1042 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf, 1043 const struct iomap_iter *iter, void *entry, unsigned long pfn, 1044 unsigned long flags) 1045 { 1046 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1047 void *new_entry = dax_make_entry(pfn, flags); 1048 bool write = iter->flags & IOMAP_WRITE; 1049 bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma); 1050 bool shared = iter->iomap.flags & IOMAP_F_SHARED; 1051 1052 if (dirty) 1053 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1054 1055 if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) { 1056 unsigned long index = xas->xa_index; 1057 /* we are replacing a zero page with block mapping */ 1058 if (dax_is_pmd_entry(entry)) 1059 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 1060 PG_PMD_NR, false); 1061 else /* pte entry */ 1062 unmap_mapping_pages(mapping, index, 1, false); 1063 } 1064 1065 xas_reset(xas); 1066 xas_lock_irq(xas); 1067 if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 1068 void *old; 1069 1070 dax_disassociate_entry(entry, mapping, false); 1071 dax_associate_entry(new_entry, mapping, vmf->vma, 1072 vmf->address, shared); 1073 1074 /* 1075 * Only swap our new entry into the page cache if the current 1076 * entry is a zero page or an empty entry. If a normal PTE or 1077 * PMD entry is already in the cache, we leave it alone. This 1078 * means that if we are trying to insert a PTE and the 1079 * existing entry is a PMD, we will just leave the PMD in the 1080 * tree and dirty it if necessary. 1081 */ 1082 old = dax_lock_entry(xas, new_entry); 1083 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 1084 DAX_LOCKED)); 1085 entry = new_entry; 1086 } else { 1087 xas_load(xas); /* Walk the xa_state */ 1088 } 1089 1090 if (dirty) 1091 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 1092 1093 if (write && shared) 1094 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE); 1095 1096 xas_unlock_irq(xas); 1097 return entry; 1098 } 1099 1100 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 1101 struct address_space *mapping, void *entry) 1102 { 1103 unsigned long pfn, index, count, end; 1104 long ret = 0; 1105 struct vm_area_struct *vma; 1106 1107 /* 1108 * A page got tagged dirty in DAX mapping? Something is seriously 1109 * wrong. 1110 */ 1111 if (WARN_ON(!xa_is_value(entry))) 1112 return -EIO; 1113 1114 if (unlikely(dax_is_locked(entry))) { 1115 void *old_entry = entry; 1116 1117 entry = get_next_unlocked_entry(xas, 0); 1118 1119 /* Entry got punched out / reallocated? */ 1120 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 1121 goto put_unlocked; 1122 /* 1123 * Entry got reallocated elsewhere? No need to writeback. 1124 * We have to compare pfns as we must not bail out due to 1125 * difference in lockbit or entry type. 1126 */ 1127 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 1128 goto put_unlocked; 1129 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 1130 dax_is_zero_entry(entry))) { 1131 ret = -EIO; 1132 goto put_unlocked; 1133 } 1134 1135 /* Another fsync thread may have already done this entry */ 1136 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 1137 goto put_unlocked; 1138 } 1139 1140 /* Lock the entry to serialize with page faults */ 1141 dax_lock_entry(xas, entry); 1142 1143 /* 1144 * We can clear the tag now but we have to be careful so that concurrent 1145 * dax_writeback_one() calls for the same index cannot finish before we 1146 * actually flush the caches. This is achieved as the calls will look 1147 * at the entry only under the i_pages lock and once they do that 1148 * they will see the entry locked and wait for it to unlock. 1149 */ 1150 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 1151 xas_unlock_irq(xas); 1152 1153 /* 1154 * If dax_writeback_mapping_range() was given a wbc->range_start 1155 * in the middle of a PMD, the 'index' we use needs to be 1156 * aligned to the start of the PMD. 1157 * This allows us to flush for PMD_SIZE and not have to worry about 1158 * partial PMD writebacks. 