xref: /linux/fs/crypto/keyring.c (revision 47b60ec7ba22a6359379bce9643bfff7a1ffe9ed)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Filesystem-level keyring for fscrypt
4  *
5  * Copyright 2019 Google LLC
6  */
7 
8 /*
9  * This file implements management of fscrypt master keys in the
10  * filesystem-level keyring, including the ioctls:
11  *
12  * - FS_IOC_ADD_ENCRYPTION_KEY
13  * - FS_IOC_REMOVE_ENCRYPTION_KEY
14  * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
15  * - FS_IOC_GET_ENCRYPTION_KEY_STATUS
16  *
17  * See the "User API" section of Documentation/filesystems/fscrypt.rst for more
18  * information about these ioctls.
19  */
20 
21 #include <asm/unaligned.h>
22 #include <crypto/skcipher.h>
23 #include <linux/key-type.h>
24 #include <linux/random.h>
25 #include <linux/seq_file.h>
26 
27 #include "fscrypt_private.h"
28 
29 /* The master encryption keys for a filesystem (->s_master_keys) */
30 struct fscrypt_keyring {
31 	/*
32 	 * Lock that protects ->key_hashtable.  It does *not* protect the
33 	 * fscrypt_master_key structs themselves.
34 	 */
35 	spinlock_t lock;
36 
37 	/* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */
38 	struct hlist_head key_hashtable[128];
39 };
40 
41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret)
42 {
43 	fscrypt_destroy_hkdf(&secret->hkdf);
44 	memzero_explicit(secret, sizeof(*secret));
45 }
46 
47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst,
48 				   struct fscrypt_master_key_secret *src)
49 {
50 	memcpy(dst, src, sizeof(*dst));
51 	memzero_explicit(src, sizeof(*src));
52 }
53 
54 static void fscrypt_free_master_key(struct rcu_head *head)
55 {
56 	struct fscrypt_master_key *mk =
57 		container_of(head, struct fscrypt_master_key, mk_rcu_head);
58 	/*
59 	 * The master key secret and any embedded subkeys should have already
60 	 * been wiped when the last active reference to the fscrypt_master_key
61 	 * struct was dropped; doing it here would be unnecessarily late.
62 	 * Nevertheless, use kfree_sensitive() in case anything was missed.
63 	 */
64 	kfree_sensitive(mk);
65 }
66 
67 void fscrypt_put_master_key(struct fscrypt_master_key *mk)
68 {
69 	if (!refcount_dec_and_test(&mk->mk_struct_refs))
70 		return;
71 	/*
72 	 * No structural references left, so free ->mk_users, and also free the
73 	 * fscrypt_master_key struct itself after an RCU grace period ensures
74 	 * that concurrent keyring lookups can no longer find it.
75 	 */
76 	WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 0);
77 	key_put(mk->mk_users);
78 	mk->mk_users = NULL;
79 	call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key);
80 }
81 
82 void fscrypt_put_master_key_activeref(struct super_block *sb,
83 				      struct fscrypt_master_key *mk)
84 {
85 	size_t i;
86 
87 	if (!refcount_dec_and_test(&mk->mk_active_refs))
88 		return;
89 	/*
90 	 * No active references left, so complete the full removal of this
91 	 * fscrypt_master_key struct by removing it from the keyring and
92 	 * destroying any subkeys embedded in it.
93 	 */
94 
95 	if (WARN_ON_ONCE(!sb->s_master_keys))
96 		return;
97 	spin_lock(&sb->s_master_keys->lock);
98 	hlist_del_rcu(&mk->mk_node);
99 	spin_unlock(&sb->s_master_keys->lock);
100 
101 	/*
102 	 * ->mk_active_refs == 0 implies that ->mk_secret is not present and
103 	 * that ->mk_decrypted_inodes is empty.
104 	 */
105 	WARN_ON_ONCE(is_master_key_secret_present(&mk->mk_secret));
106 	WARN_ON_ONCE(!list_empty(&mk->mk_decrypted_inodes));
107 
108 	for (i = 0; i <= FSCRYPT_MODE_MAX; i++) {
109 		fscrypt_destroy_prepared_key(
110 				sb, &mk->mk_direct_keys[i]);
111 		fscrypt_destroy_prepared_key(
112 				sb, &mk->mk_iv_ino_lblk_64_keys[i]);
113 		fscrypt_destroy_prepared_key(
114 				sb, &mk->mk_iv_ino_lblk_32_keys[i]);
115 	}
116 	memzero_explicit(&mk->mk_ino_hash_key,
117 			 sizeof(mk->mk_ino_hash_key));
118 	mk->mk_ino_hash_key_initialized = false;
119 
120 	/* Drop the structural ref associated with the active refs. */
121 	fscrypt_put_master_key(mk);
122 }
123 
124 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec)
125 {
126 	if (spec->__reserved)
127 		return false;
128 	return master_key_spec_len(spec) != 0;
129 }
130 
131 static int fscrypt_user_key_instantiate(struct key *key,
132 					struct key_preparsed_payload *prep)
133 {
134 	/*
135 	 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for
136 	 * each key, regardless of the exact key size.  The amount of memory
137 	 * actually used is greater than the size of the raw key anyway.
138 	 */
139 	return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE);
140 }
141 
142 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m)
143 {
144 	seq_puts(m, key->description);
145 }
146 
147 /*
148  * Type of key in ->mk_users.  Each key of this type represents a particular
149  * user who has added a particular master key.
