xref: /linux/fs/crypto/keyring.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <linux/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26 
27 #include "fscrypt_private.h"
28 
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 	/*
32 	 * Lock that protects ->key_hashtable.  It does *not* protect the
33 	 * fscrypt_master_key structs themselves.
34 	 */
35 	spinlock_t lock;
36 
37 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 	struct hlist_head key_hashtable[128];
39 };
40 
41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 	fscrypt_destroy_hkdf(&secret->hkdf);
44 	memzero_explicit(secret, sizeof(*secret));
45 }
46 
47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 				   struct fscrypt_master_key_secret *src)
49 {
50 	memcpy(dst, src, sizeof(*dst));
51 	memzero_explicit(src, sizeof(*src));
52 }
53 
54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 	struct fscrypt_master_key *mk =
57 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 	/*
59 	 * The master key secret and any embedded subkeys should have already
60 	 * been wiped when the last active reference to the fscrypt_master_key
61 	 * struct was dropped; doing it here would be unnecessarily late.
62 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 	 */
64 	kfree_sensitive(mk);
65 }
66 
67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 		return;
71 	/*
72 	 * No structural references left, so free ->mk_users, and also free the
73 	 * fscrypt_master_key struct itself after an RCU grace period ensures
74 	 * that concurrent keyring lookups can no longer find it.
75 	 */
76 	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
77 	if (mk->mk_users) {
78 		/* Clear the keyring so the quota gets released right away. */
79 		keyring_clear(mk->mk_users);
80 		key_put(mk->mk_users);
81 		mk->mk_users = NULL;
82 	}
83 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
84 }
85 
86 void fscrypt_put_master_key_activeref(struct super_block *sb,
87 				      struct fscrypt_master_key *mk)
88 {
89 	size_t i;
90 
91 	if (!refcount_dec_and_test(&mk->mk_active_refs))
92 		return;
93 	/*
94 	 * No active references left, so complete the full removal of this
95 	 * fscrypt_master_key struct by removing it from the keyring and
96 	 * destroying any subkeys embedded in it.
97 	 */
98 
99 	if (WARN_ON_ONCE(!sb->s_master_keys))
100 		return;
101 	spin_lock(&sb->s_master_keys->lock);
102 	hlist_del_rcu(&mk->mk_node);
103 	spin_unlock(&sb->s_master_keys->lock);
104 
105 	/*
106 	 * ->mk_active_refs == 0 implies that ->mk_present is false and
107 	 * ->mk_decrypted_inodes is empty.
108 	 */
109 	WARN_ON_ONCE(mk->mk_present);
110 	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
111 
112 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
113 		fscrypt_destroy_prepared_key(
114 				sb, &mk->mk_direct_keys[i]);
115 		fscrypt_destroy_prepared_key(
116 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
117 		fscrypt_destroy_prepared_key(
118 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
119 	}
120 	memzero_explicit(&mk->mk_ino_hash_key,
121 			 sizeof(mk->mk_ino_hash_key));
122 	mk->mk_ino_hash_key_initialized = false;
123 
124 	/* Drop the structural ref associated with the active refs. */
125 	fscrypt_put_master_key(mk);
126 }
127 
128 /*
129  * This transitions the key state from present to incompletely removed, and then
130  * potentially to absent (depending on whether inodes remain).
131  */
132 static void fscrypt_initiate_key_removal(struct super_block *sb,
133 					 struct fscrypt_master_key *mk)
134 {
135 	WRITE_ONCE(mk->mk_present, false);
136 	wipe_master_key_secret(&mk->mk_secret);
137 	fscrypt_put_master_key_activeref(sb, mk);
138 }
139 
140 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
141 {
142 	if (spec->__reserved)
143 		return false;
144 	return master_key_spec_len(spec) != 0;
145 }
146 
147 static int fscrypt_user_key_instantiate(struct key *key,
148 					struct key_preparsed_payload *prep)
149 {
150 	/*
151 	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
152 	 * each key, regardless of the exact key size.  The amount of memory
153 	 * actually used is greater than the size of the raw key anyway.
154 	 */
155 	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
156 }
157 
158 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
159 {
160 	seq_puts(m, key->description);
161 }
162 
163 /*
164  * Type of key in ->mk_users.  Each key of this type represents a particular
165  * user who has added a particular master key.
166  *
167  * Note that the name of this key type really should be something like
168  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
169  * mainly for simplicity of presentation in /proc/keys when read by a non-root
170  * user.  And it is expected to be rare that a key is actually added by multiple
171  * users, since users should keep their encryption keys confidential.
