xref: /linux/fs/dax.c (revision 02aeb2f21530c98fc3ca51028eda742a3fafbd9f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/dax.c - Direct Access filesystem code
4  * Copyright (c) 2013-2014 Intel Corporation
5  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
6  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
7  */
8 
9 #include <linux/atomic.h>
10 #include <linux/blkdev.h>
11 #include <linux/buffer_head.h>
12 #include <linux/dax.h>
13 #include <linux/fs.h>
14 #include <linux/genhd.h>
15 #include <linux/highmem.h>
16 #include <linux/memcontrol.h>
17 #include <linux/mm.h>
18 #include <linux/mutex.h>
19 #include <linux/pagevec.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/uio.h>
23 #include <linux/vmstat.h>
24 #include <linux/pfn_t.h>
25 #include <linux/sizes.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/iomap.h>
28 #include <asm/pgalloc.h>
29 
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/fs_dax.h>
32 
33 static inline unsigned int pe_order(enum page_entry_size pe_size)
34 {
35 	if (pe_size == PE_SIZE_PTE)
36 		return PAGE_SHIFT - PAGE_SHIFT;
37 	if (pe_size == PE_SIZE_PMD)
38 		return PMD_SHIFT - PAGE_SHIFT;
39 	if (pe_size == PE_SIZE_PUD)
40 		return PUD_SHIFT - PAGE_SHIFT;
41 	return ~0;
42 }
43 
44 /* We choose 4096 entries - same as per-zone page wait tables */
45 #define DAX_WAIT_TABLE_BITS 12
46 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
47 
48 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
49 #define PG_PMD_COLOUR	((PMD_SIZE >> PAGE_SHIFT) - 1)
50 #define PG_PMD_NR	(PMD_SIZE >> PAGE_SHIFT)
51 
52 /* The order of a PMD entry */
53 #define PMD_ORDER	(PMD_SHIFT - PAGE_SHIFT)
54 
55 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
56 
57 static int __init init_dax_wait_table(void)
58 {
59 	int i;
60 
61 	for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
62 		init_waitqueue_head(wait_table + i);
63 	return 0;
64 }
65 fs_initcall(init_dax_wait_table);
66 
67 /*
68  * DAX pagecache entries use XArray value entries so they can't be mistaken
69  * for pages.  We use one bit for locking, one bit for the entry size (PMD)
70  * and two more to tell us if the entry is a zero page or an empty entry that
71  * is just used for locking.  In total four special bits.
72  *
73  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
74  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
75  * block allocation.
76  */
77 #define DAX_SHIFT	(4)
78 #define DAX_LOCKED	(1UL << 0)
79 #define DAX_PMD		(1UL << 1)
80 #define DAX_ZERO_PAGE	(1UL << 2)
81 #define DAX_EMPTY	(1UL << 3)
82 
83 static unsigned long dax_to_pfn(void *entry)
84 {
85 	return xa_to_value(entry) >> DAX_SHIFT;
86 }
87 
88 static void *dax_make_entry(pfn_t pfn, unsigned long flags)
89 {
90 	return xa_mk_value(flags | (pfn_t_to_pfn(pfn) << DAX_SHIFT));
91 }
92 
93 static bool dax_is_locked(void *entry)
94 {
95 	return xa_to_value(entry) & DAX_LOCKED;
96 }
97 
98 static unsigned int dax_entry_order(void *entry)
99 {
100 	if (xa_to_value(entry) & DAX_PMD)
101 		return PMD_ORDER;
102 	return 0;
103 }
104 
105 static unsigned long dax_is_pmd_entry(void *entry)
106 {
107 	return xa_to_value(entry) & DAX_PMD;
108 }
109 
110 static bool dax_is_pte_entry(void *entry)
111 {
112 	return !(xa_to_value(entry) & DAX_PMD);
113 }
114 
115 static int dax_is_zero_entry(void *entry)
116 {
117 	return xa_to_value(entry) & DAX_ZERO_PAGE;
118 }
119 
120 static int dax_is_empty_entry(void *entry)
121 {
122 	return xa_to_value(entry) & DAX_EMPTY;
123 }
124 
125 /*
126  * true if the entry that was found is of a smaller order than the entry
127  * we were looking for
128  */
129 static bool dax_is_conflict(void *entry)
130 {
131 	return entry == XA_RETRY_ENTRY;
132 }
133 
134 /*
135  * DAX page cache entry locking
136  */
137 struct exceptional_entry_key {
138 	struct xarray *xa;
139 	pgoff_t entry_start;
140 };
141 
142 struct wait_exceptional_entry_queue {
143 	wait_queue_entry_t wait;
144 	struct exceptional_entry_key key;
145 };
146 
147 static wait_queue_head_t *dax_entry_waitqueue(struct xa_state *xas,
148 		void *entry, struct exceptional_entry_key *key)
149 {
150 	unsigned long hash;
151 	unsigned long index = xas->xa_index;
152 
153 	/*
154 	 * If 'entry' is a PMD, align the 'index' that we use for the wait
155 	 * queue to the start of that PMD.  This ensures that all offsets in
156 	 * the range covered by the PMD map to the same bit lock.
157 	 */
158 	if (dax_is_pmd_entry(entry))
159 		index &= ~PG_PMD_COLOUR;
160 	key->xa = xas->xa;
161 	key->entry_start = index;
162 
163 	hash = hash_long((unsigned long)xas->xa ^ index, DAX_WAIT_TABLE_BITS);
164 	return wait_table + hash;
165 }
166 
167 static int wake_exceptional_entry_func(wait_queue_entry_t *wait,
168 		unsigned int mode, int sync, void *keyp)
169 {
170 	struct exceptional_entry_key *key = keyp;
171 	struct wait_exceptional_entry_queue *ewait =
172 		container_of(wait, struct wait_exceptional_entry_queue, wait);
173 
174 	if (key->xa != ewait->key.xa ||
175 	    key->entry_start != ewait->key.entry_start)
176 		return 0;
177 	return autoremove_wake_function(wait, mode, sync, NULL);
178 }
179 
180 /*
181  * @entry may no longer be the entry at the index in the mapping.
182  * The important information it's conveying is whether the entry at
183  * this index used to be a PMD entry.
184  */
185 static void dax_wake_entry(struct xa_state *xas, void *entry, bool wake_all)
186 {
187 	struct exceptional_entry_key key;
188 	wait_queue_head_t *wq;
189 
190 	wq = dax_entry_waitqueue(xas, entry, &key);
191 
192 	/*
193 	 * Checking for locked entry and prepare_to_wait_exclusive() happens
194 	 * under the i_pages lock, ditto for entry handling in our callers.
195 	 * So at this point all tasks that could have seen our entry locked
196 	 * must be in the waitqueue and the following check will see them.
197 	 */
198 	if (waitqueue_active(wq))
199 		__wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
200 }
201 
202 /*
203  * Look up entry in page cache, wait for it to become unlocked if it
204  * is a DAX entry and return it.  The caller must subsequently call
205  * put_unlocked_entry() if it did not lock the entry or dax_unlock_entry()
206  * if it did.  The entry returned may have a larger order than @order.
207  * If @order is larger than the order of the entry found in i_pages, this
208  * function returns a dax_is_conflict entry.
209  *
210  * Must be called with the i_pages lock held.