150  *
151  * Note that the name of this key type really should be something like
152  * ".fscrypt-user" instead of simply ".fscrypt".  But the shorter name is chosen
153  * mainly for simplicity of presentation in /proc/keys when read by a non-root
154  * user.  And it is expected to be rare that a key is actually added by multiple
155  * users, since users should keep their encryption keys confidential.
156  */
157 static struct key_type key_type_fscrypt_user = {
158 	.name			= ".fscrypt",
159 	.instantiate		= fscrypt_user_key_instantiate,
160 	.describe		= fscrypt_user_key_describe,
161 };
162 
163 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE	\
164 	(CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \
165 	 CONST_STRLEN("-users") + 1)
166 
167 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE	\
168 	(2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1)
169 
170 static void format_mk_users_keyring_description(
171 			char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE],
172 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
173 {
174 	sprintf(description, "fscrypt-%*phN-users",
175 		FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier);
176 }
177 
178 static void format_mk_user_description(
179 			char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE],
180 			const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
181 {
182 
183 	sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE,
184 		mk_identifier, __kuid_val(current_fsuid()));
185 }
186 
187 /* Create ->s_master_keys if needed.  Synchronized by fscrypt_add_key_mutex. */
188 static int allocate_filesystem_keyring(struct super_block *sb)
189 {
190 	struct fscrypt_keyring *keyring;
191 
192 	if (sb->s_master_keys)
193 		return 0;
194 
195 	keyring = kzalloc(sizeof(*keyring), GFP_KERNEL);
196 	if (!keyring)
197 		return -ENOMEM;
198 	spin_lock_init(&keyring->lock);
199 	/*
200 	 * Pairs with the smp_load_acquire() in fscrypt_find_master_key().
201 	 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that
202 	 * concurrent tasks can ACQUIRE it.
203 	 */
204 	smp_store_release(&sb->s_master_keys, keyring);
205 	return 0;
206 }
207 
208 /*
209  * Release all encryption keys that have been added to the filesystem, along
210  * with the keyring that contains them.
211  *
212  * This is called at unmount time, after all potentially-encrypted inodes have
213  * been evicted.  The filesystem's underlying block device(s) are still
214  * available at this time; this is important because after user file accesses
215  * have been allowed, this function may need to evict keys from the keyslots of
216  * an inline crypto engine, which requires the block device(s).
217  */
218 void fscrypt_destroy_keyring(struct super_block *sb)
219 {
220 	struct fscrypt_keyring *keyring = sb->s_master_keys;
221 	size_t i;
222 
223 	if (!keyring)
224 		return;
225 
226 	for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) {
227 		struct hlist_head *bucket = &keyring->key_hashtable[i];
228 		struct fscrypt_master_key *mk;
229 		struct hlist_node *tmp;
230 
231 		hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) {
232 			/*
233 			 * Since all potentially-encrypted inodes were already
234 			 * evicted, every key remaining in the keyring should
235 			 * have an empty inode list, and should only still be in
236 			 * the keyring due to the single active ref associated
237 			 * with ->mk_secret.  There should be no structural refs
238 			 * beyond the one associated with the active ref.
239 			 */
240 			WARN_ON_ONCE(refcount_read(&mk->mk_active_refs) != 1);
241 			WARN_ON_ONCE(refcount_read(&mk->mk_struct_refs) != 1);
242 			WARN_ON_ONCE(!is_master_key_secret_present(&mk->mk_secret));
243 			wipe_master_key_secret(&mk->mk_secret);
244 			fscrypt_put_master_key_activeref(sb, mk);
245 		}
246 	}
247 	kfree_sensitive(keyring);
248 	sb->s_master_keys = NULL;
249 }
250 
251 static struct hlist_head *
252 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring,
253 		       const struct fscrypt_key_specifier *mk_spec)
254 {
255 	/*
256 	 * Since key specifiers should be "random" values, it is sufficient to
257 	 * use a trivial hash function that just takes the first several bits of
258 	 * the key specifier.
259 	 */
260 	unsigned long i = get_unaligned((unsigned long *)&mk_spec->u);
261 
262 	return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)];
263 }
264 
265 /*
266  * Find the specified master key struct in ->s_master_keys and take a structural
267  * ref to it.  The structural ref guarantees that the key struct continues to
268  * exist, but it does *not* guarantee that ->s_master_keys continues to contain
269  * the key struct.  The structural ref needs to be dropped by
270  * fscrypt_put_master_key().  Returns NULL if the key struct is not found.
271  */
272 struct fscrypt_master_key *
273 fscrypt_find_master_key(struct super_block *sb,
274 			const struct fscrypt_key_specifier *mk_spec)
275 {
276 	struct fscrypt_keyring *keyring;
277 	struct hlist_head *bucket;
278 	struct fscrypt_master_key *mk;
279 
280 	/*
281 	 * Pairs with the smp_store_release() in allocate_filesystem_keyring().
282 	 * I.e., another task can publish ->s_master_keys concurrently,
283 	 * executing a RELEASE barrier.  We need to use smp_load_acquire() here
284 	 * to safely ACQUIRE the memory the other task published.
