xref: /linux/fs/crypto/keysetup.c (revision 08f3e0873ac203449465c2b8473d684e2f9f41d1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Key setup facility for FS encryption support.
4  *
5  * Copyright (C) 2015, Google, Inc.
6  *
7  * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar.
8  * Heavily modified since then.
9  */
10 
11 #include <crypto/skcipher.h>
12 #include <linux/key.h>
13 #include <linux/random.h>
14 
15 #include "fscrypt_private.h"
16 
17 struct fscrypt_mode fscrypt_modes[] = {
18 	[FSCRYPT_MODE_AES_256_XTS] = {
19 		.friendly_name = "AES-256-XTS",
20 		.cipher_str = "xts(aes)",
21 		.keysize = 64,
22 		.ivsize = 16,
23 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS,
24 	},
25 	[FSCRYPT_MODE_AES_256_CTS] = {
26 		.friendly_name = "AES-256-CTS-CBC",
27 		.cipher_str = "cts(cbc(aes))",
28 		.keysize = 32,
29 		.ivsize = 16,
30 	},
31 	[FSCRYPT_MODE_AES_128_CBC] = {
32 		.friendly_name = "AES-128-CBC-ESSIV",
33 		.cipher_str = "essiv(cbc(aes),sha256)",
34 		.keysize = 16,
35 		.ivsize = 16,
36 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV,
37 	},
38 	[FSCRYPT_MODE_AES_128_CTS] = {
39 		.friendly_name = "AES-128-CTS-CBC",
40 		.cipher_str = "cts(cbc(aes))",
41 		.keysize = 16,
42 		.ivsize = 16,
43 	},
44 	[FSCRYPT_MODE_ADIANTUM] = {
45 		.friendly_name = "Adiantum",
46 		.cipher_str = "adiantum(xchacha12,aes)",
47 		.keysize = 32,
48 		.ivsize = 32,
49 		.blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM,
50 	},
51 };
52 
53 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex);
54 
55 static struct fscrypt_mode *
56 select_encryption_mode(const union fscrypt_policy *policy,
57 		       const struct inode *inode)
58 {
59 	BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1);
60 
61 	if (S_ISREG(inode->i_mode))
62 		return &fscrypt_modes[fscrypt_policy_contents_mode(policy)];
63 
64 	if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
65 		return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)];
66 
67 	WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n",
68 		  inode->i_ino, (inode->i_mode & S_IFMT));
69 	return ERR_PTR(-EINVAL);
70 }
71 
72 /* Create a symmetric cipher object for the given encryption mode and key */
73 static struct crypto_skcipher *
74 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key,
75 			  const struct inode *inode)
76 {
77 	struct crypto_skcipher *tfm;
78 	int err;
79 
80 	tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0);
81 	if (IS_ERR(tfm)) {
82 		if (PTR_ERR(tfm) == -ENOENT) {
83 			fscrypt_warn(inode,
84 				     "Missing crypto API support for %s (API name: \"%s\")",
85 				     mode->friendly_name, mode->cipher_str);
86 			return ERR_PTR(-ENOPKG);
87 		}
88 		fscrypt_err(inode, "Error allocating '%s' transform: %ld",
89 			    mode->cipher_str, PTR_ERR(tfm));
90 		return tfm;
91 	}
92 	if (!xchg(&mode->logged_impl_name, 1)) {
93 		/*
94 		 * fscrypt performance can vary greatly depending on which
95 		 * crypto algorithm implementation is used.  Help people debug
96 		 * performance problems by logging the ->cra_driver_name the
97 		 * first time a mode is used.