172  */
173 static struct key_type key_type_fscrypt_user = {
174 	.name			= ".fscrypt",
175 	.instantiate		= fscrypt_user_key_instantiate,
176 	.describe		= fscrypt_user_key_describe,
177 };
178 
179 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
180 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
181 	 CONST_STRLEN("-users") + 1)
182 
183 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
184 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
185 
186 static void format_mk_users_keyring_description(
187 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
188 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
189 {
190 	sprintf(description, "fscrypt-%*phN-users",
191 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
192 }
193 
194 static void format_mk_user_description(
195 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
196 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
197 {
198 
199 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
200 		mk_identifier, __kuid_val(current_fsuid()));
201 }
202 
203 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
204 static int allocate_filesystem_keyring(struct super_block *sb)
205 {
206 	struct fscrypt_keyring *keyring;
207 
208 	if (sb->s_master_keys)
209 		return 0;
210 
211 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
212 	if (!keyring)
213 		return -ENOMEM;
214 	spin_lock_init(&keyring->lock);
215 	/*
216 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
217 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
218 	 * concurrent tasks can ACQUIRE it.
219 	 */
220 	smp_store_release(&sb->s_master_keys, keyring);
221 	return 0;
222 }
223 
224 /*
225  * Release all encryption keys that have been added to the filesystem, along
226  * with the keyring that contains them.
227  *
228  * This is called at unmount time, after all potentially-encrypted inodes have
229  * been evicted.  The filesystem's underlying block device(s) are still
230  * available at this time; this is important because after user file accesses
231  * have been allowed, this function may need to evict keys from the keyslots of
232  * an inline crypto engine, which requires the block device(s).
233  */
234 void fscrypt_destroy_keyring(struct super_block *sb)
235 {
236 	struct fscrypt_keyring *keyring = sb->s_master_keys;
237 	size_t i;
238 
239 	if (!keyring)
240 		return;
241 
242 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
243 		struct hlist_head *bucket = &keyring->key_hashtable[i];
244 		struct fscrypt_master_key *mk;
245 		struct hlist_node *tmp;
246 
247 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
248 			/*
249 			 * Since all potentially-encrypted inodes were already
250 			 * evicted, every key remaining in the keyring should
251 			 * have an empty inode list, and should only still be in
252 			 * the keyring due to the single active ref associated
253 			 * with ->mk_present.  There should be no structural
254 			 * refs beyond the one associated with the active ref.
255 			 */
256 			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
257 			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
258 			WARN_ON_ONCE(!mk->mk_present);
259 			fscrypt_initiate_key_removal(sb, mk);
260 		}
261 	}
262 	kfree_sensitive(keyring);
263 	sb->s_master_keys = NULL;
264 }
265 
266 static struct hlist_head *
267 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
268 		       const struct fscrypt_key_specifier *mk_spec)
269 {
270 	/*
271 	 * Since key specifiers should be "random" values, it is sufficient to
272 	 * use a trivial hash function that just takes the first several bits of
273 	 * the key specifier.
274 	 */
275 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
276 
277 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
278 }
279 
280 /*
281  * Find the specified master key struct in ->s_master_keys and take a structural
282  * ref to it.  The structural ref guarantees that the key struct continues to
283  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
284  * the key struct.  The structural ref needs to be dropped by
285  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
286  */
287 struct fscrypt_master_key *
288 fscrypt_find_master_key(struct super_block *sb,
289 			const struct fscrypt_key_specifier *mk_spec)
290 {
291 	struct fscrypt_keyring *keyring;
292 	struct hlist_head *bucket;
293 	struct fscrypt_master_key *mk;
294 
295 	/*
296 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
297 	 * I.e., another task can publish ->s_master_keys concurrently,
298 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
299 	 * to safely ACQUIRE the memory the other task published.
300 	 */
301 	keyring = smp_load_acquire(&sb->s_master_keys);
302 	if (keyring == NULL)
303 		return NULL; /* No keyring yet, so no keys yet. */
304 
305 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
306 	rcu_read_lock();
307 	switch (mk_spec->type) {
308 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
309 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
310 			if (mk->mk_spec.type ==
311 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
312 			    memcmp(mk->mk_spec.u.descriptor,
313 				   mk_spec->u.descriptor,
314 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
315 			    refcount_inc_not_zero(&mk->mk_struct_refs))
316 				goto out;
317 		}
318 		break;
319 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
320 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
321 			if (mk->mk_spec.type ==
322 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
323 			    memcmp(mk->mk_spec.u.identifier,
324 				   mk_spec->u.identifier,
325 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
326 			    refcount_inc_not_zero(&mk->mk_struct_refs))
327 				goto out;
328 		}
329 		break;
330 	}
331 	mk = NULL;
332 out:
333 	rcu_read_unlock();
334 	return mk;
335 }
336 
337 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
338 {
339 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
340 	struct key *keyring;
341 
342 	format_mk_users_keyring_description(description,
343 					    mk->mk_spec.u.identifier);
344 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
345 				current_cred(), KEY_POS_SEARCH |
346 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
347 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
348 	if (IS_ERR(keyring))
349 		return PTR_ERR(keyring);
350 
351 	mk->mk_users = keyring;
352 	return 0;
353 }
354 
355 /*
356  * Find the current user's "key" in the master key's ->mk_users.
