1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Filesystem-level keyring for fscrypt 4 * 5 * Copyright 2019 Google LLC 6 */ 7 8 /* 9 * This file implements management of fscrypt master keys in the 10 * filesystem-level keyring, including the ioctls: 11 * 12 * - FS_IOC_ADD_ENCRYPTION_KEY 13 * - FS_IOC_REMOVE_ENCRYPTION_KEY 14 * - FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS 15 * - FS_IOC_GET_ENCRYPTION_KEY_STATUS 16 * 17 * See the "User API" section of Documentation/filesystems/fscrypt.rst for more 18 * information about these ioctls. 19 */ 20 21 #include <asm/unaligned.h> 22 #include <crypto/skcipher.h> 23 #include <linux/key-type.h> 24 #include <linux/random.h> 25 #include <linux/seq_file.h> 26 27 #include "fscrypt_private.h" 28 29 /* The master encryption keys for a filesystem (->s_master_keys) */ 30 struct fscrypt_keyring { 31 /* 32 * Lock that protects ->key_hashtable. It does *not* protect the 33 * fscrypt_master_key structs themselves. 34 */ 35 spinlock_t lock; 36 37 /* Hash table that maps fscrypt_key_specifier to fscrypt_master_key */ 38 struct hlist_head key_hashtable[128]; 39 }; 40 41 static void wipe_master_key_secret(struct fscrypt_master_key_secret *secret) 42 { 43 fscrypt_destroy_hkdf(&secret->hkdf); 44 memzero_explicit(secret, sizeof(*secret)); 45 } 46 47 static void move_master_key_secret(struct fscrypt_master_key_secret *dst, 48 struct fscrypt_master_key_secret *src) 49 { 50 memcpy(dst, src, sizeof(*dst)); 51 memzero_explicit(src, sizeof(*src)); 52 } 53 54 static void fscrypt_free_master_key(struct rcu_head *head) 55 { 56 struct fscrypt_master_key *mk = 57 container_of(head, struct fscrypt_master_key, mk_rcu_head); 58 /* 59 * The master key secret and any embedded subkeys should have already 60 * been wiped when the last active reference to the fscrypt_master_key 61 * struct was dropped; doing it here would be unnecessarily late. 62 * Nevertheless, use kfree_sensitive() in case anything was missed. 63 */ 64 kfree_sensitive(mk); 65 } 66 67 void fscrypt_put_master_key(struct fscrypt_master_key *mk) 68 { 69 if (!refcount_dec_and_test(&mk->mk_struct_refs)) 70 return; 71 /* 72 * No structural references left, so free ->mk_users, and also free the 73 * fscrypt_master_key struct itself after an RCU grace period ensures 74 * that concurrent keyring lookups can no longer find it. 75 */ 76 WARN_ON(refcount_read(&mk->mk_active_refs) != 0); 77 key_put(mk->mk_users); 78 mk->mk_users = NULL; 79 call_rcu(&mk->mk_rcu_head, fscrypt_free_master_key); 80 } 81 82 void fscrypt_put_master_key_activeref(struct fscrypt_master_key *mk) 83 { 84 struct super_block *sb = mk->mk_sb; 85 struct fscrypt_keyring *keyring = sb->s_master_keys; 86 size_t i; 87 88 if (!refcount_dec_and_test(&mk->mk_active_refs)) 89 return; 90 /* 91 * No active references left, so complete the full removal of this 92 * fscrypt_master_key struct by removing it from the keyring and 93 * destroying any subkeys embedded in it. 94 */ 95 96 spin_lock(&keyring->lock); 97 hlist_del_rcu(&mk->mk_node); 98 spin_unlock(&keyring->lock); 99 100 /* 101 * ->mk_active_refs == 0 implies that ->mk_secret is not present and 102 * that ->mk_decrypted_inodes is empty. 103 */ 104 WARN_ON(is_master_key_secret_present(&mk->mk_secret)); 105 WARN_ON(!list_empty(&mk->mk_decrypted_inodes)); 106 107 for (i = 0; i <= FSCRYPT_MODE_MAX; i++) { 108 fscrypt_destroy_prepared_key( 109 sb, &mk->mk_direct_keys[i]); 110 fscrypt_destroy_prepared_key( 111 sb, &mk->mk_iv_ino_lblk_64_keys[i]); 112 fscrypt_destroy_prepared_key( 113 sb, &mk->mk_iv_ino_lblk_32_keys[i]); 114 } 115 memzero_explicit(&mk->mk_ino_hash_key, 116 sizeof(mk->mk_ino_hash_key)); 117 mk->mk_ino_hash_key_initialized = false; 118 119 /* Drop the structural ref associated with the active refs. */ 120 fscrypt_put_master_key(mk); 121 } 122 123 static inline bool valid_key_spec(const struct fscrypt_key_specifier *spec) 124 { 125 if (spec->__reserved) 126 return false; 127 return master_key_spec_len(spec) != 0; 128 } 129 130 static int fscrypt_user_key_instantiate(struct key *key, 131 struct key_preparsed_payload *prep) 132 { 133 /* 134 * We just charge FSCRYPT_MAX_KEY_SIZE bytes to the user's key quota for 135 * each key, regardless of the exact key size. The amount of memory 136 * actually used is greater than the size of the raw key anyway. 137 */ 138 return key_payload_reserve(key, FSCRYPT_MAX_KEY_SIZE); 139 } 140 141 static void fscrypt_user_key_describe(const struct key *key, struct seq_file *m) 142 { 143 seq_puts(m, key->description); 144 } 145 146 /* 147 * Type of key in ->mk_users. Each key of this type represents a particular 148 * user who has added a particular master key. 149 * 150 * Note that the name of this key type really should be something like 151 * ".fscrypt-user" instead of simply ".fscrypt". But the shorter name is chosen 152 * mainly for simplicity of presentation in /proc/keys when read by a non-root 153 * user. And it is expected to be rare that a key is actually added by multiple 154 * users, since users should keep their encryption keys confidential. 