xref: /linux/fs/dax.c (revision 607bfbd7ffc60156ae0831c917497dc91a57dd8d)
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16 
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/pmem.h>
29 #include <linux/sched.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 
35 static long dax_map_atomic(struct block_device *bdev, struct blk_dax_ctl *dax)
36 {
37 	struct request_queue *q = bdev->bd_queue;
38 	long rc = -EIO;
39 
40 	dax->addr = (void __pmem *) ERR_PTR(-EIO);
41 	if (blk_queue_enter(q, true) != 0)
42 		return rc;
43 
44 	rc = bdev_direct_access(bdev, dax);
45 	if (rc < 0) {
46 		dax->addr = (void __pmem *) ERR_PTR(rc);
47 		blk_queue_exit(q);
48 		return rc;
49 	}
50 	return rc;
51 }
52 
53 static void dax_unmap_atomic(struct block_device *bdev,
54 		const struct blk_dax_ctl *dax)
55 {
56 	if (IS_ERR(dax->addr))
57 		return;
58 	blk_queue_exit(bdev->bd_queue);
59 }
60 
61 struct page *read_dax_sector(struct block_device *bdev, sector_t n)
62 {
63 	struct page *page = alloc_pages(GFP_KERNEL, 0);
64 	struct blk_dax_ctl dax = {
65 		.size = PAGE_SIZE,
66 		.sector = n & ~((((int) PAGE_SIZE) / 512) - 1),
67 	};
68 	long rc;
69 
70 	if (!page)
71 		return ERR_PTR(-ENOMEM);
72 
73 	rc = dax_map_atomic(bdev, &dax);
74 	if (rc < 0)
75 		return ERR_PTR(rc);
76 	memcpy_from_pmem(page_address(page), dax.addr, PAGE_SIZE);
77 	dax_unmap_atomic(bdev, &dax);
78 	return page;
79 }
80 
81 /*
82  * dax_clear_blocks() is called from within transaction context from XFS,
83  * and hence this means the stack from this point must follow GFP_NOFS
84  * semantics for all operations.
85  */
86 int dax_clear_blocks(struct inode *inode, sector_t block, long _size)
87 {
88 	struct block_device *bdev = inode->i_sb->s_bdev;
89 	struct blk_dax_ctl dax = {
90 		.sector = block << (inode->i_blkbits - 9),
91 		.size = _size,
92 	};
93 
94 	might_sleep();
95 	do {
96 		long count, sz;
97 
98 		count = dax_map_atomic(bdev, &dax);
99 		if (count < 0)
100 			return count;
101 		sz = min_t(long, count, SZ_128K);
102 		clear_pmem(dax.addr, sz);
103 		dax.size -= sz;
104 		dax.sector += sz / 512;
105 		dax_unmap_atomic(bdev, &dax);
106 		cond_resched();
107 	} while (dax.size);
108 
109 	wmb_pmem();
110 	return 0;
111 }
112 EXPORT_SYMBOL_GPL(dax_clear_blocks);
113 
114 /* the clear_pmem() calls are ordered by a wmb_pmem() in the caller */
115 static void dax_new_buf(void __pmem *addr, unsigned size, unsigned first,
116 		loff_t pos, loff_t end)
117 {
118 	loff_t final = end - pos + first; /* The final byte of the buffer */
119 
120 	if (first > 0)
121 		clear_pmem(addr, first);
122 	if (final < size)
123 		clear_pmem(addr + final, size - final);
124 }
125 
126 static bool buffer_written(struct buffer_head *bh)
127 {
128 	return buffer_mapped(bh) && !buffer_unwritten(bh);
129 }
130 
131 /*
132  * When ext4 encounters a hole, it returns without modifying the buffer_head
133  * which means that we can't trust b_size.  To cope with this, we set b_state
134  * to 0 before calling get_block and, if any bit is set, we know we can trust
135  * b_size.  Unfortunate, really, since ext4 knows precisely how long a hole is
136  * and would save us time calling get_block repeatedly.
