xref: /linux/fs/dax.c (revision 26ac2df47d4c58f17210b7a59037e40f7eca693e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/highmem.h>
15 #include <linux/memcontrol.h>
16 #include <linux/mm.h>
17 #include <linux/mutex.h>
18 #include <linux/pagevec.h>
19 #include <linux/sched.h>
20 #include <linux/sched/signal.h>
21 #include <linux/uio.h>
22 #include <linux/vmstat.h>
23 #include <linux/pfn_t.h>
24 #include <linux/sizes.h>
25 #include <linux/mmu_notifier.h>
26 #include <linux/iomap.h>
27 #include <linux/rmap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 /* We choose 4096 entries - same as per-zone page wait tables */
34 #define DAX_WAIT_TABLE_BITS 12
35 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
36 
37 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
38 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
39 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
40 
41 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
42 
43 static int __init init_dax_wait_table(void)
44 {
45 	int i;
46 
47 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
48 		init_waitqueue_head(wait_table + i);
49 	return 0;
50 }
51 fs_initcall(init_dax_wait_table);
52 
53 /*
54  * DAX pagecache entries use XArray value entries so they can't be mistaken
55  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
56  * and two more to tell us if the entry is a zero page or an empty entry that
57  * is just used for locking.  In total four special bits.
58  *
59  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
60  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
61  * block allocation.
62  */
63 #define DAX_SHIFT	(4)
64 #define DAX_LOCKED	(1UL << 0)
65 #define DAX_PMD		(1UL << 1)
66 #define DAX_ZERO_PAGE	(1UL << 2)
67 #define DAX_EMPTY	(1UL << 3)
68 
69 static unsigned long dax_to_pfn(void *entry)
70 {
71 	return xa_to_value(entry) >> DAX_SHIFT;
72 }
73 
74 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
75 {
76 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
77 }
78 
79 static bool dax_is_locked(void *entry)
80 {
81 	return xa_to_value(entry) & DAX_LOCKED;
82 }
83 
84 static unsigned int dax_entry_order(void *entry)
85 {
86 	if (xa_to_value(entry) & DAX_PMD)
87 		return PMD_ORDER;
88 	return 0;
89 }
90 
91 static unsigned long dax_is_pmd_entry(void *entry)
92 {
93 	return xa_to_value(entry) & DAX_PMD;
94 }
95 
96 static bool dax_is_pte_entry(void *entry)
97 {
98 	return !(xa_to_value(entry) & DAX_PMD);
99 }
100 
101 static int dax_is_zero_entry(void *entry)
102 {
103 	return xa_to_value(entry) & DAX_ZERO_PAGE;
104 }
105 
106 static int dax_is_empty_entry(void *entry)
107 {
108 	return xa_to_value(entry) & DAX_EMPTY;
109 }
110 
111 /*
112  * true if the entry that was found is of a smaller order than the entry
113  * we were looking for
114  */
115 static bool dax_is_conflict(void *entry)
116 {
117 	return entry == XA_RETRY_ENTRY;
118 }
119 
120 /*
121  * DAX page cache entry locking
122  */
123 struct exceptional_entry_key {
124 	struct xarray *xa;
125 	pgoff_t entry_start;
126 };
127 
128 struct wait_exceptional_entry_queue {
129 	wait_queue_entry_t wait;
130 	struct exceptional_entry_key key;
131 };
132 
133 /**
134  * enum dax_wake_mode: waitqueue wakeup behaviour
135  * @WAKE_ALL: wake all waiters in the waitqueue
136  * @WAKE_NEXT: wake only the first waiter in the waitqueue
137  */
138 enum dax_wake_mode {
139 	WAKE_ALL,
140 	WAKE_NEXT,
141 };
142 
143 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
144 		void *entry, struct exceptional_entry_key *key)
145 {
146 	unsigned long hash;
147 	unsigned long index = xas->xa_index;
148 
149 	/*
150 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
151 	 * queue to the start of that PMD.  This ensures that all offsets in
152 	 * the range covered by the PMD map to the same bit lock.
153 	 */
154 	if (dax_is_pmd_entry(entry))
155 		index &= ~PG_PMD_COLOUR;
156 	key->xa = xas->xa;
157 	key->entry_start = index;
158 
159 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
160 	return wait_table + hash;
161 }
162 
163 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
164 		unsigned int mode, int sync, void *keyp)
165 {
166 	struct exceptional_entry_key *key = keyp;
167 	struct wait_exceptional_entry_queue *ewait =
168 		container_of(wait, struct wait_exceptional_entry_queue, wait);
169 
170 	if (key->xa != ewait->key.xa ||
171 	    key->entry_start != ewait->key.entry_start)
172 		return 0;
173 	return autoremove_wake_function(wait, mode, sync, NULL);
174 }
175 
176 /*
177  * @entry may no longer be the entry at the index in the mapping.
178  * The important information it's conveying is whether the entry at
179  * this index used to be a PMD entry.
180  */
181 static void dax_wake_entry(struct xa_state *xas, void *entry,
182 			   enum dax_wake_mode mode)
183 {
184 	struct exceptional_entry_key key;
185 	wait_queue_head_t *wq;
186 
187 	wq = dax_entry_waitqueue(xas, entry, &key);
188 
189 	/*
190 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
191 	 * under the i_pages lock, ditto for entry handling in our callers.
192 	 * So at this point all tasks that could have seen our entry locked
193 	 * must be in the waitqueue and the following check will see them.
194 	 */
195 	if (waitqueue_active(wq))
196 		__wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key);
197 }
198 
199 /*
200  * Look up entry in page cache, wait for it to become unlocked if it
201  * is a DAX entry and return it.  The caller must subsequently call
202  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
203  * if it did.  The entry returned may have a larger order than @order.
204  * If @order is larger than the order of the entry found in i_pages, this
205  * function returns a dax_is_conflict entry.
206  *
207  * Must be called with the i_pages lock held.
208  */
209 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
210 {
211 	void *entry;
212 	struct wait_exceptional_entry_queue ewait;
213 	wait_queue_head_t *wq;
214 
215 	init_wait(&ewait.wait);
216 	ewait.wait.func = wake_exceptional_entry_func;
217 
218 	for (;;) {
219 		entry = xas_find_conflict(xas);
220 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
221 			return entry;
222 		if (dax_entry_order(entry) < order)
223 			return XA_RETRY_ENTRY;
224 		if (!dax_is_locked(entry))
225 			return entry;
226 
227 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
228 		prepare_to_wait_exclusive(wq, &ewait.wait,
229 					  TASK_UNINTERRUPTIBLE);
230 		xas_unlock_irq(xas);
231 		xas_reset(xas);
232 		schedule();
233 		finish_wait(wq, &ewait.wait);
234 		xas_lock_irq(xas);
235 	}
236 }
237 
238 /*
239  * The only thing keeping the address space around is the i_pages lock
240  * (it's cycled in clear_inode() after removing the entries from i_pages)
241  * After we call xas_unlock_irq(), we cannot touch xas->xa.
242  */
243 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
244 {
245 	struct wait_exceptional_entry_queue ewait;
246 	wait_queue_head_t *wq;
247 
248 	init_wait(&ewait.wait);
249 	ewait.wait.func = wake_exceptional_entry_func;
250 
251 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
252 	/*
253 	 * Unlike get_unlocked_entry() there is no guarantee that this
254 	 * path ever successfully retrieves an unlocked entry before an
255 	 * inode dies. Perform a non-exclusive wait in case this path
256 	 * never successfully performs its own wake up.
257 	 */
258 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
259 	xas_unlock_irq(xas);
260 	schedule();
261 	finish_wait(wq, &ewait.wait);
262 }
263 
264 static void put_unlocked_entry(struct xa_state *xas, void *entry,
265 			       enum dax_wake_mode mode)
266 {
267 	if (entry && !dax_is_conflict(entry))
268 		dax_wake_entry(xas, entry, mode);
269 }
270 
271 /*
272  * We used the xa_state to get the entry, but then we locked the entry and
273  * dropped the xa_lock, so we know the xa_state is stale and must be reset
274  * before use.
275  */
276 static void dax_unlock_entry(struct xa_state *xas, void *entry)
277 {
278 	void *old;
279 
280 	BUG_ON(dax_is_locked(entry));
281 	xas_reset(xas);
282 	xas_lock_irq(xas);
283 	old = xas_store(xas, entry);
284 	xas_unlock_irq(xas);
285 	BUG_ON(!dax_is_locked(old));
286 	dax_wake_entry(xas, entry, WAKE_NEXT);
287 }
288 
289 /*
290  * Return: The entry stored at this location before it was locked.
