1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/highmem.h> 15 #include <linux/memcontrol.h> 16 #include <linux/mm.h> 17 #include <linux/mutex.h> 18 #include <linux/pagevec.h> 19 #include <linux/sched.h> 20 #include <linux/sched/signal.h> 21 #include <linux/uio.h> 22 #include <linux/vmstat.h> 23 #include <linux/pfn_t.h> 24 #include <linux/sizes.h> 25 #include <linux/mmu_notifier.h> 26 #include <linux/iomap.h> 27 #include <linux/rmap.h> 28 #include <asm/pgalloc.h> 29 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/fs_dax.h> 32 33 static inline unsigned int pe_order(enum page_entry_size pe_size) 34 { 35 if (pe_size == PE_SIZE_PTE) 36 return PAGE_SHIFT - PAGE_SHIFT; 37 if (pe_size == PE_SIZE_PMD) 38 return PMD_SHIFT - PAGE_SHIFT; 39 if (pe_size == PE_SIZE_PUD) 40 return PUD_SHIFT - PAGE_SHIFT; 41 return ~0; 42 } 43 44 /* We choose 4096 entries - same as per-zone page wait tables */ 45 #define DAX_WAIT_TABLE_BITS 12 46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 47 48 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 49 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 50 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 51 52 /* The order of a PMD entry */ 53 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 54 55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 56 57 static int __init init_dax_wait_table(void) 58 { 59 int i; 60 61 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 62 init_waitqueue_head(wait_table + i); 63 return 0; 64 } 65 fs_initcall(init_dax_wait_table); 66 67 /* 68 * DAX pagecache entries use XArray value entries so they can't be mistaken 69 * for pages. We use one bit for locking, one bit for the entry size (PMD) 70 * and two more to tell us if the entry is a zero page or an empty entry that 71 * is just used for locking. In total four special bits. 72 * 73 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 74 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 75 * block allocation. 76 */ 77 #define DAX_SHIFT (4) 78 #define DAX_LOCKED (1UL << 0) 79 #define DAX_PMD (1UL << 1) 80 #define DAX_ZERO_PAGE (1UL << 2) 81 #define DAX_EMPTY (1UL << 3) 82 83 static unsigned long dax_to_pfn(void *entry) 84 { 85 return xa_to_value(entry) >> DAX_SHIFT; 86 } 87 88 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 89 { 90 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 91 } 92 93 static bool dax_is_locked(void *entry) 94 { 95 return xa_to_value(entry) & DAX_LOCKED; 96 } 97 98 static unsigned int dax_entry_order(void *entry) 99 { 100 if (xa_to_value(entry) & DAX_PMD) 101 return PMD_ORDER; 102 return 0; 103 } 104 105 static unsigned long dax_is_pmd_entry(void *entry) 106 { 107 return xa_to_value(entry) & DAX_PMD; 108 } 109 110 static bool dax_is_pte_entry(void *entry) 111 { 112 return !(xa_to_value(entry) & DAX_PMD); 113 } 114 115 static int dax_is_zero_entry(void *entry) 116 { 117 return xa_to_value(entry) & DAX_ZERO_PAGE; 118 } 119 120 static int dax_is_empty_entry(void *entry) 121 { 122 return xa_to_value(entry) & DAX_EMPTY; 123 } 124 125 /* 126 * true if the entry that was found is of a smaller order than the entry 127 * we were looking for 128 */ 129 static bool dax_is_conflict(void *entry) 130 { 131 return entry == XA_RETRY_ENTRY; 132 } 133 134 /* 135 * DAX page cache entry locking 136 */ 137 struct exceptional_entry_key { 138 struct xarray *xa; 139 pgoff_t entry_start; 140 }; 141 142 struct wait_exceptional_entry_queue { 143 wait_queue_entry_t wait; 144 struct exceptional_entry_key key; 145 }; 146 147 /** 148 * enum dax_wake_mode: waitqueue wakeup behaviour 149 * @WAKE_ALL: wake all waiters in the waitqueue 150 * @WAKE_NEXT: wake only the first waiter in the waitqueue 151 */ 152 enum dax_wake_mode { 153 WAKE_ALL, 154 WAKE_NEXT, 155 }; 156 157 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 158 void *entry, struct exceptional_entry_key *key) 159 { 160 unsigned long hash; 161 unsigned long index = xas->xa_index; 162 163 /* 164 * If 'entry' is a PMD, align the 'index' that we use for the wait 165 * queue to the start of that PMD. This ensures that all offsets in 166 * the range covered by the PMD map to the same bit lock. 167 */ 168 if (dax_is_pmd_entry(entry)) 169 index &= ~PG_PMD_COLOUR; 170 key->xa = xas->xa; 171 key->entry_start = index; 172 173 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 174 return wait_table + hash; 175 } 176 177 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 178 unsigned int mode, int sync, void *keyp) 179 { 180 struct exceptional_entry_key *key = keyp; 181 struct wait_exceptional_entry_queue *ewait = 182 container_of(wait, struct wait_exceptional_entry_queue, wait); 183 184 if (key->xa != ewait->key.xa || 185 key->entry_start != ewait->key.entry_start) 186 return 0; 187 return autoremove_wake_function(wait, mode, sync, NULL); 188 } 189 190 /* 191 * @entry may no longer be the entry at the index in the mapping. 192 * The important information it's conveying is whether the entry at 193 * this index used to be a PMD entry. 194 */ 195 static void dax_wake_entry(struct xa_state *xas, void *entry, 196 enum dax_wake_mode mode) 197 { 198 struct exceptional_entry_key key; 199 wait_queue_head_t *wq; 200 201 wq = dax_entry_waitqueue(xas, entry, &key); 202 203 /* 204 * Checking for locked entry and prepare_to_wait_exclusive() happens 205 * under the i_pages lock, ditto for entry handling in our callers. 206 * So at this point all tasks that could have seen our entry locked 207 * must be in the waitqueue and the following check will see them. 208 */ 209 if (waitqueue_active(wq)) 210 __wake_up(wq, TASK_NORMAL, mode == WAKE_ALL ? 0 : 1, &key); 211 } 212 213 /* 214 * Look up entry in page cache, wait for it to become unlocked if it 215 * is a DAX entry and return it. The caller must subsequently call 216 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 217 * if it did. The entry returned may have a larger order than @order. 218 * If @order is larger than the order of the entry found in i_pages, this 219 * function returns a dax_is_conflict entry. 220 * 221 * Must be called with the i_pages lock held. 222 */ 223 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order) 224 { 225 void *entry; 226 struct wait_exceptional_entry_queue ewait; 227 wait_queue_head_t *wq; 228 229 init_wait(&ewait.wait); 230 ewait.wait.func = wake_exceptional_entry_func; 231 232 for (;;) { 233 entry = xas_find_conflict(xas); 234 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 235 return entry; 236 if (dax_entry_order(entry) < order) 237 return XA_RETRY_ENTRY; 238 if (!dax_is_locked(entry)) 239 return entry; 240 241 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 242 prepare_to_wait_exclusive(wq, &ewait.wait, 243 TASK_UNINTERRUPTIBLE); 244 xas_unlock_irq(xas); 245 xas_reset(xas); 246 schedule(); 247 finish_wait(wq, &ewait.wait); 248 xas_lock_irq(xas); 249 } 250 } 251 252 /* 253 * The only thing keeping the address space around is the i_pages lock 254 * (it's cycled in clear_inode() after removing the entries from i_pages) 255 * After we call xas_unlock_irq(), we cannot touch xas->xa. 256 */ 257 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 258 { 259 struct wait_exceptional_entry_queue ewait; 260 wait_queue_head_t *wq; 261 262 init_wait(&ewait.wait); 263 ewait.wait.func = wake_exceptional_entry_func; 264 265 