xref: /linux/fs/dax.c (revision 81fa7a69c2174ed8de314b9c231ef30a8718e5e1)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40 
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44 
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
48 
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50 
51 static int __init init_dax_wait_table(void)
52 {
53 	int i;
54 
55 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56 		init_waitqueue_head(wait_table + i);
57 	return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60 
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT		(RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK	(1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE	(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY		(1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75 
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78 	return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80 
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83 	return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84 			(pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86 
87 static unsigned int dax_radix_order(void *entry)
88 {
89 	if ((unsigned long)entry & RADIX_DAX_PMD)
90 		return PMD_SHIFT - PAGE_SHIFT;
91 	return 0;
92 }
93 
94 static int dax_is_pmd_entry(void *entry)
95 {
96 	return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98 
99 static int dax_is_pte_entry(void *entry)
100 {
101 	return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103 
104 static int dax_is_zero_entry(void *entry)
105 {
106 	return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108 
109 static int dax_is_empty_entry(void *entry)
110 {
111 	return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113 
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118 	struct address_space *mapping;
119 	pgoff_t entry_start;
120 };
121 
122 struct wait_exceptional_entry_queue {
123 	wait_queue_entry_t wait;
124 	struct exceptional_entry_key key;
125 };
126 
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128 		pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130 	unsigned long hash;
131 
132 	/*
133 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
134 	 * queue to the start of that PMD.  This ensures that all offsets in
135 	 * the range covered by the PMD map to the same bit lock.
136 	 */
137 	if (dax_is_pmd_entry(entry))
138 		index &= ~PG_PMD_COLOUR;
139 
140 	key->mapping = mapping;
141 	key->entry_start = index;
142 
143 	hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144 	return wait_table + hash;
145 }
146 
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148 				       int sync, void *keyp)
149 {
150 	struct exceptional_entry_key *key = keyp;
151 	struct wait_exceptional_entry_queue *ewait =
152 		container_of(wait, struct wait_exceptional_entry_queue, wait);
153 
154 	if (key->mapping != ewait->key.mapping ||
155 	    key->entry_start != ewait->key.entry_start)
156 		return 0;
157 	return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159 
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166 		pgoff_t index, void *entry, bool wake_all)
167 {
168 	struct exceptional_entry_key key;
169 	wait_queue_head_t *wq;
170 
171 	wq = dax_entry_waitqueue(mapping, index, entry, &key);
172 
173 	/*
174 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
175 	 * under the i_pages lock, ditto for entry handling in our callers.
176 	 * So at this point all tasks that could have seen our entry locked
177 	 * must be in the waitqueue and the following check will see them.
178 	 */
179 	if (waitqueue_active(wq))
180 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182 
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189 	unsigned long entry = (unsigned long)
190 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191 	return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193 
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199 	unsigned long entry = (unsigned long)
200 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201 
202 	entry |= RADIX_DAX_ENTRY_LOCK;
203 	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204 	return (void *)entry;
205 }
206 
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212 	unsigned long entry = (unsigned long)
213 		radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214 
215 	entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216 	radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217 	return (void *)entry;
218 }
219 
220 /*
221  * Lookup entry in radix tree, wait for it to become unlocked if it is
222  * exceptional entry and return it. The caller must call
223  * put_unlocked_mapping_entry() when he decided not to lock the entry or
224  * put_locked_mapping_entry() when he locked the entry and now wants to
225  * unlock it.
226  *
227  * Must be called with the i_pages lock held.
228  */
229 static void *__get_unlocked_mapping_entry(struct address_space *mapping,
230 		pgoff_t index, void ***slotp, bool (*wait_fn)(void))
231 {
232 	void *entry, **slot;
233 	struct wait_exceptional_entry_queue ewait;
234 	wait_queue_head_t *wq;
235 
236 	init_wait(&ewait.wait);
237 	ewait.wait.func = wake_exceptional_entry_func;
238 
239 	for (;;) {
240 		bool revalidate;
241 
242 		entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
243 					  &slot);
244 		if (!entry ||
245 		    WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
246 		    !slot_locked(mapping, slot)) {
247 			if (slotp)
248 				*slotp = slot;
249 			return entry;
250 		}
251 
252 		wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
253 		prepare_to_wait_exclusive(wq, &ewait.wait,
254 					  TASK_UNINTERRUPTIBLE);
255 		xa_unlock_irq(&mapping->i_pages);
256 		revalidate = wait_fn();
257 		finish_wait(wq, &ewait.wait);
258 		xa_lock_irq(&mapping->i_pages);
259 		if (revalidate)
260 			return ERR_PTR(-EAGAIN);
261 	}
262 }
263 
264 static bool entry_wait(void)
265 {
266 	schedule();
267 	/*
268 	 * Never return an ERR_PTR() from
269 	 * __get_unlocked_mapping_entry(), just keep looping.
270 	 */
271 	return false;
272 }
273 
274 static void *get_unlocked_mapping_entry(struct address_space *mapping,
275 		pgoff_t index, void ***slotp)
276 {
277 	return __get_unlocked_mapping_entry(mapping, index, slotp, entry_wait);
278 }
279 
280 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
281 {
282 	void *entry, **slot;
283 
284 	xa_lock_irq(&mapping->i_pages);
285 	entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
286 	if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
287 			 !slot_locked(mapping, slot))) {
288 		xa_unlock_irq(&mapping->i_pages);
289 		return;
290 	}
291 	unlock_slot(mapping, slot);
292 	xa_unlock_irq(&mapping->i_pages);
293 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
294 }
295 
296 static void put_locked_mapping_entry(struct address_space *mapping,
297 		pgoff_t index)
298 {
299 	unlock_mapping_entry(mapping, index);
300 }
301 
302 /*
303  * Called when we are done with radix tree entry we looked up via
304  * get_unlocked_mapping_entry() and which we didn't lock in the end.
305  */
306 static void put_unlocked_mapping_entry(struct address_space *mapping,
307 				       pgoff_t index, void *entry)
308 {
309 	if (!entry)
310 		return;
311 
312 	/* We have to wake up next waiter for the radix tree entry lock */
313 	dax_wake_mapping_entry_waiter(mapping, index, entry, false);
314 }
315 
316 static unsigned long dax_entry_size(void *entry)
317 {
318 	if (dax_is_zero_entry(entry))
319 		return 0;
320 	else if (dax_is_empty_entry(entry))
321 		return 0;
322 	else if (dax_is_pmd_entry(entry))
323 		return PMD_SIZE;
324 	else
325 		return PAGE_SIZE;
326 }
327 
328 static unsigned long dax_radix_end_pfn(void *entry)
329 {
330 	return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
331 }
332 
333 /*
334  * Iterate through all mapped pfns represented by an entry, i.e. skip
335  * 'empty' and 'zero' entries.