291  */
292 static void *dax_lock_entry(struct xa_state *xas, void *entry)
293 {
294 	unsigned long v = xa_to_value(entry);
295 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
296 }
297 
298 static unsigned long dax_entry_size(void *entry)
299 {
300 	if (dax_is_zero_entry(entry))
301 		return 0;
302 	else if (dax_is_empty_entry(entry))
303 		return 0;
304 	else if (dax_is_pmd_entry(entry))
305 		return PMD_SIZE;
306 	else
307 		return PAGE_SIZE;
308 }
309 
310 static unsigned long dax_end_pfn(void *entry)
311 {
312 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
313 }
314 
315 /*
316  * Iterate through all mapped pfns represented by an entry, i.e. skip
317  * 'empty' and 'zero' entries.
318  */
319 #define for_each_mapped_pfn(entry, pfn) \
320 	for (pfn = dax_to_pfn(entry); \
321 			pfn < dax_end_pfn(entry); pfn++)
322 
323 static inline bool dax_page_is_shared(struct page *page)
324 {
325 	return page->mapping == PAGE_MAPPING_DAX_SHARED;
326 }
327 
328 /*
329  * Set the page->mapping with PAGE_MAPPING_DAX_SHARED flag, increase the
330  * refcount.
331  */
332 static inline void dax_page_share_get(struct page *page)
333 {
334 	if (page->mapping != PAGE_MAPPING_DAX_SHARED) {
335 		/*
336 		 * Reset the index if the page was already mapped
337 		 * regularly before.
338 		 */
339 		if (page->mapping)
340 			page->share = 1;
341 		page->mapping = PAGE_MAPPING_DAX_SHARED;
342 	}
343 	page->share++;
344 }
345 
346 static inline unsigned long dax_page_share_put(struct page *page)
347 {
348 	return --page->share;
349 }
350 
351 /*
352  * When it is called in dax_insert_entry(), the shared flag will indicate that
353  * whether this entry is shared by multiple files.  If so, set the page->mapping
354  * PAGE_MAPPING_DAX_SHARED, and use page->share as refcount.
355  */
356 static void dax_associate_entry(void *entry, struct address_space *mapping,
357 		struct vm_area_struct *vma, unsigned long address, bool shared)
358 {
359 	unsigned long size = dax_entry_size(entry), pfn, index;
360 	int i = 0;
361 
362 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
363 		return;
364 
365 	index = linear_page_index(vma, address & ~(size - 1));
366 	for_each_mapped_pfn(entry, pfn) {
367 		struct page *page = pfn_to_page(pfn);
368 
369 		if (shared) {
370 			dax_page_share_get(page);
371 		} else {
372 			WARN_ON_ONCE(page->mapping);
373 			page->mapping = mapping;
374 			page->index = index + i++;
375 		}
376 	}
377 }
378 
379 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
380 		bool trunc)
381 {
382 	unsigned long pfn;
383 
384 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
385 		return;
386 
387 	for_each_mapped_pfn(entry, pfn) {
388 		struct page *page = pfn_to_page(pfn);
389 
390 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
391 		if (dax_page_is_shared(page)) {
392 			/* keep the shared flag if this page is still shared */
393 			if (dax_page_share_put(page) > 0)
394 				continue;
395 		} else
396 			WARN_ON_ONCE(page->mapping && page->mapping != mapping);
397 		page->mapping = NULL;
398 		page->index = 0;
399 	}
400 }
401 
402 static struct page *dax_busy_page(void *entry)
403 {
404 	unsigned long pfn;
405 
406 	for_each_mapped_pfn(entry, pfn) {
407 		struct page *page = pfn_to_page(pfn);
408 
409 		if (page_ref_count(page) > 1)
410 			return page;
411 	}
412 	return NULL;
413 }
414 
415 /**
416  * dax_lock_folio - Lock the DAX entry corresponding to a folio
417  * @folio: The folio whose entry we want to lock
418  *
419  * Context: Process context.
420  * Return: A cookie to pass to dax_unlock_folio() or 0 if the entry could
421  * not be locked.
422  */
423 dax_entry_t dax_lock_folio(struct folio *folio)
424 {
425 	XA_STATE(xas, NULL, 0);
426 	void *entry;
427 
428 	/* Ensure folio->mapping isn't freed while we look at it */
429 	rcu_read_lock();
430 	for (;;) {
431 		struct address_space *mapping = READ_ONCE(folio->mapping);
432 
433 		entry = NULL;
434 		if (!mapping || !dax_mapping(mapping))
435 			break;
436 
437 		/*
438 		 * In the device-dax case there's no need to lock, a
439 		 * struct dev_pagemap pin is sufficient to keep the
440 		 * inode alive, and we assume we have dev_pagemap pin
441 		 * otherwise we would not have a valid pfn_to_page()
442 		 * translation.
443 		 */
444 		entry = (void *)~0UL;
445 		if (S_ISCHR(mapping->host->i_mode))
446 			break;
447 
448 		xas.xa = &mapping->i_pages;
449 		xas_lock_irq(&xas);
450 		if (mapping != folio->mapping) {
451 			xas_unlock_irq(&xas);
452 			continue;
453 		}
454 		xas_set(&xas, folio->index);
455 		entry = xas_load(&xas);
456 		if (dax_is_locked(entry)) {
457 			rcu_read_unlock();
458 			wait_entry_unlocked(&xas, entry);
459 			rcu_read_lock();
460 			continue;
461 		}
462 		dax_lock_entry(&xas, entry);
463 		xas_unlock_irq(&xas);
464 		break;
465 	}
466 	rcu_read_unlock();
467 	return (dax_entry_t)entry;
468 }
469 
470 void dax_unlock_folio(struct folio *folio, dax_entry_t cookie)
471 {
472 	struct address_space *mapping = folio->mapping;
473 	XA_STATE(xas, &mapping->i_pages, folio->index);
474 
475 	if (S_ISCHR(mapping->host->i_mode))
476 		return;
477 
478 	dax_unlock_entry(&xas, (void *)cookie);
479 }
480 
481 /*
482  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping
483  * @mapping: the file's mapping whose entry we want to lock
484  * @index: the offset within this file
485  * @page: output the dax page corresponding to this dax entry
486  *
487  * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry
488  * could not be locked.
489  */
490 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index,
491 		struct page **page)
492 {
493 	XA_STATE(xas, NULL, 0);
494 	void *entry;
495 
496 	rcu_read_lock();
497 	for (;;) {
498 		entry = NULL;
499 		if (!dax_mapping(mapping))
500 			break;
501 
502 		xas.xa = &mapping->i_pages;
503 		xas_lock_irq(&xas);
504 		xas_set(&xas, index);
505 		entry = xas_load(&xas);
506 		if (dax_is_locked(entry)) {
507 			rcu_read_unlock();
508 			wait_entry_unlocked(&xas, entry);
509 			rcu_read_lock();
510 			continue;
511 		}
512 		if (!entry ||
513 		    dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
514 			/*
515 			 * Because we are looking for entry from file's mapping
516 			 * and index, so the entry may not be inserted for now,
517 			 * or even a zero/empty entry.  We don't think this is
518 			 * an error case.  So, return a special value and do
519 			 * not output @page.
520 			 */
521 			entry = (void *)~0UL;
522 		} else {
523 			*page = pfn_to_page(dax_to_pfn(entry));
524 			dax_lock_entry(&xas, entry);
525 		}
526 		xas_unlock_irq(&xas);
527 		break;
528 	}
529 	rcu_read_unlock();
530 	return (dax_entry_t)entry;
531 }
532 
533 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index,
534 		dax_entry_t cookie)
535 {
536 	XA_STATE(xas, &mapping->i_pages, index);
537 
538 	if (cookie == ~0UL)
539 		return;
540 
541 	dax_unlock_entry(&xas, (void *)cookie);
542 }
543 
544 /*
545  * Find page cache entry at given index. If it is a DAX entry, return it
546  * with the entry locked. If the page cache doesn't contain an entry at
547  * that index, add a locked empty entry.
548  *
549  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
550  * either return that locked entry or will return VM_FAULT_FALLBACK.
551  * This will happen if there are any PTE entries within the PMD range
552  * that we are requesting.
553  *
554  * We always favor PTE entries over PMD entries. There isn't a flow where we
555  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
556  * insertion will fail if it finds any PTE entries already in the tree, and a
557  * PTE insertion will cause an existing PMD entry to be unmapped and
558  * downgraded to PTE entries.  This happens for both PMD zero pages as
559  * well as PMD empty entries.
