1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <linux/unaligned.h> 22 #include <crypto/skcipher.h> 23 #include <linux/key-type.h> 24 #include <linux/random.h> 25 #include <linux/seq_file.h> 26 27 #include "fscrypt_private.h" 28 29 /* The master encryption keys for a filesystem (->s_master_keys) */ 30 struct fscrypt_keyring { 31 /* 32 * Lock that protects ->key_hashtable. It does *not* protect the 33 * fscrypt_master_key structs themselves. 34 */ 35 spinlock_t lock; 36 37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 38 struct hlist_head key_hashtable[128]; 39 }; 40 41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 42 { 43 fscrypt_destroy_hkdf(&secret->hkdf); 44 memzero_explicit(secret, sizeof(*secret)); 45 } 46 47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 48 struct fscrypt_master_key_secret *src) 49 { 50 memcpy(dst, src, sizeof(*dst)); 51 memzero_explicit(src, sizeof(*src)); 52 } 53 54 static void fscrypt_free_master_key(struct rcu_head *head) 55 { 56 struct fscrypt_master_key *mk = 57 container_of(head, struct fscrypt_master_key, mk_rcu_head); 58 /* 59 * The master key secret and any embedded subkeys should have already 60 * been wiped when the last active reference to the fscrypt_master_key 61 * struct was dropped; doing it here would be unnecessarily late. 62 * Nevertheless, use kfree_sensitive() in case anything was missed. 63 */ 64 kfree_sensitive(mk); 65 } 66 67 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 68 { 69 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 70 return; 71 /* 72 * No structural references left, so free ->mk_users, and also free the 73 * fscrypt_master_key struct itself after an RCU grace period ensures 74 * that concurrent keyring lookups can no longer find it. 75 */ 76 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0); 77 if (mk->mk_users) { 78 /* Clear the keyring so the quota gets released right away. */ 79 keyring_clear(mk->mk_users); 80 key_put(mk->mk_users); 81 mk->mk_users = NULL; 82 } 83 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 84 } 85 86 void fscrypt_put_master_key_activeref(struct super_block *sb, 87 struct fscrypt_master_key *mk) 88 { 89 size_t i; 90 91 if (!refcount_dec_and_test(&mk->mk_active_refs)) 92 return; 93 /* 94 * No active references left, so complete the full removal of this 95 * fscrypt_master_key struct by removing it from the keyring and 96 * destroying any subkeys embedded in it. 97 */ 98 99 if (WARN_ON_ONCE(!sb->s_master_keys)) 100 return; 101 spin_lock(&sb->s_master_keys->lock); 102 hlist_del_rcu(&mk->mk_node); 103 spin_unlock(&sb->s_master_keys->lock); 104 105 /* 106 * ->mk_active_refs == 0 implies that ->mk_present is false and 107 * ->mk_decrypted_inodes is empty. 108 */ 109 WARN_ON_ONCE(mk->mk_present); 110 WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes)); 111 112 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 113 fscrypt_destroy_prepared_key( 114 sb, &mk->mk_direct_keys[i]); 115 fscrypt_destroy_prepared_key( 116 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 117 fscrypt_destroy_prepared_key( 118 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 119 } 120 memzero_explicit(&mk->mk_ino_hash_key, 121 sizeof(mk->mk_ino_hash_key)); 122 mk->mk_ino_hash_key_initialized = false; 123 124 /* Drop the structural ref associated with the active refs. */ 125 fscrypt_put_master_key(mk); 126 } 127 128 /* 129 * This transitions the key state from present to incompletely removed, and then 130 * potentially to absent (depending on whether inodes remain). 131 */ 132 static void fscrypt_initiate_key_removal(struct super_block *sb, 133 struct fscrypt_master_key *mk) 134 { 135 WRITE_ONCE(mk->mk_present, false); 136 wipe_master_key_secret(&mk->mk_secret); 137 fscrypt_put_master_key_activeref(sb, mk); 138 } 139 140 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 141 { 142 if (spec->__reserved) 143 return false; 144 return master_key_spec_len(spec) != 0; 145 } 146 147 static int fscrypt_user_key_instantiate(struct key *key, 148 struct key_preparsed_payload *prep) 149 { 150 /* 151 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 152 * each key, regardless of the exact key size. The amount of memory 153 * actually used is greater than the size of the raw key anyway. 154 */ 155 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 156 } 157 158 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 159 { 160 seq_puts(m, key->description); 161 } 162 163 /* 164 * Type of key in ->mk_users. Each key of this type represents a particular 165 * user who has added a particular master key. 166 * 167 * Note that the name of this key type really should be something like 168 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 169 * mainly for simplicity of presentation in /proc/keys when read by a non-root 170 * user. And it is expected to be rare that a key is actually added by multiple 171 * users, since users should keep their encryption keys confidential. 