98 		 */
99 		pr_info("fscrypt: %s using implementation \"%s\"\n",
100 			mode->friendly_name, crypto_skcipher_driver_name(tfm));
101 	}
102 	if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) {
103 		err = -EINVAL;
104 		goto err_free_tfm;
105 	}
106 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
107 	err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize);
108 	if (err)
109 		goto err_free_tfm;
110 
111 	return tfm;
112 
113 err_free_tfm:
114 	crypto_free_skcipher(tfm);
115 	return ERR_PTR(err);
116 }
117 
118 /*
119  * Prepare the crypto transform object or blk-crypto key in @prep_key, given the
120  * raw key, encryption mode, and flag indicating which encryption implementation
121  * (fs-layer or blk-crypto) will be used.
122  */
123 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key,
124 			const u8 *raw_key, const struct fscrypt_info *ci)
125 {
126 	struct crypto_skcipher *tfm;
127 
128 	if (fscrypt_using_inline_encryption(ci))
129 		return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci);
130 
131 	tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode);
132 	if (IS_ERR(tfm))
133 		return PTR_ERR(tfm);
134 	/*
135 	 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared().
136 	 * I.e., here we publish ->tfm with a RELEASE barrier so that
137 	 * concurrent tasks can ACQUIRE it.  Note that this concurrency is only
138 	 * possible for per-mode keys, not for per-file keys.
139 	 */
140 	smp_store_release(&prep_key->tfm, tfm);
141 	return 0;
142 }
143 
144 /* Destroy a crypto transform object and/or blk-crypto key. */
145 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key)
146 {
147 	crypto_free_skcipher(prep_key->tfm);
148 	fscrypt_destroy_inline_crypt_key(prep_key);
149 }
150 
151 /* Given a per-file encryption key, set up the file's crypto transform object */
152 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key)
153 {
154 	ci->ci_owns_key = true;
155 	return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci);
156 }
157 
158 static int setup_per_mode_enc_key(struct fscrypt_info *ci,
159 				  struct fscrypt_master_key *mk,
160 				  struct fscrypt_prepared_key *keys,
161 				  u8 hkdf_context, bool include_fs_uuid)
162 {
163 	const struct inode *inode = ci->ci_inode;
164 	const struct super_block *sb = inode->i_sb;
165 	struct fscrypt_mode *mode = ci->ci_mode;
166 	const u8 mode_num = mode - fscrypt_modes;
167 	struct fscrypt_prepared_key *prep_key;
168 	u8 mode_key[FSCRYPT_MAX_KEY_SIZE];
169 	u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)];
170 	unsigned int hkdf_infolen = 0;
171 	int err;
172 
173 	if (WARN_ON(mode_num > FSCRYPT_MODE_MAX))
174 		return -EINVAL;
175 
176 	prep_key = &keys[mode_num];
177 	if (fscrypt_is_key_prepared(prep_key, ci)) {
178 		ci->ci_enc_key = *prep_key;
179 		return 0;
180 	}
181 
182 	mutex_lock(&fscrypt_mode_key_setup_mutex);
183 
184 	if (fscrypt_is_key_prepared(prep_key, ci))
185 		goto done_unlock;
186 
187 	BUILD_BUG_ON(sizeof(mode_num) != 1);
188 	BUILD_BUG_ON(sizeof(sb->s_uuid) != 16);
189 	BUILD_BUG_ON(sizeof(hkdf_info) != 17);
190 	hkdf_info[hkdf_infolen++] = mode_num;
191 	if (include_fs_uuid) {
192 		memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid,
193 		       sizeof(sb->s_uuid));
194 		hkdf_infolen += sizeof(sb->s_uuid);
195 	}
196 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
197 				  hkdf_context, hkdf_info, hkdf_infolen,
198 				  mode_key, mode->keysize);
199 	if (err)
200 		goto out_unlock;
201 	err = fscrypt_prepare_key(prep_key, mode_key, ci);
202 	memzero_explicit(mode_key, mode->keysize);
203 	if (err)
204 		goto out_unlock;
205 done_unlock:
206 	ci->ci_enc_key = *prep_key;
207 	err = 0;
208 out_unlock:
209 	mutex_unlock(&fscrypt_mode_key_setup_mutex);
210 	return err;
211 }
212 
213 /*
214  * Derive a SipHash key from the given fscrypt master key and the given
215  * application-specific information string.
