1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <asm/unaligned.h> 22 #include <crypto/skcipher.h> 23 #include <linux/key-type.h> 24 #include <linux/random.h> 25 #include <linux/seq_file.h> 26 27 #include "fscrypt_private.h" 28 29 /* The master encryption keys for a filesystem (->s_master_keys) */ 30 struct fscrypt_keyring { 31 /* 32 * Lock that protects ->key_hashtable. It does *not* protect the 33 * fscrypt_master_key structs themselves. 34 */ 35 spinlock_t lock; 36 37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 38 struct hlist_head key_hashtable[128]; 39 }; 40 41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 42 { 43 fscrypt_destroy_hkdf(&secret->hkdf); 44 memzero_explicit(secret, sizeof(*secret)); 45 } 46 47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 48 struct fscrypt_master_key_secret *src) 49 { 50 memcpy(dst, src, sizeof(*dst)); 51 memzero_explicit(src, sizeof(*src)); 52 } 53 54 static void fscrypt_free_master_key(struct rcu_head *head) 55 { 56 struct fscrypt_master_key *mk = 57 container_of(head, struct fscrypt_master_key, mk_rcu_head); 58 /* 59 * The master key secret and any embedded subkeys should have already 60 * been wiped when the last active reference to the fscrypt_master_key 61 * struct was dropped; doing it here would be unnecessarily late. 62 * Nevertheless, use kfree_sensitive() in case anything was missed. 63 */ 64 kfree_sensitive(mk); 65 } 66 67 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 68 { 69 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 70 return; 71 /* 72 * No structural references left, so free ->mk_users, and also free the 73 * fscrypt_master_key struct itself after an RCU grace period ensures 74 * that concurrent keyring lookups can no longer find it. 75 */ 76 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0); 77 key_put(mk->mk_users); 78 mk->mk_users = NULL; 79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 80 } 81 82 void fscrypt_put_master_key_activeref(struct super_block *sb, 83 struct fscrypt_master_key *mk) 84 { 85 size_t i; 86 87 if (!refcount_dec_and_test(&mk->mk_active_refs)) 88 return; 89 /* 90 * No active references left, so complete the full removal of this 91 * fscrypt_master_key struct by removing it from the keyring and 92 * destroying any subkeys embedded in it. 93 */ 94 95 if (WARN_ON_ONCE(!sb->s_master_keys)) 96 return; 97 spin_lock(&sb->s_master_keys->lock); 98 hlist_del_rcu(&mk->mk_node); 99 spin_unlock(&sb->s_master_keys->lock); 100 101 /* 102 * ->mk_active_refs == 0 implies that ->mk_present is false and 103 * ->mk_decrypted_inodes is empty. 104 */ 105 WARN_ON_ONCE(mk->mk_present); 106 WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes)); 107 108 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 109 fscrypt_destroy_prepared_key( 110 sb, &mk->mk_direct_keys[i]); 111 fscrypt_destroy_prepared_key( 112 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 113 fscrypt_destroy_prepared_key( 114 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 115 } 116 memzero_explicit(&mk->mk_ino_hash_key, 117 sizeof(mk->mk_ino_hash_key)); 118 mk->mk_ino_hash_key_initialized = false; 119 120 /* Drop the structural ref associated with the active refs. */ 121 fscrypt_put_master_key(mk); 122 } 123 124 /* 125 * This transitions the key state from present to incompletely removed, and then 126 * potentially to absent (depending on whether inodes remain). 127 */ 128 static void fscrypt_initiate_key_removal(struct super_block *sb, 129 struct fscrypt_master_key *mk) 130 { 131 WRITE_ONCE(mk->mk_present, false); 132 wipe_master_key_secret(&mk->mk_secret); 133 fscrypt_put_master_key_activeref(sb, mk); 134 } 135 136 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 137 { 138 if (spec->__reserved) 139 return false; 140 return master_key_spec_len(spec) != 0; 141 } 142 143 static int fscrypt_user_key_instantiate(struct key *key, 144 struct key_preparsed_payload *prep) 145 { 146 /* 147 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 148 * each key, regardless of the exact key size. The amount of memory 149 * actually used is greater than the size of the raw key anyway. 150 */ 151 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 152 } 153 154 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 155 { 156 seq_puts(m, key->description); 157 } 158 159 /* 160 * Type of key in ->mk_users. Each key of this type represents a particular 161 * user who has added a particular master key. 162 * 163 * Note that the name of this key type really should be something like 164 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 165 * mainly for simplicity of presentation in /proc/keys when read by a non-root 166 * user. And it is expected to be rare that a key is actually added by multiple 167 * users, since users should keep their encryption keys confidential. 