1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/dax.c - Direct Access filesystem code 4 * Copyright (c) 2013-2014 Intel Corporation 5 * Author: Matthew Wilcox <matthew.r.wilcox@intel.com> 6 * Author: Ross Zwisler <ross.zwisler@linux.intel.com> 7 */ 8 9 #include <linux/atomic.h> 10 #include <linux/blkdev.h> 11 #include <linux/buffer_head.h> 12 #include <linux/dax.h> 13 #include <linux/fs.h> 14 #include <linux/genhd.h> 15 #include <linux/highmem.h> 16 #include <linux/memcontrol.h> 17 #include <linux/mm.h> 18 #include <linux/mutex.h> 19 #include <linux/pagevec.h> 20 #include <linux/sched.h> 21 #include <linux/sched/signal.h> 22 #include <linux/uio.h> 23 #include <linux/vmstat.h> 24 #include <linux/pfn_t.h> 25 #include <linux/sizes.h> 26 #include <linux/mmu_notifier.h> 27 #include <linux/iomap.h> 28 #include <asm/pgalloc.h> 29 #include "internal.h" 30 31 #define CREATE_TRACE_POINTS 32 #include <trace/events/fs_dax.h> 33 34 static inline unsigned int pe_order(enum page_entry_size pe_size) 35 { 36 if (pe_size == PE_SIZE_PTE) 37 return PAGE_SHIFT - PAGE_SHIFT; 38 if (pe_size == PE_SIZE_PMD) 39 return PMD_SHIFT - PAGE_SHIFT; 40 if (pe_size == PE_SIZE_PUD) 41 return PUD_SHIFT - PAGE_SHIFT; 42 return ~0; 43 } 44 45 /* We choose 4096 entries - same as per-zone page wait tables */ 46 #define DAX_WAIT_TABLE_BITS 12 47 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS) 48 49 /* The 'colour' (ie low bits) within a PMD of a page offset. */ 50 #define PG_PMD_COLOUR ((PMD_SIZE >> PAGE_SHIFT) - 1) 51 #define PG_PMD_NR (PMD_SIZE >> PAGE_SHIFT) 52 53 /* The order of a PMD entry */ 54 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT) 55 56 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES]; 57 58 static int __init init_dax_wait_table(void) 59 { 60 int i; 61 62 for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++) 63 init_waitqueue_head(wait_table + i); 64 return 0; 65 } 66 fs_initcall(init_dax_wait_table); 67 68 /* 69 * DAX pagecache entries use XArray value entries so they can't be mistaken 70 * for pages. We use one bit for locking, one bit for the entry size (PMD) 71 * and two more to tell us if the entry is a zero page or an empty entry that 72 * is just used for locking. In total four special bits. 73 * 74 * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE 75 * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem 76 * block allocation. 77 */ 78 #define DAX_SHIFT (4) 79 #define DAX_LOCKED (1UL << 0) 80 #define DAX_PMD (1UL << 1) 81 #define DAX_ZERO_PAGE (1UL << 2) 82 #define DAX_EMPTY (1UL << 3) 83 84 static unsigned long dax_to_pfn(void *entry) 85 { 86 return xa_to_value(entry) >> DAX_SHIFT; 87 } 88 89 static void *dax_make_entry(pfn_t pfn, unsigned long flags) 90 { 91 return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT)); 92 } 93 94 static bool dax_is_locked(void *entry) 95 { 96 return xa_to_value(entry) & DAX_LOCKED; 97 } 98 99 static unsigned int dax_entry_order(void *entry) 100 { 101 if (xa_to_value(entry) & DAX_PMD) 102 return PMD_ORDER; 103 return 0; 104 } 105 106 static unsigned long dax_is_pmd_entry(void *entry) 107 { 108 return xa_to_value(entry) & DAX_PMD; 109 } 110 111 static bool dax_is_pte_entry(void *entry) 112 { 113 return !(xa_to_value(entry) & DAX_PMD); 114 } 115 116 static int dax_is_zero_entry(void *entry) 117 { 118 return xa_to_value(entry) & DAX_ZERO_PAGE; 119 } 120 121 static int dax_is_empty_entry(void *entry) 122 { 123 return xa_to_value(entry) & DAX_EMPTY; 124 } 125 126 /* 127 * DAX page cache entry locking 128 */ 129 struct exceptional_entry_key { 130 struct xarray *xa; 131 pgoff_t entry_start; 132 }; 133 134 struct wait_exceptional_entry_queue { 135 wait_queue_entry_t wait; 136 struct exceptional_entry_key key; 137 }; 138 139 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas, 140 void *entry, struct exceptional_entry_key *key) 141 { 142 unsigned long hash; 143 unsigned long index = xas->xa_index; 144 145 /* 146 * If 'entry' is a PMD, align the 'index' that we use for the wait 147 * queue to the start of that PMD. This ensures that all offsets in 148 * the range covered by the PMD map to the same bit lock. 149 */ 150 if (dax_is_pmd_entry(entry)) 151 index &= ~PG_PMD_COLOUR; 152 key->xa = xas->xa; 153 key->entry_start = index; 154 155 hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS); 156 return wait_table + hash; 157 } 158 159 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, 160 unsigned int mode, int sync, void *keyp) 161 { 162 struct exceptional_entry_key *key = keyp; 163 struct wait_exceptional_entry_queue *ewait = 164 container_of(wait, struct wait_exceptional_entry_queue, wait); 165 166 if (key->xa != ewait->key.xa || 167 key->entry_start != ewait->key.entry_start) 168 return 0; 169 return autoremove_wake_function(wait, mode, sync, NULL); 170 } 171 172 /* 173 * @entry may no longer be the entry at the index in the mapping. 174 * The important information it's conveying is whether the entry at 175 * this index used to be a PMD entry. 176 */ 177 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all) 178 { 179 struct exceptional_entry_key key; 180 wait_queue_head_t *wq; 181 182 wq = dax_entry_waitqueue(xas, entry, &key); 183 184 /* 185 * Checking for locked entry and prepare_to_wait_exclusive() happens 186 * under the i_pages lock, ditto for entry handling in our callers. 187 * So at this point all tasks that could have seen our entry locked 188 * must be in the waitqueue and the following check will see them. 189 */ 190 if (waitqueue_active(wq)) 191 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key); 192 } 193 194 /* 195 * Look up entry in page cache, wait for it to become unlocked if it 196 * is a DAX entry and return it. The caller must subsequently call 197 * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry() 198 * if it did. 199 * 200 * Must be called with the i_pages lock held. 201 */ 202 static void *get_unlocked_entry(struct xa_state *xas) 203 { 204 void *entry; 205 struct wait_exceptional_entry_queue ewait; 206 wait_queue_head_t *wq; 207 208 init_wait(&ewait.wait); 209 ewait.wait.func = wake_exceptional_entry_func; 210 211 for (;;) { 212 entry = xas_find_conflict(xas); 213 if (!entry || WARN_ON_ONCE(!xa_is_value(entry)) || 214 !dax_is_locked(entry)) 215 return entry; 216 217 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 218 prepare_to_wait_exclusive(wq, &ewait.wait, 219 TASK_UNINTERRUPTIBLE); 