357  * Returns ERR_PTR(-ENOKEY) if not found.
358  */
359 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
360 {
361 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
362 	key_ref_t keyref;
363 
364 	format_mk_user_description(description, mk->mk_spec.u.identifier);
365 
366 	/*
367 	 * We need to mark the keyring reference as "possessed" so that we
368 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
369 	 */
370 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
371 				&key_type_fscrypt_user, description, false);
372 	if (IS_ERR(keyref)) {
373 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
374 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
375 			keyref = ERR_PTR(-ENOKEY);
376 		return ERR_CAST(keyref);
377 	}
378 	return key_ref_to_ptr(keyref);
379 }
380 
381 /*
382  * Give the current user a "key" in ->mk_users.  This charges the user's quota
383  * and marks the master key as added by the current user, so that it cannot be
384  * removed by another user with the key.  Either ->mk_sem must be held for
385  * write, or the master key must be still undergoing initialization.
386  */
387 static int add_master_key_user(struct fscrypt_master_key *mk)
388 {
389 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
390 	struct key *mk_user;
391 	int err;
392 
393 	format_mk_user_description(description, mk->mk_spec.u.identifier);
394 	mk_user = key_alloc(&key_type_fscrypt_user, description,
395 			    current_fsuid(), current_gid(), current_cred(),
396 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
397 	if (IS_ERR(mk_user))
398 		return PTR_ERR(mk_user);
399 
400 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
401 	key_put(mk_user);
402 	return err;
403 }
404 
405 /*
406  * Remove the current user's "key" from ->mk_users.
407  * ->mk_sem must be held for write.
408  *
409  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
410  */
411 static int remove_master_key_user(struct fscrypt_master_key *mk)
412 {
413 	struct key *mk_user;
414 	int err;
415 
416 	mk_user = find_master_key_user(mk);
417 	if (IS_ERR(mk_user))
418 		return PTR_ERR(mk_user);
419 	err = key_unlink(mk->mk_users, mk_user);
420 	key_put(mk_user);
421 	return err;
422 }
423 
424 /*
425  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
426  * insert it into sb->s_master_keys.
427  */
428 static int add_new_master_key(struct super_block *sb,
429 			      struct fscrypt_master_key_secret *secret,
430 			      const struct fscrypt_key_specifier *mk_spec)
431 {
432 	struct fscrypt_keyring *keyring = sb->s_master_keys;
433 	struct fscrypt_master_key *mk;
434 	int err;
435 
436 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
437 	if (!mk)
438 		return -ENOMEM;
439 
440 	init_rwsem(&mk->mk_sem);
441 	refcount_set(&mk->mk_struct_refs, 1);
442 	mk->mk_spec = *mk_spec;
443 
444 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
445 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
446 
447 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
448 		err = allocate_master_key_users_keyring(mk);
449 		if (err)
450 			goto out_put;
451 		err = add_master_key_user(mk);
452 		if (err)
453 			goto out_put;
454 	}
455 
456 	move_master_key_secret(&mk->mk_secret, secret);
457 	mk->mk_present = true;
458 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
459 
460 	spin_lock(&keyring->lock);
461 	hlist_add_head_rcu(&mk->mk_node,
462 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
463 	spin_unlock(&keyring->lock);
464 	return 0;
465 
466 out_put:
467 	fscrypt_put_master_key(mk);
468 	return err;
469 }
470 
471 #define KEY_DEAD	1
472 
473 static int add_existing_master_key(struct fscrypt_master_key *mk,
474 				   struct fscrypt_master_key_secret *secret)
475 {
476 	int err;
477 
478 	/*
479 	 * If the current user is already in ->mk_users, then there's nothing to
480 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
481 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
482 	 */
483 	if (mk->mk_users) {
484 		struct key *mk_user = find_master_key_user(mk);
485 
486 		if (mk_user != ERR_PTR(-ENOKEY)) {
487 			if (IS_ERR(mk_user))
488 				return PTR_ERR(mk_user);
489 			key_put(mk_user);
490 			return 0;
491 		}
492 		err = add_master_key_user(mk);
493 		if (err)
494 			return err;
495 	}
496 
497 	/* If the key is incompletely removed, make it present again. */
498 	if (!mk->mk_present) {
499 		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
500 			/*
501 			 * Raced with the last active ref being dropped, so the
502 			 * key has become, or is about to become, "absent".