211  */
212 static void *get_unlocked_entry(struct xa_state *xas, unsigned int order)
213 {
214 	void *entry;
215 	struct wait_exceptional_entry_queue ewait;
216 	wait_queue_head_t *wq;
217 
218 	init_wait(&ewait.wait);
219 	ewait.wait.func = wake_exceptional_entry_func;
220 
221 	for (;;) {
222 		entry = xas_find_conflict(xas);
223 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
224 			return entry;
225 		if (dax_entry_order(entry) < order)
226 			return XA_RETRY_ENTRY;
227 		if (!dax_is_locked(entry))
228 			return entry;
229 
230 		wq = dax_entry_waitqueue(xas, entry, &ewait.key);
231 		prepare_to_wait_exclusive(wq, &ewait.wait,
232 					  TASK_UNINTERRUPTIBLE);
233 		xas_unlock_irq(xas);
234 		xas_reset(xas);
235 		schedule();
236 		finish_wait(wq, &ewait.wait);
237 		xas_lock_irq(xas);
238 	}
239 }
240 
241 /*
242  * The only thing keeping the address space around is the i_pages lock
243  * (it's cycled in clear_inode() after removing the entries from i_pages)
244  * After we call xas_unlock_irq(), we cannot touch xas->xa.
245  */
246 static void wait_entry_unlocked(struct xa_state *xas, void *entry)
247 {
248 	struct wait_exceptional_entry_queue ewait;
249 	wait_queue_head_t *wq;
250 
251 	init_wait(&ewait.wait);
252 	ewait.wait.func = wake_exceptional_entry_func;
253 
254 	wq = dax_entry_waitqueue(xas, entry, &ewait.key);
255 	/*
256 	 * Unlike get_unlocked_entry() there is no guarantee that this
257 	 * path ever successfully retrieves an unlocked entry before an
258 	 * inode dies. Perform a non-exclusive wait in case this path
259 	 * never successfully performs its own wake up.
260 	 */
261 	prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
262 	xas_unlock_irq(xas);
263 	schedule();
264 	finish_wait(wq, &ewait.wait);
265 }
266 
267 static void put_unlocked_entry(struct xa_state *xas, void *entry)
268 {
269 	/* If we were the only waiter woken, wake the next one */
270 	if (entry && !dax_is_conflict(entry))
271 		dax_wake_entry(xas, entry, false);
272 }
273 
274 /*
275  * We used the xa_state to get the entry, but then we locked the entry and
276  * dropped the xa_lock, so we know the xa_state is stale and must be reset
277  * before use.
278  */
279 static void dax_unlock_entry(struct xa_state *xas, void *entry)
280 {
281 	void *old;
282 
283 	BUG_ON(dax_is_locked(entry));
284 	xas_reset(xas);
285 	xas_lock_irq(xas);
286 	old = xas_store(xas, entry);
287 	xas_unlock_irq(xas);
288 	BUG_ON(!dax_is_locked(old));
289 	dax_wake_entry(xas, entry, false);
290 }
291 
292 /*
293  * Return: The entry stored at this location before it was locked.
294  */
295 static void *dax_lock_entry(struct xa_state *xas, void *entry)
296 {
297 	unsigned long v = xa_to_value(entry);
298 	return xas_store(xas, xa_mk_value(v | DAX_LOCKED));
299 }
300 
301 static unsigned long dax_entry_size(void *entry)
302 {
303 	if (dax_is_zero_entry(entry))
304 		return 0;
305 	else if (dax_is_empty_entry(entry))
306 		return 0;
307 	else if (dax_is_pmd_entry(entry))
308 		return PMD_SIZE;
309 	else
310 		return PAGE_SIZE;
311 }
312 
313 static unsigned long dax_end_pfn(void *entry)
314 {
315 	return dax_to_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
316 }
317 
318 /*
319  * Iterate through all mapped pfns represented by an entry, i.e. skip
320  * 'empty' and 'zero' entries.
321  */
322 #define for_each_mapped_pfn(entry, pfn) \
323 	for (pfn = dax_to_pfn(entry); \
324 			pfn < dax_end_pfn(entry); pfn++)
325 
326 /*
327  * TODO: for reflink+dax we need a way to associate a single page with
328  * multiple address_space instances at different linear_page_index()
329  * offsets.
330  */
331 static void dax_associate_entry(void *entry, struct address_space *mapping,
332 		struct vm_area_struct *vma, unsigned long address)
333 {
334 	unsigned long size = dax_entry_size(entry), pfn, index;
335 	int i = 0;
336 
337 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
338 		return;
339 
340 	index = linear_page_index(vma, address & ~(size - 1));
341 	for_each_mapped_pfn(entry, pfn) {
342 		struct page *page = pfn_to_page(pfn);
343 
344 		WARN_ON_ONCE(page->mapping);
345 		page->mapping = mapping;
346 		page->index = index + i++;
347 	}
348 }
349 
350 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
351 		bool trunc)
352 {
353 	unsigned long pfn;
354 
355 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
356 		return;
357 
358 	for_each_mapped_pfn(entry, pfn) {
359 		struct page *page = pfn_to_page(pfn);
360 
361 		WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
362 		WARN_ON_ONCE(page->mapping && page->mapping != mapping);
363 		page->mapping = NULL;
364 		page->index = 0;
365 	}
366 }
367 
368 static struct page *dax_busy_page(void *entry)
369 {
370 	unsigned long pfn;
371 
372 	for_each_mapped_pfn(entry, pfn) {
373 		struct page *page = pfn_to_page(pfn);
374 
375 		if (page_ref_count(page) > 1)
376 			return page;
377 	}
378 	return NULL;
379 }
380 
381 /*
382  * dax_lock_mapping_entry - Lock the DAX entry corresponding to a page
383  * @page: The page whose entry we want to lock
384  *
385  * Context: Process context.
386  * Return: A cookie to pass to dax_unlock_page() or 0 if the entry could
387  * not be locked.
388  */
389 dax_entry_t dax_lock_page(struct page *page)
390 {
391 	XA_STATE(xas, NULL, 0);
392 	void *entry;
393 
394 	/* Ensure page->mapping isn't freed while we look at it */
395 	rcu_read_lock();
396 	for (;;) {
397 		struct address_space *mapping = READ_ONCE(page->mapping);
398 
399 		entry = NULL;
400 		if (!mapping || !dax_mapping(mapping))
401 			break;
402 
403 		/*
404 		 * In the device-dax case there's no need to lock, a
405 		 * struct dev_pagemap pin is sufficient to keep the
406 		 * inode alive, and we assume we have dev_pagemap pin
407 		 * otherwise we would not have a valid pfn_to_page()
408 		 * translation.
409 		 */
410 		entry = (void *)~0UL;
411 		if (S_ISCHR(mapping->host->i_mode))
412 			break;
413 
414 		xas.xa = &mapping->i_pages;
415 		xas_lock_irq(&xas);
416 		if (mapping != page->mapping) {
417 			xas_unlock_irq(&xas);
418 			continue;
419 		}
420 		xas_set(&xas, page->index);
421 		entry = xas_load(&xas);
422 		if (dax_is_locked(entry)) {
423 			rcu_read_unlock();
424 			wait_entry_unlocked(&xas, entry);
425 			rcu_read_lock();
426 			continue;
427 		}
428 		dax_lock_entry(&xas, entry);
429 		xas_unlock_irq(&xas);
430 		break;
431 	}
432 	rcu_read_unlock();
433 	return (dax_entry_t)entry;
434 }
435 
436 void dax_unlock_page(struct page *page, dax_entry_t cookie)
437 {
438 	struct address_space *mapping = page->mapping;
439 	XA_STATE(xas, &mapping->i_pages, page->index);
440 
441 	if (S_ISCHR(mapping->host->i_mode))
442 		return;
443 
444 	dax_unlock_entry(&xas, (void *)cookie);
445 }
446 
447 /*
448  * Find page cache entry at given index. If it is a DAX entry, return it
449  * with the entry locked. If the page cache doesn't contain an entry at
450  * that index, add a locked empty entry.