155 */ 156 static struct key_type key_type_fscrypt_user = { 157 .name = ".fscrypt", 158 .instantiate = fscrypt_user_key_instantiate, 159 .describe = fscrypt_user_key_describe, 160 }; 161 162 #define FSCRYPT_MK_USERS_DESCRIPTION_SIZE \ 163 (CONST_STRLEN("fscrypt-") + 2 * FSCRYPT_KEY_IDENTIFIER_SIZE + \ 164 CONST_STRLEN("-users") + 1) 165 166 #define FSCRYPT_MK_USER_DESCRIPTION_SIZE \ 167 (2 * FSCRYPT_KEY_IDENTIFIER_SIZE + CONST_STRLEN(".uid.") + 10 + 1) 168 169 static void format_mk_users_keyring_description( 170 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE], 171 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 172 { 173 sprintf(description, "fscrypt-%*phN-users", 174 FSCRYPT_KEY_IDENTIFIER_SIZE, mk_identifier); 175 } 176 177 static void format_mk_user_description( 178 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE], 179 const u8 mk_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 180 { 181 182 sprintf(description, "%*phN.uid.%u", FSCRYPT_KEY_IDENTIFIER_SIZE, 183 mk_identifier, __kuid_val(current_fsuid())); 184 } 185 186 /* Create ->s_master_keys if needed. Synchronized by fscrypt_add_key_mutex. */ 187 static int allocate_filesystem_keyring(struct super_block *sb) 188 { 189 struct fscrypt_keyring *keyring; 190 191 if (sb->s_master_keys) 192 return 0; 193 194 keyring = kzalloc(sizeof(*keyring), GFP_KERNEL); 195 if (!keyring) 196 return -ENOMEM; 197 spin_lock_init(&keyring->lock); 198 /* 199 * Pairs with the smp_load_acquire() in fscrypt_find_master_key(). 200 * I.e., here we publish ->s_master_keys with a RELEASE barrier so that 201 * concurrent tasks can ACQUIRE it. 202 */ 203 smp_store_release(&sb->s_master_keys, keyring); 204 return 0; 205 } 206 207 /* 208 * This is called at unmount time to release all encryption keys that have been 209 * added to the filesystem, along with the keyring that contains them. 210 * 211 * Note that besides clearing and freeing memory, this might need to evict keys 212 * from the keyslots of an inline crypto engine. Therefore, this must be called 213 * while the filesystem's underlying block device(s) are still available. 214 */ 215 void fscrypt_sb_delete(struct super_block *sb) 216 { 217 struct fscrypt_keyring *keyring = sb->s_master_keys; 218 size_t i; 219 220 if (!keyring) 221 return; 222 223 for (i = 0; i < ARRAY_SIZE(keyring->key_hashtable); i++) { 224 struct hlist_head *bucket = &keyring->key_hashtable[i]; 225 struct fscrypt_master_key *mk; 226 struct hlist_node *tmp; 227 228 hlist_for_each_entry_safe(mk, tmp, bucket, mk_node) { 229 /* 230 * Since all inodes were already evicted, every key 231 * remaining in the keyring should have an empty inode 232 * list, and should only still be in the keyring due to 233 * the single active ref associated with ->mk_secret. 234 * There should be no structural refs beyond the one 235 * associated with the active ref. 236 */ 237 WARN_ON(refcount_read(&mk->mk_active_refs) != 1); 238 WARN_ON(refcount_read(&mk->mk_struct_refs) != 1); 239 WARN_ON(!is_master_key_secret_present(&mk->mk_secret)); 240 wipe_master_key_secret(&mk->mk_secret); 241 fscrypt_put_master_key_activeref(mk); 242 } 243 } 244 kfree_sensitive(keyring); 245 sb->s_master_keys = NULL; 246 } 247 248 static struct hlist_head * 249 fscrypt_mk_hash_bucket(struct fscrypt_keyring *keyring, 250 const struct fscrypt_key_specifier *mk_spec) 251 { 252 /* 253 * Since key specifiers should be "random" values, it is sufficient to 254 * use a trivial hash function that just takes the first several bits of 255 * the key specifier. 256 */ 257 unsigned long i = get_unaligned((unsigned long *)&mk_spec->u); 258 259 return &keyring->key_hashtable[i % ARRAY_SIZE(keyring->key_hashtable)]; 260 } 261 262 /* 263 * Find the specified master key struct in ->s_master_keys and take a structural 264 * ref to it. The structural ref guarantees that the key struct continues to 265 * exist, but it does *not* guarantee that ->s_master_keys continues to contain 266 * the key struct. The structural ref needs to be dropped by 267 * fscrypt_put_master_key(). Returns NULL if the key struct is not found. 268 */ 269 struct fscrypt_master_key * 270 fscrypt_find_master_key(struct super_block *sb, 271 const struct fscrypt_key_specifier *mk_spec) 272 { 273 struct fscrypt_keyring *keyring; 274 struct hlist_head *bucket; 275 struct fscrypt_master_key *mk; 276 277 /* 278 * Pairs with the smp_store_release() in allocate_filesystem_keyring(). 279 * I.e., another task can publish ->s_master_keys concurrently, 280 * executing a RELEASE barrier. We need to use smp_load_acquire() here 281 * to safely ACQUIRE the memory the other task published. 