168 */ 169 static struct key_type key_type_fscrypt_user = { 170 .name = ".fscrypt", 171 .instantiate = fscrypt_user_key_instantiate, 172 .describe = fscrypt_user_key_describe, 173 }; 174 175 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 176 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 177 CONST_STRLEN("-users") + 1) 178 179 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 180 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 181 182 static void format_mk_users_keyring_description( 183 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 184 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 185 { 186 sprintf(description, "fscrypt-%*phN-users", 187 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 188 } 189 190 static void format_mk_user_description( 191 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 192 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 193 { 194 195 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 196 mk_identifier, __kuid_val(current_fsuid())); 197 } 198 199 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 200 static int allocate_filesystem_keyring(struct super_block *sb) 201 { 202 struct fscrypt_keyring *keyring; 203 204 if (sb->s_master_keys) 205 return 0; 206 207 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 208 if (!keyring) 209 return -ENOMEM; 210 spin_lock_init(&keyring->lock); 211 /* 212 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 213 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 214 * concurrent tasks can ACQUIRE it. 215 */ 216 smp_store_release(&sb->s_master_keys, keyring); 217 return 0; 218 } 219 220 /* 221 * Release all encryption keys that have been added to the filesystem, along 222 * with the keyring that contains them. 223 * 224 * This is called at unmount time, after all potentially-encrypted inodes have 225 * been evicted. The filesystem's underlying block device(s) are still 226 * available at this time; this is important because after user file accesses 227 * have been allowed, this function may need to evict keys from the keyslots of 228 * an inline crypto engine, which requires the block device(s). 229 */ 230 void fscrypt_destroy_keyring(struct super_block *sb) 231 { 232 struct fscrypt_keyring *keyring = sb->s_master_keys; 233 size_t i; 234 235 if (!keyring) 236 return; 237 238 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 239 struct hlist_head *bucket = &keyring->key_hashtable[i]; 240 struct fscrypt_master_key *mk; 241 struct hlist_node *tmp; 242 243 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 244 /* 245 * Since all potentially-encrypted inodes were already 246 * evicted, every key remaining in the keyring should 247 * have an empty inode list, and should only still be in 248 * the keyring due to the single active ref associated 249 * with ->mk_present. There should be no structural 250 * refs beyond the one associated with the active ref. 251 */ 252 WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1); 253 WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1); 254 WARN_ON_ONCE(!mk->mk_present); 255 fscrypt_initiate_key_removal(sb, mk); 256 } 257 } 258 kfree_sensitive(keyring); 259 sb->s_master_keys = NULL; 260 } 261 262 static struct hlist_head * 263 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 264 const struct fscrypt_key_specifier *mk_spec) 265 { 266 /* 267 * Since key specifiers should be "random" values, it is sufficient to 268 * use a trivial hash function that just takes the first several bits of 269 * the key specifier. 270 */ 271 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 272 273 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 274 } 275 276 /* 277 * Find the specified master key struct in ->s_master_keys and take a structural 278 * ref to it. The structural ref guarantees that the key struct continues to 279 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 280 * the key struct. The structural ref needs to be dropped by 281 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 282 */ 283 struct fscrypt_master_key * 284 fscrypt_find_master_key(struct super_block *sb, 285 const struct fscrypt_key_specifier *mk_spec) 286 { 287 struct fscrypt_keyring *keyring; 288 struct hlist_head *bucket; 289 struct fscrypt_master_key *mk; 290 291 /* 292 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 293 * I.e., another task can publish ->s_master_keys concurrently, 294 * executing a RELEASE barrier. We need to use smp_load_acquire() here 295 * to safely ACQUIRE the memory the other task published. 