1159 */ 1160 pfn = dax_to_pfn(entry); 1161 count = 1UL << dax_entry_order(entry); 1162 index = xas->xa_index & ~(count - 1); 1163 end = index + count - 1; 1164 1165 /* Walk all mappings of a given index of a file and writeprotect them */ 1166 i_mmap_lock_read(mapping); 1167 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { 1168 pfn_mkclean_range(pfn, count, index, vma); 1169 cond_resched(); 1170 } 1171 i_mmap_unlock_read(mapping); 1172 1173 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 1174 /* 1175 * After we have flushed the cache, we can clear the dirty tag. There 1176 * cannot be new dirty data in the pfn after the flush has completed as 1177 * the pfn mappings are writeprotected and fault waits for mapping 1178 * entry lock. 1179 */ 1180 xas_reset(xas); 1181 xas_lock_irq(xas); 1182 xas_store(xas, entry); 1183 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 1184 dax_wake_entry(xas, entry, WAKE_NEXT); 1185 1186 trace_dax_writeback_one(mapping->host, index, count); 1187 return ret; 1188 1189 put_unlocked: 1190 put_unlocked_entry(xas, entry, WAKE_NEXT); 1191 return ret; 1192 } 1193 1194 /* 1195 * Flush the mapping to the persistent domain within the byte range of [start, 1196 * end]. This is required by data integrity operations to ensure file data is 1197 * on persistent storage prior to completion of the operation. 1198 */ 1199 int dax_writeback_mapping_range(struct address_space *mapping, 1200 struct dax_device *dax_dev, struct writeback_control *wbc) 1201 { 1202 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 1203 struct inode *inode = mapping->host; 1204 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 1205 void *entry; 1206 int ret = 0; 1207 unsigned int scanned = 0; 1208 1209 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 1210 return -EIO; 1211 1212 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) 1213 return 0; 1214 1215 trace_dax_writeback_range(inode, xas.xa_index, end_index); 1216 1217 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 1218 1219 xas_lock_irq(&xas); 1220 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 1221 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 1222 if (ret < 0) { 1223 mapping_set_error(mapping, ret); 1224 break; 1225 } 1226 if (++scanned % XA_CHECK_SCHED) 1227 continue; 1228 1229 xas_pause(&xas); 1230 xas_unlock_irq(&xas); 1231 cond_resched(); 1232 xas_lock_irq(&xas); 1233 } 1234 xas_unlock_irq(&xas); 1235 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 1236 return ret; 1237 } 1238 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 1239 1240 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos, 1241 size_t size, void **kaddr, unsigned long *pfnp) 1242 { 1243 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1244 int id, rc = 0; 1245 long length; 1246 1247 id = dax_read_lock(); 1248 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 1249 DAX_ACCESS, kaddr, pfnp); 1250 if (length < 0) { 1251 rc = length; 1252 goto out; 1253 } 1254 if (!pfnp) 1255 goto out_check_addr; 1256 rc = -EINVAL; 1257 if (PFN_PHYS(length) < size) 1258 goto out; 1259 if (*pfnp & (PHYS_PFN(size)-1)) 1260 goto out; 1261 1262 rc = 0; 1263 1264 out_check_addr: 1265 if (!kaddr) 1266 goto out; 1267 if (!*kaddr) 1268 rc = -EFAULT; 1269 out: 1270 dax_read_unlock(id); 1271 return rc; 1272 } 1273 1274 /** 1275 * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page 1276 * by copying the data before and after the range to be written. 1277 * @pos: address to do copy from. 1278 * @length: size of copy operation. 1279 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE) 1280 * @srcmap: iomap srcmap 1281 * @daddr: destination address to copy to. 1282 * 1283 * This can be called from two places. Either during DAX write fault (page 1284 * aligned), to copy the length size data to daddr. Or, while doing normal DAX 1285 * write operation, dax_iomap_iter() might call this to do the copy of either 1286 * start or end unaligned address. In the latter case the rest of the copy of 1287 * aligned ranges is taken care by dax_iomap_iter() itself. 1288 * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the 1289 * area to make sure no old data remains. 1290 */ 1291 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size, 1292 const struct iomap *srcmap, void *daddr) 1293 { 1294 loff_t head_off = pos & (align_size - 1); 1295 size_t size = ALIGN(head_off + length, align_size); 1296 loff_t end = pos + length; 1297 loff_t pg_end = round_up(end, align_size); 1298 /* copy_all is usually in page fault case */ 1299 bool copy_all = head_off == 0 && end == pg_end; 1300 /* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */ 1301 bool zero_edge = srcmap->flags & IOMAP_F_SHARED || 1302 srcmap->type == IOMAP_UNWRITTEN; 1303 void *saddr = NULL; 1304 int ret = 0; 1305 1306 if (!zero_edge) { 1307 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL); 1308 if (ret) 1309 return dax_mem2blk_err(ret); 1310 } 1311 1312 if (copy_all) { 1313 if (zero_edge) 1314 memset(daddr, 0, size); 1315 else 1316 ret = copy_mc_to_kernel(daddr, saddr, length); 1317 goto out; 1318 } 1319 1320 /* Copy the head part of the range */ 1321 if (head_off) { 1322 