451  *
452  * When requesting an entry with size DAX_PMD, grab_mapping_entry() will
453  * either return that locked entry or will return VM_FAULT_FALLBACK.
454  * This will happen if there are any PTE entries within the PMD range
455  * that we are requesting.
456  *
457  * We always favor PTE entries over PMD entries. There isn't a flow where we
458  * evict PTE entries in order to 'upgrade' them to a PMD entry.  A PMD
459  * insertion will fail if it finds any PTE entries already in the tree, and a
460  * PTE insertion will cause an existing PMD entry to be unmapped and
461  * downgraded to PTE entries.  This happens for both PMD zero pages as
462  * well as PMD empty entries.
463  *
464  * The exception to this downgrade path is for PMD entries that have
465  * real storage backing them.  We will leave these real PMD entries in
466  * the tree, and PTE writes will simply dirty the entire PMD entry.
467  *
468  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
469  * persistent memory the benefit is doubtful. We can add that later if we can
470  * show it helps.
471  *
472  * On error, this function does not return an ERR_PTR.  Instead it returns
473  * a VM_FAULT code, encoded as an xarray internal entry.  The ERR_PTR values
474  * overlap with xarray value entries.
475  */
476 static void *grab_mapping_entry(struct xa_state *xas,
477 		struct address_space *mapping, unsigned int order)
478 {
479 	unsigned long index = xas->xa_index;
480 	bool pmd_downgrade = false; /* splitting PMD entry into PTE entries? */
481 	void *entry;
482 
483 retry:
484 	xas_lock_irq(xas);
485 	entry = get_unlocked_entry(xas, order);
486 
487 	if (entry) {
488 		if (dax_is_conflict(entry))
489 			goto fallback;
490 		if (!xa_is_value(entry)) {
491 			xas_set_err(xas, EIO);
492 			goto out_unlock;
493 		}
494 
495 		if (order == 0) {
496 			if (dax_is_pmd_entry(entry) &&
497 			    (dax_is_zero_entry(entry) ||
498 			     dax_is_empty_entry(entry))) {
499 				pmd_downgrade = true;
500 			}
501 		}
502 	}
503 
504 	if (pmd_downgrade) {
505 		/*
506 		 * Make sure 'entry' remains valid while we drop
507 		 * the i_pages lock.
508 		 */
509 		dax_lock_entry(xas, entry);
510 
511 		/*
512 		 * Besides huge zero pages the only other thing that gets
513 		 * downgraded are empty entries which don't need to be
514 		 * unmapped.
515 		 */
516 		if (dax_is_zero_entry(entry)) {
517 			xas_unlock_irq(xas);
518 			unmap_mapping_pages(mapping,
519 					xas->xa_index & ~PG_PMD_COLOUR,
520 					PG_PMD_NR, false);
521 			xas_reset(xas);
522 			xas_lock_irq(xas);
523 		}
524 
525 		dax_disassociate_entry(entry, mapping, false);
526 		xas_store(xas, NULL);	/* undo the PMD join */
527 		dax_wake_entry(xas, entry, true);
528 		mapping->nrexceptional--;
529 		entry = NULL;
530 		xas_set(xas, index);
531 	}
532 
533 	if (entry) {
534 		dax_lock_entry(xas, entry);
535 	} else {
536 		unsigned long flags = DAX_EMPTY;
537 
538 		if (order > 0)
539 			flags |= DAX_PMD;
540 		entry = dax_make_entry(pfn_to_pfn_t(0), flags);
541 		dax_lock_entry(xas, entry);
542 		if (xas_error(xas))
543 			goto out_unlock;
544 		mapping->nrexceptional++;
545 	}
546 
547 out_unlock:
548 	xas_unlock_irq(xas);
549 	if (xas_nomem(xas, mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM))
550 		goto retry;
551 	if (xas->xa_node == XA_ERROR(-ENOMEM))
552 		return xa_mk_internal(VM_FAULT_OOM);
553 	if (xas_error(xas))
554 		return xa_mk_internal(VM_FAULT_SIGBUS);
555 	return entry;
556 fallback:
557 	xas_unlock_irq(xas);
558 	return xa_mk_internal(VM_FAULT_FALLBACK);
559 }
560 
561 /**
562  * dax_layout_busy_page - find first pinned page in @mapping
563  * @mapping: address space to scan for a page with ref count > 1
564  *
565  * DAX requires ZONE_DEVICE mapped pages. These pages are never
566  * 'onlined' to the page allocator so they are considered idle when
567  * page->count == 1. A filesystem uses this interface to determine if
568  * any page in the mapping is busy, i.e. for DMA, or other
569  * get_user_pages() usages.
570  *
571  * It is expected that the filesystem is holding locks to block the
572  * establishment of new mappings in this address_space. I.e. it expects
573  * to be able to run unmap_mapping_range() and subsequently not race
574  * mapping_mapped() becoming true.
575  */
576 struct page *dax_layout_busy_page(struct address_space *mapping)
577 {
578 	XA_STATE(xas, &mapping->i_pages, 0);
579 	void *entry;
580 	unsigned int scanned = 0;
581 	struct page *page = NULL;
582 
583 	/*
584 	 * In the 'limited' case get_user_pages() for dax is disabled.
585 	 */
586 	if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
587 		return NULL;
588 
589 	if (!dax_mapping(mapping) || !mapping_mapped(mapping))
590 		return NULL;
591 
592 	/*
593 	 * If we race get_user_pages_fast() here either we'll see the
594 	 * elevated page count in the iteration and wait, or
595 	 * get_user_pages_fast() will see that the page it took a reference
596 	 * against is no longer mapped in the page tables and bail to the
597 	 * get_user_pages() slow path.  The slow path is protected by
598 	 * pte_lock() and pmd_lock(). New references are not taken without
599 	 * holding those locks, and unmap_mapping_range() will not zero the
600 	 * pte or pmd without holding the respective lock, so we are
601 	 * guaranteed to either see new references or prevent new
602 	 * references from being established.
603 	 */
604 	unmap_mapping_range(mapping, 0, 0, 0);
605 
606 	xas_lock_irq(&xas);
607 	xas_for_each(&xas, entry, ULONG_MAX) {
608 		if (WARN_ON_ONCE(!xa_is_value(entry)))
609 			continue;
610 		if (unlikely(dax_is_locked(entry)))
611 			entry = get_unlocked_entry(&xas, 0);
612 		if (entry)
613 			page = dax_busy_page(entry);
614 		put_unlocked_entry(&xas, entry);
615 		if (page)
616 			break;
617 		if (++scanned % XA_CHECK_SCHED)
618 			continue;
619 
620 		xas_pause(&xas);
621 		xas_unlock_irq(&xas);
622 		cond_resched();
623 		xas_lock_irq(&xas);
624 	}
625 	xas_unlock_irq(&xas);
626 	return page;
627 }
628 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
629 
630 static int __dax_invalidate_entry(struct address_space *mapping,
631 					  pgoff_t index, bool trunc)
632 {
633 	XA_STATE(xas, &mapping->i_pages, index);
634 	int ret = 0;
635 	void *entry;
636 
637 	xas_lock_irq(&xas);
638 	entry = get_unlocked_entry(&xas, 0);
639 	if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
640 		goto out;
641 	if (!trunc &&
642 	    (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY) ||
643 	     xas_get_mark(&xas, PAGECACHE_TAG_TOWRITE)))
644 		goto out;
645 	dax_disassociate_entry(entry, mapping, trunc);
646 	xas_store(&xas, NULL);
647 	mapping->nrexceptional--;
648 	ret = 1;
649 out:
650 	put_unlocked_entry(&xas, entry);
651 	xas_unlock_irq(&xas);
652 	return ret;
653 }
654 
655 /*
656  * Delete DAX entry at @index from @mapping.  Wait for it
657  * to be unlocked before deleting it.
