xref: /linux/fs/crypto/keyring.c (revision 5027ec19f1049a07df5b0a37b1f462514cf2724b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <asm/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26 
27 #include "fscrypt_private.h"
28 
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 	/*
32 	 * Lock that protects ->key_hashtable.  It does *not* protect the
33 	 * fscrypt_master_key structs themselves.
34 	 */
35 	spinlock_t lock;
36 
37 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 	struct hlist_head key_hashtable[128];
39 };
40 
41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 	fscrypt_destroy_hkdf(&secret->hkdf);
44 	memzero_explicit(secret, sizeof(*secret));
45 }
46 
47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 				   struct fscrypt_master_key_secret *src)
49 {
50 	memcpy(dst, src, sizeof(*dst));
51 	memzero_explicit(src, sizeof(*src));
52 }
53 
54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 	struct fscrypt_master_key *mk =
57 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 	/*
59 	 * The master key secret and any embedded subkeys should have already
60 	 * been wiped when the last active reference to the fscrypt_master_key
61 	 * struct was dropped; doing it here would be unnecessarily late.
62 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 	 */
64 	kfree_sensitive(mk);
65 }
66 
67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 		return;
71 	/*
72 	 * No structural references left, so free ->mk_users, and also free the
73 	 * fscrypt_master_key struct itself after an RCU grace period ensures
74 	 * that concurrent keyring lookups can no longer find it.
75 	 */
76 	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
77 	key_put(mk->mk_users);
78 	mk->mk_users = NULL;
79 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80 }
81 
82 void fscrypt_put_master_key_activeref(struct super_block *sb,
83 				      struct fscrypt_master_key *mk)
84 {
85 	size_t i;
86 
87 	if (!refcount_dec_and_test(&mk->mk_active_refs))
88 		return;
89 	/*
90 	 * No active references left, so complete the full removal of this
91 	 * fscrypt_master_key struct by removing it from the keyring and
92 	 * destroying any subkeys embedded in it.
93 	 */
94 
95 	if (WARN_ON_ONCE(!sb->s_master_keys))
96 		return;
97 	spin_lock(&sb->s_master_keys->lock);
98 	hlist_del_rcu(&mk->mk_node);
99 	spin_unlock(&sb->s_master_keys->lock);
100 
101 	/*
102 	 * ->mk_active_refs == 0 implies that ->mk_present is false and
103 	 * ->mk_decrypted_inodes is empty.
104 	 */
105 	WARN_ON_ONCE(mk->mk_present);
106 	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
107 
108 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
109 		fscrypt_destroy_prepared_key(
110 				sb, &mk->mk_direct_keys[i]);
111 		fscrypt_destroy_prepared_key(
112 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
113 		fscrypt_destroy_prepared_key(
114 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
115 	}
116 	memzero_explicit(&mk->mk_ino_hash_key,
117 			 sizeof(mk->mk_ino_hash_key));
118 	mk->mk_ino_hash_key_initialized = false;
119 
120 	/* Drop the structural ref associated with the active refs. */
121 	fscrypt_put_master_key(mk);
122 }
123 
124 /*
125  * This transitions the key state from present to incompletely removed, and then
126  * potentially to absent (depending on whether inodes remain).
127  */
128 static void fscrypt_initiate_key_removal(struct super_block *sb,
129 					 struct fscrypt_master_key *mk)
130 {
131 	WRITE_ONCE(mk->mk_present, false);
132 	wipe_master_key_secret(&mk->mk_secret);
133 	fscrypt_put_master_key_activeref(sb, mk);
134 }
135 
136 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
137 {
138 	if (spec->__reserved)
139 		return false;
140 	return master_key_spec_len(spec) != 0;
141 }
142 
143 static int fscrypt_user_key_instantiate(struct key *key,
144 					struct key_preparsed_payload *prep)
145 {
146 	/*
147 	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
148 	 * each key, regardless of the exact key size.  The amount of memory
149 	 * actually used is greater than the size of the raw key anyway.
150 	 */
151 	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
152 }
153 
154 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
155 {
156 	seq_puts(m, key->description);
157 }
158 
159 /*
160  * Type of key in ->mk_users.  Each key of this type represents a particular
161  * user who has added a particular master key.
162  *
163  * Note that the name of this key type really should be something like
164  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
165  * mainly for simplicity of presentation in /proc/keys when read by a non-root
166  * user.  And it is expected to be rare that a key is actually added by multiple
167  * users, since users should keep their encryption keys confidential.
