1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Key setup facility for FS encryption support. 4 * 5 * Copyright (C) 2015, Google, Inc. 6 * 7 * Originally written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar. 8 * Heavily modified since then. 9 */ 10 11 #include <crypto/skcipher.h> 12 #include <linux/key.h> 13 #include <linux/random.h> 14 15 #include "fscrypt_private.h" 16 17 struct fscrypt_mode fscrypt_modes[] = { 18 [FSCRYPT_MODE_AES_256_XTS] = { 19 .friendly_name = "AES-256-XTS", 20 .cipher_str = "xts(aes)", 21 .keysize = 64, 22 .ivsize = 16, 23 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_256_XTS, 24 }, 25 [FSCRYPT_MODE_AES_256_CTS] = { 26 .friendly_name = "AES-256-CTS-CBC", 27 .cipher_str = "cts(cbc(aes))", 28 .keysize = 32, 29 .ivsize = 16, 30 }, 31 [FSCRYPT_MODE_AES_128_CBC] = { 32 .friendly_name = "AES-128-CBC-ESSIV", 33 .cipher_str = "essiv(cbc(aes),sha256)", 34 .keysize = 16, 35 .ivsize = 16, 36 .blk_crypto_mode = BLK_ENCRYPTION_MODE_AES_128_CBC_ESSIV, 37 }, 38 [FSCRYPT_MODE_AES_128_CTS] = { 39 .friendly_name = "AES-128-CTS-CBC", 40 .cipher_str = "cts(cbc(aes))", 41 .keysize = 16, 42 .ivsize = 16, 43 }, 44 [FSCRYPT_MODE_ADIANTUM] = { 45 .friendly_name = "Adiantum", 46 .cipher_str = "adiantum(xchacha12,aes)", 47 .keysize = 32, 48 .ivsize = 32, 49 .blk_crypto_mode = BLK_ENCRYPTION_MODE_ADIANTUM, 50 }, 51 }; 52 53 static DEFINE_MUTEX(fscrypt_mode_key_setup_mutex); 54 55 static struct fscrypt_mode * 56 select_encryption_mode(const union fscrypt_policy *policy, 57 const struct inode *inode) 58 { 59 BUILD_BUG_ON(ARRAY_SIZE(fscrypt_modes) != FSCRYPT_MODE_MAX + 1); 60 61 if (S_ISREG(inode->i_mode)) 62 return &fscrypt_modes[fscrypt_policy_contents_mode(policy)]; 63 64 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) 65 return &fscrypt_modes[fscrypt_policy_fnames_mode(policy)]; 66 67 WARN_ONCE(1, "fscrypt: filesystem tried to load encryption info for inode %lu, which is not encryptable (file type %d)\n", 68 inode->i_ino, (inode->i_mode & S_IFMT)); 69 return ERR_PTR(-EINVAL); 70 } 71 72 /* Create a symmetric cipher object for the given encryption mode and key */ 73 static struct crypto_skcipher * 74 fscrypt_allocate_skcipher(struct fscrypt_mode *mode, const u8 *raw_key, 75 const struct inode *inode) 76 { 77 struct crypto_skcipher *tfm; 78 int err; 79 80 tfm = crypto_alloc_skcipher(mode->cipher_str, 0, 0); 81 if (IS_ERR(tfm)) { 82 if (PTR_ERR(tfm) == -ENOENT) { 83 fscrypt_warn(inode, 84 "Missing crypto API support for %s (API name: \"%s\")", 85 mode->friendly_name, mode->cipher_str); 86 return ERR_PTR(-ENOPKG); 87 } 88 fscrypt_err(inode, "Error allocating '%s' transform: %ld", 89 mode->cipher_str, PTR_ERR(tfm)); 90 return tfm; 91 } 92 if (!xchg(&mode->logged_impl_name, 1)) { 93 /* 94 * fscrypt performance can vary greatly depending on which 95 * crypto algorithm implementation is used. Help people debug 96 * performance problems by logging the ->cra_driver_name the 97 * first time a mode is used. 98 */ 99 pr_info("fscrypt: %s using implementation \"%s\"\n", 100 mode->friendly_name, crypto_skcipher_driver_name(tfm)); 101 } 102 if (WARN_ON(crypto_skcipher_ivsize(tfm) != mode->ivsize)) { 103 err = -EINVAL; 104 goto err_free_tfm; 105 } 106 crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS); 107 err = crypto_skcipher_setkey(tfm, raw_key, mode->keysize); 108 if (err) 109 goto err_free_tfm; 110 111 return tfm; 112 113 err_free_tfm: 114 crypto_free_skcipher(tfm); 115 return ERR_PTR(err); 116 } 117 118 /* 119 * Prepare the crypto transform object or blk-crypto key in @prep_key, given the 120 * raw key, encryption mode, and flag indicating which encryption implementation 121 * (fs-layer or blk-crypto) will be used. 122 */ 123 int fscrypt_prepare_key(struct fscrypt_prepared_key *prep_key, 124 const u8 *raw_key, const struct fscrypt_info *ci) 125 { 126 struct crypto_skcipher *tfm; 127 128 if (fscrypt_using_inline_encryption(ci)) 129 return fscrypt_prepare_inline_crypt_key(prep_key, raw_key, ci); 130 131 tfm = fscrypt_allocate_skcipher(ci->ci_mode, raw_key, ci->ci_inode); 132 if (IS_ERR(tfm)) 133 return PTR_ERR(tfm); 134 /* 135 * Pairs with the smp_load_acquire() in fscrypt_is_key_prepared(). 136 * I.e., here we publish ->tfm with a RELEASE barrier so that 137 * concurrent tasks can ACQUIRE it. Note that this concurrency is only 138 * possible for per-mode keys, not for per-file keys. 139 */ 140 smp_store_release(&prep_key->tfm, tfm); 141 return 0; 142 } 143 144 /* Destroy a crypto transform object and/or blk-crypto key. */ 145 void fscrypt_destroy_prepared_key(struct fscrypt_prepared_key *prep_key) 146 { 147 crypto_free_skcipher(prep_key->tfm); 148 fscrypt_destroy_inline_crypt_key(prep_key); 149 } 150 151 /* Given a per-file encryption key, set up the file's crypto transform object */ 152 int fscrypt_set_per_file_enc_key(struct fscrypt_info *ci, const u8 *raw_key) 153 { 154 ci->ci_owns_key = true; 155 return fscrypt_prepare_key(&ci->ci_enc_key, raw_key, ci); 156 } 157 158 static int setup_per_mode_enc_key(struct fscrypt_info *ci, 159 struct fscrypt_master_key *mk, 160 struct fscrypt_prepared_key *keys, 161 u8 hkdf_context, bool include_fs_uuid) 162 { 163 const struct inode *inode = ci->ci_inode; 164 const struct super_block *sb = inode->i_sb; 165 struct fscrypt_mode *mode = ci->ci_mode; 166 const u8 mode_num = mode - fscrypt_modes; 167 struct fscrypt_prepared_key *prep_key; 168 u8 mode_key[FSCRYPT_MAX_KEY_SIZE]; 169 u8 hkdf_info[sizeof(mode_num) + sizeof(sb->s_uuid)]; 170 unsigned int hkdf_infolen = 0; 171 int err; 172 173 if (WARN_ON(mode_num > FSCRYPT_MODE_MAX)) 174 return -EINVAL; 175 176 prep_key = &keys[mode_num]; 177 if (fscrypt_is_key_prepared(prep_key, ci)) { 178 ci->ci_enc_key = *prep_key; 179 return 0; 180 } 181 182 mutex_lock(&fscrypt_mode_key_setup_mutex); 183 184 if (fscrypt_is_key_prepared(prep_key, ci)) 185 goto done_unlock; 186 187 BUILD_BUG_ON(sizeof(mode_num) != 1); 188 BUILD_BUG_ON(sizeof(sb->s_uuid) != 16); 189 BUILD_BUG_ON(sizeof(hkdf_info) != 17); 190 hkdf_info[hkdf_infolen++] = mode_num; 191 if (include_fs_uuid) { 192 memcpy(&hkdf_info[hkdf_infolen], &sb->s_uuid, 193 sizeof(sb->s_uuid)); 194 hkdf_infolen += sizeof(sb->s_uuid); 195 } 196 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 197 hkdf_context, hkdf_info, hkdf_infolen, 198 mode_key, mode->keysize); 199 if (err) 200 goto out_unlock; 201 err = fscrypt_prepare_key(prep_key, mode_key, ci); 202 memzero_explicit(mode_key, mode->keysize); 203 if (err) 204 goto out_unlock; 205 done_unlock: 206 ci->ci_enc_key = *prep_key; 207 err = 0; 208 out_unlock: 209 mutex_unlock(&fscrypt_mode_key_setup_mutex); 210 return err; 211 } 212 213 /* 214 * Derive a SipHash key from the given fscrypt master key and the given 215 * application-specific information string. 