658  */
659 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
660 {
661 	int ret = __dax_invalidate_entry(mapping, index, true);
662 
663 	/*
664 	 * This gets called from truncate / punch_hole path. As such, the caller
665 	 * must hold locks protecting against concurrent modifications of the
666 	 * page cache (usually fs-private i_mmap_sem for writing). Since the
667 	 * caller has seen a DAX entry for this index, we better find it
668 	 * at that index as well...
669 	 */
670 	WARN_ON_ONCE(!ret);
671 	return ret;
672 }
673 
674 /*
675  * Invalidate DAX entry if it is clean.
676  */
677 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
678 				      pgoff_t index)
679 {
680 	return __dax_invalidate_entry(mapping, index, false);
681 }
682 
683 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
684 		sector_t sector, size_t size, struct page *to,
685 		unsigned long vaddr)
686 {
687 	void *vto, *kaddr;
688 	pgoff_t pgoff;
689 	long rc;
690 	int id;
691 
692 	rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
693 	if (rc)
694 		return rc;
695 
696 	id = dax_read_lock();
697 	rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
698 	if (rc < 0) {
699 		dax_read_unlock(id);
700 		return rc;
701 	}
702 	vto = kmap_atomic(to);
703 	copy_user_page(vto, (void __force *)kaddr, vaddr, to);
704 	kunmap_atomic(vto);
705 	dax_read_unlock(id);
706 	return 0;
707 }
708 
709 /*
710  * By this point grab_mapping_entry() has ensured that we have a locked entry
711  * of the appropriate size so we don't have to worry about downgrading PMDs to
712  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
713  * already in the tree, we will skip the insertion and just dirty the PMD as
714  * appropriate.
715  */
716 static void *dax_insert_entry(struct xa_state *xas,
717 		struct address_space *mapping, struct vm_fault *vmf,
718 		void *entry, pfn_t pfn, unsigned long flags, bool dirty)
719 {
720 	void *new_entry = dax_make_entry(pfn, flags);
721 
722 	if (dirty)
723 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
724 
725 	if (dax_is_zero_entry(entry) && !(flags & DAX_ZERO_PAGE)) {
726 		unsigned long index = xas->xa_index;
727 		/* we are replacing a zero page with block mapping */
728 		if (dax_is_pmd_entry(entry))
729 			unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
730 					PG_PMD_NR, false);
731 		else /* pte entry */
732 			unmap_mapping_pages(mapping, index, 1, false);
733 	}
734 
735 	xas_reset(xas);
736 	xas_lock_irq(xas);
737 	if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
738 		void *old;
739 
740 		dax_disassociate_entry(entry, mapping, false);
741 		dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
742 		/*
743 		 * Only swap our new entry into the page cache if the current
744 		 * entry is a zero page or an empty entry.  If a normal PTE or
745 		 * PMD entry is already in the cache, we leave it alone.  This
746 		 * means that if we are trying to insert a PTE and the
747 		 * existing entry is a PMD, we will just leave the PMD in the
748 		 * tree and dirty it if necessary.
749 		 */
750 		old = dax_lock_entry(xas, new_entry);
751 		WARN_ON_ONCE(old != xa_mk_value(xa_to_value(entry) |
752 					DAX_LOCKED));
753 		entry = new_entry;
754 	} else {
755 		xas_load(xas);	/* Walk the xa_state */
756 	}
757 
758 	if (dirty)
759 		xas_set_mark(xas, PAGECACHE_TAG_DIRTY);
760 
761 	xas_unlock_irq(xas);
762 	return entry;
763 }
764 
765 static inline
766 unsigned long pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
767 {
768 	unsigned long address;
769 
770 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
771 	VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
772 	return address;
773 }
774 
775 /* Walk all mappings of a given index of a file and writeprotect them */
776 static void dax_entry_mkclean(struct address_space *mapping, pgoff_t index,
777 		unsigned long pfn)
778 {
779 	struct vm_area_struct *vma;
780 	pte_t pte, *ptep = NULL;
781 	pmd_t *pmdp = NULL;
782 	spinlock_t *ptl;
783 
784 	i_mmap_lock_read(mapping);
785 	vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
786 		struct mmu_notifier_range range;
787 		unsigned long address;
788 
789 		cond_resched();
790 
791 		if (!(vma->vm_flags & VM_SHARED))
792 			continue;
793 
794 		address = pgoff_address(index, vma);
795 
796 		/*
797 		 * Note because we provide range to follow_pte_pmd it will
798 		 * call mmu_notifier_invalidate_range_start() on our behalf
799 		 * before taking any lock.
800 		 */
801 		if (follow_pte_pmd(vma->vm_mm, address, &range,
802 				   &ptep, &pmdp, &ptl))
803 			continue;
804 
805 		/*
806 		 * No need to call mmu_notifier_invalidate_range() as we are
807 		 * downgrading page table protection not changing it to point
808 		 * to a new page.
809 		 *
810 		 * See Documentation/vm/mmu_notifier.rst
811 		 */
812 		if (pmdp) {
813 #ifdef CONFIG_FS_DAX_PMD
814 			pmd_t pmd;
815 
816 			if (pfn != pmd_pfn(*pmdp))
817 				goto unlock_pmd;
818 			if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
819 				goto unlock_pmd;
820 
821 			flush_cache_page(vma, address, pfn);
822 			pmd = pmdp_invalidate(vma, address, pmdp);
823 			pmd = pmd_wrprotect(pmd);
824 			pmd = pmd_mkclean(pmd);
825 			set_pmd_at(vma->vm_mm, address, pmdp, pmd);
826 unlock_pmd:
827 #endif
828 			spin_unlock(ptl);
829 		} else {
830 			if (pfn != pte_pfn(*ptep))
831 				goto unlock_pte;
832 			if (!pte_dirty(*ptep) && !pte_write(*ptep))
833 				goto unlock_pte;
834 
835 			flush_cache_page(vma, address, pfn);
836 			pte = ptep_clear_flush(vma, address, ptep);
837 			pte = pte_wrprotect(pte);
838 			pte = pte_mkclean(pte);
839 			set_pte_at(vma->vm_mm, address, ptep, pte);
840 unlock_pte:
841 			pte_unmap_unlock(ptep, ptl);
842 		}
843 
844 		mmu_notifier_invalidate_range_end(&range);
845 	}
846 	i_mmap_unlock_read(mapping);
847 }
848 
849 static int dax_writeback_one(struct xa_state *xas, struct dax_device *dax_dev,
850 		struct address_space *mapping, void *entry)
851 {
852 	unsigned long pfn, index, count;
853 	long ret = 0;
854 
855 	/*
856 	 * A page got tagged dirty in DAX mapping? Something is seriously
857 	 * wrong.
858 	 */
859 	if (WARN_ON(!xa_is_value(entry)))
860 		return -EIO;
861 
862 	if (unlikely(dax_is_locked(entry))) {
863 		void *old_entry = entry;
864 
865 		entry = get_unlocked_entry(xas, 0);
866 
867 		/* Entry got punched out / reallocated? */
868 		if (!entry || WARN_ON_ONCE(!xa_is_value(entry)))
869 			goto put_unlocked;
870 		/*
871 		 * Entry got reallocated elsewhere? No need to writeback.