560  *
561  * The exception to this downgrade path is for PMD entries that have
562  * real storage backing them.  We will leave these real PMD entries in
563  * the tree, and PTE writes will simply dirty the entire PMD entry.
564  *
565  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
566  * persistent memory the benefit is doubtful. We can add that later if we can
567  * show it helps.
568  *
569  * On error, this function does not return an ERR_PTR.  Instead it returns
570  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
571  * overlap with xarray value entries.
572  */
573 static void *grab_mapping_entry(struct xa_state *xas,
574 		struct address_space *mapping, unsigned int order)
575 {
576 	unsigned long index = xas->xa_index;
577 	bool pmd_downgrade;	/* splitting PMD entry into PTE entries? */
578 	void *entry;
579 
580 retry:
581 	pmd_downgrade = false;
582 	xas_lock_irq(xas);
583 	entry = get_unlocked_entry(xas, order);
584 
585 	if (entry) {
586 		if (dax_is_conflict(entry))
587 			goto fallback;
588 		if (!xa_is_value(entry)) {
589 			xas_set_err(xas, -EIO);
590 			goto out_unlock;
591 		}
592 
593 		if (order == 0) {
594 			if (dax_is_pmd_entry(entry) &&
595 			    (dax_is_zero_entry(entry) ||
596 			     dax_is_empty_entry(entry))) {
597 				pmd_downgrade = true;
598 			}
599 		}
600 	}
601 
602 	if (pmd_downgrade) {
603 		/*
604 		 * Make sure 'entry' remains valid while we drop
605 		 * the i_pages lock.
606 		 */
607 		dax_lock_entry(xas, entry);
608 
609 		/*
610 		 * Besides huge zero pages the only other thing that gets
611 		 * downgraded are empty entries which don't need to be
612 		 * unmapped.
613 		 */
614 		if (dax_is_zero_entry(entry)) {
615 			xas_unlock_irq(xas);
616 			unmap_mapping_pages(mapping,
617 					xas->xa_index & ~PG_PMD_COLOUR,
618 					PG_PMD_NR, false);
619 			xas_reset(xas);
620 			xas_lock_irq(xas);
621 		}
622 
623 		dax_disassociate_entry(entry, mapping, false);
624 		xas_store(xas, NULL);	/* undo the PMD join */
625 		dax_wake_entry(xas, entry, WAKE_ALL);
626 		mapping->nrpages -= PG_PMD_NR;
627 		entry = NULL;
628 		xas_set(xas, index);
629 	}
630 
631 	if (entry) {
632 		dax_lock_entry(xas, entry);
633 	} else {
634 		unsigned long flags = DAX_EMPTY;
635 
636 		if (order > 0)
637 			flags |= DAX_PMD;
638 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
639 		dax_lock_entry(xas, entry);
640 		if (xas_error(xas))
641 			goto out_unlock;
642 		mapping->nrpages += 1UL << order;
643 	}
644 
645 out_unlock:
646 	xas_unlock_irq(xas);
647 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
648 		goto retry;
649 	if (xas->xa_node == XA_ERROR(-ENOMEM))
650 		return xa_mk_internal(VM_FAULT_OOM);
651 	if (xas_error(xas))
652 		return xa_mk_internal(VM_FAULT_SIGBUS);
653 	return entry;
654 fallback:
655 	xas_unlock_irq(xas);
656 	return xa_mk_internal(VM_FAULT_FALLBACK);
657 }
658 
659 /**
660  * dax_layout_busy_page_range - find first pinned page in @mapping
661  * @mapping: address space to scan for a page with ref count > 1
662  * @start: Starting offset. Page containing 'start' is included.
663  * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX,
664  *       pages from 'start' till the end of file are included.
665  *
666  * DAX requires ZONE_DEVICE mapped pages. These pages are never
667  * 'onlined' to the page allocator so they are considered idle when
668  * page->count == 1. A filesystem uses this interface to determine if
669  * any page in the mapping is busy, i.e. for DMA, or other
670  * get_user_pages() usages.
671  *
672  * It is expected that the filesystem is holding locks to block the
673  * establishment of new mappings in this address_space. I.e. it expects
674  * to be able to run unmap_mapping_range() and subsequently not race
675  * mapping_mapped() becoming true.
676  */
677 struct page *dax_layout_busy_page_range(struct address_space *mapping,
678 					loff_t start, loff_t end)
679 {
680 	void *entry;
681 	unsigned int scanned = 0;
682 	struct page *page = NULL;
683 	pgoff_t start_idx = start >> PAGE_SHIFT;
684 	pgoff_t end_idx;
685 	XA_STATE(xas, &mapping->i_pages, start_idx);
686 
687 	/*
688 	 * In the 'limited' case get_user_pages() for dax is disabled.
689 	 */
690 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
691 		return NULL;
692 
693 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
694 		return NULL;
695 
696 	/* If end == LLONG_MAX, all pages from start to till end of file */
697 	if (end == LLONG_MAX)
698 		end_idx = ULONG_MAX;
699 	else
700 		end_idx = end >> PAGE_SHIFT;
701 	/*
702 	 * If we race get_user_pages_fast() here either we'll see the
703 	 * elevated page count in the iteration and wait, or
704 	 * get_user_pages_fast() will see that the page it took a reference
705 	 * against is no longer mapped in the page tables and bail to the
706 	 * get_user_pages() slow path.  The slow path is protected by
707 	 * pte_lock() and pmd_lock(). New references are not taken without
708 	 * holding those locks, and unmap_mapping_pages() will not zero the
709 	 * pte or pmd without holding the respective lock, so we are
710 	 * guaranteed to either see new references or prevent new
711 	 * references from being established.
712 	 */
713 	unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0);
714 
715 	xas_lock_irq(&xas);
716 	xas_for_each(&xas, entry, end_idx) {
717 		if (WARN_ON_ONCE(!xa_is_value(entry)))
718 			continue;
719 		if (unlikely(dax_is_locked(entry)))
720 			entry = get_unlocked_entry(&xas, 0);
721 		if (entry)
722 			page = dax_busy_page(entry);
723 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
724 		if (page)
725 			break;
726 		if (++scanned % XA_CHECK_SCHED)
727 			continue;
728 
729 		xas_pause(&xas);
730 		xas_unlock_irq(&xas);
731 		cond_resched();
732 		xas_lock_irq(&xas);
733 	}
734 	xas_unlock_irq(&xas);
735 	return page;
736 }
737 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range);
738 
739 struct page *dax_layout_busy_page(struct address_space *mapping)
740 {
741 	return dax_layout_busy_page_range(mapping, 0, LLONG_MAX);
742 }
743 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
744 
745 static int __dax_invalidate_entry(struct address_space *mapping,
746 					  pgoff_t index, bool trunc)
747 {
748 	XA_STATE(xas, &mapping->i_pages, index);
749 	int ret = 0;
750 	void *entry;
751 
752 	xas_lock_irq(&xas);
753 	entry = get_unlocked_entry(&xas, 0);
754 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
755 		goto out;
756 	if (!trunc &&
757 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
758 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
759 		goto out;
760 	dax_disassociate_entry(entry, mapping, trunc);
761 	xas_store(&xas, NULL);
762 	mapping->nrpages -= 1UL << dax_entry_order(entry);
763 	ret = 1;
764 out:
765 	put_unlocked_entry(&xas, entry, WAKE_ALL);
766 	xas_unlock_irq(&xas);
767 	return ret;
768 }
769 
770 static int __dax_clear_dirty_range(struct address_space *mapping,
771 		pgoff_t start, pgoff_t end)
772 {
773 	XA_STATE(xas, &mapping->i_pages, start);
774 	unsigned int scanned = 0;
775 	void *entry;
776 
777 	xas_lock_irq(&xas);
778 	xas_for_each(&xas, entry, end) {
779 		entry = get_unlocked_entry(&xas, 0);
780 		xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
781 		xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
782 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
783 
784 		if (++scanned % XA_CHECK_SCHED)
785 			continue;
786 
787 		xas_pause(&xas);
788 		xas_unlock_irq(&xas);
789 		cond_resched();
790 		xas_lock_irq(&xas);
791 	}
792 	xas_unlock_irq(&xas);
793 
794 	return 0;
795 }
796 
797 /*
798  * Delete DAX entry at @index from @mapping.  Wait for it
799  * to be unlocked before deleting it.
800  */
801 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
802 {
803 	int ret = __dax_invalidate_entry(mapping, index, true);
804 
805 	/*
806 	 * This gets called from truncate / punch_hole path. As such, the caller
807 	 * must hold locks protecting against concurrent modifications of the
808 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
809 	 * caller has seen a DAX entry for this index, we better find it
810 	 * at that index as well...