336  */
337 #define for_each_mapped_pfn(entry, pfn) \
338 	for (pfn = dax_radix_pfn(entry); \
339 			pfn < dax_radix_end_pfn(entry); pfn++)
340 
341 /*
342  * TODO: for reflink+dax we need a way to associate a single page with
343  * multiple address_space instances at different linear_page_index()
344  * offsets.
345  */
346 static void dax_associate_entry(void *entry, struct address_space *mapping,
347 		struct vm_area_struct *vma, unsigned long address)
348 {
349 	unsigned long size = dax_entry_size(entry), pfn, index;
350 	int i = 0;
351 
352 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
353 		return;
354 
355 	index = linear_page_index(vma, address & ~(size - 1));
356 	for_each_mapped_pfn(entry, pfn) {
357 		struct page *page = pfn_to_page(pfn);
358 
359 		WARN_ON_ONCE(page->mapping);
360 		page->mapping = mapping;
361 		page->index = index + i++;
362 	}
363 }
364 
365 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
366 		bool trunc)
367 {
368 	unsigned long pfn;
369 
370 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
371 		return;
372 
373 	for_each_mapped_pfn(entry, pfn) {
374 		struct page *page = pfn_to_page(pfn);
375 
376 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
377 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
378 		page->mapping = NULL;
379 		page->index = 0;
380 	}
381 }
382 
383 static struct page *dax_busy_page(void *entry)
384 {
385 	unsigned long pfn;
386 
387 	for_each_mapped_pfn(entry, pfn) {
388 		struct page *page = pfn_to_page(pfn);
389 
390 		if (page_ref_count(page) > 1)
391 			return page;
392 	}
393 	return NULL;
394 }
395 
396 static bool entry_wait_revalidate(void)
397 {
398 	rcu_read_unlock();
399 	schedule();
400 	rcu_read_lock();
401 
402 	/*
403 	 * Tell __get_unlocked_mapping_entry() to take a break, we need
404 	 * to revalidate page->mapping after dropping locks
405 	 */
406 	return true;
407 }
408 
409 bool dax_lock_mapping_entry(struct page *page)
410 {
411 	pgoff_t index;
412 	struct inode *inode;
413 	bool did_lock = false;
414 	void *entry = NULL, **slot;
415 	struct address_space *mapping;
416 
417 	rcu_read_lock();
418 	for (;;) {
419 		mapping = READ_ONCE(page->mapping);
420 
421 		if (!dax_mapping(mapping))
422 			break;
423 
424 		/*
425 		 * In the device-dax case there's no need to lock, a
426 		 * struct dev_pagemap pin is sufficient to keep the
427 		 * inode alive, and we assume we have dev_pagemap pin
428 		 * otherwise we would not have a valid pfn_to_page()
429 		 * translation.
430 		 */
431 		inode = mapping->host;
432 		if (S_ISCHR(inode->i_mode)) {
433 			did_lock = true;
434 			break;
435 		}
436 
437 		xa_lock_irq(&mapping->i_pages);
438 		if (mapping != page->mapping) {
439 			xa_unlock_irq(&mapping->i_pages);
440 			continue;
441 		}
442 		index = page->index;
443 
444 		entry = __get_unlocked_mapping_entry(mapping, index, &slot,
445 				entry_wait_revalidate);
446 		if (!entry) {
447 			xa_unlock_irq(&mapping->i_pages);
448 			break;
449 		} else if (IS_ERR(entry)) {
450 			xa_unlock_irq(&mapping->i_pages);
451 			WARN_ON_ONCE(PTR_ERR(entry) != -EAGAIN);
452 			continue;
453 		}
454 		lock_slot(mapping, slot);
455 		did_lock = true;
456 		xa_unlock_irq(&mapping->i_pages);
457 		break;
458 	}
459 	rcu_read_unlock();
460 
461 	return did_lock;
462 }
463 
464 void dax_unlock_mapping_entry(struct page *page)
465 {
466 	struct address_space *mapping = page->mapping;
467 	struct inode *inode = mapping->host;
468 
469 	if (S_ISCHR(inode->i_mode))
470 		return;
471 
472 	unlock_mapping_entry(mapping, page->index);
473 }
474 
475 /*
476  * Find radix tree entry at given index. If it points to an exceptional entry,
477  * return it with the radix tree entry locked. If the radix tree doesn't
478  * contain given index, create an empty exceptional entry for the index and
479  * return with it locked.
480  *
481  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
482  * either return that locked entry or will return an error.  This error will
483  * happen if there are any 4k entries within the 2MiB range that we are
484  * requesting.
485  *
486  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
487  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
488  * insertion will fail if it finds any 4k entries already in the tree, and a
489  * 4k insertion will cause an existing 2MiB entry to be unmapped and
490  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
491  * well as 2MiB empty entries.
492  *
493  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
494  * real storage backing them.  We will leave these real 2MiB DAX entries in
495  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
496  *
497  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
498  * persistent memory the benefit is doubtful. We can add that later if we can
499  * show it helps.
500  */
501 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
502 		unsigned long size_flag)
503 {
504 	bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
505 	void *entry, **slot;
506 
507 restart:
508 	xa_lock_irq(&mapping->i_pages);
509 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
510 
511 	if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
512 		entry = ERR_PTR(-EIO);
513 		goto out_unlock;
514 	}
515 
516 	if (entry) {
517 		if (size_flag & RADIX_DAX_PMD) {
518 			if (dax_is_pte_entry(entry)) {
519 				put_unlocked_mapping_entry(mapping, index,
520 						entry);
521 				entry = ERR_PTR(-EEXIST);
522 				goto out_unlock;
523 			}
524 		} else { /* trying to grab a PTE entry */
525 			if (dax_is_pmd_entry(entry) &&
526 			    (dax_is_zero_entry(entry) ||
527 			     dax_is_empty_entry(entry))) {
528 				pmd_downgrade = true;
529 			}
530 		}
531 	}
532 
533 	/* No entry for given index? Make sure radix tree is big enough. */
534 	if (!entry || pmd_downgrade) {
535 		int err;
536 
537 		if (pmd_downgrade) {
538 			/*
539 			 * Make sure 'entry' remains valid while we drop
540 			 * the i_pages lock.
541 			 */
542 			entry = lock_slot(mapping, slot);
543 		}
544 
545 		xa_unlock_irq(&mapping->i_pages);
546 		/*
547 		 * Besides huge zero pages the only other thing that gets
548 		 * downgraded are empty entries which don't need to be
549 		 * unmapped.