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 266 /* 267 * Unlike get_unlocked_entry() there is no guarantee that this 268 * path ever successfully retrieves an unlocked entry before an 269 * inode dies. Perform a non-exclusive wait in case this path 270 * never successfully performs its own wake up. 271 */ 272 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 273 xas_unlock_irq(xas); 274 schedule(); 275 finish_wait(wq, &ewait.wait); 276 } 277 278 static void put_unlocked_entry(struct xa_state *xas, void *entry, 279 enum dax_wake_mode mode) 280 { 281 if (entry && !dax_is_conflict(entry)) 282 dax_wake_entry(xas, entry, mode); 283 } 284 285 /* 286 * We used the xa_state to get the entry, but then we locked the entry and 287 * dropped the xa_lock, so we know the xa_state is stale and must be reset 288 * before use. 289 */ 290 static void dax_unlock_entry(struct xa_state *xas, void *entry) 291 { 292 void *old; 293 294 BUG_ON(dax_is_locked(entry)); 295 xas_reset(xas); 296 xas_lock_irq(xas); 297 old = xas_store(xas, entry); 298 xas_unlock_irq(xas); 299 BUG_ON(!dax_is_locked(old)); 300 dax_wake_entry(xas, entry, WAKE_NEXT); 301 } 302 303 /* 304 * Return: The entry stored at this location before it was locked. 305 */ 306 static void *dax_lock_entry(struct xa_state *xas, void *entry) 307 { 308 unsigned long v = xa_to_value(entry); 309 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 310 } 311 312 static unsigned long dax_entry_size(void *entry) 313 { 314 if (dax_is_zero_entry(entry)) 315 return 0; 316 else if (dax_is_empty_entry(entry)) 317 return 0; 318 else if (dax_is_pmd_entry(entry)) 319 return PMD_SIZE; 320 else 321 return PAGE_SIZE; 322 } 323 324 static unsigned long dax_end_pfn(void *entry) 325 { 326 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 327 } 328 329 /* 330 * Iterate through all mapped pfns represented by an entry, i.e. skip 331 * 'empty' and 'zero' entries. 332 */ 333 #define for_each_mapped_pfn(entry, pfn) \ 334 for (pfn = dax_to_pfn(entry); \ 335 pfn < dax_end_pfn(entry); pfn++) 336 337 static inline bool dax_mapping_is_cow(struct address_space *mapping) 338 { 339 return (unsigned long)mapping == PAGE_MAPPING_DAX_COW; 340 } 341 342 /* 343 * Set the page->mapping with FS_DAX_MAPPING_COW flag, increase the refcount. 344 */ 345 static inline void dax_mapping_set_cow(struct page *page) 346 { 347 if ((uintptr_t)page->mapping != PAGE_MAPPING_DAX_COW) { 348 /* 349 * Reset the index if the page was already mapped 350 * regularly before. 351 */ 352 if (page->mapping) 353 page->index = 1; 354 page->mapping = (void *)PAGE_MAPPING_DAX_COW; 355 } 356 page->index++; 357 } 358 359 /* 360 * When it is called in dax_insert_entry(), the cow flag will indicate that 361 * whether this entry is shared by multiple files. If so, set the page->mapping 362 * FS_DAX_MAPPING_COW, and use page->index as refcount. 363 */ 364 static void dax_associate_entry(void *entry, struct address_space *mapping, 365 struct vm_area_struct *vma, unsigned long address, bool cow) 366 { 367 unsigned long size = dax_entry_size(entry), pfn, index; 368 int i = 0; 369 370 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 371 return; 372 373 index = linear_page_index(vma, address & ~(size - 1)); 374 for_each_mapped_pfn(entry, pfn) { 375 struct page *page = pfn_to_page(pfn); 376 377 if (cow) { 378 dax_mapping_set_cow(page); 379 } else { 380 WARN_ON_ONCE(page->mapping); 381 page->mapping = mapping; 382 page->index = index + i++; 383 } 384 } 385 } 386 387 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 388 bool trunc) 389 { 390 unsigned long pfn; 391 392 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 393 return; 394 395 for_each_mapped_pfn(entry, pfn) { 396 struct page *page = pfn_to_page(pfn); 397 398 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 399 if (dax_mapping_is_cow(page->mapping)) { 400 /* keep the CoW flag if this page is still shared */ 401 if (page->index-- > 0) 402 continue; 403 } else 404 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 405 page->mapping = NULL; 406 page->index = 0; 407 } 408 } 409 410 static struct page *dax_busy_page(void *entry) 411 { 412 unsigned long pfn; 413 414 for_each_mapped_pfn(entry, pfn) { 415 struct page *page = pfn_to_page(pfn); 416 417 if (page_ref_count(page) > 1) 418 return page; 419 } 420 return NULL; 421 } 422 423 /* 424 * dax_lock_page - Lock the DAX entry corresponding to a page 425 * @page: The page whose entry we want to lock 426 * 427 * Context: Process context. 428 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 429 * not be locked. 430 */ 431 dax_entry_t dax_lock_page(struct page *page) 432 { 433 XA_STATE(xas, NULL, 0); 434 void *entry; 435 436 /* Ensure page->mapping isn't freed while we look at it */ 437 rcu_read_lock(); 438 for (;;) { 439 struct address_space *mapping = READ_ONCE(page->mapping); 440 441 entry = NULL; 442 if (!mapping || !dax_mapping(mapping)) 443 break; 444 445 /* 446 * In the device-dax case there's no need to lock, a 447 * struct dev_pagemap pin is sufficient to keep the 448 * inode alive, and we assume we have dev_pagemap pin 449 * otherwise we would not have a valid pfn_to_page() 450 * translation. 451 */ 452 entry = (void *)~0UL; 453 if (S_ISCHR(mapping->host->i_mode)) 454 break; 455 456 xas.xa = &mapping->i_pages; 457 xas_lock_irq(&xas); 458 if (mapping != page->mapping) { 459 xas_unlock_irq(&xas); 460 continue; 461 } 462 xas_set(&xas, page->index); 463 entry = xas_load(&xas); 464 if (dax_is_locked(entry)) { 465 rcu_read_unlock(); 466 wait_entry_unlocked(&xas, entry); 467 rcu_read_lock(); 468 continue; 469 } 470 dax_lock_entry(&xas, entry); 471 xas_unlock_irq(&xas); 472 break; 473 } 474 rcu_read_unlock(); 475 return (dax_entry_t)entry; 476 } 477 478 void dax_unlock_page(struct page *page, dax_entry_t cookie) 479 { 480 struct address_space *mapping = page->mapping; 481 XA_STATE(xas, &mapping->i_pages, page->index); 482 483 if (S_ISCHR(mapping->host->i_mode)) 484 return; 485 486 dax_unlock_entry(&xas, (void *)cookie); 487 } 488 489 /* 490 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a mapping 491 * @mapping: the file's mapping whose entry we want to lock 492 * @index: the offset within this file 493 * @page: output the dax page corresponding to this dax entry 494 * 495 * Return: A cookie to pass to dax_unlock_mapping_entry() or 0 if the entry 496 * could not be locked. 497 */ 498 dax_entry_t dax_lock_mapping_entry(struct address_space *mapping, pgoff_t index, 499 struct page **page) 500 { 501 XA_STATE(xas, NULL, 0); 502 void *entry; 503 504 rcu_read_lock(); 505 for (;;) { 506 entry = NULL; 507 if (!dax_mapping(mapping)) 508 break; 509 510 xas.xa = &mapping->i_pages; 511 xas_lock_irq(&xas); 512 xas_set(&xas, index); 513 entry = xas_load(&xas); 514 if (dax_is_locked(entry)) { 515 rcu_read_unlock(); 516 wait_entry_unlocked(&xas, entry); 517 rcu_read_lock(); 518 continue; 519 } 520 if (!entry || 521 dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 522 /* 523 * Because we are looking for entry from file's mapping 524 * and index, so the entry may not be inserted for now, 525 * or even a zero/empty entry. We don't think this is 526 * an error case. So, return a special value and do 527 * not output @page. 528 */ 529 entry = (void *)~0UL; 530 } else { 531 *page = pfn_to_page(dax_to_pfn(entry)); 532 dax_lock_entry(&xas, entry); 533 } 534 xas_unlock_irq(&xas); 535 break; 536 } 537 rcu_read_unlock(); 538 return (dax_entry_t)entry; 539 } 540 541 void dax_unlock_mapping_entry(struct address_space *mapping, pgoff_t index, 542 dax_entry_t cookie) 543 { 544 XA_STATE(xas, &mapping->i_pages, index); 545 546 if (cookie == ~0UL) 547 return; 548 549 dax_unlock_entry(&xas, (void *)cookie); 550 } 551 552 /* 553 * Find page cache entry at given index. If it is a DAX entry, return it 554 * with the entry locked. If the page cache doesn't contain an entry at 555 * that index, add a locked empty entry. 