172 */ 173 static struct key_type key_type_fscrypt_user = { 174 .name = ".fscrypt", 175 .instantiate = fscrypt_user_key_instantiate, 176 .describe = fscrypt_user_key_describe, 177 }; 178 179 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 180 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 181 CONST_STRLEN("-users") + 1) 182 183 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 184 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 185 186 static void format_mk_users_keyring_description( 187 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 188 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 189 { 190 sprintf(description, "fscrypt-%*phN-users", 191 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 192 } 193 194 static void format_mk_user_description( 195 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 196 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 197 { 198 199 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 200 mk_identifier, __kuid_val(current_fsuid())); 201 } 202 203 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 204 static int allocate_filesystem_keyring(struct super_block *sb) 205 { 206 struct fscrypt_keyring *keyring; 207 208 if (sb->s_master_keys) 209 return 0; 210 211 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 212 if (!keyring) 213 return -ENOMEM; 214 spin_lock_init(&keyring->lock); 215 /* 216 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 217 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 218 * concurrent tasks can ACQUIRE it. 219 */ 220 smp_store_release(&sb->s_master_keys, keyring); 221 return 0; 222 } 223 224 /* 225 * Release all encryption keys that have been added to the filesystem, along 226 * with the keyring that contains them. 227 * 228 * This is called at unmount time, after all potentially-encrypted inodes have 229 * been evicted. The filesystem's underlying block device(s) are still 230 * available at this time; this is important because after user file accesses 231 * have been allowed, this function may need to evict keys from the keyslots of 232 * an inline crypto engine, which requires the block device(s). 233 */ 234 void fscrypt_destroy_keyring(struct super_block *sb) 235 { 236 struct fscrypt_keyring *keyring = sb->s_master_keys; 237 size_t i; 238 239 if (!keyring) 240 return; 241 242 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 243 struct hlist_head *bucket = &keyring->key_hashtable[i]; 244 struct fscrypt_master_key *mk; 245 struct hlist_node *tmp; 246 247 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 248 /* 249 * Since all potentially-encrypted inodes were already 250 * evicted, every key remaining in the keyring should 251 * have an empty inode list, and should only still be in 252 * the keyring due to the single active ref associated 253 * with ->mk_present. There should be no structural 254 * refs beyond the one associated with the active ref. 255 */ 256 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1); 257 WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1); 258 WARN_ON_ONCE(!mk->mk_present); 259 fscrypt_initiate_key_removal(sb, mk); 260 } 261 } 262 kfree_sensitive(keyring); 263 sb->s_master_keys = NULL; 264 } 265 266 static struct hlist_head * 267 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 268 const struct fscrypt_key_specifier *mk_spec) 269 { 270 /* 271 * Since key specifiers should be "random" values, it is sufficient to 272 * use a trivial hash function that just takes the first several bits of 273 * the key specifier. 274 */ 275 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 276 277 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 278 } 279 280 /* 281 * Find the specified master key struct in ->s_master_keys and take a structural 282 * ref to it. The structural ref guarantees that the key struct continues to 283 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 284 * the key struct. The structural ref needs to be dropped by 285 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 286 */ 287 struct fscrypt_master_key * 288 fscrypt_find_master_key(struct super_block *sb, 289 const struct fscrypt_key_specifier *mk_spec) 290 { 291 struct fscrypt_keyring *keyring; 292 struct hlist_head *bucket; 293 struct fscrypt_master_key *mk; 294 295 /* 296 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 297 * I.e., another task can publish ->s_master_keys concurrently, 298 * executing a RELEASE barrier. We need to use smp_load_acquire() here 299 * to safely ACQUIRE the memory the other task published. 