550 		 */
551 		if (pmd_downgrade && dax_is_zero_entry(entry))
552 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
553 							PG_PMD_NR, false);
554 
555 		err = radix_tree_preload(
556 				mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
557 		if (err) {
558 			if (pmd_downgrade)
559 				put_locked_mapping_entry(mapping, index);
560 			return ERR_PTR(err);
561 		}
562 		xa_lock_irq(&mapping->i_pages);
563 
564 		if (!entry) {
565 			/*
566 			 * We needed to drop the i_pages lock while calling
567 			 * radix_tree_preload() and we didn't have an entry to
568 			 * lock.  See if another thread inserted an entry at
569 			 * our index during this time.
570 			 */
571 			entry = __radix_tree_lookup(&mapping->i_pages, index,
572 					NULL, &slot);
573 			if (entry) {
574 				radix_tree_preload_end();
575 				xa_unlock_irq(&mapping->i_pages);
576 				goto restart;
577 			}
578 		}
579 
580 		if (pmd_downgrade) {
581 			dax_disassociate_entry(entry, mapping, false);
582 			radix_tree_delete(&mapping->i_pages, index);
583 			mapping->nrexceptional--;
584 			dax_wake_mapping_entry_waiter(mapping, index, entry,
585 					true);
586 		}
587 
588 		entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
589 
590 		err = __radix_tree_insert(&mapping->i_pages, index,
591 				dax_radix_order(entry), entry);
592 		radix_tree_preload_end();
593 		if (err) {
594 			xa_unlock_irq(&mapping->i_pages);
595 			/*
596 			 * Our insertion of a DAX entry failed, most likely
597 			 * because we were inserting a PMD entry and it
598 			 * collided with a PTE sized entry at a different
599 			 * index in the PMD range.  We haven't inserted
600 			 * anything into the radix tree and have no waiters to
601 			 * wake.
602 			 */
603 			return ERR_PTR(err);
604 		}
605 		/* Good, we have inserted empty locked entry into the tree. */
606 		mapping->nrexceptional++;
607 		xa_unlock_irq(&mapping->i_pages);
608 		return entry;
609 	}
610 	entry = lock_slot(mapping, slot);
611  out_unlock:
612 	xa_unlock_irq(&mapping->i_pages);
613 	return entry;
614 }
615 
616 /**
617  * dax_layout_busy_page - find first pinned page in @mapping
618  * @mapping: address space to scan for a page with ref count > 1
619  *
620  * DAX requires ZONE_DEVICE mapped pages. These pages are never
621  * 'onlined' to the page allocator so they are considered idle when
622  * page->count == 1. A filesystem uses this interface to determine if
623  * any page in the mapping is busy, i.e. for DMA, or other
624  * get_user_pages() usages.
625  *
626  * It is expected that the filesystem is holding locks to block the
627  * establishment of new mappings in this address_space. I.e. it expects
628  * to be able to run unmap_mapping_range() and subsequently not race
629  * mapping_mapped() becoming true.
630  */
631 struct page *dax_layout_busy_page(struct address_space *mapping)
632 {
633 	pgoff_t	indices[PAGEVEC_SIZE];
634 	struct page *page = NULL;
635 	struct pagevec pvec;
636 	pgoff_t	index, end;
637 	unsigned i;
638 
639 	/*
640 	 * In the 'limited' case get_user_pages() for dax is disabled.
641 	 */
642 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
643 		return NULL;
644 
645 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
646 		return NULL;
647 
648 	pagevec_init(&pvec);
649 	index = 0;
650 	end = -1;
651 
652 	/*
653 	 * If we race get_user_pages_fast() here either we'll see the
654 	 * elevated page count in the pagevec_lookup and wait, or
655 	 * get_user_pages_fast() will see that the page it took a reference
656 	 * against is no longer mapped in the page tables and bail to the
657 	 * get_user_pages() slow path.  The slow path is protected by
658 	 * pte_lock() and pmd_lock(). New references are not taken without
659 	 * holding those locks, and unmap_mapping_range() will not zero the
660 	 * pte or pmd without holding the respective lock, so we are
661 	 * guaranteed to either see new references or prevent new
662 	 * references from being established.
663 	 */
664 	unmap_mapping_range(mapping, 0, 0, 1);
665 
666 	while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
667 				min(end - index, (pgoff_t)PAGEVEC_SIZE),
668 				indices)) {
669 		pgoff_t nr_pages = 1;
670 
671 		for (i = 0; i < pagevec_count(&pvec); i++) {
672 			struct page *pvec_ent = pvec.pages[i];
673 			void *entry;
674 
675 			index = indices[i];
676 			if (index >= end)
677 				break;
678 
679 			if (WARN_ON_ONCE(
680 			     !radix_tree_exceptional_entry(pvec_ent)))
681 				continue;
682 
683 			xa_lock_irq(&mapping->i_pages);
684 			entry = get_unlocked_mapping_entry(mapping, index, NULL);
685 			if (entry) {
686 				page = dax_busy_page(entry);
687 				/*
688 				 * Account for multi-order entries at
689 				 * the end of the pagevec.
690 				 */
691 				if (i + 1 >= pagevec_count(&pvec))
692 					nr_pages = 1UL << dax_radix_order(entry);
693 			}
694 			put_unlocked_mapping_entry(mapping, index, entry);
695 			xa_unlock_irq(&mapping->i_pages);
696 			if (page)
697 				break;
698 		}
699 
700 		/*
701 		 * We don't expect normal struct page entries to exist in our
702 		 * tree, but we keep these pagevec calls so that this code is
703 		 * consistent with the common pattern for handling pagevecs
704 		 * throughout the kernel.
705 		 */
706 		pagevec_remove_exceptionals(&pvec);
707 		pagevec_release(&pvec);
708 		index += nr_pages;
709 
710 		if (page)
711 			break;
712 	}
713 	return page;
714 }
715 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
716 
717 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
718 					  pgoff_t index, bool trunc)
719 {
720 	int ret = 0;
721 	void *entry;
722 	struct radix_tree_root *pages = &mapping->i_pages;
723 
724 	xa_lock_irq(pages);
725 	entry = get_unlocked_mapping_entry(mapping, index, NULL);
726 	if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
727 		goto out;
728 	if (!trunc &&
729 	    (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
730 	     radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
731 		goto out;
732 	dax_disassociate_entry(entry, mapping, trunc);
733 	radix_tree_delete(pages, index);
734 	mapping->nrexceptional--;
735 	ret = 1;
736 out:
737 	put_unlocked_mapping_entry(mapping, index, entry);
738 	xa_unlock_irq(pages);
739 	return ret;
740 }
741 /*
742  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
743  * entry to get unlocked before deleting it.
744  */
745 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
746 {
747 	int ret = __dax_invalidate_mapping_entry(mapping, index, true);
748 
749 	/*
750 	 * This gets called from truncate / punch_hole path. As such, the caller
751 	 * must hold locks protecting against concurrent modifications of the
752 	 * radix tree (usually fs-private i_mmap_sem for writing). Since the
753 	 * caller has seen exceptional entry for this index, we better find it
754 	 * at that index as well...