296 */ 297 keyring = smp_load_acquire(&sb->s_master_keys); 298 if (keyring == NULL) 299 return NULL; /* No keyring yet, so no keys yet. */ 300 301 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 302 rcu_read_lock(); 303 switch (mk_spec->type) { 304 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 305 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 306 if (mk->mk_spec.type == 307 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 308 memcmp(mk->mk_spec.u.descriptor, 309 mk_spec->u.descriptor, 310 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 311 refcount_inc_not_zero(&mk->mk_struct_refs)) 312 goto out; 313 } 314 break; 315 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 316 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 317 if (mk->mk_spec.type == 318 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 319 memcmp(mk->mk_spec.u.identifier, 320 mk_spec->u.identifier, 321 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 322 refcount_inc_not_zero(&mk->mk_struct_refs)) 323 goto out; 324 } 325 break; 326 } 327 mk = NULL; 328 out: 329 rcu_read_unlock(); 330 return mk; 331 } 332 333 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 334 { 335 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 336 struct key *keyring; 337 338 format_mk_users_keyring_description(description, 339 mk->mk_spec.u.identifier); 340 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 341 current_cred(), KEY_POS_SEARCH | 342 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 343 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 344 if (IS_ERR(keyring)) 345 return PTR_ERR(keyring); 346 347 mk->mk_users = keyring; 348 return 0; 349 } 350 351 /* 352 * Find the current user's "key" in the master key's ->mk_users. 353 * Returns ERR_PTR(-ENOKEY) if not found. 354 */ 355 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 356 { 357 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 358 key_ref_t keyref; 359 360 format_mk_user_description(description, mk->mk_spec.u.identifier); 361 362 /* 363 * We need to mark the keyring reference as "possessed" so that we 364 * acquire permission to search it, via the KEY_POS_SEARCH permission. 365 */ 366 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 367 &key_type_fscrypt_user, description, false); 368 if (IS_ERR(keyref)) { 369 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 370 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 371 keyref = ERR_PTR(-ENOKEY); 372 return ERR_CAST(keyref); 373 } 374 return key_ref_to_ptr(keyref); 375 } 376 377 /* 378 * Give the current user a "key" in ->mk_users. This charges the user's quota 379 * and marks the master key as added by the current user, so that it cannot be 380 * removed by another user with the key. Either ->mk_sem must be held for 381 * write, or the master key must be still undergoing initialization. 382 */ 383 static int add_master_key_user(struct fscrypt_master_key *mk) 384 { 385 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 386 struct key *mk_user; 387 int err; 388 389 format_mk_user_description(description, mk->mk_spec.u.identifier); 390 mk_user = key_alloc(&key_type_fscrypt_user, description, 391 current_fsuid(), current_gid(), current_cred(), 392 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 393 if (IS_ERR(mk_user)) 394 return PTR_ERR(mk_user); 395 396 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 397 key_put(mk_user); 398 return err; 399 } 400 401 /* 402 * Remove the current user's "key" from ->mk_users. 403 * ->mk_sem must be held for write. 404 * 405 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 406 */ 407 static int remove_master_key_user(struct fscrypt_master_key *mk) 408 { 409 struct key *mk_user; 410 int err; 411 412 mk_user = find_master_key_user(mk); 413 if (IS_ERR(mk_user)) 414 return PTR_ERR(mk_user); 415 err = key_unlink(mk->mk_users, mk_user); 416 key_put(mk_user); 417 return err; 418 } 419 420 /* 421 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 422 * insert it into sb->s_master_keys. 423 */ 424 static int add_new_master_key(struct super_block *sb, 425 struct fscrypt_master_key_secret *secret, 426 const struct fscrypt_key_specifier *mk_spec) 427 { 428 struct fscrypt_keyring *keyring = sb->s_master_keys; 429 struct fscrypt_master_key *mk; 430 int err; 431 432 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 433 if (!mk) 434 return -ENOMEM; 435 436 init_rwsem(&mk->mk_sem); 437 refcount_set(&mk->mk_struct_refs, 1); 438 mk->mk_spec = *mk_spec; 439 440 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 441 spin_lock_init(&mk->mk_decrypted_inodes_lock); 442 443 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 444 err = allocate_master_key_users_keyring(mk); 445 if (err) 446 goto out_put; 447 err = add_master_key_user(mk); 448 if (err) 449 goto out_put; 450 } 451 452 move_master_key_secret(&mk->mk_secret, secret); 453 mk->mk_present = true; 454 refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */ 455 456 spin_lock(&keyring->lock); 457 hlist_add_head_rcu(&mk->mk_node, 458 fscrypt_mk_hash_bucket(keyring, mk_spec)); 459 spin_unlock(&keyring->lock); 460 return 0; 461 462 out_put: 463 fscrypt_put_master_key(mk); 464 return err; 465 } 466 467 #define KEY_DEAD 1 468 469 static int add_existing_master_key(struct fscrypt_master_key *mk, 470 struct fscrypt_master_key_secret *secret) 471 { 472 int err; 473 474 /* 475 * If the current user is already in ->mk_users, then there's nothing to 476 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 477 * applicable for v1 policy keys, which have NULL ->mk_users.) 