300 */ 301 keyring = smp_load_acquire(&sb->s_master_keys); 302 if (keyring == NULL) 303 return NULL; /* No keyring yet, so no keys yet. */ 304 305 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 306 rcu_read_lock(); 307 switch (mk_spec->type) { 308 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 309 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 310 if (mk->mk_spec.type == 311 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 312 memcmp(mk->mk_spec.u.descriptor, 313 mk_spec->u.descriptor, 314 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 315 refcount_inc_not_zero(&mk->mk_struct_refs)) 316 goto out; 317 } 318 break; 319 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 320 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 321 if (mk->mk_spec.type == 322 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 323 memcmp(mk->mk_spec.u.identifier, 324 mk_spec->u.identifier, 325 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 326 refcount_inc_not_zero(&mk->mk_struct_refs)) 327 goto out; 328 } 329 break; 330 } 331 mk = NULL; 332 out: 333 rcu_read_unlock(); 334 return mk; 335 } 336 337 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 338 { 339 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 340 struct key *keyring; 341 342 format_mk_users_keyring_description(description, 343 mk->mk_spec.u.identifier); 344 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 345 current_cred(), KEY_POS_SEARCH | 346 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 347 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 348 if (IS_ERR(keyring)) 349 return PTR_ERR(keyring); 350 351 mk->mk_users = keyring; 352 return 0; 353 } 354 355 /* 356 * Find the current user's "key" in the master key's ->mk_users. 357 * Returns ERR_PTR(-ENOKEY) if not found. 358 */ 359 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 360 { 361 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 362 key_ref_t keyref; 363 364 format_mk_user_description(description, mk->mk_spec.u.identifier); 365 366 /* 367 * We need to mark the keyring reference as "possessed" so that we 368 * acquire permission to search it, via the KEY_POS_SEARCH permission. 369 */ 370 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 371 &key_type_fscrypt_user, description, false); 372 if (IS_ERR(keyref)) { 373 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 374 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 375 keyref = ERR_PTR(-ENOKEY); 376 return ERR_CAST(keyref); 377 } 378 return key_ref_to_ptr(keyref); 379 } 380 381 /* 382 * Give the current user a "key" in ->mk_users. This charges the user's quota 383 * and marks the master key as added by the current user, so that it cannot be 384 * removed by another user with the key. Either ->mk_sem must be held for 385 * write, or the master key must be still undergoing initialization. 386 */ 387 static int add_master_key_user(struct fscrypt_master_key *mk) 388 { 389 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 390 struct key *mk_user; 391 int err; 392 393 format_mk_user_description(description, mk->mk_spec.u.identifier); 394 mk_user = key_alloc(&key_type_fscrypt_user, description, 395 current_fsuid(), current_gid(), current_cred(), 396 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 397 if (IS_ERR(mk_user)) 398 return PTR_ERR(mk_user); 399 400 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 401 key_put(mk_user); 402 return err; 403 } 404 405 /* 406 * Remove the current user's "key" from ->mk_users. 407 * ->mk_sem must be held for write. 408 * 409 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 410 */ 411 static int remove_master_key_user(struct fscrypt_master_key *mk) 412 { 413 struct key *mk_user; 414 int err; 415 416 mk_user = find_master_key_user(mk); 417 if (IS_ERR(mk_user)) 418 return PTR_ERR(mk_user); 419 err = key_unlink(mk->mk_users, mk_user); 420 key_put(mk_user); 421 return err; 422 } 423 424 /* 425 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 426 * insert it into sb->s_master_keys. 427 */ 428 static int add_new_master_key(struct super_block *sb, 429 struct fscrypt_master_key_secret *secret, 430 const struct fscrypt_key_specifier *mk_spec) 431 { 432 struct fscrypt_keyring *keyring = sb->s_master_keys; 433 struct fscrypt_master_key *mk; 434 int err; 435 436 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 437 if (!mk) 438 return -ENOMEM; 439 440 init_rwsem(&mk->mk_sem); 441 refcount_set(&mk->mk_struct_refs, 1); 442 mk->mk_spec = *mk_spec; 443 444 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 445 spin_lock_init(&mk->mk_decrypted_inodes_lock); 446 447 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 448 err = allocate_master_key_users_keyring(mk); 449 if (err) 450 goto out_put; 451 err = add_master_key_user(mk); 452 if (err) 453 goto out_put; 454 } 455 456 move_master_key_secret(&mk->mk_secret, secret); 457 mk->mk_present = true; 458 refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */ 459 460 spin_lock(&keyring->lock); 461 hlist_add_head_rcu(&mk->mk_node, 462 fscrypt_mk_hash_bucket(keyring, mk_spec)); 463 spin_unlock(&keyring->lock); 464 return 0; 465 466 out_put: 467 fscrypt_put_master_key(mk); 468 return err; 469 } 470 471 #define KEY_DEAD 1 472 473 static int add_existing_master_key(struct fscrypt_master_key *mk, 474 struct fscrypt_master_key_secret *secret) 475 { 476 int err; 477 478 /* 479 * If the current user is already in ->mk_users, then there's nothing to 480 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 481 * applicable for v1 policy keys, which have NULL ->mk_users.) 