755 	 */
756 	WARN_ON_ONCE(!ret);
757 	return ret;
758 }
759 
760 /*
761  * Invalidate exceptional DAX entry if it is clean.
762  */
763 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
764 				      pgoff_t index)
765 {
766 	return __dax_invalidate_mapping_entry(mapping, index, false);
767 }
768 
769 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
770 		sector_t sector, size_t size, struct page *to,
771 		unsigned long vaddr)
772 {
773 	void *vto, *kaddr;
774 	pgoff_t pgoff;
775 	long rc;
776 	int id;
777 
778 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
779 	if (rc)
780 		return rc;
781 
782 	id = dax_read_lock();
783 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
784 	if (rc < 0) {
785 		dax_read_unlock(id);
786 		return rc;
787 	}
788 	vto = kmap_atomic(to);
789 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
790 	kunmap_atomic(vto);
791 	dax_read_unlock(id);
792 	return 0;
793 }
794 
795 /*
796  * By this point grab_mapping_entry() has ensured that we have a locked entry
797  * of the appropriate size so we don't have to worry about downgrading PMDs to
798  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
799  * already in the tree, we will skip the insertion and just dirty the PMD as
800  * appropriate.
801  */
802 static void *dax_insert_mapping_entry(struct address_space *mapping,
803 				      struct vm_fault *vmf,
804 				      void *entry, pfn_t pfn_t,
805 				      unsigned long flags, bool dirty)
806 {
807 	struct radix_tree_root *pages = &mapping->i_pages;
808 	unsigned long pfn = pfn_t_to_pfn(pfn_t);
809 	pgoff_t index = vmf->pgoff;
810 	void *new_entry;
811 
812 	if (dirty)
813 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
814 
815 	if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
816 		/* we are replacing a zero page with block mapping */
817 		if (dax_is_pmd_entry(entry))
818 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
819 							PG_PMD_NR, false);
820 		else /* pte entry */
821 			unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
822 	}
823 
824 	xa_lock_irq(pages);
825 	new_entry = dax_radix_locked_entry(pfn, flags);
826 	if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
827 		dax_disassociate_entry(entry, mapping, false);
828 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
829 	}
830 
831 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
832 		/*
833 		 * Only swap our new entry into the radix tree if the current
834 		 * entry is a zero page or an empty entry.  If a normal PTE or
835 		 * PMD entry is already in the tree, we leave it alone.  This
836 		 * means that if we are trying to insert a PTE and the
837 		 * existing entry is a PMD, we will just leave the PMD in the
838 		 * tree and dirty it if necessary.
839 		 */
840 		struct radix_tree_node *node;
841 		void **slot;
842 		void *ret;
843 
844 		ret = __radix_tree_lookup(pages, index, &node, &slot);
845 		WARN_ON_ONCE(ret != entry);
846 		__radix_tree_replace(pages, node, slot,
847 				     new_entry, NULL);
848 		entry = new_entry;
849 	}
850 
851 	if (dirty)
852 		radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
853 
854 	xa_unlock_irq(pages);
855 	return entry;
856 }
857 
858 static inline unsigned long
859 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
860 {
861 	unsigned long address;
862 
863 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
864 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
865 	return address;
866 }
867 
868 /* Walk all mappings of a given index of a file and writeprotect them */
869 static void dax_mapping_entry_mkclean(struct address_space *mapping,
870 				      pgoff_t index, unsigned long pfn)
871 {
872 	struct vm_area_struct *vma;
873 	pte_t pte, *ptep = NULL;
874 	pmd_t *pmdp = NULL;
875 	spinlock_t *ptl;
876 
877 	i_mmap_lock_read(mapping);
878 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
879 		unsigned long address, start, end;
880 
881 		cond_resched();
882 
883 		if (!(vma->vm_flags & VM_SHARED))
884 			continue;
885 
886 		address = pgoff_address(index, vma);
887 
888 		/*
889 		 * Note because we provide start/end to follow_pte_pmd it will
890 		 * call mmu_notifier_invalidate_range_start() on our behalf
891 		 * before taking any lock.
892 		 */
893 		if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
894 			continue;
895 
896 		/*
897 		 * No need to call mmu_notifier_invalidate_range() as we are
898 		 * downgrading page table protection not changing it to point
899 		 * to a new page.
900 		 *
901 		 * See Documentation/vm/mmu_notifier.rst
902 		 */
903 		if (pmdp) {
904 #ifdef CONFIG_FS_DAX_PMD
905 			pmd_t pmd;
906 
907 			if (pfn != pmd_pfn(*pmdp))
908 				goto unlock_pmd;
909 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
910 				goto unlock_pmd;
911 
912 			flush_cache_page(vma, address, pfn);
913 			pmd = pmdp_huge_clear_flush(vma, address, pmdp);
914 			pmd = pmd_wrprotect(pmd);
915 			pmd = pmd_mkclean(pmd);
916 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
917 unlock_pmd:
918 #endif
919 			spin_unlock(ptl);
920 		} else {
921 			if (pfn != pte_pfn(*ptep))
922 				goto unlock_pte;
923 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
924 				goto unlock_pte;
925 
926 			flush_cache_page(vma, address, pfn);
927 			pte = ptep_clear_flush(vma, address, ptep);
928 			pte = pte_wrprotect(pte);
929 			pte = pte_mkclean(pte);
930 			set_pte_at(vma->vm_mm, address, ptep, pte);
931 unlock_pte:
932 			pte_unmap_unlock(ptep, ptl);
933 		}
934 
935 		mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
936 	}
937 	i_mmap_unlock_read(mapping);
938 }
939 
940 static int dax_writeback_one(struct dax_device *dax_dev,
941 		struct address_space *mapping, pgoff_t index, void *entry)
942 {
943 	struct radix_tree_root *pages = &mapping->i_pages;
944 	void *entry2, **slot;
945 	unsigned long pfn;
946 	long ret = 0;
947 	size_t size;
948 
949 	/*
950 	 * A page got tagged dirty in DAX mapping? Something is seriously
951 	 * wrong.
952 	 */
953 	if (WARN_ON(!radix_tree_exceptional_entry(entry)))
954 		return -EIO;
955 
956 	xa_lock_irq(pages);
957 	entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
958 	/* Entry got punched out / reallocated? */
959 	if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
960 		goto put_unlocked;
961 	/*
962 	 * Entry got reallocated elsewhere? No need to writeback. We have to
963 	 * compare pfns as we must not bail out due to difference in lockbit
964 	 * or entry type.