811 	 */
812 	WARN_ON_ONCE(!ret);
813 	return ret;
814 }
815 
816 /*
817  * Invalidate DAX entry if it is clean.
818  */
819 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
820 				      pgoff_t index)
821 {
822 	return __dax_invalidate_entry(mapping, index, false);
823 }
824 
825 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos)
826 {
827 	return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset);
828 }
829 
830 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter)
831 {
832 	pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos);
833 	void *vto, *kaddr;
834 	long rc;
835 	int id;
836 
837 	id = dax_read_lock();
838 	rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS,
839 				&kaddr, NULL);
840 	if (rc < 0) {
841 		dax_read_unlock(id);
842 		return rc;
843 	}
844 	vto = kmap_atomic(vmf->cow_page);
845 	copy_user_page(vto, kaddr, vmf->address, vmf->cow_page);
846 	kunmap_atomic(vto);
847 	dax_read_unlock(id);
848 	return 0;
849 }
850 
851 /*
852  * MAP_SYNC on a dax mapping guarantees dirty metadata is
853  * flushed on write-faults (non-cow), but not read-faults.
854  */
855 static bool dax_fault_is_synchronous(const struct iomap_iter *iter,
856 		struct vm_area_struct *vma)
857 {
858 	return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) &&
859 		(iter->iomap.flags & IOMAP_F_DIRTY);
860 }
861 
862 /*
863  * By this point grab_mapping_entry() has ensured that we have a locked entry
864  * of the appropriate size so we don't have to worry about downgrading PMDs to
865  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
866  * already in the tree, we will skip the insertion and just dirty the PMD as
867  * appropriate.
868  */
869 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf,
870 		const struct iomap_iter *iter, void *entry, pfn_t pfn,
871 		unsigned long flags)
872 {
873 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
874 	void *new_entry = dax_make_entry(pfn, flags);
875 	bool write = iter->flags & IOMAP_WRITE;
876 	bool dirty = write && !dax_fault_is_synchronous(iter, vmf->vma);
877 	bool shared = iter->iomap.flags & IOMAP_F_SHARED;
878 
879 	if (dirty)
880 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
881 
882 	if (shared || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) {
883 		unsigned long index = xas->xa_index;
884 		/* we are replacing a zero page with block mapping */
885 		if (dax_is_pmd_entry(entry))
886 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
887 					PG_PMD_NR, false);
888 		else /* pte entry */
889 			unmap_mapping_pages(mapping, index, 1, false);
890 	}
891 
892 	xas_reset(xas);
893 	xas_lock_irq(xas);
894 	if (shared || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
895 		void *old;
896 
897 		dax_disassociate_entry(entry, mapping, false);
898 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address,
899 				shared);
900 		/*
901 		 * Only swap our new entry into the page cache if the current
902 		 * entry is a zero page or an empty entry.  If a normal PTE or
903 		 * PMD entry is already in the cache, we leave it alone.  This
904 		 * means that if we are trying to insert a PTE and the
905 		 * existing entry is a PMD, we will just leave the PMD in the
906 		 * tree and dirty it if necessary.
907 		 */
908 		old = dax_lock_entry(xas, new_entry);
909 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
910 					DAX_LOCKED));
911 		entry = new_entry;
912 	} else {
913 		xas_load(xas);	/* Walk the xa_state */
914 	}
915 
916 	if (dirty)
917 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
918 
919 	if (write && shared)
920 		xas_set_mark(xas, PAGECACHE_TAG_TOWRITE);
921 
922 	xas_unlock_irq(xas);
923 	return entry;
924 }
925 
926 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
927 		struct address_space *mapping, void *entry)
928 {
929 	unsigned long pfn, index, count, end;
930 	long ret = 0;
931 	struct vm_area_struct *vma;
932 
933 	/*
934 	 * A page got tagged dirty in DAX mapping? Something is seriously
935 	 * wrong.
936 	 */
937 	if (WARN_ON(!xa_is_value(entry)))
938 		return -EIO;
939 
940 	if (unlikely(dax_is_locked(entry))) {
941 		void *old_entry = entry;
942 
943 		entry = get_unlocked_entry(xas, 0);
944 
945 		/* Entry got punched out / reallocated? */
946 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
947 			goto put_unlocked;
948 		/*
949 		 * Entry got reallocated elsewhere? No need to writeback.
950 		 * We have to compare pfns as we must not bail out due to
951 		 * difference in lockbit or entry type.
952 		 */
953 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
954 			goto put_unlocked;
955 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
956 					dax_is_zero_entry(entry))) {
957 			ret = -EIO;
958 			goto put_unlocked;
959 		}
960 
961 		/* Another fsync thread may have already done this entry */
962 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
963 			goto put_unlocked;
964 	}
965 
966 	/* Lock the entry to serialize with page faults */
967 	dax_lock_entry(xas, entry);
968 
969 	/*
970 	 * We can clear the tag now but we have to be careful so that concurrent
971 	 * dax_writeback_one() calls for the same index cannot finish before we
972 	 * actually flush the caches. This is achieved as the calls will look
973 	 * at the entry only under the i_pages lock and once they do that
974 	 * they will see the entry locked and wait for it to unlock.
975 	 */
976 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
977 	xas_unlock_irq(xas);
978 
979 	/*
980 	 * If dax_writeback_mapping_range() was given a wbc->range_start
981 	 * in the middle of a PMD, the 'index' we use needs to be
982 	 * aligned to the start of the PMD.
983 	 * This allows us to flush for PMD_SIZE and not have to worry about
984 	 * partial PMD writebacks.
985 	 */
986 	pfn = dax_to_pfn(entry);
987 	count = 1UL << dax_entry_order(entry);
988 	index = xas->xa_index & ~(count - 1);
989 	end = index + count - 1;
990 
991 	/* Walk all mappings of a given index of a file and writeprotect them */
992 	i_mmap_lock_read(mapping);
993 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) {
994 		pfn_mkclean_range(pfn, count, index, vma);
995 		cond_resched();
996 	}
997 	i_mmap_unlock_read(mapping);
998 
999 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
1000 	/*
1001 	 * After we have flushed the cache, we can clear the dirty tag. There
1002 	 * cannot be new dirty data in the pfn after the flush has completed as
1003 	 * the pfn mappings are writeprotected and fault waits for mapping
1004 	 * entry lock.
1005 	 */
1006 	xas_reset(xas);
1007 	xas_lock_irq(xas);
1008 	xas_store(xas, entry);
1009 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
1010 	dax_wake_entry(xas, entry, WAKE_NEXT);
1011 
1012 	trace_dax_writeback_one(mapping->host, index, count);
1013 	return ret;
1014 
1015  put_unlocked:
1016 	put_unlocked_entry(xas, entry, WAKE_NEXT);
1017 	return ret;
1018 }
1019 
1020 /*
1021  * Flush the mapping to the persistent domain within the byte range of [start,
1022  * end]. This is required by data integrity operations to ensure file data is
1023  * on persistent storage prior to completion of the operation.
1024  */
1025 int dax_writeback_mapping_range(struct address_space *mapping,
1026 		struct dax_device *dax_dev, struct writeback_control *wbc)
1027 {
1028 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
1029 	struct inode *inode = mapping->host;
1030 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
1031 	void *entry;
1032 	int ret = 0;
1033 	unsigned int scanned = 0;
1034 
1035 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1036 		return -EIO;
1037 
1038 	if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL)
1039 		return 0;
1040 
1041 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
1042 
1043 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
1044 
1045 	xas_lock_irq(&xas);
1046 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
1047 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
1048 		if (ret < 0) {
1049 			mapping_set_error(mapping, ret);
1050 			break;
1051 		}
1052 		if (++scanned % XA_CHECK_SCHED)
1053 			continue;
1054 
1055 		xas_pause(&xas);
1056 		xas_unlock_irq(&xas);
1057 		cond_resched();
1058 		xas_lock_irq(&xas);
1059 	}
1060 	xas_unlock_irq(&xas);
1061 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
1062 	return ret;
1063 }
1064 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1065 
1066 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos,
1067 		size_t size, void **kaddr, pfn_t *pfnp)
1068 {
1069 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1070 	int id, rc = 0;
1071 	long length;
1072 
1073 	id = dax_read_lock();
1074 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1075 				   DAX_ACCESS, kaddr, pfnp);
1076 	if (length < 0) {
1077 		rc = length;
1078 		goto out;
1079 	}
1080 	if (!pfnp)
1081 		goto out_check_addr;
1082 	rc = -EINVAL;
1083 	if (PFN_PHYS(length) < size)
1084 		goto out;
1085 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1086 		goto out;
1087 	/* For larger pages we need devmap */
1088 	if (length > 1 && !pfn_t_devmap(*pfnp))
1089 		goto out;
1090 	rc = 0;
1091 
1092 out_check_addr:
1093 	if (!kaddr)
1094 		goto out;
1095 	if (!*kaddr)
1096 		rc = -EFAULT;
1097 out:
1098 	dax_read_unlock(id);
1099 	return rc;
1100 }
1101 
1102 /**
1103  * dax_iomap_copy_around - Prepare for an unaligned write to a shared/cow page
1104  * by copying the data before and after the range to be written.