if (zero_edge) 1323 memset(daddr, 0, head_off); 1324 else { 1325 ret = copy_mc_to_kernel(daddr, saddr, head_off); 1326 if (ret) 1327 return -EIO; 1328 } 1329 } 1330 1331 /* Copy the tail part of the range */ 1332 if (end < pg_end) { 1333 loff_t tail_off = head_off + length; 1334 loff_t tail_len = pg_end - end; 1335 1336 if (zero_edge) 1337 memset(daddr + tail_off, 0, tail_len); 1338 else { 1339 ret = copy_mc_to_kernel(daddr + tail_off, 1340 saddr + tail_off, tail_len); 1341 if (ret) 1342 return -EIO; 1343 } 1344 } 1345 out: 1346 if (zero_edge) 1347 dax_flush(srcmap->dax_dev, daddr, size); 1348 return ret ? -EIO : 0; 1349 } 1350 1351 /* 1352 * The user has performed a load from a hole in the file. Allocating a new 1353 * page in the file would cause excessive storage usage for workloads with 1354 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1355 * If this page is ever written to we will re-fault and change the mapping to 1356 * point to real DAX storage instead. 1357 */ 1358 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1359 const struct iomap_iter *iter, void **entry) 1360 { 1361 struct inode *inode = iter->inode; 1362 unsigned long vaddr = vmf->address; 1363 unsigned long pfn = my_zero_pfn(vaddr); 1364 vm_fault_t ret; 1365 1366 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE); 1367 1368 ret = vmf_insert_page_mkwrite(vmf, pfn_to_page(pfn), false); 1369 trace_dax_load_hole(inode, vmf, ret); 1370 return ret; 1371 } 1372 1373 #ifdef CONFIG_FS_DAX_PMD 1374 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1375 const struct iomap_iter *iter, void **entry) 1376 { 1377 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1378 struct inode *inode = mapping->host; 1379 struct folio *zero_folio; 1380 vm_fault_t ret; 1381 1382 zero_folio = mm_get_huge_zero_folio(vmf->vma->vm_mm); 1383 1384 if (unlikely(!zero_folio)) { 1385 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_folio, *entry); 1386 return VM_FAULT_FALLBACK; 1387 } 1388 1389 *entry = dax_insert_entry(xas, vmf, iter, *entry, folio_pfn(zero_folio), 1390 DAX_PMD | DAX_ZERO_PAGE); 1391 1392 ret = vmf_insert_folio_pmd(vmf, zero_folio, false); 1393 if (ret == VM_FAULT_NOPAGE) 1394 trace_dax_pmd_load_hole(inode, vmf, zero_folio, *entry); 1395 return ret; 1396 } 1397 #else 1398 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1399 const struct iomap_iter *iter, void **entry) 1400 { 1401 return VM_FAULT_FALLBACK; 1402 } 1403 #endif /* CONFIG_FS_DAX_PMD */ 1404 1405 static int dax_unshare_iter(struct iomap_iter *iter) 1406 { 1407 struct iomap *iomap = &iter->iomap; 1408 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1409 loff_t copy_pos = iter->pos; 1410 u64 copy_len = iomap_length(iter); 1411 u32 mod; 1412 int id = 0; 1413 s64 ret; 1414 void *daddr = NULL, *saddr = NULL; 1415 1416 if (!iomap_want_unshare_iter(iter)) 1417 return iomap_iter_advance_full(iter); 1418 1419 /* 1420 * Extend the file range to be aligned to fsblock/pagesize, because 1421 * we need to copy entire blocks, not just the byte range specified. 1422 * Invalidate the mapping because we're about to CoW. 1423 */ 1424 mod = offset_in_page(copy_pos); 1425 if (mod) { 1426 copy_len += mod; 1427 copy_pos -= mod; 1428 } 1429 1430 mod = offset_in_page(copy_pos + copy_len); 1431 if (mod) 1432 copy_len += PAGE_SIZE - mod; 1433 1434 invalidate_inode_pages2_range(iter->inode->i_mapping, 1435 copy_pos >> PAGE_SHIFT, 1436 (copy_pos + copy_len - 1) >> PAGE_SHIFT); 1437 1438 id = dax_read_lock(); 1439 ret = dax_iomap_direct_access(iomap, copy_pos, copy_len, &daddr, NULL); 1440 if (ret < 0) 1441 goto out_unlock; 1442 1443 ret = dax_iomap_direct_access(srcmap, copy_pos, copy_len, &saddr, NULL); 1444 if (ret < 0) 1445 goto out_unlock; 1446 1447 if (copy_mc_to_kernel(daddr, saddr, copy_len) != 0) 1448 ret = -EIO; 1449 1450 out_unlock: 1451 dax_read_unlock(id); 1452 if (ret < 0) 1453 return dax_mem2blk_err(ret); 1454 return iomap_iter_advance_full(iter); 1455 } 1456 1457 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len, 1458 const struct iomap_ops *ops) 1459 { 1460 struct iomap_iter iter = { 1461 .inode = inode, 1462 .pos = pos, 1463 .flags = IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX, 1464 }; 1465 loff_t size = i_size_read(inode); 1466 int ret; 1467 1468 if (pos < 0 || pos >= size) 1469 return 0; 1470 1471 iter.len = min(len, size - pos); 1472 while ((ret = iomap_iter(&iter, ops)) > 0) 1473 iter.status = dax_unshare_iter(&iter); 1474 return ret; 1475 } 1476 EXPORT_SYMBOL_GPL(dax_file_unshare); 1477 1478 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size) 1479 { 1480 const