478 */ 479 if (mk->mk_users) { 480 struct key *mk_user = find_master_key_user(mk); 481 482 if (mk_user != ERR_PTR(-ENOKEY)) { 483 if (IS_ERR(mk_user)) 484 return PTR_ERR(mk_user); 485 key_put(mk_user); 486 return 0; 487 } 488 err = add_master_key_user(mk); 489 if (err) 490 return err; 491 } 492 493 /* If the key is incompletely removed, make it present again. */ 494 if (!mk->mk_present) { 495 if (!refcount_inc_not_zero(&mk->mk_active_refs)) { 496 /* 497 * Raced with the last active ref being dropped, so the 498 * key has become, or is about to become, "absent". 499 * Therefore, we need to allocate a new key struct. 500 */ 501 return KEY_DEAD; 502 } 503 move_master_key_secret(&mk->mk_secret, secret); 504 WRITE_ONCE(mk->mk_present, true); 505 } 506 507 return 0; 508 } 509 510 static int do_add_master_key(struct super_block *sb, 511 struct fscrypt_master_key_secret *secret, 512 const struct fscrypt_key_specifier *mk_spec) 513 { 514 static DEFINE_MUTEX(fscrypt_add_key_mutex); 515 struct fscrypt_master_key *mk; 516 int err; 517 518 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 519 520 mk = fscrypt_find_master_key(sb, mk_spec); 521 if (!mk) { 522 /* Didn't find the key in ->s_master_keys. Add it. */ 523 err = allocate_filesystem_keyring(sb); 524 if (!err) 525 err = add_new_master_key(sb, secret, mk_spec); 526 } else { 527 /* 528 * Found the key in ->s_master_keys. Add the user to ->mk_users 529 * if needed, and make the key "present" again if possible. 530 */ 531 down_write(&mk->mk_sem); 532 err = add_existing_master_key(mk, secret); 533 up_write(&mk->mk_sem); 534 if (err == KEY_DEAD) { 535 /* 536 * We found a key struct, but it's already been fully 537 * removed. Ignore the old struct and add a new one. 538 * fscrypt_add_key_mutex means we don't need to worry 539 * about concurrent adds. 540 */ 541 err = add_new_master_key(sb, secret, mk_spec); 542 } 543 fscrypt_put_master_key(mk); 544 } 545 mutex_unlock(&fscrypt_add_key_mutex); 546 return err; 547 } 548 549 static int add_master_key(struct super_block *sb, 550 struct fscrypt_master_key_secret *secret, 551 struct fscrypt_key_specifier *key_spec) 552 { 553 int err; 554 555 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 556 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 557 secret->size); 558 if (err) 559 return err; 560 561 /* 562 * Now that the HKDF context is initialized, the raw key is no 563 * longer needed. 564 */ 565 memzero_explicit(secret->raw, secret->size); 566 567 /* Calculate the key identifier */ 568 err = fscrypt_hkdf_expand(&secret->hkdf, 569 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 570 key_spec->u.identifier, 571 FSCRYPT_KEY_IDENTIFIER_SIZE); 572 if (err) 573 return err; 574 } 575 return do_add_master_key(sb, secret, key_spec); 576 } 577 578 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 579 { 580 const struct fscrypt_provisioning_key_payload *payload = prep->data; 581 582 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 583 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 584 return -EINVAL; 585 586 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 587 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 588 return -EINVAL; 589 590 if (payload->__reserved) 591 return -EINVAL; 592 593 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 594 if (!prep->payload.data[0]) 595 return -ENOMEM; 596 597 prep->quotalen = prep->datalen; 598 return 0; 599 } 600 601 static void fscrypt_provisioning_key_free_preparse( 602 struct key_preparsed_payload *prep) 603 { 604 kfree_sensitive(prep->payload.data[0]); 605 } 606 607 static void fscrypt_provisioning_key_describe(const struct key *key, 608 struct seq_file *m) 609 { 610 seq_puts(m, key->description); 611 if (key_is_positive(key)) { 612 const struct fscrypt_provisioning_key_payload *payload = 613 key->payload.data[0]; 614 615 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 616 } 617 } 618 619 static void fscrypt_provisioning_key_destroy(struct key *key) 620 { 621 kfree_sensitive(key->payload.data[0]); 622 } 623 624 static struct key_type key_type_fscrypt_provisioning = { 625 .name = "fscrypt-provisioning", 626 .preparse = fscrypt_provisioning_key_preparse, 627 .free_preparse = fscrypt_provisioning_key_free_preparse, 628 .instantiate = generic_key_instantiate, 629 .describe = fscrypt_provisioning_key_describe, 630 .destroy = fscrypt_provisioning_key_destroy, 631 }; 632 633 /* 634 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 635 * store it into 'secret'. 