1 /* 2 * fs/dax.c - Direct Access filesystem code 3 * Copyright (c) 2013-2014 Intel Corporation 4 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 5 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms and conditions of the GNU General Public License, 9 * version 2, as published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 */ 16 17 #include <linux/atomic.h> 18 #include <linux/blkdev.h> 19 #include <linux/buffer_head.h> 20 #include <linux/dax.h> 21 #include <linux/fs.h> 22 #include <linux/genhd.h> 23 #include <linux/highmem.h> 24 #include <linux/memcontrol.h> 25 #include <linux/mm.h> 26 #include <linux/mutex.h> 27 #include <linux/pagevec.h> 28 #include <linux/pmem.h> 29 #include <linux/sched.h> 30 #include <linux/uio.h> 31 #include <linux/vmstat.h> 32 #include <linux/pfn_t.h> 33 #include <linux/sizes.h> 34 #include <linux/mmu_notifier.h> 35 #include <linux/iomap.h> 36 #include "internal.h" 37 38 /* We choose 4096 entries - same as per-zone page wait tables */ 39 #define DAX_WAIT_TABLE_BITS 12 40 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 41 42 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 43 44 static int __init init_dax_wait_table(void) 45 { 46 int i; 47 48 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 49 init_waitqueue_head(wait_table + i); 50 return 0; 51 } 52 fs_initcall(init_dax_wait_table); 53 54 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax) 55 { 56 struct request_queue *q = bdev->bd_queue; 57 long rc = -EIO; 58 59 dax->addr = ERR_PTR(-EIO); 60 if (blk_queue_enter(q, true) != 0) 61 return rc; 62 63 rc = bdev_direct_access(bdev, dax); 64 if (rc < 0) { 65 dax->addr = ERR_PTR(rc); 66 blk_queue_exit(q); 67 return rc; 68 } 69 return rc; 70 } 71 72 static void dax_unmap_atomic(struct block_device *bdev, 73 const struct blk_dax_ctl *dax) 74 { 75 if (IS_ERR(dax->addr)) 76 return; 77 blk_queue_exit(bdev->bd_queue); 78 } 79 80 static int dax_is_pmd_entry(void *entry) 81 { 82 return (unsigned long)entry & RADIX_DAX_PMD; 83 } 84 85 static int dax_is_pte_entry(void *entry) 86 { 87 return !((unsigned long)entry & RADIX_DAX_PMD); 88 } 89 90 static int dax_is_zero_entry(void *entry) 91 { 92 return (unsigned long)entry & RADIX_DAX_HZP; 93 } 94 95 static int dax_is_empty_entry(void *entry) 96 { 97 return (unsigned long)entry & RADIX_DAX_EMPTY; 98 } 99 100 struct page *read_dax_sector(struct block_device *bdev, sector_t n) 101 { 102 struct page *page = alloc_pages(GFP_KERNEL, 0); 103 struct blk_dax_ctl dax = { 104 .size = PAGE_SIZE, 105 .sector = n & ~((((int) PAGE_SIZE) / 512) - 1), 106 }; 107 long rc; 108 109 if (!page) 110 return ERR_PTR(-ENOMEM); 111 112 rc = dax_map_atomic(bdev, &dax); 113 if (rc < 0) 114 return ERR_PTR(rc); 115 memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE); 116 dax_unmap_atomic(bdev, &dax); 117 return page; 118 } 119 120 /* 121 * DAX radix tree locking 122 */ 123 struct exceptional_entry_key { 124 struct address_space *mapping; 125 pgoff_t entry_start; 126 }; 127 128 struct wait_exceptional_entry_queue { 129 wait_queue_t wait; 130 struct exceptional_entry_key key; 131 }; 132 133 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping, 134 pgoff_t index, void *entry, struct exceptional_entry_key *key) 135 { 136 unsigned long hash; 137 138 /* 139 * If 'entry' is a PMD, align the 'index' that we use for the wait 140 * queue to the start of that PMD. This ensures that all offsets in 141 * the range covered by the PMD map to the same bit lock. 142 */ 143 if (dax_is_pmd_entry(entry)) 144 index &= ~((1UL << (PMD_SHIFT - PAGE_SHIFT)) - 1); 145 146 key->mapping = mapping; 147 key->entry_start = index; 148 149 hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS); 150 return wait_table + hash; 151 } 152 153 static int wake_exceptional_entry_func(wait_queue_t *wait, unsigned int mode, 154 int sync, void *keyp) 155 { 156 struct exceptional_entry_key *key = keyp; 157 struct wait_exceptional_entry_queue *ewait = 158 container_of(wait, struct wait_exceptional_entry_queue, wait); 159 160 if (key->mapping != ewait->key.mapping || 161 key->entry_start != ewait->key.entry_start) 162 return 0; 163 return autoremove_wake_function(wait, mode, sync, NULL); 164 } 165 166 /* 167 * Check whether the given slot is locked. The function must be called with 168 * mapping->tree_lock held 169 */ 170 static inline int slot_locked(struct address_space *mapping, void **slot) 171 { 172 unsigned long entry = (unsigned long) 173 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 174 return entry & RADIX_DAX_ENTRY_LOCK; 175 } 176 177 /* 178 * Mark the given slot is locked. The function must be called with 179 * mapping->tree_lock held 180 */ 181 static inline void *lock_slot(struct address_space *mapping, void **slot) 182 { 183 unsigned long entry = (unsigned long) 184 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 185 186 entry |= RADIX_DAX_ENTRY_LOCK; 187 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 188 return (void *)entry; 189 } 190 191 /* 192 * Mark the given slot is unlocked. The function must be called with 193 * mapping->tree_lock held 194 */ 195 static inline void *unlock_slot(struct address_space *mapping, void **slot) 196 { 197 unsigned long entry = (unsigned long) 198 radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 199 200 entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK; 201 radix_tree_replace_slot(&mapping->page_tree, slot, (void *)entry); 202 return (void *)entry; 203 } 204 205 /* 206 * Lookup entry in radix tree, wait for it to become unlocked if it is 207 * exceptional entry and return it. The caller must call 208 * put_unlocked_mapping_entry() when he decided not to lock the entry or 209 * put_locked_mapping_entry() when he locked the entry and now wants to 210 * unlock it. 211 * 212 * The function must be called with mapping->tree_lock held. 213 */ 214 static void *get_unlocked_mapping_entry(struct address_space *mapping, 215 pgoff_t index, void ***slotp) 216 { 217 void *entry, **slot; 218 struct wait_exceptional_entry_queue ewait; 219 wait_queue_head_t *wq; 220 221 init_wait(&ewait.wait); 222 ewait.wait.func = wake_exceptional_entry_func; 223 224 for (;;) { 225 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, 226 &slot); 227 if (!entry || !radix_tree_exceptional_entry(entry) || 228 !slot_locked(mapping, slot)) { 229 if (slotp) 230 *slotp = slot; 231 return entry; 232 } 233 234 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key); 235 prepare_to_wait_exclusive(wq, &ewait.wait, 236 TASK_UNINTERRUPTIBLE); 237 spin_unlock_irq(&mapping->tree_lock); 238 schedule(); 239 finish_wait(wq, &ewait.wait); 240 spin_lock_irq(&mapping->tree_lock); 241 } 242 } 243 244 static void dax_unlock_mapping_entry(struct address_space *mapping, 245 pgoff_t index) 246 { 247 void *entry, **slot; 248 249 spin_lock_irq(&mapping->tree_lock); 250 entry = __radix_tree_lookup(&mapping->page_tree, index, NULL, &slot); 251 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) || 252 !slot_locked(mapping, slot))) { 253 spin_unlock_irq(&mapping->tree_lock); 254 return; 255 } 256 unlock_slot(mapping, slot); 257 spin_unlock_irq(&mapping->tree_lock); 258 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 259 } 260 261 static void put_locked_mapping_entry(struct address_space *mapping, 262 pgoff_t index, void *entry) 263 { 264 if (!radix_tree_exceptional_entry(entry)) { 265 unlock_page(entry); 266 put_page(entry); 267 } else { 268 dax_unlock_mapping_entry(mapping, index); 269 } 270 } 271 272 /* 273 * Called when we are done with radix tree entry we looked up via 274 * get_unlocked_mapping_entry() and which we didn't lock in the end. 275 */ 276 static void put_unlocked_mapping_entry(struct address_space *mapping, 277 pgoff_t index, void *entry) 278 { 279 if (!radix_tree_exceptional_entry(entry)) 280 return; 281 282 /* We have to wake up next waiter for the radix tree entry lock */ 283 dax_wake_mapping_entry_waiter(mapping, index, entry, false); 284 } 285 286 /* 287 * Find radix tree entry at given index. If it points to a page, return with 288 * the page locked. If it points to the exceptional entry, return with the 289 * radix tree entry locked. If the radix tree doesn't contain given index, 290 * create empty exceptional entry for the index and return with it locked. 291 * 292 * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will 293 * either return that locked entry or will return an error. This error will 294 * happen if there are any 4k entries (either zero pages or DAX entries) 295 * within the 2MiB range that we are requesting. 296 * 297 * We always favor 4k entries over 2MiB entries. There isn't a flow where we 298 * evict 4k entries in order to 'upgrade' them to a 2MiB entry. A 2MiB 299 * insertion will fail if it finds any 4k entries already in the tree, and a 300 * 4k insertion will cause an existing 2MiB entry to be unmapped and 301 * downgraded to 4k entries. This happens for both 2MiB huge zero pages as 302 * well as 2MiB empty entries. 303 * 304 * The exception to this downgrade path is for 2MiB DAX PMD entries that have 305 * real storage backing them. We will leave these real 2MiB DAX entries in 306 * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry. 307 * 308 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 309 * persistent memory the benefit is doubtful. We can add that later if we can 310 * show it helps. 311 */ 312 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index, 313 unsigned long size_flag) 314 { 315 bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */ 316 void *entry, **slot; 317 318 restart: 319 spin_lock_irq(&mapping->tree_lock); 320 entry = get_unlocked_mapping_entry(mapping, index, &slot); 321 322 if (entry) { 323 if (size_flag & RADIX_DAX_PMD) { 324 if (!radix_tree_exceptional_entry(entry) || 325 dax_is_pte_entry(entry)) { 326 put_unlocked_mapping_entry(mapping, index, 327 entry); 328 entry = ERR_PTR(-EEXIST); 329 goto out_unlock; 330 } 331 } else { /* trying to grab a PTE entry */ 332 if (radix_tree_exceptional_entry(entry) && 333 dax_is_pmd_entry(entry) && 334 (dax_is_zero_entry(entry) || 335 dax_is_empty_entry(entry))) { 336 pmd_downgrade = true; 337 } 338 } 339 } 340 341 /* No entry for given index? Make sure radix tree is big enough. */ 342 if (!entry || pmd_downgrade) { 343 int err; 344 345 if (pmd_downgrade) { 346 /* 347 * Make sure 'entry' remains valid while we drop 348 * mapping->tree_lock. 349 */ 350 entry = lock_slot(mapping, slot); 351 } 352 353 spin_unlock_irq(&mapping->tree_lock); 354 /* 355 * Besides huge zero pages the only other thing that gets 356 * downgraded are empty entries which don't need to be 357 * unmapped. 