216 * 217 * Note that the KDF produces a byte array, but the SipHash APIs expect the key 218 * as a pair of 64-bit words. Therefore, on big endian CPUs we have to do an 219 * endianness swap in order to get the same results as on little endian CPUs. 220 */ 221 static int fscrypt_derive_siphash_key(const struct fscrypt_master_key *mk, 222 u8 context, const u8 *info, 223 unsigned int infolen, siphash_key_t *key) 224 { 225 int err; 226 227 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, context, info, infolen, 228 (u8 *)key, sizeof(*key)); 229 if (err) 230 return err; 231 232 BUILD_BUG_ON(sizeof(*key) != 16); 233 BUILD_BUG_ON(ARRAY_SIZE(key->key) != 2); 234 le64_to_cpus(&key->key[0]); 235 le64_to_cpus(&key->key[1]); 236 return 0; 237 } 238 239 int fscrypt_derive_dirhash_key(struct fscrypt_info *ci, 240 const struct fscrypt_master_key *mk) 241 { 242 int err; 243 244 err = fscrypt_derive_siphash_key(mk, HKDF_CONTEXT_DIRHASH_KEY, 245 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 246 &ci->ci_dirhash_key); 247 if (err) 248 return err; 249 ci->ci_dirhash_key_initialized = true; 250 return 0; 251 } 252 253 void fscrypt_hash_inode_number(struct fscrypt_info *ci, 254 const struct fscrypt_master_key *mk) 255 { 256 WARN_ON(ci->ci_inode->i_ino == 0); 257 WARN_ON(!mk->mk_ino_hash_key_initialized); 258 259 ci->ci_hashed_ino = (u32)siphash_1u64(ci->ci_inode->i_ino, 260 &mk->mk_ino_hash_key); 261 } 262 263 static int fscrypt_setup_iv_ino_lblk_32_key(struct fscrypt_info *ci, 264 struct fscrypt_master_key *mk) 265 { 266 int err; 267 268 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_32_keys, 269 HKDF_CONTEXT_IV_INO_LBLK_32_KEY, true); 270 if (err) 271 return err; 272 273 /* pairs with smp_store_release() below */ 274 if (!smp_load_acquire(&mk->mk_ino_hash_key_initialized)) { 275 276 mutex_lock(&fscrypt_mode_key_setup_mutex); 277 278 if (mk->mk_ino_hash_key_initialized) 279 goto unlock; 280 281 err = fscrypt_derive_siphash_key(mk, 282 HKDF_CONTEXT_INODE_HASH_KEY, 283 NULL, 0, &mk->mk_ino_hash_key); 284 if (err) 285 goto unlock; 286 /* pairs with smp_load_acquire() above */ 287 smp_store_release(&mk->mk_ino_hash_key_initialized, true); 288 unlock: 289 mutex_unlock(&fscrypt_mode_key_setup_mutex); 290 if (err) 291 return err; 292 } 293 294 /* 295 * New inodes may not have an inode number assigned yet. 296 * Hashing their inode number is delayed until later. 297 */ 298 if (ci->ci_inode->i_ino) 299 fscrypt_hash_inode_number(ci, mk); 300 return 0; 301 } 302 303 static int fscrypt_setup_v2_file_key(struct fscrypt_info *ci, 304 struct fscrypt_master_key *mk, 305 bool need_dirhash_key) 306 { 307 int err; 308 309 if (ci->ci_policy.v2.flags & FSCRYPT_POLICY_FLAG_DIRECT_KEY) { 310 /* 311 * DIRECT_KEY: instead of deriving per-file encryption keys, the 312 * per-file nonce will be included in all the IVs. But unlike 313 * v1 policies, for v2 policies in this case we don't encrypt 314 * with the master key directly but rather derive a per-mode 315 * encryption key. This ensures that the master key is 316 * consistently used only for HKDF, avoiding key reuse issues. 317 */ 318 err = setup_per_mode_enc_key(ci, mk, mk->mk_direct_keys, 319 HKDF_CONTEXT_DIRECT_KEY, false); 320 } else if (ci->ci_policy.v2.flags & 321 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64) { 322 /* 323 * IV_INO_LBLK_64: encryption keys are derived from (master_key, 324 * mode_num, filesystem_uuid), and inode number is included in 325 * the IVs. This format is optimized for use with inline 326 * encryption hardware compliant with the UFS standard. 