636 * 637 * The key must be of type "fscrypt-provisioning" and must have the field 638 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 639 * only usable with fscrypt with the particular KDF version identified by 640 * 'type'. We don't use the "logon" key type because there's no way to 641 * completely restrict the use of such keys; they can be used by any kernel API 642 * that accepts "logon" keys and doesn't require a specific service prefix. 643 * 644 * The ability to specify the key via Linux keyring key is intended for cases 645 * where userspace needs to re-add keys after the filesystem is unmounted and 646 * re-mounted. Most users should just provide the raw key directly instead. 647 */ 648 static int get_keyring_key(u32 key_id, u32 type, 649 struct fscrypt_master_key_secret *secret) 650 { 651 key_ref_t ref; 652 struct key *key; 653 const struct fscrypt_provisioning_key_payload *payload; 654 int err; 655 656 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 657 if (IS_ERR(ref)) 658 return PTR_ERR(ref); 659 key = key_ref_to_ptr(ref); 660 661 if (key->type != &key_type_fscrypt_provisioning) 662 goto bad_key; 663 payload = key->payload.data[0]; 664 665 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 666 if (payload->type != type) 667 goto bad_key; 668 669 secret->size = key->datalen - sizeof(*payload); 670 memcpy(secret->raw, payload->raw, secret->size); 671 err = 0; 672 goto out_put; 673 674 bad_key: 675 err = -EKEYREJECTED; 676 out_put: 677 key_ref_put(ref); 678 return err; 679 } 680 681 /* 682 * Add a master encryption key to the filesystem, causing all files which were 683 * encrypted with it to appear "unlocked" (decrypted) when accessed. 684 * 685 * When adding a key for use by v1 encryption policies, this ioctl is 686 * privileged, and userspace must provide the 'key_descriptor'. 687 * 688 * When adding a key for use by v2+ encryption policies, this ioctl is 689 * unprivileged. This is needed, in general, to allow non-root users to use 690 * encryption without encountering the visibility problems of process-subscribed 691 * keyrings and the inability to properly remove keys. This works by having 692 * each key identified by its cryptographically secure hash --- the 693 * 'key_identifier'. The cryptographic hash ensures that a malicious user 694 * cannot add the wrong key for a given identifier. Furthermore, each added key 695 * is charged to the appropriate user's quota for the keyrings service, which 696 * prevents a malicious user from adding too many keys. Finally, we forbid a 697 * user from removing a key while other users have added it too, which prevents 698 * a user who knows another user's key from causing a denial-of-service by 699 * removing it at an inopportune time. (We tolerate that a user who knows a key 700 * can prevent other users from removing it.) 701 * 702 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 703 * Documentation/filesystems/fscrypt.rst. 704 */ 705 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 706 { 707 struct super_block *sb = file_inode(filp)->i_sb; 708 struct fscrypt_add_key_arg __user *uarg = _uarg; 709 struct fscrypt_add_key_arg arg; 710 struct fscrypt_master_key_secret secret; 711 int err; 712 713 if (copy_from_user(&arg, uarg, sizeof(arg))) 714 return -EFAULT; 715 716 if (!valid_key_spec(&arg.key_spec)) 717 return -EINVAL; 718 719 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 720 return -EINVAL; 721 722 /* 723 * Only root can add keys that are identified by an arbitrary descriptor 724 * rather than by a cryptographic hash --- since otherwise a malicious 725 * user could add the wrong key. 726 */ 727 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 728 !capable(CAP_SYS_ADMIN)) 729 return -EACCES; 730 731 memset(&secret, 0, sizeof(secret)); 732 if (arg.key_id) { 733 if (arg.raw_size != 0) 734 return -EINVAL; 735 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 736 if (err) 737 goto out_wipe_secret; 738 } else { 739 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 740 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 741 return -EINVAL; 742 secret.size = arg.raw_size; 743 err = -EFAULT; 744 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 745 goto out_wipe_secret; 746 } 747 748 err = add_master_key(sb, &secret, &arg.key_spec); 749 if (err) 750 goto out_wipe_secret; 751 752 /* Return the key identifier to userspace, if applicable */ 753 err = -EFAULT; 754 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 755 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 756 FSCRYPT_KEY_IDENTIFIER_SIZE)) 757 goto out_wipe_secret; 758 err = 0; 759 out_wipe_secret: 760 wipe_master_key_secret(&secret); 761 return err; 762 } 763 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 764 765 static void 766 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 767 { 768 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 769 770 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 771 