1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Key setup facility for FS encryption support. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #include <crypto/skcipher.h> 12 #include <linux/key.h> 13 #include <linux/random.h> 14 15 #include "fscrypt_private.h" 16 17 struct fscrypt_mode fscrypt_modes[] = { 18 [FSCRYPT_MODE_AES_256_XTS] = { 19 .friendly_name = "AES-256-XTS", 20 .cipher_str = "xts(aes)", 21 .keysize = 64, 22 .security_strength = 32, 23 .ivsize = 16, 24 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, 25 }, 26 [FSCRYPT_MODE_AES_256_CTS] = { 27 .friendly_name = "AES-256-CTS-CBC", 28 .cipher_str = "cts(cbc(aes))", 29 .keysize = 32, 30 .security_strength = 32, 31 .ivsize = 16, 32 }, 33 [FSCRYPT_MODE_AES_128_CBC] = { 34 .friendly_name = "AES-128-CBC-ESSIV", 35 .cipher_str = "essiv(cbc(aes),sha256)", 36 .keysize = 16, 37 .security_strength = 16, 38 .ivsize = 16, 39 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, 40 }, 41 [FSCRYPT_MODE_AES_128_CTS] = { 42 .friendly_name = "AES-128-CTS-CBC", 43 .cipher_str = "cts(cbc(aes))", 44 .keysize = 16, 45 .security_strength = 16, 46 .ivsize = 16, 47 }, 48 [FSCRYPT_MODE_ADIANTUM] = { 49 .friendly_name = "Adiantum", 50 .cipher_str = "adiantum(xchacha12,aes)", 51 .keysize = 32, 52 .security_strength = 32, 53 .ivsize = 32, 54 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, 55 }, 56 }; 57 58 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); 59 60 static struct fscrypt_mode * 61 select_encryption_mode(const union fscrypt_policy *policy, 62 const struct inode *inode) 63 { 64 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); 65 66 if (S_ISREG(inode->i_mode)) 67 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; 68 69 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 70 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; 71 72 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", 73 inode->i_ino, (inode->i_mode & S_IFMT)); 74 return ERR_PTR(-EINVAL); 75 } 76 77 /* Create a symmetric cipher object for the given encryption mode and key */ 78 static struct crypto_skcipher * 79 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, 80 const struct inode *inode) 81 { 82 struct crypto_skcipher *tfm; 83 int err; 84 85 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); 86 if (IS_ERR(tfm)) { 87 if (PTR_ERR(tfm) == -ENOENT) { 88 fscrypt_warn(inode, 89 "Missing crypto API support for %s (API name: \"%s\")", 90 mode->friendly_name, mode->cipher_str); 91 return ERR_PTR(-ENOPKG); 92 } 93 fscrypt_err(inode, "Error allocating '%s' transform: %ld", 94 mode->cipher_str, PTR_ERR(tfm)); 95 return tfm; 96 } 97 if (!xchg(&mode->logged_impl_name, 1)) { 98 /* 99 * fscrypt performance can vary greatly depending on which 100 * crypto algorithm implementation is used. Help people debug 101 * performance problems by logging the ->cra_driver_name the 102 * first time a mode is used. 103 */ 104 pr_info("fscrypt: %s using implementation \"%s\"\n", 105 mode->friendly_name, crypto_skcipher_driver_name(tfm)); 106 } 107 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { 108 err = -EINVAL; 109 goto err_free_tfm; 110 } 111 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 112 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); 113 if (err) 114 goto err_free_tfm; 115 116 return tfm; 117 118 err_free_tfm: 119 crypto_free_skcipher(tfm); 120 return ERR_PTR(err); 121 } 122 123 /* 124 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the 125 * raw key, encryption mode (@ci->ci_mode), flag indicating which encryption 126 * implementation (fs-layer or blk-crypto) will be used (@ci->ci_inlinecrypt), 127 * and IV generation method (@ci->ci_policy.flags). 128 */ 129 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 130 const u8 *raw_key, const struct fscrypt_info *ci) 131 { 132 struct crypto_skcipher *tfm; 133 134 if (fscrypt_using_inline_encryption(ci)) 135 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); 136 137 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); 138 if (IS_ERR(tfm)) 139 return PTR_ERR(tfm); 140 /* 141 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). 