216  *
217  * Note that the KDF produces a byte array, but the SipHash APIs expect the key
218  * as a pair of 64-bit words.  Therefore, on big endian CPUs we have to do an
219  * endianness swap in order to get the same results as on little endian CPUs.
220  */
221 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk,
222 				      u8 context, const u8 *info,
223 				      unsigned int infolen, siphash_key_t *key)
224 {
225 	int err;
226 
227 	err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen,
228 				  (u8 *)key, sizeof(*key));
229 	if (err)
230 		return err;
231 
232 	BUILD_BUG_ON(sizeof(*key) != 16);
233 	BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2);
234 	le64_to_cpus(&key->key[0]);
235 	le64_to_cpus(&key->key[1]);
236 	return 0;
237 }
238 
239 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci,
240 			       const struct fscrypt_master_key *mk)
241 {
242 	int err;
243 
244 	err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY,
245 					 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
246 					 &ci->ci_dirhash_key);
247 	if (err)
248 		return err;
249 	ci->ci_dirhash_key_initialized = true;
250 	return 0;
251 }
252 
253 void fscrypt_hash_inode_number(struct fscrypt_info *ci,
254 			       const struct fscrypt_master_key *mk)
255 {
256 	WARN_ON(ci->ci_inode->i_ino == 0);
257 	WARN_ON(!mk->mk_ino_hash_key_initialized);
258 
259 	ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino,
260 					      &mk->mk_ino_hash_key);
261 }
262 
263 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci,
264 					    struct fscrypt_master_key *mk)
265 {
266 	int err;
267 
268 	err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys,
269 				     HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true);
270 	if (err)
271 		return err;
272 
273 	/* pairs with smp_store_release() below */
274 	if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) {
275 
276 		mutex_lock(&fscrypt_mode_key_setup_mutex);
277 
278 		if (mk->mk_ino_hash_key_initialized)
279 			goto unlock;
280 
281 		err = fscrypt_derive_siphash_key(mk,
282 						 HKDF_CONTEXT_INODE_HASH_KEY,
283 						 NULL, 0, &mk->mk_ino_hash_key);
284 		if (err)
285 			goto unlock;
286 		/* pairs with smp_load_acquire() above */
287 		smp_store_release(&mk->mk_ino_hash_key_initialized, true);
288 unlock:
289 		mutex_unlock(&fscrypt_mode_key_setup_mutex);
290 		if (err)
291 			return err;
292 	}
293 
294 	/*
295 	 * New inodes may not have an inode number assigned yet.
296 	 * Hashing their inode number is delayed until later.
297 	 */
298 	if (ci->ci_inode->i_ino)
299 		fscrypt_hash_inode_number(ci, mk);
300 	return 0;
301 }
302 
303 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci,
304 				     struct fscrypt_master_key *mk,
305 				     bool need_dirhash_key)
306 {
307 	int err;
308 
309 	if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) {
310 		/*
311 		 * DIRECT_KEY: instead of deriving per-file encryption keys, the
312 		 * per-file nonce will be included in all the IVs.  But unlike
313 		 * v1 policies, for v2 policies in this case we don't encrypt
314 		 * with the master key directly but rather derive a per-mode
315 		 * encryption key.  This ensures that the master key is
316 		 * consistently used only for HKDF, avoiding key reuse issues.
317 		 */
318 		err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys,
319 					     HKDF_CONTEXT_DIRECT_KEY, false);
320 	} else if (ci->ci_policy.v2.flags &
321 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) {
322 		/*
323 		 * IV_INO_LBLK_64: encryption keys are derived from (master_key,
324 		 * mode_num, filesystem_uuid), and inode number is included in
325 		 * the IVs.  This format is optimized for use with inline
326 		 * encryption hardware compliant with the UFS standard.