282 */ 283 keyring = smp_load_acquire(&sb->s_master_keys); 284 if (keyring == NULL) 285 return NULL; /* No keyring yet, so no keys yet. */ 286 287 bucket = fscrypt_mk_hash_bucket(keyring, mk_spec); 288 rcu_read_lock(); 289 switch (mk_spec->type) { 290 case FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR: 291 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 292 if (mk->mk_spec.type == 293 FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 294 memcmp(mk->mk_spec.u.descriptor, 295 mk_spec->u.descriptor, 296 FSCRYPT_KEY_DESCRIPTOR_SIZE) == 0 && 297 refcount_inc_not_zero(&mk->mk_struct_refs)) 298 goto out; 299 } 300 break; 301 case FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER: 302 hlist_for_each_entry_rcu(mk, bucket, mk_node) { 303 if (mk->mk_spec.type == 304 FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 305 memcmp(mk->mk_spec.u.identifier, 306 mk_spec->u.identifier, 307 FSCRYPT_KEY_IDENTIFIER_SIZE) == 0 && 308 refcount_inc_not_zero(&mk->mk_struct_refs)) 309 goto out; 310 } 311 break; 312 } 313 mk = NULL; 314 out: 315 rcu_read_unlock(); 316 return mk; 317 } 318 319 static int allocate_master_key_users_keyring(struct fscrypt_master_key *mk) 320 { 321 char description[FSCRYPT_MK_USERS_DESCRIPTION_SIZE]; 322 struct key *keyring; 323 324 format_mk_users_keyring_description(description, 325 mk->mk_spec.u.identifier); 326 keyring = keyring_alloc(description, GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 327 current_cred(), KEY_POS_SEARCH | 328 KEY_USR_SEARCH | KEY_USR_READ | KEY_USR_VIEW, 329 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL); 330 if (IS_ERR(keyring)) 331 return PTR_ERR(keyring); 332 333 mk->mk_users = keyring; 334 return 0; 335 } 336 337 /* 338 * Find the current user's "key" in the master key's ->mk_users. 339 * Returns ERR_PTR(-ENOKEY) if not found. 340 */ 341 static struct key *find_master_key_user(struct fscrypt_master_key *mk) 342 { 343 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 344 key_ref_t keyref; 345 346 format_mk_user_description(description, mk->mk_spec.u.identifier); 347 348 /* 349 * We need to mark the keyring reference as "possessed" so that we 350 * acquire permission to search it, via the KEY_POS_SEARCH permission. 351 */ 352 keyref = keyring_search(make_key_ref(mk->mk_users, true /*possessed*/), 353 &key_type_fscrypt_user, description, false); 354 if (IS_ERR(keyref)) { 355 if (PTR_ERR(keyref) == -EAGAIN || /* not found */ 356 PTR_ERR(keyref) == -EKEYREVOKED) /* recently invalidated */ 357 keyref = ERR_PTR(-ENOKEY); 358 return ERR_CAST(keyref); 359 } 360 return key_ref_to_ptr(keyref); 361 } 362 363 /* 364 * Give the current user a "key" in ->mk_users. This charges the user's quota 365 * and marks the master key as added by the current user, so that it cannot be 366 * removed by another user with the key. Either ->mk_sem must be held for 367 * write, or the master key must be still undergoing initialization. 368 */ 369 static int add_master_key_user(struct fscrypt_master_key *mk) 370 { 371 char description[FSCRYPT_MK_USER_DESCRIPTION_SIZE]; 372 struct key *mk_user; 373 int err; 374 375 format_mk_user_description(description, mk->mk_spec.u.identifier); 376 mk_user = key_alloc(&key_type_fscrypt_user, description, 377 current_fsuid(), current_gid(), current_cred(), 378 KEY_POS_SEARCH | KEY_USR_VIEW, 0, NULL); 379 if (IS_ERR(mk_user)) 380 return PTR_ERR(mk_user); 381 382 err = key_instantiate_and_link(mk_user, NULL, 0, mk->mk_users, NULL); 383 key_put(mk_user); 384 return err; 385 } 386 387 /* 388 * Remove the current user's "key" from ->mk_users. 389 * ->mk_sem must be held for write. 390 * 391 * Returns 0 if removed, -ENOKEY if not found, or another -errno code. 392 */ 393 static int remove_master_key_user(struct fscrypt_master_key *mk) 394 { 395 struct key *mk_user; 396 int err; 397 398 mk_user = find_master_key_user(mk); 399 if (IS_ERR(mk_user)) 400 return PTR_ERR(mk_user); 401 err = key_unlink(mk->mk_users, mk_user); 402 key_put(mk_user); 403 return err; 404 } 405 406 /* 407 * Allocate a new fscrypt_master_key, transfer the given secret over to it, and 408 * insert it into sb->s_master_keys. 409 */ 410 static int add_new_master_key(struct super_block *sb, 411 struct fscrypt_master_key_secret *secret, 412 const struct fscrypt_key_specifier *mk_spec) 413 { 414 struct fscrypt_keyring *keyring = sb->s_master_keys; 415 struct fscrypt_master_key *mk; 416 int err; 417 418 mk = kzalloc(sizeof(*mk), GFP_KERNEL); 419 if (!mk) 420 return -ENOMEM; 421 422 mk->mk_sb = sb; 423 init_rwsem(&mk->mk_sem); 424 refcount_set(&mk->mk_struct_refs, 1); 425 mk->mk_spec = *mk_spec; 426 427 INIT_LIST_HEAD(&mk->mk_decrypted_inodes); 428 spin_lock_init(&mk->mk_decrypted_inodes_lock); 429 430 if (mk_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 431 err = allocate_master_key_users_keyring(mk); 432 if (err) 433 goto out_put; 434 err = add_master_key_user(mk); 435 if (err) 436 goto out_put; 437 } 438 439 move_master_key_secret(&mk->mk_secret, secret); 440 refcount_set(&mk->mk_active_refs, 1); /* ->mk_secret is present */ 441 442 spin_lock(&keyring->lock); 443 hlist_add_head_rcu(&mk->mk_node, 444 fscrypt_mk_hash_bucket(keyring, mk_spec)); 445 spin_unlock(&keyring->lock); 446 return 0; 447 448 out_put: 449 fscrypt_put_master_key(mk); 450 return err; 451 } 452 453 #define KEY_DEAD 1 454 455 static int add_existing_master_key(struct fscrypt_master_key *mk, 456 struct fscrypt_master_key_secret *secret) 457 { 458 int err; 459 460 /* 461 * If the current user is already in ->mk_users, then there's nothing to 462 * do. Otherwise, we need to add the user to ->mk_users. (Neither is 463 * applicable for v1 policy keys, which have NULL ->mk_users.) 