965 	 */
966 	if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
967 		goto put_unlocked;
968 	if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
969 				dax_is_zero_entry(entry))) {
970 		ret = -EIO;
971 		goto put_unlocked;
972 	}
973 
974 	/* Another fsync thread may have already written back this entry */
975 	if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
976 		goto put_unlocked;
977 	/* Lock the entry to serialize with page faults */
978 	entry = lock_slot(mapping, slot);
979 	/*
980 	 * We can clear the tag now but we have to be careful so that concurrent
981 	 * dax_writeback_one() calls for the same index cannot finish before we
982 	 * actually flush the caches. This is achieved as the calls will look
983 	 * at the entry only under the i_pages lock and once they do that
984 	 * they will see the entry locked and wait for it to unlock.
985 	 */
986 	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
987 	xa_unlock_irq(pages);
988 
989 	/*
990 	 * Even if dax_writeback_mapping_range() was given a wbc->range_start
991 	 * in the middle of a PMD, the 'index' we are given will be aligned to
992 	 * the start index of the PMD, as will the pfn we pull from 'entry'.
993 	 * This allows us to flush for PMD_SIZE and not have to worry about
994 	 * partial PMD writebacks.
995 	 */
996 	pfn = dax_radix_pfn(entry);
997 	size = PAGE_SIZE << dax_radix_order(entry);
998 
999 	dax_mapping_entry_mkclean(mapping, index, pfn);
1000 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
1001 	/*
1002 	 * After we have flushed the cache, we can clear the dirty tag. There
1003 	 * cannot be new dirty data in the pfn after the flush has completed as
1004 	 * the pfn mappings are writeprotected and fault waits for mapping
1005 	 * entry lock.
1006 	 */
1007 	xa_lock_irq(pages);
1008 	radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
1009 	xa_unlock_irq(pages);
1010 	trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1011 	put_locked_mapping_entry(mapping, index);
1012 	return ret;
1013 
1014  put_unlocked:
1015 	put_unlocked_mapping_entry(mapping, index, entry2);
1016 	xa_unlock_irq(pages);
1017 	return ret;
1018 }
1019 
1020 /*
1021  * Flush the mapping to the persistent domain within the byte range of [start,
1022  * end]. This is required by data integrity operations to ensure file data is
1023  * on persistent storage prior to completion of the operation.
1024  */
1025 int dax_writeback_mapping_range(struct address_space *mapping,
1026 		struct block_device *bdev, struct writeback_control *wbc)
1027 {
1028 	struct inode *inode = mapping->host;
1029 	pgoff_t start_index, end_index;
1030 	pgoff_t indices[PAGEVEC_SIZE];
1031 	struct dax_device *dax_dev;
1032 	struct pagevec pvec;
1033 	bool done = false;
1034 	int i, ret = 0;
1035 
1036 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1037 		return -EIO;
1038 
1039 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1040 		return 0;
1041 
1042 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1043 	if (!dax_dev)
1044 		return -EIO;
1045 
1046 	start_index = wbc->range_start >> PAGE_SHIFT;
1047 	end_index = wbc->range_end >> PAGE_SHIFT;
1048 
1049 	trace_dax_writeback_range(inode, start_index, end_index);
1050 
1051 	tag_pages_for_writeback(mapping, start_index, end_index);
1052 
1053 	pagevec_init(&pvec);
1054 	while (!done) {
1055 		pvec.nr = find_get_entries_tag(mapping, start_index,
1056 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1057 				pvec.pages, indices);
1058 
1059 		if (pvec.nr == 0)
1060 			break;
1061 
1062 		for (i = 0; i < pvec.nr; i++) {
1063 			if (indices[i] > end_index) {
1064 				done = true;
1065 				break;
1066 			}
1067 
1068 			ret = dax_writeback_one(dax_dev, mapping, indices[i],
1069 					pvec.pages[i]);
1070 			if (ret < 0) {
1071 				mapping_set_error(mapping, ret);
1072 				goto out;
1073 			}
1074 		}
1075 		start_index = indices[pvec.nr - 1] + 1;
1076 	}
1077 out:
1078 	put_dax(dax_dev);
1079 	trace_dax_writeback_range_done(inode, start_index, end_index);
1080 	return (ret < 0 ? ret : 0);
1081 }
1082 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1083 
1084 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1085 {
1086 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1087 }
1088 
1089 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1090 			 pfn_t *pfnp)
1091 {
1092 	const sector_t sector = dax_iomap_sector(iomap, pos);
1093 	pgoff_t pgoff;
1094 	int id, rc;
1095 	long length;
1096 
1097 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1098 	if (rc)
1099 		return rc;
1100 	id = dax_read_lock();
1101 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1102 				   NULL, pfnp);
1103 	if (length < 0) {
1104 		rc = length;
1105 		goto out;
1106 	}
1107 	rc = -EINVAL;
1108 	if (PFN_PHYS(length) < size)
1109 		goto out;
1110 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1111 		goto out;
1112 	/* For larger pages we need devmap */
1113 	if (length > 1 && !pfn_t_devmap(*pfnp))
1114 		goto out;
1115 	rc = 0;
1116 out:
1117 	dax_read_unlock(id);
1118 	return rc;
1119 }
1120 
1121 /*
1122  * The user has performed a load from a hole in the file.  Allocating a new
1123  * page in the file would cause excessive storage usage for workloads with
1124  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1125  * If this page is ever written to we will re-fault and change the mapping to
1126  * point to real DAX storage instead.
1127  */
1128 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1129 			 struct vm_fault *vmf)
1130 {
1131 	struct inode *inode = mapping->host;
1132 	unsigned long vaddr = vmf->address;
1133 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1134 	vm_fault_t ret;
1135 
1136 	dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1137 			false);
1138 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1139 	trace_dax_load_hole(inode, vmf, ret);
1140 	return ret;
1141 }
1142 
1143 static bool dax_range_is_aligned(struct block_device *bdev,
1144 				 unsigned int offset, unsigned int length)
1145 {
1146 	unsigned short sector_size = bdev_logical_block_size(bdev);
1147 
1148 	if (!IS_ALIGNED(offset, sector_size))
1149 		return false;
1150 	if (!IS_ALIGNED(length, sector_size))
1151 		return false;
1152 
1153 	return true;
1154 }
1155 
1156 int __dax_zero_page_range(struct block_device *bdev,
1157 		struct dax_device *dax_dev, sector_t sector,
1158 		unsigned int offset, unsigned int size)
1159 {
1160 	if (dax_range_is_aligned(bdev, offset, size)) {
1161 		sector_t start_sector = sector + (offset >> 9);
1162 
1163 		return blkdev_issue_zeroout(bdev, start_sector,
1164 				size >> 9, GFP_NOFS, 0);
1165 	} else {
1166 		pgoff_t pgoff;
1167 		long rc, id;
1168 		void *kaddr;
1169 
1170 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1171 		if (rc)
1172 			return rc;
1173 
1174 		id = dax_read_lock();
1175 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1176 		if (rc < 0) {
1177 			dax_read_unlock(id);
1178 			return rc;
1179 		}
1180 		memset(kaddr + offset, 0, size);
1181 		dax_flush(dax_dev, kaddr + offset, size);
1182 		dax_read_unlock(id);
1183 	}
1184 	return 0;
1185 }
1186 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1187 
1188 static loff_t
1189 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1190 		struct iomap *iomap)
1191 {
1192 	struct block_device *bdev = iomap->bdev;
1193 	struct dax_device *dax_dev = iomap->dax_dev;
1194 	struct iov_iter *iter = data;
1195 	loff_t end = pos + length, done = 0;
1196 	ssize_t ret = 0;
1197 	size_t xfer;
1198 	int id;
1199 
1200 	if (iov_iter_rw(iter) == READ) {
1201 		end = min(end, i_size_read(inode));
1202 		if (pos >= end)
1203 			return 0;
1204 
1205 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1206 			return iov_iter_zero(min(length, end - pos), iter);
1207 	}
1208 
1209 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1210 		return -EIO;
1211 
1212 	/*
1213 	 * Write can allocate block for an area which has a hole page mapped
1214 	 * into page tables. We have to tear down these mappings so that data
1215 	 * written by write(2) is visible in mmap.