1105  * @pos:	address to do copy from.
1106  * @length:	size of copy operation.
1107  * @align_size:	aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE)
1108  * @srcmap:	iomap srcmap
1109  * @daddr:	destination address to copy to.
1110  *
1111  * This can be called from two places. Either during DAX write fault (page
1112  * aligned), to copy the length size data to daddr. Or, while doing normal DAX
1113  * write operation, dax_iomap_iter() might call this to do the copy of either
1114  * start or end unaligned address. In the latter case the rest of the copy of
1115  * aligned ranges is taken care by dax_iomap_iter() itself.
1116  * If the srcmap contains invalid data, such as HOLE and UNWRITTEN, zero the
1117  * area to make sure no old data remains.
1118  */
1119 static int dax_iomap_copy_around(loff_t pos, uint64_t length, size_t align_size,
1120 		const struct iomap *srcmap, void *daddr)
1121 {
1122 	loff_t head_off = pos & (align_size - 1);
1123 	size_t size = ALIGN(head_off + length, align_size);
1124 	loff_t end = pos + length;
1125 	loff_t pg_end = round_up(end, align_size);
1126 	/* copy_all is usually in page fault case */
1127 	bool copy_all = head_off == 0 && end == pg_end;
1128 	/* zero the edges if srcmap is a HOLE or IOMAP_UNWRITTEN */
1129 	bool zero_edge = srcmap->flags & IOMAP_F_SHARED ||
1130 			 srcmap->type == IOMAP_UNWRITTEN;
1131 	void *saddr = NULL;
1132 	int ret = 0;
1133 
1134 	if (!zero_edge) {
1135 		ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL);
1136 		if (ret)
1137 			return dax_mem2blk_err(ret);
1138 	}
1139 
1140 	if (copy_all) {
1141 		if (zero_edge)
1142 			memset(daddr, 0, size);
1143 		else
1144 			ret = copy_mc_to_kernel(daddr, saddr, length);
1145 		goto out;
1146 	}
1147 
1148 	/* Copy the head part of the range */
1149 	if (head_off) {
1150 		if (zero_edge)
1151 			memset(daddr, 0, head_off);
1152 		else {
1153 			ret = copy_mc_to_kernel(daddr, saddr, head_off);
1154 			if (ret)
1155 				return -EIO;
1156 		}
1157 	}
1158 
1159 	/* Copy the tail part of the range */
1160 	if (end < pg_end) {
1161 		loff_t tail_off = head_off + length;
1162 		loff_t tail_len = pg_end - end;
1163 
1164 		if (zero_edge)
1165 			memset(daddr + tail_off, 0, tail_len);
1166 		else {
1167 			ret = copy_mc_to_kernel(daddr + tail_off,
1168 						saddr + tail_off, tail_len);
1169 			if (ret)
1170 				return -EIO;
1171 		}
1172 	}
1173 out:
1174 	if (zero_edge)
1175 		dax_flush(srcmap->dax_dev, daddr, size);
1176 	return ret ? -EIO : 0;
1177 }
1178 
1179 /*
1180  * The user has performed a load from a hole in the file.  Allocating a new
1181  * page in the file would cause excessive storage usage for workloads with
1182  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1183  * If this page is ever written to we will re-fault and change the mapping to
1184  * point to real DAX storage instead.
1185  */
1186 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1187 		const struct iomap_iter *iter, void **entry)
1188 {
1189 	struct inode *inode = iter->inode;
1190 	unsigned long vaddr = vmf->address;
1191 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1192 	vm_fault_t ret;
1193 
1194 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE);
1195 
1196 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1197 	trace_dax_load_hole(inode, vmf, ret);
1198 	return ret;
1199 }
1200 
1201 #ifdef CONFIG_FS_DAX_PMD
1202 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1203 		const struct iomap_iter *iter, void **entry)
1204 {
1205 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1206 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1207 	struct vm_area_struct *vma = vmf->vma;
1208 	struct inode *inode = mapping->host;
1209 	pgtable_t pgtable = NULL;
1210 	struct page *zero_page;
1211 	spinlock_t *ptl;
1212 	pmd_t pmd_entry;
1213 	pfn_t pfn;
1214 
1215 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1216 
1217 	if (unlikely(!zero_page))
1218 		goto fallback;
1219 
1220 	pfn = page_to_pfn_t(zero_page);
1221 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn,
1222 				  DAX_PMD | DAX_ZERO_PAGE);
1223 
1224 	if (arch_needs_pgtable_deposit()) {
1225 		pgtable = pte_alloc_one(vma->vm_mm);
1226 		if (!pgtable)
1227 			return VM_FAULT_OOM;
1228 	}
1229 
1230 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1231 	if (!pmd_none(*(vmf->pmd))) {
1232 		spin_unlock(ptl);
1233 		goto fallback;
1234 	}
1235 
1236 	if (pgtable) {
1237 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1238 		mm_inc_nr_ptes(vma->vm_mm);
1239 	}
1240 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1241 	pmd_entry = pmd_mkhuge(pmd_entry);
1242 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1243 	spin_unlock(ptl);
1244 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1245 	return VM_FAULT_NOPAGE;
1246 
1247 fallback:
1248 	if (pgtable)
1249 		pte_free(vma->vm_mm, pgtable);
1250 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1251 	return VM_FAULT_FALLBACK;
1252 }
1253 #else
1254 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1255 		const struct iomap_iter *iter, void **entry)
1256 {
1257 	return VM_FAULT_FALLBACK;
1258 }
1259 #endif /* CONFIG_FS_DAX_PMD */
1260 
1261 static s64 dax_unshare_iter(struct iomap_iter *iter)
1262 {
1263 	struct iomap *iomap = &iter->iomap;
1264 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1265 	loff_t pos = iter->pos;
1266 	loff_t length = iomap_length(iter);
1267 	int id = 0;
1268 	s64 ret = 0;
1269 	void *daddr = NULL, *saddr = NULL;
1270 
1271 	/* don't bother with blocks that are not shared to start with */
1272 	if (!(iomap->flags & IOMAP_F_SHARED))
1273 		return length;
1274 
1275 	id = dax_read_lock();
1276 	ret = dax_iomap_direct_access(iomap, pos, length, &daddr, NULL);
1277 	if (ret < 0)
1278 		goto out_unlock;
1279 
1280 	/* zero the distance if srcmap is HOLE or UNWRITTEN */
1281 	if (srcmap->flags & IOMAP_F_SHARED || srcmap->type == IOMAP_UNWRITTEN) {
1282 		memset(daddr, 0, length);
1283 		dax_flush(iomap->dax_dev, daddr, length);
1284 		ret = length;
1285 		goto out_unlock;
1286 	}
1287 
1288 	ret = dax_iomap_direct_access(srcmap, pos, length, &saddr, NULL);
1289 	if (ret < 0)
1290 		goto out_unlock;
1291 
1292 	if (copy_mc_to_kernel(daddr, saddr, length) == 0)
1293 		ret = length;
1294 	else
1295 		ret = -EIO;
1296 
1297 out_unlock:
1298 	dax_read_unlock(id);
1299 	return dax_mem2blk_err(ret);
1300 }
1301 
1302 int dax_file_unshare(struct inode *inode, loff_t pos, loff_t len,
1303 		const struct iomap_ops *ops)
1304 {
1305 	struct iomap_iter iter = {
1306 		.inode		= inode,
1307 		.pos		= pos,
1308 		.len		= len,
1309 		.flags		= IOMAP_WRITE | IOMAP_UNSHARE | IOMAP_DAX,
1310 	};
1311 	int ret;
1312 
1313 	while ((ret = iomap_iter(&iter, ops)) > 0)
1314 		iter.processed = dax_unshare_iter(&iter);
1315 	return ret;
1316 }
1317 EXPORT_SYMBOL_GPL(dax_file_unshare);
1318 
1319 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size)
1320 {
1321 	const struct iomap *iomap = &iter->iomap;
1322 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1323 	unsigned offset = offset_in_page(pos);
1324 	pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1325 	void *kaddr;
1326 	long ret;
1327 
1328 	ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr,
1329 				NULL);
1330 	if (ret < 0)
1331 		return dax_mem2blk_err(ret);
1332 
1333 	memset(kaddr + offset, 0, size);
1334 	if (iomap->flags & IOMAP_F_SHARED)
1335 		ret = dax_iomap_copy_around(pos, size, PAGE_SIZE, srcmap,
1336 					    kaddr);
1337 	else
1338 		dax_flush(iomap->dax_dev, kaddr + offset, size);
1339 	return ret;
1340 }
1341 
1342 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero)
1343 {
1344 	const struct iomap *iomap = &iter->iomap;
1345 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1346 	loff_t pos = iter->pos;
1347 	u64 length = iomap_length(iter);
1348 	s64 written = 0;
1349 
1350 	/* already zeroed?  we're done. */
1351 	if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN)
1352 		return length;
1353 
1354 	/*
1355 	 * invalidate the pages whose sharing state is to be changed
1356 	 * because of CoW.
