1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <crypto/skcipher.h> 22 #include <linux/key-type.h> 23 #include <linux/random.h> 24 #include <linux/seq_file.h> 25 26 #include "fscrypt_private.h" 27 28 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 29 { 30 fscrypt_destroy_hkdf(&secret->hkdf); 31 memzero_explicit(secret, sizeof(*secret)); 32 } 33 34 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 35 struct fscrypt_master_key_secret *src) 36 { 37 memcpy(dst, src, sizeof(*dst)); 38 memzero_explicit(src, sizeof(*src)); 39 } 40 41 static void free_master_key(struct fscrypt_master_key *mk) 42 { 43 size_t i; 44 45 wipe_master_key_secret(&mk->mk_secret); 46 47 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 48 fscrypt_destroy_prepared_key(&mk->mk_direct_keys[i]); 49 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_64_keys[i]); 50 fscrypt_destroy_prepared_key(&mk->mk_iv_ino_lblk_32_keys[i]); 51 } 52 53 key_put(mk->mk_users); 54 kfree_sensitive(mk); 55 } 56 57 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 58 { 59 if (spec->__reserved) 60 return false; 61 return master_key_spec_len(spec) != 0; 62 } 63 64 static int fscrypt_key_instantiate(struct key *key, 65 struct key_preparsed_payload *prep) 66 { 67 key->payload.data[0] = (struct fscrypt_master_key *)prep->data; 68 return 0; 69 } 70 71 static void fscrypt_key_destroy(struct key *key) 72 { 73 free_master_key(key->payload.data[0]); 74 } 75 76 static void fscrypt_key_describe(const struct key *key, struct seq_file *m) 77 { 78 seq_puts(m, key->description); 79 80 if (key_is_positive(key)) { 81 const struct fscrypt_master_key *mk = key->payload.data[0]; 82 83 if (!is_master_key_secret_present(&mk->mk_secret)) 84 seq_puts(m, ": secret removed"); 85 } 86 } 87 88 /* 89 * Type of key in ->s_master_keys. Each key of this type represents a master 90 * key which has been added to the filesystem. Its payload is a 91 * 'struct fscrypt_master_key'. The "." prefix in the key type name prevents 92 * users from adding keys of this type via the keyrings syscalls rather than via 93 * the intended method of FS_IOC_ADD_ENCRYPTION_KEY. 94 */ 95 static struct key_type key_type_fscrypt = { 96 .name = "._fscrypt", 97 .instantiate = fscrypt_key_instantiate, 98 .destroy = fscrypt_key_destroy, 99 .describe = fscrypt_key_describe, 100 }; 101 102 static int fscrypt_user_key_instantiate(struct key *key, 103 struct key_preparsed_payload *prep) 104 { 105 /* 106 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 107 * each key, regardless of the exact key size. The amount of memory 108 * actually used is greater than the size of the raw key anyway. 109 */ 110 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 111 } 112 113 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 114 { 115 seq_puts(m, key->description); 116 } 117 118 /* 119 * Type of key in ->mk_users. Each key of this type represents a particular 120 * user who has added a particular master key. 121 * 122 * Note that the name of this key type really should be something like 123 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 124 * mainly for simplicity of presentation in /proc/keys when read by a non-root 125 * user. And it is expected to be rare that a key is actually added by multiple 126 * users, since users should keep their encryption keys confidential. 127 */ 128 static struct key_type key_type_fscrypt_user = { 129 .name = ".fscrypt", 130 .instantiate = fscrypt_user_key_instantiate, 131 .describe = fscrypt_user_key_describe, 132 }; 133 134 /* Search ->s_master_keys or ->mk_users */ 135 static struct key *search_fscrypt_keyring(struct key *keyring, 136 struct key_type *type, 137 const char *description) 138 { 139 /* 140 * We need to mark the keyring reference as "possessed" so that we 141 * acquire permission to search it, via the KEY_POS_SEARCH permission. 142 */ 143 key_ref_t keyref = make_key_ref(keyring, true /* possessed */); 144 145 keyref = keyring_search(keyref, type, description, false); 146 if (IS_ERR(keyref)) { 147 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 148 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 149 keyref = ERR_PTR(-ENOKEY); 150 return ERR_CAST(keyref); 151 } 152 return key_ref_to_ptr(keyref); 153 } 154 155 #define FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE \ 156 (CONST_STRLEN("fscrypt-") + sizeof_field(struct super_block, s_id)) 157 158 #define FSCRYPT_MK_DESCRIPTION_SIZE (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + 1) 159 160 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 161 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 162 CONST_STRLEN("-users") + 