1216 	 */
1217 	if (iomap->flags & IOMAP_F_NEW) {
1218 		invalidate_inode_pages2_range(inode->i_mapping,
1219 					      pos >> PAGE_SHIFT,
1220 					      (end - 1) >> PAGE_SHIFT);
1221 	}
1222 
1223 	id = dax_read_lock();
1224 	while (pos < end) {
1225 		unsigned offset = pos & (PAGE_SIZE - 1);
1226 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1227 		const sector_t sector = dax_iomap_sector(iomap, pos);
1228 		ssize_t map_len;
1229 		pgoff_t pgoff;
1230 		void *kaddr;
1231 
1232 		if (fatal_signal_pending(current)) {
1233 			ret = -EINTR;
1234 			break;
1235 		}
1236 
1237 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1238 		if (ret)
1239 			break;
1240 
1241 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1242 				&kaddr, NULL);
1243 		if (map_len < 0) {
1244 			ret = map_len;
1245 			break;
1246 		}
1247 
1248 		map_len = PFN_PHYS(map_len);
1249 		kaddr += offset;
1250 		map_len -= offset;
1251 		if (map_len > end - pos)
1252 			map_len = end - pos;
1253 
1254 		/*
1255 		 * The userspace address for the memory copy has already been
1256 		 * validated via access_ok() in either vfs_read() or
1257 		 * vfs_write(), depending on which operation we are doing.
1258 		 */
1259 		if (iov_iter_rw(iter) == WRITE)
1260 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1261 					map_len, iter);
1262 		else
1263 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1264 					map_len, iter);
1265 
1266 		pos += xfer;
1267 		length -= xfer;
1268 		done += xfer;
1269 
1270 		if (xfer == 0)
1271 			ret = -EFAULT;
1272 		if (xfer < map_len)
1273 			break;
1274 	}
1275 	dax_read_unlock(id);
1276 
1277 	return done ? done : ret;
1278 }
1279 
1280 /**
1281  * dax_iomap_rw - Perform I/O to a DAX file
1282  * @iocb:	The control block for this I/O
1283  * @iter:	The addresses to do I/O from or to
1284  * @ops:	iomap ops passed from the file system
1285  *
1286  * This function performs read and write operations to directly mapped
1287  * persistent memory.  The callers needs to take care of read/write exclusion
1288  * and evicting any page cache pages in the region under I/O.
1289  */
1290 ssize_t
1291 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1292 		const struct iomap_ops *ops)
1293 {
1294 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1295 	struct inode *inode = mapping->host;
1296 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1297 	unsigned flags = 0;
1298 
1299 	if (iov_iter_rw(iter) == WRITE) {
1300 		lockdep_assert_held_exclusive(&inode->i_rwsem);
1301 		flags |= IOMAP_WRITE;
1302 	} else {
1303 		lockdep_assert_held(&inode->i_rwsem);
1304 	}
1305 
1306 	while (iov_iter_count(iter)) {
1307 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1308 				iter, dax_iomap_actor);
1309 		if (ret <= 0)
1310 			break;
1311 		pos += ret;
1312 		done += ret;
1313 	}
1314 
1315 	iocb->ki_pos += done;
1316 	return done ? done : ret;
1317 }
1318 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1319 
1320 static vm_fault_t dax_fault_return(int error)
1321 {
1322 	if (error == 0)
1323 		return VM_FAULT_NOPAGE;
1324 	if (error == -ENOMEM)
1325 		return VM_FAULT_OOM;
1326 	return VM_FAULT_SIGBUS;
1327 }
1328 
1329 /*
1330  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1331  * flushed on write-faults (non-cow), but not read-faults.
1332  */
1333 static bool dax_fault_is_synchronous(unsigned long flags,
1334 		struct vm_area_struct *vma, struct iomap *iomap)
1335 {
1336 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1337 		&& (iomap->flags & IOMAP_F_DIRTY);
1338 }
1339 
1340 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1341 			       int *iomap_errp, const struct iomap_ops *ops)
1342 {
1343 	struct vm_area_struct *vma = vmf->vma;
1344 	struct address_space *mapping = vma->vm_file->f_mapping;
1345 	struct inode *inode = mapping->host;
1346 	unsigned long vaddr = vmf->address;
1347 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1348 	struct iomap iomap = { 0 };
1349 	unsigned flags = IOMAP_FAULT;
1350 	int error, major = 0;
1351 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1352 	bool sync;
1353 	vm_fault_t ret = 0;
1354 	void *entry;
1355 	pfn_t pfn;
1356 
1357 	trace_dax_pte_fault(inode, vmf, ret);
1358 	/*
1359 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1360 	 * to hold locks serializing us with truncate / punch hole so this is
1361 	 * a reliable test.
1362 	 */
1363 	if (pos >= i_size_read(inode)) {
1364 		ret = VM_FAULT_SIGBUS;
1365 		goto out;
1366 	}
1367 
1368 	if (write && !vmf->cow_page)
1369 		flags |= IOMAP_WRITE;
1370 
1371 	entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1372 	if (IS_ERR(entry)) {
1373 		ret = dax_fault_return(PTR_ERR(entry));
1374 		goto out;
1375 	}
1376 
1377 	/*
1378 	 * It is possible, particularly with mixed reads & writes to private
1379 	 * mappings, that we have raced with a PMD fault that overlaps with
1380 	 * the PTE we need to set up.  If so just return and the fault will be
1381 	 * retried.
1382 	 */
1383 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1384 		ret = VM_FAULT_NOPAGE;
1385 		goto unlock_entry;
1386 	}
1387 
1388 	/*
1389 	 * Note that we don't bother to use iomap_apply here: DAX required
1390 	 * the file system block size to be equal the page size, which means
1391 	 * that we never have to deal with more than a single extent here.