1357 	 */
1358 	if (iomap->flags & IOMAP_F_SHARED)
1359 		invalidate_inode_pages2_range(iter->inode->i_mapping,
1360 					      pos >> PAGE_SHIFT,
1361 					      (pos + length - 1) >> PAGE_SHIFT);
1362 
1363 	do {
1364 		unsigned offset = offset_in_page(pos);
1365 		unsigned size = min_t(u64, PAGE_SIZE - offset, length);
1366 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1367 		long rc;
1368 		int id;
1369 
1370 		id = dax_read_lock();
1371 		if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE)
1372 			rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1);
1373 		else
1374 			rc = dax_memzero(iter, pos, size);
1375 		dax_read_unlock(id);
1376 
1377 		if (rc < 0)
1378 			return rc;
1379 		pos += size;
1380 		length -= size;
1381 		written += size;
1382 	} while (length > 0);
1383 
1384 	if (did_zero)
1385 		*did_zero = true;
1386 	return written;
1387 }
1388 
1389 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero,
1390 		const struct iomap_ops *ops)
1391 {
1392 	struct iomap_iter iter = {
1393 		.inode		= inode,
1394 		.pos		= pos,
1395 		.len		= len,
1396 		.flags		= IOMAP_DAX | IOMAP_ZERO,
1397 	};
1398 	int ret;
1399 
1400 	while ((ret = iomap_iter(&iter, ops)) > 0)
1401 		iter.processed = dax_zero_iter(&iter, did_zero);
1402 	return ret;
1403 }
1404 EXPORT_SYMBOL_GPL(dax_zero_range);
1405 
1406 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero,
1407 		const struct iomap_ops *ops)
1408 {
1409 	unsigned int blocksize = i_blocksize(inode);
1410 	unsigned int off = pos & (blocksize - 1);
1411 
1412 	/* Block boundary? Nothing to do */
1413 	if (!off)
1414 		return 0;
1415 	return dax_zero_range(inode, pos, blocksize - off, did_zero, ops);
1416 }
1417 EXPORT_SYMBOL_GPL(dax_truncate_page);
1418 
1419 static loff_t dax_iomap_iter(const struct iomap_iter *iomi,
1420 		struct iov_iter *iter)
1421 {
1422 	const struct iomap *iomap = &iomi->iomap;
1423 	const struct iomap *srcmap = iomap_iter_srcmap(iomi);
1424 	loff_t length = iomap_length(iomi);
1425 	loff_t pos = iomi->pos;
1426 	struct dax_device *dax_dev = iomap->dax_dev;
1427 	loff_t end = pos + length, done = 0;
1428 	bool write = iov_iter_rw(iter) == WRITE;
1429 	bool cow = write && iomap->flags & IOMAP_F_SHARED;
1430 	ssize_t ret = 0;
1431 	size_t xfer;
1432 	int id;
1433 
1434 	if (!write) {
1435 		end = min(end, i_size_read(iomi->inode));
1436 		if (pos >= end)
1437 			return 0;
1438 
1439 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1440 			return iov_iter_zero(min(length, end - pos), iter);
1441 	}
1442 
1443 	/*
1444 	 * In DAX mode, enforce either pure overwrites of written extents, or
1445 	 * writes to unwritten extents as part of a copy-on-write operation.
1446 	 */
1447 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED &&
1448 			!(iomap->flags & IOMAP_F_SHARED)))
1449 		return -EIO;
1450 
1451 	/*
1452 	 * Write can allocate block for an area which has a hole page mapped
1453 	 * into page tables. We have to tear down these mappings so that data
1454 	 * written by write(2) is visible in mmap.
1455 	 */
1456 	if (iomap->flags & IOMAP_F_NEW || cow) {
1457 		/*
1458 		 * Filesystem allows CoW on non-shared extents. The src extents
1459 		 * may have been mmapped with dirty mark before. To be able to
1460 		 * invalidate its dax entries, we need to clear the dirty mark
1461 		 * in advance.
1462 		 */
1463 		if (cow)
1464 			__dax_clear_dirty_range(iomi->inode->i_mapping,
1465 						pos >> PAGE_SHIFT,
1466 						(end - 1) >> PAGE_SHIFT);
1467 		invalidate_inode_pages2_range(iomi->inode->i_mapping,
1468 					      pos >> PAGE_SHIFT,
1469 					      (end - 1) >> PAGE_SHIFT);
1470 	}
1471 
1472 	id = dax_read_lock();
1473 	while (pos < end) {
1474 		unsigned offset = pos & (PAGE_SIZE - 1);
1475 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1476 		pgoff_t pgoff = dax_iomap_pgoff(iomap, pos);
1477 		ssize_t map_len;
1478 		bool recovery = false;
1479 		void *kaddr;
1480 
1481 		if (fatal_signal_pending(current)) {
1482 			ret = -EINTR;
1483 			break;
1484 		}
1485 
1486 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1487 				DAX_ACCESS, &kaddr, NULL);
1488 		if (map_len == -EHWPOISON && iov_iter_rw(iter) == WRITE) {
1489 			map_len = dax_direct_access(dax_dev, pgoff,
1490 					PHYS_PFN(size), DAX_RECOVERY_WRITE,
1491 					&kaddr, NULL);
1492 			if (map_len > 0)
1493 				recovery = true;
1494 		}
1495 		if (map_len < 0) {
1496 			ret = dax_mem2blk_err(map_len);
1497 			break;
1498 		}
1499 
1500 		if (cow) {
1501 			ret = dax_iomap_copy_around(pos, length, PAGE_SIZE,
1502 						    srcmap, kaddr);
1503 			if (ret)
1504 				break;
1505 		}
1506 
1507 		map_len = PFN_PHYS(map_len);
1508 		kaddr += offset;
1509 		map_len -= offset;
1510 		if (map_len > end - pos)
1511 			map_len = end - pos;
1512 
1513 		if (recovery)
1514 			xfer = dax_recovery_write(dax_dev, pgoff, kaddr,
1515 					map_len, iter);
1516 		else if (write)
1517 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1518 					map_len, iter);
1519 		else
1520 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1521 					map_len, iter);
1522 
1523 		pos += xfer;
1524 		length -= xfer;
1525 		done += xfer;
1526 
1527 		if (xfer == 0)
1528 			ret = -EFAULT;
1529 		if (xfer < map_len)
1530 			break;
1531 	}
1532 	dax_read_unlock(id);
1533 
1534 	return done ? done : ret;
1535 }
1536 
1537 /**
1538  * dax_iomap_rw - Perform I/O to a DAX file
1539  * @iocb:	The control block for this I/O
1540  * @iter:	The addresses to do I/O from or to
1541  * @ops:	iomap ops passed from the file system
1542  *
1543  * This function performs read and write operations to directly mapped
1544  * persistent memory.  The callers needs to take care of read/write exclusion
1545  * and evicting any page cache pages in the region under I/O.