1) 163 164 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 165 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 166 167 static void format_fs_keyring_description( 168 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE], 169 const struct super_block *sb) 170 { 171 sprintf(description, "fscrypt-%s", sb->s_id); 172 } 173 174 static void format_mk_description( 175 char description[FSCRYPT_MK_DESCRIPTION_SIZE], 176 const struct fscrypt_key_specifier *mk_spec) 177 { 178 sprintf(description, "%*phN", 179 master_key_spec_len(mk_spec), (u8 *)&mk_spec->u); 180 } 181 182 static void format_mk_users_keyring_description( 183 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 184 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 185 { 186 sprintf(description, "fscrypt-%*phN-users", 187 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 188 } 189 190 static void format_mk_user_description( 191 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 192 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 193 { 194 195 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 196 mk_identifier, __kuid_val(current_fsuid())); 197 } 198 199 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 200 static int allocate_filesystem_keyring(struct super_block *sb) 201 { 202 char description[FSCRYPT_FS_KEYRING_DESCRIPTION_SIZE]; 203 struct key *keyring; 204 205 if (sb->s_master_keys) 206 return 0; 207 208 format_fs_keyring_description(description, sb); 209 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 210 current_cred(), KEY_POS_SEARCH | 211 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 212 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 213 if (IS_ERR(keyring)) 214 return PTR_ERR(keyring); 215 216 /* 217 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 218 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 219 * concurrent tasks can ACQUIRE it. 220 */ 221 smp_store_release(&sb->s_master_keys, keyring); 222 return 0; 223 } 224 225 void fscrypt_sb_free(struct super_block *sb) 226 { 227 key_put(sb->s_master_keys); 228 sb->s_master_keys = NULL; 229 } 230 231 /* 232 * Find the specified master key in ->s_master_keys. 233 * Returns ERR_PTR(-ENOKEY) if not found. 234 */ 235 struct key *fscrypt_find_master_key(struct super_block *sb, 236 const struct fscrypt_key_specifier *mk_spec) 237 { 238 struct key *keyring; 239 char description[FSCRYPT_MK_DESCRIPTION_SIZE]; 240 241 /* 242 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 243 * I.e., another task can publish ->s_master_keys concurrently, 244 * executing a RELEASE barrier. We need to use smp_load_acquire() here 245 * to safely ACQUIRE the memory the other task published. 246 */ 247 keyring = smp_load_acquire(&sb->s_master_keys); 248 if (keyring == NULL) 249 return ERR_PTR(-ENOKEY); /* No keyring yet, so no keys yet. */ 250 251 format_mk_description(description, mk_spec); 252 return search_fscrypt_keyring(keyring, &key_type_fscrypt, description); 253 } 254 255 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 256 { 257 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 258 struct key *keyring; 259 260 format_mk_users_keyring_description(description, 261 mk->mk_spec.u.identifier); 262 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 263 current_cred(), KEY_POS_SEARCH | 264 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 265 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 266 if (IS_ERR(keyring)) 267 return PTR_ERR(keyring); 268 269 mk->mk_users = keyring; 270 return 0; 271 } 272 273 /* 274 * Find the current user's "key" in the master key's ->mk_users. 275 * Returns ERR_PTR(-ENOKEY) if not found. 276 */ 277 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 278 { 279 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 280 281 format_mk_user_description(description, mk->mk_spec.u.identifier); 282 return search_fscrypt_keyring(mk->mk_users, &key_type_fscrypt_user, 283 description); 284 } 285 286 /* 287 * Give the current user a "key" in ->mk_users. This charges the user's quota 288 * and marks the master key as added by the current user, so that it cannot be 289 * removed by another user with the key. Either the master key's key->sem must 290 * be held for write, or the master key must be still undergoing initialization. 291 */ 292 static int add_master_key_user(struct fscrypt_master_key *mk) 293 { 294 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 295 struct key *mk_user; 296 int err; 297 298 format_mk_user_description(description, mk->mk_spec.u.identifier); 299 mk_user = key_alloc(&key_type_fscrypt_user, description, 300 current_fsuid(), current_gid(), current_cred(), 301 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 302 if (IS_ERR(mk_user)) 303 return PTR_ERR(mk_user); 304 305 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 306 key_put(mk_user); 307 return err; 308 } 309 310 /* 311 * Remove the current user's "key" from ->mk_users. 