1392 	 */
1393 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1394 	if (iomap_errp)
1395 		*iomap_errp = error;
1396 	if (error) {
1397 		ret = dax_fault_return(error);
1398 		goto unlock_entry;
1399 	}
1400 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1401 		error = -EIO;	/* fs corruption? */
1402 		goto error_finish_iomap;
1403 	}
1404 
1405 	if (vmf->cow_page) {
1406 		sector_t sector = dax_iomap_sector(&iomap, pos);
1407 
1408 		switch (iomap.type) {
1409 		case IOMAP_HOLE:
1410 		case IOMAP_UNWRITTEN:
1411 			clear_user_highpage(vmf->cow_page, vaddr);
1412 			break;
1413 		case IOMAP_MAPPED:
1414 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1415 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1416 			break;
1417 		default:
1418 			WARN_ON_ONCE(1);
1419 			error = -EIO;
1420 			break;
1421 		}
1422 
1423 		if (error)
1424 			goto error_finish_iomap;
1425 
1426 		__SetPageUptodate(vmf->cow_page);
1427 		ret = finish_fault(vmf);
1428 		if (!ret)
1429 			ret = VM_FAULT_DONE_COW;
1430 		goto finish_iomap;
1431 	}
1432 
1433 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1434 
1435 	switch (iomap.type) {
1436 	case IOMAP_MAPPED:
1437 		if (iomap.flags & IOMAP_F_NEW) {
1438 			count_vm_event(PGMAJFAULT);
1439 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1440 			major = VM_FAULT_MAJOR;
1441 		}
1442 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1443 		if (error < 0)
1444 			goto error_finish_iomap;
1445 
1446 		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1447 						 0, write && !sync);
1448 
1449 		/*
1450 		 * If we are doing synchronous page fault and inode needs fsync,
1451 		 * we can insert PTE into page tables only after that happens.
1452 		 * Skip insertion for now and return the pfn so that caller can
1453 		 * insert it after fsync is done.
1454 		 */
1455 		if (sync) {
1456 			if (WARN_ON_ONCE(!pfnp)) {
1457 				error = -EIO;
1458 				goto error_finish_iomap;
1459 			}
1460 			*pfnp = pfn;
1461 			ret = VM_FAULT_NEEDDSYNC | major;
1462 			goto finish_iomap;
1463 		}
1464 		trace_dax_insert_mapping(inode, vmf, entry);
1465 		if (write)
1466 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1467 		else
1468 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1469 
1470 		goto finish_iomap;
1471 	case IOMAP_UNWRITTEN:
1472 	case IOMAP_HOLE:
1473 		if (!write) {
1474 			ret = dax_load_hole(mapping, entry, vmf);
1475 			goto finish_iomap;
1476 		}
1477 		/*FALLTHRU*/
1478 	default:
1479 		WARN_ON_ONCE(1);
1480 		error = -EIO;
1481 		break;
1482 	}
1483 
1484  error_finish_iomap:
1485 	ret = dax_fault_return(error);
1486  finish_iomap:
1487 	if (ops->iomap_end) {
1488 		int copied = PAGE_SIZE;
1489 
1490 		if (ret & VM_FAULT_ERROR)
1491 			copied = 0;
1492 		/*
1493 		 * The fault is done by now and there's no way back (other
1494 		 * thread may be already happily using PTE we have installed).
1495 		 * Just ignore error from ->iomap_end since we cannot do much
1496 		 * with it.
1497 		 */
1498 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1499 	}
1500  unlock_entry:
1501 	put_locked_mapping_entry(mapping, vmf->pgoff);
1502  out:
1503 	trace_dax_pte_fault_done(inode, vmf, ret);
1504 	return ret | major;
1505 }
1506 
1507 #ifdef CONFIG_FS_DAX_PMD
1508 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1509 		void *entry)
1510 {
1511 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1512 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1513 	struct inode *inode = mapping->host;
1514 	struct page *zero_page;
1515 	void *ret = NULL;
1516 	spinlock_t *ptl;
1517 	pmd_t pmd_entry;
1518 	pfn_t pfn;
1519 
1520 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1521 
1522 	if (unlikely(!zero_page))
1523 		goto fallback;
1524 
1525 	pfn = page_to_pfn_t(zero_page);
1526 	ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1527 			RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1528 
1529 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1530 	if (!pmd_none(*(vmf->pmd))) {
1531 		spin_unlock(ptl);
1532 		goto fallback;
1533 	}
1534 
1535 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1536 	pmd_entry = pmd_mkhuge(pmd_entry);
1537 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1538 	spin_unlock(ptl);
1539 	trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1540 	return VM_FAULT_NOPAGE;
1541 
1542 fallback:
1543 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1544 	return VM_FAULT_FALLBACK;
1545 }
1546 
1547 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1548 			       const struct iomap_ops *ops)
1549 {
1550 	struct vm_area_struct *vma = vmf->vma;
1551 	struct address_space *mapping = vma->vm_file->f_mapping;
1552 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1553 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1554 	bool sync;
1555 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1556 	struct inode *inode = mapping->host;
1557 	vm_fault_t result = VM_FAULT_FALLBACK;
1558 	struct iomap iomap = { 0 };
1559 	pgoff_t max_pgoff, pgoff;
1560 	void *entry;
1561 	loff_t pos;
1562 	int error;
1563 	pfn_t pfn;
1564 
1565 	/*
1566 	 * Check whether offset isn't beyond end of file now. Caller is
1567 	 * supposed to hold locks serializing us with truncate / punch hole so
1568 	 * this is a reliable test.
1569 	 */
1570 	pgoff = linear_page_index(vma, pmd_addr);
1571 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1572 
1573 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1574 
1575 	/*
1576 	 * Make sure that the faulting address's PMD offset (color) matches
1577 	 * the PMD offset from the start of the file.  This is necessary so
1578 	 * that a PMD range in the page table overlaps exactly with a PMD
1579 	 * range in the radix tree.
1580 	 */
1581 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1582 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1583 		goto fallback;
1584 
1585 	/* Fall back to PTEs if we're going to COW */
1586 	if (write && !(vma->vm_flags & VM_SHARED))
1587 		goto fallback;
1588 
1589 	/* If the PMD would extend outside the VMA */
1590 	if (pmd_addr < vma->vm_start)
1591 		goto fallback;
1592 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1593 		goto fallback;
1594 
1595 	if (pgoff >= max_pgoff) {
1596 		result = VM_FAULT_SIGBUS;
1597 		goto out;
1598 	}
1599 
1600 	/* If the PMD would extend beyond the file size */
1601 	if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1602 		goto fallback;
1603 
1604 	/*
1605 	 * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1606 	 * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1607 	 * is already in the tree, for instance), it will return -EEXIST and
1608 	 * we just fall back to 4k entries.