482 */ 483 if (mk->mk_users) { 484 struct key *mk_user = find_master_key_user(mk); 485 486 if (mk_user != ERR_PTR(-ENOKEY)) { 487 if (IS_ERR(mk_user)) 488 return PTR_ERR(mk_user); 489 key_put(mk_user); 490 return 0; 491 } 492 err = add_master_key_user(mk); 493 if (err) 494 return err; 495 } 496 497 /* If the key is incompletely removed, make it present again. */ 498 if (!mk->mk_present) { 499 if (!refcount_inc_not_zero(&mk->mk_active_refs)) { 500 /* 501 * Raced with the last active ref being dropped, so the 502 * key has become, or is about to become, "absent". 503 * Therefore, we need to allocate a new key struct. 504 */ 505 return KEY_DEAD; 506 } 507 move_master_key_secret(&mk->mk_secret, secret); 508 WRITE_ONCE(mk->mk_present, true); 509 } 510 511 return 0; 512 } 513 514 static int do_add_master_key(struct super_block *sb, 515 struct fscrypt_master_key_secret *secret, 516 const struct fscrypt_key_specifier *mk_spec) 517 { 518 static DEFINE_MUTEX(fscrypt_add_key_mutex); 519 struct fscrypt_master_key *mk; 520 int err; 521 522 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 523 524 mk = fscrypt_find_master_key(sb, mk_spec); 525 if (!mk) { 526 /* Didn't find the key in ->s_master_keys. Add it. */ 527 err = allocate_filesystem_keyring(sb); 528 if (!err) 529 err = add_new_master_key(sb, secret, mk_spec); 530 } else { 531 /* 532 * Found the key in ->s_master_keys. Add the user to ->mk_users 533 * if needed, and make the key "present" again if possible. 534 */ 535 down_write(&mk->mk_sem); 536 err = add_existing_master_key(mk, secret); 537 up_write(&mk->mk_sem); 538 if (err == KEY_DEAD) { 539 /* 540 * We found a key struct, but it's already been fully 541 * removed. Ignore the old struct and add a new one. 542 * fscrypt_add_key_mutex means we don't need to worry 543 * about concurrent adds. 544 */ 545 err = add_new_master_key(sb, secret, mk_spec); 546 } 547 fscrypt_put_master_key(mk); 548 } 549 mutex_unlock(&fscrypt_add_key_mutex); 550 return err; 551 } 552 553 static int add_master_key(struct super_block *sb, 554 struct fscrypt_master_key_secret *secret, 555 struct fscrypt_key_specifier *key_spec) 556 { 557 int err; 558 559 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 560 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 561 secret->size); 562 if (err) 563 return err; 564 565 /* 566 * Now that the HKDF context is initialized, the raw key is no 567 * longer needed. 568 */ 569 memzero_explicit(secret->raw, secret->size); 570 571 /* Calculate the key identifier */ 572 err = fscrypt_hkdf_expand(&secret->hkdf, 573 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 574 key_spec->u.identifier, 575 FSCRYPT_KEY_IDENTIFIER_SIZE); 576 if (err) 577 return err; 578 } 579 return do_add_master_key(sb, secret, key_spec); 580 } 581 582 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 583 { 584 const struct fscrypt_provisioning_key_payload *payload = prep->data; 585 586 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 587 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 588 return -EINVAL; 589 590 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 591 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 592 return -EINVAL; 593 594 if (payload->__reserved) 595 return -EINVAL; 596 597 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 598 if (!prep->payload.data[0]) 599 return -ENOMEM; 600 601 prep->quotalen = prep->datalen; 602 return 0; 603 } 604 605 static void fscrypt_provisioning_key_free_preparse( 606 struct key_preparsed_payload *prep) 607 { 608 kfree_sensitive(prep->payload.data[0]); 609 } 610 611 static void fscrypt_provisioning_key_describe(const struct key *key, 612 struct seq_file *m) 613 { 614 seq_puts(m, key->description); 615 if (key_is_positive(key)) { 616 const struct fscrypt_provisioning_key_payload *payload = 617 key->payload.data[0]; 618 619 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 620 } 621 } 622 623 static void fscrypt_provisioning_key_destroy(struct key *key) 624 { 625 kfree_sensitive(key->payload.data[0]); 626 } 627 628 static struct key_type key_type_fscrypt_provisioning = { 629 .name = "fscrypt-provisioning", 630 .preparse = fscrypt_provisioning_key_preparse, 631 .free_preparse = fscrypt_provisioning_key_free_preparse, 632 .instantiate = generic_key_instantiate, 633 .describe = fscrypt_provisioning_key_describe, 634 .destroy = fscrypt_provisioning_key_destroy, 635 }; 636 637 /* 638 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 639 * store it into 'secret'. 