137  */
138 static bool buffer_size_valid(struct buffer_head *bh)
139 {
140 	return bh->b_state != 0;
141 }
142 
143 
144 static sector_t to_sector(const struct buffer_head *bh,
145 		const struct inode *inode)
146 {
147 	sector_t sector = bh->b_blocknr << (inode->i_blkbits - 9);
148 
149 	return sector;
150 }
151 
152 static ssize_t dax_io(struct inode *inode, struct iov_iter *iter,
153 		      loff_t start, loff_t end, get_block_t get_block,
154 		      struct buffer_head *bh)
155 {
156 	loff_t pos = start, max = start, bh_max = start;
157 	bool hole = false, need_wmb = false;
158 	struct block_device *bdev = NULL;
159 	int rw = iov_iter_rw(iter), rc;
160 	long map_len = 0;
161 	struct blk_dax_ctl dax = {
162 		.addr = (void __pmem *) ERR_PTR(-EIO),
163 	};
164 
165 	if (rw == READ)
166 		end = min(end, i_size_read(inode));
167 
168 	while (pos < end) {
169 		size_t len;
170 		if (pos == max) {
171 			unsigned blkbits = inode->i_blkbits;
172 			long page = pos >> PAGE_SHIFT;
173 			sector_t block = page << (PAGE_SHIFT - blkbits);
174 			unsigned first = pos - (block << blkbits);
175 			long size;
176 
177 			if (pos == bh_max) {
178 				bh->b_size = PAGE_ALIGN(end - pos);
179 				bh->b_state = 0;
180 				rc = get_block(inode, block, bh, rw == WRITE);
181 				if (rc)
182 					break;
183 				if (!buffer_size_valid(bh))
184 					bh->b_size = 1 << blkbits;
185 				bh_max = pos - first + bh->b_size;
186 				bdev = bh->b_bdev;
187 			} else {
188 				unsigned done = bh->b_size -
189 						(bh_max - (pos - first));
190 				bh->b_blocknr += done >> blkbits;
191 				bh->b_size -= done;
192 			}
193 
194 			hole = rw == READ && !buffer_written(bh);
195 			if (hole) {
196 				size = bh->b_size - first;
197 			} else {
198 				dax_unmap_atomic(bdev, &dax);
199 				dax.sector = to_sector(bh, inode);
200 				dax.size = bh->b_size;
201 				map_len = dax_map_atomic(bdev, &dax);
202 				if (map_len < 0) {
203 					rc = map_len;
204 					break;
205 				}
206 				if (buffer_unwritten(bh) || buffer_new(bh)) {
207 					dax_new_buf(dax.addr, map_len, first,
208 							pos, end);
209 					need_wmb = true;
210 				}
211 				dax.addr += first;
212 				size = map_len - first;
213 			}
214 			max = min(pos + size, end);
215 		}
216 
217 		if (iov_iter_rw(iter) == WRITE) {
218 			len = copy_from_iter_pmem(dax.addr, max - pos, iter);
219 			need_wmb = true;
220 		} else if (!hole)
221 			len = copy_to_iter((void __force *) dax.addr, max - pos,
222 					iter);
223 		else
224 			len = iov_iter_zero(max - pos, iter);
225 
226 		if (!len) {
227 			rc = -EFAULT;
228 			break;
229 		}
230 
231 		pos += len;
232 		if (!IS_ERR(dax.addr))
233 			dax.addr += len;
234 	}
235 
236 	if (need_wmb)
237 		wmb_pmem();
238 	dax_unmap_atomic(bdev, &dax);
239 
240 	return (pos == start) ? rc : pos - start;
241 }
242 
243 /**
244  * dax_do_io - Perform I/O to a DAX file
245  * @iocb: The control block for this I/O
246  * @inode: The file which the I/O is directed at
247  * @iter: The addresses to do I/O from or to
248  * @pos: The file offset where the I/O starts
249  * @get_block: The filesystem method used to translate file offsets to blocks
250  * @end_io: A filesystem callback for I/O completion
251  * @flags: See below
252  *
253  * This function uses the same locking scheme as do_blockdev_direct_IO:
254  * If @flags has DIO_LOCKING set, we assume that the i_mutex is held by the
255  * caller for writes.  For reads, we take and release the i_mutex ourselves.
256  * If DIO_LOCKING is not set, the filesystem takes care of its own locking.
257  * As with do_blockdev_direct_IO(), we increment i_dio_count while the I/O
258  * is in progress.
259  */
260 ssize_t dax_do_io(struct kiocb *iocb, struct inode *inode,
261 		  struct iov_iter *iter, loff_t pos, get_block_t get_block,
262 		  dio_iodone_t end_io, int flags)
263 {
264 	struct buffer_head bh;
265 	ssize_t retval = -EINVAL;
266 	loff_t end = pos + iov_iter_count(iter);
267 
268 	memset(&bh, 0, sizeof(bh));
269 	bh.b_bdev = inode->i_sb->s_bdev;
270 
271 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ) {
272 		struct address_space *mapping = inode->i_mapping;
273 		inode_lock(inode);
274 		retval = filemap_write_and_wait_range(mapping, pos, end - 1);
275 		if (retval) {
276 			inode_unlock(inode);
277 			goto out;
278 		}
279 	}
280 
281 	/* Protects against truncate */
282 	if (!(flags & DIO_SKIP_DIO_COUNT))
283 		inode_dio_begin(inode);
284 
285 	retval = dax_io(inode, iter, pos, end, get_block, &bh);
286 
287 	if ((flags & DIO_LOCKING) && iov_iter_rw(iter) == READ)
288 		inode_unlock(inode);
289 
290 	if ((retval > 0) && end_io)
291 		end_io(iocb, pos, retval, bh.b_private);
292 
293 	if (!(flags & DIO_SKIP_DIO_COUNT))
294 		inode_dio_end(inode);
295  out:
296 	return retval;
297 }
298 EXPORT_SYMBOL_GPL(dax_do_io);
299 
300 /*
301  * The user has performed a load from a hole in the file.  Allocating
302  * a new page in the file would cause excessive storage usage for
303  * workloads with sparse files.  We allocate a page cache page instead.
304  * We'll kick it out of the page cache if it's ever written to,
305  * otherwise it will simply fall out of the page cache under memory
306  * pressure without ever having been dirtied.