168  */
169 static struct key_type key_type_fscrypt_user = {
170 	.name			= ".fscrypt",
171 	.instantiate		= fscrypt_user_key_instantiate,
172 	.describe		= fscrypt_user_key_describe,
173 };
174 
175 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
176 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
177 	 CONST_STRLEN("-users") + 1)
178 
179 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
180 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
181 
182 static void format_mk_users_keyring_description(
183 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
184 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
185 {
186 	sprintf(description, "fscrypt-%*phN-users",
187 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
188 }
189 
190 static void format_mk_user_description(
191 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
192 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
193 {
194 
195 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
196 		mk_identifier, __kuid_val(current_fsuid()));
197 }
198 
199 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
200 static int allocate_filesystem_keyring(struct super_block *sb)
201 {
202 	struct fscrypt_keyring *keyring;
203 
204 	if (sb->s_master_keys)
205 		return 0;
206 
207 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
208 	if (!keyring)
209 		return -ENOMEM;
210 	spin_lock_init(&keyring->lock);
211 	/*
212 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
213 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
214 	 * concurrent tasks can ACQUIRE it.
215 	 */
216 	smp_store_release(&sb->s_master_keys, keyring);
217 	return 0;
218 }
219 
220 /*
221  * Release all encryption keys that have been added to the filesystem, along
222  * with the keyring that contains them.
223  *
224  * This is called at unmount time, after all potentially-encrypted inodes have
225  * been evicted.  The filesystem's underlying block device(s) are still
226  * available at this time; this is important because after user file accesses
227  * have been allowed, this function may need to evict keys from the keyslots of
228  * an inline crypto engine, which requires the block device(s).
229  */
230 void fscrypt_destroy_keyring(struct super_block *sb)
231 {
232 	struct fscrypt_keyring *keyring = sb->s_master_keys;
233 	size_t i;
234 
235 	if (!keyring)
236 		return;
237 
238 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
239 		struct hlist_head *bucket = &keyring->key_hashtable[i];
240 		struct fscrypt_master_key *mk;
241 		struct hlist_node *tmp;
242 
243 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
244 			/*
245 			 * Since all potentially-encrypted inodes were already
246 			 * evicted, every key remaining in the keyring should
247 			 * have an empty inode list, and should only still be in
248 			 * the keyring due to the single active ref associated
249 			 * with ->mk_present.  There should be no structural
250 			 * refs beyond the one associated with the active ref.
251 			 */
252 			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
253 			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
254 			WARN_ON_ONCE(!mk->mk_present);
255 			fscrypt_initiate_key_removal(sb, mk);
256 		}
257 	}
258 	kfree_sensitive(keyring);
259 	sb->s_master_keys = NULL;
260 }
261 
262 static struct hlist_head *
263 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
264 		       const struct fscrypt_key_specifier *mk_spec)
265 {
266 	/*
267 	 * Since key specifiers should be "random" values, it is sufficient to
268 	 * use a trivial hash function that just takes the first several bits of
269 	 * the key specifier.
270 	 */
271 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
272 
273 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
274 }
275 
276 /*
277  * Find the specified master key struct in ->s_master_keys and take a structural
278  * ref to it.  The structural ref guarantees that the key struct continues to
279  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
280  * the key struct.  The structural ref needs to be dropped by
281  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
282  */
283 struct fscrypt_master_key *
284 fscrypt_find_master_key(struct super_block *sb,
285 			const struct fscrypt_key_specifier *mk_spec)
286 {
287 	struct fscrypt_keyring *keyring;
288 	struct hlist_head *bucket;
289 	struct fscrypt_master_key *mk;
290 
291 	/*
292 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
293 	 * I.e., another task can publish ->s_master_keys concurrently,
294 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
295 	 * to safely ACQUIRE the memory the other task published.
296 	 */
297 	keyring = smp_load_acquire(&sb->s_master_keys);
298 	if (keyring == NULL)
299 		return NULL; /* No keyring yet, so no keys yet. */
300 
301 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
302 	rcu_read_lock();
303 	switch (mk_spec->type) {
304 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
305 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
306 			if (mk->mk_spec.type ==
307 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
308 			    memcmp(mk->mk_spec.u.descriptor,
309 				   mk_spec->u.descriptor,
310 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
311 			    refcount_inc_not_zero(&mk->mk_struct_refs))
312 				goto out;
313 		}
314 		break;
315 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
316 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
317 			if (mk->mk_spec.type ==
318 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
319 			    memcmp(mk->mk_spec.u.identifier,
320 				   mk_spec->u.identifier,
321 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
322 			    refcount_inc_not_zero(&mk->mk_struct_refs))
323 				goto out;
324 		}
325 		break;
326 	}
327 	mk = NULL;
328 out:
329 	rcu_read_unlock();
330 	return mk;
331 }
332 
333 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
334 {
335 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
336 	struct key *keyring;
337 
338 	format_mk_users_keyring_description(description,
339 					    mk->mk_spec.u.identifier);
340 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
341 				current_cred(), KEY_POS_SEARCH |
342 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
343 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
344 	if (IS_ERR(keyring))
345 		return PTR_ERR(keyring);
346 
347 	mk->mk_users = keyring;
348 	return 0;
349 }
350 
351 /*
352  * Find the current user's "key" in the master key's ->mk_users.