312 * The master key's key->sem must be held for write. 313 * 314 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 315 */ 316 static int remove_master_key_user(struct fscrypt_master_key *mk) 317 { 318 struct key *mk_user; 319 int err; 320 321 mk_user = find_master_key_user(mk); 322 if (IS_ERR(mk_user)) 323 return PTR_ERR(mk_user); 324 err = key_unlink(mk->mk_users, mk_user); 325 key_put(mk_user); 326 return err; 327 } 328 329 /* 330 * Allocate a new fscrypt_master_key which contains the given secret, set it as 331 * the payload of a new 'struct key' of type fscrypt, and link the 'struct key' 332 * into the given keyring. Synchronized by fscrypt_add_key_mutex. 333 */ 334 static int add_new_master_key(struct fscrypt_master_key_secret *secret, 335 const struct fscrypt_key_specifier *mk_spec, 336 struct key *keyring) 337 { 338 struct fscrypt_master_key *mk; 339 char description[FSCRYPT_MK_DESCRIPTION_SIZE]; 340 struct key *key; 341 int err; 342 343 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 344 if (!mk) 345 return -ENOMEM; 346 347 mk->mk_spec = *mk_spec; 348 349 move_master_key_secret(&mk->mk_secret, secret); 350 351 refcount_set(&mk->mk_refcount, 1); /* secret is present */ 352 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 353 spin_lock_init(&mk->mk_decrypted_inodes_lock); 354 355 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 356 err = allocate_master_key_users_keyring(mk); 357 if (err) 358 goto out_free_mk; 359 err = add_master_key_user(mk); 360 if (err) 361 goto out_free_mk; 362 } 363 364 /* 365 * Note that we don't charge this key to anyone's quota, since when 366 * ->mk_users is in use those keys are charged instead, and otherwise 367 * (when ->mk_users isn't in use) only root can add these keys. 368 */ 369 format_mk_description(description, mk_spec); 370 key = key_alloc(&key_type_fscrypt, description, 371 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, current_cred(), 372 KEY_POS_SEARCH | KEY_USR_SEARCH | KEY_USR_VIEW, 373 KEY_ALLOC_NOT_IN_QUOTA, NULL); 374 if (IS_ERR(key)) { 375 err = PTR_ERR(key); 376 goto out_free_mk; 377 } 378 err = key_instantiate_and_link(key, mk, sizeof(*mk), keyring, NULL); 379 key_put(key); 380 if (err) 381 goto out_free_mk; 382 383 return 0; 384 385 out_free_mk: 386 free_master_key(mk); 387 return err; 388 } 389 390 #define KEY_DEAD 1 391 392 static int add_existing_master_key(struct fscrypt_master_key *mk, 393 struct fscrypt_master_key_secret *secret) 394 { 395 struct key *mk_user; 396 bool rekey; 397 int err; 398 399 /* 400 * If the current user is already in ->mk_users, then there's nothing to 401 * do. (Not applicable for v1 policy keys, which have NULL ->mk_users.) 402 */ 403 if (mk->mk_users) { 404 mk_user = find_master_key_user(mk); 405 if (mk_user != ERR_PTR(-ENOKEY)) { 406 if (IS_ERR(mk_user)) 407 return PTR_ERR(mk_user); 408 key_put(mk_user); 409 return 0; 410 } 411 } 412 413 /* If we'll be re-adding ->mk_secret, try to take the reference. */ 414 rekey = !is_master_key_secret_present(&mk->mk_secret); 415 if (rekey && !refcount_inc_not_zero(&mk->mk_refcount)) 416 return KEY_DEAD; 417 418 /* Add the current user to ->mk_users, if applicable. */ 419 if (mk->mk_users) { 420 err = add_master_key_user(mk); 421 if (err) { 422 if (rekey && refcount_dec_and_test(&mk->mk_refcount)) 423 return KEY_DEAD; 424 return err; 425 } 426 } 427 428 /* Re-add the secret if needed. */ 429 if (rekey) 430 move_master_key_secret(&mk->mk_secret, secret); 431 return 0; 432 } 433 434 static int do_add_master_key(struct super_block *sb, 435 struct fscrypt_master_key_secret *secret, 436 const struct fscrypt_key_specifier *mk_spec) 437 { 438 static DEFINE_MUTEX(fscrypt_add_key_mutex); 439 struct key *key; 440 int err; 441 442 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 443 retry: 444 key = fscrypt_find_master_key(sb, mk_spec); 445 if (IS_ERR(key)) { 446 err = PTR_ERR(key); 447 if (err != -ENOKEY) 448 goto out_unlock; 449 /* Didn't find the key in ->s_master_keys. Add it. */ 450 err = allocate_filesystem_keyring(sb); 451 if (err) 452 goto out_unlock; 453 err = add_new_master_key(secret, mk_spec, sb->s_master_keys); 454 } else { 455 /* 456 * Found the key in ->s_master_keys. Re-add the secret if 457 * needed, and add the user to ->mk_users if needed. 