872 		 * We have to compare pfns as we must not bail out due to
873 		 * difference in lockbit or entry type.
874 		 */
875 		if (dax_to_pfn(old_entry) != dax_to_pfn(entry))
876 			goto put_unlocked;
877 		if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
878 					dax_is_zero_entry(entry))) {
879 			ret = -EIO;
880 			goto put_unlocked;
881 		}
882 
883 		/* Another fsync thread may have already done this entry */
884 		if (!xas_get_mark(xas, PAGECACHE_TAG_TOWRITE))
885 			goto put_unlocked;
886 	}
887 
888 	/* Lock the entry to serialize with page faults */
889 	dax_lock_entry(xas, entry);
890 
891 	/*
892 	 * We can clear the tag now but we have to be careful so that concurrent
893 	 * dax_writeback_one() calls for the same index cannot finish before we
894 	 * actually flush the caches. This is achieved as the calls will look
895 	 * at the entry only under the i_pages lock and once they do that
896 	 * they will see the entry locked and wait for it to unlock.
897 	 */
898 	xas_clear_mark(xas, PAGECACHE_TAG_TOWRITE);
899 	xas_unlock_irq(xas);
900 
901 	/*
902 	 * If dax_writeback_mapping_range() was given a wbc->range_start
903 	 * in the middle of a PMD, the 'index' we use needs to be
904 	 * aligned to the start of the PMD.
905 	 * This allows us to flush for PMD_SIZE and not have to worry about
906 	 * partial PMD writebacks.
907 	 */
908 	pfn = dax_to_pfn(entry);
909 	count = 1UL << dax_entry_order(entry);
910 	index = xas->xa_index & ~(count - 1);
911 
912 	dax_entry_mkclean(mapping, index, pfn);
913 	dax_flush(dax_dev, page_address(pfn_to_page(pfn)), count * PAGE_SIZE);
914 	/*
915 	 * After we have flushed the cache, we can clear the dirty tag. There
916 	 * cannot be new dirty data in the pfn after the flush has completed as
917 	 * the pfn mappings are writeprotected and fault waits for mapping
918 	 * entry lock.
919 	 */
920 	xas_reset(xas);
921 	xas_lock_irq(xas);
922 	xas_store(xas, entry);
923 	xas_clear_mark(xas, PAGECACHE_TAG_DIRTY);
924 	dax_wake_entry(xas, entry, false);
925 
926 	trace_dax_writeback_one(mapping->host, index, count);
927 	return ret;
928 
929  put_unlocked:
930 	put_unlocked_entry(xas, entry);
931 	return ret;
932 }
933 
934 /*
935  * Flush the mapping to the persistent domain within the byte range of [start,
936  * end]. This is required by data integrity operations to ensure file data is
937  * on persistent storage prior to completion of the operation.
938  */
939 int dax_writeback_mapping_range(struct address_space *mapping,
940 		struct block_device *bdev, struct writeback_control *wbc)
941 {
942 	XA_STATE(xas, &mapping->i_pages, wbc->range_start >> PAGE_SHIFT);
943 	struct inode *inode = mapping->host;
944 	pgoff_t end_index = wbc->range_end >> PAGE_SHIFT;
945 	struct dax_device *dax_dev;
946 	void *entry;
947 	int ret = 0;
948 	unsigned int scanned = 0;
949 
950 	if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
951 		return -EIO;
952 
953 	if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
954 		return 0;
955 
956 	dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
957 	if (!dax_dev)
958 		return -EIO;
959 
960 	trace_dax_writeback_range(inode, xas.xa_index, end_index);
961 
962 	tag_pages_for_writeback(mapping, xas.xa_index, end_index);
963 
964 	xas_lock_irq(&xas);
965 	xas_for_each_marked(&xas, entry, end_index, PAGECACHE_TAG_TOWRITE) {
966 		ret = dax_writeback_one(&xas, dax_dev, mapping, entry);
967 		if (ret < 0) {
968 			mapping_set_error(mapping, ret);
969 			break;
970 		}
971 		if (++scanned % XA_CHECK_SCHED)
972 			continue;
973 
974 		xas_pause(&xas);
975 		xas_unlock_irq(&xas);
976 		cond_resched();
977 		xas_lock_irq(&xas);
978 	}
979 	xas_unlock_irq(&xas);
980 	put_dax(dax_dev);
981 	trace_dax_writeback_range_done(inode, xas.xa_index, end_index);
982 	return ret;
983 }
984 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
985 
986 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
987 {
988 	return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
989 }
990 
991 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
992 			 pfn_t *pfnp)
993 {
994 	const sector_t sector = dax_iomap_sector(iomap, pos);
995 	pgoff_t pgoff;
996 	int id, rc;
997 	long length;
998 
999 	rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1000 	if (rc)
1001 		return rc;
1002 	id = dax_read_lock();
1003 	length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1004 				   NULL, pfnp);
1005 	if (length < 0) {
1006 		rc = length;
1007 		goto out;
1008 	}
1009 	rc = -EINVAL;
1010 	if (PFN_PHYS(length) < size)
1011 		goto out;
1012 	if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1013 		goto out;
1014 	/* For larger pages we need devmap */
1015 	if (length > 1 && !pfn_t_devmap(*pfnp))
1016 		goto out;
1017 	rc = 0;
1018 out:
1019 	dax_read_unlock(id);
1020 	return rc;
1021 }
1022 
1023 /*
1024  * The user has performed a load from a hole in the file.  Allocating a new
1025  * page in the file would cause excessive storage usage for workloads with
1026  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1027  * If this page is ever written to we will re-fault and change the mapping to
1028  * point to real DAX storage instead.
1029  */
1030 static vm_fault_t dax_load_hole(struct xa_state *xas,
1031 		struct address_space *mapping, void **entry,
1032 		struct vm_fault *vmf)
1033 {
1034 	struct inode *inode = mapping->host;
1035 	unsigned long vaddr = vmf->address;
1036 	pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1037 	vm_fault_t ret;
1038 
1039 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1040 			DAX_ZERO_PAGE, false);
1041 
1042 	ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1043 	trace_dax_load_hole(inode, vmf, ret);
1044 	return ret;
1045 }
1046 
1047 static bool dax_range_is_aligned(struct block_device *bdev,
1048 				 unsigned int offset, unsigned int length)
1049 {
1050 	unsigned short sector_size = bdev_logical_block_size(bdev);
1051 
1052 	if (!IS_ALIGNED(offset, sector_size))
1053 		return false;
1054 	if (!IS_ALIGNED(length, sector_size))
1055 		return false;
1056 
1057 	return true;
1058 }
1059 
1060 int __dax_zero_page_range(struct block_device *bdev,
1061 		struct dax_device *dax_dev, sector_t sector,
1062 		unsigned int offset, unsigned int size)
1063 {
1064 	if (dax_range_is_aligned(bdev, offset, size)) {
1065 		sector_t start_sector = sector + (offset >> 9);
1066 
1067 		return blkdev_issue_zeroout(bdev, start_sector,
1068 				size >> 9, GFP_NOFS, 0);
1069 	} else {
1070 		pgoff_t pgoff;
1071 		long rc, id;
1072 		void *kaddr;
1073 
1074 		rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1075 		if (rc)
1076 			return rc;
1077 
1078 		id = dax_read_lock();
1079 		rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1080 		if (rc < 0) {
1081 			dax_read_unlock(id);
1082 			return rc;
1083 		}
1084 		memset(kaddr + offset, 0, size);
1085 		dax_flush(dax_dev, kaddr + offset, size);
1086 		dax_read_unlock(id);
1087 	}
1088 	return 0;
1089 }
1090 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1091 
1092 static loff_t
1093 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1094 		struct iomap *iomap, struct iomap *srcmap)
1095 {
1096 	struct block_device *bdev = iomap->bdev;
1097 	struct dax_device *dax_dev = iomap->dax_dev;
1098 	struct iov_iter *iter = data;
1099 	loff_t end = pos + length, done = 0;
1100 	ssize_t ret = 0;
1101 	size_t xfer;
1102 	int id;
1103 
1104 	if (iov_iter_rw(iter) == READ) {
1105 		end = min(end, i_size_read(inode));
1106 		if (pos >= end)
1107 			return 0;
1108 
1109 		if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1110 			return iov_iter_zero(min(length, end - pos), iter);
1111 	}
1112 
1113 	if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1114 		return -EIO;
1115 
1116 	/*
1117 	 * Write can allocate block for an area which has a hole page mapped
1118 	 * into page tables. We have to tear down these mappings so that data
1119 	 * written by write(2) is visible in mmap.