358 */ 359 if (pmd_downgrade && dax_is_zero_entry(entry)) 360 unmap_mapping_range(mapping, 361 (index << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); 362 363 err = radix_tree_preload( 364 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM); 365 if (err) { 366 if (pmd_downgrade) 367 put_locked_mapping_entry(mapping, index, entry); 368 return ERR_PTR(err); 369 } 370 spin_lock_irq(&mapping->tree_lock); 371 372 if (pmd_downgrade) { 373 radix_tree_delete(&mapping->page_tree, index); 374 mapping->nrexceptional--; 375 dax_wake_mapping_entry_waiter(mapping, index, entry, 376 true); 377 } 378 379 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY); 380 381 err = __radix_tree_insert(&mapping->page_tree, index, 382 dax_radix_order(entry), entry); 383 radix_tree_preload_end(); 384 if (err) { 385 spin_unlock_irq(&mapping->tree_lock); 386 /* 387 * Someone already created the entry? This is a 388 * normal failure when inserting PMDs in a range 389 * that already contains PTEs. In that case we want 390 * to return -EEXIST immediately. 391 */ 392 if (err == -EEXIST && !(size_flag & RADIX_DAX_PMD)) 393 goto restart; 394 /* 395 * Our insertion of a DAX PMD entry failed, most 396 * likely because it collided with a PTE sized entry 397 * at a different index in the PMD range. We haven't 398 * inserted anything into the radix tree and have no 399 * waiters to wake. 400 */ 401 return ERR_PTR(err); 402 } 403 /* Good, we have inserted empty locked entry into the tree. */ 404 mapping->nrexceptional++; 405 spin_unlock_irq(&mapping->tree_lock); 406 return entry; 407 } 408 /* Normal page in radix tree? */ 409 if (!radix_tree_exceptional_entry(entry)) { 410 struct page *page = entry; 411 412 get_page(page); 413 spin_unlock_irq(&mapping->tree_lock); 414 lock_page(page); 415 /* Page got truncated? Retry... */ 416 if (unlikely(page->mapping != mapping)) { 417 unlock_page(page); 418 put_page(page); 419 goto restart; 420 } 421 return page; 422 } 423 entry = lock_slot(mapping, slot); 424 out_unlock: 425 spin_unlock_irq(&mapping->tree_lock); 426 return entry; 427 } 428 429 /* 430 * We do not necessarily hold the mapping->tree_lock when we call this 431 * function so it is possible that 'entry' is no longer a valid item in the 432 * radix tree. This is okay because all we really need to do is to find the 433 * correct waitqueue where tasks might be waiting for that old 'entry' and 434 * wake them. 435 */ 436 void dax_wake_mapping_entry_waiter(struct address_space *mapping, 437 pgoff_t index, void *entry, bool wake_all) 438 { 439 struct exceptional_entry_key key; 440 wait_queue_head_t *wq; 441 442 wq = dax_entry_waitqueue(mapping, index, entry, &key); 443 444 /* 445 * Checking for locked entry and prepare_to_wait_exclusive() happens 446 * under mapping->tree_lock, ditto for entry handling in our callers. 447 * So at this point all tasks that could have seen our entry locked 448 * must be in the waitqueue and the following check will see them. 449 */ 450 if (waitqueue_active(wq)) 451 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 452 } 453 454 /* 455 * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree 456 * entry to get unlocked before deleting it. 457 */ 458 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 459 { 460 void *entry; 461 462 spin_lock_irq(&mapping->tree_lock); 463 entry = get_unlocked_mapping_entry(mapping, index, NULL); 464 /* 465 * This gets called from truncate / punch_hole path. As such, the caller 466 * must hold locks protecting against concurrent modifications of the 467 * radix tree (usually fs-private i_mmap_sem for writing). Since the 468 * caller has seen exceptional entry for this index, we better find it 469 * at that index as well... 470 */ 471 if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry))) { 472 spin_unlock_irq(&mapping->tree_lock); 473 return 0; 474 } 475 radix_tree_delete(&mapping->page_tree, index); 476 mapping->nrexceptional--; 477 spin_unlock_irq(&mapping->tree_lock); 478 dax_wake_mapping_entry_waiter(mapping, index, entry, true); 479 480 return 1; 481 } 482 483 /* 484 * The user has performed a load from a hole in the file. Allocating 485 * a new page in the file would cause excessive storage usage for 486 * workloads with sparse files. We allocate a page cache page instead. 487 * We'll kick it out of the page cache if it's ever written to, 488 * otherwise it will simply fall out of the page cache under memory 489 * pressure without ever having been dirtied. 