struct iomap *iomap = &iter->iomap; 1481 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1482 unsigned offset = offset_in_page(pos); 1483 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1484 void *kaddr; 1485 long ret; 1486 1487 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, 1488 NULL); 1489 if (ret < 0) 1490 return dax_mem2blk_err(ret); 1491 1492 memset(kaddr + offset, 0, size); 1493 if (iomap->flags & IOMAP_F_SHARED) 1494 ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap, 1495 kaddr); 1496 else 1497 dax_flush(iomap->dax_dev, kaddr + offset, size); 1498 return ret; 1499 } 1500 1501 static int dax_zero_iter(struct iomap_iter *iter, bool *did_zero) 1502 { 1503 const struct iomap *iomap = &iter->iomap; 1504 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1505 u64 length = iomap_length(iter); 1506 int ret; 1507 1508 /* already zeroed? we're done. */ 1509 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1510 return iomap_iter_advance(iter, &length); 1511 1512 /* 1513 * invalidate the pages whose sharing state is to be changed 1514 * because of CoW. 1515 */ 1516 if (iomap->flags & IOMAP_F_SHARED) 1517 invalidate_inode_pages2_range(iter->inode->i_mapping, 1518 iter->pos >> PAGE_SHIFT, 1519 (iter->pos + length - 1) >> PAGE_SHIFT); 1520 1521 do { 1522 loff_t pos = iter->pos; 1523 unsigned offset = offset_in_page(pos); 1524 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1525 int id; 1526 1527 length = min_t(u64, PAGE_SIZE - offset, length); 1528 1529 id = dax_read_lock(); 1530 if (IS_ALIGNED(pos, PAGE_SIZE) && length == PAGE_SIZE) 1531 ret = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1532 else 1533 ret = dax_memzero(iter, pos, length); 1534 dax_read_unlock(id); 1535 1536 if (ret < 0) 1537 return ret; 1538 1539 ret = iomap_iter_advance(iter, &length); 1540 if (ret) 1541 return ret; 1542 } while (length > 0); 1543 1544 if (did_zero) 1545 *did_zero = true; 1546 return ret; 1547 } 1548 1549 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1550 const struct iomap_ops *ops) 1551 { 1552 struct iomap_iter iter = { 1553 .inode = inode, 1554 .pos = pos, 1555 .len = len, 1556 .flags = IOMAP_DAX | IOMAP_ZERO, 1557 }; 1558 int ret; 1559 1560 while ((ret = iomap_iter(&iter, ops)) > 0) 1561 iter.status = dax_zero_iter(&iter, did_zero); 1562 return ret; 1563 } 1564 EXPORT_SYMBOL_GPL(dax_zero_range); 1565 1566 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1567 const struct iomap_ops *ops) 1568 { 1569 unsigned int blocksize = i_blocksize(inode); 1570 unsigned int off = pos & (blocksize - 1); 1571 1572 /* Block boundary? Nothing to do */ 1573 if (!off) 1574 return 0; 1575 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); 1576 } 1577 EXPORT_SYMBOL_GPL(dax_truncate_page); 1578 1579 static int dax_iomap_iter(struct iomap_iter *iomi, struct iov_iter *iter) 1580 { 1581 const struct iomap *iomap = &iomi->iomap; 1582 const struct iomap *srcmap = iomap_iter_srcmap(iomi); 1583 loff_t length = iomap_length(iomi); 1584 loff_t pos = iomi->pos; 1585 struct dax_device *dax_dev = iomap->dax_dev; 1586 loff_t end = pos + length, done = 0; 1587 bool write = iov_iter_rw(iter) == WRITE; 1588 bool cow = write && iomap->flags & IOMAP_F_SHARED; 1589 ssize_t ret = 0; 1590 size_t xfer; 1591 int id; 1592 1593 if (!write) { 1594 end = min(end, i_size_read(iomi->inode)); 1595 if (pos >= end) 1596 return 0; 1597 1598 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) { 1599 done = iov_iter_zero(min(length, end - pos), iter); 1600 return iomap_iter_advance(iomi, &done); 1601 } 1602 } 1603 1604 /* 1605 * In DAX mode, enforce either pure overwrites of written extents, or 1606 * writes to unwritten extents as part of a copy-on-write operation. 1607 */ 1608 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED && 1609 !(iomap->flags & IOMAP_F_SHARED))) 1610 return -EIO; 1611 1612 /* 1613 * Write can allocate block for an area which has a hole page mapped 1614 * into page tables. We have to tear down these mappings so that data 1615 * written by write(2) is visible in mmap. 1616 */ 1617 if (iomap->flags & IOMAP_F_NEW || cow) { 1618 /* 1619 * Filesystem allows CoW on non-shared extents. The src extents 1620 * may have been mmapped with dirty mark before. To be able to 1621 * invalidate its dax entries, we need to clear the dirty mark 1622 * in advance. 