772 memset(secret, 0, sizeof(*secret)); 773 secret->size = FSCRYPT_MAX_KEY_SIZE; 774 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); 775 } 776 777 int fscrypt_get_test_dummy_key_identifier( 778 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 779 { 780 struct fscrypt_master_key_secret secret; 781 int err; 782 783 fscrypt_get_test_dummy_secret(&secret); 784 785 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); 786 if (err) 787 goto out; 788 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, 789 NULL, 0, key_identifier, 790 FSCRYPT_KEY_IDENTIFIER_SIZE); 791 out: 792 wipe_master_key_secret(&secret); 793 return err; 794 } 795 796 /** 797 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 798 * @sb: the filesystem instance to add the key to 799 * @key_spec: the key specifier of the test dummy encryption key 800 * 801 * Add the key for the test_dummy_encryption mount option to the filesystem. To 802 * prevent misuse of this mount option, a per-boot random key is used instead of 803 * a hardcoded one. This makes it so that any encrypted files created using 804 * this option won't be accessible after a reboot. 805 * 806 * Return: 0 on success, -errno on failure 807 */ 808 int fscrypt_add_test_dummy_key(struct super_block *sb, 809 struct fscrypt_key_specifier *key_spec) 810 { 811 struct fscrypt_master_key_secret secret; 812 int err; 813 814 fscrypt_get_test_dummy_secret(&secret); 815 err = add_master_key(sb, &secret, key_spec); 816 wipe_master_key_secret(&secret); 817 return err; 818 } 819 820 /* 821 * Verify that the current user has added a master key with the given identifier 822 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 823 * their files using some other user's key which they don't actually know. 824 * Cryptographically this isn't much of a problem, but the semantics of this 825 * would be a bit weird, so it's best to just forbid it. 826 * 827 * The system administrator (CAP_FOWNER) can override this, which should be 828 * enough for any use cases where encryption policies are being set using keys 829 * that were chosen ahead of time but aren't available at the moment. 830 * 831 * Note that the key may have already removed by the time this returns, but 832 * that's okay; we just care whether the key was there at some point. 833 * 834 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 835 */ 836 int fscrypt_verify_key_added(struct super_block *sb, 837 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 838 { 839 struct fscrypt_key_specifier mk_spec; 840 struct fscrypt_master_key *mk; 841 struct key *mk_user; 842 int err; 843 844 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 845 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 846 847 mk = fscrypt_find_master_key(sb, &mk_spec); 848 if (!mk) { 849 err = -ENOKEY; 850 goto out; 851 } 852 down_read(&mk->mk_sem); 853 mk_user = find_master_key_user(mk); 854 if (IS_ERR(mk_user)) { 855 err = PTR_ERR(mk_user); 856 } else { 857 key_put(mk_user); 858 err = 0; 859 } 860 up_read(&mk->mk_sem); 861 fscrypt_put_master_key(mk); 862 out: 863 if (err == -ENOKEY && capable(CAP_FOWNER)) 864 err = 0; 865 return err; 866 } 867 868 /* 869 * Try to evict the inode's dentries from the dentry cache. If the inode is a 870 * directory, then it can have at most one dentry; however, that dentry may be 871 * pinned by child dentries, so first try to evict the children too. 872 */ 873 static void shrink_dcache_inode(struct inode *inode) 874 { 875 struct dentry *dentry; 876 877 if (S_ISDIR(inode->i_mode)) { 878 dentry = d_find_any_alias(inode); 879 if (dentry) { 880 shrink_dcache_parent(dentry); 881 dput(dentry); 882 } 883 } 884 d_prune_aliases(inode); 885 } 886 887 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 888 { 889 struct fscrypt_inode_info *ci; 890 struct inode *inode; 891 struct inode *toput_inode = NULL; 892 893 spin_lock(&mk->mk_decrypted_inodes_lock); 894 895 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 896 inode = ci->ci_inode; 897 spin_lock(&inode->i_lock); 898 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 899 spin_unlock(&inode->i_lock); 900 continue; 901 } 902 __iget(inode); 903 spin_unlock(&inode->i_lock); 904 spin_unlock(&mk->mk_decrypted_inodes_lock); 905 906 shrink_dcache_inode(inode); 907 iput(toput_inode); 908 toput_inode = inode; 909 910 spin_lock(&mk->mk_decrypted_inodes_lock); 911 } 912 913 spin_unlock(&mk->mk_decrypted_inodes_lock); 914 iput(toput_inode); 915 } 916 917 static int check_for_busy_inodes(struct super_block *sb, 918 struct fscrypt_master_key *mk) 919 { 920 struct list_head *pos; 921 size_t busy_count = 0; 922 unsigned long ino; 923 char ino_str[50] = ""; 924 925 spin_lock(&mk->mk_decrypted_inodes_lock); 926 927 list_for_each(pos, &mk->mk_decrypted_inodes) 928 busy_count++; 929 930 if (busy_count == 0) { 931 spin_unlock(&mk->mk_decrypted_inodes_lock); 932 return 0; 933 } 934 