464 */ 465 if (mk->mk_users) { 466 struct key *mk_user = find_master_key_user(mk); 467 468 if (mk_user != ERR_PTR(-ENOKEY)) { 469 if (IS_ERR(mk_user)) 470 return PTR_ERR(mk_user); 471 key_put(mk_user); 472 return 0; 473 } 474 err = add_master_key_user(mk); 475 if (err) 476 return err; 477 } 478 479 /* Re-add the secret if needed. */ 480 if (!is_master_key_secret_present(&mk->mk_secret)) { 481 if (!refcount_inc_not_zero(&mk->mk_active_refs)) 482 return KEY_DEAD; 483 move_master_key_secret(&mk->mk_secret, secret); 484 } 485 486 return 0; 487 } 488 489 static int do_add_master_key(struct super_block *sb, 490 struct fscrypt_master_key_secret *secret, 491 const struct fscrypt_key_specifier *mk_spec) 492 { 493 static DEFINE_MUTEX(fscrypt_add_key_mutex); 494 struct fscrypt_master_key *mk; 495 int err; 496 497 mutex_lock(&fscrypt_add_key_mutex); /* serialize find + link */ 498 499 mk = fscrypt_find_master_key(sb, mk_spec); 500 if (!mk) { 501 /* Didn't find the key in ->s_master_keys. Add it. */ 502 err = allocate_filesystem_keyring(sb); 503 if (!err) 504 err = add_new_master_key(sb, secret, mk_spec); 505 } else { 506 /* 507 * Found the key in ->s_master_keys. Re-add the secret if 508 * needed, and add the user to ->mk_users if needed. 509 */ 510 down_write(&mk->mk_sem); 511 err = add_existing_master_key(mk, secret); 512 up_write(&mk->mk_sem); 513 if (err == KEY_DEAD) { 514 /* 515 * We found a key struct, but it's already been fully 516 * removed. Ignore the old struct and add a new one. 517 * fscrypt_add_key_mutex means we don't need to worry 518 * about concurrent adds. 519 */ 520 err = add_new_master_key(sb, secret, mk_spec); 521 } 522 fscrypt_put_master_key(mk); 523 } 524 mutex_unlock(&fscrypt_add_key_mutex); 525 return err; 526 } 527 528 static int add_master_key(struct super_block *sb, 529 struct fscrypt_master_key_secret *secret, 530 struct fscrypt_key_specifier *key_spec) 531 { 532 int err; 533 534 if (key_spec->type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) { 535 err = fscrypt_init_hkdf(&secret->hkdf, secret->raw, 536 secret->size); 537 if (err) 538 return err; 539 540 /* 541 * Now that the HKDF context is initialized, the raw key is no 542 * longer needed. 543 */ 544 memzero_explicit(secret->raw, secret->size); 545 546 /* Calculate the key identifier */ 547 err = fscrypt_hkdf_expand(&secret->hkdf, 548 HKDF_CONTEXT_KEY_IDENTIFIER, NULL, 0, 549 key_spec->u.identifier, 550 FSCRYPT_KEY_IDENTIFIER_SIZE); 551 if (err) 552 return err; 553 } 554 return do_add_master_key(sb, secret, key_spec); 555 } 556 557 static int fscrypt_provisioning_key_preparse(struct key_preparsed_payload *prep) 558 { 559 const struct fscrypt_provisioning_key_payload *payload = prep->data; 560 561 if (prep->datalen < sizeof(*payload) + FSCRYPT_MIN_KEY_SIZE || 562 prep->datalen > sizeof(*payload) + FSCRYPT_MAX_KEY_SIZE) 563 return -EINVAL; 564 565 if (payload->type != FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 566 payload->type != FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER) 567 return -EINVAL; 568 569 if (payload->__reserved) 570 return -EINVAL; 571 572 prep->payload.data[0] = kmemdup(payload, prep->datalen, GFP_KERNEL); 573 if (!prep->payload.data[0]) 574 return -ENOMEM; 575 576 prep->quotalen = prep->datalen; 577 return 0; 578 } 579 580 static void fscrypt_provisioning_key_free_preparse( 581 struct key_preparsed_payload *prep) 582 { 583 kfree_sensitive(prep->payload.data[0]); 584 } 585 586 static void fscrypt_provisioning_key_describe(const struct key *key, 587 struct seq_file *m) 588 { 589 seq_puts(m, key->description); 590 if (key_is_positive(key)) { 591 const struct fscrypt_provisioning_key_payload *payload = 592 key->payload.data[0]; 593 594 seq_printf(m, ": %u [%u]", key->datalen, payload->type); 595 } 596 } 597 598 static void fscrypt_provisioning_key_destroy(struct key *key) 599 { 600 kfree_sensitive(key->payload.data[0]); 601 } 602 603 static struct key_type key_type_fscrypt_provisioning = { 604 .name = "fscrypt-provisioning", 605 .preparse = fscrypt_provisioning_key_preparse, 606 .free_preparse = fscrypt_provisioning_key_free_preparse, 607 .instantiate = generic_key_instantiate, 608 .describe = fscrypt_provisioning_key_describe, 609 .destroy = fscrypt_provisioning_key_destroy, 610 }; 611 612 /* 613 * Retrieve the raw key from the Linux keyring key specified by 'key_id', and 614 * store it into 'secret'. 615 * 616 * The key must be of type "fscrypt-provisioning" and must have the field 617 * fscrypt_provisioning_key_payload::type set to 'type', indicating that it's 618 * only usable with fscrypt with the particular KDF version identified by 619 * 'type'. We don't use the "logon" key type because there's no way to 620 * completely restrict the use of such keys; they can be used by any kernel API 621 * that accepts "logon" keys and doesn't require a specific service prefix. 