503 			 * Therefore, we need to allocate a new key struct.
504 			 */
505 			return KEY_DEAD;
506 		}
507 		move_master_key_secret(&mk->mk_secret, secret);
508 		WRITE_ONCE(mk->mk_present, true);
509 	}
510 
511 	return 0;
512 }
513 
514 static int do_add_master_key(struct super_block *sb,
515 			     struct fscrypt_master_key_secret *secret,
516 			     const struct fscrypt_key_specifier *mk_spec)
517 {
518 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
519 	struct fscrypt_master_key *mk;
520 	int err;
521 
522 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
523 
524 	mk = fscrypt_find_master_key(sb, mk_spec);
525 	if (!mk) {
526 		/* Didn't find the key in ->s_master_keys.  Add it. */
527 		err = allocate_filesystem_keyring(sb);
528 		if (!err)
529 			err = add_new_master_key(sb, secret, mk_spec);
530 	} else {
531 		/*
532 		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
533 		 * if needed, and make the key "present" again if possible.
534 		 */
535 		down_write(&mk->mk_sem);
536 		err = add_existing_master_key(mk, secret);
537 		up_write(&mk->mk_sem);
538 		if (err == KEY_DEAD) {
539 			/*
540 			 * We found a key struct, but it's already been fully
541 			 * removed.  Ignore the old struct and add a new one.
542 			 * fscrypt_add_key_mutex means we don't need to worry
543 			 * about concurrent adds.
544 			 */
545 			err = add_new_master_key(sb, secret, mk_spec);
546 		}
547 		fscrypt_put_master_key(mk);
548 	}
549 	mutex_unlock(&fscrypt_add_key_mutex);
550 	return err;
551 }
552 
553 static int add_master_key(struct super_block *sb,
554 			  struct fscrypt_master_key_secret *secret,
555 			  struct fscrypt_key_specifier *key_spec)
556 {
557 	int err;
558 
559 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
560 		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
561 					secret->size);
562 		if (err)
563 			return err;
564 
565 		/*
566 		 * Now that the HKDF context is initialized, the raw key is no
567 		 * longer needed.
568 		 */
569 		memzero_explicit(secret->raw, secret->size);
570 
571 		/* Calculate the key identifier */
572 		err = fscrypt_hkdf_expand(&secret->hkdf,
573 					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
574 					  key_spec->u.identifier,
575 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
576 		if (err)
577 			return err;
578 	}
579 	return do_add_master_key(sb, secret, key_spec);
580 }
581 
582 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
583 {
584 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
585 
586 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
587 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
588 		return -EINVAL;
589 
590 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
591 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
592 		return -EINVAL;
593 
594 	if (payload->__reserved)
595 		return -EINVAL;
596 
597 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
598 	if (!prep->payload.data[0])
599 		return -ENOMEM;
600 
601 	prep->quotalen = prep->datalen;
602 	return 0;
603 }
604 
605 static void fscrypt_provisioning_key_free_preparse(
606 					struct key_preparsed_payload *prep)
607 {
608 	kfree_sensitive(prep->payload.data[0]);
609 }
610 
611 static void fscrypt_provisioning_key_describe(const struct key *key,
612 					      struct seq_file *m)
613 {
614 	seq_puts(m, key->description);
615 	if (key_is_positive(key)) {
616 		const struct fscrypt_provisioning_key_payload *payload =
617 			key->payload.data[0];
618 
619 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
620 	}
621 }
622 
623 static void fscrypt_provisioning_key_destroy(struct key *key)
624 {
625 	kfree_sensitive(key->payload.data[0]);
626 }
627 
628 static struct key_type key_type_fscrypt_provisioning = {
629 	.name			= "fscrypt-provisioning",
630 	.preparse		= fscrypt_provisioning_key_preparse,
631 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
632 	.instantiate		= generic_key_instantiate,
633 	.describe		= fscrypt_provisioning_key_describe,
634 	.destroy		= fscrypt_provisioning_key_destroy,
635 };
636 
637 /*
638  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
639  * store it into 'secret'.
640  *
641  * The key must be of type "fscrypt-provisioning" and must have the field
642  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
643  * only usable with fscrypt with the particular KDF version identified by
644  * 'type'.  We don't use the "logon" key type because there's no way to
645  * completely restrict the use of such keys; they can be used by any kernel API
646  * that accepts "logon" keys and doesn't require a specific service prefix.