935 { 936 /* select an example file to show for debugging purposes */ 937 struct inode *inode = 938 list_first_entry(&mk->mk_decrypted_inodes, 939 struct fscrypt_inode_info, 940 ci_master_key_link)->ci_inode; 941 ino = inode->i_ino; 942 } 943 spin_unlock(&mk->mk_decrypted_inodes_lock); 944 945 /* If the inode is currently being created, ino may still be 0. */ 946 if (ino) 947 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 948 949 fscrypt_warn(NULL, 950 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 951 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 952 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 953 ino_str); 954 return -EBUSY; 955 } 956 957 static int try_to_lock_encrypted_files(struct super_block *sb, 958 struct fscrypt_master_key *mk) 959 { 960 int err1; 961 int err2; 962 963 /* 964 * An inode can't be evicted while it is dirty or has dirty pages. 965 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 966 * 967 * Just do it the easy way: call sync_filesystem(). It's overkill, but 968 * it works, and it's more important to minimize the amount of caches we 969 * drop than the amount of data we sync. Also, unprivileged users can 970 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 971 */ 972 down_read(&sb->s_umount); 973 err1 = sync_filesystem(sb); 974 up_read(&sb->s_umount); 975 /* If a sync error occurs, still try to evict as much as possible. */ 976 977 /* 978 * Inodes are pinned by their dentries, so we have to evict their 979 * dentries. shrink_dcache_sb() would suffice, but would be overkill 980 * and inappropriate for use by unprivileged users. So instead go 981 * through the inodes' alias lists and try to evict each dentry. 982 */ 983 evict_dentries_for_decrypted_inodes(mk); 984 985 /* 986 * evict_dentries_for_decrypted_inodes() already iput() each inode in 987 * the list; any inodes for which that dropped the last reference will 988 * have been evicted due to fscrypt_drop_inode() detecting the key 989 * removal and telling the VFS to evict the inode. So to finish, we 990 * just need to check whether any inodes couldn't be evicted. 991 */ 992 err2 = check_for_busy_inodes(sb, mk); 993 994 return err1 ?: err2; 995 } 996 997 /* 998 * Try to remove an fscrypt master encryption key. 999 * 1000 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 1001 * claim to the key, then removes the key itself if no other users have claims. 1002 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 1003 * key itself. 1004 * 1005 * To "remove the key itself", first we transition the key to the "incompletely 1006 * removed" state, so that no more inodes can be unlocked with it. Then we try 1007 * to evict all cached inodes that had been unlocked with the key. 1008 * 1009 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 1010 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 1011 * state where it tracks the list of remaining inodes. Userspace can execute 1012 * the ioctl again later to retry eviction, or alternatively can re-add the key. 1013 * 1014 * For more details, see the "Removing keys" section of 1015 * Documentation/filesystems/fscrypt.rst. 1016 */ 1017 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1018 { 1019 struct super_block *sb = file_inode(filp)->i_sb; 1020 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1021 struct fscrypt_remove_key_arg arg; 1022 struct fscrypt_master_key *mk; 1023 u32 status_flags = 0; 1024 int err; 1025 bool inodes_remain; 1026 1027 if (copy_from_user(&arg, uarg, sizeof(arg))) 1028 return -EFAULT; 1029 1030 if (!valid_key_spec(&arg.key_spec)) 1031 return -EINVAL; 1032 1033 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1034 return -EINVAL; 1035 1036 /* 1037 * Only root can add and remove keys that are identified by an arbitrary 1038 * descriptor rather than by a cryptographic hash. 1039 */ 1040 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1041 !capable(CAP_SYS_ADMIN)) 1042 return -EACCES; 1043 1044 /* Find the key being removed. */ 1045 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1046 if (!mk) 1047 return -ENOKEY; 1048 down_write(&mk->mk_sem); 1049 1050 /* If relevant, remove current user's (or all users) claim to the key */ 1051 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1052 if (all_users) 1053 err = keyring_clear(mk->mk_users); 1054 else 1055 err = remove_master_key_user(mk); 1056 if (err) { 1057 up_write(&mk->mk_sem); 1058 goto out_put_key; 1059 } 1060 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1061 /* 1062 * Other users have still added the key too. We removed 1063 * the current user's claim to the key, but we still 1064 * can't remove the key itself. 