622 * 623 * The ability to specify the key via Linux keyring key is intended for cases 624 * where userspace needs to re-add keys after the filesystem is unmounted and 625 * re-mounted. Most users should just provide the raw key directly instead. 626 */ 627 static int get_keyring_key(u32 key_id, u32 type, 628 struct fscrypt_master_key_secret *secret) 629 { 630 key_ref_t ref; 631 struct key *key; 632 const struct fscrypt_provisioning_key_payload *payload; 633 int err; 634 635 ref = lookup_user_key(key_id, 0, KEY_NEED_SEARCH); 636 if (IS_ERR(ref)) 637 return PTR_ERR(ref); 638 key = key_ref_to_ptr(ref); 639 640 if (key->type != &key_type_fscrypt_provisioning) 641 goto bad_key; 642 payload = key->payload.data[0]; 643 644 /* Don't allow fscrypt v1 keys to be used as v2 keys and vice versa. */ 645 if (payload->type != type) 646 goto bad_key; 647 648 secret->size = key->datalen - sizeof(*payload); 649 memcpy(secret->raw, payload->raw, secret->size); 650 err = 0; 651 goto out_put; 652 653 bad_key: 654 err = -EKEYREJECTED; 655 out_put: 656 key_ref_put(ref); 657 return err; 658 } 659 660 /* 661 * Add a master encryption key to the filesystem, causing all files which were 662 * encrypted with it to appear "unlocked" (decrypted) when accessed. 663 * 664 * When adding a key for use by v1 encryption policies, this ioctl is 665 * privileged, and userspace must provide the 'key_descriptor'. 666 * 667 * When adding a key for use by v2+ encryption policies, this ioctl is 668 * unprivileged. This is needed, in general, to allow non-root users to use 669 * encryption without encountering the visibility problems of process-subscribed 670 * keyrings and the inability to properly remove keys. This works by having 671 * each key identified by its cryptographically secure hash --- the 672 * 'key_identifier'. The cryptographic hash ensures that a malicious user 673 * cannot add the wrong key for a given identifier. Furthermore, each added key 674 * is charged to the appropriate user's quota for the keyrings service, which 675 * prevents a malicious user from adding too many keys. Finally, we forbid a 676 * user from removing a key while other users have added it too, which prevents 677 * a user who knows another user's key from causing a denial-of-service by 678 * removing it at an inopportune time. (We tolerate that a user who knows a key 679 * can prevent other users from removing it.) 680 * 681 * For more details, see the "FS_IOC_ADD_ENCRYPTION_KEY" section of 682 * Documentation/filesystems/fscrypt.rst. 683 */ 684 int fscrypt_ioctl_add_key(struct file *filp, void __user *_uarg) 685 { 686 struct super_block *sb = file_inode(filp)->i_sb; 687 struct fscrypt_add_key_arg __user *uarg = _uarg; 688 struct fscrypt_add_key_arg arg; 689 struct fscrypt_master_key_secret secret; 690 int err; 691 692 if (copy_from_user(&arg, uarg, sizeof(arg))) 693 return -EFAULT; 694 695 if (!valid_key_spec(&arg.key_spec)) 696 return -EINVAL; 697 698 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 699 return -EINVAL; 700 701 /* 702 * Only root can add keys that are identified by an arbitrary descriptor 703 * rather than by a cryptographic hash --- since otherwise a malicious 704 * user could add the wrong key. 705 */ 706 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 707 !capable(CAP_SYS_ADMIN)) 708 return -EACCES; 709 710 memset(&secret, 0, sizeof(secret)); 711 if (arg.key_id) { 712 if (arg.raw_size != 0) 713 return -EINVAL; 714 err = get_keyring_key(arg.key_id, arg.key_spec.type, &secret); 715 if (err) 716 goto out_wipe_secret; 717 } else { 718 if (arg.raw_size < FSCRYPT_MIN_KEY_SIZE || 719 arg.raw_size > FSCRYPT_MAX_KEY_SIZE) 720 return -EINVAL; 721 secret.size = arg.raw_size; 722 err = -EFAULT; 723 if (copy_from_user(secret.raw, uarg->raw, secret.size)) 724 goto out_wipe_secret; 725 } 726 727 err = add_master_key(sb, &secret, &arg.key_spec); 728 if (err) 729 goto out_wipe_secret; 730 731 /* Return the key identifier to userspace, if applicable */ 732 err = -EFAULT; 733 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER && 734 copy_to_user(uarg->key_spec.u.identifier, arg.key_spec.u.identifier, 735 FSCRYPT_KEY_IDENTIFIER_SIZE)) 736 goto out_wipe_secret; 737 err = 0; 738 out_wipe_secret: 739 wipe_master_key_secret(&secret); 740 return err; 741 } 742 EXPORT_SYMBOL_GPL(fscrypt_ioctl_add_key); 743 744 static void 745 fscrypt_get_test_dummy_secret(struct fscrypt_master_key_secret *secret) 746 { 747 static u8 test_key[FSCRYPT_MAX_KEY_SIZE]; 748 749 get_random_once(test_key, FSCRYPT_MAX_KEY_SIZE); 750 751 memset(secret, 0, sizeof(*secret)); 752 secret->size = FSCRYPT_MAX_KEY_SIZE; 753 memcpy(secret->raw, test_key, FSCRYPT_MAX_KEY_SIZE); 754 } 755 756 int fscrypt_get_test_dummy_key_identifier( 757 u8 key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 758 { 759 struct fscrypt_master_key_secret secret; 760 int err; 761 762 fscrypt_get_test_dummy_secret(&secret); 763 764 err = fscrypt_init_hkdf(&secret.hkdf, secret.raw, secret.size); 