1120 	 */
1121 	if (iomap->flags & IOMAP_F_NEW) {
1122 		invalidate_inode_pages2_range(inode->i_mapping,
1123 					      pos >> PAGE_SHIFT,
1124 					      (end - 1) >> PAGE_SHIFT);
1125 	}
1126 
1127 	id = dax_read_lock();
1128 	while (pos < end) {
1129 		unsigned offset = pos & (PAGE_SIZE - 1);
1130 		const size_t size = ALIGN(length + offset, PAGE_SIZE);
1131 		const sector_t sector = dax_iomap_sector(iomap, pos);
1132 		ssize_t map_len;
1133 		pgoff_t pgoff;
1134 		void *kaddr;
1135 
1136 		if (fatal_signal_pending(current)) {
1137 			ret = -EINTR;
1138 			break;
1139 		}
1140 
1141 		ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1142 		if (ret)
1143 			break;
1144 
1145 		map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1146 				&kaddr, NULL);
1147 		if (map_len < 0) {
1148 			ret = map_len;
1149 			break;
1150 		}
1151 
1152 		map_len = PFN_PHYS(map_len);
1153 		kaddr += offset;
1154 		map_len -= offset;
1155 		if (map_len > end - pos)
1156 			map_len = end - pos;
1157 
1158 		/*
1159 		 * The userspace address for the memory copy has already been
1160 		 * validated via access_ok() in either vfs_read() or
1161 		 * vfs_write(), depending on which operation we are doing.
1162 		 */
1163 		if (iov_iter_rw(iter) == WRITE)
1164 			xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1165 					map_len, iter);
1166 		else
1167 			xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1168 					map_len, iter);
1169 
1170 		pos += xfer;
1171 		length -= xfer;
1172 		done += xfer;
1173 
1174 		if (xfer == 0)
1175 			ret = -EFAULT;
1176 		if (xfer < map_len)
1177 			break;
1178 	}
1179 	dax_read_unlock(id);
1180 
1181 	return done ? done : ret;
1182 }
1183 
1184 /**
1185  * dax_iomap_rw - Perform I/O to a DAX file
1186  * @iocb:	The control block for this I/O
1187  * @iter:	The addresses to do I/O from or to
1188  * @ops:	iomap ops passed from the file system
1189  *
1190  * This function performs read and write operations to directly mapped
1191  * persistent memory.  The callers needs to take care of read/write exclusion
1192  * and evicting any page cache pages in the region under I/O.
1193  */
1194 ssize_t
1195 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1196 		const struct iomap_ops *ops)
1197 {
1198 	struct address_space *mapping = iocb->ki_filp->f_mapping;
1199 	struct inode *inode = mapping->host;
1200 	loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1201 	unsigned flags = 0;
1202 
1203 	if (iov_iter_rw(iter) == WRITE) {
1204 		lockdep_assert_held_write(&inode->i_rwsem);
1205 		flags |= IOMAP_WRITE;
1206 	} else {
1207 		lockdep_assert_held(&inode->i_rwsem);
1208 	}
1209 
1210 	while (iov_iter_count(iter)) {
1211 		ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1212 				iter, dax_iomap_actor);
1213 		if (ret <= 0)
1214 			break;
1215 		pos += ret;
1216 		done += ret;
1217 	}
1218 
1219 	iocb->ki_pos += done;
1220 	return done ? done : ret;
1221 }
1222 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1223 
1224 static vm_fault_t dax_fault_return(int error)
1225 {
1226 	if (error == 0)
1227 		return VM_FAULT_NOPAGE;
1228 	return vmf_error(error);
1229 }
1230 
1231 /*
1232  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1233  * flushed on write-faults (non-cow), but not read-faults.
1234  */
1235 static bool dax_fault_is_synchronous(unsigned long flags,
1236 		struct vm_area_struct *vma, struct iomap *iomap)
1237 {
1238 	return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1239 		&& (iomap->flags & IOMAP_F_DIRTY);
1240 }
1241 
1242 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1243 			       int *iomap_errp, const struct iomap_ops *ops)
1244 {
1245 	struct vm_area_struct *vma = vmf->vma;
1246 	struct address_space *mapping = vma->vm_file->f_mapping;
1247 	XA_STATE(xas, &mapping->i_pages, vmf->pgoff);
1248 	struct inode *inode = mapping->host;
1249 	unsigned long vaddr = vmf->address;
1250 	loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1251 	struct iomap iomap = { .type = IOMAP_HOLE };
1252 	struct iomap srcmap = { .type = IOMAP_HOLE };
1253 	unsigned flags = IOMAP_FAULT;
1254 	int error, major = 0;
1255 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1256 	bool sync;
1257 	vm_fault_t ret = 0;
1258 	void *entry;
1259 	pfn_t pfn;
1260 
1261 	trace_dax_pte_fault(inode, vmf, ret);
1262 	/*
1263 	 * Check whether offset isn't beyond end of file now. Caller is supposed
1264 	 * to hold locks serializing us with truncate / punch hole so this is
1265 	 * a reliable test.
1266 	 */
1267 	if (pos >= i_size_read(inode)) {
1268 		ret = VM_FAULT_SIGBUS;
1269 		goto out;
1270 	}
1271 
1272 	if (write && !vmf->cow_page)
1273 		flags |= IOMAP_WRITE;
1274 
1275 	entry = grab_mapping_entry(&xas, mapping, 0);
1276 	if (xa_is_internal(entry)) {
1277 		ret = xa_to_internal(entry);
1278 		goto out;
1279 	}
1280 
1281 	/*
1282 	 * It is possible, particularly with mixed reads & writes to private
1283 	 * mappings, that we have raced with a PMD fault that overlaps with
1284 	 * the PTE we need to set up.  If so just return and the fault will be
1285 	 * retried.
1286 	 */
1287 	if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1288 		ret = VM_FAULT_NOPAGE;
1289 		goto unlock_entry;
1290 	}
1291 
1292 	/*
1293 	 * Note that we don't bother to use iomap_apply here: DAX required
1294 	 * the file system block size to be equal the page size, which means
1295 	 * that we never have to deal with more than a single extent here.