640 * 641 * The key must be of type "fscrypt-provisioning" and must have the field 642 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 643 * only usable with fscrypt with the particular KDF version identified by 644 * 'type'. We don't use the "logon" key type because there's no way to 645 * completely restrict the use of such keys; they can be used by any kernel API 646 * that accepts "logon" keys and doesn't require a specific service prefix. 647 * 648 * The ability to specify the key via Linux keyring key is intended for cases 649 * where userspace needs to re-add keys after the filesystem is unmounted and 650 * re-mounted. Most users should just provide the raw key directly instead. 651 */ 652 static int get_keyring_key(u32 key_id, u32 type, 653 struct fscrypt_master_key_secret *secret) 654 { 655 key_ref_t ref; 656 struct key *key; 657 const struct fscrypt_provisioning_key_payload *payload; 658 int err; 659 660 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 661 if (IS_ERR(ref)) 662 return PTR_ERR(ref); 663 key = key_ref_to_ptr(ref); 664 665 if (key->type != &key_type_fscrypt_provisioning) 666 goto bad_key; 667 payload = key->payload.data[0]; 668 669 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 670 if (payload->type != type) 671 goto bad_key; 672 673 secret->size = key->datalen - sizeof(*payload); 674 memcpy(secret->raw, payload->raw, secret->size); 675 err = 0; 676 goto out_put; 677 678 bad_key: 679 err = -EKEYREJECTED; 680 out_put: 681 key_ref_put(ref); 682 return err; 683 } 684 685 /* 686 * Add a master encryption key to the filesystem, causing all files which were 687 * encrypted with it to appear "unlocked" (decrypted) when accessed. 688 * 689 * When adding a key for use by v1 encryption policies, this ioctl is 690 * privileged, and userspace must provide the 'key_descriptor'. 691 * 692 * When adding a key for use by v2+ encryption policies, this ioctl is 693 * unprivileged. This is needed, in general, to allow non-root users to use 694 * encryption without encountering the visibility problems of process-subscribed 695 * keyrings and the inability to properly remove keys. This works by having 696 * each key identified by its cryptographically secure hash --- the 697 * 'key_identifier'. The cryptographic hash ensures that a malicious user 698 * cannot add the wrong key for a given identifier. Furthermore, each added key 699 * is charged to the appropriate user's quota for the keyrings service, which 700 * prevents a malicious user from adding too many keys. Finally, we forbid a 701 * user from removing a key while other users have added it too, which prevents 702 * a user who knows another user's key from causing a denial-of-service by 703 * removing it at an inopportune time. (We tolerate that a user who knows a key 704 * can prevent other users from removing it.) 705 * 706 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 707 * Documentation/filesystems/fscrypt.rst. 708 */ 709 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 710 { 711 struct super_block *sb = file_inode(filp)->i_sb; 712 struct fscrypt_add_key_arg __user *uarg = _uarg; 713 struct fscrypt_add_key_arg arg; 714 struct fscrypt_master_key_secret secret; 715 int err; 716 717 if (copy_from_user(&arg, uarg, sizeof(arg))) 718 return -EFAULT; 719 720 if (!valid_key_spec(&arg.key_spec)) 721 return -EINVAL; 722 723 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 724 return -EINVAL; 725 726 /* 727 * Only root can add keys that are identified by an arbitrary descriptor 728 * rather than by a cryptographic hash --- since otherwise a malicious 729 * user could add the wrong key. 730 */ 731 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 732 !capable(CAP_SYS_ADMIN)) 733 return -EACCES; 734 735 memset(&secret, 0, sizeof(secret)); 736 if (arg.key_id) { 737 if (arg.raw_size != 0) 738 return -EINVAL; 739 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 740 if (err) 741 goto out_wipe_secret; 742 } else { 743 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 744 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 745 return -EINVAL; 746 secret.size = arg.raw_size; 747 err = -EFAULT; 748 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 749 goto out_wipe_secret; 750 } 751 752 err = add_master_key(sb, &secret, &arg.key_spec); 753 if (err) 754 goto out_wipe_secret; 755 756 /* Return the key identifier to userspace, if applicable */ 757 err = -EFAULT; 758 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 759 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 760 FSCRYPT_KEY_IDENTIFIER_SIZE)) 761 goto out_wipe_secret; 762 err = 0; 763 out_wipe_secret: 764 wipe_master_key_secret(&secret); 765 return err; 766 } 767 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 768 769 static void 770 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 771 { 772 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 773 774 