490 */ 491 static int dax_load_hole(struct address_space *mapping, void *entry, 492 struct vm_fault *vmf) 493 { 494 struct page *page; 495 496 /* Hole page already exists? Return it... */ 497 if (!radix_tree_exceptional_entry(entry)) { 498 vmf->page = entry; 499 return VM_FAULT_LOCKED; 500 } 501 502 /* This will replace locked radix tree entry with a hole page */ 503 page = find_or_create_page(mapping, vmf->pgoff, 504 vmf->gfp_mask | __GFP_ZERO); 505 if (!page) 506 return VM_FAULT_OOM; 507 vmf->page = page; 508 return VM_FAULT_LOCKED; 509 } 510 511 static int copy_user_dax(struct block_device *bdev, sector_t sector, size_t size, 512 struct page *to, unsigned long vaddr) 513 { 514 struct blk_dax_ctl dax = { 515 .sector = sector, 516 .size = size, 517 }; 518 void *vto; 519 520 if (dax_map_atomic(bdev, &dax) < 0) 521 return PTR_ERR(dax.addr); 522 vto = kmap_atomic(to); 523 copy_user_page(vto, (void __force *)dax.addr, vaddr, to); 524 kunmap_atomic(vto); 525 dax_unmap_atomic(bdev, &dax); 526 return 0; 527 } 528 529 /* 530 * By this point grab_mapping_entry() has ensured that we have a locked entry 531 * of the appropriate size so we don't have to worry about downgrading PMDs to 532 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 533 * already in the tree, we will skip the insertion and just dirty the PMD as 534 * appropriate. 535 */ 536 static void *dax_insert_mapping_entry(struct address_space *mapping, 537 struct vm_fault *vmf, 538 void *entry, sector_t sector, 539 unsigned long flags) 540 { 541 struct radix_tree_root *page_tree = &mapping->page_tree; 542 int error = 0; 543 bool hole_fill = false; 544 void *new_entry; 545 pgoff_t index = vmf->pgoff; 546 547 if (vmf->flags & FAULT_FLAG_WRITE) 548 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 549 550 /* Replacing hole page with block mapping? */ 551 if (!radix_tree_exceptional_entry(entry)) { 552 hole_fill = true; 553 /* 554 * Unmap the page now before we remove it from page cache below. 555 * The page is locked so it cannot be faulted in again. 556 */ 557 unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT, 558 PAGE_SIZE, 0); 559 error = radix_tree_preload(vmf->gfp_mask & ~__GFP_HIGHMEM); 560 if (error) 561 return ERR_PTR(error); 562 } else if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_HZP)) { 563 /* replacing huge zero page with PMD block mapping */ 564 unmap_mapping_range(mapping, 565 (vmf->pgoff << PAGE_SHIFT) & PMD_MASK, PMD_SIZE, 0); 566 } 567 568 spin_lock_irq(&mapping->tree_lock); 569 new_entry = dax_radix_locked_entry(sector, flags); 570 571 if (hole_fill) { 572 __delete_from_page_cache(entry, NULL); 573 /* Drop pagecache reference */ 574 put_page(entry); 575 error = __radix_tree_insert(page_tree, index, 576 dax_radix_order(new_entry), new_entry); 577 if (error) { 578 new_entry = ERR_PTR(error); 579 goto unlock; 580 } 581 mapping->nrexceptional++; 582 } else if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 583 /* 584 * Only swap our new entry into the radix tree if the current 585 * entry is a zero page or an empty entry. If a normal PTE or 586 * PMD entry is already in the tree, we leave it alone. This 587 * means that if we are trying to insert a PTE and the 588 * existing entry is a PMD, we will just leave the PMD in the 589 * tree and dirty it if necessary. 590 */ 591 struct radix_tree_node *node; 592 void **slot; 593 void *ret; 594 595 ret = __radix_tree_lookup(page_tree, index, &node, &slot); 596 WARN_ON_ONCE(ret != entry); 597 __radix_tree_replace(page_tree, node, slot, 598 new_entry, NULL, NULL); 599 } 600 if (vmf->flags & FAULT_FLAG_WRITE) 601 radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY); 602 unlock: 603 spin_unlock_irq(&mapping->tree_lock); 604 if (hole_fill) { 605 radix_tree_preload_end(); 606 /* 607 * We don't need hole page anymore, it has been replaced with 608 * locked radix tree entry now. 609 */ 610 if (mapping->a_ops->freepage) 611 mapping->a_ops->freepage(entry); 612 unlock_page(entry); 613 put_page(entry); 614 } 615 return new_entry; 616 } 617 618 static inline unsigned long 619 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 620 { 621 unsigned long address; 622 623 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 624 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 625 return address; 626 } 627 628 /* Walk all mappings of a given index of a file and writeprotect them */ 629 static void dax_mapping_entry_mkclean(struct address_space *mapping, 630 pgoff_t index, unsigned long pfn) 631 { 632 struct vm_area_struct *vma; 633 pte_t *ptep; 634 pte_t pte; 635 spinlock_t *ptl; 636 bool changed; 637 638 i_mmap_lock_read(mapping); 639 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 640 unsigned long address; 641 642 cond_resched(); 643 644 if (!(vma->vm_flags & VM_SHARED)) 645 continue; 646 647 address = pgoff_address(index, vma); 648 changed = false; 649 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 650 continue; 651 if (pfn != pte_pfn(*ptep)) 652 goto unlock; 653 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 654 goto unlock; 655 656 flush_cache_page(vma, address, pfn); 657 pte = ptep_clear_flush(vma, address, ptep); 658 pte = pte_wrprotect(pte); 659 pte = pte_mkclean(pte); 660 set_pte_at(vma->vm_mm, address, ptep, pte); 661 changed = true; 662 unlock: 663 pte_unmap_unlock(ptep, ptl); 664 665 if (changed) 666 mmu_notifier_invalidate_page(vma->vm_mm, address); 667 } 668 i_mmap_unlock_read(mapping); 669 } 670 671 static int dax_writeback_one(struct block_device *bdev, 672 struct address_space *mapping, pgoff_t index, void *entry) 673 { 674 struct radix_tree_root *page_tree = &mapping->page_tree; 675 struct blk_dax_ctl dax; 676 void *entry2, **slot; 677 int ret = 0; 678 679 /* 680 * A page got tagged dirty in DAX mapping? Something is seriously 681 * wrong. 