556 * 557 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 558 * either return that locked entry or will return VM_FAULT_FALLBACK. 559 * This will happen if there are any PTE entries within the PMD range 560 * that we are requesting. 561 * 562 * We always favor PTE entries over PMD entries. There isn't a flow where we 563 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 564 * insertion will fail if it finds any PTE entries already in the tree, and a 565 * PTE insertion will cause an existing PMD entry to be unmapped and 566 * downgraded to PTE entries. This happens for both PMD zero pages as 567 * well as PMD empty entries. 568 * 569 * The exception to this downgrade path is for PMD entries that have 570 * real storage backing them. We will leave these real PMD entries in 571 * the tree, and PTE writes will simply dirty the entire PMD entry. 572 * 573 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 574 * persistent memory the benefit is doubtful. We can add that later if we can 575 * show it helps. 576 * 577 * On error, this function does not return an ERR_PTR. Instead it returns 578 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 579 * overlap with xarray value entries. 580 */ 581 static void *grab_mapping_entry(struct xa_state *xas, 582 struct address_space *mapping, unsigned int order) 583 { 584 unsigned long index = xas->xa_index; 585 bool pmd_downgrade; /* splitting PMD entry into PTE entries? */ 586 void *entry; 587 588 retry: 589 pmd_downgrade = false; 590 xas_lock_irq(xas); 591 entry = get_unlocked_entry(xas, order); 592 593 if (entry) { 594 if (dax_is_conflict(entry)) 595 goto fallback; 596 if (!xa_is_value(entry)) { 597 xas_set_err(xas, -EIO); 598 goto out_unlock; 599 } 600 601 if (order == 0) { 602 if (dax_is_pmd_entry(entry) && 603 (dax_is_zero_entry(entry) || 604 dax_is_empty_entry(entry))) { 605 pmd_downgrade = true; 606 } 607 } 608 } 609 610 if (pmd_downgrade) { 611 /* 612 * Make sure 'entry' remains valid while we drop 613 * the i_pages lock. 614 */ 615 dax_lock_entry(xas, entry); 616 617 /* 618 * Besides huge zero pages the only other thing that gets 619 * downgraded are empty entries which don't need to be 620 * unmapped. 621 */ 622 if (dax_is_zero_entry(entry)) { 623 xas_unlock_irq(xas); 624 unmap_mapping_pages(mapping, 625 xas->xa_index & ~PG_PMD_COLOUR, 626 PG_PMD_NR, false); 627 xas_reset(xas); 628 xas_lock_irq(xas); 629 } 630 631 dax_disassociate_entry(entry, mapping, false); 632 xas_store(xas, NULL); /* undo the PMD join */ 633 dax_wake_entry(xas, entry, WAKE_ALL); 634 mapping->nrpages -= PG_PMD_NR; 635 entry = NULL; 636 xas_set(xas, index); 637 } 638 639 if (entry) { 640 dax_lock_entry(xas, entry); 641 } else { 642 unsigned long flags = DAX_EMPTY; 643 644 if (order > 0) 645 flags |= DAX_PMD; 646 entry = dax_make_entry(pfn_to_pfn_t(0), flags); 647 dax_lock_entry(xas, entry); 648 if (xas_error(xas)) 649 goto out_unlock; 650 mapping->nrpages += 1UL << order; 651 } 652 653 out_unlock: 654 xas_unlock_irq(xas); 655 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 656 goto retry; 657 if (xas->xa_node == XA_ERROR(-ENOMEM)) 658 return xa_mk_internal(VM_FAULT_OOM); 659 if (xas_error(xas)) 660 return xa_mk_internal(VM_FAULT_SIGBUS); 661 return entry; 662 fallback: 663 xas_unlock_irq(xas); 664 return xa_mk_internal(VM_FAULT_FALLBACK); 665 } 666 667 /** 668 * dax_layout_busy_page_range - find first pinned page in @mapping 669 * @mapping: address space to scan for a page with ref count > 1 670 * @start: Starting offset. Page containing 'start' is included. 671 * @end: End offset. Page containing 'end' is included. If 'end' is LLONG_MAX, 672 * pages from 'start' till the end of file are included. 673 * 674 * DAX requires ZONE_DEVICE mapped pages. These pages are never 675 * 'onlined' to the page allocator so they are considered idle when 676 * page->count == 1. A filesystem uses this interface to determine if 677 * any page in the mapping is busy, i.e. for DMA, or other 678 * get_user_pages() usages. 679 * 680 * It is expected that the filesystem is holding locks to block the 681 * establishment of new mappings in this address_space. I.e. it expects 682 * to be able to run unmap_mapping_range() and subsequently not race 683 * mapping_mapped() becoming true. 684 */ 685 struct page *dax_layout_busy_page_range(struct address_space *mapping, 686 loff_t start, loff_t end) 687 { 688 void *entry; 689 unsigned int scanned = 0; 690 struct page *page = NULL; 691 pgoff_t start_idx = start >> PAGE_SHIFT; 692 pgoff_t end_idx; 693 XA_STATE(xas, &mapping->i_pages, start_idx); 694 695 /* 696 * In the 'limited' case get_user_pages() for dax is disabled. 697 */ 698 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 699 return NULL; 700 701 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 702 return NULL; 703 704 /* If end == LLONG_MAX, all pages from start to till end of file */ 705 if (end == LLONG_MAX) 706 end_idx = ULONG_MAX; 707 else 708 end_idx = end >> PAGE_SHIFT; 709 /* 710 * If we race get_user_pages_fast() here either we'll see the 711 * elevated page count in the iteration and wait, or 712 * get_user_pages_fast() will see that the page it took a reference 713 * against is no longer mapped in the page tables and bail to the 714 * get_user_pages() slow path. The slow path is protected by 715 * pte_lock() and pmd_lock(). New references are not taken without 716 * holding those locks, and unmap_mapping_pages() will not zero the 717 * pte or pmd without holding the respective lock, so we are 718 * guaranteed to either see new references or prevent new 719 * references from being established. 720 */ 721 unmap_mapping_pages(mapping, start_idx, end_idx - start_idx + 1, 0); 722 723 xas_lock_irq(&xas); 724 xas_for_each(&xas, entry, end_idx) { 725 if (WARN_ON_ONCE(!xa_is_value(entry))) 726 continue; 727 if (unlikely(dax_is_locked(entry))) 728 entry = get_unlocked_entry(&xas, 0); 729 if (entry) 730 page = dax_busy_page(entry); 731 put_unlocked_entry(&xas, entry, WAKE_NEXT); 732 if (page) 733 break; 734 if (++scanned % XA_CHECK_SCHED) 735 continue; 736 737 xas_pause(&xas); 738 xas_unlock_irq(&xas); 739 cond_resched(); 740 xas_lock_irq(&xas); 741 } 742 xas_unlock_irq(&xas); 743 return page; 744 } 745 EXPORT_SYMBOL_GPL(dax_layout_busy_page_range); 746 747 struct page *dax_layout_busy_page(struct address_space *mapping) 748 { 749 return dax_layout_busy_page_range(mapping, 0, LLONG_MAX); 750 } 751 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 752 753 static int __dax_invalidate_entry(struct address_space *mapping, 754 pgoff_t index, bool trunc) 755 { 756 XA_STATE(xas, &mapping->i_pages, index); 757 int ret = 0; 758 void *entry; 759 760 xas_lock_irq(&xas); 761 entry = get_unlocked_entry(&xas, 