765 if (err) 766 goto out; 767 err = fscrypt_hkdf_expand(&secret.hkdf, HKDF_CONTEXT_KEY_IDENTIFIER, 768 NULL, 0, key_identifier, 769 FSCRYPT_KEY_IDENTIFIER_SIZE); 770 out: 771 wipe_master_key_secret(&secret); 772 return err; 773 } 774 775 /** 776 * fscrypt_add_test_dummy_key() - add the test dummy encryption key 777 * @sb: the filesystem instance to add the key to 778 * @dummy_policy: the encryption policy for test_dummy_encryption 779 * 780 * If needed, add the key for the test_dummy_encryption mount option to the 781 * filesystem. To prevent misuse of this mount option, a per-boot random key is 782 * used instead of a hardcoded one. This makes it so that any encrypted files 783 * created using this option won't be accessible after a reboot. 784 * 785 * Return: 0 on success, -errno on failure 786 */ 787 int fscrypt_add_test_dummy_key(struct super_block *sb, 788 const struct fscrypt_dummy_policy *dummy_policy) 789 { 790 const union fscrypt_policy *policy = dummy_policy->policy; 791 struct fscrypt_key_specifier key_spec; 792 struct fscrypt_master_key_secret secret; 793 int err; 794 795 if (!policy) 796 return 0; 797 err = fscrypt_policy_to_key_spec(policy, &key_spec); 798 if (err) 799 return err; 800 fscrypt_get_test_dummy_secret(&secret); 801 err = add_master_key(sb, &secret, &key_spec); 802 wipe_master_key_secret(&secret); 803 return err; 804 } 805 EXPORT_SYMBOL_GPL(fscrypt_add_test_dummy_key); 806 807 /* 808 * Verify that the current user has added a master key with the given identifier 809 * (returns -ENOKEY if not). This is needed to prevent a user from encrypting 810 * their files using some other user's key which they don't actually know. 811 * Cryptographically this isn't much of a problem, but the semantics of this 812 * would be a bit weird, so it's best to just forbid it. 813 * 814 * The system administrator (CAP_FOWNER) can override this, which should be 815 * enough for any use cases where encryption policies are being set using keys 816 * that were chosen ahead of time but aren't available at the moment. 817 * 818 * Note that the key may have already removed by the time this returns, but 819 * that's okay; we just care whether the key was there at some point. 820 * 821 * Return: 0 if the key is added, -ENOKEY if it isn't, or another -errno code 822 */ 823 int fscrypt_verify_key_added(struct super_block *sb, 824 const u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE]) 825 { 826 struct fscrypt_key_specifier mk_spec; 827 struct fscrypt_master_key *mk; 828 struct key *mk_user; 829 int err; 830 831 mk_spec.type = FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER; 832 memcpy(mk_spec.u.identifier, identifier, FSCRYPT_KEY_IDENTIFIER_SIZE); 833 834 mk = fscrypt_find_master_key(sb, &mk_spec); 835 if (!mk) { 836 err = -ENOKEY; 837 goto out; 838 } 839 down_read(&mk->mk_sem); 840 mk_user = find_master_key_user(mk); 841 if (IS_ERR(mk_user)) { 842 err = PTR_ERR(mk_user); 843 } else { 844 key_put(mk_user); 845 err = 0; 846 } 847 up_read(&mk->mk_sem); 848 fscrypt_put_master_key(mk); 849 out: 850 if (err == -ENOKEY && capable(CAP_FOWNER)) 851 err = 0; 852 return err; 853 } 854 855 /* 856 * Try to evict the inode's dentries from the dentry cache. If the inode is a 857 * directory, then it can have at most one dentry; however, that dentry may be 858 * pinned by child dentries, so first try to evict the children too. 859 */ 860 static void shrink_dcache_inode(struct inode *inode) 861 { 862 struct dentry *dentry; 863 864 if (S_ISDIR(inode->i_mode)) { 865 dentry = d_find_any_alias(inode); 866 if (dentry) { 867 shrink_dcache_parent(dentry); 868 dput(dentry); 869 } 870 } 871 d_prune_aliases(inode); 872 } 873 874 static void evict_dentries_for_decrypted_inodes(struct fscrypt_master_key *mk) 875 { 876 struct fscrypt_info *ci; 877 struct inode *inode; 878 struct inode *toput_inode = NULL; 879 880 spin_lock(&mk->mk_decrypted_inodes_lock); 881 882 list_for_each_entry(ci, &mk->mk_decrypted_inodes, ci_master_key_link) { 883 inode = ci->ci_inode; 884 spin_lock(&inode->i_lock); 885 if (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW)) { 886 spin_unlock(&inode->i_lock); 887 continue; 888 } 889 __iget(inode); 890 spin_unlock(&inode->i_lock); 891 spin_unlock(&mk->mk_decrypted_inodes_lock); 892 893 shrink_dcache_inode(inode); 894 iput(toput_inode); 895 toput_inode = inode; 896 897 spin_lock(&mk->mk_decrypted_inodes_lock); 898 } 899 900 spin_unlock(&mk->mk_decrypted_inodes_lock); 901 iput(toput_inode); 902 } 903 904 static int check_for_busy_inodes(struct super_block *sb, 905 struct fscrypt_master_key *mk) 906 { 907 struct list_head *pos; 908 size_t busy_count = 0; 909 unsigned long ino; 910 char ino_str[50] = ""; 911 912 spin_lock(&mk->mk_decrypted_inodes_lock); 913 914 list_for_each(pos, &mk->mk_decrypted_inodes) 915 busy_count++; 916 917 if (busy_count == 0) { 918 spin_unlock(&mk->mk_decrypted_inodes_lock); 919 return 0; 920 } 921 922 { 923 /* select an example file to show for debugging purposes */ 924 struct inode *inode = 925 