142 * I.e., here we publish ->tfm with a RELEASE barrier so that 143 * concurrent tasks can ACQUIRE it. Note that this concurrency is only 144 * possible for per-mode keys, not for per-file keys. 145 */ 146 smp_store_release(&prep_key->tfm, tfm); 147 return 0; 148 } 149 150 /* Destroy a crypto transform object and/or blk-crypto key. */ 151 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) 152 { 153 crypto_free_skcipher(prep_key->tfm); 154 fscrypt_destroy_inline_crypt_key(prep_key); 155 } 156 157 /* Given a per-file encryption key, set up the file's crypto transform object */ 158 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) 159 { 160 ci->ci_owns_key = true; 161 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); 162 } 163 164 static int setup_per_mode_enc_key(struct fscrypt_info *ci, 165 struct fscrypt_master_key *mk, 166 struct fscrypt_prepared_key *keys, 167 u8 hkdf_context, bool include_fs_uuid) 168 { 169 const struct inode *inode = ci->ci_inode; 170 const struct super_block *sb = inode->i_sb; 171 struct fscrypt_mode *mode = ci->ci_mode; 172 const u8 mode_num = mode - fscrypt_modes; 173 struct fscrypt_prepared_key *prep_key; 174 u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; 175 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; 176 unsigned int hkdf_infolen = 0; 177 int err; 178 179 if (WARN_ON(mode_num > FSCRYPT_MODE_MAX)) 180 return -EINVAL; 181 182 prep_key = &keys[mode_num]; 183 if (fscrypt_is_key_prepared(prep_key, ci)) { 184 ci->ci_enc_key = *prep_key; 185 return 0; 186 } 187 188 mutex_lock(&fscrypt_mode_key_setup_mutex); 189 190 if (fscrypt_is_key_prepared(prep_key, ci)) 191 goto done_unlock; 192 193 BUILD_BUG_ON(sizeof(mode_num) != 1); 194 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); 195 BUILD_BUG_ON(sizeof(hkdf_info) != 17); 196 hkdf_info[hkdf_infolen++] = mode_num; 197 if (include_fs_uuid) { 198 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, 199 sizeof(sb->s_uuid)); 200 hkdf_infolen += sizeof(sb->s_uuid); 201 } 202 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 203 hkdf_context, hkdf_info, hkdf_infolen, 204 mode_key, mode->keysize); 205 if (err) 206 goto out_unlock; 207 err = fscrypt_prepare_key(prep_key, mode_key, ci); 208 memzero_explicit(mode_key, mode->keysize); 209 if (err) 210 goto out_unlock; 211 done_unlock: 212 ci->ci_enc_key = *prep_key; 213 err = 0; 214 out_unlock: 215 mutex_unlock(&fscrypt_mode_key_setup_mutex); 216 return err; 217 } 218 219 /* 220 * Derive a SipHash key from the given fscrypt master key and the given 221 * application-specific information string. 222 * 223 * Note that the KDF produces a byte array, but the SipHash APIs expect the key 224 * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an 225 * endianness swap in order to get the same results as on little endian CPUs. 226 */ 227 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk, 228 u8 context, const u8 *info, 229 unsigned int infolen, siphash_key_t *key) 230 { 231 int err; 232 233 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen, 234 (u8 *)key, sizeof(*key)); 235 if (err) 236 return err; 237 238 BUILD_BUG_ON(sizeof(*key) != 16); 239 BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2); 240 le64_to_cpus(&key->key[0]); 241 le64_to_cpus(&key->key[1]); 242 return 0; 243 } 244 245 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 246 const struct fscrypt_master_key *mk) 247 { 248 int err; 249 250 err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY, 251 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 252 &ci->ci_dirhash_key); 253 if (err) 254 return err; 255 ci->ci_dirhash_key_initialized = true; 256 return 0; 257 } 258 259 void fscrypt_hash_inode_number(struct fscrypt_info *ci, 260 const struct fscrypt_master_key *mk) 261 { 262 WARN_ON(ci->ci_inode->i_ino == 0); 263 WARN_ON(!mk->mk_ino_hash_key_initialized); 264 265 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, 266 &mk->mk_ino_hash_key); 267 } 268 269 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, 270 struct fscrypt_master_key *mk) 271 { 272 int err; 273 274 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, 275 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); 276 if (err) 277 return err; 278 279 /* pairs with smp_store_release() below */ 280 