327 		 */
328 		err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys,
329 					     HKDF_CONTEXT_IV_INO_LBLK_64_KEY,
330 					     true);
331 	} else if (ci->ci_policy.v2.flags &
332 		   FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) {
333 		err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk);
334 	} else {
335 		u8 derived_key[FSCRYPT_MAX_KEY_SIZE];
336 
337 		err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf,
338 					  HKDF_CONTEXT_PER_FILE_ENC_KEY,
339 					  ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE,
340 					  derived_key, ci->ci_mode->keysize);
341 		if (err)
342 			return err;
343 
344 		err = fscrypt_set_per_file_enc_key(ci, derived_key);
345 		memzero_explicit(derived_key, ci->ci_mode->keysize);
346 	}
347 	if (err)
348 		return err;
349 
350 	/* Derive a secret dirhash key for directories that need it. */
351 	if (need_dirhash_key) {
352 		err = fscrypt_derive_dirhash_key(ci, mk);
353 		if (err)
354 			return err;
355 	}
356 
357 	return 0;
358 }
359 
360 /*
361  * Find the master key, then set up the inode's actual encryption key.
362  *
363  * If the master key is found in the filesystem-level keyring, then the
364  * corresponding 'struct key' is returned in *master_key_ret with its semaphore
365  * read-locked.  This is needed to ensure that only one task links the
366  * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create
367  * an fscrypt_info for the same inode), and to synchronize the master key being
368  * removed with a new inode starting to use it.
369  */
370 static int setup_file_encryption_key(struct fscrypt_info *ci,
371 				     bool need_dirhash_key,
372 				     struct key **master_key_ret)
373 {
374 	struct key *key;
375 	struct fscrypt_master_key *mk = NULL;
376 	struct fscrypt_key_specifier mk_spec;
377 	int err;
378 
379 	err = fscrypt_select_encryption_impl(ci);
380 	if (err)
381 		return err;
382 
383 	switch (ci->ci_policy.version) {
384 	case FSCRYPT_POLICY_V1:
385 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR;
386 		memcpy(mk_spec.u.descriptor,
387 		       ci->ci_policy.v1.master_key_descriptor,
388 		       FSCRYPT_KEY_DESCRIPTOR_SIZE);
389 		break;
390 	case FSCRYPT_POLICY_V2:
391 		mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
392 		memcpy(mk_spec.u.identifier,
393 		       ci->ci_policy.v2.master_key_identifier,
394 		       FSCRYPT_KEY_IDENTIFIER_SIZE);
395 		break;
396 	default:
397 		WARN_ON(1);
398 		return -EINVAL;
399 	}
400 
401 	key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec);
402 	if (IS_ERR(key)) {
403 		if (key != ERR_PTR(-ENOKEY) ||
404 		    ci->ci_policy.version != FSCRYPT_POLICY_V1)
405 			return PTR_ERR(key);
406 
407 		/*
408 		 * As a legacy fallback for v1 policies, search for the key in
409 		 * the current task's subscribed keyrings too.  Don't move this
410 		 * to before the search of ->s_master_keys, since users
411 		 * shouldn't be able to override filesystem-level keys.
412 		 */
413 		return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci);
414 	}
415 
416 	mk = key->payload.data[0];
417 	down_read(&key->sem);
418 
419 	/* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */
420 	if (!is_master_key_secret_present(&mk->mk_secret)) {
421 		err = -ENOKEY;
422 		goto out_release_key;
423 	}
424 
425 	/*
426 	 * Require that the master key be at least as long as the derived key.
427 	 * Otherwise, the derived key cannot possibly contain as much entropy as
428 	 * that required by the encryption mode it will be used for.  For v1
429 	 * policies it's also required for the KDF to work at all.