682 */ 683 if (WARN_ON(!radix_tree_exceptional_entry(entry))) 684 return -EIO; 685 686 spin_lock_irq(&mapping->tree_lock); 687 entry2 = get_unlocked_mapping_entry(mapping, index, &slot); 688 /* Entry got punched out / reallocated? */ 689 if (!entry2 || !radix_tree_exceptional_entry(entry2)) 690 goto put_unlocked; 691 /* 692 * Entry got reallocated elsewhere? No need to writeback. We have to 693 * compare sectors as we must not bail out due to difference in lockbit 694 * or entry type. 695 */ 696 if (dax_radix_sector(entry2) != dax_radix_sector(entry)) 697 goto put_unlocked; 698 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 699 dax_is_zero_entry(entry))) { 700 ret = -EIO; 701 goto put_unlocked; 702 } 703 704 /* Another fsync thread may have already written back this entry */ 705 if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE)) 706 goto put_unlocked; 707 /* Lock the entry to serialize with page faults */ 708 entry = lock_slot(mapping, slot); 709 /* 710 * We can clear the tag now but we have to be careful so that concurrent 711 * dax_writeback_one() calls for the same index cannot finish before we 712 * actually flush the caches. This is achieved as the calls will look 713 * at the entry only under tree_lock and once they do that they will 714 * see the entry locked and wait for it to unlock. 715 */ 716 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE); 717 spin_unlock_irq(&mapping->tree_lock); 718 719 /* 720 * Even if dax_writeback_mapping_range() was given a wbc->range_start 721 * in the middle of a PMD, the 'index' we are given will be aligned to 722 * the start index of the PMD, as will the sector we pull from 723 * 'entry'. This allows us to flush for PMD_SIZE and not have to 724 * worry about partial PMD writebacks. 725 */ 726 dax.sector = dax_radix_sector(entry); 727 dax.size = PAGE_SIZE << dax_radix_order(entry); 728 729 /* 730 * We cannot hold tree_lock while calling dax_map_atomic() because it 731 * eventually calls cond_resched(). 732 */ 733 ret = dax_map_atomic(bdev, &dax); 734 if (ret < 0) { 735 put_locked_mapping_entry(mapping, index, entry); 736 return ret; 737 } 738 739 if (WARN_ON_ONCE(ret < dax.size)) { 740 ret = -EIO; 741 goto unmap; 742 } 743 744 dax_mapping_entry_mkclean(mapping, index, pfn_t_to_pfn(dax.pfn)); 745 wb_cache_pmem(dax.addr, dax.size); 746 /* 747 * After we have flushed the cache, we can clear the dirty tag. There 748 * cannot be new dirty data in the pfn after the flush has completed as 749 * the pfn mappings are writeprotected and fault waits for mapping 750 * entry lock. 751 */ 752 spin_lock_irq(&mapping->tree_lock); 753 radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_DIRTY); 754 spin_unlock_irq(&mapping->tree_lock); 755 unmap: 756 dax_unmap_atomic(bdev, &dax); 757 put_locked_mapping_entry(mapping, index, entry); 758 return ret; 759 760 put_unlocked: 761 put_unlocked_mapping_entry(mapping, index, entry2); 762 spin_unlock_irq(&mapping->tree_lock); 763 return ret; 764 } 765 766 /* 767 * Flush the mapping to the persistent domain within the byte range of [start, 768 * end]. This is required by data integrity operations to ensure file data is 769 * on persistent storage prior to completion of the operation. 770 */ 771 int dax_writeback_mapping_range(struct address_space *mapping, 772 struct block_device *bdev, struct writeback_control *wbc) 773 { 774 struct inode *inode = mapping->host; 775 pgoff_t start_index, end_index; 776 pgoff_t indices[PAGEVEC_SIZE]; 777 struct pagevec pvec; 778 bool done = false; 779 int i, ret = 0; 780 781 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 782 return -EIO; 783 784 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 785 return 0; 786 787 start_index = wbc->range_start >> PAGE_SHIFT; 788 end_index = wbc->range_end >> PAGE_SHIFT; 789 790 tag_pages_for_writeback(mapping, start_index, end_index); 791 792 pagevec_init(&pvec, 0); 793 while (!done) { 794 pvec.nr = find_get_entries_tag(mapping, start_index, 795 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE, 796 pvec.pages, indices); 797 798 if (pvec.nr == 0) 799 break; 800 801 for (i = 0; i < pvec.nr; i++) { 802 if (indices[i] > end_index) { 803 done = true; 804 break; 805 } 806 807 ret = dax_writeback_one(bdev, mapping, indices[i], 808 pvec.pages[i]); 809 if (ret < 0) 810 return ret; 811 } 812 } 813 return 0; 814 } 815 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 816 817 static int dax_insert_mapping(struct address_space *mapping, 818 struct block_device *bdev, sector_t sector, size_t size, 819 void **entryp, struct vm_area_struct *vma, struct vm_fault *vmf) 820 { 821 unsigned long vaddr = vmf->address; 822 struct blk_dax_ctl dax = { 823 .sector = sector, 824 .size = size, 825 }; 826 void *ret; 827 void *entry = *entryp; 828 829 if (dax_map_atomic(bdev, &dax) < 0) 830 return PTR_ERR(dax.addr); 831 dax_unmap_atomic(bdev, &dax); 832 833 ret = dax_insert_mapping_entry(mapping, vmf, entry, dax.sector, 0); 834 if (IS_ERR(ret)) 835 return PTR_ERR(ret); 836 *entryp = ret; 837 838 return vm_insert_mixed(vma, vaddr, dax.pfn); 839 } 840 841 /** 842 * dax_pfn_mkwrite - handle first write to DAX page 843 * @vma: The virtual memory area where the fault occurred 844 * @vmf: The description of the fault 845 */ 846 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 847 { 848 struct file *file = vma->vm_file; 849 struct address_space *mapping = file->f_mapping; 850 void *entry, **slot; 851 pgoff_t index = vmf->pgoff; 852 853 spin_lock_irq(&mapping->tree_lock); 854 entry = get_unlocked_mapping_entry(mapping, index, &slot); 855 if (!entry || !radix_tree_exceptional_entry(entry)) { 856 if (entry) 857 put_unlocked_mapping_entry(mapping, index, entry); 858 spin_unlock_irq(&mapping->tree_lock); 859 return VM_FAULT_NOPAGE; 860 } 861 radix_tree_tag_set(&mapping->page_tree, index, PAGECACHE_TAG_DIRTY); 862 entry = lock_slot(mapping, slot); 863 spin_unlock_irq(&mapping->tree_lock); 864 /* 865 * If we race with somebody updating the PTE and finish_mkwrite_fault() 866 * fails, we don't care. We need to return VM_FAULT_NOPAGE and retry 867 * the fault in either case. 868 */ 869 finish_mkwrite_fault(vmf); 870 put_locked_mapping_entry(mapping, index, entry); 871 return VM_FAULT_NOPAGE; 872 } 873 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite); 874 875 static bool dax_range_is_aligned(struct block_device *bdev, 876 unsigned int offset, unsigned int length) 877 { 878 unsigned short sector_size = bdev_logical_block_size(bdev); 879 880 if (!IS_ALIGNED(offset, sector_size)) 881 return false; 882 if (!IS_ALIGNED(length, sector_size)) 883 return false; 884 885 return true; 886 } 887 888 int __dax_zero_page_range(struct block_device *bdev, sector_t sector, 889 unsigned int offset, unsigned int length) 890 { 891 struct blk_dax_ctl dax = { 892 .sector = sector, 893 .size = PAGE_SIZE, 894 }; 895 896 if (dax_range_is_aligned(bdev, offset, length)) { 897 sector_t start_sector = dax.sector + (offset >> 9); 898 899 return blkdev_issue_zeroout(bdev, start_sector, 900 length >> 9, GFP_NOFS, true); 901 } else { 902 if (dax_map_atomic(bdev, &dax) < 0) 903 return PTR_ERR(dax.addr); 904 clear_pmem(dax.addr + offset, length); 905 dax_unmap_atomic(bdev, &dax); 906 } 907 return 0; 908 } 909 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 910 911 #ifdef CONFIG_FS_IOMAP 912 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 913 { 914 return iomap->blkno + (((pos & PAGE_MASK) - iomap->offset) >> 9); 915 } 916 917 static loff_t 918 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 919 struct iomap *iomap) 920 { 921 struct iov_iter *iter = data; 922 loff_t end = pos + length, done = 0; 923 ssize_t ret = 0; 924 925 if (iov_iter_rw(iter) == READ) { 926 end = min(end, i_size_read(inode)); 927 if (pos >= end) 928 return 0; 929 930 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 931 return iov_iter_zero(min(length, end - pos), iter); 932 } 933 934 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 935 return -EIO; 936 937 while (pos < end) { 938 unsigned offset = pos & (PAGE_SIZE - 1); 939 struct blk_dax_ctl dax = { 0 }; 940 ssize_t map_len; 941 942 dax.sector = dax_iomap_sector(iomap, pos); 943 dax.size = (length + offset + PAGE_SIZE - 1) & PAGE_MASK; 944 map_len = dax_map_atomic(iomap->bdev, &dax); 945 if (map_len < 0) { 946 ret = map_len; 947 break; 948 } 949 950 dax.addr += offset; 951 map_len -= offset; 952 if (map_len > end - pos) 953 map_len = end - pos; 954 955 if (iov_iter_rw(iter) == WRITE) 956 map_len = copy_from_iter_pmem(dax.addr, map_len, iter); 957 else 958 map_len = copy_to_iter(dax.addr, map_len, iter); 959 dax_unmap_atomic(iomap->bdev, &dax); 960 if (map_len <= 0) { 961 ret = map_len ? map_len : -EFAULT; 962 break; 963 } 964 965 pos += map_len; 966 length -= map_len; 967 done += map_len; 968 } 969 970 return done ? done : ret; 971 } 972 973 /** 974 * dax_iomap_rw - Perform I/O to a DAX file 975 * @iocb: The control block for this I/O 976 * @iter: The addresses to do I/O from or to 977 * @ops: iomap ops passed from the file system 978 * 979 * This function performs read and write operations to directly mapped 980 * persistent memory. The callers needs to take care of read/write exclusion 981 * and evicting any page cache pages in the region under I/O. 982 */ 983 ssize_t 984 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 985 struct iomap_ops *ops) 986 { 987 struct address_space *mapping = iocb->ki_filp->f_mapping; 988 struct inode *inode = mapping->host; 989 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 990 unsigned flags = 0; 991 992 if (iov_iter_rw(iter) == WRITE) 993 flags |= IOMAP_WRITE; 994 995 /* 996 * Yes, even DAX files can have page cache attached to them: A zeroed 997 * page is inserted into the pagecache when we have to serve a write 998 * fault on a hole. It should never be dirtied and can simply be 999 * dropped from the pagecache once we get real data for the page. 1000 * 1001 * XXX: This is racy against mmap, and there's nothing we can do about 1002 * it. We'll eventually need to shift this down even further so that 1003 * we can check if we allocated blocks over a hole first. 