1623 */ 1624 if (cow) 1625 __dax_clear_dirty_range(iomi->inode->i_mapping, 1626 pos >> PAGE_SHIFT, 1627 (end - 1) >> PAGE_SHIFT); 1628 invalidate_inode_pages2_range(iomi->inode->i_mapping, 1629 pos >> PAGE_SHIFT, 1630 (end - 1) >> PAGE_SHIFT); 1631 } 1632 1633 id = dax_read_lock(); 1634 while ((pos = iomi->pos) < end) { 1635 unsigned offset = pos & (PAGE_SIZE - 1); 1636 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1637 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1638 ssize_t map_len; 1639 bool recovery = false; 1640 void *kaddr; 1641 1642 if (fatal_signal_pending(current)) { 1643 ret = -EINTR; 1644 break; 1645 } 1646 1647 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1648 DAX_ACCESS, &kaddr, NULL); 1649 if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) { 1650 map_len = dax_direct_access(dax_dev, pgoff, 1651 PHYS_PFN(size), DAX_RECOVERY_WRITE, 1652 &kaddr, NULL); 1653 if (map_len > 0) 1654 recovery = true; 1655 } 1656 if (map_len < 0) { 1657 ret = dax_mem2blk_err(map_len); 1658 break; 1659 } 1660 1661 if (cow) { 1662 ret = dax_iomap_copy_around(pos, length, PAGE_SIZE, 1663 srcmap, kaddr); 1664 if (ret) 1665 break; 1666 } 1667 1668 map_len = PFN_PHYS(map_len); 1669 kaddr += offset; 1670 map_len -= offset; 1671 if (map_len > end - pos) 1672 map_len = end - pos; 1673 1674 if (recovery) 1675 xfer = dax_recovery_write(dax_dev, pgoff, kaddr, 1676 map_len, iter); 1677 else if (write) 1678 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1679 map_len, iter); 1680 else 1681 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1682 map_len, iter); 1683 1684 length = xfer; 1685 ret = iomap_iter_advance(iomi, &length); 1686 if (!ret && xfer == 0) 1687 ret = -EFAULT; 1688 if (xfer < map_len) 1689 break; 1690 } 1691 dax_read_unlock(id); 1692 1693 return ret; 1694 } 1695 1696 /** 1697 * dax_iomap_rw - Perform I/O to a DAX file 1698 * @iocb: The control block for this I/O 1699 * @iter: The addresses to do I/O from or to 1700 * @ops: iomap ops passed from the file system 1701 * 1702 * This function performs read and write operations to directly mapped 1703 * persistent memory. The callers needs to take care of read/write exclusion 1704 * and evicting any page cache pages in the region under I/O. 1705 */ 1706 ssize_t 1707 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1708 const struct iomap_ops *ops) 1709 { 1710 struct iomap_iter iomi = { 1711 .inode = iocb->ki_filp->f_mapping->host, 1712 .pos = iocb->ki_pos, 1713 .len = iov_iter_count(iter), 1714 .flags = IOMAP_DAX, 1715 }; 1716 loff_t done = 0; 1717 int ret; 1718 1719 if (WARN_ON_ONCE(iocb->ki_flags & IOCB_ATOMIC)) 1720 return -EIO; 1721 1722 if (!iomi.len) 1723 return 0; 1724 1725 if (iov_iter_rw(iter) == WRITE) { 1726 lockdep_assert_held_write(&iomi.inode->i_rwsem); 1727 iomi.flags |= IOMAP_WRITE; 1728 } else { 1729 lockdep_assert_held(&iomi.inode->i_rwsem); 1730 } 1731 1732 if (iocb->ki_flags & IOCB_NOWAIT) 1733 iomi.flags |= IOMAP_NOWAIT; 1734 1735 while ((ret = iomap_iter(&iomi, ops)) > 0) 1736 iomi.status = dax_iomap_iter(&iomi, iter); 1737 1738 done = iomi.pos - iocb->ki_pos; 1739 iocb->ki_pos = iomi.pos; 1740 return done ? done : ret; 1741 } 1742 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1743 1744 static vm_fault_t dax_fault_return(int error) 1745 { 1746 if (error == 0) 1747 return VM_FAULT_NOPAGE; 1748 return vmf_error(error); 1749 } 1750 1751 /* 1752 * When handling a synchronous page fault and the inode need a fsync, we can 1753 * insert the PTE/PMD into page tables only after that fsync happened. Skip 1754 * insertion for now and return the pfn so that caller can insert it after the 1755 * fsync is done. 1756 */ 1757 static vm_fault_t dax_fault_synchronous_pfnp(unsigned long *pfnp, 1758 unsigned long pfn) 1759 { 1760 if (WARN_ON_ONCE(!pfnp)) 1761 return VM_FAULT_SIGBUS; 1762 *pfnp = pfn; 1763 return VM_FAULT_NEEDDSYNC; 1764 } 1765 1766 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, 1767 const struct iomap_iter *iter) 1768 { 1769 vm_fault_t ret; 1770 int error = 0; 1771 1772 switch (iter->iomap.type) { 1773 case IOMAP_HOLE: 1774 case IOMAP_UNWRITTEN: 1775 clear_user_highpage(vmf->cow_page, vmf->address); 1776 break; 1777 case IOMAP_MAPPED: 1778 error = copy_cow_page_dax(vmf, iter); 1779 break; 1780 default: 1781 WARN_ON_ONCE(1); 1782 error = -EIO; 1783 break; 1784 } 1785 1786 if (error) 1787 return dax_fault_return(error); 1788 1789 __SetPageUptodate(vmf->cow_page); 1790 ret = finish_fault(vmf); 1791 if (!ret) 1792 return VM_FAULT_DONE_COW; 1793 return ret; 1794 } 1795 1796 /** 1797 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. 