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 775 776 memset(secret, 0, sizeof(*secret)); 777 secret->size = FSCRYPT_MAX_KEY_SIZE; 778 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); 779 } 780 781 int fscrypt_get_test_dummy_key_identifier( 782 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 783 { 784 struct fscrypt_master_key_secret secret; 785 int err; 786 787 fscrypt_get_test_dummy_secret(&secret); 788 789 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); 790 if (err) 791 goto out; 792 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, 793 NULL, 0, key_identifier, 794 FSCRYPT_KEY_IDENTIFIER_SIZE); 795 out: 796 wipe_master_key_secret(&secret); 797 return err; 798 } 799 800 /** 801 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 802 * @sb: the filesystem instance to add the key to 803 * @key_spec: the key specifier of the test dummy encryption key 804 * 805 * Add the key for the test_dummy_encryption mount option to the filesystem. To 806 * prevent misuse of this mount option, a per-boot random key is used instead of 807 * a hardcoded one. This makes it so that any encrypted files created using 808 * this option won't be accessible after a reboot. 809 * 810 * Return: 0 on success, -errno on failure 811 */ 812 int fscrypt_add_test_dummy_key(struct super_block *sb, 813 struct fscrypt_key_specifier *key_spec) 814 { 815 struct fscrypt_master_key_secret secret; 816 int err; 817 818 fscrypt_get_test_dummy_secret(&secret); 819 err = add_master_key(sb, &secret, key_spec); 820 wipe_master_key_secret(&secret); 821 return err; 822 } 823 824 /* 825 * Verify that the current user has added a master key with the given identifier 826 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 827 * their files using some other user's key which they don't actually know. 828 * Cryptographically this isn't much of a problem, but the semantics of this 829 * would be a bit weird, so it's best to just forbid it. 830 * 831 * The system administrator (CAP_FOWNER) can override this, which should be 832 * enough for any use cases where encryption policies are being set using keys 833 * that were chosen ahead of time but aren't available at the moment. 834 * 835 * Note that the key may have already removed by the time this returns, but 836 * that's okay; we just care whether the key was there at some point. 837 * 838 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 839 */ 840 int fscrypt_verify_key_added(struct super_block *sb, 841 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 842 { 843 struct fscrypt_key_specifier mk_spec; 844 struct fscrypt_master_key *mk; 845 struct key *mk_user; 846 int err; 847 848 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 849 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 850 851 mk = fscrypt_find_master_key(sb, &mk_spec); 852 if (!mk) { 853 err = -ENOKEY; 854 goto out; 855 } 856 down_read(&mk->mk_sem); 857 mk_user = find_master_key_user(mk); 858 if (IS_ERR(mk_user)) { 859 err = PTR_ERR(mk_user); 860 } else { 861 key_put(mk_user); 862 err = 0; 863 } 864 up_read(&mk->mk_sem); 865 fscrypt_put_master_key(mk); 866 out: 867 if (err == -ENOKEY && capable(CAP_FOWNER)) 868 err = 0; 869 return err; 870 } 871 872 /* 873 * Try to evict the inode's dentries from the dentry cache. If the inode is a 874 * directory, then it can have at most one dentry; however, that dentry may be 875 * pinned by child dentries, so first try to evict the children too. 876 */ 877 static void shrink_dcache_inode(struct inode *inode) 878 { 879 struct dentry *dentry; 880 881 if (S_ISDIR(inode->i_mode)) { 882 dentry = d_find_any_alias(inode); 883 if (dentry) { 884 shrink_dcache_parent(dentry); 885 dput(dentry); 886 } 887 } 888 d_prune_aliases(inode); 889 } 890 891 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 892 { 893 struct fscrypt_inode_info *ci; 894 struct inode *inode; 895 struct inode *toput_inode = NULL; 896 897 spin_lock(&mk->mk_decrypted_inodes_lock); 898 899 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 900 inode = ci->ci_inode; 901 spin_lock(&inode->i_lock); 902 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 903 spin_unlock(&inode->i_lock); 904 continue; 905 } 906 __iget(inode); 907 spin_unlock(&inode->i_lock); 908 spin_unlock(&mk->mk_decrypted_inodes_lock); 909 910 shrink_dcache_inode(inode); 911 iput(toput_inode); 912 toput_inode = inode; 913 914 spin_lock(&mk->mk_decrypted_inodes_lock); 915 } 916 917 spin_unlock(&mk->mk_decrypted_inodes_lock); 918 iput(toput_inode); 919 } 920 921 static int check_for_busy_inodes(struct super_block *sb, 922 struct fscrypt_master_key *mk) 923 { 924 struct list_head *pos; 925 size_t busy_count = 0; 926 unsigned long ino; 927 char ino_str[50] = ""; 928 929 spin_lock(&mk->mk_decrypted_inodes_lock); 930 931 list_for_each(pos, &mk->mk_decrypted_inodes) 932 busy_count++; 933 934 if (busy_count == 0) { 935 spin_unlock(&mk->mk_decrypted_inodes_lock); 