285 	 */
286 	keyring = smp_load_acquire(&sb->s_master_keys);
287 	if (keyring == NULL)
288 		return NULL; /* No keyring yet, so no keys yet. */
289 
290 	bucket = fscrypt_mk_hash_bucket(keyring, mk_spec);
291 	rcu_read_lock();
292 	switch (mk_spec->type) {
293 	case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR:
294 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
295 			if (mk->mk_spec.type ==
296 				FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
297 			    memcmp(mk->mk_spec.u.descriptor,
298 				   mk_spec->u.descriptor,
299 				   FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 &&
300 			    refcount_inc_not_zero(&mk->mk_struct_refs))
301 				goto out;
302 		}
303 		break;
304 	case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER:
305 		hlist_for_each_entry_rcu(mk, bucket, mk_node) {
306 			if (mk->mk_spec.type ==
307 				FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
308 			    memcmp(mk->mk_spec.u.identifier,
309 				   mk_spec->u.identifier,
310 				   FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 &&
311 			    refcount_inc_not_zero(&mk->mk_struct_refs))
312 				goto out;
313 		}
314 		break;
315 	}
316 	mk = NULL;
317 out:
318 	rcu_read_unlock();
319 	return mk;
320 }
321 
322 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk)
323 {
324 	char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE];
325 	struct key *keyring;
326 
327 	format_mk_users_keyring_description(description,
328 					    mk->mk_spec.u.identifier);
329 	keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
330 				current_cred(), KEY_POS_SEARCH |
331 				  KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW,
332 				KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
333 	if (IS_ERR(keyring))
334 		return PTR_ERR(keyring);
335 
336 	mk->mk_users = keyring;
337 	return 0;
338 }
339 
340 /*
341  * Find the current user's "key" in the master key's ->mk_users.
342  * Returns ERR_PTR(-ENOKEY) if not found.
343  */
344 static struct key *find_master_key_user(struct fscrypt_master_key *mk)
345 {
346 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
347 	key_ref_t keyref;
348 
349 	format_mk_user_description(description, mk->mk_spec.u.identifier);
350 
351 	/*
352 	 * We need to mark the keyring reference as "possessed" so that we
353 	 * acquire permission to search it, via the KEY_POS_SEARCH permission.
354 	 */
355 	keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/),
356 				&key_type_fscrypt_user, description, false);
357 	if (IS_ERR(keyref)) {
358 		if (PTR_ERR(keyref) == -EAGAIN || /* not found */
359 		    PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */
360 			keyref = ERR_PTR(-ENOKEY);
361 		return ERR_CAST(keyref);
362 	}
363 	return key_ref_to_ptr(keyref);
364 }
365 
366 /*
367  * Give the current user a "key" in ->mk_users.  This charges the user's quota
368  * and marks the master key as added by the current user, so that it cannot be
369  * removed by another user with the key.  Either ->mk_sem must be held for
370  * write, or the master key must be still undergoing initialization.
371  */
372 static int add_master_key_user(struct fscrypt_master_key *mk)
373 {
374 	char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE];
375 	struct key *mk_user;
376 	int err;
377 
378 	format_mk_user_description(description, mk->mk_spec.u.identifier);
379 	mk_user = key_alloc(&key_type_fscrypt_user, description,
380 			    current_fsuid(), current_gid(), current_cred(),
381 			    KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL);
382 	if (IS_ERR(mk_user))
383 		return PTR_ERR(mk_user);
384 
385 	err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL);
386 	key_put(mk_user);
387 	return err;
388 }
389 
390 /*
391  * Remove the current user's "key" from ->mk_users.
392  * ->mk_sem must be held for write.
393  *
394  * Returns 0 if removed, -ENOKEY if not found, or another -errno code.
395  */
396 static int remove_master_key_user(struct fscrypt_master_key *mk)
397 {
398 	struct key *mk_user;
399 	int err;
400 
401 	mk_user = find_master_key_user(mk);
402 	if (IS_ERR(mk_user))
403 		return PTR_ERR(mk_user);
404 	err = key_unlink(mk->mk_users, mk_user);
405 	key_put(mk_user);
406 	return err;
407 }
408 
409 /*
410  * Allocate a new fscrypt_master_key, transfer the given secret over to it, and
411  * insert it into sb->s_master_keys.
412  */
413 static int add_new_master_key(struct super_block *sb,
414 			      struct fscrypt_master_key_secret *secret,
415 			      const struct fscrypt_key_specifier *mk_spec)
416 {
417 	struct fscrypt_keyring *keyring = sb->s_master_keys;
418 	struct fscrypt_master_key *mk;
419 	int err;
420 
421 	mk = kzalloc(sizeof(*mk), GFP_KERNEL);
422 	if (!mk)
423 		return -ENOMEM;
424 
425 	init_rwsem(&mk->mk_sem);
426 	refcount_set(&mk->mk_struct_refs, 1);
427 	mk->mk_spec = *mk_spec;
428 
429 	INIT_LIST_HEAD(&mk->mk_decrypted_inodes);
430 	spin_lock_init(&mk->mk_decrypted_inodes_lock);
431 
432 	if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
433 		err = allocate_master_key_users_keyring(mk);
434 		if (err)
435 			goto out_put;
436 		err = add_master_key_user(mk);
437 		if (err)
438 			goto out_put;
439 	}
440 
441 	move_master_key_secret(&mk->mk_secret, secret);
442 	refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */
443 
444 	spin_lock(&keyring->lock);
445 	hlist_add_head_rcu(&mk->mk_node,
446 			   fscrypt_mk_hash_bucket(keyring, mk_spec));
447 	spin_unlock(&keyring->lock);
448 	return 0;
449 
450 out_put:
451 	fscrypt_put_master_key(mk);
452 	return err;
453 }
454 
455 #define KEY_DEAD	1
456 
457 static int add_existing_master_key(struct fscrypt_master_key *mk,
458 				   struct fscrypt_master_key_secret *secret)
459 {
460 	int err;
461 
462 	/*
463 	 * If the current user is already in ->mk_users, then there's nothing to
464 	 * do.  Otherwise, we need to add the user to ->mk_users.  (Neither is
465 	 * applicable for v1 policy keys, which have NULL ->mk_users.)