1296 	 */
1297 	error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap, &srcmap);
1298 	if (iomap_errp)
1299 		*iomap_errp = error;
1300 	if (error) {
1301 		ret = dax_fault_return(error);
1302 		goto unlock_entry;
1303 	}
1304 	if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1305 		error = -EIO;	/* fs corruption? */
1306 		goto error_finish_iomap;
1307 	}
1308 
1309 	if (vmf->cow_page) {
1310 		sector_t sector = dax_iomap_sector(&iomap, pos);
1311 
1312 		switch (iomap.type) {
1313 		case IOMAP_HOLE:
1314 		case IOMAP_UNWRITTEN:
1315 			clear_user_highpage(vmf->cow_page, vaddr);
1316 			break;
1317 		case IOMAP_MAPPED:
1318 			error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1319 					sector, PAGE_SIZE, vmf->cow_page, vaddr);
1320 			break;
1321 		default:
1322 			WARN_ON_ONCE(1);
1323 			error = -EIO;
1324 			break;
1325 		}
1326 
1327 		if (error)
1328 			goto error_finish_iomap;
1329 
1330 		__SetPageUptodate(vmf->cow_page);
1331 		ret = finish_fault(vmf);
1332 		if (!ret)
1333 			ret = VM_FAULT_DONE_COW;
1334 		goto finish_iomap;
1335 	}
1336 
1337 	sync = dax_fault_is_synchronous(flags, vma, &iomap);
1338 
1339 	switch (iomap.type) {
1340 	case IOMAP_MAPPED:
1341 		if (iomap.flags & IOMAP_F_NEW) {
1342 			count_vm_event(PGMAJFAULT);
1343 			count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1344 			major = VM_FAULT_MAJOR;
1345 		}
1346 		error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1347 		if (error < 0)
1348 			goto error_finish_iomap;
1349 
1350 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1351 						 0, write && !sync);
1352 
1353 		/*
1354 		 * If we are doing synchronous page fault and inode needs fsync,
1355 		 * we can insert PTE into page tables only after that happens.
1356 		 * Skip insertion for now and return the pfn so that caller can
1357 		 * insert it after fsync is done.
1358 		 */
1359 		if (sync) {
1360 			if (WARN_ON_ONCE(!pfnp)) {
1361 				error = -EIO;
1362 				goto error_finish_iomap;
1363 			}
1364 			*pfnp = pfn;
1365 			ret = VM_FAULT_NEEDDSYNC | major;
1366 			goto finish_iomap;
1367 		}
1368 		trace_dax_insert_mapping(inode, vmf, entry);
1369 		if (write)
1370 			ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1371 		else
1372 			ret = vmf_insert_mixed(vma, vaddr, pfn);
1373 
1374 		goto finish_iomap;
1375 	case IOMAP_UNWRITTEN:
1376 	case IOMAP_HOLE:
1377 		if (!write) {
1378 			ret = dax_load_hole(&xas, mapping, &entry, vmf);
1379 			goto finish_iomap;
1380 		}
1381 		/*FALLTHRU*/
1382 	default:
1383 		WARN_ON_ONCE(1);
1384 		error = -EIO;
1385 		break;
1386 	}
1387 
1388  error_finish_iomap:
1389 	ret = dax_fault_return(error);
1390  finish_iomap:
1391 	if (ops->iomap_end) {
1392 		int copied = PAGE_SIZE;
1393 
1394 		if (ret & VM_FAULT_ERROR)
1395 			copied = 0;
1396 		/*
1397 		 * The fault is done by now and there's no way back (other
1398 		 * thread may be already happily using PTE we have installed).
1399 		 * Just ignore error from ->iomap_end since we cannot do much
1400 		 * with it.
1401 		 */
1402 		ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1403 	}
1404  unlock_entry:
1405 	dax_unlock_entry(&xas, entry);
1406  out:
1407 	trace_dax_pte_fault_done(inode, vmf, ret);
1408 	return ret | major;
1409 }
1410 
1411 #ifdef CONFIG_FS_DAX_PMD
1412 static vm_fault_t dax_pmd_load_hole(struct xa_state *xas, struct vm_fault *vmf,
1413 		struct iomap *iomap, void **entry)
1414 {
1415 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1416 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1417 	struct vm_area_struct *vma = vmf->vma;
1418 	struct inode *inode = mapping->host;
1419 	pgtable_t pgtable = NULL;
1420 	struct page *zero_page;
1421 	spinlock_t *ptl;
1422 	pmd_t pmd_entry;
1423 	pfn_t pfn;
1424 
1425 	zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1426 
1427 	if (unlikely(!zero_page))
1428 		goto fallback;
1429 
1430 	pfn = page_to_pfn_t(zero_page);
1431 	*entry = dax_insert_entry(xas, mapping, vmf, *entry, pfn,
1432 			DAX_PMD | DAX_ZERO_PAGE, false);
1433 
1434 	if (arch_needs_pgtable_deposit()) {
1435 		pgtable = pte_alloc_one(vma->vm_mm);
1436 		if (!pgtable)
1437 			return VM_FAULT_OOM;
1438 	}
1439 
1440 	ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1441 	if (!pmd_none(*(vmf->pmd))) {
1442 		spin_unlock(ptl);
1443 		goto fallback;
1444 	}
1445 
1446 	if (pgtable) {
1447 		pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
1448 		mm_inc_nr_ptes(vma->vm_mm);
1449 	}
1450 	pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1451 	pmd_entry = pmd_mkhuge(pmd_entry);
1452 	set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1453 	spin_unlock(ptl);
1454 	trace_dax_pmd_load_hole(inode, vmf, zero_page, *entry);
1455 	return VM_FAULT_NOPAGE;
1456 
1457 fallback:
1458 	if (pgtable)
1459 		pte_free(vma->vm_mm, pgtable);
1460 	trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, *entry);
1461 	return VM_FAULT_FALLBACK;
1462 }
1463 
1464 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1465 			       const struct iomap_ops *ops)
1466 {
1467 	struct vm_area_struct *vma = vmf->vma;
1468 	struct address_space *mapping = vma->vm_file->f_mapping;
1469 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, PMD_ORDER);
1470 	unsigned long pmd_addr = vmf->address & PMD_MASK;
1471 	bool write = vmf->flags & FAULT_FLAG_WRITE;
1472 	bool sync;
1473 	unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1474 	struct inode *inode = mapping->host;
1475 	vm_fault_t result = VM_FAULT_FALLBACK;
1476 	struct iomap iomap = { .type = IOMAP_HOLE };
1477 	struct iomap srcmap = { .type = IOMAP_HOLE };
1478 	pgoff_t max_pgoff;
1479 	void *entry;
1480 	loff_t pos;
1481 	int error;
1482 	pfn_t pfn;
1483 
1484 	/*
1485 	 * Check whether offset isn't beyond end of file now. Caller is
1486 	 * supposed to hold locks serializing us with truncate / punch hole so
1487 	 * this is a reliable test.
1488 	 */
1489 	max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1490 
1491 	trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1492 
1493 	/*
1494 	 * Make sure that the faulting address's PMD offset (color) matches
1495 	 * the PMD offset from the start of the file.  This is necessary so
1496 	 * that a PMD range in the page table overlaps exactly with a PMD
1497 	 * range in the page cache.
1498 	 */
1499 	if ((vmf->pgoff & PG_PMD_COLOUR) !=
1500 	    ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1501 		goto fallback;
1502 
1503 	/* Fall back to PTEs if we're going to COW */
1504 	if (write && !(vma->vm_flags & VM_SHARED))
1505 		goto fallback;
1506 
1507 	/* If the PMD would extend outside the VMA */
1508 	if (pmd_addr < vma->vm_start)
1509 		goto fallback;
1510 	if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1511 		goto fallback;
1512 
1513 	if (xas.xa_index >= max_pgoff) {
1514 		result = VM_FAULT_SIGBUS;
1515 		goto out;
1516 	}
1517 
1518 	/* If the PMD would extend beyond the file size */
1519 	if ((xas.xa_index | PG_PMD_COLOUR) >= max_pgoff)
1520 		goto fallback;
1521 
1522 	/*
1523 	 * grab_mapping_entry() will make sure we get an empty PMD entry,
1524 	 * a zero PMD entry or a DAX PMD.  If it can't (because a PTE
1525 	 * entry is already in the array, for instance), it will return
1526 	 * VM_FAULT_FALLBACK.