1004 */ 1005 if (mapping->nrpages) { 1006 ret = invalidate_inode_pages2_range(mapping, 1007 pos >> PAGE_SHIFT, 1008 (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT); 1009 WARN_ON_ONCE(ret); 1010 } 1011 1012 while (iov_iter_count(iter)) { 1013 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1014 iter, dax_iomap_actor); 1015 if (ret <= 0) 1016 break; 1017 pos += ret; 1018 done += ret; 1019 } 1020 1021 iocb->ki_pos += done; 1022 return done ? done : ret; 1023 } 1024 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1025 1026 /** 1027 * dax_iomap_fault - handle a page fault on a DAX file 1028 * @vma: The virtual memory area where the fault occurred 1029 * @vmf: The description of the fault 1030 * @ops: iomap ops passed from the file system 1031 * 1032 * When a page fault occurs, filesystems may call this helper in their fault 1033 * or mkwrite handler for DAX files. Assumes the caller has done all the 1034 * necessary locking for the page fault to proceed successfully. 1035 */ 1036 int dax_iomap_fault(struct vm_area_struct *vma, struct vm_fault *vmf, 1037 struct iomap_ops *ops) 1038 { 1039 struct address_space *mapping = vma->vm_file->f_mapping; 1040 struct inode *inode = mapping->host; 1041 unsigned long vaddr = vmf->address; 1042 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1043 sector_t sector; 1044 struct iomap iomap = { 0 }; 1045 unsigned flags = IOMAP_FAULT; 1046 int error, major = 0; 1047 int vmf_ret = 0; 1048 void *entry; 1049 1050 /* 1051 * Check whether offset isn't beyond end of file now. Caller is supposed 1052 * to hold locks serializing us with truncate / punch hole so this is 1053 * a reliable test. 1054 */ 1055 if (pos >= i_size_read(inode)) 1056 return VM_FAULT_SIGBUS; 1057 1058 entry = grab_mapping_entry(mapping, vmf->pgoff, 0); 1059 if (IS_ERR(entry)) { 1060 error = PTR_ERR(entry); 1061 goto out; 1062 } 1063 1064 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1065 flags |= IOMAP_WRITE; 1066 1067 /* 1068 * Note that we don't bother to use iomap_apply here: DAX required 1069 * the file system block size to be equal the page size, which means 1070 * that we never have to deal with more than a single extent here. 1071 */ 1072 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1073 if (error) 1074 goto unlock_entry; 1075 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1076 error = -EIO; /* fs corruption? */ 1077 goto finish_iomap; 1078 } 1079 1080 sector = dax_iomap_sector(&iomap, pos); 1081 1082 if (vmf->cow_page) { 1083 switch (iomap.type) { 1084 case IOMAP_HOLE: 1085 case IOMAP_UNWRITTEN: 1086 clear_user_highpage(vmf->cow_page, vaddr); 1087 break; 1088 case IOMAP_MAPPED: 1089 error = copy_user_dax(iomap.bdev, sector, PAGE_SIZE, 1090 vmf->cow_page, vaddr); 1091 break; 1092 default: 1093 WARN_ON_ONCE(1); 1094 error = -EIO; 1095 break; 1096 } 1097 1098 if (error) 1099 goto finish_iomap; 1100 1101 __SetPageUptodate(vmf->cow_page); 1102 vmf_ret = finish_fault(vmf); 1103 if (!vmf_ret) 1104 vmf_ret = VM_FAULT_DONE_COW; 1105 goto finish_iomap; 1106 } 1107 1108 switch (iomap.type) { 1109 case IOMAP_MAPPED: 1110 if (iomap.flags & IOMAP_F_NEW) { 1111 count_vm_event(PGMAJFAULT); 1112 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1113 major = VM_FAULT_MAJOR; 1114 } 1115 error = dax_insert_mapping(mapping, iomap.bdev, sector, 1116 PAGE_SIZE, &entry, vma, vmf); 1117 break; 1118 case IOMAP_UNWRITTEN: 1119 case IOMAP_HOLE: 1120 if (!(vmf->flags & FAULT_FLAG_WRITE)) { 1121 vmf_ret = dax_load_hole(mapping, entry, vmf); 1122 break; 1123 } 1124 /*FALLTHRU*/ 1125 default: 1126 WARN_ON_ONCE(1); 1127 error = -EIO; 1128 break; 1129 } 1130 1131 finish_iomap: 1132 if (ops->iomap_end) { 1133 if (error || (vmf_ret & VM_FAULT_ERROR)) { 1134 /* keep previous error */ 1135 ops->iomap_end(inode, pos, PAGE_SIZE, 0, flags, 1136 &iomap); 1137 } else { 1138 error = ops->iomap_end(inode, pos, PAGE_SIZE, 1139 PAGE_SIZE, flags, &iomap); 1140 } 1141 } 1142 unlock_entry: 1143 if (vmf_ret != VM_FAULT_LOCKED || error) 1144 put_locked_mapping_entry(mapping, vmf->pgoff, entry); 1145 out: 1146 if (error == -ENOMEM) 1147 return VM_FAULT_OOM | major; 1148 /* -EBUSY is fine, somebody else faulted on the same PTE */ 1149 if (error < 0 && error != -EBUSY) 1150 return VM_FAULT_SIGBUS | major; 1151 if (vmf_ret) { 1152 WARN_ON_ONCE(error); /* -EBUSY from ops->iomap_end? */ 1153 return vmf_ret; 1154 } 1155 return VM_FAULT_NOPAGE | major; 1156 } 1157 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1158 1159 #ifdef CONFIG_FS_DAX_PMD 1160 /* 1161 * The 'colour' (ie low bits) within a PMD of a page offset. This comes up 1162 * more often than one might expect in the below functions. 