353  * Returns ERR_PTR(-ENOKEY) if not found.
354  */
355 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
356 {
357 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
358 	key_ref_t keyref;
359 
360 	format_mk_user_description(description, mk->mk_spec.u.identifier);
361 
362 	/*
363 	 * We need to mark the keyring reference as "possessed" so that we
364 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
365 	 */
366 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
367 				&key_type_fscrypt_user, description, false);
368 	if (IS_ERR(keyref)) {
369 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
370 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
371 			keyref = ERR_PTR(-ENOKEY);
372 		return ERR_CAST(keyref);
373 	}
374 	return key_ref_to_ptr(keyref);
375 }
376 
377 /*
378  * Give the current user a "key" in ->mk_users.  This charges the user's quota
379  * and marks the master key as added by the current user, so that it cannot be
380  * removed by another user with the key.  Either ->mk_sem must be held for
381  * write, or the master key must be still undergoing initialization.
382  */
383 static int add_master_key_user(struct fscrypt_master_key *mk)
384 {
385 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
386 	struct key *mk_user;
387 	int err;
388 
389 	format_mk_user_description(description, mk->mk_spec.u.identifier);
390 	mk_user = key_alloc(&key_type_fscrypt_user, description,
391 			    current_fsuid(), current_gid(), current_cred(),
392 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
393 	if (IS_ERR(mk_user))
394 		return PTR_ERR(mk_user);
395 
396 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
397 	key_put(mk_user);
398 	return err;
399 }
400 
401 /*
402  * Remove the current user's "key" from ->mk_users.
403  * ->mk_sem must be held for write.
404  *
405  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
406  */
407 static int remove_master_key_user(struct fscrypt_master_key *mk)
408 {
409 	struct key *mk_user;
410 	int err;
411 
412 	mk_user = find_master_key_user(mk);
413 	if (IS_ERR(mk_user))
414 		return PTR_ERR(mk_user);
415 	err = key_unlink(mk->mk_users, mk_user);
416 	key_put(mk_user);
417 	return err;
418 }
419 
420 /*
421  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
422  * insert it into sb->s_master_keys.
423  */
424 static int add_new_master_key(struct super_block *sb,
425 			      struct fscrypt_master_key_secret *secret,
426 			      const struct fscrypt_key_specifier *mk_spec)
427 {
428 	struct fscrypt_keyring *keyring = sb->s_master_keys;
429 	struct fscrypt_master_key *mk;
430 	int err;
431 
432 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
433 	if (!mk)
434 		return -ENOMEM;
435 
436 	init_rwsem(&mk->mk_sem);
437 	refcount_set(&mk->mk_struct_refs, 1);
438 	mk->mk_spec = *mk_spec;
439 
440 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
441 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
442 
443 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
444 		err = allocate_master_key_users_keyring(mk);
445 		if (err)
446 			goto out_put;
447 		err = add_master_key_user(mk);
448 		if (err)
449 			goto out_put;
450 	}
451 
452 	move_master_key_secret(&mk->mk_secret, secret);
453 	mk->mk_present = true;
454 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_present is true */
455 
456 	spin_lock(&keyring->lock);
457 	hlist_add_head_rcu(&mk->mk_node,
458 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
459 	spin_unlock(&keyring->lock);
460 	return 0;
461 
462 out_put:
463 	fscrypt_put_master_key(mk);
464 	return err;
465 }
466 
467 #define KEY_DEAD	1
468 
469 static int add_existing_master_key(struct fscrypt_master_key *mk,
470 				   struct fscrypt_master_key_secret *secret)
471 {
472 	int err;
473 
474 	/*
475 	 * If the current user is already in ->mk_users, then there's nothing to
476 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
477 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
478 	 */
479 	if (mk->mk_users) {
480 		struct key *mk_user = find_master_key_user(mk);
481 
482 		if (mk_user != ERR_PTR(-ENOKEY)) {
483 			if (IS_ERR(mk_user))
484 				return PTR_ERR(mk_user);
485 			key_put(mk_user);
486 			return 0;
487 		}
488 		err = add_master_key_user(mk);
489 		if (err)
490 			return err;
491 	}
492 
493 	/* If the key is incompletely removed, make it present again. */
494 	if (!mk->mk_present) {
495 		if (!refcount_inc_not_zero(&mk->mk_active_refs)) {
496 			/*
497 			 * Raced with the last active ref being dropped, so the
498 			 * key has become, or is about to become, "absent".