0); 762 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 763 goto out; 764 if (!trunc && 765 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 766 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 767 goto out; 768 dax_disassociate_entry(entry, mapping, trunc); 769 xas_store(&xas, NULL); 770 mapping->nrpages -= 1UL << dax_entry_order(entry); 771 ret = 1; 772 out: 773 put_unlocked_entry(&xas, entry, WAKE_ALL); 774 xas_unlock_irq(&xas); 775 return ret; 776 } 777 778 /* 779 * Delete DAX entry at @index from @mapping. Wait for it 780 * to be unlocked before deleting it. 781 */ 782 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 783 { 784 int ret = __dax_invalidate_entry(mapping, index, true); 785 786 /* 787 * This gets called from truncate / punch_hole path. As such, the caller 788 * must hold locks protecting against concurrent modifications of the 789 * page cache (usually fs-private i_mmap_sem for writing). Since the 790 * caller has seen a DAX entry for this index, we better find it 791 * at that index as well... 792 */ 793 WARN_ON_ONCE(!ret); 794 return ret; 795 } 796 797 /* 798 * Invalidate DAX entry if it is clean. 799 */ 800 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 801 pgoff_t index) 802 { 803 return __dax_invalidate_entry(mapping, index, false); 804 } 805 806 static pgoff_t dax_iomap_pgoff(const struct iomap *iomap, loff_t pos) 807 { 808 return PHYS_PFN(iomap->addr + (pos & PAGE_MASK) - iomap->offset); 809 } 810 811 static int copy_cow_page_dax(struct vm_fault *vmf, const struct iomap_iter *iter) 812 { 813 pgoff_t pgoff = dax_iomap_pgoff(&iter->iomap, iter->pos); 814 void *vto, *kaddr; 815 long rc; 816 int id; 817 818 id = dax_read_lock(); 819 rc = dax_direct_access(iter->iomap.dax_dev, pgoff, 1, DAX_ACCESS, 820 &kaddr, NULL); 821 if (rc < 0) { 822 dax_read_unlock(id); 823 return rc; 824 } 825 vto = kmap_atomic(vmf->cow_page); 826 copy_user_page(vto, kaddr, vmf->address, vmf->cow_page); 827 kunmap_atomic(vto); 828 dax_read_unlock(id); 829 return 0; 830 } 831 832 /* 833 * MAP_SYNC on a dax mapping guarantees dirty metadata is 834 * flushed on write-faults (non-cow), but not read-faults. 835 */ 836 static bool dax_fault_is_synchronous(const struct iomap_iter *iter, 837 struct vm_area_struct *vma) 838 { 839 return (iter->flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) && 840 (iter->iomap.flags & IOMAP_F_DIRTY); 841 } 842 843 static bool dax_fault_is_cow(const struct iomap_iter *iter) 844 { 845 return (iter->flags & IOMAP_WRITE) && 846 (iter->iomap.flags & IOMAP_F_SHARED); 847 } 848 849 /* 850 * By this point grab_mapping_entry() has ensured that we have a locked entry 851 * of the appropriate size so we don't have to worry about downgrading PMDs to 852 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 853 * already in the tree, we will skip the insertion and just dirty the PMD as 854 * appropriate. 855 */ 856 static void *dax_insert_entry(struct xa_state *xas, struct vm_fault *vmf, 857 const struct iomap_iter *iter, void *entry, pfn_t pfn, 858 unsigned long flags) 859 { 860 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 861 void *new_entry = dax_make_entry(pfn, flags); 862 bool dirty = !dax_fault_is_synchronous(iter, vmf->vma); 863 bool cow = dax_fault_is_cow(iter); 864 865 if (dirty) 866 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 867 868 if (cow || (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE))) { 869 unsigned long index = xas->xa_index; 870 /* we are replacing a zero page with block mapping */ 871 if (dax_is_pmd_entry(entry)) 872 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 873 PG_PMD_NR, false); 874 else /* pte entry */ 875 unmap_mapping_pages(mapping, index, 1, false); 876 } 877 878 xas_reset(xas); 879 xas_lock_irq(xas); 880 if (cow || dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 881 void *old; 882 883 dax_disassociate_entry(entry, mapping, false); 884 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address, 885 cow); 886 /* 887 * Only swap our new entry into the page cache if the current 888 * entry is a zero page or an empty entry. If a normal PTE or 889 * PMD entry is already in the cache, we leave it alone. This 890 * means that if we are trying to insert a PTE and the 891 * existing entry is a PMD, we will just leave the PMD in the 892 * tree and dirty it if necessary. 893 */ 894 old = dax_lock_entry(xas, new_entry); 895 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 896 DAX_LOCKED)); 897 entry = new_entry; 898 } else { 899 xas_load(xas); /* Walk the xa_state */ 900 } 901 902 if (dirty) 903 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 904 905 if (cow) 906 xas_set_mark(xas, PAGECACHE_TAG_TOWRITE); 907 908 xas_unlock_irq(xas); 909 return entry; 910 } 911 912 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 913 struct address_space *mapping, void *entry) 914 { 915 unsigned long pfn, index, count, end; 916 long ret = 0; 917 struct vm_area_struct *vma; 918 919 /* 920 * A page got tagged dirty in DAX mapping? Something is seriously 921 * wrong. 922 */ 923 if (WARN_ON(!xa_is_value(entry))) 924 return -EIO; 925 926 if (unlikely(dax_is_locked(entry))) { 927 void *old_entry = entry; 928 929 entry = get_unlocked_entry(xas, 0); 930 931 /* Entry got punched out / reallocated? */ 932 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 933 goto put_unlocked; 934 /* 935 * Entry got reallocated elsewhere? No need to writeback. 936 * We have to compare pfns as we must not bail out due to 937 * difference in lockbit or entry type. 938 */ 939 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 940 goto put_unlocked; 941 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 942 dax_is_zero_entry(entry))) { 943 ret = -EIO; 944 goto put_unlocked; 945 } 946 947 /* Another fsync thread may have already done this entry */ 948 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 949 goto put_unlocked; 950 } 951 952 /* Lock the entry to serialize with page faults */ 953 dax_lock_entry(xas, entry); 954 955 /* 956 * We can clear the tag now but we have to be careful so that concurrent 957 * dax_writeback_one() calls for the same index cannot finish before we 958 * actually flush the caches. This is achieved as the calls will look 959 * at the entry only under the i_pages lock and once they do that 960 * they will see the entry locked and wait for it to unlock. 961 */ 962 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 963 xas_unlock_irq(xas); 964 965 /* 966 * If dax_writeback_mapping_range() was given a wbc->range_start 967 * in the middle of a PMD, the 'index' we use needs to be 968 * aligned to the start of the PMD. 969 * This allows us to flush for PMD_SIZE and not have to worry about 970 * partial PMD writebacks. 