430 	 */
431 	if (mk->mk_secret.size < ci->ci_mode->keysize) {
432 		fscrypt_warn(NULL,
433 			     "key with %s %*phN is too short (got %u bytes, need %u+ bytes)",
434 			     master_key_spec_type(&mk_spec),
435 			     master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u,
436 			     mk->mk_secret.size, ci->ci_mode->keysize);
437 		err = -ENOKEY;
438 		goto out_release_key;
439 	}
440 
441 	switch (ci->ci_policy.version) {
442 	case FSCRYPT_POLICY_V1:
443 		err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw);
444 		break;
445 	case FSCRYPT_POLICY_V2:
446 		err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key);
447 		break;
448 	default:
449 		WARN_ON(1);
450 		err = -EINVAL;
451 		break;
452 	}
453 	if (err)
454 		goto out_release_key;
455 
456 	*master_key_ret = key;
457 	return 0;
458 
459 out_release_key:
460 	up_read(&key->sem);
461 	key_put(key);
462 	return err;
463 }
464 
465 static void put_crypt_info(struct fscrypt_info *ci)
466 {
467 	struct key *key;
468 
469 	if (!ci)
470 		return;
471 
472 	if (ci->ci_direct_key)
473 		fscrypt_put_direct_key(ci->ci_direct_key);
474 	else if (ci->ci_owns_key)
475 		fscrypt_destroy_prepared_key(&ci->ci_enc_key);
476 
477 	key = ci->ci_master_key;
478 	if (key) {
479 		struct fscrypt_master_key *mk = key->payload.data[0];
480 
481 		/*
482 		 * Remove this inode from the list of inodes that were unlocked
483 		 * with the master key.
484 		 *
485 		 * In addition, if we're removing the last inode from a key that
486 		 * already had its secret removed, invalidate the key so that it
487 		 * gets removed from ->s_master_keys.
488 		 */
489 		spin_lock(&mk->mk_decrypted_inodes_lock);
490 		list_del(&ci->ci_master_key_link);
491 		spin_unlock(&mk->mk_decrypted_inodes_lock);
492 		if (refcount_dec_and_test(&mk->mk_refcount))
493 			key_invalidate(key);
494 		key_put(key);
495 	}
496 	memzero_explicit(ci, sizeof(*ci));
497 	kmem_cache_free(fscrypt_info_cachep, ci);
498 }
499 
500 static int
501 fscrypt_setup_encryption_info(struct inode *inode,
502 			      const union fscrypt_policy *policy,
503 			      const u8 nonce[FSCRYPT_FILE_NONCE_SIZE],
504 			      bool need_dirhash_key)
505 {
506 	struct fscrypt_info *crypt_info;
507 	struct fscrypt_mode *mode;
508 	struct key *master_key = NULL;
509 	int res;
510 
511 	res = fscrypt_initialize(inode->i_sb->s_cop->flags);
512 	if (res)
513 		return res;
514 
515 	crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL);
516 	if (!crypt_info)
517 		return -ENOMEM;
518 
519 	crypt_info->ci_inode = inode;
520 	crypt_info->ci_policy = *policy;
521 	memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE);
522 
523 	mode = select_encryption_mode(&crypt_info->ci_policy, inode);
524 	if (IS_ERR(mode)) {
525 		res = PTR_ERR(mode);
526 		goto out;
527 	}
528 	WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE);
529 	crypt_info->ci_mode = mode;
530 
531 	res = setup_file_encryption_key(crypt_info, need_dirhash_key,
532 					&master_key);
533 	if (res)
534 		goto out;
535 
536 	/*
537 	 * For existing inodes, multiple tasks may race to set ->i_crypt_info.
538 	 * So use cmpxchg_release().  This pairs with the smp_load_acquire() in
539 	 * fscrypt_get_info().  I.e., here we publish ->i_crypt_info with a
540 	 * RELEASE barrier so that other tasks can ACQUIRE it.
541 	 */
542 	if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) {
543 		/*
544 		 * We won the race and set ->i_crypt_info to our crypt_info.
545 		 * Now link it into the master key's inode list.