466 	 */
467 	if (mk->mk_users) {
468 		struct key *mk_user = find_master_key_user(mk);
469 
470 		if (mk_user != ERR_PTR(-ENOKEY)) {
471 			if (IS_ERR(mk_user))
472 				return PTR_ERR(mk_user);
473 			key_put(mk_user);
474 			return 0;
475 		}
476 		err = add_master_key_user(mk);
477 		if (err)
478 			return err;
479 	}
480 
481 	/* Re-add the secret if needed. */
482 	if (!is_master_key_secret_present(&mk->mk_secret)) {
483 		if (!refcount_inc_not_zero(&mk->mk_active_refs))
484 			return KEY_DEAD;
485 		move_master_key_secret(&mk->mk_secret, secret);
486 	}
487 
488 	return 0;
489 }
490 
491 static int do_add_master_key(struct super_block *sb,
492 			     struct fscrypt_master_key_secret *secret,
493 			     const struct fscrypt_key_specifier *mk_spec)
494 {
495 	static DEFINE_MUTEX(fscrypt_add_key_mutex);
496 	struct fscrypt_master_key *mk;
497 	int err;
498 
499 	mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */
500 
501 	mk = fscrypt_find_master_key(sb, mk_spec);
502 	if (!mk) {
503 		/* Didn't find the key in ->s_master_keys.  Add it. */
504 		err = allocate_filesystem_keyring(sb);
505 		if (!err)
506 			err = add_new_master_key(sb, secret, mk_spec);
507 	} else {
508 		/*
509 		 * Found the key in ->s_master_keys.  Re-add the secret if
510 		 * needed, and add the user to ->mk_users if needed.
511 		 */
512 		down_write(&mk->mk_sem);
513 		err = add_existing_master_key(mk, secret);
514 		up_write(&mk->mk_sem);
515 		if (err == KEY_DEAD) {
516 			/*
517 			 * We found a key struct, but it's already been fully
518 			 * removed.  Ignore the old struct and add a new one.
519 			 * fscrypt_add_key_mutex means we don't need to worry
520 			 * about concurrent adds.
521 			 */
522 			err = add_new_master_key(sb, secret, mk_spec);
523 		}
524 		fscrypt_put_master_key(mk);
525 	}
526 	mutex_unlock(&fscrypt_add_key_mutex);
527 	return err;
528 }
529 
530 static int add_master_key(struct super_block *sb,
531 			  struct fscrypt_master_key_secret *secret,
532 			  struct fscrypt_key_specifier *key_spec)
533 {
534 	int err;
535 
536 	if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) {
537 		err = fscrypt_init_hkdf(&secret->hkdf, secret->raw,
538 					secret->size);
539 		if (err)
540 			return err;
541 
542 		/*
543 		 * Now that the HKDF context is initialized, the raw key is no
544 		 * longer needed.
545 		 */
546 		memzero_explicit(secret->raw, secret->size);
547 
548 		/* Calculate the key identifier */
549 		err = fscrypt_hkdf_expand(&secret->hkdf,
550 					  HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0,
551 					  key_spec->u.identifier,
552 					  FSCRYPT_KEY_IDENTIFIER_SIZE);
553 		if (err)
554 			return err;
555 	}
556 	return do_add_master_key(sb, secret, key_spec);
557 }
558 
559 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep)
560 {
561 	const struct fscrypt_provisioning_key_payload *payload = prep->data;
562 
563 	if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE ||
564 	    prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE)
565 		return -EINVAL;
566 
567 	if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
568 	    payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER)
569 		return -EINVAL;
570 
571 	if (payload->__reserved)
572 		return -EINVAL;
573 
574 	prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL);
575 	if (!prep->payload.data[0])
576 		return -ENOMEM;
577 
578 	prep->quotalen = prep->datalen;
579 	return 0;
580 }
581 
582 static void fscrypt_provisioning_key_free_preparse(
583 					struct key_preparsed_payload *prep)
584 {
585 	kfree_sensitive(prep->payload.data[0]);
586 }
587 
588 static void fscrypt_provisioning_key_describe(const struct key *key,
589 					      struct seq_file *m)
590 {
591 	seq_puts(m, key->description);
592 	if (key_is_positive(key)) {
593 		const struct fscrypt_provisioning_key_payload *payload =
594 			key->payload.data[0];
595 
596 		seq_printf(m, ": %u [%u]", key->datalen, payload->type);
597 	}
598 }
599 
600 static void fscrypt_provisioning_key_destroy(struct key *key)
601 {
602 	kfree_sensitive(key->payload.data[0]);
603 }
604 
605 static struct key_type key_type_fscrypt_provisioning = {
606 	.name			= "fscrypt-provisioning",
607 	.preparse		= fscrypt_provisioning_key_preparse,
608 	.free_preparse		= fscrypt_provisioning_key_free_preparse,
609 	.instantiate		= generic_key_instantiate,
610 	.describe		= fscrypt_provisioning_key_describe,
611 	.destroy		= fscrypt_provisioning_key_destroy,
612 };
613 
614 /*
615  * Retrieve the raw key from the Linux keyring key specified by 'key_id', and
616  * store it into 'secret'.