307  */
308 static int dax_load_hole(struct address_space *mapping, struct page *page,
309 							struct vm_fault *vmf)
310 {
311 	unsigned long size;
312 	struct inode *inode = mapping->host;
313 	if (!page)
314 		page = find_or_create_page(mapping, vmf->pgoff,
315 						GFP_KERNEL | __GFP_ZERO);
316 	if (!page)
317 		return VM_FAULT_OOM;
318 	/* Recheck i_size under page lock to avoid truncate race */
319 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
320 	if (vmf->pgoff >= size) {
321 		unlock_page(page);
322 		page_cache_release(page);
323 		return VM_FAULT_SIGBUS;
324 	}
325 
326 	vmf->page = page;
327 	return VM_FAULT_LOCKED;
328 }
329 
330 static int copy_user_bh(struct page *to, struct inode *inode,
331 		struct buffer_head *bh, unsigned long vaddr)
332 {
333 	struct blk_dax_ctl dax = {
334 		.sector = to_sector(bh, inode),
335 		.size = bh->b_size,
336 	};
337 	struct block_device *bdev = bh->b_bdev;
338 	void *vto;
339 
340 	if (dax_map_atomic(bdev, &dax) < 0)
341 		return PTR_ERR(dax.addr);
342 	vto = kmap_atomic(to);
343 	copy_user_page(vto, (void __force *)dax.addr, vaddr, to);
344 	kunmap_atomic(vto);
345 	dax_unmap_atomic(bdev, &dax);
346 	return 0;
347 }
348 
349 #define NO_SECTOR -1
350 #define DAX_PMD_INDEX(page_index) (page_index & (PMD_MASK >> PAGE_CACHE_SHIFT))
351 
352 static int dax_radix_entry(struct address_space *mapping, pgoff_t index,
353 		sector_t sector, bool pmd_entry, bool dirty)
354 {
355 	struct radix_tree_root *page_tree = &mapping->page_tree;
356 	pgoff_t pmd_index = DAX_PMD_INDEX(index);
357 	int type, error = 0;
358 	void *entry;
359 
360 	WARN_ON_ONCE(pmd_entry && !dirty);
361 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
362 
363 	spin_lock_irq(&mapping->tree_lock);
364 
365 	entry = radix_tree_lookup(page_tree, pmd_index);
366 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD) {
367 		index = pmd_index;
368 		goto dirty;
369 	}
370 
371 	entry = radix_tree_lookup(page_tree, index);
372 	if (entry) {
373 		type = RADIX_DAX_TYPE(entry);
374 		if (WARN_ON_ONCE(type != RADIX_DAX_PTE &&
375 					type != RADIX_DAX_PMD)) {
376 			error = -EIO;
377 			goto unlock;
378 		}
379 
380 		if (!pmd_entry || type == RADIX_DAX_PMD)
381 			goto dirty;
382 
383 		/*
384 		 * We only insert dirty PMD entries into the radix tree.  This
385 		 * means we don't need to worry about removing a dirty PTE
386 		 * entry and inserting a clean PMD entry, thus reducing the
387 		 * range we would flush with a follow-up fsync/msync call.
388 		 */
389 		radix_tree_delete(&mapping->page_tree, index);
390 		mapping->nrexceptional--;
391 	}
392 
393 	if (sector == NO_SECTOR) {
394 		/*
395 		 * This can happen during correct operation if our pfn_mkwrite
396 		 * fault raced against a hole punch operation.  If this
397 		 * happens the pte that was hole punched will have been
398 		 * unmapped and the radix tree entry will have been removed by
399 		 * the time we are called, but the call will still happen.  We
400 		 * will return all the way up to wp_pfn_shared(), where the
401 		 * pte_same() check will fail, eventually causing page fault
402 		 * to be retried by the CPU.
403 		 */
404 		goto unlock;
405 	}
406 
407 	error = radix_tree_insert(page_tree, index,
408 			RADIX_DAX_ENTRY(sector, pmd_entry));
409 	if (error)
410 		goto unlock;
411 
412 	mapping->nrexceptional++;
413  dirty:
414 	if (dirty)
415 		radix_tree_tag_set(page_tree, index, PAGECACHE_TAG_DIRTY);
416  unlock:
417 	spin_unlock_irq(&mapping->tree_lock);
418 	return error;
419 }
420 
421 static int dax_writeback_one(struct block_device *bdev,
422 		struct address_space *mapping, pgoff_t index, void *entry)
423 {
424 	struct radix_tree_root *page_tree = &mapping->page_tree;
425 	int type = RADIX_DAX_TYPE(entry);
426 	struct radix_tree_node *node;
427 	struct blk_dax_ctl dax;
428 	void **slot;
429 	int ret = 0;
430 
431 	spin_lock_irq(&mapping->tree_lock);
432 	/*
433 	 * Regular page slots are stabilized by the page lock even
434 	 * without the tree itself locked.  These unlocked entries
435 	 * need verification under the tree lock.
436 	 */
437 	if (!__radix_tree_lookup(page_tree, index, &node, &slot))
438 		goto unlock;
439 	if (*slot != entry)
440 		goto unlock;
441 
442 	/* another fsync thread may have already written back this entry */
443 	if (!radix_tree_tag_get(page_tree, index, PAGECACHE_TAG_TOWRITE))
444 		goto unlock;
445 
446 	if (WARN_ON_ONCE(type != RADIX_DAX_PTE && type != RADIX_DAX_PMD)) {
447 		ret = -EIO;
448 		goto unlock;
449 	}
450 
451 	dax.sector = RADIX_DAX_SECTOR(entry);
452 	dax.size = (type == RADIX_DAX_PMD ? PMD_SIZE : PAGE_SIZE);
453 	spin_unlock_irq(&mapping->tree_lock);
454 
455 	/*
456 	 * We cannot hold tree_lock while calling dax_map_atomic() because it
457 	 * eventually calls cond_resched().