546 		 */
547 		if (master_key) {
548 			struct fscrypt_master_key *mk =
549 				master_key->payload.data[0];
550 
551 			refcount_inc(&mk->mk_refcount);
552 			crypt_info->ci_master_key = key_get(master_key);
553 			spin_lock(&mk->mk_decrypted_inodes_lock);
554 			list_add(&crypt_info->ci_master_key_link,
555 				 &mk->mk_decrypted_inodes);
556 			spin_unlock(&mk->mk_decrypted_inodes_lock);
557 		}
558 		crypt_info = NULL;
559 	}
560 	res = 0;
561 out:
562 	if (master_key) {
563 		up_read(&master_key->sem);
564 		key_put(master_key);
565 	}
566 	put_crypt_info(crypt_info);
567 	return res;
568 }
569 
570 /**
571  * fscrypt_get_encryption_info() - set up an inode's encryption key
572  * @inode: the inode to set up the key for.  Must be encrypted.
573  * @allow_unsupported: if %true, treat an unsupported encryption policy (or
574  *		       unrecognized encryption context) the same way as the key
575  *		       being unavailable, instead of returning an error.  Use
576  *		       %false unless the operation being performed is needed in
577  *		       order for files (or directories) to be deleted.
578  *
579  * Set up ->i_crypt_info, if it hasn't already been done.
580  *
581  * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe.  So
582  * generally this shouldn't be called from within a filesystem transaction.
583  *
584  * Return: 0 if ->i_crypt_info was set or was already set, *or* if the
585  *	   encryption key is unavailable.  (Use fscrypt_has_encryption_key() to
586  *	   distinguish these cases.)  Also can return another -errno code.
587  */
588 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported)
589 {
590 	int res;
591 	union fscrypt_context ctx;
592 	union fscrypt_policy policy;
593 
594 	if (fscrypt_has_encryption_key(inode))
595 		return 0;
596 
597 	res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
598 	if (res < 0) {
599 		if (res == -ERANGE && allow_unsupported)
600 			return 0;
601 		fscrypt_warn(inode, "Error %d getting encryption context", res);
602 		return res;
603 	}
604 
605 	res = fscrypt_policy_from_context(&policy, &ctx, res);
606 	if (res) {
607 		if (allow_unsupported)
608 			return 0;
609 		fscrypt_warn(inode,
610 			     "Unrecognized or corrupt encryption context");
611 		return res;
612 	}
613 
614 	if (!fscrypt_supported_policy(&policy, inode)) {
615 		if (allow_unsupported)
616 			return 0;
617 		return -EINVAL;
618 	}
619 
620 	res = fscrypt_setup_encryption_info(inode, &policy,
621 					    fscrypt_context_nonce(&ctx),
622 					    IS_CASEFOLDED(inode) &&
623 					    S_ISDIR(inode->i_mode));
624 
625 	if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */
626 		res = 0;
627 	if (res == -ENOKEY)
628 		res = 0;
629 	return res;
630 }
631 
632 /**
633  * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory
634  * @dir: a possibly-encrypted directory
635  * @inode: the new inode.  ->i_mode must be set already.
636  *	   ->i_ino doesn't need to be set yet.
637  * @encrypt_ret: (output) set to %true if the new inode will be encrypted
638  *
639  * If the directory is encrypted, set up its ->i_crypt_info in preparation for
640  * encrypting the name of the new file.  Also, if the new inode will be
641  * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true.
642  *
643  * This isn't %GFP_NOFS-safe, and therefore it should be called before starting
644  * any filesystem transaction to create the inode.  For this reason, ->i_ino
645  * isn't required to be set yet, as the filesystem may not have set it yet.
646  *
647  * This doesn't persist the new inode's encryption context.  That still needs to
648  * be done later by calling fscrypt_set_context().