617  *
618  * The key must be of type "fscrypt-provisioning" and must have the field
619  * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's
620  * only usable with fscrypt with the particular KDF version identified by
621  * 'type'.  We don't use the "logon" key type because there's no way to
622  * completely restrict the use of such keys; they can be used by any kernel API
623  * that accepts "logon" keys and doesn't require a specific service prefix.
624  *
625  * The ability to specify the key via Linux keyring key is intended for cases
626  * where userspace needs to re-add keys after the filesystem is unmounted and
627  * re-mounted.  Most users should just provide the raw key directly instead.
628  */
629 static int get_keyring_key(u32 key_id, u32 type,
630 			   struct fscrypt_master_key_secret *secret)
631 {
632 	key_ref_t ref;
633 	struct key *key;
634 	const struct fscrypt_provisioning_key_payload *payload;
635 	int err;
636 
637 	ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH);
638 	if (IS_ERR(ref))
639 		return PTR_ERR(ref);
640 	key = key_ref_to_ptr(ref);
641 
642 	if (key->type != &key_type_fscrypt_provisioning)
643 		goto bad_key;
644 	payload = key->payload.data[0];
645 
646 	/* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */
647 	if (payload->type != type)
648 		goto bad_key;
649 
650 	secret->size = key->datalen - sizeof(*payload);
651 	memcpy(secret->raw, payload->raw, secret->size);
652 	err = 0;
653 	goto out_put;
654 
655 bad_key:
656 	err = -EKEYREJECTED;
657 out_put:
658 	key_ref_put(ref);
659 	return err;
660 }
661 
662 /*
663  * Add a master encryption key to the filesystem, causing all files which were
664  * encrypted with it to appear "unlocked" (decrypted) when accessed.
665  *
666  * When adding a key for use by v1 encryption policies, this ioctl is
667  * privileged, and userspace must provide the 'key_descriptor'.
668  *
669  * When adding a key for use by v2+ encryption policies, this ioctl is
670  * unprivileged.  This is needed, in general, to allow non-root users to use
671  * encryption without encountering the visibility problems of process-subscribed
672  * keyrings and the inability to properly remove keys.  This works by having
673  * each key identified by its cryptographically secure hash --- the
674  * 'key_identifier'.  The cryptographic hash ensures that a malicious user
675  * cannot add the wrong key for a given identifier.  Furthermore, each added key
676  * is charged to the appropriate user's quota for the keyrings service, which
677  * prevents a malicious user from adding too many keys.  Finally, we forbid a
678  * user from removing a key while other users have added it too, which prevents
679  * a user who knows another user's key from causing a denial-of-service by
680  * removing it at an inopportune time.  (We tolerate that a user who knows a key
681  * can prevent other users from removing it.)
682  *
683  * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of
684  * Documentation/filesystems/fscrypt.rst.
685  */
686 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg)
687 {
688 	struct super_block *sb = file_inode(filp)->i_sb;
689 	struct fscrypt_add_key_arg __user *uarg = _uarg;
690 	struct fscrypt_add_key_arg arg;
691 	struct fscrypt_master_key_secret secret;
692 	int err;
693 
694 	if (copy_from_user(&arg, uarg, sizeof(arg)))
695 		return -EFAULT;
696 
697 	if (!valid_key_spec(&arg.key_spec))
698 		return -EINVAL;
699 
700 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
701 		return -EINVAL;
702 
703 	/*
704 	 * Only root can add keys that are identified by an arbitrary descriptor
705 	 * rather than by a cryptographic hash --- since otherwise a malicious
706 	 * user could add the wrong key.
707 	 */
708 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
709 	    !capable(CAP_SYS_ADMIN))
710 		return -EACCES;
711 
712 	memset(&secret, 0, sizeof(secret));
713 	if (arg.key_id) {
714 		if (arg.raw_size != 0)
715 			return -EINVAL;
716 		err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret);
717 		if (err)
718 			goto out_wipe_secret;
719 	} else {
720 		if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE ||
721 		    arg.raw_size > FSCRYPT_MAX_KEY_SIZE)
722 			return -EINVAL;
723 		secret.size = arg.raw_size;
724 		err = -EFAULT;
725 		if (copy_from_user(secret.raw, uarg->raw, secret.size))
726 			goto out_wipe_secret;
727 	}
728 
729 	err = add_master_key(sb, &secret, &arg.key_spec);
730 	if (err)
731 		goto out_wipe_secret;
732 
733 	/* Return the key identifier to userspace, if applicable */
734 	err = -EFAULT;
735 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER &&
736 	    copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier,
737 			 FSCRYPT_KEY_IDENTIFIER_SIZE))
738 		goto out_wipe_secret;
739 	err = 0;
740 out_wipe_secret:
741 	wipe_master_key_secret(&secret);
742 	return err;
743 }
744 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key);
745 
746 static void
747 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret)
748 {
749 	static u8 test_key[FSCRYPT_MAX_KEY_SIZE];
750 
751 	get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE);
752 
753 	memset(secret, 0, sizeof(*secret));
754 	secret->size = FSCRYPT_MAX_KEY_SIZE;
755 	memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE);
756 }
757 
758 int fscrypt_get_test_dummy_key_identifier(
759 				u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
760 {
761 	struct fscrypt_master_key_secret secret;
762 	int err;
763 
764 	fscrypt_get_test_dummy_secret(&secret);
765 
766 	err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size);
767 	if (err)
768 		goto out;
769 	err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER,
770 				  NULL, 0, key_identifier,
771 				  FSCRYPT_KEY_IDENTIFIER_SIZE);
772 out:
773 	wipe_master_key_secret(&secret);
774 	return err;
775 }
776 
777 /**
778  * fscrypt_add_test_dummy_key() - add the test dummy encryption key
779  * @sb: the filesystem instance to add the key to
780  * @key_spec: the key specifier of the test dummy encryption key
781  *
782  * Add the key for the test_dummy_encryption mount option to the filesystem.  To
783  * prevent misuse of this mount option, a per-boot random key is used instead of
784  * a hardcoded one.  This makes it so that any encrypted files created using
785  * this option won't be accessible after a reboot.