1798 * @vmf: vm fault instance 1799 * @iter: iomap iter 1800 * @pfnp: pfn to be returned 1801 * @xas: the dax mapping tree of a file 1802 * @entry: an unlocked dax entry to be inserted 1803 * @pmd: distinguish whether it is a pmd fault 1804 */ 1805 static vm_fault_t dax_fault_iter(struct vm_fault *vmf, 1806 const struct iomap_iter *iter, unsigned long *pfnp, 1807 struct xa_state *xas, void **entry, bool pmd) 1808 { 1809 const struct iomap *iomap = &iter->iomap; 1810 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1811 size_t size = pmd ? PMD_SIZE : PAGE_SIZE; 1812 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; 1813 bool write = iter->flags & IOMAP_WRITE; 1814 unsigned long entry_flags = pmd ? DAX_PMD : 0; 1815 struct folio *folio; 1816 int ret, err = 0; 1817 unsigned long pfn; 1818 void *kaddr; 1819 1820 if (!pmd && vmf->cow_page) 1821 return dax_fault_cow_page(vmf, iter); 1822 1823 /* if we are reading UNWRITTEN and HOLE, return a hole. */ 1824 if (!write && 1825 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { 1826 if (!pmd) 1827 return dax_load_hole(xas, vmf, iter, entry); 1828 return dax_pmd_load_hole(xas, vmf, iter, entry); 1829 } 1830 1831 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) { 1832 WARN_ON_ONCE(1); 1833 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; 1834 } 1835 1836 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn); 1837 if (err) 1838 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); 1839 1840 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags); 1841 1842 if (write && iomap->flags & IOMAP_F_SHARED) { 1843 err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr); 1844 if (err) 1845 return dax_fault_return(err); 1846 } 1847 1848 folio = dax_to_folio(*entry); 1849 if (dax_fault_is_synchronous(iter, vmf->vma)) 1850 return dax_fault_synchronous_pfnp(pfnp, pfn); 1851 1852 folio_ref_inc(folio); 1853 if (pmd) 1854 ret = vmf_insert_folio_pmd(vmf, pfn_folio(pfn), write); 1855 else 1856 ret = vmf_insert_page_mkwrite(vmf, pfn_to_page(pfn), write); 1857 folio_put(folio); 1858 1859 return ret; 1860 } 1861 1862 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, unsigned long *pfnp, 1863 int *iomap_errp, const struct iomap_ops *ops) 1864 { 1865 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1866 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1867 struct iomap_iter iter = { 1868 .inode = mapping->host, 1869 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT, 1870 .len = PAGE_SIZE, 1871 .flags = IOMAP_DAX | IOMAP_FAULT, 1872 }; 1873 vm_fault_t ret = 0; 1874 void *entry; 1875 int error; 1876 1877 trace_dax_pte_fault(iter.inode, vmf, ret); 1878 /* 1879 * Check whether offset isn't beyond end of file now. Caller is supposed 1880 * to hold locks serializing us with truncate / punch hole so this is 1881 * a reliable test. 1882 */ 1883 if (iter.pos >= i_size_read(iter.inode)) { 1884 ret = VM_FAULT_SIGBUS; 1885 goto out; 1886 } 1887 1888 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1889 iter.flags |= IOMAP_WRITE; 1890 1891 entry = grab_mapping_entry(&xas, mapping, 0); 1892 if (xa_is_internal(entry)) { 1893 ret = xa_to_internal(entry); 1894 goto out; 1895 } 1896 1897 /* 1898 * It is possible, particularly with mixed reads & writes to private 1899 * mappings, that we have raced with a PMD fault that overlaps with 1900 * the PTE we need to set up. If so just return and the fault will be 1901 * retried. 1902 */ 1903 if (pmd_trans_huge(*vmf->pmd)) { 1904 ret = VM_FAULT_NOPAGE; 1905 goto unlock_entry; 1906 } 1907 1908 while ((error = iomap_iter(&iter, ops)) > 0) { 1909 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { 1910 iter.status = -EIO; /* fs corruption? */ 1911 continue; 1912 } 1913 1914 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); 1915 if (ret != VM_FAULT_SIGBUS && 1916 (iter.iomap.flags & IOMAP_F_NEW)) { 1917 count_vm_event(PGMAJFAULT); 1918 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 1919 ret |= VM_FAULT_MAJOR; 1920 } 1921 1922 if (!(ret & VM_FAULT_ERROR)) { 1923 u64 length = PAGE_SIZE; 1924 iter.status = iomap_iter_advance(&iter, &length); 1925 } 1926 } 1927 1928 if (iomap_errp) 1929 *iomap_errp = error; 1930 if (!ret && error) 1931 ret = dax_fault_return(error); 1932 1933 unlock_entry: 1934 dax_unlock_entry(&xas, entry); 1935 out: 1936 trace_dax_pte_fault_done(iter.inode, vmf, ret); 1937 return ret; 1938 } 1939 1940 #ifdef CONFIG_FS_DAX_PMD 1941 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, 1942 pgoff_t max_pgoff) 1943 { 1944 unsigned long pmd_addr = vmf->address & PMD_MASK; 1945 bool write = vmf->flags & FAULT_FLAG_WRITE; 1946 1947 /* 1948 * Make sure that the faulting address's PMD offset (color) matches 1949 * the PMD offset from the start of the file. This is necessary so 1950 * that a PMD range in the page table overlaps exactly with a PMD 1951 * range in the page cache. 