647  *
648  * The ability to specify the key via Linux keyring key is intended for cases
649  * where userspace needs to re-add keys after the filesystem is unmounted and
650  * re-mounted.  Most users should just provide the raw key directly instead.
651  */
652 static int get_keyring_key(u32 key_id, u32 type,
653 			   struct fscrypt_master_key_secret *secret)
654 {
655 	key_ref_t ref;
656 	struct key *key;
657 	const struct fscrypt_provisioning_key_payload *payload;
658 	int err;
659 
660 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
661 	if (IS_ERR(ref))
662 		return PTR_ERR(ref);
663 	key = key_ref_to_ptr(ref);
664 
665 	if (key->type != &key_type_fscrypt_provisioning)
666 		goto bad_key;
667 	payload = key->payload.data[0];
668 
669 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
670 	if (payload->type != type)
671 		goto bad_key;
672 
673 	secret->size = key->datalen - sizeof(*payload);
674 	memcpy(secret->raw, payload->raw, secret->size);
675 	err = 0;
676 	goto out_put;
677 
678 bad_key:
679 	err = -EKEYREJECTED;
680 out_put:
681 	key_ref_put(ref);
682 	return err;
683 }
684 
685 /*
686  * Add a master encryption key to the filesystem, causing all files which were
687  * encrypted with it to appear "unlocked" (decrypted) when accessed.
688  *
689  * When adding a key for use by v1 encryption policies, this ioctl is
690  * privileged, and userspace must provide the 'key_descriptor'.
691  *
692  * When adding a key for use by v2+ encryption policies, this ioctl is
693  * unprivileged.  This is needed, in general, to allow non-root users to use
694  * encryption without encountering the visibility problems of process-subscribed
695  * keyrings and the inability to properly remove keys.  This works by having
696  * each key identified by its cryptographically secure hash --- the
697  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
698  * cannot add the wrong key for a given identifier.  Furthermore, each added key
699  * is charged to the appropriate user's quota for the keyrings service, which
700  * prevents a malicious user from adding too many keys.  Finally, we forbid a
701  * user from removing a key while other users have added it too, which prevents
702  * a user who knows another user's key from causing a denial-of-service by
703  * removing it at an inopportune time.  (We tolerate that a user who knows a key
704  * can prevent other users from removing it.)
705  *
706  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
707  * Documentation/filesystems/fscrypt.rst.
708  */
709 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
710 {
711 	struct super_block *sb = file_inode(filp)->i_sb;
712 	struct fscrypt_add_key_arg __user *uarg = _uarg;
713 	struct fscrypt_add_key_arg arg;
714 	struct fscrypt_master_key_secret secret;
715 	int err;
716 
717 	if (copy_from_user(&arg, uarg, sizeof(arg)))
718 		return -EFAULT;
719 
720 	if (!valid_key_spec(&arg.key_spec))
721 		return -EINVAL;
722 
723 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
724 		return -EINVAL;
725 
726 	/*
727 	 * Only root can add keys that are identified by an arbitrary descriptor
728 	 * rather than by a cryptographic hash --- since otherwise a malicious
729 	 * user could add the wrong key.
730 	 */
731 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
732 	    !capable(CAP_SYS_ADMIN))
733 		return -EACCES;
734 
735 	memset(&secret, 0, sizeof(secret));
736 	if (arg.key_id) {
737 		if (arg.raw_size != 0)
738 			return -EINVAL;
739 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
740 		if (err)
741 			goto out_wipe_secret;
742 	} else {
743 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
744 		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
745 			return -EINVAL;
746 		secret.size = arg.raw_size;
747 		err = -EFAULT;
748 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
749 			goto out_wipe_secret;
750 	}
751 
752 	err = add_master_key(sb, &secret, &arg.key_spec);
753 	if (err)
754 		goto out_wipe_secret;
755 
756 	/* Return the key identifier to userspace, if applicable */
757 	err = -EFAULT;
758 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
759 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
760 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
761 		goto out_wipe_secret;
762 	err = 0;
763 out_wipe_secret:
764 	wipe_master_key_secret(&secret);
765 	return err;
766 }
767 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
768 
769 static void
770 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
771 {
772 	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
773 
774 	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
775 
776 	memset(secret, 0, sizeof(*secret));
777 	secret->size = FSCRYPT_MAX_KEY_SIZE;
778 	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
779 }
780 
781 int fscrypt_get_test_dummy_key_identifier(
782 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
783 {
784 	struct fscrypt_master_key_secret secret;
785 	int err;
786 
787 	fscrypt_get_test_dummy_secret(&secret);
788 
789 	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
790 	if (err)
791 		goto out;
792 	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
793 				  NULL, 0, key_identifier,
794 				  FSCRYPT_KEY_IDENTIFIER_SIZE);
795 out:
796 	wipe_master_key_secret(&secret);
797 	return err;
798 }
799 
800 /**
801  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
802  * @sb: the filesystem instance to add the key to
803  * @key_spec: the key specifier of the test dummy encryption key
804  *
805  * Add the key for the test_dummy_encryption mount option to the filesystem.  To
806  * prevent misuse of this mount option, a per-boot random key is used instead of
807  * a hardcoded one.  This makes it so that any encrypted files created using
808  * this option won't be accessible after a reboot.