971 */ 972 pfn = dax_to_pfn(entry); 973 count = 1UL << dax_entry_order(entry); 974 index = xas->xa_index & ~(count - 1); 975 end = index + count - 1; 976 977 /* Walk all mappings of a given index of a file and writeprotect them */ 978 i_mmap_lock_read(mapping); 979 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, end) { 980 pfn_mkclean_range(pfn, count, index, vma); 981 cond_resched(); 982 } 983 i_mmap_unlock_read(mapping); 984 985 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 986 /* 987 * After we have flushed the cache, we can clear the dirty tag. There 988 * cannot be new dirty data in the pfn after the flush has completed as 989 * the pfn mappings are writeprotected and fault waits for mapping 990 * entry lock. 991 */ 992 xas_reset(xas); 993 xas_lock_irq(xas); 994 xas_store(xas, entry); 995 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 996 dax_wake_entry(xas, entry, WAKE_NEXT); 997 998 trace_dax_writeback_one(mapping->host, index, count); 999 return ret; 1000 1001 put_unlocked: 1002 put_unlocked_entry(xas, entry, WAKE_NEXT); 1003 return ret; 1004 } 1005 1006 /* 1007 * Flush the mapping to the persistent domain within the byte range of [start, 1008 * end]. This is required by data integrity operations to ensure file data is 1009 * on persistent storage prior to completion of the operation. 1010 */ 1011 int dax_writeback_mapping_range(struct address_space *mapping, 1012 struct dax_device *dax_dev, struct writeback_control *wbc) 1013 { 1014 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 1015 struct inode *inode = mapping->host; 1016 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 1017 void *entry; 1018 int ret = 0; 1019 unsigned int scanned = 0; 1020 1021 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 1022 return -EIO; 1023 1024 if (mapping_empty(mapping) || wbc->sync_mode != WB_SYNC_ALL) 1025 return 0; 1026 1027 trace_dax_writeback_range(inode, xas.xa_index, end_index); 1028 1029 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 1030 1031 xas_lock_irq(&xas); 1032 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 1033 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 1034 if (ret < 0) { 1035 mapping_set_error(mapping, ret); 1036 break; 1037 } 1038 if (++scanned % XA_CHECK_SCHED) 1039 continue; 1040 1041 xas_pause(&xas); 1042 xas_unlock_irq(&xas); 1043 cond_resched(); 1044 xas_lock_irq(&xas); 1045 } 1046 xas_unlock_irq(&xas); 1047 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 1048 return ret; 1049 } 1050 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 1051 1052 static int dax_iomap_direct_access(const struct iomap *iomap, loff_t pos, 1053 size_t size, void **kaddr, pfn_t *pfnp) 1054 { 1055 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1056 int id, rc = 0; 1057 long length; 1058 1059 id = dax_read_lock(); 1060 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 1061 DAX_ACCESS, kaddr, pfnp); 1062 if (length < 0) { 1063 rc = length; 1064 goto out; 1065 } 1066 if (!pfnp) 1067 goto out_check_addr; 1068 rc = -EINVAL; 1069 if (PFN_PHYS(length) < size) 1070 goto out; 1071 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1072 goto out; 1073 /* For larger pages we need devmap */ 1074 if (length > 1 && !pfn_t_devmap(*pfnp)) 1075 goto out; 1076 rc = 0; 1077 1078 out_check_addr: 1079 if (!kaddr) 1080 goto out; 1081 if (!*kaddr) 1082 rc = -EFAULT; 1083 out: 1084 dax_read_unlock(id); 1085 return rc; 1086 } 1087 1088 /** 1089 * dax_iomap_cow_copy - Copy the data from source to destination before write 1090 * @pos: address to do copy from. 1091 * @length: size of copy operation. 1092 * @align_size: aligned w.r.t align_size (either PMD_SIZE or PAGE_SIZE) 1093 * @srcmap: iomap srcmap 1094 * @daddr: destination address to copy to. 1095 * 1096 * This can be called from two places. Either during DAX write fault (page 1097 * aligned), to copy the length size data to daddr. Or, while doing normal DAX 1098 * write operation, dax_iomap_actor() might call this to do the copy of either 1099 * start or end unaligned address. In the latter case the rest of the copy of 1100 * aligned ranges is taken care by dax_iomap_actor() itself. 1101 */ 1102 static int dax_iomap_cow_copy(loff_t pos, uint64_t length, size_t align_size, 1103 const struct iomap *srcmap, void *daddr) 1104 { 1105 loff_t head_off = pos & (align_size - 1); 1106 size_t size = ALIGN(head_off + length, align_size); 1107 loff_t end = pos + length; 1108 loff_t pg_end = round_up(end, align_size); 1109 bool copy_all = head_off == 0 && end == pg_end; 1110 void *saddr = 0; 1111 int ret = 0; 1112 1113 ret = dax_iomap_direct_access(srcmap, pos, size, &saddr, NULL); 1114 if (ret) 1115 return ret; 1116 1117 if (copy_all) { 1118 ret = copy_mc_to_kernel(daddr, saddr, length); 1119 return ret ? -EIO : 0; 1120 } 1121 1122 /* Copy the head part of the range */ 1123 if (head_off) { 1124 ret = copy_mc_to_kernel(daddr, saddr, head_off); 1125 if (ret) 1126 return -EIO; 1127 } 1128 1129 /* Copy the tail part of the range */ 1130 if (end < pg_end) { 1131 loff_t tail_off = head_off + length; 1132 loff_t tail_len = pg_end - end; 1133 1134 ret = copy_mc_to_kernel(daddr + tail_off, saddr + tail_off, 1135 tail_len); 1136 if (ret) 1137 return -EIO; 1138 } 1139 return 0; 1140 } 1141 1142 /* 1143 * The user has performed a load from a hole in the file. Allocating a new 1144 * page in the file would cause excessive storage usage for workloads with 1145 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1146 * If this page is ever written to we will re-fault and change the mapping to 1147 * point to real DAX storage instead. 1148 */ 1149 static vm_fault_t dax_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1150 const struct iomap_iter *iter, void **entry) 1151 { 1152 struct inode *inode = iter->inode; 1153 unsigned long vaddr = vmf->address; 1154 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1155 vm_fault_t ret; 1156 1157 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, DAX_ZERO_PAGE); 1158 1159 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1160 trace_dax_load_hole(inode, vmf, ret); 1161 return ret; 1162 } 1163 1164 #ifdef CONFIG_FS_DAX_PMD 1165 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1166 const struct iomap_iter *iter, void **entry) 1167 { 1168 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1169 unsigned long pmd_addr = vmf->address & PMD_MASK; 1170 struct vm_area_struct *vma = vmf->vma; 1171 struct inode *inode = mapping->host; 1172 pgtable_t pgtable = NULL; 1173 struct page *zero_page; 1174 spinlock_t *ptl; 1175 pmd_t pmd_entry; 1176 pfn_t pfn; 1177 1178 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1179 1180 if (unlikely(!zero_page)) 1181 goto fallback; 1182 1183 pfn = page_to_pfn_t(zero_page); 1184 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, 1185 DAX_PMD | DAX_ZERO_PAGE); 1186 1187 if (arch_needs_pgtable_deposit()) { 1188 pgtable = pte_alloc_one(vma->vm_mm); 1189 if (!pgtable) 1190 return VM_FAULT_OOM; 1191 } 1192 1193 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1194 if (!pmd_none(*(vmf->pmd))) { 1195 spin_unlock(ptl); 1196 goto fallback; 1197 } 1198 1199 if (pgtable) { 1200 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1201 mm_inc_nr_ptes(vma->vm_mm); 1202 } 1203 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1204 pmd_entry = pmd_mkhuge(pmd_entry); 1205 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1206 spin_unlock(ptl); 1207 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1208 return VM_FAULT_NOPAGE; 1209 1210 fallback: 1211 if (pgtable) 1212 pte_free(vma->vm_mm, pgtable); 1213 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1214 return VM_FAULT_FALLBACK; 1215 } 1216 #else 1217 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1218 const struct iomap_iter *iter, void **entry) 1219 { 1220 return VM_FAULT_FALLBACK; 1221 } 1222 #endif /* CONFIG_FS_DAX_PMD */ 1223 1224 static int dax_memzero(struct