220 xas_unlock_irq(xas); 221 xas_reset(xas); 222 schedule(); 223 finish_wait(wq, &ewait.wait); 224 xas_lock_irq(xas); 225 } 226 } 227 228 /* 229 * The only thing keeping the address space around is the i_pages lock 230 * (it's cycled in clear_inode() after removing the entries from i_pages) 231 * After we call xas_unlock_irq(), we cannot touch xas->xa. 232 */ 233 static void wait_entry_unlocked(struct xa_state *xas, void *entry) 234 { 235 struct wait_exceptional_entry_queue ewait; 236 wait_queue_head_t *wq; 237 238 init_wait(&ewait.wait); 239 ewait.wait.func = wake_exceptional_entry_func; 240 241 wq = dax_entry_waitqueue(xas, entry, &ewait.key); 242 /* 243 * Unlike get_unlocked_entry() there is no guarantee that this 244 * path ever successfully retrieves an unlocked entry before an 245 * inode dies. Perform a non-exclusive wait in case this path 246 * never successfully performs its own wake up. 247 */ 248 prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE); 249 xas_unlock_irq(xas); 250 schedule(); 251 finish_wait(wq, &ewait.wait); 252 } 253 254 static void put_unlocked_entry(struct xa_state *xas, void *entry) 255 { 256 /* If we were the only waiter woken, wake the next one */ 257 if (entry) 258 dax_wake_entry(xas, entry, false); 259 } 260 261 /* 262 * We used the xa_state to get the entry, but then we locked the entry and 263 * dropped the xa_lock, so we know the xa_state is stale and must be reset 264 * before use. 265 */ 266 static void dax_unlock_entry(struct xa_state *xas, void *entry) 267 { 268 void *old; 269 270 BUG_ON(dax_is_locked(entry)); 271 xas_reset(xas); 272 xas_lock_irq(xas); 273 old = xas_store(xas, entry); 274 xas_unlock_irq(xas); 275 BUG_ON(!dax_is_locked(old)); 276 dax_wake_entry(xas, entry, false); 277 } 278 279 /* 280 * Return: The entry stored at this location before it was locked. 281 */ 282 static void *dax_lock_entry(struct xa_state *xas, void *entry) 283 { 284 unsigned long v = xa_to_value(entry); 285 return xas_store(xas, xa_mk_value(v | DAX_LOCKED)); 286 } 287 288 static unsigned long dax_entry_size(void *entry) 289 { 290 if (dax_is_zero_entry(entry)) 291 return 0; 292 else if (dax_is_empty_entry(entry)) 293 return 0; 294 else if (dax_is_pmd_entry(entry)) 295 return PMD_SIZE; 296 else 297 return PAGE_SIZE; 298 } 299 300 static unsigned long dax_end_pfn(void *entry) 301 { 302 return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE; 303 } 304 305 /* 306 * Iterate through all mapped pfns represented by an entry, i.e. skip 307 * 'empty' and 'zero' entries. 308 */ 309 #define for_each_mapped_pfn(entry, pfn) \ 310 for (pfn = dax_to_pfn(entry); \ 311 pfn < dax_end_pfn(entry); pfn++) 312 313 /* 314 * TODO: for reflink+dax we need a way to associate a single page with 315 * multiple address_space instances at different linear_page_index() 316 * offsets. 317 */ 318 static void dax_associate_entry(void *entry, struct address_space *mapping, 319 struct vm_area_struct *vma, unsigned long address) 320 { 321 unsigned long size = dax_entry_size(entry), pfn, index; 322 int i = 0; 323 324 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 325 return; 326 327 index = linear_page_index(vma, address & ~(size - 1)); 328 for_each_mapped_pfn(entry, pfn) { 329 struct page *page = pfn_to_page(pfn); 330 331 WARN_ON_ONCE(page->mapping); 332 page->mapping = mapping; 333 page->index = index + i++; 334 } 335 } 336 337 static void dax_disassociate_entry(void *entry, struct address_space *mapping, 338 bool trunc) 339 { 340 unsigned long pfn; 341 342 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 343 return; 344 345 for_each_mapped_pfn(entry, pfn) { 346 struct page *page = pfn_to_page(pfn); 347 348 WARN_ON_ONCE(trunc && page_ref_count(page) > 1); 349 WARN_ON_ONCE(page->mapping && page->mapping != mapping); 350 page->mapping = NULL; 351 page->index = 0; 352 } 353 } 354 355 static struct page *dax_busy_page(void *entry) 356 { 357 unsigned long pfn; 358 359 for_each_mapped_pfn(entry, pfn) { 360 struct page *page = pfn_to_page(pfn); 361 362 if (page_ref_count(page) > 1) 363 return page; 364 } 365 return NULL; 366 } 367 368 /* 369 * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page 370 * @page: The page whose entry we want to lock 371 * 372 * Context: Process context. 373 * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could 374 * not be locked. 375 */ 376 dax_entry_t dax_lock_page(struct page *page) 377 { 378 XA_STATE(xas, NULL, 0); 379 void *entry; 380 381 /* Ensure page->mapping isn't freed while we look at it */ 382 rcu_read_lock(); 383 for (;;) { 384 struct address_space *mapping = READ_ONCE(page->mapping); 385 386 entry = NULL; 387 if (!mapping || !dax_mapping(mapping)) 388 break; 389 390 /* 391 * In the device-dax case there's no need to lock, a 392 * struct dev_pagemap pin is sufficient to keep the 393 * inode alive, and we assume we have dev_pagemap pin 394 * otherwise we would not have a valid pfn_to_page() 395 * translation. 396 */ 397 entry = (void *)~0UL; 398 if (S_ISCHR(mapping->host->i_mode)) 399 break; 400 401 xas.xa = &mapping->i_pages; 402 xas_lock_irq(&xas); 403 if (mapping != page->mapping) { 404 xas_unlock_irq(&xas); 405 continue; 406 } 407 xas_set(&xas, page->index); 408 entry = xas_load(&xas); 409 if (dax_is_locked(entry)) { 410 rcu_read_unlock(); 411 wait_entry_unlocked(&xas, entry); 412 rcu_read_lock(); 413 continue; 414 } 415 dax_lock_entry(&xas, entry); 416 xas_unlock_irq(&xas); 417 break; 418 } 419 rcu_read_unlock(); 420 return (dax_entry_t)entry; 421 } 422 423 void dax_unlock_page(struct page *page, dax_entry_t cookie) 424 { 425 struct address_space *mapping = page->mapping; 426 XA_STATE(xas, &mapping->i_pages, page->index); 427 428 if (S_ISCHR(mapping->host->i_mode)) 429 return; 430 431 dax_unlock_entry(&xas, (void *)cookie); 432 } 433 434 /* 435 * Find page cache entry at given index. If it is a DAX entry, return it 436 * with the entry locked. If the page cache doesn't contain an entry at 437 * that index, add a locked empty entry. 438 * 439 * When requesting an entry with size DAX_PMD, grab_mapping_entry() will 440 * either return that locked entry or will return VM_FAULT_FALLBACK. 441 * This will happen if there are any PTE entries within the PMD range 442 * that we are requesting. 