327 */ 328 err = setup_per_mode_enc_key(ci, mk, mk->mk_iv_ino_lblk_64_keys, 329 HKDF_CONTEXT_IV_INO_LBLK_64_KEY, 330 true); 331 } else if (ci->ci_policy.v2.flags & 332 FSCRYPT_POLICY_FLAG_IV_INO_LBLK_32) { 333 err = fscrypt_setup_iv_ino_lblk_32_key(ci, mk); 334 } else { 335 u8 derived_key[FSCRYPT_MAX_KEY_SIZE]; 336 337 err = fscrypt_hkdf_expand(&mk->mk_secret.hkdf, 338 HKDF_CONTEXT_PER_FILE_ENC_KEY, 339 ci->ci_nonce, FSCRYPT_FILE_NONCE_SIZE, 340 derived_key, ci->ci_mode->keysize); 341 if (err) 342 return err; 343 344 err = fscrypt_set_per_file_enc_key(ci, derived_key); 345 memzero_explicit(derived_key, ci->ci_mode->keysize); 346 } 347 if (err) 348 return err; 349 350 /* Derive a secret dirhash key for directories that need it. */ 351 if (need_dirhash_key) { 352 err = fscrypt_derive_dirhash_key(ci, mk); 353 if (err) 354 return err; 355 } 356 357 return 0; 358 } 359 360 /* 361 * Find the master key, then set up the inode's actual encryption key. 362 * 363 * If the master key is found in the filesystem-level keyring, then the 364 * corresponding 'struct key' is returned in *master_key_ret with its semaphore 365 * read-locked. This is needed to ensure that only one task links the 366 * fscrypt_info into ->mk_decrypted_inodes (as multiple tasks may race to create 367 * an fscrypt_info for the same inode), and to synchronize the master key being 368 * removed with a new inode starting to use it. 369 */ 370 static int setup_file_encryption_key(struct fscrypt_info *ci, 371 bool need_dirhash_key, 372 struct key **master_key_ret) 373 { 374 struct key *key; 375 struct fscrypt_master_key *mk = NULL; 376 struct fscrypt_key_specifier mk_spec; 377 int err; 378 379 err = fscrypt_select_encryption_impl(ci); 380 if (err) 381 return err; 382 383 switch (ci->ci_policy.version) { 384 case FSCRYPT_POLICY_V1: 385 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR; 386 memcpy(mk_spec.u.descriptor, 387 ci->ci_policy.v1.master_key_descriptor, 388 FSCRYPT_KEY_DESCRIPTOR_SIZE); 389 break; 390 case FSCRYPT_POLICY_V2: 391 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 392 memcpy(mk_spec.u.identifier, 393 ci->ci_policy.v2.master_key_identifier, 394 FSCRYPT_KEY_IDENTIFIER_SIZE); 395 break; 396 default: 397 WARN_ON(1); 398 return -EINVAL; 399 } 400 401 key = fscrypt_find_master_key(ci->ci_inode->i_sb, &mk_spec); 402 if (IS_ERR(key)) { 403 if (key != ERR_PTR(-ENOKEY) || 404 ci->ci_policy.version != FSCRYPT_POLICY_V1) 405 return PTR_ERR(key); 406 407 /* 408 * As a legacy fallback for v1 policies, search for the key in 409 * the current task's subscribed keyrings too. Don't move this 410 * to before the search of ->s_master_keys, since users 411 * shouldn't be able to override filesystem-level keys. 412 */ 413 return fscrypt_setup_v1_file_key_via_subscribed_keyrings(ci); 414 } 415 416 mk = key->payload.data[0]; 417 down_read(&key->sem); 418 419 /* Has the secret been removed (via FS_IOC_REMOVE_ENCRYPTION_KEY)? */ 420 if (!is_master_key_secret_present(&mk->mk_secret)) { 421 err = -ENOKEY; 422 goto out_release_key; 423 } 424 425 /* 426 * Require that the master key be at least as long as the derived key. 427 * Otherwise, the derived key cannot possibly contain as much entropy as 428 * that required by the encryption mode it will be used for. For v1 429 * policies it's also required for the KDF to work at all. 430 */ 431 if (mk->mk_secret.size < ci->ci_mode->keysize) { 432 fscrypt_warn(NULL, 433 "key with %s %*phN is too short (got %u bytes, need %u+ bytes)", 434 master_key_spec_type(&mk_spec), 435 master_key_spec_len(&mk_spec), (u8 *)&mk_spec.u, 436 mk->mk_secret.size, ci->ci_mode->keysize); 