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { 281 282 mutex_lock(&fscrypt_mode_key_setup_mutex); 283 284 if (mk->mk_ino_hash_key_initialized) 285 goto unlock; 286 287 err = fscrypt_derive_siphash_key(mk, 288 HKDF_CONTEXT_INODE_HASH_KEY, 289 NULL, 0, &mk->mk_ino_hash_key); 290 if (err) 291 goto unlock; 292 /* pairs with smp_load_acquire() above */ 293 smp_store_release(&mk->mk_ino_hash_key_initialized, true); 294 unlock: 295 mutex_unlock(&fscrypt_mode_key_setup_mutex); 296 if (err) 297 return err; 298 } 299 300 /* 301 * New inodes may not have an inode number assigned yet. 302 * Hashing their inode number is delayed until later. 303 */ 304 if (ci->ci_inode->i_ino) 305 fscrypt_hash_inode_number(ci, mk); 306 return 0; 307 } 308 309 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, 310 struct fscrypt_master_key *mk, 311 bool need_dirhash_key) 312 { 313 int err; 314 315 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { 316 /* 317 * DIRECT_KEY: instead of deriving per-file encryption keys, the 318 * per-file nonce will be included in all the IVs. But unlike 319 * v1 policies, for v2 policies in this case we don't encrypt 320 * with the master key directly but rather derive a per-mode 321 * encryption key. This ensures that the master key is 322 * consistently used only for HKDF, avoiding key reuse issues. 323 */ 324 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, 325 HKDF_CONTEXT_DIRECT_KEY, false); 326 } else if (ci->ci_policy.v2.flags & 327 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { 328 /* 329 * IV_INO_LBLK_64: encryption keys are derived from (master_key, 330 * mode_num, filesystem_uuid), and inode number is included in 331 * the IVs. This format is optimized for use with inline 332 * encryption hardware compliant with the UFS standard. 333 */ 334 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, 335 HKDF_CONTEXT_IV_INO_LBLK_64_KEY, 336 true); 337 } else if (ci->ci_policy.v2.flags & 338 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { 339 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); 340 } else { 341 u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; 342 343 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 344 HKDF_CONTEXT_PER_FILE_ENC_KEY, 345 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 346 derived_key, ci->ci_mode->keysize); 347 if (err) 348 return err; 349 350 err = fscrypt_set_per_file_enc_key(ci, derived_key); 351 memzero_explicit(derived_key, ci->ci_mode->keysize); 352 } 353 if (err) 354 return err; 355 356 /* Derive a secret dirhash key for directories that need it. */ 357 if (need_dirhash_key) { 358 err = fscrypt_derive_dirhash_key(ci, mk); 359 if (err) 360 return err; 361 } 362 363 return 0; 364 } 365 366 /* 367 * Check whether the size of the given master key (@mk) is appropriate for the 368 * encryption settings which a particular file will use (@ci). 369 * 370 * If the file uses a v1 encryption policy, then the master key must be at least 371 * as long as the derived key, as this is a requirement of the v1 KDF. 372 * 373 * Otherwise, the KDF can accept any size key, so we enforce a slightly looser 374 * requirement: we require that the size of the master key be at least the 375 * maximum security strength of any algorithm whose key will be derived from it 376 * (but in practice we only need to consider @ci->ci_mode, since any other 377 * possible subkeys such as DIRHASH and INODE_HASH will never increase the 378 * required key size over @ci->ci_mode). This allows AES-256-XTS keys to be 379 * derived from a 256-bit master key, which is cryptographically sufficient, 380 * rather than requiring a 512-bit master key which is unnecessarily long. (We 381 * still allow 512-bit master keys if the user chooses to use them, though.) 