443 * 444 * We always favor PTE entries over PMD entries. There isn't a flow where we 445 * evict PTE entries in order to 'upgrade' them to a PMD entry. A PMD 446 * insertion will fail if it finds any PTE entries already in the tree, and a 447 * PTE insertion will cause an existing PMD entry to be unmapped and 448 * downgraded to PTE entries. This happens for both PMD zero pages as 449 * well as PMD empty entries. 450 * 451 * The exception to this downgrade path is for PMD entries that have 452 * real storage backing them. We will leave these real PMD entries in 453 * the tree, and PTE writes will simply dirty the entire PMD entry. 454 * 455 * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For 456 * persistent memory the benefit is doubtful. We can add that later if we can 457 * show it helps. 458 * 459 * On error, this function does not return an ERR_PTR. Instead it returns 460 * a VM_FAULT code, encoded as an xarray internal entry. The ERR_PTR values 461 * overlap with xarray value entries. 462 */ 463 static void *grab_mapping_entry(struct xa_state *xas, 464 struct address_space *mapping, unsigned long size_flag) 465 { 466 unsigned long index = xas->xa_index; 467 bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */ 468 void *entry; 469 470 retry: 471 xas_lock_irq(xas); 472 entry = get_unlocked_entry(xas); 473 474 if (entry) { 475 if (!xa_is_value(entry)) { 476 xas_set_err(xas, EIO); 477 goto out_unlock; 478 } 479 480 if (size_flag & DAX_PMD) { 481 if (dax_is_pte_entry(entry)) { 482 put_unlocked_entry(xas, entry); 483 goto fallback; 484 } 485 } else { /* trying to grab a PTE entry */ 486 if (dax_is_pmd_entry(entry) && 487 (dax_is_zero_entry(entry) || 488 dax_is_empty_entry(entry))) { 489 pmd_downgrade = true; 490 } 491 } 492 } 493 494 if (pmd_downgrade) { 495 /* 496 * Make sure 'entry' remains valid while we drop 497 * the i_pages lock. 498 */ 499 dax_lock_entry(xas, entry); 500 501 /* 502 * Besides huge zero pages the only other thing that gets 503 * downgraded are empty entries which don't need to be 504 * unmapped. 505 */ 506 if (dax_is_zero_entry(entry)) { 507 xas_unlock_irq(xas); 508 unmap_mapping_pages(mapping, 509 xas->xa_index & ~PG_PMD_COLOUR, 510 PG_PMD_NR, false); 511 xas_reset(xas); 512 xas_lock_irq(xas); 513 } 514 515 dax_disassociate_entry(entry, mapping, false); 516 xas_store(xas, NULL); /* undo the PMD join */ 517 dax_wake_entry(xas, entry, true); 518 mapping->nrexceptional--; 519 entry = NULL; 520 xas_set(xas, index); 521 } 522 523 if (entry) { 524 dax_lock_entry(xas, entry); 525 } else { 526 entry = dax_make_entry(pfn_to_pfn_t(0), size_flag | DAX_EMPTY); 527 dax_lock_entry(xas, entry); 528 if (xas_error(xas)) 529 goto out_unlock; 530 mapping->nrexceptional++; 531 } 532 533 out_unlock: 534 xas_unlock_irq(xas); 535 if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM)) 536 goto retry; 537 if (xas->xa_node == XA_ERROR(-ENOMEM)) 538 return xa_mk_internal(VM_FAULT_OOM); 539 if (xas_error(xas)) 540 return xa_mk_internal(VM_FAULT_SIGBUS); 541 return entry; 542 fallback: 543 xas_unlock_irq(xas); 544 return xa_mk_internal(VM_FAULT_FALLBACK); 545 } 546 547 /** 548 * dax_layout_busy_page - find first pinned page in @mapping 549 * @mapping: address space to scan for a page with ref count > 1 550 * 551 * DAX requires ZONE_DEVICE mapped pages. These pages are never 552 * 'onlined' to the page allocator so they are considered idle when 553 * page->count == 1. A filesystem uses this interface to determine if 554 * any page in the mapping is busy, i.e. for DMA, or other 555 * get_user_pages() usages. 556 * 557 * It is expected that the filesystem is holding locks to block the 558 * establishment of new mappings in this address_space. I.e. it expects 559 * to be able to run unmap_mapping_range() and subsequently not race 560 * mapping_mapped() becoming true. 561 */ 562 struct page *dax_layout_busy_page(struct address_space *mapping) 563 { 564 XA_STATE(xas, &mapping->i_pages, 0); 565 void *entry; 566 unsigned int scanned = 0; 567 struct page *page = NULL; 568 569 /* 570 * In the 'limited' case get_user_pages() for dax is disabled. 571 */ 572 if (IS_ENABLED(CONFIG_FS_DAX_LIMITED)) 573 return NULL; 574 575 if (!dax_mapping(mapping) || !mapping_mapped(mapping)) 576 return NULL; 577 578 /* 579 * If we race get_user_pages_fast() here either we'll see the 580 * elevated page count in the iteration and wait, or 581 * get_user_pages_fast() will see that the page it took a reference 582 * against is no longer mapped in the page tables and bail to the 583 * get_user_pages() slow path. The slow path is protected by 584 * pte_lock() and pmd_lock(). New references are not taken without 585 * holding those locks, and unmap_mapping_range() will not zero the 586 * pte or pmd without holding the respective lock, so we are 587 * guaranteed to either see new references or prevent new 588 * references from being established. 589 */ 590 unmap_mapping_range(mapping, 0, 0, 1); 591 592 xas_lock_irq(&xas); 593 xas_for_each(&xas, entry, ULONG_MAX) { 594 if (WARN_ON_ONCE(!xa_is_value(entry))) 595 continue; 596 if (unlikely(dax_is_locked(entry))) 597 entry = get_unlocked_entry(&xas); 598 if (entry) 599 page = dax_busy_page(entry); 600 put_unlocked_entry(&xas, entry); 601 if (page) 602 break; 603 if (++scanned % XA_CHECK_SCHED) 604 continue; 605 606 xas_pause(&xas); 607 xas_unlock_irq(&xas); 608 cond_resched(); 609 xas_lock_irq(&xas); 610 } 611 xas_unlock_irq(&xas); 612 return page; 613 } 614 EXPORT_SYMBOL_GPL(dax_layout_busy_page); 615 616 static int __dax_invalidate_entry(struct address_space *mapping, 617 pgoff_t index, bool trunc) 618 { 619 XA_STATE(xas, &mapping->i_pages, index); 620 int ret = 0; 621 void *entry; 622 623 xas_lock_irq(&xas); 624 entry = get_unlocked_entry(&xas); 625 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 626 goto out; 627 if (!trunc && 628 (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) || 629 xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE))) 630 goto out; 631 dax_disassociate_entry(entry, mapping, trunc); 632 xas_store(&xas, NULL); 633 mapping->nrexceptional--; 634 ret = 1; 635 out: 636 put_unlocked_entry(&xas, entry); 637 xas_unlock_irq(&xas); 638 return ret; 639 } 640 641 /* 642 * Delete DAX entry at @index from @mapping. Wait for it 643 * to be unlocked before deleting it. 644 */ 645 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index) 646 { 647 int ret = __dax_invalidate_entry(mapping, index, true); 648 649 /* 650 * This gets called from truncate / punch_hole path. As such, the caller 651 * must hold locks protecting against concurrent modifications of the 652 * page cache (usually fs-private i_mmap_sem for writing). Since the 653 * caller has seen a DAX entry for this index, we better find it 654 * at that index as well... 655 */ 656 WARN_ON_ONCE(!ret); 657 return ret; 658 } 659 660 /* 661 * Invalidate DAX entry if it is clean. 