1952 */ 1953 if ((vmf->pgoff & PG_PMD_COLOUR) != 1954 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1955 return true; 1956 1957 /* Fall back to PTEs if we're going to COW */ 1958 if (write && !(vmf->vma->vm_flags & VM_SHARED)) 1959 return true; 1960 1961 /* If the PMD would extend outside the VMA */ 1962 if (pmd_addr < vmf->vma->vm_start) 1963 return true; 1964 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) 1965 return true; 1966 1967 /* If the PMD would extend beyond the file size */ 1968 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) 1969 return true; 1970 1971 return false; 1972 } 1973 1974 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, unsigned long *pfnp, 1975 const struct iomap_ops *ops) 1976 { 1977 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1978 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1979 struct iomap_iter iter = { 1980 .inode = mapping->host, 1981 .len = PMD_SIZE, 1982 .flags = IOMAP_DAX | IOMAP_FAULT, 1983 }; 1984 vm_fault_t ret = VM_FAULT_FALLBACK; 1985 pgoff_t max_pgoff; 1986 void *entry; 1987 1988 if (vmf->flags & FAULT_FLAG_WRITE) 1989 iter.flags |= IOMAP_WRITE; 1990 1991 /* 1992 * Check whether offset isn't beyond end of file now. Caller is 1993 * supposed to hold locks serializing us with truncate / punch hole so 1994 * this is a reliable test. 1995 */ 1996 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); 1997 1998 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); 1999 2000 if (xas.xa_index >= max_pgoff) { 2001 ret = VM_FAULT_SIGBUS; 2002 goto out; 2003 } 2004 2005 if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) 2006 goto fallback; 2007 2008 /* 2009 * grab_mapping_entry() will make sure we get an empty PMD entry, 2010 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 2011 * entry is already in the array, for instance), it will return 2012 * VM_FAULT_FALLBACK. 2013 */ 2014 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 2015 if (xa_is_internal(entry)) { 2016 ret = xa_to_internal(entry); 2017 goto fallback; 2018 } 2019 2020 /* 2021 * It is possible, particularly with mixed reads & writes to private 2022 * mappings, that we have raced with a PTE fault that overlaps with 2023 * the PMD we need to set up. If so just return and the fault will be 2024 * retried. 2025 */ 2026 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd)) { 2027 ret = 0; 2028 goto unlock_entry; 2029 } 2030 2031 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; 2032 while (iomap_iter(&iter, ops) > 0) { 2033 if (iomap_length(&iter) < PMD_SIZE) 2034 continue; /* actually breaks out of the loop */ 2035 2036 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); 2037 if (ret != VM_FAULT_FALLBACK) { 2038 u64 length = PMD_SIZE; 2039 iter.status = iomap_iter_advance(&iter, &length); 2040 } 2041 } 2042 2043 unlock_entry: 2044 dax_unlock_entry(&xas, entry); 2045 fallback: 2046 if (ret == VM_FAULT_FALLBACK) { 2047 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); 2048 count_vm_event(THP_FAULT_FALLBACK); 2049 } 2050 out: 2051 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); 2052 return ret; 2053 } 2054 #else 2055 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, unsigned long *pfnp, 2056 const struct iomap_ops *ops) 2057 { 2058 return VM_FAULT_FALLBACK; 2059 } 2060 #endif /* CONFIG_FS_DAX_PMD */ 2061 2062 /** 2063 * dax_iomap_fault - handle a page fault on a DAX file 2064 * @vmf: The description of the fault 2065 * @order: Order of the page to fault in 2066 * @pfnp: PFN to insert for synchronous faults if fsync is required 2067 * @iomap_errp: Storage for detailed error code in case of error 2068 * @ops: Iomap ops passed from the file system 2069 * 2070 * When a page fault occurs, filesystems may call this helper in 2071 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 2072 * has done all the necessary locking for page fault to proceed 2073 * successfully. 2074 */ 2075 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order, 2076 unsigned long *pfnp, int *iomap_errp, 2077 const struct iomap_ops *ops) 2078 { 2079 if (order == 0) 2080 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 2081 else if (order == PMD_ORDER) 2082 return dax_iomap_pmd_fault(vmf, pfnp, ops); 2083 else 2084 return VM_FAULT_FALLBACK; 2085 } 2086 EXPORT_SYMBOL_GPL(dax_iomap_fault); 2087 2088 /* 2089 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 2090 * @vmf: The description of the fault 2091 * @pfn: PFN to insert 2092 * @order: Order of entry to insert. 