458 	 */
459 	ret = dax_map_atomic(bdev, &dax);
460 	if (ret < 0)
461 		return ret;
462 
463 	if (WARN_ON_ONCE(ret < dax.size)) {
464 		ret = -EIO;
465 		goto unmap;
466 	}
467 
468 	wb_cache_pmem(dax.addr, dax.size);
469 
470 	spin_lock_irq(&mapping->tree_lock);
471 	radix_tree_tag_clear(page_tree, index, PAGECACHE_TAG_TOWRITE);
472 	spin_unlock_irq(&mapping->tree_lock);
473  unmap:
474 	dax_unmap_atomic(bdev, &dax);
475 	return ret;
476 
477  unlock:
478 	spin_unlock_irq(&mapping->tree_lock);
479 	return ret;
480 }
481 
482 /*
483  * Flush the mapping to the persistent domain within the byte range of [start,
484  * end]. This is required by data integrity operations to ensure file data is
485  * on persistent storage prior to completion of the operation.
486  */
487 int dax_writeback_mapping_range(struct address_space *mapping, loff_t start,
488 		loff_t end)
489 {
490 	struct inode *inode = mapping->host;
491 	struct block_device *bdev = inode->i_sb->s_bdev;
492 	pgoff_t start_index, end_index, pmd_index;
493 	pgoff_t indices[PAGEVEC_SIZE];
494 	struct pagevec pvec;
495 	bool done = false;
496 	int i, ret = 0;
497 	void *entry;
498 
499 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
500 		return -EIO;
501 
502 	start_index = start >> PAGE_CACHE_SHIFT;
503 	end_index = end >> PAGE_CACHE_SHIFT;
504 	pmd_index = DAX_PMD_INDEX(start_index);
505 
506 	rcu_read_lock();
507 	entry = radix_tree_lookup(&mapping->page_tree, pmd_index);
508 	rcu_read_unlock();
509 
510 	/* see if the start of our range is covered by a PMD entry */
511 	if (entry && RADIX_DAX_TYPE(entry) == RADIX_DAX_PMD)
512 		start_index = pmd_index;
513 
514 	tag_pages_for_writeback(mapping, start_index, end_index);
515 
516 	pagevec_init(&pvec, 0);
517 	while (!done) {
518 		pvec.nr = find_get_entries_tag(mapping, start_index,
519 				PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
520 				pvec.pages, indices);
521 
522 		if (pvec.nr == 0)
523 			break;
524 
525 		for (i = 0; i < pvec.nr; i++) {
526 			if (indices[i] > end_index) {
527 				done = true;
528 				break;
529 			}
530 
531 			ret = dax_writeback_one(bdev, mapping, indices[i],
532 					pvec.pages[i]);
533 			if (ret < 0)
534 				return ret;
535 		}
536 	}
537 	wmb_pmem();
538 	return 0;
539 }
540 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
541 
542 static int dax_insert_mapping(struct inode *inode, struct buffer_head *bh,
543 			struct vm_area_struct *vma, struct vm_fault *vmf)
544 {
545 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
546 	struct address_space *mapping = inode->i_mapping;
547 	struct block_device *bdev = bh->b_bdev;
548 	struct blk_dax_ctl dax = {
549 		.sector = to_sector(bh, inode),
550 		.size = bh->b_size,
551 	};
552 	pgoff_t size;
553 	int error;
554 
555 	i_mmap_lock_read(mapping);
556 
557 	/*
558 	 * Check truncate didn't happen while we were allocating a block.
559 	 * If it did, this block may or may not be still allocated to the
560 	 * file.  We can't tell the filesystem to free it because we can't
561 	 * take i_mutex here.  In the worst case, the file still has blocks
562 	 * allocated past the end of the file.
563 	 */
564 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
565 	if (unlikely(vmf->pgoff >= size)) {
566 		error = -EIO;
567 		goto out;
568 	}
569 
570 	if (dax_map_atomic(bdev, &dax) < 0) {
571 		error = PTR_ERR(dax.addr);
572 		goto out;
573 	}
574 
575 	if (buffer_unwritten(bh) || buffer_new(bh)) {
576 		clear_pmem(dax.addr, PAGE_SIZE);
577 		wmb_pmem();
578 	}
579 	dax_unmap_atomic(bdev, &dax);
580 
581 	error = dax_radix_entry(mapping, vmf->pgoff, dax.sector, false,
582 			vmf->flags & FAULT_FLAG_WRITE);
583 	if (error)
584 		goto out;
585 
586 	error = vm_insert_mixed(vma, vaddr, dax.pfn);
587 
588  out:
589 	i_mmap_unlock_read(mapping);
590 
591 	return error;
592 }
593 
594 /**
595  * __dax_fault - handle a page fault on a DAX file
596  * @vma: The virtual memory area where the fault occurred
597  * @vmf: The description of the fault
598  * @get_block: The filesystem method used to translate file offsets to blocks
599  * @complete_unwritten: The filesystem method used to convert unwritten blocks
600  *	to written so the data written to them is exposed. This is required for
601  *	required by write faults for filesystems that will return unwritten
602  *	extent mappings from @get_block, but it is optional for reads as
603  *	dax_insert_mapping() will always zero unwritten blocks. If the fs does
604  *	not support unwritten extents, the it should pass NULL.
605  *
606  * When a page fault occurs, filesystems may call this helper in their
607  * fault handler for DAX files. __dax_fault() assumes the caller has done all
608  * the necessary locking for the page fault to proceed successfully.