662 */ 663 int dax_invalidate_mapping_entry_sync(struct address_space *mapping, 664 pgoff_t index) 665 { 666 return __dax_invalidate_entry(mapping, index, false); 667 } 668 669 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev, 670 sector_t sector, size_t size, struct page *to, 671 unsigned long vaddr) 672 { 673 void *vto, *kaddr; 674 pgoff_t pgoff; 675 long rc; 676 int id; 677 678 rc = bdev_dax_pgoff(bdev, sector, size, &pgoff); 679 if (rc) 680 return rc; 681 682 id = dax_read_lock(); 683 rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL); 684 if (rc < 0) { 685 dax_read_unlock(id); 686 return rc; 687 } 688 vto = kmap_atomic(to); 689 copy_user_page(vto, (void __force *)kaddr, vaddr, to); 690 kunmap_atomic(vto); 691 dax_read_unlock(id); 692 return 0; 693 } 694 695 /* 696 * By this point grab_mapping_entry() has ensured that we have a locked entry 697 * of the appropriate size so we don't have to worry about downgrading PMDs to 698 * PTEs. If we happen to be trying to insert a PTE and there is a PMD 699 * already in the tree, we will skip the insertion and just dirty the PMD as 700 * appropriate. 701 */ 702 static void *dax_insert_entry(struct xa_state *xas, 703 struct address_space *mapping, struct vm_fault *vmf, 704 void *entry, pfn_t pfn, unsigned long flags, bool dirty) 705 { 706 void *new_entry = dax_make_entry(pfn, flags); 707 708 if (dirty) 709 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 710 711 if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) { 712 unsigned long index = xas->xa_index; 713 /* we are replacing a zero page with block mapping */ 714 if (dax_is_pmd_entry(entry)) 715 unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR, 716 PG_PMD_NR, false); 717 else /* pte entry */ 718 unmap_mapping_pages(mapping, index, 1, false); 719 } 720 721 xas_reset(xas); 722 xas_lock_irq(xas); 723 if (dax_entry_size(entry) != dax_entry_size(new_entry)) { 724 dax_disassociate_entry(entry, mapping, false); 725 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address); 726 } 727 728 if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) { 729 /* 730 * Only swap our new entry into the page cache if the current 731 * entry is a zero page or an empty entry. If a normal PTE or 732 * PMD entry is already in the cache, we leave it alone. This 733 * means that if we are trying to insert a PTE and the 734 * existing entry is a PMD, we will just leave the PMD in the 735 * tree and dirty it if necessary. 736 */ 737 void *old = dax_lock_entry(xas, new_entry); 738 WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) | 739 DAX_LOCKED)); 740 entry = new_entry; 741 } else { 742 xas_load(xas); /* Walk the xa_state */ 743 } 744 745 if (dirty) 746 xas_set_mark(xas, PAGECACHE_TAG_DIRTY); 747 748 xas_unlock_irq(xas); 749 return entry; 750 } 751 752 static inline 753 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma) 754 { 755 unsigned long address; 756 757 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); 758 VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma); 759 return address; 760 } 761 762 /* Walk all mappings of a given index of a file and writeprotect them */ 763 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index, 764 unsigned long pfn) 765 { 766 struct vm_area_struct *vma; 767 pte_t pte, *ptep = NULL; 768 pmd_t *pmdp = NULL; 769 spinlock_t *ptl; 770 771 i_mmap_lock_read(mapping); 772 vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) { 773 struct mmu_notifier_range range; 774 unsigned long address; 775 776 cond_resched(); 777 778 if (!(vma->vm_flags & VM_SHARED)) 779 continue; 780 781 address = pgoff_address(index, vma); 782 783 /* 784 * Note because we provide range to follow_pte_pmd it will 785 * call mmu_notifier_invalidate_range_start() on our behalf 786 * before taking any lock. 787 */ 788 if (follow_pte_pmd(vma->vm_mm, address, &range, 789 &ptep, &pmdp, &ptl)) 790 continue; 791 792 /* 793 * No need to call mmu_notifier_invalidate_range() as we are 794 * downgrading page table protection not changing it to point 795 * to a new page. 796 * 797 * See Documentation/vm/mmu_notifier.rst 798 */ 799 if (pmdp) { 800 #ifdef CONFIG_FS_DAX_PMD 801 pmd_t pmd; 802 803 if (pfn != pmd_pfn(*pmdp)) 804 goto unlock_pmd; 805 if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp)) 806 goto unlock_pmd; 807 808 flush_cache_page(vma, address, pfn); 809 pmd = pmdp_invalidate(vma, address, pmdp); 810 pmd = pmd_wrprotect(pmd); 811 pmd = pmd_mkclean(pmd); 812 set_pmd_at(vma->vm_mm, address, pmdp, pmd); 813 unlock_pmd: 814 #endif 815 spin_unlock(ptl); 816 } else { 817 if (pfn != pte_pfn(*ptep)) 818 goto unlock_pte; 819 if (!pte_dirty(*ptep) && !pte_write(*ptep)) 820 goto unlock_pte; 821 822 flush_cache_page(vma, address, pfn); 823 pte = ptep_clear_flush(vma, address, ptep); 824 pte = pte_wrprotect(pte); 825 pte = pte_mkclean(pte); 826 set_pte_at(vma->vm_mm, address, ptep, pte); 827 unlock_pte: 828 pte_unmap_unlock(ptep, ptl); 829 } 830 831 mmu_notifier_invalidate_range_end(&range); 832 } 833 i_mmap_unlock_read(mapping); 834 } 835 836 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev, 837 struct address_space *mapping, void *entry) 838 { 839 unsigned long pfn, index, count; 840 long ret = 0; 841 842 /* 843 * A page got tagged dirty in DAX mapping? Something is seriously 844 * wrong. 845 */ 846 if (WARN_ON(!xa_is_value(entry))) 847 return -EIO; 848 849 if (unlikely(dax_is_locked(entry))) { 850 void *old_entry = entry; 851 852 entry = get_unlocked_entry(xas); 853 854 /* Entry got punched out / reallocated? */ 855 if (!entry || WARN_ON_ONCE(!xa_is_value(entry))) 856 goto put_unlocked; 857 /* 858 * Entry got reallocated elsewhere? No need to writeback. 