936 return 0; 937 } 938 939 { 940 /* select an example file to show for debugging purposes */ 941 struct inode *inode = 942 list_first_entry(&mk->mk_decrypted_inodes, 943 struct fscrypt_inode_info, 944 ci_master_key_link)->ci_inode; 945 ino = inode->i_ino; 946 } 947 spin_unlock(&mk->mk_decrypted_inodes_lock); 948 949 /* If the inode is currently being created, ino may still be 0. */ 950 if (ino) 951 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 952 953 fscrypt_warn(NULL, 954 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 955 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 956 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 957 ino_str); 958 return -EBUSY; 959 } 960 961 static int try_to_lock_encrypted_files(struct super_block *sb, 962 struct fscrypt_master_key *mk) 963 { 964 int err1; 965 int err2; 966 967 /* 968 * An inode can't be evicted while it is dirty or has dirty pages. 969 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 970 * 971 * Just do it the easy way: call sync_filesystem(). It's overkill, but 972 * it works, and it's more important to minimize the amount of caches we 973 * drop than the amount of data we sync. Also, unprivileged users can 974 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 975 */ 976 down_read(&sb->s_umount); 977 err1 = sync_filesystem(sb); 978 up_read(&sb->s_umount); 979 /* If a sync error occurs, still try to evict as much as possible. */ 980 981 /* 982 * Inodes are pinned by their dentries, so we have to evict their 983 * dentries. shrink_dcache_sb() would suffice, but would be overkill 984 * and inappropriate for use by unprivileged users. So instead go 985 * through the inodes' alias lists and try to evict each dentry. 986 */ 987 evict_dentries_for_decrypted_inodes(mk); 988 989 /* 990 * evict_dentries_for_decrypted_inodes() already iput() each inode in 991 * the list; any inodes for which that dropped the last reference will 992 * have been evicted due to fscrypt_drop_inode() detecting the key 993 * removal and telling the VFS to evict the inode. So to finish, we 994 * just need to check whether any inodes couldn't be evicted. 995 */ 996 err2 = check_for_busy_inodes(sb, mk); 997 998 return err1 ?: err2; 999 } 1000 1001 /* 1002 * Try to remove an fscrypt master encryption key. 1003 * 1004 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 1005 * claim to the key, then removes the key itself if no other users have claims. 1006 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 1007 * key itself. 1008 * 1009 * To "remove the key itself", first we transition the key to the "incompletely 1010 * removed" state, so that no more inodes can be unlocked with it. Then we try 1011 * to evict all cached inodes that had been unlocked with the key. 1012 * 1013 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 1014 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 1015 * state where it tracks the list of remaining inodes. Userspace can execute 1016 * the ioctl again later to retry eviction, or alternatively can re-add the key. 1017 * 1018 * For more details, see the "Removing keys" section of 1019 * Documentation/filesystems/fscrypt.rst. 1020 */ 1021 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1022 { 1023 struct super_block *sb = file_inode(filp)->i_sb; 1024 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1025 struct fscrypt_remove_key_arg arg; 1026 struct fscrypt_master_key *mk; 1027 u32 status_flags = 0; 1028 int err; 1029 bool inodes_remain; 1030 1031 if (copy_from_user(&arg, uarg, sizeof(arg))) 1032 return -EFAULT; 1033 1034 if (!valid_key_spec(&arg.key_spec)) 1035 return -EINVAL; 1036 1037 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1038 return -EINVAL; 1039 1040 /* 1041 * Only root can add and remove keys that are identified by an arbitrary 1042 * descriptor rather than by a cryptographic hash. 1043 */ 1044 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1045 !capable(CAP_SYS_ADMIN)) 1046 return -EACCES; 1047 1048 /* Find the key being removed. */ 1049 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1050 if (!mk) 1051 return -ENOKEY; 1052 down_write(&mk->mk_sem); 1053 1054 /* If relevant, remove current user's (or all users) claim to the key */ 1055 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1056 if (all_users) 1057 err = keyring_clear(mk->mk_users); 1058 else 1059 err = remove_master_key_user(mk); 1060 if (err) { 1061 up_write(&mk->mk_sem); 1062 goto out_put_key; 1063 } 1064 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1065 /* 1066 * Other users have still added the key too. We removed 1067 * the current user's claim to the key, but we still 1068 * can't remove the key itself. 