458 */ 459 down_write(&key->sem); 460 err = add_existing_master_key(key->payload.data[0], secret); 461 up_write(&key->sem); 462 if (err == KEY_DEAD) { 463 /* Key being removed or needs to be removed */ 464 key_invalidate(key); 465 key_put(key); 466 goto retry; 467 } 468 key_put(key); 469 } 470 out_unlock: 471 mutex_unlock(&fscrypt_add_key_mutex); 472 return err; 473 } 474 475 static int add_master_key(struct super_block *sb, 476 struct fscrypt_master_key_secret *secret, 477 struct fscrypt_key_specifier *key_spec) 478 { 479 int err; 480 481 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 482 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 483 secret->size); 484 if (err) 485 return err; 486 487 /* 488 * Now that the HKDF context is initialized, the raw key is no 489 * longer needed. 490 */ 491 memzero_explicit(secret->raw, secret->size); 492 493 /* Calculate the key identifier */ 494 err = fscrypt_hkdf_expand(&secret->hkdf, 495 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 496 key_spec->u.identifier, 497 FSCRYPT_KEY_IDENTIFIER_SIZE); 498 if (err) 499 return err; 500 } 501 return do_add_master_key(sb, secret, key_spec); 502 } 503 504 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 505 { 506 const struct fscrypt_provisioning_key_payload *payload = prep->data; 507 508 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 509 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 510 return -EINVAL; 511 512 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 513 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 514 return -EINVAL; 515 516 if (payload->__reserved) 517 return -EINVAL; 518 519 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 520 if (!prep->payload.data[0]) 521 return -ENOMEM; 522 523 prep->quotalen = prep->datalen; 524 return 0; 525 } 526 527 static void fscrypt_provisioning_key_free_preparse( 528 struct key_preparsed_payload *prep) 529 { 530 kfree_sensitive(prep->payload.data[0]); 531 } 532 533 static void fscrypt_provisioning_key_describe(const struct key *key, 534 struct seq_file *m) 535 { 536 seq_puts(m, key->description); 537 if (key_is_positive(key)) { 538 const struct fscrypt_provisioning_key_payload *payload = 539 key->payload.data[0]; 540 541 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 542 } 543 } 544 545 static void fscrypt_provisioning_key_destroy(struct key *key) 546 { 547 kfree_sensitive(key->payload.data[0]); 548 } 549 550 static struct key_type key_type_fscrypt_provisioning = { 551 .name = "fscrypt-provisioning", 552 .preparse = fscrypt_provisioning_key_preparse, 553 .free_preparse = fscrypt_provisioning_key_free_preparse, 554 .instantiate = generic_key_instantiate, 555 .describe = fscrypt_provisioning_key_describe, 556 .destroy = fscrypt_provisioning_key_destroy, 557 }; 558 559 /* 560 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 561 * store it into 'secret'. 562 * 563 * The key must be of type "fscrypt-provisioning" and must have the field 564 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 565 * only usable with fscrypt with the particular KDF version identified by 566 * 'type'. We don't use the "logon" key type because there's no way to 567 * completely restrict the use of such keys; they can be used by any kernel API 568 * that accepts "logon" keys and doesn't require a specific service prefix. 569 * 570 * The ability to specify the key via Linux keyring key is intended for cases 571 * where userspace needs to re-add keys after the filesystem is unmounted and 572 * re-mounted. Most users should just provide the raw key directly instead. 573 */ 574 static int get_keyring_key(u32 key_id, u32 type, 575 struct fscrypt_master_key_secret *secret) 576 { 577 key_ref_t ref; 578 struct key *key; 579 const struct fscrypt_provisioning_key_payload *payload; 580 int err; 581 582 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 583 if (IS_ERR(ref)) 584 return PTR_ERR(ref); 585 key = key_ref_to_ptr(ref); 586 587 if (key->type != &key_type_fscrypt_provisioning) 588 goto bad_key; 589 payload = key->payload.data[0]; 590 591 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 592 if (payload->type != type) 593 goto bad_key; 594 595 secret->size = key->datalen - sizeof(*payload); 596 memcpy(secret->raw, payload->raw, secret->size); 597 err = 0; 598 goto out_put; 599 600 bad_key: 601 err = -EKEYREJECTED; 602 out_put: 603 key_ref_put(ref); 604 return err; 605 } 606 607 /* 608 * Add a master encryption key to the filesystem, causing all files which were 609 * encrypted with it to appear "unlocked" (decrypted) when accessed. 610 * 611 * When adding a key for use by v1 encryption policies, this ioctl is 612 * privileged, and userspace must provide the 'key_descriptor'. 