iomap_iter *iter, loff_t pos, size_t size) 1225 { 1226 const struct iomap *iomap = &iter->iomap; 1227 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1228 unsigned offset = offset_in_page(pos); 1229 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1230 void *kaddr; 1231 long ret; 1232 1233 ret = dax_direct_access(iomap->dax_dev, pgoff, 1, DAX_ACCESS, &kaddr, 1234 NULL); 1235 if (ret < 0) 1236 return ret; 1237 memset(kaddr + offset, 0, size); 1238 if (srcmap->addr != iomap->addr) { 1239 ret = dax_iomap_cow_copy(pos, size, PAGE_SIZE, srcmap, 1240 kaddr); 1241 if (ret < 0) 1242 return ret; 1243 dax_flush(iomap->dax_dev, kaddr, PAGE_SIZE); 1244 } else 1245 dax_flush(iomap->dax_dev, kaddr + offset, size); 1246 return ret; 1247 } 1248 1249 static s64 dax_zero_iter(struct iomap_iter *iter, bool *did_zero) 1250 { 1251 const struct iomap *iomap = &iter->iomap; 1252 const struct iomap *srcmap = iomap_iter_srcmap(iter); 1253 loff_t pos = iter->pos; 1254 u64 length = iomap_length(iter); 1255 s64 written = 0; 1256 1257 /* already zeroed? we're done. */ 1258 if (srcmap->type == IOMAP_HOLE || srcmap->type == IOMAP_UNWRITTEN) 1259 return length; 1260 1261 do { 1262 unsigned offset = offset_in_page(pos); 1263 unsigned size = min_t(u64, PAGE_SIZE - offset, length); 1264 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1265 long rc; 1266 int id; 1267 1268 id = dax_read_lock(); 1269 if (IS_ALIGNED(pos, PAGE_SIZE) && size == PAGE_SIZE) 1270 rc = dax_zero_page_range(iomap->dax_dev, pgoff, 1); 1271 else 1272 rc = dax_memzero(iter, pos, size); 1273 dax_read_unlock(id); 1274 1275 if (rc < 0) 1276 return rc; 1277 pos += size; 1278 length -= size; 1279 written += size; 1280 } while (length > 0); 1281 1282 if (did_zero) 1283 *did_zero = true; 1284 return written; 1285 } 1286 1287 int dax_zero_range(struct inode *inode, loff_t pos, loff_t len, bool *did_zero, 1288 const struct iomap_ops *ops) 1289 { 1290 struct iomap_iter iter = { 1291 .inode = inode, 1292 .pos = pos, 1293 .len = len, 1294 .flags = IOMAP_DAX | IOMAP_ZERO, 1295 }; 1296 int ret; 1297 1298 while ((ret = iomap_iter(&iter, ops)) > 0) 1299 iter.processed = dax_zero_iter(&iter, did_zero); 1300 return ret; 1301 } 1302 EXPORT_SYMBOL_GPL(dax_zero_range); 1303 1304 int dax_truncate_page(struct inode *inode, loff_t pos, bool *did_zero, 1305 const struct iomap_ops *ops) 1306 { 1307 unsigned int blocksize = i_blocksize(inode); 1308 unsigned int off = pos & (blocksize - 1); 1309 1310 /* Block boundary? Nothing to do */ 1311 if (!off) 1312 return 0; 1313 return dax_zero_range(inode, pos, blocksize - off, did_zero, ops); 1314 } 1315 EXPORT_SYMBOL_GPL(dax_truncate_page); 1316 1317 static loff_t dax_iomap_iter(const struct iomap_iter *iomi, 1318 struct iov_iter *iter) 1319 { 1320 const struct iomap *iomap = &iomi->iomap; 1321 const struct iomap *srcmap = &iomi->srcmap; 1322 loff_t length = iomap_length(iomi); 1323 loff_t pos = iomi->pos; 1324 struct dax_device *dax_dev = iomap->dax_dev; 1325 loff_t end = pos + length, done = 0; 1326 bool write = iov_iter_rw(iter) == WRITE; 1327 ssize_t ret = 0; 1328 size_t xfer; 1329 int id; 1330 1331 if (!write) { 1332 end = min(end, i_size_read(iomi->inode)); 1333 if (pos >= end) 1334 return 0; 1335 1336 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1337 return iov_iter_zero(min(length, end - pos), iter); 1338 } 1339 1340 /* 1341 * In DAX mode, enforce either pure overwrites of written extents, or 1342 * writes to unwritten extents as part of a copy-on-write operation. 1343 */ 1344 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED && 1345 !(iomap->flags & IOMAP_F_SHARED))) 1346 return -EIO; 1347 1348 /* 1349 * Write can allocate block for an area which has a hole page mapped 1350 * into page tables. We have to tear down these mappings so that data 1351 * written by write(2) is visible in mmap. 1352 */ 1353 if (iomap->flags & IOMAP_F_NEW) { 1354 invalidate_inode_pages2_range(iomi->inode->i_mapping, 1355 pos >> PAGE_SHIFT, 1356 (end - 1) >> PAGE_SHIFT); 1357 } 1358 1359 id = dax_read_lock(); 1360 while (pos < end) { 1361 unsigned offset = pos & (PAGE_SIZE - 1); 1362 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1363 pgoff_t pgoff = dax_iomap_pgoff(iomap, pos); 1364 ssize_t map_len; 1365 bool recovery = false; 1366 void *kaddr; 1367 1368 if (fatal_signal_pending(current)) { 1369 ret = -EINTR; 1370 break; 1371 } 1372 1373 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1374 DAX_ACCESS, &kaddr, NULL); 1375 if (map_len == -EIO && iov_iter_rw(iter) == WRITE) { 1376 map_len = dax_direct_access(dax_dev, pgoff, 1377 PHYS_PFN(size), DAX_RECOVERY_WRITE, 1378 &kaddr, NULL); 1379 if (map_len > 0) 1380 recovery = true; 1381 } 1382 if (map_len < 0) { 1383 ret = map_len; 1384 break; 1385 } 1386 1387 if (write && 1388 srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) { 1389 ret = dax_iomap_cow_copy(pos, length, PAGE_SIZE, srcmap, 1390 kaddr); 1391 if (ret) 1392 break; 1393 } 1394 1395 map_len = PFN_PHYS(map_len); 1396 kaddr += offset; 1397 map_len -= offset; 1398 if (map_len > end - pos) 1399 map_len = end - pos; 1400 1401 if (recovery) 1402 xfer = dax_recovery_write(dax_dev, pgoff, kaddr, 1403 map_len, iter); 1404 else if (write) 1405 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1406 map_len, iter); 1407 else 1408 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1409 map_len, iter); 1410 1411 pos += xfer; 1412 length -= xfer; 1413 done += xfer; 1414 1415 if (xfer == 0) 1416 ret = -EFAULT; 1417 if (xfer < map_len) 1418 break; 1419 } 1420 dax_read_unlock(id); 1421 1422 return done ? done : ret; 1423 } 1424 1425 /** 1426 * dax_iomap_rw - Perform I/O to a DAX file 1427 * @iocb: The control block for this I/O 1428 * @iter: The addresses to do I/O from or to 1429 * @ops: iomap ops passed from the file system 1430 * 1431 * This function performs read and write operations to directly mapped 1432 * persistent memory. The callers needs to take care of read/write exclusion 1433 * and evicting any page cache pages in the region under I/O. 1434 */ 1435 ssize_t 1436 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1437 const struct iomap_ops *ops) 1438 { 1439 struct iomap_iter iomi = { 1440 .inode = iocb->ki_filp->f_mapping->host, 1441 .pos = iocb->ki_pos, 1442 .len = iov_iter_count(iter), 1443 .flags = IOMAP_DAX, 1444 }; 1445 loff_t done = 0; 1446 int ret; 1447 1448 if (iov_iter_rw(iter) == WRITE) { 1449 lockdep_assert_held_write(&iomi.inode->i_rwsem); 1450 iomi.flags |= IOMAP_WRITE; 1451 } else { 1452 lockdep_assert_held(&iomi.inode->i_rwsem); 1453 } 1454 1455 if (iocb->ki_flags & IOCB_NOWAIT) 1456 iomi.flags |= IOMAP_NOWAIT; 1457 1458 while ((ret = iomap_iter(&iomi, ops)) > 0) 1459 iomi.processed = dax_iomap_iter(&iomi, iter); 1460 1461 done = iomi.pos - iocb->ki_pos; 1462 iocb->ki_pos = iomi.pos; 1463 return done ? done : ret; 1464 } 1465 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1466 1467 static vm_fault_t dax_fault_return(int error) 1468 { 1469 if (error == 0) 1470 return VM_FAULT_NOPAGE; 1471 return vmf_error(error); 1472 } 1473 1474 /* 1475 * When handling a synchronous page fault and the inode need a fsync, we can 1476 * insert the PTE/PMD into page tables only after that fsync happened. Skip 1477 * insertion for now and return the pfn so that caller can insert it after the 1478 * fsync is done. 1479 */ 1480 static vm_fault_t dax_fault_synchronous_pfnp(pfn_t *pfnp, pfn_t pfn) 1481 { 1482 if (WARN_ON_ONCE(!pfnp)) 1483 return VM_FAULT_SIGBUS; 1484 *pfnp = pfn; 1485 return VM_FAULT_NEEDDSYNC; 1486 } 1487 1488 static vm_fault_t dax_fault_cow_page(struct vm_fault *vmf, 1489 const struct iomap_iter *iter) 1490 { 1491 vm_fault_t ret; 1492 int error = 0; 1493 1494 switch (iter->iomap.type) { 1495 case IOMAP_HOLE: 1496 case IOMAP_UNWRITTEN: 1497 clear_user_highpage(vmf->cow_page, vmf->address); 1498 break; 1499 case IOMAP_MAPPED: 1500 error = copy_cow_page_dax(vmf, iter); 1501 break; 1502 default: 1503 WARN_ON_ONCE(1); 1504 error = -EIO; 1505 break; 1506 } 1507 1508 if (error) 1509 return dax_fault_return(error); 1510 1511 __SetPageUptodate(vmf->cow_page); 1512 ret = finish_fault(vmf); 1513 if (!ret) 1514 return VM_FAULT_DONE_COW; 1515 return ret; 1516 } 1517 1518 /** 1519 * dax_fault_iter - Common actor to handle pfn insertion in PTE/PMD fault. 