859 * We have to compare pfns as we must not bail out due to 860 * difference in lockbit or entry type. 861 */ 862 if (dax_to_pfn(old_entry) != dax_to_pfn(entry)) 863 goto put_unlocked; 864 if (WARN_ON_ONCE(dax_is_empty_entry(entry) || 865 dax_is_zero_entry(entry))) { 866 ret = -EIO; 867 goto put_unlocked; 868 } 869 870 /* Another fsync thread may have already done this entry */ 871 if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE)) 872 goto put_unlocked; 873 } 874 875 /* Lock the entry to serialize with page faults */ 876 dax_lock_entry(xas, entry); 877 878 /* 879 * We can clear the tag now but we have to be careful so that concurrent 880 * dax_writeback_one() calls for the same index cannot finish before we 881 * actually flush the caches. This is achieved as the calls will look 882 * at the entry only under the i_pages lock and once they do that 883 * they will see the entry locked and wait for it to unlock. 884 */ 885 xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE); 886 xas_unlock_irq(xas); 887 888 /* 889 * If dax_writeback_mapping_range() was given a wbc->range_start 890 * in the middle of a PMD, the 'index' we use needs to be 891 * aligned to the start of the PMD. 892 * This allows us to flush for PMD_SIZE and not have to worry about 893 * partial PMD writebacks. 894 */ 895 pfn = dax_to_pfn(entry); 896 count = 1UL << dax_entry_order(entry); 897 index = xas->xa_index & ~(count - 1); 898 899 dax_entry_mkclean(mapping, index, pfn); 900 dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE); 901 /* 902 * After we have flushed the cache, we can clear the dirty tag. There 903 * cannot be new dirty data in the pfn after the flush has completed as 904 * the pfn mappings are writeprotected and fault waits for mapping 905 * entry lock. 906 */ 907 xas_reset(xas); 908 xas_lock_irq(xas); 909 xas_store(xas, entry); 910 xas_clear_mark(xas, PAGECACHE_TAG_DIRTY); 911 dax_wake_entry(xas, entry, false); 912 913 trace_dax_writeback_one(mapping->host, index, count); 914 return ret; 915 916 put_unlocked: 917 put_unlocked_entry(xas, entry); 918 return ret; 919 } 920 921 /* 922 * Flush the mapping to the persistent domain within the byte range of [start, 923 * end]. This is required by data integrity operations to ensure file data is 924 * on persistent storage prior to completion of the operation. 925 */ 926 int dax_writeback_mapping_range(struct address_space *mapping, 927 struct block_device *bdev, struct writeback_control *wbc) 928 { 929 XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT); 930 struct inode *inode = mapping->host; 931 pgoff_t end_index = wbc->range_end >> PAGE_SHIFT; 932 struct dax_device *dax_dev; 933 void *entry; 934 int ret = 0; 935 unsigned int scanned = 0; 936 937 if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT)) 938 return -EIO; 939 940 if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL) 941 return 0; 942 943 dax_dev = dax_get_by_host(bdev->bd_disk->disk_name); 944 if (!dax_dev) 945 return -EIO; 946 947 trace_dax_writeback_range(inode, xas.xa_index, end_index); 948 949 tag_pages_for_writeback(mapping, xas.xa_index, end_index); 950 951 xas_lock_irq(&xas); 952 xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) { 953 ret = dax_writeback_one(&xas, dax_dev, mapping, entry); 954 if (ret < 0) { 955 mapping_set_error(mapping, ret); 956 break; 957 } 958 if (++scanned % XA_CHECK_SCHED) 959 continue; 960 961 xas_pause(&xas); 962 xas_unlock_irq(&xas); 963 cond_resched(); 964 xas_lock_irq(&xas); 965 } 966 xas_unlock_irq(&xas); 967 put_dax(dax_dev); 968 trace_dax_writeback_range_done(inode, xas.xa_index, end_index); 969 return ret; 970 } 971 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range); 972 973 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos) 974 { 975 return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9; 976 } 977 978 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size, 979 pfn_t *pfnp) 980 { 981 const sector_t sector = dax_iomap_sector(iomap, pos); 982 pgoff_t pgoff; 983 int id, rc; 984 long length; 985 986 rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff); 987 if (rc) 988 return rc; 989 id = dax_read_lock(); 990 length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size), 991 NULL, pfnp); 992 if (length < 0) { 993 rc = length; 994 goto out; 995 } 996 rc = -EINVAL; 997 if (PFN_PHYS(length) < size) 998 goto out; 999 if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1)) 1000 goto out; 1001 /* For larger pages we need devmap */ 1002 if (length > 1 && !pfn_t_devmap(*pfnp)) 1003 goto out; 1004 rc = 0; 1005 out: 1006 dax_read_unlock(id); 1007 return rc; 1008 } 1009 1010 /* 1011 * The user has performed a load from a hole in the file. Allocating a new 1012 * page in the file would cause excessive storage usage for workloads with 1013 * sparse files. Instead we insert a read-only mapping of the 4k zero page. 1014 * If this page is ever written to we will re-fault and change the mapping to 1015 * point to real DAX storage instead. 1016 */ 1017 static vm_fault_t dax_load_hole(struct xa_state *xas, 1018 struct address_space *mapping, void **entry, 1019 struct vm_fault *vmf) 1020 { 1021 struct inode *inode = mapping->host; 1022 unsigned long vaddr = vmf->address; 1023 pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr)); 1024 vm_fault_t ret; 1025 1026 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1027 DAX_ZERO_PAGE, false); 1028 1029 ret = vmf_insert_mixed(vmf->vma, vaddr, pfn); 1030 trace_dax_load_hole(inode, vmf, ret); 1031 return ret; 1032 } 1033 1034 static bool dax_range_is_aligned(struct block_device *bdev, 1035 unsigned int offset, unsigned int length) 1036 { 1037 unsigned short sector_size = bdev_logical_block_size(bdev); 1038 1039 if (!IS_ALIGNED(offset, sector_size)) 1040 return false; 1041 if (!IS_ALIGNED(length, sector_size)) 1042 return false; 1043 1044 return true; 1045 } 1046 1047 int __dax_zero_page_range(struct block_device *bdev, 1048 struct dax_device *dax_dev, sector_t sector, 1049 unsigned int offset, unsigned int size) 1050 { 1051 if (dax_range_is_aligned(bdev, offset, size)) { 1052 sector_t start_sector = sector + (offset >> 9); 1053 1054 return blkdev_issue_zeroout(bdev, start_sector, 1055 size >> 9, GFP_NOFS, 0); 1056 } else { 1057 pgoff_t pgoff; 1058 long rc, id; 1059 void *kaddr; 1060 1061 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff); 1062 if (rc) 1063 return rc; 1064 1065 id = dax_read_lock(); 1066 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL); 1067 if (rc < 0) { 1068 dax_read_unlock(id); 1069 return rc; 1070 } 1071 memset(kaddr + offset, 0, size); 1072 dax_flush(dax_dev, kaddr + offset, size); 1073 dax_read_unlock(id); 1074 } 1075 return 0; 1076 } 1077 EXPORT_SYMBOL_GPL(__dax_zero_page_range); 1078 1079 static loff_t 1080 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data, 