613 * 614 * When adding a key for use by v2+ encryption policies, this ioctl is 615 * unprivileged. This is needed, in general, to allow non-root users to use 616 * encryption without encountering the visibility problems of process-subscribed 617 * keyrings and the inability to properly remove keys. This works by having 618 * each key identified by its cryptographically secure hash --- the 619 * 'key_identifier'. The cryptographic hash ensures that a malicious user 620 * cannot add the wrong key for a given identifier. Furthermore, each added key 621 * is charged to the appropriate user's quota for the keyrings service, which 622 * prevents a malicious user from adding too many keys. Finally, we forbid a 623 * user from removing a key while other users have added it too, which prevents 624 * a user who knows another user's key from causing a denial-of-service by 625 * removing it at an inopportune time. (We tolerate that a user who knows a key 626 * can prevent other users from removing it.) 627 * 628 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 629 * Documentation/filesystems/fscrypt.rst. 630 */ 631 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 632 { 633 struct super_block *sb = file_inode(filp)->i_sb; 634 struct fscrypt_add_key_arg __user *uarg = _uarg; 635 struct fscrypt_add_key_arg arg; 636 struct fscrypt_master_key_secret secret; 637 int err; 638 639 if (copy_from_user(&arg, uarg, sizeof(arg))) 640 return -EFAULT; 641 642 if (!valid_key_spec(&arg.key_spec)) 643 return -EINVAL; 644 645 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 646 return -EINVAL; 647 648 /* 649 * Only root can add keys that are identified by an arbitrary descriptor 650 * rather than by a cryptographic hash --- since otherwise a malicious 651 * user could add the wrong key. 652 */ 653 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 654 !capable(CAP_SYS_ADMIN)) 655 return -EACCES; 656 657 memset(&secret, 0, sizeof(secret)); 658 if (arg.key_id) { 659 if (arg.raw_size != 0) 660 return -EINVAL; 661 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 662 if (err) 663 goto out_wipe_secret; 664 } else { 665 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 666 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 667 return -EINVAL; 668 secret.size = arg.raw_size; 669 err = -EFAULT; 670 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 671 goto out_wipe_secret; 672 } 673 674 err = add_master_key(sb, &secret, &arg.key_spec); 675 if (err) 676 goto out_wipe_secret; 677 678 /* Return the key identifier to userspace, if applicable */ 679 err = -EFAULT; 680 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 681 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 682 FSCRYPT_KEY_IDENTIFIER_SIZE)) 683 goto out_wipe_secret; 684 err = 0; 685 out_wipe_secret: 686 wipe_master_key_secret(&secret); 687 return err; 688 } 689 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 690 691 static void 692 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 693 { 694 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 695 696 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 697 698 memset(secret, 0, sizeof(*secret)); 699 secret->size = FSCRYPT_MAX_KEY_SIZE; 700 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); 701 } 702 703 int fscrypt_get_test_dummy_key_identifier( 704 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 705 { 706 struct fscrypt_master_key_secret secret; 707 int err; 708 709 fscrypt_get_test_dummy_secret(&secret); 710 711 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); 712 if (err) 713 goto out; 714 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, 715 NULL, 0, key_identifier, 716 FSCRYPT_KEY_IDENTIFIER_SIZE); 717 out: 718 wipe_master_key_secret(&secret); 719 return err; 720 } 721 722 /** 723 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 724 * @sb: the filesystem instance to add the key to 725 * @dummy_policy: the encryption policy for test_dummy_encryption 726 * 727 * If needed, add the key for the test_dummy_encryption mount option to the 728 * filesystem. To prevent misuse of this mount option, a per-boot random key is 729 * used instead of a hardcoded one. This makes it so that any encrypted files 730 * created using this option won't be accessible after a reboot. 