499 			 * Therefore, we need to allocate a new key struct.
500 			 */
501 			return KEY_DEAD;
502 		}
503 		move_master_key_secret(&mk->mk_secret, secret);
504 		WRITE_ONCE(mk->mk_present, true);
505 	}
506 
507 	return 0;
508 }
509 
510 static int do_add_master_key(struct super_block *sb,
511 			     struct fscrypt_master_key_secret *secret,
512 			     const struct fscrypt_key_specifier *mk_spec)
513 {
514 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
515 	struct fscrypt_master_key *mk;
516 	int err;
517 
518 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
519 
520 	mk = fscrypt_find_master_key(sb, mk_spec);
521 	if (!mk) {
522 		/* Didn't find the key in ->s_master_keys.  Add it. */
523 		err = allocate_filesystem_keyring(sb);
524 		if (!err)
525 			err = add_new_master_key(sb, secret, mk_spec);
526 	} else {
527 		/*
528 		 * Found the key in ->s_master_keys.  Add the user to ->mk_users
529 		 * if needed, and make the key "present" again if possible.
530 		 */
531 		down_write(&mk->mk_sem);
532 		err = add_existing_master_key(mk, secret);
533 		up_write(&mk->mk_sem);
534 		if (err == KEY_DEAD) {
535 			/*
536 			 * We found a key struct, but it's already been fully
537 			 * removed.  Ignore the old struct and add a new one.
538 			 * fscrypt_add_key_mutex means we don't need to worry
539 			 * about concurrent adds.
540 			 */
541 			err = add_new_master_key(sb, secret, mk_spec);
542 		}
543 		fscrypt_put_master_key(mk);
544 	}
545 	mutex_unlock(&fscrypt_add_key_mutex);
546 	return err;
547 }
548 
549 static int add_master_key(struct super_block *sb,
550 			  struct fscrypt_master_key_secret *secret,
551 			  struct fscrypt_key_specifier *key_spec)
552 {
553 	int err;
554 
555 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
556 		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
557 					secret->size);
558 		if (err)
559 			return err;
560 
561 		/*
562 		 * Now that the HKDF context is initialized, the raw key is no
563 		 * longer needed.
564 		 */
565 		memzero_explicit(secret->raw, secret->size);
566 
567 		/* Calculate the key identifier */
568 		err = fscrypt_hkdf_expand(&secret->hkdf,
569 					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
570 					  key_spec->u.identifier,
571 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
572 		if (err)
573 			return err;
574 	}
575 	return do_add_master_key(sb, secret, key_spec);
576 }
577 
578 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
579 {
580 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
581 
582 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
583 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
584 		return -EINVAL;
585 
586 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
587 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
588 		return -EINVAL;
589 
590 	if (payload->__reserved)
591 		return -EINVAL;
592 
593 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
594 	if (!prep->payload.data[0])
595 		return -ENOMEM;
596 
597 	prep->quotalen = prep->datalen;
598 	return 0;
599 }
600 
601 static void fscrypt_provisioning_key_free_preparse(
602 					struct key_preparsed_payload *prep)
603 {
604 	kfree_sensitive(prep->payload.data[0]);
605 }
606 
607 static void fscrypt_provisioning_key_describe(const struct key *key,
608 					      struct seq_file *m)
609 {
610 	seq_puts(m, key->description);
611 	if (key_is_positive(key)) {
612 		const struct fscrypt_provisioning_key_payload *payload =
613 			key->payload.data[0];
614 
615 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
616 	}
617 }
618 
619 static void fscrypt_provisioning_key_destroy(struct key *key)
620 {
621 	kfree_sensitive(key->payload.data[0]);
622 }
623 
624 static struct key_type key_type_fscrypt_provisioning = {
625 	.name			= "fscrypt-provisioning",
626 	.preparse		= fscrypt_provisioning_key_preparse,
627 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
628 	.instantiate		= generic_key_instantiate,
629 	.describe		= fscrypt_provisioning_key_describe,
630 	.destroy		= fscrypt_provisioning_key_destroy,
631 };
632 
633 /*
634  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
635  * store it into 'secret'.
636  *
637  * The key must be of type "fscrypt-provisioning" and must have the field
638  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
639  * only usable with fscrypt with the particular KDF version identified by
640  * 'type'.  We don't use the "logon" key type because there's no way to
641  * completely restrict the use of such keys; they can be used by any kernel API
642  * that accepts "logon" keys and doesn't require a specific service prefix.