list_first_entry(&mk->mk_decrypted_inodes, 926 struct fscrypt_info, 927 ci_master_key_link)->ci_inode; 928 ino = inode->i_ino; 929 } 930 spin_unlock(&mk->mk_decrypted_inodes_lock); 931 932 /* If the inode is currently being created, ino may still be 0. */ 933 if (ino) 934 snprintf(ino_str, sizeof(ino_str), ", including ino %lu", ino); 935 936 fscrypt_warn(NULL, 937 "%s: %zu inode(s) still busy after removing key with %s %*phN%s", 938 sb->s_id, busy_count, master_key_spec_type(&mk->mk_spec), 939 master_key_spec_len(&mk->mk_spec), (u8 *)&mk->mk_spec.u, 940 ino_str); 941 return -EBUSY; 942 } 943 944 static int try_to_lock_encrypted_files(struct super_block *sb, 945 struct fscrypt_master_key *mk) 946 { 947 int err1; 948 int err2; 949 950 /* 951 * An inode can't be evicted while it is dirty or has dirty pages. 952 * Thus, we first have to clean the inodes in ->mk_decrypted_inodes. 953 * 954 * Just do it the easy way: call sync_filesystem(). It's overkill, but 955 * it works, and it's more important to minimize the amount of caches we 956 * drop than the amount of data we sync. Also, unprivileged users can 957 * already call sync_filesystem() via sys_syncfs() or sys_sync(). 958 */ 959 down_read(&sb->s_umount); 960 err1 = sync_filesystem(sb); 961 up_read(&sb->s_umount); 962 /* If a sync error occurs, still try to evict as much as possible. */ 963 964 /* 965 * Inodes are pinned by their dentries, so we have to evict their 966 * dentries. shrink_dcache_sb() would suffice, but would be overkill 967 * and inappropriate for use by unprivileged users. So instead go 968 * through the inodes' alias lists and try to evict each dentry. 969 */ 970 evict_dentries_for_decrypted_inodes(mk); 971 972 /* 973 * evict_dentries_for_decrypted_inodes() already iput() each inode in 974 * the list; any inodes for which that dropped the last reference will 975 * have been evicted due to fscrypt_drop_inode() detecting the key 976 * removal and telling the VFS to evict the inode. So to finish, we 977 * just need to check whether any inodes couldn't be evicted. 978 */ 979 err2 = check_for_busy_inodes(sb, mk); 980 981 return err1 ?: err2; 982 } 983 984 /* 985 * Try to remove an fscrypt master encryption key. 986 * 987 * FS_IOC_REMOVE_ENCRYPTION_KEY (all_users=false) removes the current user's 988 * claim to the key, then removes the key itself if no other users have claims. 989 * FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS (all_users=true) always removes the 990 * key itself. 991 * 992 * To "remove the key itself", first we wipe the actual master key secret, so 993 * that no more inodes can be unlocked with it. Then we try to evict all cached 994 * inodes that had been unlocked with the key. 995 * 996 * If all inodes were evicted, then we unlink the fscrypt_master_key from the 997 * keyring. Otherwise it remains in the keyring in the "incompletely removed" 998 * state (without the actual secret key) where it tracks the list of remaining 999 * inodes. Userspace can execute the ioctl again later to retry eviction, or 1000 * alternatively can re-add the secret key again. 1001 * 1002 * For more details, see the "Removing keys" section of 1003 * Documentation/filesystems/fscrypt.rst. 1004 */ 1005 static int do_remove_key(struct file *filp, void __user *_uarg, bool all_users) 1006 { 1007 struct super_block *sb = file_inode(filp)->i_sb; 1008 struct fscrypt_remove_key_arg __user *uarg = _uarg; 1009 struct fscrypt_remove_key_arg arg; 1010 struct fscrypt_master_key *mk; 1011 u32 status_flags = 0; 1012 int err; 1013 bool inodes_remain; 1014 1015 if (copy_from_user(&arg, uarg, sizeof(arg))) 1016 return -EFAULT; 1017 1018 if (!valid_key_spec(&arg.key_spec)) 1019 return -EINVAL; 1020 1021 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1022 return -EINVAL; 1023 1024 /* 1025 * Only root can add and remove keys that are identified by an arbitrary 1026 * descriptor rather than by a cryptographic hash. 1027 */ 1028 if (arg.key_spec.type == FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR && 1029 !capable(CAP_SYS_ADMIN)) 1030 return -EACCES; 1031 1032 /* Find the key being removed. */ 1033 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1034 if (!mk) 1035 return -ENOKEY; 1036 down_write(&mk->mk_sem); 1037 1038 /* If relevant, remove current user's (or all users) claim to the key */ 1039 if (mk->mk_users && mk->mk_users->keys.nr_leaves_on_tree != 0) { 1040 if (all_users) 1041 err = keyring_clear(mk->mk_users); 1042 else 1043 err = remove_master_key_user(mk); 1044 if (err) { 1045 up_write(&mk->mk_sem); 1046 goto out_put_key; 1047 } 1048 if (mk->mk_users->keys.nr_leaves_on_tree != 0) { 1049 /* 1050 * Other users have still added the key too. We removed 1051 * the current user's claim to the key, but we still 1052 * can't remove the key itself. 