609  */
610 int __dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
611 			get_block_t get_block, dax_iodone_t complete_unwritten)
612 {
613 	struct file *file = vma->vm_file;
614 	struct address_space *mapping = file->f_mapping;
615 	struct inode *inode = mapping->host;
616 	struct page *page;
617 	struct buffer_head bh;
618 	unsigned long vaddr = (unsigned long)vmf->virtual_address;
619 	unsigned blkbits = inode->i_blkbits;
620 	sector_t block;
621 	pgoff_t size;
622 	int error;
623 	int major = 0;
624 
625 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
626 	if (vmf->pgoff >= size)
627 		return VM_FAULT_SIGBUS;
628 
629 	memset(&bh, 0, sizeof(bh));
630 	block = (sector_t)vmf->pgoff << (PAGE_SHIFT - blkbits);
631 	bh.b_bdev = inode->i_sb->s_bdev;
632 	bh.b_size = PAGE_SIZE;
633 
634  repeat:
635 	page = find_get_page(mapping, vmf->pgoff);
636 	if (page) {
637 		if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
638 			page_cache_release(page);
639 			return VM_FAULT_RETRY;
640 		}
641 		if (unlikely(page->mapping != mapping)) {
642 			unlock_page(page);
643 			page_cache_release(page);
644 			goto repeat;
645 		}
646 		size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
647 		if (unlikely(vmf->pgoff >= size)) {
648 			/*
649 			 * We have a struct page covering a hole in the file
650 			 * from a read fault and we've raced with a truncate
651 			 */
652 			error = -EIO;
653 			goto unlock_page;
654 		}
655 	}
656 
657 	error = get_block(inode, block, &bh, 0);
658 	if (!error && (bh.b_size < PAGE_SIZE))
659 		error = -EIO;		/* fs corruption? */
660 	if (error)
661 		goto unlock_page;
662 
663 	if (!buffer_mapped(&bh) && !buffer_unwritten(&bh) && !vmf->cow_page) {
664 		if (vmf->flags & FAULT_FLAG_WRITE) {
665 			error = get_block(inode, block, &bh, 1);
666 			count_vm_event(PGMAJFAULT);
667 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
668 			major = VM_FAULT_MAJOR;
669 			if (!error && (bh.b_size < PAGE_SIZE))
670 				error = -EIO;
671 			if (error)
672 				goto unlock_page;
673 		} else {
674 			return dax_load_hole(mapping, page, vmf);
675 		}
676 	}
677 
678 	if (vmf->cow_page) {
679 		struct page *new_page = vmf->cow_page;
680 		if (buffer_written(&bh))
681 			error = copy_user_bh(new_page, inode, &bh, vaddr);
682 		else
683 			clear_user_highpage(new_page, vaddr);
684 		if (error)
685 			goto unlock_page;
686 		vmf->page = page;
687 		if (!page) {
688 			i_mmap_lock_read(mapping);
689 			/* Check we didn't race with truncate */
690 			size = (i_size_read(inode) + PAGE_SIZE - 1) >>
691 								PAGE_SHIFT;
692 			if (vmf->pgoff >= size) {
693 				i_mmap_unlock_read(mapping);
694 				error = -EIO;
695 				goto out;
696 			}
697 		}
698 		return VM_FAULT_LOCKED;
699 	}
700 
701 	/* Check we didn't race with a read fault installing a new page */
702 	if (!page && major)
703 		page = find_lock_page(mapping, vmf->pgoff);
704 
705 	if (page) {
706 		unmap_mapping_range(mapping, vmf->pgoff << PAGE_SHIFT,
707 							PAGE_CACHE_SIZE, 0);
708 		delete_from_page_cache(page);
709 		unlock_page(page);
710 		page_cache_release(page);
711 		page = NULL;
712 	}
713 
714 	/*
715 	 * If we successfully insert the new mapping over an unwritten extent,
716 	 * we need to ensure we convert the unwritten extent. If there is an
717 	 * error inserting the mapping, the filesystem needs to leave it as
718 	 * unwritten to prevent exposure of the stale underlying data to
719 	 * userspace, but we still need to call the completion function so
720 	 * the private resources on the mapping buffer can be released. We
721 	 * indicate what the callback should do via the uptodate variable, same
722 	 * as for normal BH based IO completions.
723 	 */
724 	error = dax_insert_mapping(inode, &bh, vma, vmf);
725 	if (buffer_unwritten(&bh)) {
726 		if (complete_unwritten)
727 			complete_unwritten(&bh, !error);
728 		else
729 			WARN_ON_ONCE(!(vmf->flags & FAULT_FLAG_WRITE));
730 	}
731 
732  out:
733 	if (error == -ENOMEM)
734 		return VM_FAULT_OOM | major;
735 	/* -EBUSY is fine, somebody else faulted on the same PTE */
736 	if ((error < 0) && (error != -EBUSY))
737 		return VM_FAULT_SIGBUS | major;
738 	return VM_FAULT_NOPAGE | major;
739 
740  unlock_page:
741 	if (page) {
742 		unlock_page(page);
743 		page_cache_release(page);
744 	}
745 	goto out;
746 }
747 EXPORT_SYMBOL(__dax_fault);
748 
749 /**
750  * dax_fault - handle a page fault on a DAX file
751  * @vma: The virtual memory area where the fault occurred
752  * @vmf: The description of the fault
753  * @get_block: The filesystem method used to translate file offsets to blocks
754  *
755  * When a page fault occurs, filesystems may call this helper in their
756  * fault handler for DAX files.