643  *
644  * The ability to specify the key via Linux keyring key is intended for cases
645  * where userspace needs to re-add keys after the filesystem is unmounted and
646  * re-mounted.  Most users should just provide the raw key directly instead.
647  */
648 static int get_keyring_key(u32 key_id, u32 type,
649 			   struct fscrypt_master_key_secret *secret)
650 {
651 	key_ref_t ref;
652 	struct key *key;
653 	const struct fscrypt_provisioning_key_payload *payload;
654 	int err;
655 
656 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
657 	if (IS_ERR(ref))
658 		return PTR_ERR(ref);
659 	key = key_ref_to_ptr(ref);
660 
661 	if (key->type != &key_type_fscrypt_provisioning)
662 		goto bad_key;
663 	payload = key->payload.data[0];
664 
665 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
666 	if (payload->type != type)
667 		goto bad_key;
668 
669 	secret->size = key->datalen - sizeof(*payload);
670 	memcpy(secret->raw, payload->raw, secret->size);
671 	err = 0;
672 	goto out_put;
673 
674 bad_key:
675 	err = -EKEYREJECTED;
676 out_put:
677 	key_ref_put(ref);
678 	return err;
679 }
680 
681 /*
682  * Add a master encryption key to the filesystem, causing all files which were
683  * encrypted with it to appear "unlocked" (decrypted) when accessed.
684  *
685  * When adding a key for use by v1 encryption policies, this ioctl is
686  * privileged, and userspace must provide the 'key_descriptor'.
687  *
688  * When adding a key for use by v2+ encryption policies, this ioctl is
689  * unprivileged.  This is needed, in general, to allow non-root users to use
690  * encryption without encountering the visibility problems of process-subscribed
691  * keyrings and the inability to properly remove keys.  This works by having
692  * each key identified by its cryptographically secure hash --- the
693  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
694  * cannot add the wrong key for a given identifier.  Furthermore, each added key
695  * is charged to the appropriate user's quota for the keyrings service, which
696  * prevents a malicious user from adding too many keys.  Finally, we forbid a
697  * user from removing a key while other users have added it too, which prevents
698  * a user who knows another user's key from causing a denial-of-service by
699  * removing it at an inopportune time.  (We tolerate that a user who knows a key
700  * can prevent other users from removing it.)
701  *
702  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
703  * Documentation/filesystems/fscrypt.rst.
704  */
705 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
706 {
707 	struct super_block *sb = file_inode(filp)->i_sb;
708 	struct fscrypt_add_key_arg __user *uarg = _uarg;
709 	struct fscrypt_add_key_arg arg;
710 	struct fscrypt_master_key_secret secret;
711 	int err;
712 
713 	if (copy_from_user(&arg, uarg, sizeof(arg)))
714 		return -EFAULT;
715 
716 	if (!valid_key_spec(&arg.key_spec))
717 		return -EINVAL;
718 
719 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
720 		return -EINVAL;
721 
722 	/*
723 	 * Only root can add keys that are identified by an arbitrary descriptor
724 	 * rather than by a cryptographic hash --- since otherwise a malicious
725 	 * user could add the wrong key.
726 	 */
727 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
728 	    !capable(CAP_SYS_ADMIN))
729 		return -EACCES;
730 
731 	memset(&secret, 0, sizeof(secret));
732 	if (arg.key_id) {
733 		if (arg.raw_size != 0)
734 			return -EINVAL;
735 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
736 		if (err)
737 			goto out_wipe_secret;
738 	} else {
739 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
740 		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
741 			return -EINVAL;
742 		secret.size = arg.raw_size;
743 		err = -EFAULT;
744 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
745 			goto out_wipe_secret;
746 	}
747 
748 	err = add_master_key(sb, &secret, &arg.key_spec);
749 	if (err)
750 		goto out_wipe_secret;
751 
752 	/* Return the key identifier to userspace, if applicable */
753 	err = -EFAULT;
754 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
755 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
756 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
757 		goto out_wipe_secret;
758 	err = 0;
759 out_wipe_secret:
760 	wipe_master_key_secret(&secret);
761 	return err;
762 }
763 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
764 
765 static void
766 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
767 {
768 	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
769 
770 	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
771 
772 	memset(secret, 0, sizeof(*secret));
773 	secret->size = FSCRYPT_MAX_KEY_SIZE;
774 	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
775 }
776 
777 int fscrypt_get_test_dummy_key_identifier(
778 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
779 {
780 	struct fscrypt_master_key_secret secret;
781 	int err;
782 
783 	fscrypt_get_test_dummy_secret(&secret);
784 
785 	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
786 	if (err)
787 		goto out;
788 	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
789 				  NULL, 0, key_identifier,
790 				  FSCRYPT_KEY_IDENTIFIER_SIZE);
791 out:
792 	wipe_master_key_secret(&secret);
793 	return err;
794 }
795 
796 /**
797  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
798  * @sb: the filesystem instance to add the key to
799  * @key_spec: the key specifier of the test dummy encryption key
800  *
801  * Add the key for the test_dummy_encryption mount option to the filesystem.  To
802  * prevent misuse of this mount option, a per-boot random key is used instead of
803  * a hardcoded one.  This makes it so that any encrypted files created using
804  * this option won't be accessible after a reboot.