731 * 732 * Return: 0 on success, -errno on failure 733 */ 734 int fscrypt_add_test_dummy_key(struct super_block *sb, 735 const struct fscrypt_dummy_policy *dummy_policy) 736 { 737 const union fscrypt_policy *policy = dummy_policy->policy; 738 struct fscrypt_key_specifier key_spec; 739 struct fscrypt_master_key_secret secret; 740 int err; 741 742 if (!policy) 743 return 0; 744 err = fscrypt_policy_to_key_spec(policy, &key_spec); 745 if (err) 746 return err; 747 fscrypt_get_test_dummy_secret(&secret); 748 err = add_master_key(sb, &secret, &key_spec); 749 wipe_master_key_secret(&secret); 750 return err; 751 } 752 EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key); 753 754 /* 755 * Verify that the current user has added a master key with the given identifier 756 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 757 * their files using some other user's key which they don't actually know. 758 * Cryptographically this isn't much of a problem, but the semantics of this 759 * would be a bit weird, so it's best to just forbid it. 760 * 761 * The system administrator (CAP_FOWNER) can override this, which should be 762 * enough for any use cases where encryption policies are being set using keys 763 * that were chosen ahead of time but aren't available at the moment. 764 * 765 * Note that the key may have already removed by the time this returns, but 766 * that's okay; we just care whether the key was there at some point. 767 * 768 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 769 */ 770 int fscrypt_verify_key_added(struct super_block *sb, 771 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 772 { 773 struct fscrypt_key_specifier mk_spec; 774 struct key *key, *mk_user; 775 struct fscrypt_master_key *mk; 776 int err; 777 778 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 779 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 780 781 key = fscrypt_find_master_key(sb, &mk_spec); 782 if (IS_ERR(key)) { 783 err = PTR_ERR(key); 784 goto out; 785 } 786 mk = key->payload.data[0]; 787 mk_user = find_master_key_user(mk); 788 if (IS_ERR(mk_user)) { 789 err = PTR_ERR(mk_user); 790 } else { 791 key_put(mk_user); 792 err = 0; 793 } 794 key_put(key); 795 out: 796 if (err == -ENOKEY && capable(CAP_FOWNER)) 797 err = 0; 798 return err; 799 } 800 801 /* 802 * Try to evict the inode's dentries from the dentry cache. If the inode is a 803 * directory, then it can have at most one dentry; however, that dentry may be 804 * pinned by child dentries, so first try to evict the children too. 805 */ 806 static void shrink_dcache_inode(struct inode *inode) 807 { 808 struct dentry *dentry; 809 810 if (S_ISDIR(inode->i_mode)) { 811 dentry = d_find_any_alias(inode); 812 if (dentry) { 813 shrink_dcache_parent(dentry); 814 dput(dentry); 815 } 816 } 817 d_prune_aliases(inode); 818 } 819 820 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 821 { 822 struct fscrypt_info *ci; 823 struct inode *inode; 824 struct inode *toput_inode = NULL; 825 826 spin_lock(&mk->mk_decrypted_inodes_lock); 827 828 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 829 inode = ci->ci_inode; 830 spin_lock(&inode->i_lock); 831 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 832 spin_unlock(&inode->i_lock); 833 continue; 834 } 835 __iget(inode); 836 spin_unlock(&inode->i_lock); 837 spin_unlock(&mk->mk_decrypted_inodes_lock); 838 839 shrink_dcache_inode(inode); 840 iput(toput_inode); 841 toput_inode = inode; 842 843 spin_lock(&mk->mk_decrypted_inodes_lock); 844 } 845 846 spin_unlock(&mk->mk_decrypted_inodes_lock); 847 iput(toput_inode); 848 } 849 850 static int check_for_busy_inodes(struct super_block *sb, 851 struct fscrypt_master_key *mk) 852 { 853 struct list_head *pos; 854 size_t busy_count = 0; 855 unsigned long ino; 856 char ino_str[50] = ""; 857 858 spin_lock(&mk->mk_decrypted_inodes_lock); 859 860 list_for_each(pos, &mk->mk_decrypted_inodes) 861 busy_count++; 862 863 if (busy_count == 0) { 864 spin_unlock(&mk->mk_decrypted_inodes_lock); 865 return 0; 866 } 867 868 { 869 /* select an example file to show for debugging purposes */ 870 struct inode *inode = 871 list_first_entry(&mk->mk_decrypted_inodes, 872 struct fscrypt_info, 873 ci_master_key_link)->ci_inode; 874 ino = inode->i_ino; 875 } 876 spin_unlock(&mk->mk_decrypted_inodes_lock); 877 878 /* If the inode is currently being created, ino may still be 0. */ 879 if (ino) 880 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 881 882 fscrypt_warn(NULL, 883 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 884 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 885 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 886 ino_str); 887 return -EBUSY; 888 } 889 890 static int try_to_lock_encrypted_files(struct super_block *sb, 891 struct fscrypt_master_key *mk) 892 { 893 int err1; 894 int err2; 895 896 /* 897 * An inode can't be evicted while it is dirty or has dirty pages. 