1163 */ 1164 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 1165 1166 static int dax_pmd_insert_mapping(struct vm_area_struct *vma, pmd_t *pmd, 1167 struct vm_fault *vmf, unsigned long address, 1168 struct iomap *iomap, loff_t pos, bool write, void **entryp) 1169 { 1170 struct address_space *mapping = vma->vm_file->f_mapping; 1171 struct block_device *bdev = iomap->bdev; 1172 struct blk_dax_ctl dax = { 1173 .sector = dax_iomap_sector(iomap, pos), 1174 .size = PMD_SIZE, 1175 }; 1176 long length = dax_map_atomic(bdev, &dax); 1177 void *ret; 1178 1179 if (length < 0) /* dax_map_atomic() failed */ 1180 return VM_FAULT_FALLBACK; 1181 if (length < PMD_SIZE) 1182 goto unmap_fallback; 1183 if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) 1184 goto unmap_fallback; 1185 if (!pfn_t_devmap(dax.pfn)) 1186 goto unmap_fallback; 1187 1188 dax_unmap_atomic(bdev, &dax); 1189 1190 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, dax.sector, 1191 RADIX_DAX_PMD); 1192 if (IS_ERR(ret)) 1193 return VM_FAULT_FALLBACK; 1194 *entryp = ret; 1195 1196 return vmf_insert_pfn_pmd(vma, address, pmd, dax.pfn, write); 1197 1198 unmap_fallback: 1199 dax_unmap_atomic(bdev, &dax); 1200 return VM_FAULT_FALLBACK; 1201 } 1202 1203 static int dax_pmd_load_hole(struct vm_area_struct *vma, pmd_t *pmd, 1204 struct vm_fault *vmf, unsigned long address, 1205 struct iomap *iomap, void **entryp) 1206 { 1207 struct address_space *mapping = vma->vm_file->f_mapping; 1208 unsigned long pmd_addr = address & PMD_MASK; 1209 struct page *zero_page; 1210 spinlock_t *ptl; 1211 pmd_t pmd_entry; 1212 void *ret; 1213 1214 zero_page = mm_get_huge_zero_page(vma->vm_mm); 1215 1216 if (unlikely(!zero_page)) 1217 return VM_FAULT_FALLBACK; 1218 1219 ret = dax_insert_mapping_entry(mapping, vmf, *entryp, 0, 1220 RADIX_DAX_PMD | RADIX_DAX_HZP); 1221 if (IS_ERR(ret)) 1222 return VM_FAULT_FALLBACK; 1223 *entryp = ret; 1224 1225 ptl = pmd_lock(vma->vm_mm, pmd); 1226 if (!pmd_none(*pmd)) { 1227 spin_unlock(ptl); 1228 return VM_FAULT_FALLBACK; 1229 } 1230 1231 pmd_entry = mk_pmd(zero_page, vma->vm_page_prot); 1232 pmd_entry = pmd_mkhuge(pmd_entry); 1233 set_pmd_at(vma->vm_mm, pmd_addr, pmd, pmd_entry); 1234 spin_unlock(ptl); 1235 return VM_FAULT_NOPAGE; 1236 } 1237 1238 int dax_iomap_pmd_fault(struct vm_area_struct *vma, unsigned long address, 1239 pmd_t *pmd, unsigned int flags, struct iomap_ops *ops) 1240 { 1241 struct address_space *mapping = vma->vm_file->f_mapping; 1242 unsigned long pmd_addr = address & PMD_MASK; 1243 bool write = flags & FAULT_FLAG_WRITE; 1244 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1245 struct inode *inode = mapping->host; 1246 int result = VM_FAULT_FALLBACK; 1247 struct iomap iomap = { 0 }; 1248 pgoff_t max_pgoff, pgoff; 1249 struct vm_fault vmf; 1250 void *entry; 1251 loff_t pos; 1252 int error; 1253 1254 /* Fall back to PTEs if we're going to COW */ 1255 if (write && !(vma->vm_flags & VM_SHARED)) 1256 goto fallback; 1257 1258 /* If the PMD would extend outside the VMA */ 1259 if (pmd_addr < vma->vm_start) 1260 goto fallback; 1261 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1262 goto fallback; 1263 1264 /* 1265 * Check whether offset isn't beyond end of file now. Caller is 1266 * supposed to hold locks serializing us with truncate / punch hole so 1267 * this is a reliable test. 1268 */ 1269 pgoff = linear_page_index(vma, pmd_addr); 1270 max_pgoff = (i_size_read(inode) - 1) >> PAGE_SHIFT; 1271 1272 if (pgoff > max_pgoff) 1273 return VM_FAULT_SIGBUS; 1274 1275 /* If the PMD would extend beyond the file size */ 1276 if ((pgoff | PG_PMD_COLOUR) > max_pgoff) 1277 goto fallback; 1278 1279 /* 1280 * grab_mapping_entry() will make sure we get a 2M empty entry, a DAX 1281 * PMD or a HZP entry. If it can't (because a 4k page is already in 1282 * the tree, for instance), it will return -EEXIST and we just fall 1283 * back to 4k entries. 1284 */ 1285 entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD); 1286 if (IS_ERR(entry)) 1287 goto fallback; 1288 1289 /* 1290 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1291 * setting up a mapping, so really we're using iomap_begin() as a way 1292 * to look up our filesystem block. 1293 */ 1294 pos = (loff_t)pgoff << PAGE_SHIFT; 1295 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1296 if (error) 1297 goto unlock_entry; 1298 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1299 goto finish_iomap; 1300 1301 vmf.pgoff = pgoff; 1302 vmf.flags = flags; 1303 vmf.gfp_mask = mapping_gfp_mask(mapping) | __GFP_IO; 1304 1305 switch (iomap.type) { 1306 case IOMAP_MAPPED: 1307 result = dax_pmd_insert_mapping(vma, pmd, &vmf, address, 1308 &iomap, pos, write, &entry); 1309 break; 1310 case IOMAP_UNWRITTEN: 1311 case IOMAP_HOLE: 1312 if (WARN_ON_ONCE(write)) 1313 goto finish_iomap; 1314 result = dax_pmd_load_hole(vma, pmd, &vmf, address, &iomap, 1315 &entry); 1316 break; 1317 default: 1318 WARN_ON_ONCE(1); 1319 break; 1320 } 1321 1322 finish_iomap: 1323 if (ops->iomap_end) { 1324 if (result == VM_FAULT_FALLBACK) { 1325 ops->iomap_end(inode, pos, PMD_SIZE, 0, iomap_flags, 1326 &iomap); 1327 } else { 1328 error = ops->iomap_end(inode, pos, PMD_SIZE, PMD_SIZE, 1329 iomap_flags, &iomap); 1330 if (error) 1331 result = VM_FAULT_FALLBACK; 1332 } 1333 } 1334 unlock_entry: 1335 put_locked_mapping_entry(mapping, pgoff, entry); 1336 fallback: 1337 if (result == VM_FAULT_FALLBACK) { 1338 split_huge_pmd(vma, pmd, address); 1339 count_vm_event(THP_FAULT_FALLBACK); 1340 } 1341 return result; 1342 } 1343 EXPORT_SYMBOL_GPL(dax_iomap_pmd_fault); 1344 #endif /* CONFIG_FS_DAX_PMD */ 1345 #endif /* CONFIG_FS_IOMAP */ 1346