805  *
806  * Return: 0 on success, -errno on failure
807  */
808 int fscrypt_add_test_dummy_key(struct super_block *sb,
809 			       struct fscrypt_key_specifier *key_spec)
810 {
811 	struct fscrypt_master_key_secret secret;
812 	int err;
813 
814 	fscrypt_get_test_dummy_secret(&secret);
815 	err = add_master_key(sb, &secret, key_spec);
816 	wipe_master_key_secret(&secret);
817 	return err;
818 }
819 
820 /*
821  * Verify that the current user has added a master key with the given identifier
822  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
823  * their files using some other user's key which they don't actually know.
824  * Cryptographically this isn't much of a problem, but the semantics of this
825  * would be a bit weird, so it's best to just forbid it.
826  *
827  * The system administrator (CAP_FOWNER) can override this, which should be
828  * enough for any use cases where encryption policies are being set using keys
829  * that were chosen ahead of time but aren't available at the moment.
830  *
831  * Note that the key may have already removed by the time this returns, but
832  * that's okay; we just care whether the key was there at some point.
833  *
834  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
835  */
836 int fscrypt_verify_key_added(struct super_block *sb,
837 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
838 {
839 	struct fscrypt_key_specifier mk_spec;
840 	struct fscrypt_master_key *mk;
841 	struct key *mk_user;
842 	int err;
843 
844 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
845 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
846 
847 	mk = fscrypt_find_master_key(sb, &mk_spec);
848 	if (!mk) {
849 		err = -ENOKEY;
850 		goto out;
851 	}
852 	down_read(&mk->mk_sem);
853 	mk_user = find_master_key_user(mk);
854 	if (IS_ERR(mk_user)) {
855 		err = PTR_ERR(mk_user);
856 	} else {
857 		key_put(mk_user);
858 		err = 0;
859 	}
860 	up_read(&mk->mk_sem);
861 	fscrypt_put_master_key(mk);
862 out:
863 	if (err == -ENOKEY && capable(CAP_FOWNER))
864 		err = 0;
865 	return err;
866 }
867 
868 /*
869  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
870  * directory, then it can have at most one dentry; however, that dentry may be
871  * pinned by child dentries, so first try to evict the children too.
872  */
873 static void shrink_dcache_inode(struct inode *inode)
874 {
875 	struct dentry *dentry;
876 
877 	if (S_ISDIR(inode->i_mode)) {
878 		dentry = d_find_any_alias(inode);
879 		if (dentry) {
880 			shrink_dcache_parent(dentry);
881 			dput(dentry);
882 		}
883 	}
884 	d_prune_aliases(inode);
885 }
886 
887 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
888 {
889 	struct fscrypt_inode_info *ci;
890 	struct inode *inode;
891 	struct inode *toput_inode = NULL;
892 
893 	spin_lock(&mk->mk_decrypted_inodes_lock);
894 
895 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
896 		inode = ci->ci_inode;
897 		spin_lock(&inode->i_lock);
898 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
899 			spin_unlock(&inode->i_lock);
900 			continue;
901 		}
902 		__iget(inode);
903 		spin_unlock(&inode->i_lock);
904 		spin_unlock(&mk->mk_decrypted_inodes_lock);
905 
906 		shrink_dcache_inode(inode);
907 		iput(toput_inode);
908 		toput_inode = inode;
909 
910 		spin_lock(&mk->mk_decrypted_inodes_lock);
911 	}
912 
913 	spin_unlock(&mk->mk_decrypted_inodes_lock);
914 	iput(toput_inode);
915 }
916 
917 static int check_for_busy_inodes(struct super_block *sb,
918 				 struct fscrypt_master_key *mk)
919 {
920 	struct list_head *pos;
921 	size_t busy_count = 0;
922 	unsigned long ino;
923 	char ino_str[50] = "";
924 
925 	spin_lock(&mk->mk_decrypted_inodes_lock);
926 
927 	list_for_each(pos, &mk->mk_decrypted_inodes)
928 		busy_count++;
929 
930 	if (busy_count == 0) {
931 		spin_unlock(&mk->mk_decrypted_inodes_lock);
932 		return 0;
933 	}
934 
935 	{
936 		/* select an example file to show for debugging purposes */
937 		struct inode *inode =
938 			list_first_entry(&mk->mk_decrypted_inodes,
939 					 struct fscrypt_inode_info,
940 					 ci_master_key_link)->ci_inode;
941 		ino = inode->i_ino;
942 	}
943 	spin_unlock(&mk->mk_decrypted_inodes_lock);
944 
945 	/* If the inode is currently being created, ino may still be 0. */
946 	if (ino)
947 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
948 
949 	fscrypt_warn(NULL,
950 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
951 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
952 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
953 		     ino_str);
954 	return -EBUSY;
955 }
956 
957 static int try_to_lock_encrypted_files(struct super_block *sb,
958 				       struct fscrypt_master_key *mk)
959 {
960 	int err1;
961 	int err2;
962 
963 	/*
964 	 * An inode can't be evicted while it is dirty or has dirty pages.