898 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 899 * 900 * Just do it the easy way: call sync_filesystem(). It's overkill, but 901 * it works, and it's more important to minimize the amount of caches we 902 * drop than the amount of data we sync. Also, unprivileged users can 903 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 904 */ 905 down_read(&sb->s_umount); 906 err1 = sync_filesystem(sb); 907 up_read(&sb->s_umount); 908 /* If a sync error occurs, still try to evict as much as possible. */ 909 910 /* 911 * Inodes are pinned by their dentries, so we have to evict their 912 * dentries. shrink_dcache_sb() would suffice, but would be overkill 913 * and inappropriate for use by unprivileged users. So instead go 914 * through the inodes' alias lists and try to evict each dentry. 915 */ 916 evict_dentries_for_decrypted_inodes(mk); 917 918 /* 919 * evict_dentries_for_decrypted_inodes() already iput() each inode in 920 * the list; any inodes for which that dropped the last reference will 921 * have been evicted due to fscrypt_drop_inode() detecting the key 922 * removal and telling the VFS to evict the inode. So to finish, we 923 * just need to check whether any inodes couldn't be evicted. 924 */ 925 err2 = check_for_busy_inodes(sb, mk); 926 927 return err1 ?: err2; 928 } 929 930 /* 931 * Try to remove an fscrypt master encryption key. 932 * 933 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 934 * claim to the key, then removes the key itself if no other users have claims. 935 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 936 * key itself. 937 * 938 * To "remove the key itself", first we wipe the actual master key secret, so 939 * that no more inodes can be unlocked with it. Then we try to evict all cached 940 * inodes that had been unlocked with the key. 941 * 942 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 943 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 944 * state (without the actual secret key) where it tracks the list of remaining 945 * inodes. Userspace can execute the ioctl again later to retry eviction, or 946 * alternatively can re-add the secret key again. 947 * 948 * For more details, see the "Removing keys" section of 949 * Documentation/filesystems/fscrypt.rst. 950 */ 951 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 952 { 953 struct super_block *sb = file_inode(filp)->i_sb; 954 struct fscrypt_remove_key_arg __user *uarg = _uarg; 955 struct fscrypt_remove_key_arg arg; 956 struct key *key; 957 struct fscrypt_master_key *mk; 958 u32 status_flags = 0; 959 int err; 960 bool dead; 961 962 if (copy_from_user(&arg, uarg, sizeof(arg))) 963 return -EFAULT; 964 965 if (!valid_key_spec(&arg.key_spec)) 966 return -EINVAL; 967 968 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 969 return -EINVAL; 970 971 /* 972 * Only root can add and remove keys that are identified by an arbitrary 973 * descriptor rather than by a cryptographic hash. 974 */ 975 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 976 !capable(CAP_SYS_ADMIN)) 977 return -EACCES; 978 979 /* Find the key being removed. */ 980 key = fscrypt_find_master_key(sb, &arg.key_spec); 981 if (IS_ERR(key)) 982 return PTR_ERR(key); 983 mk = key->payload.data[0]; 984 985 down_write(&key->sem); 986 987 /* If relevant, remove current user's (or all users) claim to the key */ 988 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 989 if (all_users) 990 err = keyring_clear(mk->mk_users); 991 else 992 err = remove_master_key_user(mk); 993 if (err) { 994 up_write(&key->sem); 995 goto out_put_key; 996 } 997 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 998 /* 999 * Other users have still added the key too. We removed 1000 * the current user's claim to the key, but we still 1001 * can't remove the key itself. 1002 */ 1003 status_flags |= 1004 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1005 err = 0; 1006 up_write(&key->sem); 1007 goto out_put_key; 1008 } 1009 } 1010 1011 /* No user claims remaining. Go ahead and wipe the secret. */ 1012 dead = false; 1013 if (is_master_key_secret_present(&mk->mk_secret)) { 1014 wipe_master_key_secret(&mk->mk_secret); 1015 dead = refcount_dec_and_test(&mk->mk_refcount); 1016 } 1017 up_write(&key->sem); 1018 if (dead) { 1019 /* 1020 * No inodes reference the key, and we wiped the secret, so the 1021 * key object is free to be removed from the keyring. 