786  *
787  * Return: 0 on success, -errno on failure
788  */
789 int fscrypt_add_test_dummy_key(struct super_block *sb,
790 			       struct fscrypt_key_specifier *key_spec)
791 {
792 	struct fscrypt_master_key_secret secret;
793 	int err;
794 
795 	fscrypt_get_test_dummy_secret(&secret);
796 	err = add_master_key(sb, &secret, key_spec);
797 	wipe_master_key_secret(&secret);
798 	return err;
799 }
800 
801 /*
802  * Verify that the current user has added a master key with the given identifier
803  * (returns -ENOKEY if not).  This is needed to prevent a user from encrypting
804  * their files using some other user's key which they don't actually know.
805  * Cryptographically this isn't much of a problem, but the semantics of this
806  * would be a bit weird, so it's best to just forbid it.
807  *
808  * The system administrator (CAP_FOWNER) can override this, which should be
809  * enough for any use cases where encryption policies are being set using keys
810  * that were chosen ahead of time but aren't available at the moment.
811  *
812  * Note that the key may have already removed by the time this returns, but
813  * that's okay; we just care whether the key was there at some point.
814  *
815  * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code
816  */
817 int fscrypt_verify_key_added(struct super_block *sb,
818 			     const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE])
819 {
820 	struct fscrypt_key_specifier mk_spec;
821 	struct fscrypt_master_key *mk;
822 	struct key *mk_user;
823 	int err;
824 
825 	mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER;
826 	memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE);
827 
828 	mk = fscrypt_find_master_key(sb, &mk_spec);
829 	if (!mk) {
830 		err = -ENOKEY;
831 		goto out;
832 	}
833 	down_read(&mk->mk_sem);
834 	mk_user = find_master_key_user(mk);
835 	if (IS_ERR(mk_user)) {
836 		err = PTR_ERR(mk_user);
837 	} else {
838 		key_put(mk_user);
839 		err = 0;
840 	}
841 	up_read(&mk->mk_sem);
842 	fscrypt_put_master_key(mk);
843 out:
844 	if (err == -ENOKEY && capable(CAP_FOWNER))
845 		err = 0;
846 	return err;
847 }
848 
849 /*
850  * Try to evict the inode's dentries from the dentry cache.  If the inode is a
851  * directory, then it can have at most one dentry; however, that dentry may be
852  * pinned by child dentries, so first try to evict the children too.
853  */
854 static void shrink_dcache_inode(struct inode *inode)
855 {
856 	struct dentry *dentry;
857 
858 	if (S_ISDIR(inode->i_mode)) {
859 		dentry = d_find_any_alias(inode);
860 		if (dentry) {
861 			shrink_dcache_parent(dentry);
862 			dput(dentry);
863 		}
864 	}
865 	d_prune_aliases(inode);
866 }
867 
868 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk)
869 {
870 	struct fscrypt_info *ci;
871 	struct inode *inode;
872 	struct inode *toput_inode = NULL;
873 
874 	spin_lock(&mk->mk_decrypted_inodes_lock);
875 
876 	list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) {
877 		inode = ci->ci_inode;
878 		spin_lock(&inode->i_lock);
879 		if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) {
880 			spin_unlock(&inode->i_lock);
881 			continue;
882 		}
883 		__iget(inode);
884 		spin_unlock(&inode->i_lock);
885 		spin_unlock(&mk->mk_decrypted_inodes_lock);
886 
887 		shrink_dcache_inode(inode);
888 		iput(toput_inode);
889 		toput_inode = inode;
890 
891 		spin_lock(&mk->mk_decrypted_inodes_lock);
892 	}
893 
894 	spin_unlock(&mk->mk_decrypted_inodes_lock);
895 	iput(toput_inode);
896 }
897 
898 static int check_for_busy_inodes(struct super_block *sb,
899 				 struct fscrypt_master_key *mk)
900 {
901 	struct list_head *pos;
902 	size_t busy_count = 0;
903 	unsigned long ino;
904 	char ino_str[50] = "";
905 
906 	spin_lock(&mk->mk_decrypted_inodes_lock);
907 
908 	list_for_each(pos, &mk->mk_decrypted_inodes)
909 		busy_count++;
910 
911 	if (busy_count == 0) {
912 		spin_unlock(&mk->mk_decrypted_inodes_lock);
913 		return 0;
914 	}
915 
916 	{
917 		/* select an example file to show for debugging purposes */
918 		struct inode *inode =
919 			list_first_entry(&mk->mk_decrypted_inodes,
920 					 struct fscrypt_info,
921 					 ci_master_key_link)->ci_inode;
922 		ino = inode->i_ino;
923 	}
924 	spin_unlock(&mk->mk_decrypted_inodes_lock);
925 
926 	/* If the inode is currently being created, ino may still be 0. */
927 	if (ino)
928 		snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino);
929 
930 	fscrypt_warn(NULL,
931 		     "%s: %zu inode(s) still busy after removing key with %s %*phN%s",
932 		     sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec),
933 		     master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u,
934 		     ino_str);
935 	return -EBUSY;
936 }
937 
938 static int try_to_lock_encrypted_files(struct super_block *sb,
939 				       struct fscrypt_master_key *mk)
940 {
941 	int err1;
942 	int err2;
943 
944 	/*
945 	 * An inode can't be evicted while it is dirty or has dirty pages.