809  *
810  * Return: 0 on success, -errno on failure
811  */
812 int fscrypt_add_test_dummy_key(struct super_block *sb,
813 			       struct fscrypt_key_specifier *key_spec)
814 {
815 	struct fscrypt_master_key_secret secret;
816 	int err;
817 
818 	fscrypt_get_test_dummy_secret(&secret);
819 	err = add_master_key(sb, &secret, key_spec);
820 	wipe_master_key_secret(&secret);
821 	return err;
822 }
823 
824 /*
825  * Verify that the current user has added a master key with the given identifier
826  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
827  * their files using some other user's key which they don't actually know.
828  * Cryptographically this isn't much of a problem, but the semantics of this
829  * would be a bit weird, so it's best to just forbid it.
830  *
831  * The system administrator (CAP_FOWNER) can override this, which should be
832  * enough for any use cases where encryption policies are being set using keys
833  * that were chosen ahead of time but aren't available at the moment.
834  *
835  * Note that the key may have already removed by the time this returns, but
836  * that's okay; we just care whether the key was there at some point.
837  *
838  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
839  */
840 int fscrypt_verify_key_added(struct super_block *sb,
841 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
842 {
843 	struct fscrypt_key_specifier mk_spec;
844 	struct fscrypt_master_key *mk;
845 	struct key *mk_user;
846 	int err;
847 
848 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
849 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
850 
851 	mk = fscrypt_find_master_key(sb, &mk_spec);
852 	if (!mk) {
853 		err = -ENOKEY;
854 		goto out;
855 	}
856 	down_read(&mk->mk_sem);
857 	mk_user = find_master_key_user(mk);
858 	if (IS_ERR(mk_user)) {
859 		err = PTR_ERR(mk_user);
860 	} else {
861 		key_put(mk_user);
862 		err = 0;
863 	}
864 	up_read(&mk->mk_sem);
865 	fscrypt_put_master_key(mk);
866 out:
867 	if (err == -ENOKEY && capable(CAP_FOWNER))
868 		err = 0;
869 	return err;
870 }
871 
872 /*
873  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
874  * directory, then it can have at most one dentry; however, that dentry may be
875  * pinned by child dentries, so first try to evict the children too.
876  */
877 static void shrink_dcache_inode(struct inode *inode)
878 {
879 	struct dentry *dentry;
880 
881 	if (S_ISDIR(inode->i_mode)) {
882 		dentry = d_find_any_alias(inode);
883 		if (dentry) {
884 			shrink_dcache_parent(dentry);
885 			dput(dentry);
886 		}
887 	}
888 	d_prune_aliases(inode);
889 }
890 
891 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
892 {
893 	struct fscrypt_inode_info *ci;
894 	struct inode *inode;
895 	struct inode *toput_inode = NULL;
896 
897 	spin_lock(&mk->mk_decrypted_inodes_lock);
898 
899 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
900 		inode = ci->ci_inode;
901 		spin_lock(&inode->i_lock);
902 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
903 			spin_unlock(&inode->i_lock);
904 			continue;
905 		}
906 		__iget(inode);
907 		spin_unlock(&inode->i_lock);
908 		spin_unlock(&mk->mk_decrypted_inodes_lock);
909 
910 		shrink_dcache_inode(inode);
911 		iput(toput_inode);
912 		toput_inode = inode;
913 
914 		spin_lock(&mk->mk_decrypted_inodes_lock);
915 	}
916 
917 	spin_unlock(&mk->mk_decrypted_inodes_lock);
918 	iput(toput_inode);
919 }
920 
921 static int check_for_busy_inodes(struct super_block *sb,
922 				 struct fscrypt_master_key *mk)
923 {
924 	struct list_head *pos;
925 	size_t busy_count = 0;
926 	unsigned long ino;
927 	char ino_str[50] = "";
928 
929 	spin_lock(&mk->mk_decrypted_inodes_lock);
930 
931 	list_for_each(pos, &mk->mk_decrypted_inodes)
932 		busy_count++;
933 
934 	if (busy_count == 0) {
935 		spin_unlock(&mk->mk_decrypted_inodes_lock);
936 		return 0;
937 	}
938 
939 	{
940 		/* select an example file to show for debugging purposes */
941 		struct inode *inode =
942 			list_first_entry(&mk->mk_decrypted_inodes,
943 					 struct fscrypt_inode_info,
944 					 ci_master_key_link)->ci_inode;
945 		ino = inode->i_ino;
946 	}
947 	spin_unlock(&mk->mk_decrypted_inodes_lock);
948 
949 	/* If the inode is currently being created, ino may still be 0. */
950 	if (ino)
951 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
952 
953 	fscrypt_warn(NULL,
954 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
955 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
956 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
957 		     ino_str);
958 	return -EBUSY;
959 }
960 
961 static int try_to_lock_encrypted_files(struct super_block *sb,
962 				       struct fscrypt_master_key *mk)
963 {
964 	int err1;
965 	int err2;
966 
967 	/*
968 	 * An inode can't be evicted while it is dirty or has dirty pages.