1081 struct iomap *iomap) 1082 { 1083 struct block_device *bdev = iomap->bdev; 1084 struct dax_device *dax_dev = iomap->dax_dev; 1085 struct iov_iter *iter = data; 1086 loff_t end = pos + length, done = 0; 1087 ssize_t ret = 0; 1088 size_t xfer; 1089 int id; 1090 1091 if (iov_iter_rw(iter) == READ) { 1092 end = min(end, i_size_read(inode)); 1093 if (pos >= end) 1094 return 0; 1095 1096 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN) 1097 return iov_iter_zero(min(length, end - pos), iter); 1098 } 1099 1100 if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED)) 1101 return -EIO; 1102 1103 /* 1104 * Write can allocate block for an area which has a hole page mapped 1105 * into page tables. We have to tear down these mappings so that data 1106 * written by write(2) is visible in mmap. 1107 */ 1108 if (iomap->flags & IOMAP_F_NEW) { 1109 invalidate_inode_pages2_range(inode->i_mapping, 1110 pos >> PAGE_SHIFT, 1111 (end - 1) >> PAGE_SHIFT); 1112 } 1113 1114 id = dax_read_lock(); 1115 while (pos < end) { 1116 unsigned offset = pos & (PAGE_SIZE - 1); 1117 const size_t size = ALIGN(length + offset, PAGE_SIZE); 1118 const sector_t sector = dax_iomap_sector(iomap, pos); 1119 ssize_t map_len; 1120 pgoff_t pgoff; 1121 void *kaddr; 1122 1123 if (fatal_signal_pending(current)) { 1124 ret = -EINTR; 1125 break; 1126 } 1127 1128 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff); 1129 if (ret) 1130 break; 1131 1132 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), 1133 &kaddr, NULL); 1134 if (map_len < 0) { 1135 ret = map_len; 1136 break; 1137 } 1138 1139 map_len = PFN_PHYS(map_len); 1140 kaddr += offset; 1141 map_len -= offset; 1142 if (map_len > end - pos) 1143 map_len = end - pos; 1144 1145 /* 1146 * The userspace address for the memory copy has already been 1147 * validated via access_ok() in either vfs_read() or 1148 * vfs_write(), depending on which operation we are doing. 1149 */ 1150 if (iov_iter_rw(iter) == WRITE) 1151 xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr, 1152 map_len, iter); 1153 else 1154 xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr, 1155 map_len, iter); 1156 1157 pos += xfer; 1158 length -= xfer; 1159 done += xfer; 1160 1161 if (xfer == 0) 1162 ret = -EFAULT; 1163 if (xfer < map_len) 1164 break; 1165 } 1166 dax_read_unlock(id); 1167 1168 return done ? done : ret; 1169 } 1170 1171 /** 1172 * dax_iomap_rw - Perform I/O to a DAX file 1173 * @iocb: The control block for this I/O 1174 * @iter: The addresses to do I/O from or to 1175 * @ops: iomap ops passed from the file system 1176 * 1177 * This function performs read and write operations to directly mapped 1178 * persistent memory. The callers needs to take care of read/write exclusion 1179 * and evicting any page cache pages in the region under I/O. 1180 */ 1181 ssize_t 1182 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter, 1183 const struct iomap_ops *ops) 1184 { 1185 struct address_space *mapping = iocb->ki_filp->f_mapping; 1186 struct inode *inode = mapping->host; 1187 loff_t pos = iocb->ki_pos, ret = 0, done = 0; 1188 unsigned flags = 0; 1189 1190 if (iov_iter_rw(iter) == WRITE) { 1191 lockdep_assert_held_exclusive(&inode->i_rwsem); 1192 flags |= IOMAP_WRITE; 1193 } else { 1194 lockdep_assert_held(&inode->i_rwsem); 1195 } 1196 1197 while (iov_iter_count(iter)) { 1198 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops, 1199 iter, dax_iomap_actor); 1200 if (ret <= 0) 1201 break; 1202 pos += ret; 1203 done += ret; 1204 } 1205 1206 iocb->ki_pos += done; 1207 return done ? done : ret; 1208 } 1209 EXPORT_SYMBOL_GPL(dax_iomap_rw); 1210 1211 static vm_fault_t dax_fault_return(int error) 1212 { 1213 if (error == 0) 1214 return VM_FAULT_NOPAGE; 1215 return vmf_error(error); 1216 } 1217 1218 /* 1219 * MAP_SYNC on a dax mapping guarantees dirty metadata is 1220 * flushed on write-faults (non-cow), but not read-faults. 1221 */ 1222 static bool dax_fault_is_synchronous(unsigned long flags, 1223 struct vm_area_struct *vma, struct iomap *iomap) 1224 { 1225 return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC) 1226 && (iomap->flags & IOMAP_F_DIRTY); 1227 } 1228 1229 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp, 1230 int *iomap_errp, const struct iomap_ops *ops) 1231 { 1232 struct vm_area_struct *vma = vmf->vma; 1233 struct address_space *mapping = vma->vm_file->f_mapping; 1234 XA_STATE(xas, &mapping->i_pages, vmf->pgoff); 1235 struct inode *inode = mapping->host; 1236 unsigned long vaddr = vmf->address; 1237 loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT; 1238 struct iomap iomap = { 0 }; 1239 unsigned flags = IOMAP_FAULT; 1240 int error, major = 0; 1241 bool write = vmf->flags & FAULT_FLAG_WRITE; 1242 bool sync; 1243 vm_fault_t ret = 0; 1244 void *entry; 1245 pfn_t pfn; 1246 1247 trace_dax_pte_fault(inode, vmf, ret); 1248 /* 1249 * Check whether offset isn't beyond end of file now. Caller is supposed 1250 * to hold locks serializing us with truncate / punch hole so this is 1251 * a reliable test. 1252 */ 1253 if (pos >= i_size_read(inode)) { 1254 ret = VM_FAULT_SIGBUS; 1255 goto out; 1256 } 1257 1258 if (write && !vmf->cow_page) 1259 flags |= IOMAP_WRITE; 1260 1261 entry = grab_mapping_entry(&xas, mapping, 0); 1262 if (xa_is_internal(entry)) { 1263 ret = xa_to_internal(entry); 1264 goto out; 1265 } 1266 1267 /* 1268 * It is possible, particularly with mixed reads & writes to private 1269 * mappings, that we have raced with a PMD fault that overlaps with 1270 * the PTE we need to set up. If so just return and the fault will be 1271 * retried. 