649  *
650  * Return: 0 on success, -ENOKEY if the encryption key is missing, or another
651  *	   -errno code
652  */
653 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
654 			      bool *encrypt_ret)
655 {
656 	const union fscrypt_policy *policy;
657 	u8 nonce[FSCRYPT_FILE_NONCE_SIZE];
658 
659 	policy = fscrypt_policy_to_inherit(dir);
660 	if (policy == NULL)
661 		return 0;
662 	if (IS_ERR(policy))
663 		return PTR_ERR(policy);
664 
665 	if (WARN_ON_ONCE(inode->i_mode == 0))
666 		return -EINVAL;
667 
668 	/*
669 	 * Only regular files, directories, and symlinks are encrypted.
670 	 * Special files like device nodes and named pipes aren't.
671 	 */
672 	if (!S_ISREG(inode->i_mode) &&
673 	    !S_ISDIR(inode->i_mode) &&
674 	    !S_ISLNK(inode->i_mode))
675 		return 0;
676 
677 	*encrypt_ret = true;
678 
679 	get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE);
680 	return fscrypt_setup_encryption_info(inode, policy, nonce,
681 					     IS_CASEFOLDED(dir) &&
682 					     S_ISDIR(inode->i_mode));
683 }
684 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode);
685 
686 /**
687  * fscrypt_put_encryption_info() - free most of an inode's fscrypt data
688  * @inode: an inode being evicted
689  *
690  * Free the inode's fscrypt_info.  Filesystems must call this when the inode is
691  * being evicted.  An RCU grace period need not have elapsed yet.
692  */
693 void fscrypt_put_encryption_info(struct inode *inode)
694 {
695 	put_crypt_info(inode->i_crypt_info);
696 	inode->i_crypt_info = NULL;
697 }
698 EXPORT_SYMBOL(fscrypt_put_encryption_info);
699 
700 /**
701  * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay
702  * @inode: an inode being freed
703  *
704  * Free the inode's cached decrypted symlink target, if any.  Filesystems must
705  * call this after an RCU grace period, just before they free the inode.
706  */
707 void fscrypt_free_inode(struct inode *inode)
708 {
709 	if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) {
710 		kfree(inode->i_link);
711 		inode->i_link = NULL;
712 	}
713 }
714 EXPORT_SYMBOL(fscrypt_free_inode);
715 
716 /**
717  * fscrypt_drop_inode() - check whether the inode's master key has been removed
718  * @inode: an inode being considered for eviction
719  *
720  * Filesystems supporting fscrypt must call this from their ->drop_inode()
721  * method so that encrypted inodes are evicted as soon as they're no longer in
722  * use and their master key has been removed.
723  *
724  * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0
725  */
726 int fscrypt_drop_inode(struct inode *inode)
727 {
728 	const struct fscrypt_info *ci = fscrypt_get_info(inode);
729 	const struct fscrypt_master_key *mk;
730 
731 	/*
732 	 * If ci is NULL, then the inode doesn't have an encryption key set up
733 	 * so it's irrelevant.  If ci_master_key is NULL, then the master key
734 	 * was provided via the legacy mechanism of the process-subscribed
735 	 * keyrings, so we don't know whether it's been removed or not.
736 	 */
737 	if (!ci || !ci->ci_master_key)
738 		return 0;
739 	mk = ci->ci_master_key->payload.data[0];
740 
741 	/*
742 	 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes
743 	 * protected by the key were cleaned by sync_filesystem().  But if
744 	 * userspace is still using the files, inodes can be dirtied between
745 	 * then and now.  We mustn't lose any writes, so skip dirty inodes here.
746 	 */
747 	if (inode->i_state & I_DIRTY_ALL)
748 		return 0;
749 
750 	/*
751 	 * Note: since we aren't holding the key semaphore, the result here can
752 	 * immediately become outdated.  But there's no correctness problem with
753 	 * unnecessarily evicting.  Nor is there a correctness problem with not
754 	 * evicting while iput() is racing with the key being removed, since
755 	 * then the thread removing the key will either evict the inode itself
756 	 * or will correctly detect that it wasn't evicted due to the race.
757 	 */
758 	return !is_master_key_secret_present(&mk->mk_secret);
759 }
760 EXPORT_SYMBOL_GPL(fscrypt_drop_inode);
761