382 */ 383 static bool fscrypt_valid_master_key_size(const struct fscrypt_master_key *mk, 384 const struct fscrypt_info *ci) 385 { 386 unsigned int min_keysize; 387 388 if (ci->ci_policy.version == FSCRYPT_POLICY_V1) 389 min_keysize = ci->ci_mode->keysize; 390 else 391 min_keysize = ci->ci_mode->security_strength; 392 393 if (mk->mk_secret.size < min_keysize) { 394 fscrypt_warn(NULL, 395 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", 396 master_key_spec_type(&mk->mk_spec), 397 master_key_spec_len(&mk->mk_spec), 398 (u8 *)&mk->mk_spec.u, 399 mk->mk_secret.size, min_keysize); 400 return false; 401 } 402 return true; 403 } 404 405 /* 406 * Find the master key, then set up the inode's actual encryption key. 407 * 408 * If the master key is found in the filesystem-level keyring, then the 409 * corresponding 'struct key' is returned in *master_key_ret with its semaphore 410 * read-locked. This is needed to ensure that only one task links the 411 * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create 412 * an fscrypt_info for the same inode), and to synchronize the master key being 413 * removed with a new inode starting to use it. 414 */ 415 static int setup_file_encryption_key(struct fscrypt_info *ci, 416 bool need_dirhash_key, 417 struct key **master_key_ret) 418 { 419 struct key *key; 420 struct fscrypt_master_key *mk = NULL; 421 struct fscrypt_key_specifier mk_spec; 422 int err; 423 424 err = fscrypt_select_encryption_impl(ci); 425 if (err) 426 return err; 427 428 switch (ci->ci_policy.version) { 429 case FSCRYPT_POLICY_V1: 430 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; 431 memcpy(mk_spec.u.descriptor, 432 ci->ci_policy.v1.master_key_descriptor, 433 FSCRYPT_KEY_DESCRIPTOR_SIZE); 434 break; 435 case FSCRYPT_POLICY_V2: 436 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 437 memcpy(mk_spec.u.identifier, 438 ci->ci_policy.v2.master_key_identifier, 439 FSCRYPT_KEY_IDENTIFIER_SIZE); 440 break; 441 default: 442 WARN_ON(1); 443 return -EINVAL; 444 } 445 446 key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); 447 if (IS_ERR(key)) { 448 if (key != ERR_PTR(-ENOKEY) || 449 ci->ci_policy.version != FSCRYPT_POLICY_V1) 450 return PTR_ERR(key); 451 452 /* 453 * As a legacy fallback for v1 policies, search for the key in 454 * the current task's subscribed keyrings too. Don't move this 455 * to before the search of ->s_master_keys, since users 456 * shouldn't be able to override filesystem-level keys. 457 */ 458 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); 459 } 460 461 mk = key->payload.data[0]; 462 down_read(&key->sem); 463 464 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ 465 if (!is_master_key_secret_present(&mk->mk_secret)) { 466 err = -ENOKEY; 467 goto out_release_key; 468 } 469 470 if (!fscrypt_valid_master_key_size(mk, ci)) { 471 err = -ENOKEY; 472 goto out_release_key; 473 } 474 475 switch (ci->ci_policy.version) { 476 case FSCRYPT_POLICY_V1: 477 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); 478 break; 479 case FSCRYPT_POLICY_V2: 480 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); 481 break; 482 default: 483 WARN_ON(1); 484 err = -EINVAL; 485 break; 486 } 487 if (err) 488 goto out_release_key; 489 490 *master_key_ret = key; 491 return 0; 492 493 out_release_key: 494 up_read(&key->sem); 495 key_put(key); 496 return err; 497 } 498 499 static void put_crypt_info(struct fscrypt_info *ci) 500 { 501 struct key *key; 502 503 if (!ci) 504 return; 505 506 if (ci->ci_direct_key) 507 fscrypt_put_direct_key(ci->ci_direct_key); 508 else if (ci->ci_owns_key) 509 fscrypt_destroy_prepared_key(&ci->ci_enc_key); 510 511 key = ci->ci_master_key; 512 if (key) { 513 struct fscrypt_master_key *mk = key->payload.data[0]; 514 515 /* 516 * Remove this inode from the list of inodes that were unlocked 517 * with the master key. 518 * 519 * In addition, if we're removing the last inode from a key that 520 * already had its secret removed, invalidate the key so that it 521 * gets removed from ->s_master_keys. 522 */ 523 spin_lock(&mk->mk_decrypted_inodes_lock); 524 list_del(&ci->ci_master_key_link); 525 spin_unlock(&mk->mk_decrypted_inodes_lock); 526 if (refcount_dec_and_test(&mk->mk_refcount)) 527 key_invalidate(key); 528 key_put(key); 529 } 530 memzero_explicit(ci, sizeof(*ci)); 531 kmem_cache_free(fscrypt_info_cachep, ci); 532 } 533 534 static int 535 fscrypt_setup_encryption_info(struct inode *inode, 536 const union fscrypt_policy *policy, 537 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], 538 bool need_dirhash_key) 539 { 540 struct fscrypt_info *crypt_info; 541 struct fscrypt_mode *mode; 542 struct key *master_key = NULL; 543 int res; 544 545 res = fscrypt_initialize(inode->i_sb->s_cop->flags); 546 if (res) 547 return res; 548 549 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL); 550 if (!crypt_info) 551 return -ENOMEM; 552 553 crypt_info->ci_inode = inode; 554 crypt_info->ci_policy = *policy; 555 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); 556 557 mode = select_encryption_mode(&crypt_info->ci_policy, inode); 558 if (IS_ERR(mode)) { 559 res = PTR_ERR(mode); 560 goto out; 561 } 562 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); 563 crypt_info->ci_mode = mode; 564 565 res = setup_file_encryption_key(crypt_info, need_dirhash_key, 566 &master_key); 567 if (res) 568 goto out; 569 570 /* 571 * For existing inodes, multiple tasks may race to set ->i_crypt_info. 572 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in 573 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a 574 * RELEASE barrier so that other tasks can ACQUIRE it. 575 */ 576 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { 577 /* 578 * We won the race and set ->i_crypt_info to our crypt_info. 579 * Now link it into the master key's inode list. 580 */ 581 if (master_key) { 582 struct fscrypt_master_key *mk = 583 master_key->payload.data[0]; 584 585 refcount_inc(&mk->mk_refcount); 586 crypt_info->ci_master_key = key_get(master_key); 587 spin_lock(&mk->mk_decrypted_inodes_lock); 588 list_add(&crypt_info->ci_master_key_link, 589 &mk->mk_decrypted_inodes); 590 spin_unlock(&mk->mk_decrypted_inodes_lock); 591 } 592 crypt_info = NULL; 593 } 594 res = 0; 595 out: 596 if (master_key) { 597 up_read(&master_key->sem); 598 key_put(master_key); 599 } 600 put_crypt_info(crypt_info); 601 return res; 602 } 603 604 /** 605 * fscrypt_get_encryption_info() - set up an inode's encryption key 606 * @inode: the inode to set up the key for. Must be encrypted. 607 * @allow_unsupported: if %true, treat an unsupported encryption policy (or 608 * unrecognized encryption context) the same way as the key 609 * being unavailable, instead of returning an error. Use 610 * %false unless the operation being performed is needed in 611 * order for files (or directories) to be deleted. 612 * 613 * Set up ->i_crypt_info, if it hasn't already been done. 614 * 615 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So 616 * generally this shouldn't be called from within a filesystem transaction. 617 * 618 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the 619 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to 620 * distinguish these cases.) Also can return another -errno code. 621 */ 622 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported) 623 { 624 int res; 625 union fscrypt_context ctx; 626 union fscrypt_policy policy; 627 628 if (fscrypt_has_encryption_key(inode)) 629 return 0; 630 631 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); 632 if (res < 0) { 633 if (res == -ERANGE && allow_unsupported) 634 return 0; 635 fscrypt_warn(inode, "Error %d getting encryption context", res); 636 return res; 637 } 638 639 res = fscrypt_policy_from_context(&policy, &ctx, res); 640 if (res) { 641 if (allow_unsupported) 642 return 0; 643 fscrypt_warn(inode, 644 "Unrecognized or corrupt encryption context"); 645 return res; 646 } 647 648 if (!fscrypt_supported_policy(&policy, inode)) { 649 if (allow_unsupported) 650 return 0; 651 return -EINVAL; 652 } 653 654 res = fscrypt_setup_encryption_info(inode, &policy, 655 fscrypt_context_nonce(&ctx), 656 IS_CASEFOLDED(inode) && 657 S_ISDIR(inode->i_mode)); 658 659 if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */ 660 res = 0; 661 if (res == -ENOKEY) 662 res = 0; 663 return res; 664 } 665 666 /** 667 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory 668 * @dir: a possibly-encrypted directory 669 * @inode: the new inode. ->i_mode must be set already. 670 * ->i_ino doesn't need to be set yet. 671 * @encrypt_ret: (output) set to %true if the new inode will be encrypted 672 * 673 * If the directory is encrypted, set up its ->i_crypt_info in preparation for 674 * encrypting the name of the new file. Also, if the new inode will be 675 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. 