1546  */
1547 ssize_t
1548 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1549 		const struct iomap_ops *ops)
1550 {
1551 	struct iomap_iter iomi = {
1552 		.inode		= iocb->ki_filp->f_mapping->host,
1553 		.pos		= iocb->ki_pos,
1554 		.len		= iov_iter_count(iter),
1555 		.flags		= IOMAP_DAX,
1556 	};
1557 	loff_t done = 0;
1558 	int ret;
1559 
1560 	if (!iomi.len)
1561 		return 0;
1562 
1563 	if (iov_iter_rw(iter) == WRITE) {
1564 		lockdep_assert_held_write(&iomi.inode->i_rwsem);
1565 		iomi.flags |= IOMAP_WRITE;
1566 	} else {
1567 		lockdep_assert_held(&iomi.inode->i_rwsem);
1568 	}
1569 
1570 	if (iocb->ki_flags & IOCB_NOWAIT)
1571 		iomi.flags |= IOMAP_NOWAIT;
1572 
1573 	while ((ret = iomap_iter(&iomi, ops)) > 0)
1574 		iomi.processed = dax_iomap_iter(&iomi, iter);
1575 
1576 	done = iomi.pos - iocb->ki_pos;
1577 	iocb->ki_pos = iomi.pos;
1578 	return done ? done : ret;
1579 }
1580 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1581 
1582 static vm_fault_t dax_fault_return(int error)
1583 {
1584 	if (error == 0)
1585 		return VM_FAULT_NOPAGE;
1586 	return vmf_error(error);
1587 }
1588 
1589 /*
1590  * When handling a synchronous page fault and the inode need a fsync, we can
1591  * insert the PTE/PMD into page tables only after that fsync happened. Skip
1592  * insertion for now and return the pfn so that caller can insert it after the
1593  * fsync is done.
1594  */
1595 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn)
1596 {
1597 	if (WARN_ON_ONCE(!pfnp))
1598 		return VM_FAULT_SIGBUS;
1599 	*pfnp = pfn;
1600 	return VM_FAULT_NEEDDSYNC;
1601 }
1602 
1603 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf,
1604 		const struct iomap_iter *iter)
1605 {
1606 	vm_fault_t ret;
1607 	int error = 0;
1608 
1609 	switch (iter->iomap.type) {
1610 	case IOMAP_HOLE:
1611 	case IOMAP_UNWRITTEN:
1612 		clear_user_highpage(vmf->cow_page, vmf->address);
1613 		break;
1614 	case IOMAP_MAPPED:
1615 		error = copy_cow_page_dax(vmf, iter);
1616 		break;
1617 	default:
1618 		WARN_ON_ONCE(1);
1619 		error = -EIO;
1620 		break;
1621 	}
1622 
1623 	if (error)
1624 		return dax_fault_return(error);
1625 
1626 	__SetPageUptodate(vmf->cow_page);
1627 	ret = finish_fault(vmf);
1628 	if (!ret)
1629 		return VM_FAULT_DONE_COW;
1630 	return ret;
1631 }
1632 
1633 /**
1634  * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault.
1635  * @vmf:	vm fault instance
1636  * @iter:	iomap iter
1637  * @pfnp:	pfn to be returned
1638  * @xas:	the dax mapping tree of a file
1639  * @entry:	an unlocked dax entry to be inserted
1640  * @pmd:	distinguish whether it is a pmd fault
1641  */
1642 static vm_fault_t dax_fault_iter(struct vm_fault *vmf,
1643 		const struct iomap_iter *iter, pfn_t *pfnp,
1644 		struct xa_state *xas, void **entry, bool pmd)
1645 {
1646 	const struct iomap *iomap = &iter->iomap;
1647 	const struct iomap *srcmap = iomap_iter_srcmap(iter);
1648 	size_t size = pmd ? PMD_SIZE : PAGE_SIZE;
1649 	loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT;
1650 	bool write = iter->flags & IOMAP_WRITE;
1651 	unsigned long entry_flags = pmd ? DAX_PMD : 0;
1652 	int err = 0;
1653 	pfn_t pfn;
1654 	void *kaddr;
1655 
1656 	if (!pmd && vmf->cow_page)
1657 		return dax_fault_cow_page(vmf, iter);
1658 
1659 	/* if we are reading UNWRITTEN and HOLE, return a hole. */
1660 	if (!write &&
1661 	    (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) {
1662 		if (!pmd)
1663 			return dax_load_hole(xas, vmf, iter, entry);
1664 		return dax_pmd_load_hole(xas, vmf, iter, entry);
1665 	}
1666 
1667 	if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) {
1668 		WARN_ON_ONCE(1);
1669 		return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS;
1670 	}
1671 
1672 	err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn);
1673 	if (err)
1674 		return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err);
1675 
1676 	*entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags);
1677 
1678 	if (write && iomap->flags & IOMAP_F_SHARED) {
1679 		err = dax_iomap_copy_around(pos, size, size, srcmap, kaddr);
1680 		if (err)
1681 			return dax_fault_return(err);
1682 	}
1683 
1684 	if (dax_fault_is_synchronous(iter, vmf->vma))
1685 		return dax_fault_synchronous_pfnp(pfnp, pfn);
1686 
1687 	/* insert PMD pfn */
1688 	if (pmd)
1689 		return vmf_insert_pfn_pmd(vmf, pfn, write);
1690 
1691 	/* insert PTE pfn */
1692 	if (write)
1693 		return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1694 	return vmf_insert_mixed(vmf->vma, vmf->address, pfn);
1695 }
1696 
1697 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1698 			       int *iomap_errp, const struct iomap_ops *ops)
1699 {
1700 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1701 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1702 	struct iomap_iter iter = {
1703 		.inode		= mapping->host,
1704 		.pos		= (loff_t)vmf->pgoff << PAGE_SHIFT,
1705 		.len		= PAGE_SIZE,
1706 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1707 	};
1708 	vm_fault_t ret = 0;
1709 	void *entry;
1710 	int error;
1711 
1712 	trace_dax_pte_fault(iter.inode, vmf, ret);
1713 	/*
1714 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1715 	 * to hold locks serializing us with truncate / punch hole so this is
1716 	 * a reliable test.
1717 	 */
1718 	if (iter.pos >= i_size_read(iter.inode)) {
1719 		ret = VM_FAULT_SIGBUS;
1720 		goto out;
1721 	}
1722 
1723 	if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page)
1724 		iter.flags |= IOMAP_WRITE;
1725 
1726 	entry = grab_mapping_entry(&xas, mapping, 0);
1727 	if (xa_is_internal(entry)) {
1728 		ret = xa_to_internal(entry);
1729 		goto out;
1730 	}
1731 
1732 	/*
1733 	 * It is possible, particularly with mixed reads & writes to private
1734 	 * mappings, that we have raced with a PMD fault that overlaps with
1735 	 * the PTE we need to set up.  If so just return and the fault will be
1736 	 * retried.
1737 	 */
1738 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1739 		ret = VM_FAULT_NOPAGE;
1740 		goto unlock_entry;
1741 	}
1742 
1743 	while ((error = iomap_iter(&iter, ops)) > 0) {
1744 		if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) {
1745 			iter.processed = -EIO;	/* fs corruption? */
1746 			continue;
1747 		}
1748 
1749 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false);
1750 		if (ret != VM_FAULT_SIGBUS &&
1751 		    (iter.iomap.flags & IOMAP_F_NEW)) {
1752 			count_vm_event(PGMAJFAULT);
1753 			count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
1754 			ret |= VM_FAULT_MAJOR;
1755 		}
1756 
1757 		if (!(ret & VM_FAULT_ERROR))
1758 			iter.processed = PAGE_SIZE;
1759 	}
1760 
1761 	if (iomap_errp)
1762 		*iomap_errp = error;
1763 	if (!ret && error)
1764 		ret = dax_fault_return(error);
1765 
1766 unlock_entry:
1767 	dax_unlock_entry(&xas, entry);
1768 out:
1769 	trace_dax_pte_fault_done(iter.inode, vmf, ret);
1770 	return ret;
1771 }
1772 
1773 #ifdef CONFIG_FS_DAX_PMD
1774 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas,
1775 		pgoff_t max_pgoff)
1776 {
1777 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1778 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1779 
1780 	/*
1781 	 * Make sure that the faulting address's PMD offset (color) matches
1782 	 * the PMD offset from the start of the file.  This is necessary so
1783 	 * that a PMD range in the page table overlaps exactly with a PMD
1784 	 * range in the page cache.