437 err = -ENOKEY; 438 goto out_release_key; 439 } 440 441 switch (ci->ci_policy.version) { 442 case FSCRYPT_POLICY_V1: 443 err = fscrypt_setup_v1_file_key(ci, mk->mk_secret.raw); 444 break; 445 case FSCRYPT_POLICY_V2: 446 err = fscrypt_setup_v2_file_key(ci, mk, need_dirhash_key); 447 break; 448 default: 449 WARN_ON(1); 450 err = -EINVAL; 451 break; 452 } 453 if (err) 454 goto out_release_key; 455 456 *master_key_ret = key; 457 return 0; 458 459 out_release_key: 460 up_read(&key->sem); 461 key_put(key); 462 return err; 463 } 464 465 static void put_crypt_info(struct fscrypt_info *ci) 466 { 467 struct key *key; 468 469 if (!ci) 470 return; 471 472 if (ci->ci_direct_key) 473 fscrypt_put_direct_key(ci->ci_direct_key); 474 else if (ci->ci_owns_key) 475 fscrypt_destroy_prepared_key(&ci->ci_enc_key); 476 477 key = ci->ci_master_key; 478 if (key) { 479 struct fscrypt_master_key *mk = key->payload.data[0]; 480 481 /* 482 * Remove this inode from the list of inodes that were unlocked 483 * with the master key. 484 * 485 * In addition, if we're removing the last inode from a key that 486 * already had its secret removed, invalidate the key so that it 487 * gets removed from ->s_master_keys. 488 */ 489 spin_lock(&mk->mk_decrypted_inodes_lock); 490 list_del(&ci->ci_master_key_link); 491 spin_unlock(&mk->mk_decrypted_inodes_lock); 492 if (refcount_dec_and_test(&mk->mk_refcount)) 493 key_invalidate(key); 494 key_put(key); 495 } 496 memzero_explicit(ci, sizeof(*ci)); 497 kmem_cache_free(fscrypt_info_cachep, ci); 498 } 499 500 static int 501 fscrypt_setup_encryption_info(struct inode *inode, 502 const union fscrypt_policy *policy, 503 const u8 nonce[FSCRYPT_FILE_NONCE_SIZE], 504 bool need_dirhash_key) 505 { 506 struct fscrypt_info *crypt_info; 507 struct fscrypt_mode *mode; 508 struct key *master_key = NULL; 509 int res; 510 511 res = fscrypt_initialize(inode->i_sb->s_cop->flags); 512 if (res) 513 return res; 514 515 crypt_info = kmem_cache_zalloc(fscrypt_info_cachep, GFP_KERNEL); 516 if (!crypt_info) 517 return -ENOMEM; 518 519 crypt_info->ci_inode = inode; 520 crypt_info->ci_policy = *policy; 521 memcpy(crypt_info->ci_nonce, nonce, FSCRYPT_FILE_NONCE_SIZE); 522 523 mode = select_encryption_mode(&crypt_info->ci_policy, inode); 524 if (IS_ERR(mode)) { 525 res = PTR_ERR(mode); 526 goto out; 527 } 528 WARN_ON(mode->ivsize > FSCRYPT_MAX_IV_SIZE); 529 crypt_info->ci_mode = mode; 530 531 res = setup_file_encryption_key(crypt_info, need_dirhash_key, 532 &master_key); 533 if (res) 534 goto out; 535 536 /* 537 * For existing inodes, multiple tasks may race to set ->i_crypt_info. 538 * So use cmpxchg_release(). This pairs with the smp_load_acquire() in 539 * fscrypt_get_info(). I.e., here we publish ->i_crypt_info with a 540 * RELEASE barrier so that other tasks can ACQUIRE it. 541 */ 542 if (cmpxchg_release(&inode->i_crypt_info, NULL, crypt_info) == NULL) { 543 /* 544 * We won the race and set ->i_crypt_info to our crypt_info. 545 * Now link it into the master key's inode list. 546 */ 547 if (master_key) { 548 struct fscrypt_master_key *mk = 549 master_key->payload.data[0]; 550 551 refcount_inc(&mk->mk_refcount); 552 crypt_info->ci_master_key = key_get(master_key); 553 spin_lock(&mk->mk_decrypted_inodes_lock); 554 list_add(&crypt_info->ci_master_key_link, 555 &mk->mk_decrypted_inodes); 556 spin_unlock(&mk->mk_decrypted_inodes_lock); 557 } 558 crypt_info = NULL; 559 } 560 res = 0; 561 out: 562 if (master_key) { 563 up_read(&master_key->sem); 564 key_put(master_key); 565 } 566 put_crypt_info(crypt_info); 567 return res; 568 } 569 570 /** 571 * fscrypt_get_encryption_info() - set up an inode's encryption key 572 * @inode: the inode to set up the key for. Must be encrypted. 