676 * 677 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting 678 * any filesystem transaction to create the inode. For this reason, ->i_ino 679 * isn't required to be set yet, as the filesystem may not have set it yet. 680 * 681 * This doesn't persist the new inode's encryption context. That still needs to 682 * be done later by calling fscrypt_set_context(). 683 * 684 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another 685 * -errno code 686 */ 687 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 688 bool *encrypt_ret) 689 { 690 const union fscrypt_policy *policy; 691 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 692 693 policy = fscrypt_policy_to_inherit(dir); 694 if (policy == NULL) 695 return 0; 696 if (IS_ERR(policy)) 697 return PTR_ERR(policy); 698 699 if (WARN_ON_ONCE(inode->i_mode == 0)) 700 return -EINVAL; 701 702 /* 703 * Only regular files, directories, and symlinks are encrypted. 704 * Special files like device nodes and named pipes aren't. 705 */ 706 if (!S_ISREG(inode->i_mode) && 707 !S_ISDIR(inode->i_mode) && 708 !S_ISLNK(inode->i_mode)) 709 return 0; 710 711 *encrypt_ret = true; 712 713 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); 714 return fscrypt_setup_encryption_info(inode, policy, nonce, 715 IS_CASEFOLDED(dir) && 716 S_ISDIR(inode->i_mode)); 717 } 718 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); 719 720 /** 721 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data 722 * @inode: an inode being evicted 723 * 724 * Free the inode's fscrypt_info. Filesystems must call this when the inode is 725 * being evicted. An RCU grace period need not have elapsed yet. 726 */ 727 void fscrypt_put_encryption_info(struct inode *inode) 728 { 729 put_crypt_info(inode->i_crypt_info); 730 inode->i_crypt_info = NULL; 731 } 732 EXPORT_SYMBOL(fscrypt_put_encryption_info); 733 734 /** 735 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay 736 * @inode: an inode being freed 737 * 738 * Free the inode's cached decrypted symlink target, if any. Filesystems must 739 * call this after an RCU grace period, just before they free the inode. 740 */ 741 void fscrypt_free_inode(struct inode *inode) 742 { 743 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { 744 kfree(inode->i_link); 745 inode->i_link = NULL; 746 } 747 } 748 EXPORT_SYMBOL(fscrypt_free_inode); 749 750 /** 751 * fscrypt_drop_inode() - check whether the inode's master key has been removed 752 * @inode: an inode being considered for eviction 753 * 754 * Filesystems supporting fscrypt must call this from their ->drop_inode() 755 * method so that encrypted inodes are evicted as soon as they're no longer in 756 * use and their master key has been removed. 757 * 758 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 759 */ 760 int fscrypt_drop_inode(struct inode *inode) 761 { 762 const struct fscrypt_info *ci = fscrypt_get_info(inode); 763 const struct fscrypt_master_key *mk; 764 765 /* 766 * If ci is NULL, then the inode doesn't have an encryption key set up 767 * so it's irrelevant. If ci_master_key is NULL, then the master key 768 * was provided via the legacy mechanism of the process-subscribed 769 * keyrings, so we don't know whether it's been removed or not. 770 */ 771 if (!ci || !ci->ci_master_key) 772 return 0; 773 mk = ci->ci_master_key->payload.data[0]; 774 775 /* 776 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes 777 * protected by the key were cleaned by sync_filesystem(). But if 778 * userspace is still using the files, inodes can be dirtied between 779 * then and now. We mustn't lose any writes, so skip dirty inodes here. 780 */ 781 if (inode->i_state & I_DIRTY_ALL) 782 return 0; 783 784 /* 785 * Note: since we aren't holding the key semaphore, the result here can 786 * immediately become outdated. But there's no correctness problem with 787 * unnecessarily evicting. Nor is there a correctness problem with not 788 * evicting while iput() is racing with the key being removed, since 789 * then the thread removing the key will either evict the inode itself 790 * or will correctly detect that it wasn't evicted due to the race. 791 */ 792 return !is_master_key_secret_present(&mk->mk_secret); 793 } 794 EXPORT_SYMBOL_GPL(fscrypt_drop_inode); 795