1272 */ 1273 if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) { 1274 ret = VM_FAULT_NOPAGE; 1275 goto unlock_entry; 1276 } 1277 1278 /* 1279 * Note that we don't bother to use iomap_apply here: DAX required 1280 * the file system block size to be equal the page size, which means 1281 * that we never have to deal with more than a single extent here. 1282 */ 1283 error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap); 1284 if (iomap_errp) 1285 *iomap_errp = error; 1286 if (error) { 1287 ret = dax_fault_return(error); 1288 goto unlock_entry; 1289 } 1290 if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) { 1291 error = -EIO; /* fs corruption? */ 1292 goto error_finish_iomap; 1293 } 1294 1295 if (vmf->cow_page) { 1296 sector_t sector = dax_iomap_sector(&iomap, pos); 1297 1298 switch (iomap.type) { 1299 case IOMAP_HOLE: 1300 case IOMAP_UNWRITTEN: 1301 clear_user_highpage(vmf->cow_page, vaddr); 1302 break; 1303 case IOMAP_MAPPED: 1304 error = copy_user_dax(iomap.bdev, iomap.dax_dev, 1305 sector, PAGE_SIZE, vmf->cow_page, vaddr); 1306 break; 1307 default: 1308 WARN_ON_ONCE(1); 1309 error = -EIO; 1310 break; 1311 } 1312 1313 if (error) 1314 goto error_finish_iomap; 1315 1316 __SetPageUptodate(vmf->cow_page); 1317 ret = finish_fault(vmf); 1318 if (!ret) 1319 ret = VM_FAULT_DONE_COW; 1320 goto finish_iomap; 1321 } 1322 1323 sync = dax_fault_is_synchronous(flags, vma, &iomap); 1324 1325 switch (iomap.type) { 1326 case IOMAP_MAPPED: 1327 if (iomap.flags & IOMAP_F_NEW) { 1328 count_vm_event(PGMAJFAULT); 1329 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 1330 major = VM_FAULT_MAJOR; 1331 } 1332 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn); 1333 if (error < 0) 1334 goto error_finish_iomap; 1335 1336 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1337 0, write && !sync); 1338 1339 /* 1340 * If we are doing synchronous page fault and inode needs fsync, 1341 * we can insert PTE into page tables only after that happens. 1342 * Skip insertion for now and return the pfn so that caller can 1343 * insert it after fsync is done. 1344 */ 1345 if (sync) { 1346 if (WARN_ON_ONCE(!pfnp)) { 1347 error = -EIO; 1348 goto error_finish_iomap; 1349 } 1350 *pfnp = pfn; 1351 ret = VM_FAULT_NEEDDSYNC | major; 1352 goto finish_iomap; 1353 } 1354 trace_dax_insert_mapping(inode, vmf, entry); 1355 if (write) 1356 ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn); 1357 else 1358 ret = vmf_insert_mixed(vma, vaddr, pfn); 1359 1360 goto finish_iomap; 1361 case IOMAP_UNWRITTEN: 1362 case IOMAP_HOLE: 1363 if (!write) { 1364 ret = dax_load_hole(&xas, mapping, &entry, vmf); 1365 goto finish_iomap; 1366 } 1367 /*FALLTHRU*/ 1368 default: 1369 WARN_ON_ONCE(1); 1370 error = -EIO; 1371 break; 1372 } 1373 1374 error_finish_iomap: 1375 ret = dax_fault_return(error); 1376 finish_iomap: 1377 if (ops->iomap_end) { 1378 int copied = PAGE_SIZE; 1379 1380 if (ret & VM_FAULT_ERROR) 1381 copied = 0; 1382 /* 1383 * The fault is done by now and there's no way back (other 1384 * thread may be already happily using PTE we have installed). 1385 * Just ignore error from ->iomap_end since we cannot do much 1386 * with it. 1387 */ 1388 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap); 1389 } 1390 unlock_entry: 1391 dax_unlock_entry(&xas, entry); 1392 out: 1393 trace_dax_pte_fault_done(inode, vmf, ret); 1394 return ret | major; 1395 } 1396 1397 #ifdef CONFIG_FS_DAX_PMD 1398 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf, 1399 struct iomap *iomap, void **entry) 1400 { 1401 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1402 unsigned long pmd_addr = vmf->address & PMD_MASK; 1403 struct vm_area_struct *vma = vmf->vma; 1404 struct inode *inode = mapping->host; 1405 pgtable_t pgtable = NULL; 1406 struct page *zero_page; 1407 spinlock_t *ptl; 1408 pmd_t pmd_entry; 1409 pfn_t pfn; 1410 1411 zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm); 1412 1413 if (unlikely(!zero_page)) 1414 goto fallback; 1415 1416 pfn = page_to_pfn_t(zero_page); 1417 *entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn, 1418 DAX_PMD | DAX_ZERO_PAGE, false); 1419 1420 if (arch_needs_pgtable_deposit()) { 1421 pgtable = pte_alloc_one(vma->vm_mm); 1422 if (!pgtable) 1423 return VM_FAULT_OOM; 1424 } 1425 1426 ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd); 1427 if (!pmd_none(*(vmf->pmd))) { 1428 spin_unlock(ptl); 1429 goto fallback; 1430 } 1431 1432 if (pgtable) { 1433 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable); 1434 mm_inc_nr_ptes(vma->vm_mm); 1435 } 1436 pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot); 1437 pmd_entry = pmd_mkhuge(pmd_entry); 1438 set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry); 1439 spin_unlock(ptl); 1440 trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry); 1441 return VM_FAULT_NOPAGE; 1442 1443 fallback: 1444 if (pgtable) 1445 pte_free(vma->vm_mm, pgtable); 1446 trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry); 1447 return VM_FAULT_FALLBACK; 1448 } 1449 1450 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1451 const struct iomap_ops *ops) 1452 { 1453 struct vm_area_struct *vma = vmf->vma; 1454 struct address_space *mapping = vma->vm_file->f_mapping; 1455 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER); 1456 unsigned long pmd_addr = vmf->address & PMD_MASK; 1457 bool write = vmf->flags & FAULT_FLAG_WRITE; 1458 bool sync; 1459 unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT; 1460 struct inode *inode = mapping->host; 1461 vm_fault_t result = VM_FAULT_FALLBACK; 1462 struct iomap iomap = { 0 }; 1463 pgoff_t max_pgoff; 1464 void *entry; 1465 loff_t pos; 1466 int error; 1467 pfn_t pfn; 1468 1469 /* 1470 * Check whether offset isn't beyond end of file now. Caller is 1471 * supposed to hold locks serializing us with truncate / punch hole so 1472 * this is a reliable test. 1473 */ 1474 max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 1475 1476 trace_dax_pmd_fault(inode, vmf, max_pgoff, 0); 1477 1478 /* 1479 * Make sure that the faulting address's PMD offset (color) matches 1480 * the PMD offset from the start of the file. This is necessary so 1481 * that a PMD range in the page table overlaps exactly with a PMD 1482 * range in the page cache. 1483 */ 1484 if ((vmf->pgoff & PG_PMD_COLOUR) != 1485 ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR)) 1486 goto fallback; 1487 1488 /* Fall back to PTEs if we're going to COW */ 1489 if (write && !(vma->vm_flags & VM_SHARED)) 1490 goto fallback; 1491 1492 /* If the PMD would extend outside the VMA */ 1493 if (pmd_addr < vma->vm_start) 1494 goto fallback; 1495 if ((pmd_addr + PMD_SIZE) > vma->vm_end) 1496 goto fallback; 1497 1498 if (xas.xa_index >= max_pgoff) { 1499 result = VM_FAULT_SIGBUS; 1500 goto out; 1501 } 1502 1503 /* If the PMD would extend beyond the file size */ 1504 if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff) 1505 goto fallback; 1506 1507 /* 1508 * grab_mapping_entry() will make sure we get an empty PMD entry, 1509 * a zero PMD entry or a DAX PMD. If it can't (because a PTE 1510 * entry is already in the array, for instance), it will return 1511 * VM_FAULT_FALLBACK. 