573 * @allow_unsupported: if %true, treat an unsupported encryption policy (or 574 * unrecognized encryption context) the same way as the key 575 * being unavailable, instead of returning an error. Use 576 * %false unless the operation being performed is needed in 577 * order for files (or directories) to be deleted. 578 * 579 * Set up ->i_crypt_info, if it hasn't already been done. 580 * 581 * Note: unless ->i_crypt_info is already set, this isn't %GFP_NOFS-safe. So 582 * generally this shouldn't be called from within a filesystem transaction. 583 * 584 * Return: 0 if ->i_crypt_info was set or was already set, *or* if the 585 * encryption key is unavailable. (Use fscrypt_has_encryption_key() to 586 * distinguish these cases.) Also can return another -errno code. 587 */ 588 int fscrypt_get_encryption_info(struct inode *inode, bool allow_unsupported) 589 { 590 int res; 591 union fscrypt_context ctx; 592 union fscrypt_policy policy; 593 594 if (fscrypt_has_encryption_key(inode)) 595 return 0; 596 597 res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx)); 598 if (res < 0) { 599 if (res == -ERANGE && allow_unsupported) 600 return 0; 601 fscrypt_warn(inode, "Error %d getting encryption context", res); 602 return res; 603 } 604 605 res = fscrypt_policy_from_context(&policy, &ctx, res); 606 if (res) { 607 if (allow_unsupported) 608 return 0; 609 fscrypt_warn(inode, 610 "Unrecognized or corrupt encryption context"); 611 return res; 612 } 613 614 if (!fscrypt_supported_policy(&policy, inode)) { 615 if (allow_unsupported) 616 return 0; 617 return -EINVAL; 618 } 619 620 res = fscrypt_setup_encryption_info(inode, &policy, 621 fscrypt_context_nonce(&ctx), 622 IS_CASEFOLDED(inode) && 623 S_ISDIR(inode->i_mode)); 624 625 if (res == -ENOPKG && allow_unsupported) /* Algorithm unavailable? */ 626 res = 0; 627 if (res == -ENOKEY) 628 res = 0; 629 return res; 630 } 631 632 /** 633 * fscrypt_prepare_new_inode() - prepare to create a new inode in a directory 634 * @dir: a possibly-encrypted directory 635 * @inode: the new inode. ->i_mode must be set already. 636 * ->i_ino doesn't need to be set yet. 637 * @encrypt_ret: (output) set to %true if the new inode will be encrypted 638 * 639 * If the directory is encrypted, set up its ->i_crypt_info in preparation for 640 * encrypting the name of the new file. Also, if the new inode will be 641 * encrypted, set up its ->i_crypt_info and set *encrypt_ret=true. 642 * 643 * This isn't %GFP_NOFS-safe, and therefore it should be called before starting 644 * any filesystem transaction to create the inode. For this reason, ->i_ino 645 * isn't required to be set yet, as the filesystem may not have set it yet. 646 * 647 * This doesn't persist the new inode's encryption context. That still needs to 648 * be done later by calling fscrypt_set_context(). 649 * 650 * Return: 0 on success, -ENOKEY if the encryption key is missing, or another 651 * -errno code 652 */ 653 int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode, 654 bool *encrypt_ret) 655 { 656 const union fscrypt_policy *policy; 657 u8 nonce[FSCRYPT_FILE_NONCE_SIZE]; 658 659 policy = fscrypt_policy_to_inherit(dir); 660 if (policy == NULL) 661 return 0; 662 if (IS_ERR(policy)) 663 return PTR_ERR(policy); 664 665 if (WARN_ON_ONCE(inode->i_mode == 0)) 666 return -EINVAL; 667 668 /* 669 * Only regular files, directories, and symlinks are encrypted. 