757  */
758 int dax_fault(struct vm_area_struct *vma, struct vm_fault *vmf,
759 	      get_block_t get_block, dax_iodone_t complete_unwritten)
760 {
761 	int result;
762 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
763 
764 	if (vmf->flags & FAULT_FLAG_WRITE) {
765 		sb_start_pagefault(sb);
766 		file_update_time(vma->vm_file);
767 	}
768 	result = __dax_fault(vma, vmf, get_block, complete_unwritten);
769 	if (vmf->flags & FAULT_FLAG_WRITE)
770 		sb_end_pagefault(sb);
771 
772 	return result;
773 }
774 EXPORT_SYMBOL_GPL(dax_fault);
775 
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 /*
778  * The 'colour' (ie low bits) within a PMD of a page offset.  This comes up
779  * more often than one might expect in the below function.
780  */
781 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
782 
783 static void __dax_dbg(struct buffer_head *bh, unsigned long address,
784 		const char *reason, const char *fn)
785 {
786 	if (bh) {
787 		char bname[BDEVNAME_SIZE];
788 		bdevname(bh->b_bdev, bname);
789 		pr_debug("%s: %s addr: %lx dev %s state %lx start %lld "
790 			"length %zd fallback: %s\n", fn, current->comm,
791 			address, bname, bh->b_state, (u64)bh->b_blocknr,
792 			bh->b_size, reason);
793 	} else {
794 		pr_debug("%s: %s addr: %lx fallback: %s\n", fn,
795 			current->comm, address, reason);
796 	}
797 }
798 
799 #define dax_pmd_dbg(bh, address, reason)	__dax_dbg(bh, address, reason, "dax_pmd")
800 
801 int __dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
802 		pmd_t *pmd, unsigned int flags, get_block_t get_block,
803 		dax_iodone_t complete_unwritten)
804 {
805 	struct file *file = vma->vm_file;
806 	struct address_space *mapping = file->f_mapping;
807 	struct inode *inode = mapping->host;
808 	struct buffer_head bh;
809 	unsigned blkbits = inode->i_blkbits;
810 	unsigned long pmd_addr = address & PMD_MASK;
811 	bool write = flags & FAULT_FLAG_WRITE;
812 	struct block_device *bdev;
813 	pgoff_t size, pgoff;
814 	sector_t block;
815 	int error, result = 0;
816 	bool alloc = false;
817 
818 	/* dax pmd mappings require pfn_t_devmap() */
819 	if (!IS_ENABLED(CONFIG_FS_DAX_PMD))
820 		return VM_FAULT_FALLBACK;
821 
822 	/* Fall back to PTEs if we're going to COW */
823 	if (write && !(vma->vm_flags & VM_SHARED)) {
824 		split_huge_pmd(vma, pmd, address);
825 		dax_pmd_dbg(NULL, address, "cow write");
826 		return VM_FAULT_FALLBACK;
827 	}
828 	/* If the PMD would extend outside the VMA */
829 	if (pmd_addr < vma->vm_start) {
830 		dax_pmd_dbg(NULL, address, "vma start unaligned");
831 		return VM_FAULT_FALLBACK;
832 	}
833 	if ((pmd_addr + PMD_SIZE) > vma->vm_end) {
834 		dax_pmd_dbg(NULL, address, "vma end unaligned");
835 		return VM_FAULT_FALLBACK;
836 	}
837 
838 	pgoff = linear_page_index(vma, pmd_addr);
839 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
840 	if (pgoff >= size)
841 		return VM_FAULT_SIGBUS;
842 	/* If the PMD would cover blocks out of the file */
843 	if ((pgoff | PG_PMD_COLOUR) >= size) {
844 		dax_pmd_dbg(NULL, address,
845 				"offset + huge page size > file size");
846 		return VM_FAULT_FALLBACK;
847 	}
848 
849 	memset(&bh, 0, sizeof(bh));
850 	bh.b_bdev = inode->i_sb->s_bdev;
851 	block = (sector_t)pgoff << (PAGE_SHIFT - blkbits);
852 
853 	bh.b_size = PMD_SIZE;
854 
855 	if (get_block(inode, block, &bh, 0) != 0)
856 		return VM_FAULT_SIGBUS;
857 
858 	if (!buffer_mapped(&bh) && write) {
859 		if (get_block(inode, block, &bh, 1) != 0)
860 			return VM_FAULT_SIGBUS;
861 		alloc = true;
862 	}
863 
864 	bdev = bh.b_bdev;
865 
866 	/*
867 	 * If the filesystem isn't willing to tell us the length of a hole,
868 	 * just fall back to PTEs.  Calling get_block 512 times in a loop
869 	 * would be silly.
870 	 */
871 	if (!buffer_size_valid(&bh) || bh.b_size < PMD_SIZE) {
872 		dax_pmd_dbg(&bh, address, "allocated block too small");
873 		return VM_FAULT_FALLBACK;
874 	}
875 
876 	/*
877 	 * If we allocated new storage, make sure no process has any
878 	 * zero pages covering this hole
879 	 */
880 	if (alloc) {
881 		loff_t lstart = pgoff << PAGE_SHIFT;
882 		loff_t lend = lstart + PMD_SIZE - 1; /* inclusive */
883 
884 		truncate_pagecache_range(inode, lstart, lend);
885 	}
886 
887 	i_mmap_lock_read(mapping);
888 
889 	/*
890 	 * If a truncate happened while we were allocating blocks, we may
891 	 * leave blocks allocated to the file that are beyond EOF.  We can't
892 	 * take i_mutex here, so just leave them hanging; they'll be freed
893 	 * when the file is deleted.