946 	 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes.
947 	 *
948 	 * Just do it the easy way: call sync_filesystem().  It's overkill, but
949 	 * it works, and it's more important to minimize the amount of caches we
950 	 * drop than the amount of data we sync.  Also, unprivileged users can
951 	 * already call sync_filesystem() via sys_syncfs() or sys_sync().
952 	 */
953 	down_read(&sb->s_umount);
954 	err1 = sync_filesystem(sb);
955 	up_read(&sb->s_umount);
956 	/* If a sync error occurs, still try to evict as much as possible. */
957 
958 	/*
959 	 * Inodes are pinned by their dentries, so we have to evict their
960 	 * dentries.  shrink_dcache_sb() would suffice, but would be overkill
961 	 * and inappropriate for use by unprivileged users.  So instead go
962 	 * through the inodes' alias lists and try to evict each dentry.
963 	 */
964 	evict_dentries_for_decrypted_inodes(mk);
965 
966 	/*
967 	 * evict_dentries_for_decrypted_inodes() already iput() each inode in
968 	 * the list; any inodes for which that dropped the last reference will
969 	 * have been evicted due to fscrypt_drop_inode() detecting the key
970 	 * removal and telling the VFS to evict the inode.  So to finish, we
971 	 * just need to check whether any inodes couldn't be evicted.
972 	 */
973 	err2 = check_for_busy_inodes(sb, mk);
974 
975 	return err1 ?: err2;
976 }
977 
978 /*
979  * Try to remove an fscrypt master encryption key.
980  *
981  * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's
982  * claim to the key, then removes the key itself if no other users have claims.
983  * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the
984  * key itself.
985  *
986  * To "remove the key itself", first we wipe the actual master key secret, so
987  * that no more inodes can be unlocked with it.  Then we try to evict all cached
988  * inodes that had been unlocked with the key.
989  *
990  * If all inodes were evicted, then we unlink the fscrypt_master_key from the
991  * keyring.  Otherwise it remains in the keyring in the "incompletely removed"
992  * state (without the actual secret key) where it tracks the list of remaining
993  * inodes.  Userspace can execute the ioctl again later to retry eviction, or
994  * alternatively can re-add the secret key again.
995  *
996  * For more details, see the "Removing keys" section of
997  * Documentation/filesystems/fscrypt.rst.
998  */
999 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users)
1000 {
1001 	struct super_block *sb = file_inode(filp)->i_sb;
1002 	struct fscrypt_remove_key_arg __user *uarg = _uarg;
1003 	struct fscrypt_remove_key_arg arg;
1004 	struct fscrypt_master_key *mk;
1005 	u32 status_flags = 0;
1006 	int err;
1007 	bool inodes_remain;
1008 
1009 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1010 		return -EFAULT;
1011 
1012 	if (!valid_key_spec(&arg.key_spec))
1013 		return -EINVAL;
1014 
1015 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1016 		return -EINVAL;
1017 
1018 	/*
1019 	 * Only root can add and remove keys that are identified by an arbitrary
1020 	 * descriptor rather than by a cryptographic hash.
1021 	 */
1022 	if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR &&
1023 	    !capable(CAP_SYS_ADMIN))
1024 		return -EACCES;
1025 
1026 	/* Find the key being removed. */
1027 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1028 	if (!mk)
1029 		return -ENOKEY;
1030 	down_write(&mk->mk_sem);
1031 
1032 	/* If relevant, remove current user's (or all users) claim to the key */
1033 	if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) {
1034 		if (all_users)
1035 			err = keyring_clear(mk->mk_users);
1036 		else
1037 			err = remove_master_key_user(mk);
1038 		if (err) {
1039 			up_write(&mk->mk_sem);
1040 			goto out_put_key;
1041 		}
1042 		if (mk->mk_users->keys.nr_leaves_on_tree != 0) {
1043 			/*
1044 			 * Other users have still added the key too.  We removed
1045 			 * the current user's claim to the key, but we still
1046 			 * can't remove the key itself.