1520 * @vmf: vm fault instance 1521 * @iter: iomap iter 1522 * @pfnp: pfn to be returned 1523 * @xas: the dax mapping tree of a file 1524 * @entry: an unlocked dax entry to be inserted 1525 * @pmd: distinguish whether it is a pmd fault 1526 */ 1527 static vm_fault_t dax_fault_iter(struct vm_fault *vmf, 1528 const struct iomap_iter *iter, pfn_t *pfnp, 1529 struct xa_state *xas, void **entry, bool pmd) 1530 { 1531 const struct iomap *iomap = &iter->iomap; 1532 const struct iomap *srcmap = &iter->srcmap; 1533 size_t size = pmd ? PMD_SIZE : PAGE_SIZE; 1534 loff_t pos = (loff_t)xas->xa_index << PAGE_SHIFT; 1535 bool write = iter->flags & IOMAP_WRITE; 1536 unsigned long entry_flags = pmd ? DAX_PMD : 0; 1537 int err = 0; 1538 pfn_t pfn; 1539 void *kaddr; 1540 1541 if (!pmd && vmf->cow_page) 1542 return dax_fault_cow_page(vmf, iter); 1543 1544 /* if we are reading UNWRITTEN and HOLE, return a hole. */ 1545 if (!write && 1546 (iomap->type == IOMAP_UNWRITTEN || iomap->type == IOMAP_HOLE)) { 1547 if (!pmd) 1548 return dax_load_hole(xas, vmf, iter, entry); 1549 return dax_pmd_load_hole(xas, vmf, iter, entry); 1550 } 1551 1552 if (iomap->type != IOMAP_MAPPED && !(iomap->flags & IOMAP_F_SHARED)) { 1553 WARN_ON_ONCE(1); 1554 return pmd ? VM_FAULT_FALLBACK : VM_FAULT_SIGBUS; 1555 } 1556 1557 err = dax_iomap_direct_access(iomap, pos, size, &kaddr, &pfn); 1558 if (err) 1559 return pmd ? VM_FAULT_FALLBACK : dax_fault_return(err); 1560 1561 *entry = dax_insert_entry(xas, vmf, iter, *entry, pfn, entry_flags); 1562 1563 if (write && 1564 srcmap->type != IOMAP_HOLE && srcmap->addr != iomap->addr) { 1565 err = dax_iomap_cow_copy(pos, size, size, srcmap, kaddr); 1566 if (err) 1567 return dax_fault_return(err); 1568 } 1569 1570 if (dax_fault_is_synchronous(iter, vmf->vma)) 1571 return dax_fault_synchronous_pfnp(pfnp, pfn); 1572 1573 /* insert PMD pfn */ 1574 if (pmd) 1575 return vmf_insert_pfn_pmd(vmf, pfn, write); 1576 1577 /* insert PTE pfn */ 1578 if (write) 1579 return vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1580 return vmf_insert_mixed(vmf->vma, vmf->address, pfn); 1581 } 1582 1583 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1584 int *iomap_errp, const struct iomap_ops *ops) 1585 { 1586 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1587 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1588 struct iomap_iter iter = { 1589 .inode = mapping->host, 1590 .pos = (loff_t)vmf->pgoff << PAGE_SHIFT, 1591 .len = PAGE_SIZE, 1592 .flags = IOMAP_DAX | IOMAP_FAULT, 1593 }; 1594 vm_fault_t ret = 0; 1595 void *entry; 1596 int error; 1597 1598 trace_dax_pte_fault(iter.inode, vmf, ret); 1599 /* 1600 * Check whether offset isn't beyond end of file now. Caller is supposed 1601 * to hold locks serializing us with truncate / punch hole so this is 1602 * a reliable test. 1603 */ 1604 if (iter.pos >= i_size_read(iter.inode)) { 1605 ret = VM_FAULT_SIGBUS; 1606 goto out; 1607 } 1608 1609 if ((vmf->flags & FAULT_FLAG_WRITE) && !vmf->cow_page) 1610 iter.flags |= IOMAP_WRITE; 1611 1612 entry = grab_mapping_entry(&xas, mapping, 0); 1613 if (xa_is_internal(entry)) { 1614 ret = xa_to_internal(entry); 1615 goto out; 1616 } 1617 1618 /* 1619 * It is possible, particularly with mixed reads & writes to private 1620 * mappings, that we have raced with a PMD fault that overlaps with 1621 * the PTE we need to set up. If so just return and the fault will be 1622 * retried. 1623 */ 1624 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1625 ret = VM_FAULT_NOPAGE; 1626 goto unlock_entry; 1627 } 1628 1629 while ((error = iomap_iter(&iter, ops)) > 0) { 1630 if (WARN_ON_ONCE(iomap_length(&iter) < PAGE_SIZE)) { 1631 iter.processed = -EIO; /* fs corruption? */ 1632 continue; 1633 } 1634 1635 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, false); 1636 if (ret != VM_FAULT_SIGBUS && 1637 (iter.iomap.flags & IOMAP_F_NEW)) { 1638 count_vm_event(PGMAJFAULT); 1639 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 1640 ret |= VM_FAULT_MAJOR; 1641 } 1642 1643 if (!(ret & VM_FAULT_ERROR)) 1644 iter.processed = PAGE_SIZE; 1645 } 1646 1647 if (iomap_errp) 1648 *iomap_errp = error; 1649 if (!ret && error) 1650 ret = dax_fault_return(error); 1651 1652 unlock_entry: 1653 dax_unlock_entry(&xas, entry); 1654 out: 1655 trace_dax_pte_fault_done(iter.inode, vmf, ret); 1656 return ret; 1657 } 1658 1659 #ifdef CONFIG_FS_DAX_PMD 1660 static bool dax_fault_check_fallback(struct vm_fault *vmf, struct xa_state *xas, 1661 pgoff_t max_pgoff) 1662 { 1663 unsigned long pmd_addr = vmf->address & PMD_MASK; 1664 bool write = vmf->flags & FAULT_FLAG_WRITE; 1665 1666 /* 1667 * Make sure that the faulting address's PMD offset (color) matches 1668 * the PMD offset from the start of the file. This is necessary so 1669 * that a PMD range in the page table overlaps exactly with a PMD 1670 * range in the page cache. 1671 */ 1672 if ((vmf->pgoff & PG_PMD_COLOUR) != 1673 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1674 return true; 1675 1676 /* Fall back to PTEs if we're going to COW */ 1677 if (write && !(vmf->vma->vm_flags & VM_SHARED)) 1678 return true; 1679 1680 /* If the PMD would extend outside the VMA */ 1681 if (pmd_addr < vmf->vma->vm_start) 1682 return true; 1683 if ((pmd_addr + PMD_SIZE) > vmf->vma->vm_end) 1684 return true; 1685 1686 /* If the PMD would extend beyond the file size */ 1687 if ((xas->xa_index | PG_PMD_COLOUR) >= max_pgoff) 1688 return true; 1689 1690 return false; 1691 } 1692 1693 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1694 const struct iomap_ops *ops) 1695 { 1696 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1697 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1698 struct iomap_iter iter = { 1699 .inode = mapping->host, 1700 .len = PMD_SIZE, 1701 .flags = IOMAP_DAX | IOMAP_FAULT, 1702 }; 1703 vm_fault_t ret = VM_FAULT_FALLBACK; 1704 pgoff_t max_pgoff; 1705 void *entry; 1706 int error; 1707 1708 if (vmf->flags & FAULT_FLAG_WRITE) 1709 iter.flags |= IOMAP_WRITE; 1710 1711 /* 1712 * Check whether offset isn't beyond end of file now. Caller is 1713 * supposed to hold locks serializing us with truncate / punch hole so 1714 * this is a reliable test. 1715 */ 1716 max_pgoff = DIV_ROUND_UP(i_size_read(iter.inode), PAGE_SIZE); 1717 1718 trace_dax_pmd_fault(iter.inode, vmf, max_pgoff, 0); 1719 1720 if (xas.xa_index >= max_pgoff) { 1721 ret = VM_FAULT_SIGBUS; 1722 goto out; 1723 } 1724 1725 if (dax_fault_check_fallback(vmf, &xas, max_pgoff)) 1726 goto fallback; 1727 1728 /* 1729 * grab_mapping_entry() will make sure we get an empty PMD entry, 1730 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1731 * entry is already in the array, for instance), it will return 1732 * VM_FAULT_FALLBACK. 