1785 	 */
1786 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1787 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1788 		return true;
1789 
1790 	/* Fall back to PTEs if we're going to COW */
1791 	if (write && !(vmf->vma->vm_flags & VM_SHARED))
1792 		return true;
1793 
1794 	/* If the PMD would extend outside the VMA */
1795 	if (pmd_addr < vmf->vma->vm_start)
1796 		return true;
1797 	if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end)
1798 		return true;
1799 
1800 	/* If the PMD would extend beyond the file size */
1801 	if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff)
1802 		return true;
1803 
1804 	return false;
1805 }
1806 
1807 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1808 			       const struct iomap_ops *ops)
1809 {
1810 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1811 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1812 	struct iomap_iter iter = {
1813 		.inode		= mapping->host,
1814 		.len		= PMD_SIZE,
1815 		.flags		= IOMAP_DAX | IOMAP_FAULT,
1816 	};
1817 	vm_fault_t ret = VM_FAULT_FALLBACK;
1818 	pgoff_t max_pgoff;
1819 	void *entry;
1820 
1821 	if (vmf->flags & FAULT_FLAG_WRITE)
1822 		iter.flags |= IOMAP_WRITE;
1823 
1824 	/*
1825 	 * Check whether offset isn't beyond end of file now. Caller is
1826 	 * supposed to hold locks serializing us with truncate / punch hole so
1827 	 * this is a reliable test.
1828 	 */
1829 	max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE);
1830 
1831 	trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0);
1832 
1833 	if (xas.xa_index >= max_pgoff) {
1834 		ret = VM_FAULT_SIGBUS;
1835 		goto out;
1836 	}
1837 
1838 	if (dax_fault_check_fallback(vmf, &xas, max_pgoff))
1839 		goto fallback;
1840 
1841 	/*
1842 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1843 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1844 	 * entry is already in the array, for instance), it will return
1845 	 * VM_FAULT_FALLBACK.
1846 	 */
1847 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1848 	if (xa_is_internal(entry)) {
1849 		ret = xa_to_internal(entry);
1850 		goto fallback;
1851 	}
1852 
1853 	/*
1854 	 * It is possible, particularly with mixed reads & writes to private
1855 	 * mappings, that we have raced with a PTE fault that overlaps with
1856 	 * the PMD we need to set up.  If so just return and the fault will be
1857 	 * retried.
1858 	 */
1859 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1860 			!pmd_devmap(*vmf->pmd)) {
1861 		ret = 0;
1862 		goto unlock_entry;
1863 	}
1864 
1865 	iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1866 	while (iomap_iter(&iter, ops) > 0) {
1867 		if (iomap_length(&iter) < PMD_SIZE)
1868 			continue; /* actually breaks out of the loop */
1869 
1870 		ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true);
1871 		if (ret != VM_FAULT_FALLBACK)
1872 			iter.processed = PMD_SIZE;
1873 	}
1874 
1875 unlock_entry:
1876 	dax_unlock_entry(&xas, entry);
1877 fallback:
1878 	if (ret == VM_FAULT_FALLBACK) {
1879 		split_huge_pmd(vmf->vma, vmf->pmd, vmf->address);
1880 		count_vm_event(THP_FAULT_FALLBACK);
1881 	}
1882 out:
1883 	trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret);
1884 	return ret;
1885 }
1886 #else
1887 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1888 			       const struct iomap_ops *ops)
1889 {
1890 	return VM_FAULT_FALLBACK;
1891 }
1892 #endif /* CONFIG_FS_DAX_PMD */
1893 
1894 /**
1895  * dax_iomap_fault - handle a page fault on a DAX file
1896  * @vmf: The description of the fault
1897  * @order: Order of the page to fault in
1898  * @pfnp: PFN to insert for synchronous faults if fsync is required
1899  * @iomap_errp: Storage for detailed error code in case of error
1900  * @ops: Iomap ops passed from the file system
1901  *
1902  * When a page fault occurs, filesystems may call this helper in
1903  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1904  * has done all the necessary locking for page fault to proceed
1905  * successfully.
1906  */
1907 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, unsigned int order,
1908 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1909 {
1910 	if (order == 0)
1911 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1912 	else if (order == PMD_ORDER)
1913 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1914 	else
1915 		return VM_FAULT_FALLBACK;
1916 }
1917 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1918 
1919 /*
1920  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1921  * @vmf: The description of the fault
1922  * @pfn: PFN to insert
1923  * @order: Order of entry to insert.
1924  *
1925  * This function inserts a writeable PTE or PMD entry into the page tables
1926  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1927  */
1928 static vm_fault_t
1929 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1930 {
1931 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1932 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1933 	void *entry;
1934 	vm_fault_t ret;
1935 
1936 	xas_lock_irq(&xas);
1937 	entry = get_unlocked_entry(&xas, order);
1938 	/* Did we race with someone splitting entry or so? */
1939 	if (!entry || dax_is_conflict(entry) ||
1940 	    (order == 0 && !dax_is_pte_entry(entry))) {
1941 		put_unlocked_entry(&xas, entry, WAKE_NEXT);
1942 		xas_unlock_irq(&xas);
1943 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1944 						      VM_FAULT_NOPAGE);
1945 		return VM_FAULT_NOPAGE;
1946 	}
1947 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1948 	dax_lock_entry(&xas, entry);
1949 	xas_unlock_irq(&xas);
1950 	if (order == 0)
1951 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1952 #ifdef CONFIG_FS_DAX_PMD
1953 	else if (order == PMD_ORDER)
1954 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1955 #endif
1956 	else
1957 		ret = VM_FAULT_FALLBACK;
1958 	dax_unlock_entry(&xas, entry);
1959 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1960 	return ret;
1961 }
1962 
1963 /**
1964  * dax_finish_sync_fault - finish synchronous page fault
1965  * @vmf: The description of the fault
1966  * @order: Order of entry to be inserted
1967  * @pfn: PFN to insert
1968  *
1969  * This function ensures that the file range touched by the page fault is
1970  * stored persistently on the media and handles inserting of appropriate page
1971  * table entry.
1972  */
1973 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, unsigned int order,
1974 		pfn_t pfn)
1975 {
1976 	int err;
1977 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1978 	size_t len = PAGE_SIZE << order;
1979 
1980 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1981 	if (err)
1982 		return VM_FAULT_SIGBUS;
1983 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1984 }
1985 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1986 
1987 static loff_t dax_range_compare_iter(struct iomap_iter *it_src,
1988 		struct iomap_iter *it_dest, u64 len, bool *same)
1989 {
1990 	const struct iomap *smap = &it_src->iomap;
1991 	const struct iomap *dmap = &it_dest->iomap;
1992 	loff_t pos1 = it_src->pos, pos2 = it_dest->pos;
1993 	void *saddr, *daddr;
1994 	int id, ret;
1995 
1996 	len = min(len, min(smap->length, dmap->length));
1997 
1998 	if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) {
1999 		*same = true;
2000 		return len;
2001 	}
2002 
2003 	if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) {
2004 		*same = false;
2005 		return 0;
2006 	}
2007 
2008 	id = dax_read_lock();
2009 	ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE),
2010 				      &saddr, NULL);
2011 	if (ret < 0)
2012 		goto out_unlock;
2013 
2014 	ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE),
2015 				      &daddr, NULL);
2016 	if (ret < 0)
2017 		goto out_unlock;
2018 
2019 	*same = !memcmp(saddr, daddr, len);
2020 	if (!*same)
2021 		len = 0;
2022 	dax_read_unlock(id);
2023 	return len;
2024 
2025 out_unlock:
2026 	dax_read_unlock(id);
2027 	return -EIO;
2028 }
2029 
2030 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff,
2031 		struct inode *dst, loff_t dstoff, loff_t len, bool *same,
2032 		const struct iomap_ops *ops)
2033 {
2034 	struct iomap_iter src_iter = {
2035 		.inode		= src,
2036 		.pos		= srcoff,
2037 		.len		= len,
2038 		.flags		= IOMAP_DAX,
2039 	};
2040 	struct iomap_iter dst_iter = {
2041 		.inode		= dst,
2042 		.pos		= dstoff,
2043 		.len		= len,
2044 		.flags		= IOMAP_DAX,
2045 	};
2046 	int ret, compared = 0;
2047 
2048 	while ((ret = iomap_iter(&src_iter, ops)) > 0 &&
2049 	       (ret = iomap_iter(&dst_iter, ops)) > 0) {
2050 		compared = dax_range_compare_iter(&src_iter, &dst_iter,
2051 				min(src_iter.len, dst_iter.len), same);
2052 		if (compared < 0)
2053 			return ret;
2054 		src_iter.processed = dst_iter.processed = compared;
2055 	}
2056 	return ret;
2057 }
2058 
2059 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in,
2060 			      struct file *file_out, loff_t pos_out,
2061 			      loff_t *len, unsigned int remap_flags,
2062 			      const struct iomap_ops *ops)
2063 {
2064 	return __generic_remap_file_range_prep(file_in, pos_in, file_out,
2065 					       pos_out, len, remap_flags, ops);
2066 }
2067 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep);
2068