1609 	 */
1610 	entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1611 	if (IS_ERR(entry))
1612 		goto fallback;
1613 
1614 	/*
1615 	 * It is possible, particularly with mixed reads & writes to private
1616 	 * mappings, that we have raced with a PTE fault that overlaps with
1617 	 * the PMD we need to set up.  If so just return and the fault will be
1618 	 * retried.
1619 	 */
1620 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1621 			!pmd_devmap(*vmf->pmd)) {
1622 		result = 0;
1623 		goto unlock_entry;
1624 	}
1625 
1626 	/*
1627 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1628 	 * setting up a mapping, so really we're using iomap_begin() as a way
1629 	 * to look up our filesystem block.
1630 	 */
1631 	pos = (loff_t)pgoff << PAGE_SHIFT;
1632 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1633 	if (error)
1634 		goto unlock_entry;
1635 
1636 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1637 		goto finish_iomap;
1638 
1639 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1640 
1641 	switch (iomap.type) {
1642 	case IOMAP_MAPPED:
1643 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1644 		if (error < 0)
1645 			goto finish_iomap;
1646 
1647 		entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1648 						RADIX_DAX_PMD, write && !sync);
1649 
1650 		/*
1651 		 * If we are doing synchronous page fault and inode needs fsync,
1652 		 * we can insert PMD into page tables only after that happens.
1653 		 * Skip insertion for now and return the pfn so that caller can
1654 		 * insert it after fsync is done.
1655 		 */
1656 		if (sync) {
1657 			if (WARN_ON_ONCE(!pfnp))
1658 				goto finish_iomap;
1659 			*pfnp = pfn;
1660 			result = VM_FAULT_NEEDDSYNC;
1661 			goto finish_iomap;
1662 		}
1663 
1664 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1665 		result = vmf_insert_pfn_pmd(vma, vmf->address, vmf->pmd, pfn,
1666 					    write);
1667 		break;
1668 	case IOMAP_UNWRITTEN:
1669 	case IOMAP_HOLE:
1670 		if (WARN_ON_ONCE(write))
1671 			break;
1672 		result = dax_pmd_load_hole(vmf, &iomap, entry);
1673 		break;
1674 	default:
1675 		WARN_ON_ONCE(1);
1676 		break;
1677 	}
1678 
1679  finish_iomap:
1680 	if (ops->iomap_end) {
1681 		int copied = PMD_SIZE;
1682 
1683 		if (result == VM_FAULT_FALLBACK)
1684 			copied = 0;
1685 		/*
1686 		 * The fault is done by now and there's no way back (other
1687 		 * thread may be already happily using PMD we have installed).
1688 		 * Just ignore error from ->iomap_end since we cannot do much
1689 		 * with it.
1690 		 */
1691 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1692 				&iomap);
1693 	}
1694  unlock_entry:
1695 	put_locked_mapping_entry(mapping, pgoff);
1696  fallback:
1697 	if (result == VM_FAULT_FALLBACK) {
1698 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1699 		count_vm_event(THP_FAULT_FALLBACK);
1700 	}
1701 out:
1702 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1703 	return result;
1704 }
1705 #else
1706 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1707 			       const struct iomap_ops *ops)
1708 {
1709 	return VM_FAULT_FALLBACK;
1710 }
1711 #endif /* CONFIG_FS_DAX_PMD */
1712 
1713 /**
1714  * dax_iomap_fault - handle a page fault on a DAX file
1715  * @vmf: The description of the fault
1716  * @pe_size: Size of the page to fault in
1717  * @pfnp: PFN to insert for synchronous faults if fsync is required
1718  * @iomap_errp: Storage for detailed error code in case of error
1719  * @ops: Iomap ops passed from the file system
1720  *
1721  * When a page fault occurs, filesystems may call this helper in
1722  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1723  * has done all the necessary locking for page fault to proceed
1724  * successfully.
1725  */
1726 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1727 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1728 {
1729 	switch (pe_size) {
1730 	case PE_SIZE_PTE:
1731 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1732 	case PE_SIZE_PMD:
1733 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1734 	default:
1735 		return VM_FAULT_FALLBACK;
1736 	}
1737 }
1738 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1739 
1740 /**
1741  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1742  * @vmf: The description of the fault
1743  * @pe_size: Size of entry to be inserted
1744  * @pfn: PFN to insert
1745  *
1746  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1747  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1748  * as well.
1749  */
1750 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1751 				  enum page_entry_size pe_size,
1752 				  pfn_t pfn)
1753 {
1754 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1755 	void *entry, **slot;
1756 	pgoff_t index = vmf->pgoff;
1757 	vm_fault_t ret;
1758 
1759 	xa_lock_irq(&mapping->i_pages);
1760 	entry = get_unlocked_mapping_entry(mapping, index, &slot);
1761 	/* Did we race with someone splitting entry or so? */
1762 	if (!entry ||
1763 	    (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1764 	    (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1765 		put_unlocked_mapping_entry(mapping, index, entry);
1766 		xa_unlock_irq(&mapping->i_pages);
1767 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1768 						      VM_FAULT_NOPAGE);
1769 		return VM_FAULT_NOPAGE;
1770 	}
1771 	radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1772 	entry = lock_slot(mapping, slot);
1773 	xa_unlock_irq(&mapping->i_pages);
1774 	switch (pe_size) {
1775 	case PE_SIZE_PTE:
1776 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1777 		break;
1778 #ifdef CONFIG_FS_DAX_PMD
1779 	case PE_SIZE_PMD:
1780 		ret = vmf_insert_pfn_pmd(vmf->vma, vmf->address, vmf->pmd,
1781 			pfn, true);
1782 		break;
1783 #endif
1784 	default:
1785 		ret = VM_FAULT_FALLBACK;
1786 	}
1787 	put_locked_mapping_entry(mapping, index);
1788 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1789 	return ret;
1790 }
1791 
1792 /**
1793  * dax_finish_sync_fault - finish synchronous page fault
1794  * @vmf: The description of the fault
1795  * @pe_size: Size of entry to be inserted
1796  * @pfn: PFN to insert
1797  *
1798  * This function ensures that the file range touched by the page fault is
1799  * stored persistently on the media and handles inserting of appropriate page
1800  * table entry.
1801  */
1802 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1803 		enum page_entry_size pe_size, pfn_t pfn)
1804 {
1805 	int err;
1806 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1807 	size_t len = 0;
1808 
1809 	if (pe_size == PE_SIZE_PTE)
1810 		len = PAGE_SIZE;
1811 	else if (pe_size == PE_SIZE_PMD)
1812 		len = PMD_SIZE;
1813 	else
1814 		WARN_ON_ONCE(1);
1815 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1816 	if (err)
1817 		return VM_FAULT_SIGBUS;
1818 	return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1819 }
1820 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1821