1053 */ 1054 status_flags |= 1055 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS; 1056 err = 0; 1057 up_write(&mk->mk_sem); 1058 goto out_put_key; 1059 } 1060 } 1061 1062 /* No user claims remaining. Go ahead and wipe the secret. */ 1063 err = -ENOKEY; 1064 if (is_master_key_secret_present(&mk->mk_secret)) { 1065 wipe_master_key_secret(&mk->mk_secret); 1066 fscrypt_put_master_key_activeref(mk); 1067 err = 0; 1068 } 1069 inodes_remain = refcount_read(&mk->mk_active_refs) > 0; 1070 up_write(&mk->mk_sem); 1071 1072 if (inodes_remain) { 1073 /* Some inodes still reference this key; try to evict them. */ 1074 err = try_to_lock_encrypted_files(sb, mk); 1075 if (err == -EBUSY) { 1076 status_flags |= 1077 FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY; 1078 err = 0; 1079 } 1080 } 1081 /* 1082 * We return 0 if we successfully did something: removed a claim to the 1083 * key, wiped the secret, or tried locking the files again. Users need 1084 * to check the informational status flags if they care whether the key 1085 * has been fully removed including all files locked. 1086 */ 1087 out_put_key: 1088 fscrypt_put_master_key(mk); 1089 if (err == 0) 1090 err = put_user(status_flags, &uarg->removal_status_flags); 1091 return err; 1092 } 1093 1094 int fscrypt_ioctl_remove_key(struct file *filp, void __user *uarg) 1095 { 1096 return do_remove_key(filp, uarg, false); 1097 } 1098 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key); 1099 1100 int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *uarg) 1101 { 1102 if (!capable(CAP_SYS_ADMIN)) 1103 return -EACCES; 1104 return do_remove_key(filp, uarg, true); 1105 } 1106 EXPORT_SYMBOL_GPL(fscrypt_ioctl_remove_key_all_users); 1107 1108 /* 1109 * Retrieve the status of an fscrypt master encryption key. 1110 * 1111 * We set ->status to indicate whether the key is absent, present, or 1112 * incompletely removed. "Incompletely removed" means that the master key 1113 * secret has been removed, but some files which had been unlocked with it are 1114 * still in use. This field allows applications to easily determine the state 1115 * of an encrypted directory without using a hack such as trying to open a 1116 * regular file in it (which can confuse the "incompletely removed" state with 1117 * absent or present). 1118 * 1119 * In addition, for v2 policy keys we allow applications to determine, via 1120 * ->status_flags and ->user_count, whether the key has been added by the 1121 * current user, by other users, or by both. Most applications should not need 1122 * this, since ordinarily only one user should know a given key. However, if a 1123 * secret key is shared by multiple users, applications may wish to add an 1124 * already-present key to prevent other users from removing it. This ioctl can 1125 * be used to check whether that really is the case before the work is done to 1126 * add the key --- which might e.g. require prompting the user for a passphrase. 1127 * 1128 * For more details, see the "FS_IOC_GET_ENCRYPTION_KEY_STATUS" section of 1129 * Documentation/filesystems/fscrypt.rst. 1130 */ 1131 int fscrypt_ioctl_get_key_status(struct file *filp, void __user *uarg) 1132 { 1133 struct super_block *sb = file_inode(filp)->i_sb; 1134 struct fscrypt_get_key_status_arg arg; 1135 struct fscrypt_master_key *mk; 1136 int err; 1137 1138 if (copy_from_user(&arg, uarg, sizeof(arg))) 1139 return -EFAULT; 1140 1141 if (!valid_key_spec(&arg.key_spec)) 1142 return -EINVAL; 1143 1144 if (memchr_inv(arg.__reserved, 0, sizeof(arg.__reserved))) 1145 return -EINVAL; 1146 1147 arg.status_flags = 0; 1148 arg.user_count = 0; 1149 memset(arg.__out_reserved, 0, sizeof(arg.__out_reserved)); 1150 1151 mk = fscrypt_find_master_key(sb, &arg.key_spec); 1152 if (!mk) { 1153 arg.status = FSCRYPT_KEY_STATUS_ABSENT; 1154 err = 0; 1155 goto out; 1156 } 1157 down_read(&mk->mk_sem); 1158 1159 if (!is_master_key_secret_present(&mk->mk_secret)) { 1160 arg.status = refcount_read(&mk->mk_active_refs) > 0 ? 1161 FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED : 1162 FSCRYPT_KEY_STATUS_ABSENT /* raced with full removal */; 1163 err = 0; 1164 goto out_release_key; 1165 } 1166 1167 arg.status = FSCRYPT_KEY_STATUS_PRESENT; 1168 if (mk->mk_users) { 1169 struct key *mk_user; 1170 1171 arg.user_count = mk->mk_users->keys.nr_leaves_on_tree; 1172 mk_user = find_master_key_user(mk); 1173 if (!IS_ERR(mk_user)) { 1174 arg.status_flags |= 1175 FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF; 1176 key_put(mk_user); 1177 } else if (mk_user != ERR_PTR(-ENOKEY)) { 1178 err = PTR_ERR(mk_user); 1179 goto out_release_key; 1180 } 1181 } 1182 err = 0; 1183 out_release_key: 1184 up_read(&mk->mk_sem); 1185 fscrypt_put_master_key(mk); 1186 out: 1187 if (!err && copy_to_user(uarg, &arg, sizeof(arg))) 1188 err = -EFAULT; 1189 return err; 1190 } 1191 EXPORT_SYMBOL_GPL(fscrypt_ioctl_get_key_status); 1192 1193 int __init fscrypt_init_keyring(void) 1194 { 1195 int err; 1196 1197 err = register_key_type(&key_type_fscrypt_user); 1198 if (err) 1199 return err; 1200 1201 err = register_key_type(&key_type_fscrypt_provisioning); 1202 if (err) 1203 goto err_unregister_fscrypt_user; 1204 1205 return 0; 1206 1207 err_unregister_fscrypt_user: 1208 unregister_key_type(&key_type_fscrypt_user); 1209 return err; 1210 } 1211