1733 */ 1734 entry = grab_mapping_entry(&xas, mapping, PMD_ORDER); 1735 if (xa_is_internal(entry)) { 1736 ret = xa_to_internal(entry); 1737 goto fallback; 1738 } 1739 1740 /* 1741 * It is possible, particularly with mixed reads & writes to private 1742 * mappings, that we have raced with a PTE fault that overlaps with 1743 * the PMD we need to set up. If so just return and the fault will be 1744 * retried. 1745 */ 1746 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1747 !pmd_devmap(*vmf->pmd)) { 1748 ret = 0; 1749 goto unlock_entry; 1750 } 1751 1752 iter.pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1753 while ((error = iomap_iter(&iter, ops)) > 0) { 1754 if (iomap_length(&iter) < PMD_SIZE) 1755 continue; /* actually breaks out of the loop */ 1756 1757 ret = dax_fault_iter(vmf, &iter, pfnp, &xas, &entry, true); 1758 if (ret != VM_FAULT_FALLBACK) 1759 iter.processed = PMD_SIZE; 1760 } 1761 1762 unlock_entry: 1763 dax_unlock_entry(&xas, entry); 1764 fallback: 1765 if (ret == VM_FAULT_FALLBACK) { 1766 split_huge_pmd(vmf->vma, vmf->pmd, vmf->address); 1767 count_vm_event(THP_FAULT_FALLBACK); 1768 } 1769 out: 1770 trace_dax_pmd_fault_done(iter.inode, vmf, max_pgoff, ret); 1771 return ret; 1772 } 1773 #else 1774 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1775 const struct iomap_ops *ops) 1776 { 1777 return VM_FAULT_FALLBACK; 1778 } 1779 #endif /* CONFIG_FS_DAX_PMD */ 1780 1781 /** 1782 * dax_iomap_fault - handle a page fault on a DAX file 1783 * @vmf: The description of the fault 1784 * @pe_size: Size of the page to fault in 1785 * @pfnp: PFN to insert for synchronous faults if fsync is required 1786 * @iomap_errp: Storage for detailed error code in case of error 1787 * @ops: Iomap ops passed from the file system 1788 * 1789 * When a page fault occurs, filesystems may call this helper in 1790 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1791 * has done all the necessary locking for page fault to proceed 1792 * successfully. 1793 */ 1794 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1795 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1796 { 1797 switch (pe_size) { 1798 case PE_SIZE_PTE: 1799 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1800 case PE_SIZE_PMD: 1801 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1802 default: 1803 return VM_FAULT_FALLBACK; 1804 } 1805 } 1806 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1807 1808 /* 1809 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1810 * @vmf: The description of the fault 1811 * @pfn: PFN to insert 1812 * @order: Order of entry to insert. 1813 * 1814 * This function inserts a writeable PTE or PMD entry into the page tables 1815 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1816 */ 1817 static vm_fault_t 1818 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1819 { 1820 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1821 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1822 void *entry; 1823 vm_fault_t ret; 1824 1825 xas_lock_irq(&xas); 1826 entry = get_unlocked_entry(&xas, order); 1827 /* Did we race with someone splitting entry or so? */ 1828 if (!entry || dax_is_conflict(entry) || 1829 (order == 0 && !dax_is_pte_entry(entry))) { 1830 put_unlocked_entry(&xas, entry, WAKE_NEXT); 1831 xas_unlock_irq(&xas); 1832 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1833 VM_FAULT_NOPAGE); 1834 return VM_FAULT_NOPAGE; 1835 } 1836 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1837 dax_lock_entry(&xas, entry); 1838 xas_unlock_irq(&xas); 1839 if (order == 0) 1840 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1841 #ifdef CONFIG_FS_DAX_PMD 1842 else if (order == PMD_ORDER) 1843 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1844 #endif 1845 else 1846 ret = VM_FAULT_FALLBACK; 1847 dax_unlock_entry(&xas, entry); 1848 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1849 return ret; 1850 } 1851 1852 /** 1853 * dax_finish_sync_fault - finish synchronous page fault 1854 * @vmf: The description of the fault 1855 * @pe_size: Size of entry to be inserted 1856 * @pfn: PFN to insert 1857 * 1858 * This function ensures that the file range touched by the page fault is 1859 * stored persistently on the media and handles inserting of appropriate page 1860 * table entry. 1861 */ 1862 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1863 enum page_entry_size pe_size, pfn_t pfn) 1864 { 1865 int err; 1866 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1867 unsigned int order = pe_order(pe_size); 1868 size_t len = PAGE_SIZE << order; 1869 1870 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1871 if (err) 1872 return VM_FAULT_SIGBUS; 1873 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1874 } 1875 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1876 1877 static loff_t dax_range_compare_iter(struct iomap_iter *it_src, 1878 struct iomap_iter *it_dest, u64 len, bool *same) 1879 { 1880 const struct iomap *smap = &it_src->iomap; 1881 const struct iomap *dmap = &it_dest->iomap; 1882 loff_t pos1 = it_src->pos, pos2 = it_dest->pos; 1883 void *saddr, *daddr; 1884 int id, ret; 1885 1886 len = min(len, min(smap->length, dmap->length)); 1887 1888 if (smap->type == IOMAP_HOLE && dmap->type == IOMAP_HOLE) { 1889 *same = true; 1890 return len; 1891 } 1892 1893 if (smap->type == IOMAP_HOLE || dmap->type == IOMAP_HOLE) { 1894 *same = false; 1895 return 0; 1896 } 1897 1898 id = dax_read_lock(); 1899 ret = dax_iomap_direct_access(smap, pos1, ALIGN(pos1 + len, PAGE_SIZE), 1900 &saddr, NULL); 1901 if (ret < 0) 1902 goto out_unlock; 1903 1904 ret = dax_iomap_direct_access(dmap, pos2, ALIGN(pos2 + len, PAGE_SIZE), 1905 &daddr, NULL); 1906 if (ret < 0) 1907 goto out_unlock; 1908 1909 *same = !memcmp(saddr, daddr, len); 1910 if (!*same) 1911 len = 0; 1912 dax_read_unlock(id); 1913 return len; 1914 1915 out_unlock: 1916 dax_read_unlock(id); 1917 return -EIO; 1918 } 1919 1920 int dax_dedupe_file_range_compare(struct inode *src, loff_t srcoff, 1921 struct inode *dst, loff_t dstoff, loff_t len, bool *same, 1922 const struct iomap_ops *ops) 1923 { 1924 struct iomap_iter src_iter = { 1925 .inode = src, 1926 .pos = srcoff, 1927 .len = len, 1928 .flags = IOMAP_DAX, 1929 }; 1930 struct iomap_iter dst_iter = { 1931 .inode = dst, 1932 .pos = dstoff, 1933 .len = len, 1934 .flags = IOMAP_DAX, 1935 }; 1936 int ret; 1937 1938 while ((ret = iomap_iter(&src_iter, ops)) > 0) { 1939 while ((ret = iomap_iter(&dst_iter, ops)) > 0) { 1940 dst_iter.processed = dax_range_compare_iter(&src_iter, 1941 &dst_iter, len, same); 1942 } 1943 if (ret <= 0) 1944 src_iter.processed = ret; 1945 } 1946 return ret; 1947 } 1948 1949 int dax_remap_file_range_prep(struct file *file_in, loff_t pos_in, 1950 struct file *file_out, loff_t pos_out, 1951 loff_t *len, unsigned int remap_flags, 1952 const struct iomap_ops *ops) 1953 { 1954 return __generic_remap_file_range_prep(file_in, pos_in, file_out, 1955 pos_out, len, remap_flags, ops); 1956 } 1957 EXPORT_SYMBOL_GPL(dax_remap_file_range_prep); 1958