1527 	 */
1528 	entry = grab_mapping_entry(&xas, mapping, PMD_ORDER);
1529 	if (xa_is_internal(entry)) {
1530 		result = xa_to_internal(entry);
1531 		goto fallback;
1532 	}
1533 
1534 	/*
1535 	 * It is possible, particularly with mixed reads & writes to private
1536 	 * mappings, that we have raced with a PTE fault that overlaps with
1537 	 * the PMD we need to set up.  If so just return and the fault will be
1538 	 * retried.
1539 	 */
1540 	if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1541 			!pmd_devmap(*vmf->pmd)) {
1542 		result = 0;
1543 		goto unlock_entry;
1544 	}
1545 
1546 	/*
1547 	 * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1548 	 * setting up a mapping, so really we're using iomap_begin() as a way
1549 	 * to look up our filesystem block.
1550 	 */
1551 	pos = (loff_t)xas.xa_index << PAGE_SHIFT;
1552 	error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap,
1553 			&srcmap);
1554 	if (error)
1555 		goto unlock_entry;
1556 
1557 	if (iomap.offset + iomap.length < pos + PMD_SIZE)
1558 		goto finish_iomap;
1559 
1560 	sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1561 
1562 	switch (iomap.type) {
1563 	case IOMAP_MAPPED:
1564 		error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1565 		if (error < 0)
1566 			goto finish_iomap;
1567 
1568 		entry = dax_insert_entry(&xas, mapping, vmf, entry, pfn,
1569 						DAX_PMD, write && !sync);
1570 
1571 		/*
1572 		 * If we are doing synchronous page fault and inode needs fsync,
1573 		 * we can insert PMD into page tables only after that happens.
1574 		 * Skip insertion for now and return the pfn so that caller can
1575 		 * insert it after fsync is done.
1576 		 */
1577 		if (sync) {
1578 			if (WARN_ON_ONCE(!pfnp))
1579 				goto finish_iomap;
1580 			*pfnp = pfn;
1581 			result = VM_FAULT_NEEDDSYNC;
1582 			goto finish_iomap;
1583 		}
1584 
1585 		trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1586 		result = vmf_insert_pfn_pmd(vmf, pfn, write);
1587 		break;
1588 	case IOMAP_UNWRITTEN:
1589 	case IOMAP_HOLE:
1590 		if (WARN_ON_ONCE(write))
1591 			break;
1592 		result = dax_pmd_load_hole(&xas, vmf, &iomap, &entry);
1593 		break;
1594 	default:
1595 		WARN_ON_ONCE(1);
1596 		break;
1597 	}
1598 
1599  finish_iomap:
1600 	if (ops->iomap_end) {
1601 		int copied = PMD_SIZE;
1602 
1603 		if (result == VM_FAULT_FALLBACK)
1604 			copied = 0;
1605 		/*
1606 		 * The fault is done by now and there's no way back (other
1607 		 * thread may be already happily using PMD we have installed).
1608 		 * Just ignore error from ->iomap_end since we cannot do much
1609 		 * with it.
1610 		 */
1611 		ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1612 				&iomap);
1613 	}
1614  unlock_entry:
1615 	dax_unlock_entry(&xas, entry);
1616  fallback:
1617 	if (result == VM_FAULT_FALLBACK) {
1618 		split_huge_pmd(vma, vmf->pmd, vmf->address);
1619 		count_vm_event(THP_FAULT_FALLBACK);
1620 	}
1621 out:
1622 	trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1623 	return result;
1624 }
1625 #else
1626 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1627 			       const struct iomap_ops *ops)
1628 {
1629 	return VM_FAULT_FALLBACK;
1630 }
1631 #endif /* CONFIG_FS_DAX_PMD */
1632 
1633 /**
1634  * dax_iomap_fault - handle a page fault on a DAX file
1635  * @vmf: The description of the fault
1636  * @pe_size: Size of the page to fault in
1637  * @pfnp: PFN to insert for synchronous faults if fsync is required
1638  * @iomap_errp: Storage for detailed error code in case of error
1639  * @ops: Iomap ops passed from the file system
1640  *
1641  * When a page fault occurs, filesystems may call this helper in
1642  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1643  * has done all the necessary locking for page fault to proceed
1644  * successfully.
1645  */
1646 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1647 		    pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1648 {
1649 	switch (pe_size) {
1650 	case PE_SIZE_PTE:
1651 		return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1652 	case PE_SIZE_PMD:
1653 		return dax_iomap_pmd_fault(vmf, pfnp, ops);
1654 	default:
1655 		return VM_FAULT_FALLBACK;
1656 	}
1657 }
1658 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1659 
1660 /*
1661  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1662  * @vmf: The description of the fault
1663  * @pfn: PFN to insert
1664  * @order: Order of entry to insert.
1665  *
1666  * This function inserts a writeable PTE or PMD entry into the page tables
1667  * for an mmaped DAX file.  It also marks the page cache entry as dirty.
1668  */
1669 static vm_fault_t
1670 dax_insert_pfn_mkwrite(struct vm_fault *vmf, pfn_t pfn, unsigned int order)
1671 {
1672 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1673 	XA_STATE_ORDER(xas, &mapping->i_pages, vmf->pgoff, order);
1674 	void *entry;
1675 	vm_fault_t ret;
1676 
1677 	xas_lock_irq(&xas);
1678 	entry = get_unlocked_entry(&xas, order);
1679 	/* Did we race with someone splitting entry or so? */
1680 	if (!entry || dax_is_conflict(entry) ||
1681 	    (order == 0 && !dax_is_pte_entry(entry))) {
1682 		put_unlocked_entry(&xas, entry);
1683 		xas_unlock_irq(&xas);
1684 		trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1685 						      VM_FAULT_NOPAGE);
1686 		return VM_FAULT_NOPAGE;
1687 	}
1688 	xas_set_mark(&xas, PAGECACHE_TAG_DIRTY);
1689 	dax_lock_entry(&xas, entry);
1690 	xas_unlock_irq(&xas);
1691 	if (order == 0)
1692 		ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1693 #ifdef CONFIG_FS_DAX_PMD
1694 	else if (order == PMD_ORDER)
1695 		ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1696 #endif
1697 	else
1698 		ret = VM_FAULT_FALLBACK;
1699 	dax_unlock_entry(&xas, entry);
1700 	trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1701 	return ret;
1702 }
1703 
1704 /**
1705  * dax_finish_sync_fault - finish synchronous page fault
1706  * @vmf: The description of the fault
1707  * @pe_size: Size of entry to be inserted
1708  * @pfn: PFN to insert
1709  *
1710  * This function ensures that the file range touched by the page fault is
1711  * stored persistently on the media and handles inserting of appropriate page
1712  * table entry.
1713  */
1714 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1715 		enum page_entry_size pe_size, pfn_t pfn)
1716 {
1717 	int err;
1718 	loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1719 	unsigned int order = pe_order(pe_size);
1720 	size_t len = PAGE_SIZE << order;
1721 
1722 	err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1723 	if (err)
1724 		return VM_FAULT_SIGBUS;
1725 	return dax_insert_pfn_mkwrite(vmf, pfn, order);
1726 }
1727 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);
1728