969 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
970 	 *
971 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
972 	 * it works, and it's more important to minimize the amount of caches we
973 	 * drop than the amount of data we sync.  Also, unprivileged users can
974 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
975 	 */
976 	down_read(&sb->s_umount);
977 	err1 = sync_filesystem(sb);
978 	up_read(&sb->s_umount);
979 	/* If a sync error occurs, still try to evict as much as possible. */
980 
981 	/*
982 	 * Inodes are pinned by their dentries, so we have to evict their
983 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
984 	 * and inappropriate for use by unprivileged users.  So instead go
985 	 * through the inodes' alias lists and try to evict each dentry.
986 	 */
987 	evict_dentries_for_decrypted_inodes(mk);
988 
989 	/*
990 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
991 	 * the list; any inodes for which that dropped the last reference will
992 	 * have been evicted due to fscrypt_drop_inode() detecting the key
993 	 * removal and telling the VFS to evict the inode.  So to finish, we
994 	 * just need to check whether any inodes couldn't be evicted.
995 	 */
996 	err2 = check_for_busy_inodes(sb, mk);
997 
998 	return err1 ?: err2;
999 }
1000 
1001 /*
1002  * Try to remove an fscrypt master encryption key.
1003  *
1004  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1005  * claim to the key, then removes the key itself if no other users have claims.
1006  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1007  * key itself.
1008  *
1009  * To "remove the key itself", first we transition the key to the "incompletely
1010  * removed" state, so that no more inodes can be unlocked with it.  Then we try
1011  * to evict all cached inodes that had been unlocked with the key.
1012  *
1013  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1014  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1015  * state where it tracks the list of remaining inodes.  Userspace can execute
1016  * the ioctl again later to retry eviction, or alternatively can re-add the key.
1017  *
1018  * For more details, see the "Removing keys" section of
1019  * Documentation/filesystems/fscrypt.rst.
1020  */
1021 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1022 {
1023 	struct super_block *sb = file_inode(filp)->i_sb;
1024 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1025 	struct fscrypt_remove_key_arg arg;
1026 	struct fscrypt_master_key *mk;
1027 	u32 status_flags = 0;
1028 	int err;
1029 	bool inodes_remain;
1030 
1031 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1032 		return -EFAULT;
1033 
1034 	if (!valid_key_spec(&arg.key_spec))
1035 		return -EINVAL;
1036 
1037 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1038 		return -EINVAL;
1039 
1040 	/*
1041 	 * Only root can add and remove keys that are identified by an arbitrary
1042 	 * descriptor rather than by a cryptographic hash.
1043 	 */
1044 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1045 	    !capable(CAP_SYS_ADMIN))
1046 		return -EACCES;
1047 
1048 	/* Find the key being removed. */
1049 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1050 	if (!mk)
1051 		return -ENOKEY;
1052 	down_write(&mk->mk_sem);
1053 
1054 	/* If relevant, remove current user's (or all users) claim to the key */
1055 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1056 		if (all_users)
1057 			err = keyring_clear(mk->mk_users);
1058 		else
1059 			err = remove_master_key_user(mk);
1060 		if (err) {
1061 			up_write(&mk->mk_sem);
1062 			goto out_put_key;
1063 		}
1064 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1065 			/*
1066 			 * Other users have still added the key too.  We removed
1067 			 * the current user's claim to the key, but we still
1068 			 * can't remove the key itself.