2093 * 2094 * This function inserts a writeable PTE or PMD entry into the page tables 2095 * for an mmaped DAX file. It also marks the page cache entry as dirty. 2096 */ 2097 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf, 2098 unsigned long pfn, unsigned int order) 2099 { 2100 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 2101 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 2102 struct folio *folio; 2103 void *entry; 2104 vm_fault_t ret; 2105 2106 xas_lock_irq(&xas); 2107 entry = get_next_unlocked_entry(&xas, order); 2108 /* Did we race with someone splitting entry or so? */ 2109 if (!entry || dax_is_conflict(entry) || 2110 (order == 0 && !dax_is_pte_entry(entry))) { 2111 put_unlocked_entry(&xas, entry, WAKE_NEXT); 2112 xas_unlock_irq(&xas); 2113 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 2114 VM_FAULT_NOPAGE); 2115 return VM_FAULT_NOPAGE; 2116 } 2117 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 2118 dax_lock_entry(&xas, entry); 2119 xas_unlock_irq(&xas); 2120 folio = pfn_folio(pfn); 2121 folio_ref_inc(folio); 2122 if (order == 0) 2123 ret = vmf_insert_page_mkwrite(vmf, &folio->page, true); 2124 #ifdef CONFIG_FS_DAX_PMD 2125 else if (order == PMD_ORDER) 2126 ret = vmf_insert_folio_pmd(vmf, folio, FAULT_FLAG_WRITE); 2127 #endif 2128 else 2129 ret = VM_FAULT_FALLBACK; 2130 folio_put(folio); 2131 dax_unlock_entry(&xas, entry); 2132 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 2133 return ret; 2134 } 2135 2136 /** 2137 * dax_finish_sync_fault - finish synchronous page fault 2138 * @vmf: The description of the fault 2139 * @order: Order of entry to be inserted 2140 * @pfn: PFN to insert 2141 * 2142 * This function ensures that the file range touched by the page fault is 2143 * stored persistently on the media and handles inserting of appropriate page 2144 * table entry. 2145 */ 2146 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order, 2147 unsigned long pfn) 2148 { 2149 int err; 2150 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 2151 size_t len = PAGE_SIZE << order; 2152 2153 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 2154 if (err) 2155 return VM_FAULT_SIGBUS; 2156 return dax_insert_pfn_mkwrite(vmf, pfn, order); 2157 } 2158 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 2159 2160 static int dax_range_compare_iter(struct iomap_iter *it_src, 2161 struct iomap_iter *it_dest, u64 len, bool *same) 2162 { 2163 const struct iomap *smap = &it_src->iomap; 2164 const struct iomap *dmap = &it_dest->iomap; 2165 loff_t pos1 = it_src->pos, pos2 = it_dest->pos; 2166 u64 dest_len; 2167 void *saddr, *daddr; 2168 int id, ret; 2169 2170 len = min(len, min(smap->length, dmap->length)); 2171 2172 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) { 2173 *same = true; 2174 goto advance; 2175 } 2176 2177 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) { 2178 *same = false; 2179 return 0; 2180 } 2181 2182 id = dax_read_lock(); 2183 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE), 2184 &saddr, NULL); 2185 if (ret < 0) 2186 goto out_unlock; 2187 2188 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE), 2189 &daddr, NULL); 2190 if (ret < 0) 2191 goto out_unlock; 2192 2193 *same = !memcmp(saddr, daddr, len); 2194 if (!*same) 2195 len = 0; 2196 dax_read_unlock(id); 2197 2198 advance: 2199 dest_len = len; 2200 ret = iomap_iter_advance(it_src, &len); 2201 if (!ret) 2202 ret = iomap_iter_advance(it_dest, &dest_len); 2203 return ret; 2204 2205 out_unlock: 2206 dax_read_unlock(id); 2207 return -EIO; 2208 } 2209 2210 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff, 2211 struct inode *dst, loff_t dstoff, loff_t len, bool *same, 2212 const struct iomap_ops *ops) 2213 { 2214 struct iomap_iter src_iter = { 2215 .inode = src, 2216 .pos = srcoff, 2217 .len = len, 2218 .flags = IOMAP_DAX, 2219 }; 2220 struct iomap_iter dst_iter = { 2221 .inode = dst, 2222 .pos = dstoff, 2223 .len = len, 2224 .flags = IOMAP_DAX, 2225 }; 2226 int ret, status; 2227 2228 while ((ret = iomap_iter(&src_iter, ops)) > 0 && 2229 (ret = iomap_iter(&dst_iter, ops)) > 0) { 2230 status = dax_range_compare_iter(&src_iter, &dst_iter, 2231 min(src_iter.len, dst_iter.len), same); 2232 if (status < 0) 2233 return ret; 2234 src_iter.status = dst_iter.status = status; 2235 } 2236 return ret; 2237 } 2238 2239 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in, 2240 struct file *file_out, loff_t pos_out, 2241 loff_t *len, unsigned int remap_flags, 2242 const struct iomap_ops *ops) 2243 { 2244 return __generic_remap_file_range_prep(file_in, pos_in, file_out, 2245 pos_out, len, remap_flags, ops); 2246 } 2247 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep); 2248