894 	 */
895 	size = (i_size_read(inode) + PAGE_SIZE - 1) >> PAGE_SHIFT;
896 	if (pgoff >= size) {
897 		result = VM_FAULT_SIGBUS;
898 		goto out;
899 	}
900 	if ((pgoff | PG_PMD_COLOUR) >= size) {
901 		dax_pmd_dbg(&bh, address,
902 				"offset + huge page size > file size");
903 		goto fallback;
904 	}
905 
906 	if (!write && !buffer_mapped(&bh) && buffer_uptodate(&bh)) {
907 		spinlock_t *ptl;
908 		pmd_t entry;
909 		struct page *zero_page = get_huge_zero_page();
910 
911 		if (unlikely(!zero_page)) {
912 			dax_pmd_dbg(&bh, address, "no zero page");
913 			goto fallback;
914 		}
915 
916 		ptl = pmd_lock(vma->vm_mm, pmd);
917 		if (!pmd_none(*pmd)) {
918 			spin_unlock(ptl);
919 			dax_pmd_dbg(&bh, address, "pmd already present");
920 			goto fallback;
921 		}
922 
923 		dev_dbg(part_to_dev(bdev->bd_part),
924 				"%s: %s addr: %lx pfn: <zero> sect: %llx\n",
925 				__func__, current->comm, address,
926 				(unsigned long long) to_sector(&bh, inode));
927 
928 		entry = mk_pmd(zero_page, vma->vm_page_prot);
929 		entry = pmd_mkhuge(entry);
930 		set_pmd_at(vma->vm_mm, pmd_addr, pmd, entry);
931 		result = VM_FAULT_NOPAGE;
932 		spin_unlock(ptl);
933 	} else {
934 		struct blk_dax_ctl dax = {
935 			.sector = to_sector(&bh, inode),
936 			.size = PMD_SIZE,
937 		};
938 		long length = dax_map_atomic(bdev, &dax);
939 
940 		if (length < 0) {
941 			result = VM_FAULT_SIGBUS;
942 			goto out;
943 		}
944 		if (length < PMD_SIZE) {
945 			dax_pmd_dbg(&bh, address, "dax-length too small");
946 			dax_unmap_atomic(bdev, &dax);
947 			goto fallback;
948 		}
949 		if (pfn_t_to_pfn(dax.pfn) & PG_PMD_COLOUR) {
950 			dax_pmd_dbg(&bh, address, "pfn unaligned");
951 			dax_unmap_atomic(bdev, &dax);
952 			goto fallback;
953 		}
954 
955 		if (!pfn_t_devmap(dax.pfn)) {
956 			dax_unmap_atomic(bdev, &dax);
957 			dax_pmd_dbg(&bh, address, "pfn not in memmap");
958 			goto fallback;
959 		}
960 
961 		if (buffer_unwritten(&bh) || buffer_new(&bh)) {
962 			clear_pmem(dax.addr, PMD_SIZE);
963 			wmb_pmem();
964 			count_vm_event(PGMAJFAULT);
965 			mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
966 			result |= VM_FAULT_MAJOR;
967 		}
968 		dax_unmap_atomic(bdev, &dax);
969 
970 		/*
971 		 * For PTE faults we insert a radix tree entry for reads, and
972 		 * leave it clean.  Then on the first write we dirty the radix
973 		 * tree entry via the dax_pfn_mkwrite() path.  This sequence
974 		 * allows the dax_pfn_mkwrite() call to be simpler and avoid a
975 		 * call into get_block() to translate the pgoff to a sector in
976 		 * order to be able to create a new radix tree entry.
977 		 *
978 		 * The PMD path doesn't have an equivalent to
979 		 * dax_pfn_mkwrite(), though, so for a read followed by a
980 		 * write we traverse all the way through __dax_pmd_fault()
981 		 * twice.  This means we can just skip inserting a radix tree
982 		 * entry completely on the initial read and just wait until
983 		 * the write to insert a dirty entry.
984 		 */
985 		if (write) {
986 			error = dax_radix_entry(mapping, pgoff, dax.sector,
987 					true, true);
988 			if (error) {
989 				dax_pmd_dbg(&bh, address,
990 						"PMD radix insertion failed");
991 				goto fallback;
992 			}
993 		}
994 
995 		dev_dbg(part_to_dev(bdev->bd_part),
996 				"%s: %s addr: %lx pfn: %lx sect: %llx\n",
997 				__func__, current->comm, address,
998 				pfn_t_to_pfn(dax.pfn),
999 				(unsigned long long) dax.sector);
1000 		result |= vmf_insert_pfn_pmd(vma, address, pmd,
1001 				dax.pfn, write);
1002 	}
1003 
1004  out:
1005 	i_mmap_unlock_read(mapping);
1006 
1007 	if (buffer_unwritten(&bh))
1008 		complete_unwritten(&bh, !(result & VM_FAULT_ERROR));
1009 
1010 	return result;
1011 
1012  fallback:
1013 	count_vm_event(THP_FAULT_FALLBACK);
1014 	result = VM_FAULT_FALLBACK;
1015 	goto out;
1016 }
1017 EXPORT_SYMBOL_GPL(__dax_pmd_fault);
1018 
1019 /**
1020  * dax_pmd_fault - handle a PMD fault on a DAX file
1021  * @vma: The virtual memory area where the fault occurred
1022  * @vmf: The description of the fault
1023  * @get_block: The filesystem method used to translate file offsets to blocks
1024  *
1025  * When a page fault occurs, filesystems may call this helper in their
1026  * pmd_fault handler for DAX files.