1069 */ 1070 status_flags |= 1071 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1072 err = 0; 1073 up_write(&mk->mk_sem); 1074 goto out_put_key; 1075 } 1076 } 1077 1078 /* No user claims remaining. Initiate removal of the key. */ 1079 err = -ENOKEY; 1080 if (mk->mk_present) { 1081 fscrypt_initiate_key_removal(sb, mk); 1082 err = 0; 1083 } 1084 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1085 up_write(&mk->mk_sem); 1086 1087 if (inodes_remain) { 1088 /* Some inodes still reference this key; try to evict them. */ 1089 err = try_to_lock_encrypted_files(sb, mk); 1090 if (err == -EBUSY) { 1091 status_flags |= 1092 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1093 err = 0; 1094 } 1095 } 1096 /* 1097 * We return 0 if we successfully did something: removed a claim to the 1098 * key, initiated removal of the key, or tried locking the files again. 1099 * Users need to check the informational status flags if they care 1100 * whether the key has been fully removed including all files locked. 1101 */ 1102 out_put_key: 1103 fscrypt_put_master_key(mk); 1104 if (err == 0) 1105 err = put_user(status_flags, &uarg->removal_status_flags); 1106 return err; 1107 } 1108 1109 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1110 { 1111 return do_remove_key(filp, uarg, false); 1112 } 1113 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1114 1115 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1116 { 1117 if (!capable(CAP_SYS_ADMIN)) 1118 return -EACCES; 1119 return do_remove_key(filp, uarg, true); 1120 } 1121 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1122 1123 /* 1124 * Retrieve the status of an fscrypt master encryption key. 1125 * 1126 * We set ->status to indicate whether the key is absent, present, or 1127 * incompletely removed. (For an explanation of what these statuses mean and 1128 * how they are represented internally, see struct fscrypt_master_key.) This 1129 * field allows applications to easily determine the status of an encrypted 1130 * directory without using a hack such as trying to open a regular file in it 1131 * (which can confuse the "incompletely removed" status with absent or present). 1132 * 1133 * In addition, for v2 policy keys we allow applications to determine, via 1134 * ->status_flags and ->user_count, whether the key has been added by the 1135 * current user, by other users, or by both. Most applications should not need 1136 * this, since ordinarily only one user should know a given key. However, if a 1137 * secret key is shared by multiple users, applications may wish to add an 1138 * already-present key to prevent other users from removing it. This ioctl can 1139 * be used to check whether that really is the case before the work is done to 1140 * add the key --- which might e.g. require prompting the user for a passphrase. 1141 * 1142 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1143 * Documentation/filesystems/fscrypt.rst. 1144 */ 1145 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1146 { 1147 struct super_block *sb = file_inode(filp)->i_sb; 1148 struct fscrypt_get_key_status_arg arg; 1149 struct fscrypt_master_key *mk; 1150 int err; 1151 1152 if (copy_from_user(&arg, uarg, sizeof(arg))) 1153 return -EFAULT; 1154 1155 if (!valid_key_spec(&arg.key_spec)) 1156 return -EINVAL; 1157 1158 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1159 return -EINVAL; 1160 1161 arg.status_flags = 0; 1162 arg.user_count = 0; 1163 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1164 1165 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1166 if (!mk) { 1167 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1168 err = 0; 1169 goto out; 1170 } 1171 down_read(&mk->mk_sem); 1172 1173 if (!mk->mk_present) { 1174 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1175 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1176 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1177 err = 0; 1178 goto out_release_key; 1179 } 1180 1181 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1182 if (mk->mk_users) { 1183 struct key *mk_user; 1184 1185 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1186 mk_user = find_master_key_user(mk); 1187 if (!IS_ERR(mk_user)) { 1188 arg.status_flags |= 1189 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1190 key_put(mk_user); 1191 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1192 err = PTR_ERR(mk_user); 1193 goto out_release_key; 1194 } 1195 } 1196 err = 0; 1197 out_release_key: 1198 up_read(&mk->mk_sem); 1199 fscrypt_put_master_key(mk); 1200 out: 1201 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1202 err = -EFAULT; 1203 return err; 1204 } 1205 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1206 1207 int __init fscrypt_init_keyring(void) 1208 { 1209 int err; 1210 1211 err = register_key_type(&key_type_fscrypt_user); 1212 if (err) 1213 return err; 1214 1215 err = register_key_type(&key_type_fscrypt_provisioning); 1216 if (err) 1217 goto err_unregister_fscrypt_user; 1218 1219 return 0; 1220 1221 err_unregister_fscrypt_user: 1222 unregister_key_type(&key_type_fscrypt_user); 1223 return err; 1224 } 1225