1047 			 */
1048 			status_flags |=
1049 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS;
1050 			err = 0;
1051 			up_write(&mk->mk_sem);
1052 			goto out_put_key;
1053 		}
1054 	}
1055 
1056 	/* No user claims remaining.  Go ahead and wipe the secret. */
1057 	err = -ENOKEY;
1058 	if (is_master_key_secret_present(&mk->mk_secret)) {
1059 		wipe_master_key_secret(&mk->mk_secret);
1060 		fscrypt_put_master_key_activeref(sb, mk);
1061 		err = 0;
1062 	}
1063 	inodes_remain = refcount_read(&mk->mk_active_refs) > 0;
1064 	up_write(&mk->mk_sem);
1065 
1066 	if (inodes_remain) {
1067 		/* Some inodes still reference this key; try to evict them. */
1068 		err = try_to_lock_encrypted_files(sb, mk);
1069 		if (err == -EBUSY) {
1070 			status_flags |=
1071 				FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY;
1072 			err = 0;
1073 		}
1074 	}
1075 	/*
1076 	 * We return 0 if we successfully did something: removed a claim to the
1077 	 * key, wiped the secret, or tried locking the files again.  Users need
1078 	 * to check the informational status flags if they care whether the key
1079 	 * has been fully removed including all files locked.
1080 	 */
1081 out_put_key:
1082 	fscrypt_put_master_key(mk);
1083 	if (err == 0)
1084 		err = put_user(status_flags, &uarg->removal_status_flags);
1085 	return err;
1086 }
1087 
1088 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg)
1089 {
1090 	return do_remove_key(filp, uarg, false);
1091 }
1092 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key);
1093 
1094 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg)
1095 {
1096 	if (!capable(CAP_SYS_ADMIN))
1097 		return -EACCES;
1098 	return do_remove_key(filp, uarg, true);
1099 }
1100 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users);
1101 
1102 /*
1103  * Retrieve the status of an fscrypt master encryption key.
1104  *
1105  * We set ->status to indicate whether the key is absent, present, or
1106  * incompletely removed.  "Incompletely removed" means that the master key
1107  * secret has been removed, but some files which had been unlocked with it are
1108  * still in use.  This field allows applications to easily determine the state
1109  * of an encrypted directory without using a hack such as trying to open a
1110  * regular file in it (which can confuse the "incompletely removed" state with
1111  * absent or present).
1112  *
1113  * In addition, for v2 policy keys we allow applications to determine, via
1114  * ->status_flags and ->user_count, whether the key has been added by the
1115  * current user, by other users, or by both.  Most applications should not need
1116  * this, since ordinarily only one user should know a given key.  However, if a
1117  * secret key is shared by multiple users, applications may wish to add an
1118  * already-present key to prevent other users from removing it.  This ioctl can
1119  * be used to check whether that really is the case before the work is done to
1120  * add the key --- which might e.g. require prompting the user for a passphrase.
1121  *
1122  * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of
1123  * Documentation/filesystems/fscrypt.rst.
1124  */
1125 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg)
1126 {
1127 	struct super_block *sb = file_inode(filp)->i_sb;
1128 	struct fscrypt_get_key_status_arg arg;
1129 	struct fscrypt_master_key *mk;
1130 	int err;
1131 
1132 	if (copy_from_user(&arg, uarg, sizeof(arg)))
1133 		return -EFAULT;
1134 
1135 	if (!valid_key_spec(&arg.key_spec))
1136 		return -EINVAL;
1137 
1138 	if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved)))
1139 		return -EINVAL;
1140 
1141 	arg.status_flags = 0;
1142 	arg.user_count = 0;
1143 	memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved));
1144 
1145 	mk = fscrypt_find_master_key(sb, &arg.key_spec);
1146 	if (!mk) {
1147 		arg.status = FSCRYPT_KEY_STATUS_ABSENT;
1148 		err = 0;
1149 		goto out;
1150 	}
1151 	down_read(&mk->mk_sem);
1152 
1153 	if (!is_master_key_secret_present(&mk->mk_secret)) {
1154 		arg.status = refcount_read(&mk->mk_active_refs) > 0 ?
1155 			FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED :
1156 			FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */;
1157 		err = 0;
1158 		goto out_release_key;
1159 	}
1160 
1161 	arg.status = FSCRYPT_KEY_STATUS_PRESENT;
1162 	if (mk->mk_users) {
1163 		struct key *mk_user;
1164 
1165 		arg.user_count = mk->mk_users->keys.nr_leaves_on_tree;
1166 		mk_user = find_master_key_user(mk);
1167 		if (!IS_ERR(mk_user)) {
1168 			arg.status_flags |=
1169 				FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF;
1170 			key_put(mk_user);
1171 		} else if (mk_user != ERR_PTR(-ENOKEY)) {
1172 			err = PTR_ERR(mk_user);
1173 			goto out_release_key;
1174 		}
1175 	}
1176 	err = 0;
1177 out_release_key:
1178 	up_read(&mk->mk_sem);
1179 	fscrypt_put_master_key(mk);
1180 out:
1181 	if (!err && copy_to_user(uarg, &arg, sizeof(arg)))
1182 		err = -EFAULT;
1183 	return err;
1184 }
1185 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status);
1186 
1187 int __init fscrypt_init_keyring(void)
1188 {
1189 	int err;
1190 
1191 	err = register_key_type(&key_type_fscrypt_user);
1192 	if (err)
1193 		return err;
1194 
1195 	err = register_key_type(&key_type_fscrypt_provisioning);
1196 	if (err)
1197 		goto err_unregister_fscrypt_user;
1198 
1199 	return 0;
1200 
1201 err_unregister_fscrypt_user:
1202 	unregister_key_type(&key_type_fscrypt_user);
1203 	return err;
1204 }
1205