965 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
966 	 *
967 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
968 	 * it works, and it's more important to minimize the amount of caches we
969 	 * drop than the amount of data we sync.  Also, unprivileged users can
970 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
971 	 */
972 	down_read(&sb->s_umount);
973 	err1 = sync_filesystem(sb);
974 	up_read(&sb->s_umount);
975 	/* If a sync error occurs, still try to evict as much as possible. */
976 
977 	/*
978 	 * Inodes are pinned by their dentries, so we have to evict their
979 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
980 	 * and inappropriate for use by unprivileged users.  So instead go
981 	 * through the inodes' alias lists and try to evict each dentry.
982 	 */
983 	evict_dentries_for_decrypted_inodes(mk);
984 
985 	/*
986 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
987 	 * the list; any inodes for which that dropped the last reference will
988 	 * have been evicted due to fscrypt_drop_inode() detecting the key
989 	 * removal and telling the VFS to evict the inode.  So to finish, we
990 	 * just need to check whether any inodes couldn't be evicted.
991 	 */
992 	err2 = check_for_busy_inodes(sb, mk);
993 
994 	return err1 ?: err2;
995 }
996 
997 /*
998  * Try to remove an fscrypt master encryption key.
999  *
1000  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
1001  * claim to the key, then removes the key itself if no other users have claims.
1002  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
1003  * key itself.
1004  *
1005  * To "remove the key itself", first we wipe the actual master key secret, so
1006  * that no more inodes can be unlocked with it.  Then we try to evict all cached
1007  * inodes that had been unlocked with the key.
1008  *
1009  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
1010  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
1011  * state where it tracks the list of remaining inodes.  Userspace can execute
1012  * the ioctl again later to retry eviction, or alternatively can re-add the key.
1013  *
1014  * For more details, see the "Removing keys" section of
1015  * Documentation/filesystems/fscrypt.rst.
1016  */
1017 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1018 {
1019 	struct super_block *sb = file_inode(filp)->i_sb;
1020 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1021 	struct fscrypt_remove_key_arg arg;
1022 	struct fscrypt_master_key *mk;
1023 	u32 status_flags = 0;
1024 	int err;
1025 	bool inodes_remain;
1026 
1027 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1028 		return -EFAULT;
1029 
1030 	if (!valid_key_spec(&arg.key_spec))
1031 		return -EINVAL;
1032 
1033 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1034 		return -EINVAL;
1035 
1036 	/*
1037 	 * Only root can add and remove keys that are identified by an arbitrary
1038 	 * descriptor rather than by a cryptographic hash.
1039 	 */
1040 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1041 	    !capable(CAP_SYS_ADMIN))
1042 		return -EACCES;
1043 
1044 	/* Find the key being removed. */
1045 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1046 	if (!mk)
1047 		return -ENOKEY;
1048 	down_write(&mk->mk_sem);
1049 
1050 	/* If relevant, remove current user's (or all users) claim to the key */
1051 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1052 		if (all_users)
1053 			err = keyring_clear(mk->mk_users);
1054 		else
1055 			err = remove_master_key_user(mk);
1056 		if (err) {
1057 			up_write(&mk->mk_sem);
1058 			goto out_put_key;
1059 		}
1060 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1061 			/*
1062 			 * Other users have still added the key too.  We removed
1063 			 * the current user's claim to the key, but we still
1064 			 * can't remove the key itself.