670 * Special files like device nodes and named pipes aren't. 671 */ 672 if (!S_ISREG(inode->i_mode) && 673 !S_ISDIR(inode->i_mode) && 674 !S_ISLNK(inode->i_mode)) 675 return 0; 676 677 *encrypt_ret = true; 678 679 get_random_bytes(nonce, FSCRYPT_FILE_NONCE_SIZE); 680 return fscrypt_setup_encryption_info(inode, policy, nonce, 681 IS_CASEFOLDED(dir) && 682 S_ISDIR(inode->i_mode)); 683 } 684 EXPORT_SYMBOL_GPL(fscrypt_prepare_new_inode); 685 686 /** 687 * fscrypt_put_encryption_info() - free most of an inode's fscrypt data 688 * @inode: an inode being evicted 689 * 690 * Free the inode's fscrypt_info. Filesystems must call this when the inode is 691 * being evicted. An RCU grace period need not have elapsed yet. 692 */ 693 void fscrypt_put_encryption_info(struct inode *inode) 694 { 695 put_crypt_info(inode->i_crypt_info); 696 inode->i_crypt_info = NULL; 697 } 698 EXPORT_SYMBOL(fscrypt_put_encryption_info); 699 700 /** 701 * fscrypt_free_inode() - free an inode's fscrypt data requiring RCU delay 702 * @inode: an inode being freed 703 * 704 * Free the inode's cached decrypted symlink target, if any. Filesystems must 705 * call this after an RCU grace period, just before they free the inode. 706 */ 707 void fscrypt_free_inode(struct inode *inode) 708 { 709 if (IS_ENCRYPTED(inode) && S_ISLNK(inode->i_mode)) { 710 kfree(inode->i_link); 711 inode->i_link = NULL; 712 } 713 } 714 EXPORT_SYMBOL(fscrypt_free_inode); 715 716 /** 717 * fscrypt_drop_inode() - check whether the inode's master key has been removed 718 * @inode: an inode being considered for eviction 719 * 720 * Filesystems supporting fscrypt must call this from their ->drop_inode() 721 * method so that encrypted inodes are evicted as soon as they're no longer in 722 * use and their master key has been removed. 723 * 724 * Return: 1 if fscrypt wants the inode to be evicted now, otherwise 0 725 */ 726 int fscrypt_drop_inode(struct inode *inode) 727 { 728 const struct fscrypt_info *ci = fscrypt_get_info(inode); 729 const struct fscrypt_master_key *mk; 730 731 /* 732 * If ci is NULL, then the inode doesn't have an encryption key set up 733 * so it's irrelevant. If ci_master_key is NULL, then the master key 734 * was provided via the legacy mechanism of the process-subscribed 735 * keyrings, so we don't know whether it's been removed or not. 736 */ 737 if (!ci || !ci->ci_master_key) 738 return 0; 739 mk = ci->ci_master_key->payload.data[0]; 740 741 /* 742 * With proper, non-racy use of FS_IOC_REMOVE_ENCRYPTION_KEY, all inodes 743 * protected by the key were cleaned by sync_filesystem(). But if 744 * userspace is still using the files, inodes can be dirtied between 745 * then and now. We mustn't lose any writes, so skip dirty inodes here. 746 */ 747 if (inode->i_state & I_DIRTY_ALL) 748 return 0; 749 750 /* 751 * Note: since we aren't holding the key semaphore, the result here can 752 * immediately become outdated. But there's no correctness problem with 753 * unnecessarily evicting. Nor is there a correctness problem with not 754 * evicting while iput() is racing with the key being removed, since 755 * then the thread removing the key will either evict the inode itself 756 * or will correctly detect that it wasn't evicted due to the race. 757 */ 758 return !is_master_key_secret_present(&mk->mk_secret); 759 } 760 EXPORT_SYMBOL_GPL(fscrypt_drop_inode); 761