1022 */ 1023 key_invalidate(key); 1024 err = 0; 1025 } else { 1026 /* Some inodes still reference this key; try to evict them. */ 1027 err = try_to_lock_encrypted_files(sb, mk); 1028 if (err == -EBUSY) { 1029 status_flags |= 1030 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1031 err = 0; 1032 } 1033 } 1034 /* 1035 * We return 0 if we successfully did something: removed a claim to the 1036 * key, wiped the secret, or tried locking the files again. Users need 1037 * to check the informational status flags if they care whether the key 1038 * has been fully removed including all files locked. 1039 */ 1040 out_put_key: 1041 key_put(key); 1042 if (err == 0) 1043 err = put_user(status_flags, &uarg->removal_status_flags); 1044 return err; 1045 } 1046 1047 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1048 { 1049 return do_remove_key(filp, uarg, false); 1050 } 1051 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1052 1053 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1054 { 1055 if (!capable(CAP_SYS_ADMIN)) 1056 return -EACCES; 1057 return do_remove_key(filp, uarg, true); 1058 } 1059 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1060 1061 /* 1062 * Retrieve the status of an fscrypt master encryption key. 1063 * 1064 * We set ->status to indicate whether the key is absent, present, or 1065 * incompletely removed. "Incompletely removed" means that the master key 1066 * secret has been removed, but some files which had been unlocked with it are 1067 * still in use. This field allows applications to easily determine the state 1068 * of an encrypted directory without using a hack such as trying to open a 1069 * regular file in it (which can confuse the "incompletely removed" state with 1070 * absent or present). 1071 * 1072 * In addition, for v2 policy keys we allow applications to determine, via 1073 * ->status_flags and ->user_count, whether the key has been added by the 1074 * current user, by other users, or by both. Most applications should not need 1075 * this, since ordinarily only one user should know a given key. However, if a 1076 * secret key is shared by multiple users, applications may wish to add an 1077 * already-present key to prevent other users from removing it. This ioctl can 1078 * be used to check whether that really is the case before the work is done to 1079 * add the key --- which might e.g. require prompting the user for a passphrase. 1080 * 1081 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1082 * Documentation/filesystems/fscrypt.rst. 1083 */ 1084 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1085 { 1086 struct super_block *sb = file_inode(filp)->i_sb; 1087 struct fscrypt_get_key_status_arg arg; 1088 struct key *key; 1089 struct fscrypt_master_key *mk; 1090 int err; 1091 1092 if (copy_from_user(&arg, uarg, sizeof(arg))) 1093 return -EFAULT; 1094 1095 if (!valid_key_spec(&arg.key_spec)) 1096 return -EINVAL; 1097 1098 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1099 return -EINVAL; 1100 1101 arg.status_flags = 0; 1102 arg.user_count = 0; 1103 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1104 1105 key = fscrypt_find_master_key(sb, &arg.key_spec); 1106 if (IS_ERR(key)) { 1107 if (key != ERR_PTR(-ENOKEY)) 1108 return PTR_ERR(key); 1109 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1110 err = 0; 1111 goto out; 1112 } 1113 mk = key->payload.data[0]; 1114 down_read(&key->sem); 1115 1116 if (!is_master_key_secret_present(&mk->mk_secret)) { 1117 arg.status = FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED; 1118 err = 0; 1119 goto out_release_key; 1120 } 1121 1122 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1123 if (mk->mk_users) { 1124 struct key *mk_user; 1125 1126 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1127 mk_user = find_master_key_user(mk); 1128 if (!IS_ERR(mk_user)) { 1129 arg.status_flags |= 1130 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1131 key_put(mk_user); 1132 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1133 err = PTR_ERR(mk_user); 1134 goto out_release_key; 1135 } 1136 } 1137 err = 0; 1138 out_release_key: 1139 up_read(&key->sem); 1140 key_put(key); 1141 out: 1142 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1143 err = -EFAULT; 1144 return err; 1145 } 1146 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1147 1148 int __init fscrypt_init_keyring(void) 1149 { 1150 int err; 1151 1152 err = register_key_type(&key_type_fscrypt); 1153 if (err) 1154 return err; 1155 1156 err = register_key_type(&key_type_fscrypt_user); 1157 if (err) 1158 goto err_unregister_fscrypt; 1159 1160 err = register_key_type(&key_type_fscrypt_provisioning); 1161 if (err) 1162 goto err_unregister_fscrypt_user; 1163 1164 return 0; 1165 1166 err_unregister_fscrypt_user: 1167 unregister_key_type(&key_type_fscrypt_user); 1168 err_unregister_fscrypt: 1169 unregister_key_type(&key_type_fscrypt); 1170 return err; 1171 } 1172