1065 			 */
1066 			status_flags |=
1067 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1068 			err = 0;
1069 			up_write(&mk->mk_sem);
1070 			goto out_put_key;
1071 		}
1072 	}
1073 
1074 	/* No user claims remaining.  Initiate removal of the key. */
1075 	err = -ENOKEY;
1076 	if (mk->mk_present) {
1077 		fscrypt_initiate_key_removal(sb, mk);
1078 		err = 0;
1079 	}
1080 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1081 	up_write(&mk->mk_sem);
1082 
1083 	if (inodes_remain) {
1084 		/* Some inodes still reference this key; try to evict them. */
1085 		err = try_to_lock_encrypted_files(sb, mk);
1086 		if (err == -EBUSY) {
1087 			status_flags |=
1088 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1089 			err = 0;
1090 		}
1091 	}
1092 	/*
1093 	 * We return 0 if we successfully did something: removed a claim to the
1094 	 * key, initiated removal of the key, or tried locking the files again.
1095 	 * Users need to check the informational status flags if they care
1096 	 * whether the key has been fully removed including all files locked.
1097 	 */
1098 out_put_key:
1099 	fscrypt_put_master_key(mk);
1100 	if (err == 0)
1101 		err = put_user(status_flags, &uarg->removal_status_flags);
1102 	return err;
1103 }
1104 
1105 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1106 {
1107 	return do_remove_key(filp, uarg, false);
1108 }
1109 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1110 
1111 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1112 {
1113 	if (!capable(CAP_SYS_ADMIN))
1114 		return -EACCES;
1115 	return do_remove_key(filp, uarg, true);
1116 }
1117 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1118 
1119 /*
1120  * Retrieve the status of an fscrypt master encryption key.
1121  *
1122  * We set ->status to indicate whether the key is absent, present, or
1123  * incompletely removed.  (For an explanation of what these statuses mean and
1124  * how they are represented internally, see struct fscrypt_master_key.)  This
1125  * field allows applications to easily determine the status of an encrypted
1126  * directory without using a hack such as trying to open a regular file in it
1127  * (which can confuse the "incompletely removed" status with absent or present).
1128  *
1129  * In addition, for v2 policy keys we allow applications to determine, via
1130  * ->status_flags and ->user_count, whether the key has been added by the
1131  * current user, by other users, or by both.  Most applications should not need
1132  * this, since ordinarily only one user should know a given key.  However, if a
1133  * secret key is shared by multiple users, applications may wish to add an
1134  * already-present key to prevent other users from removing it.  This ioctl can
1135  * be used to check whether that really is the case before the work is done to
1136  * add the key --- which might e.g. require prompting the user for a passphrase.
1137  *
1138  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1139  * Documentation/filesystems/fscrypt.rst.
1140  */
1141 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1142 {
1143 	struct super_block *sb = file_inode(filp)->i_sb;
1144 	struct fscrypt_get_key_status_arg arg;
1145 	struct fscrypt_master_key *mk;
1146 	int err;
1147 
1148 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1149 		return -EFAULT;
1150 
1151 	if (!valid_key_spec(&arg.key_spec))
1152 		return -EINVAL;
1153 
1154 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1155 		return -EINVAL;
1156 
1157 	arg.status_flags = 0;
1158 	arg.user_count = 0;
1159 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1160 
1161 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1162 	if (!mk) {
1163 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1164 		err = 0;
1165 		goto out;
1166 	}
1167 	down_read(&mk->mk_sem);
1168 
1169 	if (!mk->mk_present) {
1170 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1171 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1172 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1173 		err = 0;
1174 		goto out_release_key;
1175 	}
1176 
1177 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1178 	if (mk->mk_users) {
1179 		struct key *mk_user;
1180 
1181 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1182 		mk_user = find_master_key_user(mk);
1183 		if (!IS_ERR(mk_user)) {
1184 			arg.status_flags |=
1185 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1186 			key_put(mk_user);
1187 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1188 			err = PTR_ERR(mk_user);
1189 			goto out_release_key;
1190 		}
1191 	}
1192 	err = 0;
1193 out_release_key:
1194 	up_read(&mk->mk_sem);
1195 	fscrypt_put_master_key(mk);
1196 out:
1197 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1198 		err = -EFAULT;
1199 	return err;
1200 }
1201 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1202 
1203 int __init fscrypt_init_keyring(void)
1204 {
1205 	int err;
1206 
1207 	err = register_key_type(&key_type_fscrypt_user);
1208 	if (err)
1209 		return err;
1210 
1211 	err = register_key_type(&key_type_fscrypt_provisioning);
1212 	if (err)
1213 		goto err_unregister_fscrypt_user;
1214 
1215 	return 0;
1216 
1217 err_unregister_fscrypt_user:
1218 	unregister_key_type(&key_type_fscrypt_user);
1219 	return err;
1220 }
1221