1512 */ 1513 entry = grab_mapping_entry(&xas, mapping, DAX_PMD); 1514 if (xa_is_internal(entry)) { 1515 result = xa_to_internal(entry); 1516 goto fallback; 1517 } 1518 1519 /* 1520 * It is possible, particularly with mixed reads & writes to private 1521 * mappings, that we have raced with a PTE fault that overlaps with 1522 * the PMD we need to set up. If so just return and the fault will be 1523 * retried. 1524 */ 1525 if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) && 1526 !pmd_devmap(*vmf->pmd)) { 1527 result = 0; 1528 goto unlock_entry; 1529 } 1530 1531 /* 1532 * Note that we don't use iomap_apply here. We aren't doing I/O, only 1533 * setting up a mapping, so really we're using iomap_begin() as a way 1534 * to look up our filesystem block. 1535 */ 1536 pos = (loff_t)xas.xa_index << PAGE_SHIFT; 1537 error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap); 1538 if (error) 1539 goto unlock_entry; 1540 1541 if (iomap.offset + iomap.length < pos + PMD_SIZE) 1542 goto finish_iomap; 1543 1544 sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap); 1545 1546 switch (iomap.type) { 1547 case IOMAP_MAPPED: 1548 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn); 1549 if (error < 0) 1550 goto finish_iomap; 1551 1552 entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn, 1553 DAX_PMD, write && !sync); 1554 1555 /* 1556 * If we are doing synchronous page fault and inode needs fsync, 1557 * we can insert PMD into page tables only after that happens. 1558 * Skip insertion for now and return the pfn so that caller can 1559 * insert it after fsync is done. 1560 */ 1561 if (sync) { 1562 if (WARN_ON_ONCE(!pfnp)) 1563 goto finish_iomap; 1564 *pfnp = pfn; 1565 result = VM_FAULT_NEEDDSYNC; 1566 goto finish_iomap; 1567 } 1568 1569 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry); 1570 result = vmf_insert_pfn_pmd(vmf, pfn, write); 1571 break; 1572 case IOMAP_UNWRITTEN: 1573 case IOMAP_HOLE: 1574 if (WARN_ON_ONCE(write)) 1575 break; 1576 result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry); 1577 break; 1578 default: 1579 WARN_ON_ONCE(1); 1580 break; 1581 } 1582 1583 finish_iomap: 1584 if (ops->iomap_end) { 1585 int copied = PMD_SIZE; 1586 1587 if (result == VM_FAULT_FALLBACK) 1588 copied = 0; 1589 /* 1590 * The fault is done by now and there's no way back (other 1591 * thread may be already happily using PMD we have installed). 1592 * Just ignore error from ->iomap_end since we cannot do much 1593 * with it. 1594 */ 1595 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags, 1596 &iomap); 1597 } 1598 unlock_entry: 1599 dax_unlock_entry(&xas, entry); 1600 fallback: 1601 if (result == VM_FAULT_FALLBACK) { 1602 split_huge_pmd(vma, vmf->pmd, vmf->address); 1603 count_vm_event(THP_FAULT_FALLBACK); 1604 } 1605 out: 1606 trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result); 1607 return result; 1608 } 1609 #else 1610 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp, 1611 const struct iomap_ops *ops) 1612 { 1613 return VM_FAULT_FALLBACK; 1614 } 1615 #endif /* CONFIG_FS_DAX_PMD */ 1616 1617 /** 1618 * dax_iomap_fault - handle a page fault on a DAX file 1619 * @vmf: The description of the fault 1620 * @pe_size: Size of the page to fault in 1621 * @pfnp: PFN to insert for synchronous faults if fsync is required 1622 * @iomap_errp: Storage for detailed error code in case of error 1623 * @ops: Iomap ops passed from the file system 1624 * 1625 * When a page fault occurs, filesystems may call this helper in 1626 * their fault handler for DAX files. dax_iomap_fault() assumes the caller 1627 * has done all the necessary locking for page fault to proceed 1628 * successfully. 1629 */ 1630 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size, 1631 pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops) 1632 { 1633 switch (pe_size) { 1634 case PE_SIZE_PTE: 1635 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops); 1636 case PE_SIZE_PMD: 1637 return dax_iomap_pmd_fault(vmf, pfnp, ops); 1638 default: 1639 return VM_FAULT_FALLBACK; 1640 } 1641 } 1642 EXPORT_SYMBOL_GPL(dax_iomap_fault); 1643 1644 /* 1645 * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables 1646 * @vmf: The description of the fault 1647 * @pfn: PFN to insert 1648 * @order: Order of entry to insert. 1649 * 1650 * This function inserts a writeable PTE or PMD entry into the page tables 1651 * for an mmaped DAX file. It also marks the page cache entry as dirty. 1652 */ 1653 static vm_fault_t 1654 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order) 1655 { 1656 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 1657 XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order); 1658 void *entry; 1659 vm_fault_t ret; 1660 1661 xas_lock_irq(&xas); 1662 entry = get_unlocked_entry(&xas); 1663 /* Did we race with someone splitting entry or so? */ 1664 if (!entry || 1665 (order == 0 && !dax_is_pte_entry(entry)) || 1666 (order == PMD_ORDER && !dax_is_pmd_entry(entry))) { 1667 put_unlocked_entry(&xas, entry); 1668 xas_unlock_irq(&xas); 1669 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf, 1670 VM_FAULT_NOPAGE); 1671 return VM_FAULT_NOPAGE; 1672 } 1673 xas_set_mark(&xas, PAGECACHE_TAG_DIRTY); 1674 dax_lock_entry(&xas, entry); 1675 xas_unlock_irq(&xas); 1676 if (order == 0) 1677 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn); 1678 #ifdef CONFIG_FS_DAX_PMD 1679 else if (order == PMD_ORDER) 1680 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE); 1681 #endif 1682 else 1683 ret = VM_FAULT_FALLBACK; 1684 dax_unlock_entry(&xas, entry); 1685 trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret); 1686 return ret; 1687 } 1688 1689 /** 1690 * dax_finish_sync_fault - finish synchronous page fault 1691 * @vmf: The description of the fault 1692 * @pe_size: Size of entry to be inserted 1693 * @pfn: PFN to insert 1694 * 1695 * This function ensures that the file range touched by the page fault is 1696 * stored persistently on the media and handles inserting of appropriate page 1697 * table entry. 1698 */ 1699 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf, 1700 enum page_entry_size pe_size, pfn_t pfn) 1701 { 1702 int err; 1703 loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT; 1704 unsigned int order = pe_order(pe_size); 1705 size_t len = PAGE_SIZE << order; 1706 1707 err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1); 1708 if (err) 1709 return VM_FAULT_SIGBUS; 1710 return dax_insert_pfn_mkwrite(vmf, pfn, order); 1711 } 1712 EXPORT_SYMBOL_GPL(dax_finish_sync_fault); 1713