1069 			 */
1070 			status_flags |=
1071 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1072 			err = 0;
1073 			up_write(&mk->mk_sem);
1074 			goto out_put_key;
1075 		}
1076 	}
1077 
1078 	/* No user claims remaining.  Initiate removal of the key. */
1079 	err = -ENOKEY;
1080 	if (mk->mk_present) {
1081 		fscrypt_initiate_key_removal(sb, mk);
1082 		err = 0;
1083 	}
1084 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1085 	up_write(&mk->mk_sem);
1086 
1087 	if (inodes_remain) {
1088 		/* Some inodes still reference this key; try to evict them. */
1089 		err = try_to_lock_encrypted_files(sb, mk);
1090 		if (err == -EBUSY) {
1091 			status_flags |=
1092 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1093 			err = 0;
1094 		}
1095 	}
1096 	/*
1097 	 * We return 0 if we successfully did something: removed a claim to the
1098 	 * key, initiated removal of the key, or tried locking the files again.
1099 	 * Users need to check the informational status flags if they care
1100 	 * whether the key has been fully removed including all files locked.
1101 	 */
1102 out_put_key:
1103 	fscrypt_put_master_key(mk);
1104 	if (err == 0)
1105 		err = put_user(status_flags, &uarg->removal_status_flags);
1106 	return err;
1107 }
1108 
1109 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1110 {
1111 	return do_remove_key(filp, uarg, false);
1112 }
1113 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1114 
1115 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1116 {
1117 	if (!capable(CAP_SYS_ADMIN))
1118 		return -EACCES;
1119 	return do_remove_key(filp, uarg, true);
1120 }
1121 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1122 
1123 /*
1124  * Retrieve the status of an fscrypt master encryption key.
1125  *
1126  * We set ->status to indicate whether the key is absent, present, or
1127  * incompletely removed.  (For an explanation of what these statuses mean and
1128  * how they are represented internally, see struct fscrypt_master_key.)  This
1129  * field allows applications to easily determine the status of an encrypted
1130  * directory without using a hack such as trying to open a regular file in it
1131  * (which can confuse the "incompletely removed" status with absent or present).
1132  *
1133  * In addition, for v2 policy keys we allow applications to determine, via
1134  * ->status_flags and ->user_count, whether the key has been added by the
1135  * current user, by other users, or by both.  Most applications should not need
1136  * this, since ordinarily only one user should know a given key.  However, if a
1137  * secret key is shared by multiple users, applications may wish to add an
1138  * already-present key to prevent other users from removing it.  This ioctl can
1139  * be used to check whether that really is the case before the work is done to
1140  * add the key --- which might e.g. require prompting the user for a passphrase.
1141  *
1142  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1143  * Documentation/filesystems/fscrypt.rst.
1144  */
1145 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1146 {
1147 	struct super_block *sb = file_inode(filp)->i_sb;
1148 	struct fscrypt_get_key_status_arg arg;
1149 	struct fscrypt_master_key *mk;
1150 	int err;
1151 
1152 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1153 		return -EFAULT;
1154 
1155 	if (!valid_key_spec(&arg.key_spec))
1156 		return -EINVAL;
1157 
1158 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1159 		return -EINVAL;
1160 
1161 	arg.status_flags = 0;
1162 	arg.user_count = 0;
1163 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1164 
1165 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1166 	if (!mk) {
1167 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1168 		err = 0;
1169 		goto out;
1170 	}
1171 	down_read(&mk->mk_sem);
1172 
1173 	if (!mk->mk_present) {
1174 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1175 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1176 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1177 		err = 0;
1178 		goto out_release_key;
1179 	}
1180 
1181 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1182 	if (mk->mk_users) {
1183 		struct key *mk_user;
1184 
1185 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1186 		mk_user = find_master_key_user(mk);
1187 		if (!IS_ERR(mk_user)) {
1188 			arg.status_flags |=
1189 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1190 			key_put(mk_user);
1191 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1192 			err = PTR_ERR(mk_user);
1193 			goto out_release_key;
1194 		}
1195 	}
1196 	err = 0;
1197 out_release_key:
1198 	up_read(&mk->mk_sem);
1199 	fscrypt_put_master_key(mk);
1200 out:
1201 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1202 		err = -EFAULT;
1203 	return err;
1204 }
1205 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1206 
1207 int __init fscrypt_init_keyring(void)
1208 {
1209 	int err;
1210 
1211 	err = register_key_type(&key_type_fscrypt_user);
1212 	if (err)
1213 		return err;
1214 
1215 	err = register_key_type(&key_type_fscrypt_provisioning);
1216 	if (err)
1217 		goto err_unregister_fscrypt_user;
1218 
1219 	return 0;
1220 
1221 err_unregister_fscrypt_user:
1222 	unregister_key_type(&key_type_fscrypt_user);
1223 	return err;
1224 }
1225