1065 */ 1066 status_flags |= 1067 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1068 err = 0; 1069 up_write(&mk->mk_sem); 1070 goto out_put_key; 1071 } 1072 } 1073 1074 /* No user claims remaining. Initiate removal of the key. */ 1075 err = -ENOKEY; 1076 if (mk->mk_present) { 1077 fscrypt_initiate_key_removal(sb, mk); 1078 err = 0; 1079 } 1080 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1081 up_write(&mk->mk_sem); 1082 1083 if (inodes_remain) { 1084 /* Some inodes still reference this key; try to evict them. */ 1085 err = try_to_lock_encrypted_files(sb, mk); 1086 if (err == -EBUSY) { 1087 status_flags |= 1088 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1089 err = 0; 1090 } 1091 } 1092 /* 1093 * We return 0 if we successfully did something: removed a claim to the 1094 * key, initiated removal of the key, or tried locking the files again. 1095 * Users need to check the informational status flags if they care 1096 * whether the key has been fully removed including all files locked. 1097 */ 1098 out_put_key: 1099 fscrypt_put_master_key(mk); 1100 if (err == 0) 1101 err = put_user(status_flags, &uarg->removal_status_flags); 1102 return err; 1103 } 1104 1105 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1106 { 1107 return do_remove_key(filp, uarg, false); 1108 } 1109 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1110 1111 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1112 { 1113 if (!capable(CAP_SYS_ADMIN)) 1114 return -EACCES; 1115 return do_remove_key(filp, uarg, true); 1116 } 1117 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1118 1119 /* 1120 * Retrieve the status of an fscrypt master encryption key. 1121 * 1122 * We set ->status to indicate whether the key is absent, present, or 1123 * incompletely removed. (For an explanation of what these statuses mean and 1124 * how they are represented internally, see struct fscrypt_master_key.) This 1125 * field allows applications to easily determine the status of an encrypted 1126 * directory without using a hack such as trying to open a regular file in it 1127 * (which can confuse the "incompletely removed" status with absent or present). 1128 * 1129 * In addition, for v2 policy keys we allow applications to determine, via 1130 * ->status_flags and ->user_count, whether the key has been added by the 1131 * current user, by other users, or by both. Most applications should not need 1132 * this, since ordinarily only one user should know a given key. However, if a 1133 * secret key is shared by multiple users, applications may wish to add an 1134 * already-present key to prevent other users from removing it. This ioctl can 1135 * be used to check whether that really is the case before the work is done to 1136 * add the key --- which might e.g. require prompting the user for a passphrase. 1137 * 1138 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1139 * Documentation/filesystems/fscrypt.rst. 1140 */ 1141 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1142 { 1143 struct super_block *sb = file_inode(filp)->i_sb; 1144 struct fscrypt_get_key_status_arg arg; 1145 struct fscrypt_master_key *mk; 1146 int err; 1147 1148 if (copy_from_user(&arg, uarg, sizeof(arg))) 1149 return -EFAULT; 1150 1151 if (!valid_key_spec(&arg.key_spec)) 1152 return -EINVAL; 1153 1154 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1155 return -EINVAL; 1156 1157 arg.status_flags = 0; 1158 arg.user_count = 0; 1159 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1160 1161 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1162 if (!mk) { 1163 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1164 err = 0; 1165 goto out; 1166 } 1167 down_read(&mk->mk_sem); 1168 1169 if (!mk->mk_present) { 1170 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1171 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1172 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1173 err = 0; 1174 goto out_release_key; 1175 } 1176 1177 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1178 if (mk->mk_users) { 1179 struct key *mk_user; 1180 1181 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1182 mk_user = find_master_key_user(mk); 1183 if (!IS_ERR(mk_user)) { 1184 arg.status_flags |= 1185 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1186 key_put(mk_user); 1187 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1188 err = PTR_ERR(mk_user); 1189 goto out_release_key; 1190 } 1191 } 1192 err = 0; 1193 out_release_key: 1194 up_read(&mk->mk_sem); 1195 fscrypt_put_master_key(mk); 1196 out: 1197 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1198 err = -EFAULT; 1199 return err; 1200 } 1201 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1202 1203 int __init fscrypt_init_keyring(void) 1204 { 1205 int err; 1206 1207 err = register_key_type(&key_type_fscrypt_user); 1208 if (err) 1209 return err; 1210 1211 err = register_key_type(&key_type_fscrypt_provisioning); 1212 if (err) 1213 goto err_unregister_fscrypt_user; 1214 1215 return 0; 1216 1217 err_unregister_fscrypt_user: 1218 unregister_key_type(&key_type_fscrypt_user); 1219 return err; 1220 } 1221