1027  */
1028 int dax_pmd_fault(struct vm_area_struct *vma, unsigned long address,
1029 			pmd_t *pmd, unsigned int flags, get_block_t get_block,
1030 			dax_iodone_t complete_unwritten)
1031 {
1032 	int result;
1033 	struct super_block *sb = file_inode(vma->vm_file)->i_sb;
1034 
1035 	if (flags & FAULT_FLAG_WRITE) {
1036 		sb_start_pagefault(sb);
1037 		file_update_time(vma->vm_file);
1038 	}
1039 	result = __dax_pmd_fault(vma, address, pmd, flags, get_block,
1040 				complete_unwritten);
1041 	if (flags & FAULT_FLAG_WRITE)
1042 		sb_end_pagefault(sb);
1043 
1044 	return result;
1045 }
1046 EXPORT_SYMBOL_GPL(dax_pmd_fault);
1047 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1048 
1049 /**
1050  * dax_pfn_mkwrite - handle first write to DAX page
1051  * @vma: The virtual memory area where the fault occurred
1052  * @vmf: The description of the fault
1053  */
1054 int dax_pfn_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1055 {
1056 	struct file *file = vma->vm_file;
1057 
1058 	/*
1059 	 * We pass NO_SECTOR to dax_radix_entry() because we expect that a
1060 	 * RADIX_DAX_PTE entry already exists in the radix tree from a
1061 	 * previous call to __dax_fault().  We just want to look up that PTE
1062 	 * entry using vmf->pgoff and make sure the dirty tag is set.  This
1063 	 * saves us from having to make a call to get_block() here to look
1064 	 * up the sector.
1065 	 */
1066 	dax_radix_entry(file->f_mapping, vmf->pgoff, NO_SECTOR, false, true);
1067 	return VM_FAULT_NOPAGE;
1068 }
1069 EXPORT_SYMBOL_GPL(dax_pfn_mkwrite);
1070 
1071 /**
1072  * dax_zero_page_range - zero a range within a page of a DAX file
1073  * @inode: The file being truncated
1074  * @from: The file offset that is being truncated to
1075  * @length: The number of bytes to zero
1076  * @get_block: The filesystem method used to translate file offsets to blocks
1077  *
1078  * This function can be called by a filesystem when it is zeroing part of a
1079  * page in a DAX file.  This is intended for hole-punch operations.  If
1080  * you are truncating a file, the helper function dax_truncate_page() may be
1081  * more convenient.
1082  *
1083  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1084  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1085  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1086  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1087  * since the file might be mmapped.
1088  */
1089 int dax_zero_page_range(struct inode *inode, loff_t from, unsigned length,
1090 							get_block_t get_block)
1091 {
1092 	struct buffer_head bh;
1093 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
1094 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
1095 	int err;
1096 
1097 	/* Block boundary? Nothing to do */
1098 	if (!length)
1099 		return 0;
1100 	BUG_ON((offset + length) > PAGE_CACHE_SIZE);
1101 
1102 	memset(&bh, 0, sizeof(bh));
1103 	bh.b_bdev = inode->i_sb->s_bdev;
1104 	bh.b_size = PAGE_CACHE_SIZE;
1105 	err = get_block(inode, index, &bh, 0);
1106 	if (err < 0)
1107 		return err;
1108 	if (buffer_written(&bh)) {
1109 		struct block_device *bdev = bh.b_bdev;
1110 		struct blk_dax_ctl dax = {
1111 			.sector = to_sector(&bh, inode),
1112 			.size = PAGE_CACHE_SIZE,
1113 		};
1114 
1115 		if (dax_map_atomic(bdev, &dax) < 0)
1116 			return PTR_ERR(dax.addr);
1117 		clear_pmem(dax.addr + offset, length);
1118 		wmb_pmem();
1119 		dax_unmap_atomic(bdev, &dax);
1120 	}
1121 
1122 	return 0;
1123 }
1124 EXPORT_SYMBOL_GPL(dax_zero_page_range);
1125 
1126 /**
1127  * dax_truncate_page - handle a partial page being truncated in a DAX file
1128  * @inode: The file being truncated
1129  * @from: The file offset that is being truncated to
1130  * @get_block: The filesystem method used to translate file offsets to blocks
1131  *
1132  * Similar to block_truncate_page(), this function can be called by a
1133  * filesystem when it is truncating a DAX file to handle the partial page.
1134  *
1135  * We work in terms of PAGE_CACHE_SIZE here for commonality with
1136  * block_truncate_page(), but we could go down to PAGE_SIZE if the filesystem
1137  * took care of disposing of the unnecessary blocks.  Even if the filesystem
1138  * block size is smaller than PAGE_SIZE, we have to zero the rest of the page
1139  * since the file might be mmapped.
1140  */
1141 int dax_truncate_page(struct inode *inode, loff_t from, get_block_t get_block)
1142 {
1143 	unsigned length = PAGE_CACHE_ALIGN(from) - from;
1144 	return dax_zero_page_range(inode, from, length, get_block);
1145 }
1146 EXPORT_SYMBOL_GPL(dax_truncate_page);
1147